WO2017161927A1 - Joint élastique de robot à rigidité réglable - Google Patents

Joint élastique de robot à rigidité réglable Download PDF

Info

Publication number
WO2017161927A1
WO2017161927A1 PCT/CN2016/110212 CN2016110212W WO2017161927A1 WO 2017161927 A1 WO2017161927 A1 WO 2017161927A1 CN 2016110212 W CN2016110212 W CN 2016110212W WO 2017161927 A1 WO2017161927 A1 WO 2017161927A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
rotating body
output shaft
spring
elastic
Prior art date
Application number
PCT/CN2016/110212
Other languages
English (en)
Chinese (zh)
Inventor
彭芳
李智军
叶雯珺
杨辰光
章隆彬
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2017161927A1 publication Critical patent/WO2017161927A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • B25J17/0208Compliance devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators

Definitions

  • the invention relates to a robotic bionic joint, in particular to an elastic joint with adjustable stiffness.
  • the device can be applied to various joint type robots to improve the flexibility of the joint of the robot.
  • the traditional robot joint design theory believes that the mechanical connection between the power drive and the joint hinge should give priority to the transmission mechanism with higher stiffness. Therefore, in the research of joint robots such as industrial robot arms, bionic multi-foot robots and rehabilitation medical prostheses, the driving scheme of rigid connection between motor output shaft and joint mechanism is generally adopted, which has the advantages of simple structure, accurate positioning and fast response. Meet the needs of a variety of operations and applications. However, due to the lack of flexibility, this kind of driving scheme makes the robot more vulnerable to external impact damage, and even harms the humans who cooperate with it. At the same time, there are shortcomings and shortcomings for the robot to achieve self-adjusting contact and low energy consumption.
  • N.G.Tsagarakis et al. designed a rotary elastic actuator that uses a wire spring to be arranged in a triangular shape around the circumference.
  • the device is compact, but cannot be adjusted according to the impact size
  • Amir Jafari et al. designed a stiffness-adjustable elastic actuator that uses a ball screw to change the size of the arm.
  • the linear spring is applied to the rotating joint.
  • the drive is loose and bulky.
  • Fabrizio et al. designed a torsion spring.
  • Rotary elastic drive the elastic element is a disc-shaped torsion spring piece designed independently. This design can effectively reduce the size of the elastic drive module, but the spring piece has little elasticity and the movement range is very limited.
  • the function needs to be replaced regularly, and it only has two levels of stiffness adjustment, which can not achieve linearly adjustable stiffness characteristics;
  • Zhu Qiuguo and others from Zhejiang University proposed a flexible joint actuator mechanism with adjustable stiffness, patent publication number CN104985608A, using curved bevel-rotary
  • the function of the flexible joint is realized by the method of squeezing the rectangular spring with the structure. According to the difference of the moving direction and the external load, the pre-tightening pressure of the rotating spring placed on the curved surface of the front and rear cam plates will change, thereby realizing the rigidity of the joint. Adjustment, the device is complex in structure, bulky, and has limited application fields.
  • the object of the present invention is to overcome the deficiencies in the design of existing robot joints, and propose a novel elastic joint of adjustable rigidity, which can be mounted on most robots using rotating joints.
  • the invention effectively solves the problems that the existing flexible joint structure of the robot is loose, the rigidity is not linearly adjustable, the versatility is poor, and the like, and the flexible control with adjustable stiffness can be performed according to the impact of the external load, which is helpful for promoting the upgrading of various joint robots.
  • the present invention has been achieved by the following technical solutions.
  • An elastic joint of an adjustable stiffness comprising a joint skeleton, a driving end and an output shaft respectively disposed at two ends of the joint skeleton, and further comprising a rigidity disposed in the joint skeleton and connected between the driving end and the output shaft
  • An adjusting device comprising a rotating body connected to the driving end, an elastic force transmitting member connected between the rotating body and the output shaft and rotating around the axis of the output shaft under the pushing of the rotating body, the output shaft being subjected to different loads
  • the solution realizes the linear adjustment of the rigidity by adjusting the working length of the spring piece in the elastic force transmitting component, and has the advantages of simple structure, small volume, high precision, large adjustment range, small wear and good versatility, and can realize linear adjustable. Stiffness characteristics.
  • the elastic force transmitting member comprises a spring piece chuck fixed on the output shaft, and a plurality of spring pieces which are uniformly fixed on the spring piece chuck at one end along the output shaft;
  • the rotating body comprises an upper and lower connection Rotating the body and rotating the bottom body of the body, the upper end surface of the rotating body uniformly opens a plurality of slots in the radial direction corresponding to the spring piece;
  • the adjusting mechanism comprises a claw disposed in the sliding slot, a driving plane threaded chuck matched with the bottoms of the claws, a spring card holder assembly fixed to each of the claws, and an adjusting power mechanism for driving the rotation of the planar threaded chuck, the spring piece passing through the spring card holder assembly and the two The sides are in intimate contact with the spring deck assembly.
  • the solution further reduces the wear of the spring piece, improves its service life and stability, and at the same time, the adjustment mechanism with self-locking characteristics is simple and compact, high precision, stable and reliable, and easy to implement.
  • the spring card holder assembly includes a spring card holder fixed to the claw, the spring card holder is provided with a hollow portion through which the spring piece passes through, and the hollow portion passes through two
  • the bearing fixing screw is symmetrically arranged with two second bearings rolling along the two sides of the spring piece, and the two bearings are rolled and rubbed on both sides of the spring piece, thereby minimizing the wear on the spring piece, prolonging the service life of the spring piece, and securing the spring. The work stability and reliability of the film.
  • the edge of the upper end surface of the rotating body is provided with a limit screw for restricting the moving position of the spring card holder assembly, and effectively controls the moving distance of the spring card holder assembly to prevent accidents such as falling off.
  • the adjustment power mechanism includes a gear transmission pair and a stiffness adjustment motor disposed on the bottom body of the rotating body, a timing belt drive pair connected between the gear transmission pair and the stiffness adjustment motor, the gear transmission pair
  • the output end is fixedly connected to the flat threaded chuck by fastening screws, which enables fast and efficient driving of the flat threaded chuck, and the structure is simple and compact.
  • the gear transmission pair is a worm gear transmission pair, which has compact structure, stable operation and high transmission ratio.
  • the rotating body bottom case is provided with an I-shaped rib for mounting a gear transmission pair and a stiffness adjusting motor, and a lower end of the rotating body is provided with a notch portion matching the shape of both ends of the I-shaped rib, Convenient gear transmission pair and stiffness adjustment motor installation and rotating body bottom shell and rotating body quickly aligned to improve assembly efficiency.
  • the joint skeleton includes a joint bottom shell and an articular shell provided with a hollow joint, and the joint shell is fastened by a fastening screw and an upper end of the joint bottom shell, and the output shaft is mounted on the joint shell through the first bearing.
  • the utility model has the advantages of simple structure, light weight and convenient assembly and disassembly.
  • the driving end comprises a connected driving motor and a harmonic reducer
  • the driving motor is mounted on the lower end of the joint bottom case through a bearing and a driving motor fixing screw, and the output end of the harmonic reducer is fixedly connected with the rotating body bottom case
  • the driving motor provides the main power of the joint
  • the rotating reducer drives the rotating body to rotate forward and backward to realize the forward and reverse movement of the elastic joint, the integration degree is higher, the structure is compact and simple.
  • Fig. 1 is a view showing the overall structure of a stiffness-adjustable elastic joint according to an embodiment of the present invention.
  • Fig. 2 is a view showing the explosion of the stiffness-adjustable elastic joint of the embodiment of the present invention.
  • 3 and 4 are partial cross-sectional views showing the stiffness-adjustable elastic joint of the embodiment of the present invention.
  • an elastic joint of an adjustable rigidity robot includes an joint skeleton, a driving end and an output shaft 1 respectively disposed at two ends of the joint skeleton, and further comprising a joint disposed in the joint skeleton and connected a stiffness adjusting device between the driving end and the output shaft 1, the rigidity adjusting device comprising a rotating body connected to the driving end, connected between the rotating body and the output shaft 1 and rotating around the axis of the output shaft 1 under the pushing of the rotating body
  • the elastic force transmitting member and the output shaft 1 are subjected to an adjustment mechanism for adjusting the length of the arm when the rotating body drives the elastic force transmitting member to rotate when impacted by different loads.
  • the elastic force transmitting member comprises a spring piece chuck 3 fixed on the output shaft 1, and three spring pieces 4 whose one end is uniformly fixed radially on the spring piece chuck 3 along the output shaft 1;
  • the rotating body includes a rotating body 16 connected to the upper and lower sides and a rotating bottom body 21, the rotating body 16 is pivoted with the output shaft as an axis, and the upper end surface of the rotating body 16 is evenly opened in the radial direction with a sliding groove which is aligned with the spring piece 4 in three directions;
  • the adjusting mechanism comprises a claw 6 movably disposed in each of the sliding grooves, a driving plane threaded chuck 7 matched with the bottom of each of the claws 6, a spring holder assembly 19 fixed on each of the claws 6, and a driving plane thread card
  • An adjustment power mechanism for rotating the disk 7, the spring piece 4 passes through the spring holder assembly 19 and its both sides are in close contact with the spring holder assembly 19, and the adjustment power mechanism includes a rotation mechanism provided on the bottom body 21 of the rotating
  • a gear transmission pair 8 and a stiffness adjustment motor 10 a timing pulley drive 9 connected between the gear transmission pair 8 and the stiffness adjustment motor 10
  • the gear transmission pair 8 is a worm gear transmission pair
  • the stiffness adjustment motor 10 passes the timing belt Wheel drive pair 9 transmits torque
  • the output end plane of the threaded chuck sub-gear 8 is fixedly connected perpendicularly 7 by fastening screws.
  • the spring holder assembly 19 can only reciprocally reciprocate in the direction of the chute under the driving of the claws 6.
  • the edge of the upper end surface of the rotating body 16 is disposed to limit the movement position of the spring holder assembly 19. Limiting screw 20.
  • the embodiment is provided with three spring pieces 4, three claws 6 and three sets of spring card holder assemblies 19.
  • a corresponding number of spring pieces 4, claws 6 and spring holder assemblies 19 can also be set as needed.
  • the spring card holder assembly 19 includes a spring card holder 5 fixed to the claw 6 , and a hollow portion through which the spring piece 4 passes is provided in the middle of the spring card holder 5 , and the hollow portion passes through the hollow portion
  • the two bearing fixing screws 14 are symmetrically disposed with two second bearings 15 rolling along the two sides of the spring piece 4.
  • the two side faces of the spring piece 4 are in close contact with the second bearing 15, and when they want to move to the ground, they form rolling friction with each other. Limiting the wear of the spring piece 4 reduces wear, improves life and saves energy.
  • the rotating body bottom case 21 is provided with an I-shaped rib for mounting the gear transmission pair 8 and the stiffness adjusting motor 10.
  • the lower end of the rotating body 16 is provided with a notch portion matching the shape of both ends of the I-shaped rib. It is convenient for the gear transmission pair 8 and the stiffness adjusting motor 10 to mount and rotate the bottom body 21 of the body and the rotating body 16 to quickly align, thereby improving assembly efficiency.
  • the joint skeleton includes a joint bottom shell 12 and a joint shell 18 provided with a hollow, and the joint shell 12 is fastened by fastening screws 17 and an upper end of the joint bottom shell 12, and the output shaft 1 is installed through the first bearing 2 On the joint face shell 18.
  • the driving end includes a connected driving motor 13 and a harmonic reducer 11.
  • the driving motor 13 is mounted on the lower end of the joint bottom case 12 through a bearing and a driving motor fixing screw 22, and the harmonic reducer 11 is mounted on the rotating body bottom case through a bearing. 21, the output end of the harmonic reducer 11 is fixedly connected to the rotating body bottom case 21.
  • the driving motor provides the main power of the joint, and the harmonic reducer drives the rotating body to rotate forward and backward to realize the forward and reverse movement of the elastic joint.
  • the main motion of the joint the driving motor 13 provides the main driving torque of the joint, and the rotating body 16 drives the rotating body 16 to perform the forward and reverse movement;
  • the spring card seat 5 on the sliding groove of the rotating body 16 passes through the second bearing 15 and the spring piece. 4 in close contact, the power is transmitted to the output shaft 1 through the spring piece 4, so that the rotating body 16, the spring piece chuck 3, and the output shaft 1 rotate coaxially;
  • Joint stiffness adjustment movement When the output end is subjected to different loads, the stiffness adjustment motor 10 rotates, and the synchronous pulley drive pair 9 and the gear transmission pair 8 are driven to move, thereby driving the planar threaded chuck 7 to rotate thereon.
  • the claw 6 slides along the sliding groove of the rotating body 16 with the spring holder 5, and the outer rings of the second bearing 15 which are in close contact with the spring piece 4 roll along both sides of the spring piece 4, and the second bearing 15
  • the position of the contact point between the outer ring and the spring piece 4 is close to or away from the spring piece chuck 3 with the gradual movement of the spring card holder 5, and the spring card seat 5 acts on the spring piece 4 as the position of the spring card holder 5 changes.
  • the length of the force arm of the force application point also changes, that is, the working length of the spring piece 4 will change, when the position of the contact point between the outer ring of the second bearing 15 and the spring piece 4 gradually approaches the spring piece chuck 3,
  • the working length of the spring piece 4 is shortened, and the spring piece 4 is deformed by the external force to become smaller and the rigidity becomes larger; when the position of the contact point between the outer ring of the second bearing 15 and the spring piece 4 is gradually away from the spring piece chuck 3 , the working length of the spring piece 4 becomes longer, and the bomb 4 sheet deformation under external force becomes large, rigidity becomes small, enabling stepless adjustment joint linear stiffness.
  • three sets of spring pieces 4, spring clips 5 and claws 6 are uniformly distributed around the axis of the output shaft 1, and the rigidity is adjusted by using the flat threaded chuck 7 to rotate the claws 6 and fastened thereto.
  • the spring card holder 5 moves along the side direction of the spring piece 4, and the linear adjustment of the rigidity is realized by adjusting the working length of the spring piece 4.
  • the structure is compact, light, versatile, and wearless, and the stiffness can be adjusted according to the impact of the external load. It improves the flexibility of the robot joint and can be applied to various articulated robots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

L'invention concerne un joint élastique de robot à rigidité réglable, lequel joint comprend : un squelette de joint, et une extrémité d'entraînement et un arbre de sortie (1) respectivement disposés aux deux extrémités du squelette de joint ; et un dispositif de réglage de rigidité disposé dans le squelette de joint et relié entre l'extrémité d'entraînement et l'arbre de sortie. Le dispositif de réglage de rigidité comprend un dispositif de rotation relié à l'extrémité d'entraînement, un élément de transmission de force élastique relié entre le dispositif de rotation et l'arbre de sortie et tournant autour de l'axe de l'arbre de sortie sous l'entraînement du dispositif de rotation, et un mécanisme de réglage pour régler la longueur d'un bras de force quand le dispositif de rotation entraîne l'élément de transmission de force élastique en rotation lorsque l'arbre de sortie est affecté par différents impacts de charge, et le mécanisme de réglage peut effectuer un réglage linéaire de la rigidité en fonction de l'intensité d'impact de charges externes. Le joint élastique de robot présente des avantages tels qu'une structure compacte et un faible poids, une universalité élevée, une grande précision, une grande plage de réglage et une moindre abrasion, ce qui permet d'améliorer la souplesse du joint de robot, et de pouvoir l'utiliser dans divers robots articulés.
PCT/CN2016/110212 2016-03-23 2016-12-15 Joint élastique de robot à rigidité réglable WO2017161927A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610173210.X 2016-03-23
CN201610173210.XA CN105599004B (zh) 2016-03-23 2016-03-23 一种刚度可调的机器***性关节

Publications (1)

Publication Number Publication Date
WO2017161927A1 true WO2017161927A1 (fr) 2017-09-28

Family

ID=55979605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110212 WO2017161927A1 (fr) 2016-03-23 2016-12-15 Joint élastique de robot à rigidité réglable

Country Status (2)

Country Link
CN (1) CN105599004B (fr)
WO (1) WO2017161927A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109176595A (zh) * 2018-10-19 2019-01-11 杭州宇树科技有限公司 机器人双关节单元及应用其的足式机器人和协作机械臂
CN109465848A (zh) * 2018-11-30 2019-03-15 广东工业大学 一种基于凸轮式杠杆结构的机器人关节变刚度模块
CN109702716A (zh) * 2019-01-31 2019-05-03 深圳市迈步机器人科技有限公司 一种关节驱动器及外骨骼***
CN110745221A (zh) * 2019-11-13 2020-02-04 中国海洋大学 一种形态全适应的海下抓取固定装置
CN111376306A (zh) * 2018-12-30 2020-07-07 中国科学院沈阳自动化研究所 机器人变刚度关节
CN111728668A (zh) * 2020-07-09 2020-10-02 孙晓雨 一种医用电动取骨夹
CN113018179A (zh) * 2021-03-11 2021-06-25 中国科学院自动化研究所 圆柱面自锁紧机构、自动配液***
CN113334424A (zh) * 2021-06-24 2021-09-03 北京航空航天大学 一种基于变刚度原理的机器人安全关节装置
CN114378569A (zh) * 2022-02-25 2022-04-22 北京航空航天大学 一种具有螺栓自动装配功能的机器人执行装置
CN115741771A (zh) * 2022-11-16 2023-03-07 安徽工程大学 一种单向压紧双边摩擦变刚度柔顺关节及工作方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105599004B (zh) * 2016-03-23 2017-06-20 华南理工大学 一种刚度可调的机器***性关节
CN106426267B (zh) * 2016-08-31 2018-09-14 华南理工大学 一种基于浮动弹簧的刚度连续可调关节
CN106142132B (zh) * 2016-09-22 2018-10-16 电子科技大学中山学院 刚度连续可调的机器人柔性关节
CN106239554B (zh) * 2016-10-10 2024-03-15 中国科学院宁波材料技术与工程研究所 一种可变刚度的传导机构以及机器人关节
CN106426265B (zh) * 2016-11-17 2019-04-02 中国石油大学(华东) 一种可变刚度柔顺驱动关节
CN106514700A (zh) * 2016-12-19 2017-03-22 华南理工大学 一种基于弹簧片的刚度连续可调的机器人柔性关节
TWI593527B (zh) * 2017-03-23 2017-08-01 台達電子工業股份有限公司 被動式順應性機構
CN106914920A (zh) * 2017-03-30 2017-07-04 南京工程学院 面向下肢踝关节外骨骼机器人的变刚度柔性驱动器
CN107662222B (zh) * 2017-11-20 2023-05-23 河北工业大学 一种基于单动力源的可变刚度柔性关节
CN108000554B (zh) * 2017-11-30 2021-07-06 中国矿业大学 一种基于片簧的可变刚度柔性关节及其控制方法
CN108858275B (zh) * 2018-07-05 2020-07-03 哈尔滨工业大学(深圳) 一种基于凸轮机构的变刚度关节
CN109227596B (zh) * 2018-10-22 2022-02-22 哈尔滨工业大学(深圳) 一种变刚度柔性关节装置
CN109760858B (zh) * 2018-12-18 2022-08-05 上海航天控制技术研究所 二自由度解耦的空间黏附爪传动装置
CN109732641B (zh) * 2019-01-28 2021-09-07 西安交通大学 一种双态式变刚度柔顺关节及操作方法
CN110027009B (zh) * 2019-03-15 2021-12-21 四川大学 一种新型可控阻尼关节
CN111673781B (zh) * 2020-06-10 2022-06-03 哈尔滨工业大学 一种变刚度仿人机器人手爪
CN112757277A (zh) * 2021-01-07 2021-05-07 之江实验室 一种变刚度柔性关节
CN112894790B (zh) * 2021-01-26 2022-08-02 哈尔滨工业大学(深圳) 一种基于丝杆螺纹副的主动变刚度关节
CN112894873B (zh) * 2021-01-26 2022-08-02 哈尔滨工业大学(深圳) 一种基于齿轮齿条副的主动变刚度关节
US11745363B1 (en) * 2021-02-26 2023-09-05 The United States Of America, As Represented By The Secretary Of The Navy Compact self-centering compliant joint
CN113084864B (zh) * 2021-05-07 2022-09-27 重庆理工大学 一种可变刚度的机器人关节结构
CN113524143B (zh) * 2021-06-10 2022-07-19 南京理工大学 一种变刚度膝关节及下肢外骨骼机器人
CN113639951B (zh) * 2021-07-22 2022-06-24 北京理工大学 体段及关节特征个性化可调的假人装置
CN114131647B (zh) * 2021-12-06 2022-08-26 之江实验室 一种基于凸轮的杠杆式可变刚度柔性关节
CN115338901A (zh) * 2022-09-15 2022-11-15 西南交通大学 一种可连续刚度调节的串联弹性驱动器
CN117944094A (zh) * 2024-03-25 2024-04-30 中国科学院长春光学精密机械与物理研究所 多自由度联合的时变刚度基座***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103753604A (zh) * 2013-12-27 2014-04-30 北京航空航天大学 一种可动态调整刚度的模块化柔性连接装置
WO2014198979A1 (fr) * 2013-06-13 2014-12-18 Consejo Superior De Investigaciones Científicas (Csic) Articulation à rigidité réglable et dispositif de mesure de force
CN104260106A (zh) * 2014-08-18 2015-01-07 北京航空航天大学 一种可变刚度的关节模块
KR101514245B1 (ko) * 2013-10-18 2015-04-22 이성규 가변 강성 구동기
CN105171769A (zh) * 2015-09-28 2015-12-23 四川大学 一种变刚度机器***性关节
CN105599004A (zh) * 2016-03-23 2016-05-25 华南理工大学 一种刚度可调的机器***性关节
CN205614698U (zh) * 2016-03-23 2016-10-05 华南理工大学 一种刚度可调的机器***性关节

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100553849B1 (ko) * 2003-07-08 2006-02-24 한국과학기술원 케이블구동 메커니즘을 이용한 로봇 팔의 손목구조
CN103624797B (zh) * 2013-12-16 2015-07-08 哈尔滨工业大学 一种旋转式可调刚度串联弹性机器人关节
CN105108771B (zh) * 2015-07-23 2016-08-31 东北大学 一种可变刚度机器人关节结构
CN105171771B (zh) * 2015-10-30 2017-05-03 四川大学 一种凸轮结构变刚度弹性关节

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014198979A1 (fr) * 2013-06-13 2014-12-18 Consejo Superior De Investigaciones Científicas (Csic) Articulation à rigidité réglable et dispositif de mesure de force
KR101514245B1 (ko) * 2013-10-18 2015-04-22 이성규 가변 강성 구동기
CN103753604A (zh) * 2013-12-27 2014-04-30 北京航空航天大学 一种可动态调整刚度的模块化柔性连接装置
CN104260106A (zh) * 2014-08-18 2015-01-07 北京航空航天大学 一种可变刚度的关节模块
CN105171769A (zh) * 2015-09-28 2015-12-23 四川大学 一种变刚度机器***性关节
CN105599004A (zh) * 2016-03-23 2016-05-25 华南理工大学 一种刚度可调的机器***性关节
CN205614698U (zh) * 2016-03-23 2016-10-05 华南理工大学 一种刚度可调的机器***性关节

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109176595B (zh) * 2018-10-19 2023-11-24 杭州宇树科技有限公司 机器人双关节单元及应用其的足式机器人和协作机械臂
CN109176595A (zh) * 2018-10-19 2019-01-11 杭州宇树科技有限公司 机器人双关节单元及应用其的足式机器人和协作机械臂
CN109465848A (zh) * 2018-11-30 2019-03-15 广东工业大学 一种基于凸轮式杠杆结构的机器人关节变刚度模块
CN109465848B (zh) * 2018-11-30 2023-10-03 广东工业大学 一种基于凸轮式杠杆结构的机器人关节变刚度模块
CN111376306A (zh) * 2018-12-30 2020-07-07 中国科学院沈阳自动化研究所 机器人变刚度关节
CN109702716A (zh) * 2019-01-31 2019-05-03 深圳市迈步机器人科技有限公司 一种关节驱动器及外骨骼***
CN110745221A (zh) * 2019-11-13 2020-02-04 中国海洋大学 一种形态全适应的海下抓取固定装置
CN111728668B (zh) * 2020-07-09 2022-06-07 泸州市人民医院 一种医用电动取骨夹
CN111728668A (zh) * 2020-07-09 2020-10-02 孙晓雨 一种医用电动取骨夹
CN113018179A (zh) * 2021-03-11 2021-06-25 中国科学院自动化研究所 圆柱面自锁紧机构、自动配液***
CN113018179B (zh) * 2021-03-11 2022-04-26 中国科学院自动化研究所 圆柱面自锁紧机构、自动配液***
CN113334424B (zh) * 2021-06-24 2022-07-19 北京航空航天大学 一种基于变刚度原理的机器人安全关节装置
CN113334424A (zh) * 2021-06-24 2021-09-03 北京航空航天大学 一种基于变刚度原理的机器人安全关节装置
CN114378569A (zh) * 2022-02-25 2022-04-22 北京航空航天大学 一种具有螺栓自动装配功能的机器人执行装置
CN114378569B (zh) * 2022-02-25 2023-08-18 北京航空航天大学 一种具有螺栓自动装配功能的机器人执行装置
CN115741771A (zh) * 2022-11-16 2023-03-07 安徽工程大学 一种单向压紧双边摩擦变刚度柔顺关节及工作方法
CN115741771B (zh) * 2022-11-16 2024-04-12 安徽工程大学 一种单向压紧双边摩擦变刚度柔顺关节及工作方法

Also Published As

Publication number Publication date
CN105599004A (zh) 2016-05-25
CN105599004B (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
WO2017161927A1 (fr) Joint élastique de robot à rigidité réglable
CN104608142B (zh) 一种旋转型变刚度柔性关节
Liu et al. Design and analysis of spring parallel variable stiffness actuator based on antagonistic principle
Tsagarakis et al. A new variable stiffness actuator (CompAct-VSA): Design and modelling
WO2016180338A1 (fr) Dispositif de grappin présentant une structure à charnières flexibles en série et entraîné par des cylindres à simple effet dotés de soufflets élastiques
US5432395A (en) Direct-drive field actuator motors
WO2016180337A1 (fr) Dispositif de grappin présentant une structure à charnières en série et entraîné par des cylindres à simple effet dotés de soufflets élastiques
CN105599006A (zh) 一种双电机驱动的机器人变刚度弹性关节
WO2006119033A3 (fr) Actionneur de commande lineaire harmonique
WO2015055153A1 (fr) Moteur plan piézo-céramique et son procédé d'entraînement
US5726520A (en) Direct drive field actuator motors
CN205614699U (zh) 一种双电机驱动的机器人变刚度弹性关节
US7528527B2 (en) Driving device
CN206011117U (zh) 一种带缓冲器的可自锁物料抓夹装置
CN109756148A (zh) 主动抑制寄生运动原理压电驱动器回退运动的装置与方法
CN209389958U (zh) 主动抑制寄生运动原理压电驱动器回退运动的装置
CN115955141A (zh) 基于压电驱动的集成式两自由度步进执行器
CN112152557A (zh) 一种压电驱动的太阳能电池板智能调节装置
CN111049421A (zh) 模仿滑滑板运动设计的压电直线驱动装置与控制方法
US20230211512A1 (en) Actuator unit and link mechanism having same
Tao et al. Design and modeling of a new variable stiffness robot joint
CN110855181B (zh) 一种基于非对称三角形铰链机构的旋转式压电驱动装置
CN206154294U (zh) 一种大行程高精度的平面三自由度柔顺并联机构
Uemura et al. A new mechanical structure for adjustable stiffness devices with lightweight and small size
CN205614698U (zh) 一种刚度可调的机器***性关节

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895271

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.05.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16895271

Country of ref document: EP

Kind code of ref document: A1