WO2017159550A1 - Method for generating wind power using multi-stage vertical axis wind turbine, and multi-stage vertical axis wind power generation device - Google Patents

Method for generating wind power using multi-stage vertical axis wind turbine, and multi-stage vertical axis wind power generation device Download PDF

Info

Publication number
WO2017159550A1
WO2017159550A1 PCT/JP2017/009620 JP2017009620W WO2017159550A1 WO 2017159550 A1 WO2017159550 A1 WO 2017159550A1 JP 2017009620 W JP2017009620 W JP 2017009620W WO 2017159550 A1 WO2017159550 A1 WO 2017159550A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotors
speed
main shaft
clutch
Prior art date
Application number
PCT/JP2017/009620
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 政彦
Original Assignee
株式会社グローバルエナジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016049107A external-priority patent/JP6714398B2/en
Priority claimed from JP2016057211A external-priority patent/JP6714404B2/en
Application filed by 株式会社グローバルエナジー filed Critical 株式会社グローバルエナジー
Publication of WO2017159550A1 publication Critical patent/WO2017159550A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/06Control effected upon clutch or other mechanical power transmission means and dependent upon electric output value of the generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a wind power generation method and a multi-stage vertical axis wind power generator in a multi-stage vertical axis wind turbine provided with a plurality of upper and lower rotors on a vertical main shaft.
  • a general vertical wind turbine including a rotor having a plurality of vertically long lift-type blades has low power generation efficiency because the rotor does not rotate efficiently under a low wind speed due to the cogging torque and power generation load of the generator.
  • the inventor of the present application forms an inclined portion that is inclined toward the longitudinal main axis direction at the upper and lower ends of the lift type blade, and diffuses in the vertical direction along the inner surface of the blade.
  • a vertical axis wind turbine has been developed in which an airflow is received by an inclined portion to increase rotational force and increase lift (thrust) so that the rotor can rotate efficiently (see, for example, Patent Document 1).
  • the cut-in wind speed at which power generation is started can be set low, and when the peripheral speed of the rotor reaches 5 m / s, for example,
  • the lift (thrust) generated by the blades increases due to the action of the inclined parts at the top and bottom ends and the Coanda effect, and the rotor rotates while accelerating to a peripheral speed that exceeds the wind speed. It has the feature that it is hard to get up and power generation efficiency increases.
  • the present invention has been made in view of the above problems, and a wind power generation method in a multi-stage vertical axis wind turbine that can efficiently generate power while preventing a plurality of rotors from stalling even under low wind speeds. And it aims at providing a multistage vertical axis
  • the vertical main shaft linked to the generator is always connected to at least one of a plurality of upper and lower rotors having a plurality of vertically long lift-type blades rotating around the vertical main shaft, and at least one of the other rotors
  • the clutch is disconnected and at least one of the other rotors is idled.
  • the motor reaches a specific peripheral speed or rotational speed that accelerates and rotates, the rotor that is always connected to the longitudinal main shaft is accelerated by the idled rotor connected to the clutch, and the generator generates power.
  • the clutch is disengaged again, and at least one of the other rotors is moved to the specific circumferential speed or Until a rotational speed is idling, to repeat to generate power at all times linked rotor is again accelerated to the longitudinal main axis by the rotor obtained by the idle by connecting the clutch again.
  • the clutch when a plurality of rotors are rotating at a predetermined average wind speed or less, the clutch is disengaged to cause at least one rotor to idle, and the rotor can be efficiently rotated while accelerating.
  • the clutch can be connected to constantly increase the speed of the rotor connected to the generator, and power can be generated by the rotation of all rotors.
  • the clutch is disengaged again, and is idled until it reaches a peripheral speed or a rotational speed at which at least one rotor can rotate efficiently while accelerating. Because the clutch is reconnected and the rotor connected to the generator is constantly accelerated to generate power, multiple rotors cogging even under low wind speeds. While preventing the stalling by torque and power load in advance, it is possible to generate power efficiently.
  • the rotor since at least one of the rotors in the plurality of stages is always connected to the vertical main shaft linked to the generator, the rotor is always connected to the vertical main shaft while the other rotor is idling. As long as is rotating, power generation will not be stopped.
  • the clutch when the clutch is disengaged, the cogging torque and power generation load generated by the generator do not act on the rotor connected to the longitudinal main shaft via the clutch, and the rotor continues to idle smoothly and inertially. If it becomes a little better, the rotor will quickly accelerate to a specific average peripheral speed or rotational speed and rotate efficiently.
  • the lift type blade has an inclined portion inclined in the vertical main axis direction at upper and lower ends.
  • the lift-type blade having the inclined portion inclined in the vertical main axis direction at the upper and lower ends receives the airflow that diffuses in the vertical direction against the inner surface of the blade, and thereby receives the rotational force. Since the lift (thrust) can be increased by increasing the lift, the lift (thrust) generated in the blade by the Coanda effect increases as the wind speed increases, and the rotor is accelerated and rotates efficiently. For this reason, when such lift type blades are used, the idle rotor rapidly accelerates and rotates to a specific average circumferential speed or rotational speed, and a clutch is connected to generate electric power by the rotational driving force of all rotors. The power generation efficiency can be greatly increased when
  • the rotor to be idled is the uppermost rotor.
  • the uppermost rotor since the wind speed tends to increase as the height from the ground increases, the uppermost rotor efficiently idles and quickly reaches a specific peripheral speed. Therefore, when the clutch is connected, the rotational driving force of the uppermost rotor that is idling can be quickly transmitted to the rotor that is always connected to the generator via the longitudinal main shaft to increase the speed. The risk of the rotor stalling under low wind speed is further reduced.
  • the lowermost rotor is always connected to the vertical main shaft, and all the rotors higher than the lowermost rotor are connected.
  • the clutch Connected to the longitudinal main shaft via a clutch, and when a plurality of rotors are rotating at a predetermined average wind speed or less, the clutch is disengaged and all the rotors except the lowermost rotor are idled.
  • a clutch is connected to increase the speed of the lowermost rotor to generate power.
  • a longitudinal main shaft rotatably supported by a support, a generator linked to the vertical main shaft, and a plurality of vertically long lift-type blades rotating around the vertical main shaft, wherein at least one rotor is Rotational speed detection that detects the circumferential speed or rotational speed of the upper and lower rotors that are always connected to the vertical spindle and at least one of the other rotors is connected to the vertical spindle via a clutch Means, wind speed detecting means for detecting the average wind speed toward the rotor, and control means, The control means disengages the clutch and idles at least one of the other rotors when the wind speed detecting means detects that the rotors of the plurality of stages are rotating at a predetermined average wind speed or less.
  • the rotational speed detecting means detects that the idle rotor has reached a specific peripheral speed or rotational speed at which the rotor rotates and accelerates, the clutch is connected and the idle rotor rotates the vertical rotor. Control is repeated so that the rotor always connected to the main shaft is increased in speed and the power is generated by the generator.
  • the control means disengages the clutch and disconnects at least one of the rotors when the wind speed detecting means detects that the rotors of the plurality of stages are rotating below the predetermined average wind speed.
  • the rotation speed detection means detects that the idle rotor has reached a specific peripheral speed or rotation speed at which the rotor rotates and the clutch is connected to the longitudinal main shaft by the idle rotor. It is controlled repeatedly to increase the speed of the rotors that are always connected and generate power with the generator, so even under low wind speeds, while preventing the multiple rotors from stalling due to cogging torque or power generation load, it is efficient It can generate electricity well.
  • the rotor since at least one of the rotors in the plurality of stages is always connected to the vertical main shaft linked to the generator, the rotor is always connected to the vertical main shaft while the other rotor is idling. As long as is rotating, power generation will not be stopped.
  • the clutch when the clutch is disengaged, the cogging torque and power generation load generated by the generator do not act on the rotor connected to the longitudinal main shaft via the clutch, and the rotor continues to idle smoothly and inertially. If it becomes a little better, the rotor will quickly accelerate to a specific average peripheral speed or rotational speed and rotate efficiently.
  • the clutch is an electromagnetic clutch.
  • the electromagnetic clutch can be intermittently engaged and disengaged accurately and in a short time by remote control by the control means, so that the rotor can be quickly idled or idled in response to changes in wind conditions.
  • the rotor always connected to the generator can be quickly accelerated by the rotor.
  • a vertical main shaft rotatably provided on a support body, a generator linked to the vertical main shaft, and a plurality of vertically long lift-type blades rotating around the vertical main shaft, wherein at least one rotor is A plurality of upper and lower rotors that are always connected to the vertical main shaft and at least one of the other rotors is connected to the vertical main shaft via a clutch;
  • the clutch cuts off the transmission of power between the longitudinal main shaft and at least one of the other rotors when the plurality of stages of rotors rotate at a predetermined average wind speed or less, causing the rotors to idle.
  • In order to generate power by the generator by increasing the speed of the rotor that is always connected to the longitudinal main shaft by connecting when the idle rotor has reached a specific peripheral speed or rotational speed that rotates by acceleration. It is designed to be automatically interrupted repeatedly.
  • the clutch cuts off the transmission of power between the vertical main shaft and at least one of the other rotors when a plurality of stages of rotors rotate at a predetermined average wind speed or less.
  • the rotor is idled and connected when the idled rotor reaches a specific peripheral speed or rotational speed that accelerates and rotates, and the rotor that is always connected to the vertical main shaft is increased in speed to generate electricity.
  • it since it is designed to be automatically and intermittently repeated, it is possible to efficiently generate power while preventing a plurality of rotors from stalling due to cogging torque or power generation load even at low wind speeds. it can.
  • the clutch is a centrifugal clutch that is automatically engaged and disengaged by a centrifugal force accompanying the rotation of the longitudinal main shaft. According to such a configuration, an electric control means for engaging / disengaging the clutch is not necessary, so that the cost of the wind turbine generator can be reduced.
  • the lift-type blade has an inclined portion inclined in the vertical main axis direction at the upper and lower ends.
  • the lift-type blade having the inclined portion inclined in the vertical main axis direction at the upper and lower ends receives the airflow that diffuses in the vertical direction against the inner surface of the blade, and thereby receives the rotational force. Since the lift (thrust) can be increased by increasing the lift, the lift (thrust) generated in the blade by the Coanda effect increases as the wind speed increases, and the rotor is accelerated and rotates efficiently. For this reason, when such lift type blades are used, the idle rotor rapidly accelerates and rotates to a specific average circumferential speed or rotational speed, and a clutch is connected to generate electric power by the rotational driving force of all rotors. The power generation efficiency can be greatly increased when
  • the rotor to be idled is the uppermost rotor.
  • the uppermost rotor since the wind speed tends to increase as the height from the ground increases, the uppermost rotor efficiently idles and quickly reaches a specific peripheral speed. Therefore, when the clutch is connected, the rotational driving force of the uppermost rotor that is idling can be quickly transmitted to the rotor that is always connected to the generator via the longitudinal main shaft to increase the speed. The risk of the rotor stalling under low wind speed is further reduced.
  • the lowermost rotor of the plurality of rotors is always connected to the longitudinal main shaft, and all the rotors higher than the lowermost rotor are connected. It is connected to the vertical main shaft via a clutch.
  • the wind power generation method and the multistage vertical wind power generation apparatus of the present invention it is possible to efficiently generate power while preventing a plurality of rotors from stalling even at low wind speeds.
  • FIG. 2 is an enlarged cross-sectional plan view taken along line II-II in FIG.
  • FIG. 3 is an enlarged cross-sectional plan view of an upper rotor taken along line III-III in FIG. 1. It is a flowchart at the time of implementing the method of this invention using the multistage vertical axis
  • the wind power generator 1 includes a vertical rotor of two upper and lower stages constituting a multistage vertical wind turbine, that is, a lower first rotor 2A and an upper second rotor 2B, and a generator 4.
  • the control means 5 is provided.
  • Each of the first and second rotors 2A and 2B has horizontal arms 6 and 6 that are directed outward in a horizontal plane and aligned in a straight line, and the inner surface of the central portion in the vertical direction is formed at the outer ends of both horizontal arms 6.
  • Vertically lifted blades (hereinafter abbreviated as “blades”) 7 and 7 which are fixed and rotate around a vertical main shaft 14 which will be described later, and a cylindrical rotary shaft 8 whose outer peripheral surfaces are fixed to the inner ends of both horizontal arms 6. , 8.
  • the horizontal arm 6 and the blade 7 are made of, for example, fiber reinforced synthetic resin.
  • the horizontal arm 6 and the blade 7 can be integrally formed.
  • a support frame body 11 having a plurality of upper and lower shaft support frames 10 (three in the embodiment) framed in a square in plan view is erected, and a plane inside each shaft support frame 10.
  • Three vertical portions of the vertical main shaft 14 are rotatably supported by a bearing 13 press-fitted into the center of the shaft support rod 12 having a cross shape.
  • the rotary shafts 8 and 8 of the first and second rotors 2A and 2B disposed inside the support frame 11 are coupled to the upper and lower portions of the vertical main shaft 14 so as not to be relatively rotatable by serrations or the like.
  • the plane phase of the blades 7 in the first and second rotors 2A, 2B is varied by 90 degrees in the circumferential direction (rotation direction), for example, so that the upper and lower blades 7 do not overlap. It is. If it does in this way, since the upper and lower blades 7 correspond to the changing wind direction, the first and second rotors 2A, 2B rotate efficiently.
  • the first rotor 2A is always connected to the vertical main shaft 14 so that the generator 4 can be driven by its rotation.
  • an electromagnetic clutch 15 is provided at an intermediate portion of the vertical main shaft 14, and the second rotor 2B is intermittently connected to the vertical main shaft 14 and the first rotor 2A via the electromagnetic clutch 15. Connected as possible.
  • the timing at which the electromagnetic clutch 15 is connected is performed when the phases of the blades 7 of the first and second rotors 2A and 2B differ by 90 degrees.
  • the relative phase in the rotational direction of the blades 7 of the first and second rotors 2A, 2B at this time can be detected by, for example, a non-contact type position detection sensor (not shown).
  • the electromagnetic clutch 15 for example, it is preferable to use a known friction type that is connected slightly through a slip, that is, through a half-clutch state.
  • the electromagnetic clutch 15 reduces the impact torque at the time of connection, so that the rotational driving force of the second rotor 2B can be smoothly transmitted to the vertical main shaft 14.
  • Electric power is supplied to the electromagnetic clutch 15 via a power feeder 16 connected to a storage battery 18 to be described later.
  • the electromagnetic clutch 15 can be operated by converting another power source, for example, an alternating current 100V power source into a direct current.
  • the shapes of the blades 7 of the first and second rotors 2A and 2B are substantially the same as the blades described in Japanese Patent No. 4907073 and Japanese Patent Application Laid-Open No. 2011-169292 developed by the inventors of the present application. ing. That is, the chord length of the blade 7 is set to 20% to 50% of the rotational radius of the blade 7, and the blade area is set large.
  • the cross-sectional shape of the main part 7A excluding the upper and lower ends of the blade 7 is symmetrical with respect to the blade thicknesses on the inner side and the outer side of the blade thickness center line C of the main part 7A, as shown in an enlarged view in FIG. Therefore, the blade thickness center line C is set to be substantially overlapped with the rotation locus O of the blade thickness center of the blade 7.
  • the planar shape of the entire main portion 7A is curved in an arc shape along the rotation locus O of the blade thickness center, and the inner side surface extends in the centrifugal direction from the bulging portion of the leading edge to the trailing edge.
  • the wind hits the inner surface from the rear, it is pushed forward.
  • the shape of the cross section of the main portion 7A is assumed to be close to a standard airfoil shape in which the blade thickness on the front side that is the rotational direction is thick and gradually becomes thinner toward the rear.
  • the peripheral speed of the outer surface becomes larger than that of the inner surface due to the difference between the inner and outer turning radii of the blade 7, and the airflow passing rearward along the outer surface. Is faster than that on the inner surface.
  • the pressure of the airflow passing through the outer surface at the rear edge portion of the blade 7 is smaller than that of the airflow passing through the inner surface, and the outer surface of the rear edge portion of the blade 7 is caused by the Coanda effect on the outer surface.
  • the blade 7 is pushed from the rear toward the front edge, and a thrust in the rotational direction acts on the blade 7 to accelerate the rotation of the blade 7.
  • inwardly inclined portions 7 ⁇ / b> B and 7 ⁇ / b> B that are inclined in an arc shape inward, that is, in the direction of the longitudinal main shaft 14, are formed at the upper and lower ends of the blade 7. As the blade 7 rotates, the airflow that diffuses in the vertical direction along the inner surface of the main portion 7A is received by the inwardly inclined portion 7B to increase the rotational force.
  • the airflow flowing in the vertical direction along the inner and outer side surfaces of the main portion 7A passes rearward along the inner and outer surfaces of the upper and lower inwardly inclined portions 7B and 7B due to the Coanda effect.
  • the first and second rotors 2A and 2B rotate with high rotational efficiency even under a relatively low wind speed.
  • the generator 4 is installed on the foundation 9, and the lower end portion of the vertical main shaft 14 is connected to the vertical rotor shaft (not shown).
  • the generator 4 for example, a known single-phase AC generator or a three-phase AC generator is used, and the electric power generated by the generator 4 is passed through a controller 17 having a rectifier, a voltage regulator, and the like (not shown). Then, after being stored in the storage battery 18, power is supplied from the storage battery 18 to an external DC load power supply or directly supplied from the controller 17 to an external AC load power system.
  • the controller 17 can control the current and voltage output to the storage battery 18 or the DC load power supply by adjusting the output power generation amount from the generator 4.
  • the generator 4 may be a DC generator that can directly supply power to the storage battery 18 or the DC load power supply system.
  • the control means 5 includes an average wind speed determination unit 19, a rotor peripheral speed determination unit 20, and a clutch switching determination unit 21.
  • the average wind speed determination unit 19 is connected to an anemometer 22 that is an anemometer for detecting the average wind speed of the wind toward the first and second rotors 2 ⁇ / b> A and 2 ⁇ / b> B at fixed time intervals, and is detected by the anemometer 22.
  • the average wind speed is input to the average wind speed determination unit 19 and is processed by the central processing unit (CPU) 23 of the control means 5.
  • the determination signal is output to the clutch switching determination unit 21.
  • the average wind speed detection time by the anemometer 22 is preferably performed at relatively short intervals of, for example, 10 seconds or less.
  • the clutch switching determination unit 21 outputs a determination signal to the power feeder 16 when the anemometer 22 detects a predetermined average wind speed or less, for example, 2 m / s or less, which is a cut-in wind speed. Then, the power supply from the power feeder 16 is stopped and the electromagnetic clutch 15 is disconnected. As a result, the rotational driving force of the second rotor 2B is not transmitted to the vertical main shaft 14, and the second rotor 2B is idled.
  • a determination signal is also output to the clutch switching determination unit 21 based on data input to the rotor peripheral speed determination unit 20 from a rotation speed detection sensor 25 described later.
  • a spur gear 24 for measuring the rotational speed of the second rotor 2B is attached to the longitudinal main shaft 14 between the second rotor 2B and the electromagnetic clutch 15, and the rotational speed of the spur gear 24 is determined by the rotational speed.
  • the rotational speed of the second rotor 2B can be detected via the vertical main shaft 14.
  • the spur gear 24 for example, one or a plurality of convex portions may be provided on the outer peripheral surface of the vertical main shaft 14.
  • a non-contact type sensor such as a magnetic rotational speed detection sensor, an ultrasonic rotational speed detection sensor, or a rotary encoder is used.
  • the rotational speed of the vertical main shaft 14 detected by the rotational speed detection sensor 25 is input to the rotor circumferential speed determination unit 20 of the control means 5, and the central processing unit 23 of the control means 5 is based on the input rotational speed. 2 Calculate the average peripheral speed of the rotor 2B. That is, since the outer peripheral length (2 ⁇ r) of the second rotor 2B is determined from the rotational radius (r) of the blade 7, the outer peripheral length (2 ⁇ r) is multiplied by the rotational speed (rpm) of the vertical main shaft 14. If so, the peripheral speed (m / s) is obtained.
  • the rotation speed detection sensor 25 and the rotor circumferential speed determination unit 20 constitute rotation speed detection means.
  • the peripheral speed of the second rotor 2B can also be obtained by detecting the angular speed of the blade 7 with a sensor. That is, a value obtained by multiplying the angular velocity (rad / s) of the blade 7 by the rotational radius (r) is the peripheral speed of the second rotor 2B.
  • the rotor peripheral speed determination unit 20 determines that the average peripheral speed of the second rotor 2B that is idling has reached a specific value (for example, 5 m / s) at which the second rotor 2B accelerates and rotates by itself. In this case, based on the determination signal output from the rotor peripheral speed determination unit 20 to the clutch switching determination unit 21, power is supplied from the power feeder 16 to the electromagnetic clutch 15, and the electromagnetic clutch 15 is turned on, whereby the second rotor The rotational driving force of 2B is transmitted to the first rotor 2A via the vertical main shaft 14.
  • a specific value for example, 5 m / s
  • the rotational speed of the first rotor 2A is increased by the rotational driving force of the second rotor 2B that is idling at a high peripheral speed, and even when the average wind speed is 2 m / s or less, the first,
  • the rotational speeds of the second rotors 2A and 2B are both increased. Therefore, the first and second rotors 2A and 2B are prevented from stalling due to the cogging torque and the power generation load of the generator 4, and it is possible to generate power efficiently.
  • the electromagnetic clutch 15 is connected so that the rotation of the first rotor 2A and the second rotor 2B is transmitted to the longitudinal main shaft 14, and the generator 4 is operated by the rotational driving force of both the rotors 2A and 2B.
  • the average wind speed of the first and second rotors 2A, 2B is measured by the anemometer 22 (S1), and based on the measured value, the average wind speed determination unit 19 and the central processing unit 23 of the control means 5 It is determined whether or not the wind speed is 2 m / s or less (including 0), which is the cut-in wind speed (S2).
  • a determination signal is output from the average wind speed determination unit 19 of the control means 5 to the clutch switching determination unit 21, and the feeder 16 is determined based on the determination signal.
  • the electromagnetic clutch 15 is turned off (S3).
  • the rotational driving force of the second rotor 2B is not transmitted to the vertical main shaft 14, and the second rotor 2B rotates idly (S4).
  • the electromagnetic clutch 15 When the average wind speed is determined to be 2 m / s or less, the electromagnetic clutch 15 is turned off and the second rotor 2B is idled at a low wind speed of 2 m / s or less. This is because there is a risk of stalling under the influence of the cogging torque of the generator 4 or the power generation load, and it is impossible to generate power efficiently.
  • the second rotor 2B runs smoothly without resistance, and even at a low wind speed of 2 m / s or less, the second rotor 2B. Keeps rotating with inertia without stalling. Accordingly, if the wind condition is slightly improved when the second rotor 2B is idling, the second rotor 2B is further accelerated to idle.
  • the rotor peripheral speed determination unit 20 and the central processing unit 23 measure the average peripheral speed when the second rotor 2B is idling (S5). It is determined whether or not the average peripheral speed of the rotor 2B has reached 5 m / s, for example (S6).
  • the electromagnetic clutch 15 is turned on by a power supply signal output from the clutch switching determination unit 21 to the power feeder 16 (S7), and at a high peripheral speed.
  • the rotational driving force of the idling second rotor 2B is transmitted to the vertical main shaft 14, and the rotational speed of the first rotor 2A is increased (S8).
  • the first and second rotors 2A and 2B are prevented from stalling, and the generator 4 is driven by the rotational drive torque of the rotors 2 and 3 whose rotational speed is increased, thereby efficiently generating power ( S9).
  • the process returns to step S5, and the average peripheral speed of the second rotor 2B is continuously measured.
  • the reason why it is determined whether or not the average peripheral speed of the second rotor 2B has reached 5 m / s is that in the case of the vertical rotor provided with the lift type blade 7 having the above-described shape, the average peripheral speed of the second rotor 2B is When reaching 5 m / s, the lift (thrust) generated in the blade 7 increases due to the action of the inwardly inclined portions 7B at the upper and lower ends of the blade 7 and the Coanda effect, and the second rotor 2B has a peripheral speed exceeding the wind speed. This is because the wheel runs efficiently while accelerating on its own.
  • the electromagnetic clutch 15 is turned on to rotate the second rotor 2B.
  • the first and second rotors 2A and 2B can cause the cogging torque and power generation load of the generator 4 to be generated at a low wind speed. Therefore, the power generation efficiency can be increased.
  • the peripheral speed, the rotational speed, and the length of the outer periphery have the relationship as described above.
  • (r) is 1 m
  • the length (2 ⁇ r) of the outer periphery of the second rotor 2B is 6.28 m. Therefore, if the peripheral speed 5 m / s is divided by the outer peripheral length of 6.28 m and multiplied by 60 to convert to a partial speed, the rotation speed of the second rotor 2B is about 48 rpm.
  • the average wind speed is measured again by the anemometer 22 (S10), and the average wind speed determination unit 19 detects again the average wind speed of 2 m / s or less.
  • the process returns to step S3, and similarly to the above, the electromagnetic clutch 15 is turned off and the second rotor 2B is idled again (S4).
  • the first rotor 2 ⁇ / b> A is always coupled to the longitudinal main shaft 14 connected to the generator 4.
  • the second rotor 2B is connected to be intermittently connected via the electromagnetic clutch 15, the first and second rotors 2A and 2B are rotating at a low wind speed of 2 m / s or less, which is the cut-in wind speed.
  • the electromagnetic clutch 15 is disconnected by the control means 5 to cause the second rotor 2B to idle, and the second rotor 2B reaches 5 m / s, which is an average peripheral speed at which it can rotate efficiently while accelerating by itself
  • the electromagnetic clutch 15 is connected to control to generate electric power by increasing the rotation speed of the first rotor 2A by the rotational driving force of the idling second rotor 2B, and the first and second rotors 2A, 2B Again, average wind speed of 2m / s or more
  • the electromagnetic clutch 15 is disengaged again by the control means 5 and the average peripheral speed at which the second rotor 2B can rotate efficiently while accelerating by itself is 5 m / s.
  • the electromagnetic clutch 15 is reconnected, and the rotation speed of the first rotor 2A is increased by the rotational driving force of the idled second rotor 2B. Since the control is repeatedly performed so as to generate power by the rotational driving force, the efficiency is improved while preventing the first and second rotors 2A and 2B from stalling due to the cogging torque and power generation load of the generator 4 even under a low wind speed. It can generate electricity well.
  • the first rotor 2A is always coupled to the longitudinal main shaft 14 connected to the generator 4, the first rotor 2A can generate power as long as the first rotor 2A is rotating while the second rotor 2B is idling. Will never be stopped.
  • a third rotor 2C is added above the second rotor 2B of the first embodiment, and a three-stage vertical axis wind turbine is provided. . That is, the support frame 11 is extended upward to be raised, and the upper end portion of the vertical main shaft 14 having a large vertical dimension is rotated by the bearing 13 provided at the center of the shaft support frame 10 provided at the upper end portion thereof.
  • the third rotor 2C is attached to the longitudinal main shaft 14 above the second rotor 2B so as to be relatively unrotatable.
  • the plane phase of the blade 7 of the third rotor 2C is different from that of the blade 7 of the second rotor 2B by 60 degrees.
  • the lowermost first rotor 2A is always connected to the longitudinal main shaft 14 as in the first embodiment.
  • the middle second rotor 2B and the uppermost third rotor 2C are connected to the longitudinal main shaft 14 and the first rotor via an electromagnetic clutch 15 provided on the longitudinal main shaft 14 between the lowermost first rotor 2A and the middle second rotor 2B. It is connected to one rotor 2A in an intermittent manner.
  • the timing at which the electromagnetic clutch 15 is connected is when the phases of the blades 7 of the first and second rotors 2A and 2B differ by 60 degrees. To be done.
  • a spur gear 24 for measuring the rotational speed of the second rotor 2B and the third rotor 2C is attached to the longitudinal main shaft 14 between the electromagnetic clutch 15 and the second rotor 2B.
  • the rotation speed is detected by the rotation speed detection sensor 25 and is output to the rotor peripheral speed determination unit 20 of the control means 5.
  • the control means is used when the first to third rotors 2A, 2B, 2C are rotating under a low wind speed of 2 m / s or less, which is the cut-in wind speed. 5, the electromagnetic clutch 15 is disengaged, the second and third rotors 2B, 2C are idled, and the second peripheral rotor 2B, 2C is an average peripheral speed that can be efficiently rotated while accelerating by itself. When s is reached, the electromagnetic clutch 15 is connected, and control is performed such that the rotational speed of the first rotor 2A is increased by the rotational driving force of the idling second and third rotors 2B and 2C to generate power.
  • the electromagnetic clutch 15 is disconnected again by the control means 5, and the second The third rotor 2B, 2C accelerates by itself
  • the first rotor is rotated by the second and third rotors 2B and 2C, which are rotated idle after the idle rotation until the average peripheral speed of 5 m / s, which can be efficiently rotated, is reached.
  • control is repeatedly performed so that power is generated by the rotation of all of the first to third rotors 2A, 2B, and 2C.
  • the rotational driving torque for increasing the speed of the first rotor 2A increases.
  • the first rotor 2A can be quickly increased in speed.
  • an electromagnetic clutch 15 is also provided on the longitudinal main shaft 14 between the second rotor 2B and the third rotor 2C so that the upper and lower electromagnetic clutches 15 and 15 are intermittently connected. It may be.
  • an electromagnetic clutch is applied to the longitudinal main shaft 14 between the second rotor 2B and the third rotor 2C. 15 may be provided so that only the third rotor 2C rotates idly, and the first and second rotors 2A and 2B are accelerated by the rotational driving force of the third rotor 2C to generate electric power.
  • centrifugal clutch 26 is used instead of the electromagnetic clutch 15 of the wind turbine generator of the second embodiment.
  • the centrifugal clutch 26 schematically shown in FIG. 6 is configured as follows, for example.
  • the longitudinal main shaft 14 is divided into two parts between the first and second rotors 2A, 2B, and a plurality of weights 27, 27 each having a friction material fixed to the outer peripheral surface thereof are attached to the longitudinal main shaft 14 on the second rotor 2B side.
  • a plurality of weights 27, 27 each having a friction material fixed to the outer peripheral surface thereof are attached to the longitudinal main shaft 14 on the second rotor 2B side.
  • the centrifugal clutch 26 is used when the centrifugal force acting on the weight 27 is small, that is, when the first to third rotors 2A, 2B, and 2C are rotating at a low wind speed of an average wind speed of 2 m / s or less, which is a cut-in wind speed.
  • the weight 28 is set so as to be separated from the inner surface of the driven drum 29. Therefore, when the average wind speed is 2 m / s or less, the centrifugal clutch 26 is automatically disengaged, and the rotational driving force of the second and third rotors 2B and 2C is not transmitted to the longitudinal main shaft 14 and the first rotor 2A. The second and third rotors 2B and 2C are idled.
  • the rotational speed of the longitudinal main shaft 14 is When the set value is reached, the weight 27 contacts the inner surface of the driven drum 28 by centrifugal force, and the centrifugal clutch 26 is automatically connected. Accordingly, when the average peripheral speed of the idle second and third rotors 2B and 2C reaches 5 m / s, for example, their rotational driving force is transmitted to the longitudinal main shaft 14 on the first rotor 2A side, and the first The rotation of the rotor 2A is increased.
  • the centrifugal clutch 26 when the average wind speed becomes a low wind speed of 2 m / s or less, the centrifugal clutch 26 is automatically disconnected, and the second and third rotors 2B and 2C are idled, and the average circumference is reduced.
  • the speed reaches 5 m / s and the second and third rotors 2B and 2C rotate while accelerating by themselves, the centrifugal clutch 26 is automatically connected, and the second and third rotors are idling. Due to the rotational driving force of 2B and 2C, the rotation of the first rotor 2A is increased, and the generator 4 is driven by all of the first to third rotors 2A, 2B and 2C to generate electric power.
  • the first to third rotors 2A, 2B, and 2C generate power efficiently while preventing the first to third rotors 2A, 2B, and 2C from stalling due to the cogging torque and power generation load of the generator 4 under low wind speed. be able to.
  • control means 5 for controlling the ON / OFF of the electromagnetic clutch 14 as in the first and second embodiments becomes unnecessary, so that an inexpensive wind power generator is provided. Can be provided.
  • the electromagnetic clutch 15 when the average wind speed is determined to be 2 m / s or less, the electromagnetic clutch 15 is turned OFF, and the second rotor 2B or the second and third rotors 2B and 2C are idled. However, when the average rotational speed of the longitudinal main shaft 14 when the average wind speed is 2 m / s or less, or the average peripheral speed of all the rotors becomes a predetermined value, the electromagnetic clutch 15 is turned off. It may be.
  • the electromagnetic clutch 15 is turned on to increase the rotation speed of the first rotor 2A.
  • the rotational speed sensor 25 detects the rotational speed of the second and third rotors 2B and 2C when the average circumferential speed reaches 5 m / s.
  • the electromagnetic clutch 15 can be turned on to increase the rotation speed of the first rotor 2A.
  • the average wind speed at which the electromagnetic clutch 15 is turned off is set to 2 m / s or less
  • the upper limit value of the average wind speed at this time is appropriately set according to the magnitude of the rotation radius of the blade 7.
  • the rotational radius of the blade 7 is smaller than 1 m of the above embodiment, the rotational torque of each rotor becomes small and is easily affected by cogging torque and power generation load. What is necessary is just to set the upper limit of a wind speed to 2 m / s or more.
  • the electromagnetic clutch 15 is turned on when the average peripheral speed of the second and third rotors 2B and 2C that are idling reaches 5 m / s. Is appropriately set according to the rotation radius of the blade 7.
  • the electromagnetic clutch 15 is used to intermittently rotate the rotational driving force of the lowermost and upper rotors.
  • an electric actuator that can be turned on and off by the control means 5. It is also possible to use a friction clutch or a meshing clutch provided with
  • the lowermost first rotor 2A is always connected to the generator 4 via the vertical main shaft 14, but in the case of the wind power generator of the first embodiment, the second rotor 2B is The upper end portion of the connected vertical main shaft 14 may be always connected to a generator installed on the upper portion of the support frame 11 or the like so that the first rotor 2A can be idled via the electromagnetic clutch 15.
  • the upper end of the vertical main shaft 14 to which the uppermost third rotor 2C is connected is always attached to the generator installed on the upper part of the support frame 11 or the like.
  • the lower main shaft 2A and the middle second rotor 2B can be idled via the electromagnetic clutch 15, or the longitudinal main shaft 14 to which the middle second rotor 2B is coupled.
  • a pulley and a sprocket are attached at appropriate positions, and a generator disposed on the side of the longitudinal main shaft 14 is driven via a belt, a chain, or the like connected to the pulley, and the lowermost first rotor 2A is driven.
  • the uppermost third rotor 2 ⁇ / b> C may be idled via the electromagnetic clutch 15.
  • the upper end of the vertical main shaft 14 to which the uppermost third rotor 2C is connected is always attached to the generator installed on the upper portion of the support frame 11 or the like.
  • the lowermost first rotor 2A and the middle second rotor 2B may be idled via the centrifugal clutch 26.
  • the present invention can also be applied to a wind turbine generator having three or more stages of rotors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

Provided is a method for generating wind power which makes it possible to efficiently generate power while preventing a rotor from stalling even when wind speed is low. A lower-stage first rotor 2A among a plurality of upper- and lower-stage rotors which have a plurality of blades 7 is connected all the time to a vertical main shaft 14 linked to a power generator 4. Meanwhile, an upper-stage second rotor 2B is connected thereto via a clutch 15. If the first and second rotors are rotating at or below a pre-set average wind speed, the clutch 15 is disengaged and the second rotor idles, and then when the second rotor accelerates and achieves rotation at a specific peripheral speed, the clutch is engaged and the speed of the first rotor is increased by the second rotor, which was idling. As a result, the present invention repeatedly generates power using the rotation of all rotors.

Description

多段縦軸風車における風力発電方法及び多段縦軸風力発電装置Wind power generation method and multi-stage vertical axis wind power generator in multi-stage vertical axis wind turbine
 本発明は、縦主軸に上下複数段のロータを設けた多段縦軸風車における風力発電方法及び多段縦軸風力発電装置に関する。 The present invention relates to a wind power generation method and a multi-stage vertical axis wind power generator in a multi-stage vertical axis wind turbine provided with a plurality of upper and lower rotors on a vertical main shaft.
 複数の縦長の揚力型ブレードを有するロータを備える一般的な縦軸風車は、発電機のコギングトルクや発電負荷の影響により、低風速下ではロータが効率よく回転せず、発電効率は低い。
 この問題を解決するために、本願の発明者は、揚力型ブレードの上下の端部に、縦主軸方向へ向かって傾斜する傾斜部を形成し、ブレードの内側面に沿って上下方向に拡散する気流を、傾斜部で受止めて回転力を高めるとともに、揚力(推力)を増大させ、ロータが効率よく回転しうるようにした縦軸風車を開発している(例えば特許文献1参照)。
A general vertical wind turbine including a rotor having a plurality of vertically long lift-type blades has low power generation efficiency because the rotor does not rotate efficiently under a low wind speed due to the cogging torque and power generation load of the generator.
In order to solve this problem, the inventor of the present application forms an inclined portion that is inclined toward the longitudinal main axis direction at the upper and lower ends of the lift type blade, and diffuses in the vertical direction along the inner surface of the blade. A vertical axis wind turbine has been developed in which an airflow is received by an inclined portion to increase rotational force and increase lift (thrust) so that the rotor can rotate efficiently (see, for example, Patent Document 1).
特許第4584638号公報(図3)Japanese Patent No. 4584638 (FIG. 3)
 上記特許文献1に記載の縦軸風車は、ロータの回転効率が高いので、発電が開始されるカットイン風速を低く設定しうるとともに、ロータの周速が例えば5m/sに達すると、ブレードの上下両端部の傾斜部の作用とコアンダ効果により、ブレードに生じる揚力(推力)が増大し、ロータは風速を超える周速度に加速しながら回転するようになるため、コギングトルクや発電負荷による失速が起きにくくなり、発電効率が高まるという特徴を有している。 Since the vertical axis windmill described in Patent Document 1 has high rotational efficiency of the rotor, the cut-in wind speed at which power generation is started can be set low, and when the peripheral speed of the rotor reaches 5 m / s, for example, The lift (thrust) generated by the blades increases due to the action of the inclined parts at the top and bottom ends and the Coanda effect, and the rotor rotates while accelerating to a peripheral speed that exceeds the wind speed. It has the feature that it is hard to get up and power generation efficiency increases.
 また、特許文献1の図3等に記載されているように、上下複数のロータを、1本の縦主軸に多段状に取付けると、縦主軸の回転駆動トルクが増大するので、発電効率を高めることができる。
 また、縦主軸の回転駆動トルクが増大するので、縦主軸に発電容量の大きな発電機を接続して、発電効率をさらに高めることが可能となる。しかし、発電容量の大きな発電機を使用すると、そのコギングトルクや発電負荷も大となるので、弱い風速のときに、ロータの回転始動に時間を要したり、ロータが失速を起こし易くなったりすることが考えられる。
Further, as described in FIG. 3 and the like of Patent Document 1, when a plurality of upper and lower rotors are attached to one vertical main shaft in a multi-stage shape, the rotational driving torque of the vertical main shaft increases, so that power generation efficiency is increased. be able to.
Further, since the rotational driving torque of the vertical main shaft is increased, it is possible to further increase the power generation efficiency by connecting a generator having a large power generation capacity to the vertical main shaft. However, if a generator with a large power generation capacity is used, its cogging torque and power generation load will be large, so that it takes time to start rotating the rotor when the wind speed is low, or the rotor is likely to stall. It is possible.
 本発明は、上記課題に鑑みてなされたもので、低風速下においても、複数のロータが失速するのを未然に防止しながら、効率よく発電しうるようにした多段縦軸風車における風力発電方法及び多段縦軸風力発電装置を提供することを目的とするものである。 The present invention has been made in view of the above problems, and a wind power generation method in a multi-stage vertical axis wind turbine that can efficiently generate power while preventing a plurality of rotors from stalling even under low wind speeds. And it aims at providing a multistage vertical axis | shaft wind power generator.
 本発明の風力発電方法によると、上記課題は、次のようにして解決される。
(1)発電機に連係された縦主軸に、縦主軸周りに回転する縦長の複数の揚力型ブレードを有する上下複数段のロータのうちの少なくとも一つを常時連結し、かつ他のロータの少なくとも一つをクラッチを介して連結し、前記複数段のロータが予め定めた平均風速以下で回転している場合に、前記クラッチを切断して前記他のロータの少なくとも一つを空転させ、このロータが加速して回転する特定の周速または回転速度に達したとき、前記クラッチを接続して前記空転させたロータにより前記縦主軸に常時連結されたロータを増速させて前記発電機により発電するようにし、前記複数段のロータが再度、前記平均風速以下で回転するようになったとき、前記クラッチを再度切断して、前記他のロータの少なくとも一つを前記特定の周速または回転速度に達するまで空転させ、前記クラッチを再度接続して前記空転させたロータにより前記縦主軸に常時連結されたロータを再度増速させて発電することを繰返させる。
According to the wind power generation method of the present invention, the above problem is solved as follows.
(1) The vertical main shaft linked to the generator is always connected to at least one of a plurality of upper and lower rotors having a plurality of vertically long lift-type blades rotating around the vertical main shaft, and at least one of the other rotors When one of the rotors is connected via a clutch, and the plurality of rotors rotate at a predetermined average wind speed or less, the clutch is disconnected and at least one of the other rotors is idled. When the motor reaches a specific peripheral speed or rotational speed that accelerates and rotates, the rotor that is always connected to the longitudinal main shaft is accelerated by the idled rotor connected to the clutch, and the generator generates power. When the plurality of rotors rotate again below the average wind speed, the clutch is disengaged again, and at least one of the other rotors is moved to the specific circumferential speed or Until a rotational speed is idling, to repeat to generate power at all times linked rotor is again accelerated to the longitudinal main axis by the rotor obtained by the idle by connecting the clutch again.
 この方法によると、複数段のロータが予め定めた平均風速以下で回転しているときに、クラッチを切断して少なくとも一つのロータを空転させ、このロータが加速しながら効率よく回転しうる特定の平均周速または回転速度に達したときに、クラッチを接続して、常時発電機に連結されているロータを増速させながら、全てのロータの回転により発電することができ、かつ複数段のロータが再度予め定めた平均風速以下で回転するようになったときに、クラッチを再度切断して、少なくとも一つのロータが加速しながら効率よく回転しうる周速または回転速度に達するまで空転させたのち、クラッチを再度接続して、常時発電機に連結されたロータを増速させて発電することを繰り返すので、低風速下においても、複数のロータがコギングトルクや発電負荷により失速するのを未然に防止しながら、効率よく発電することができる。 According to this method, when a plurality of rotors are rotating at a predetermined average wind speed or less, the clutch is disengaged to cause at least one rotor to idle, and the rotor can be efficiently rotated while accelerating. When the average peripheral speed or rotational speed is reached, the clutch can be connected to constantly increase the speed of the rotor connected to the generator, and power can be generated by the rotation of all rotors. When the motor rotates again at a predetermined average wind speed or less, the clutch is disengaged again, and is idled until it reaches a peripheral speed or a rotational speed at which at least one rotor can rotate efficiently while accelerating. Because the clutch is reconnected and the rotor connected to the generator is constantly accelerated to generate power, multiple rotors cogging even under low wind speeds. While preventing the stalling by torque and power load in advance, it is possible to generate power efficiently.
 また、複数段のロータのうちの少なくとも一つは、発電機に連係された縦主軸に常時連結されているので、他のロータを空転させている間も、縦主軸に常時連結されているロータが回転している限り、発電が停止されることはない。 Further, since at least one of the rotors in the plurality of stages is always connected to the vertical main shaft linked to the generator, the rotor is always connected to the vertical main shaft while the other rotor is idling. As long as is rotating, power generation will not be stopped.
 さらに、クラッチを切断すると、クラッチを介して縦主軸に連結されたロータには、発電機によるコギングトルクや発電負荷が作用しなくなり、ロータは慣性で円滑に空転し続けるので、その間に風況が少しでもよくなれば、ロータは、特定の平均周速または回転速度まで速やかに加速して効率よく回転する。 Furthermore, when the clutch is disengaged, the cogging torque and power generation load generated by the generator do not act on the rotor connected to the longitudinal main shaft via the clutch, and the rotor continues to idle smoothly and inertially. If it becomes a little better, the rotor will quickly accelerate to a specific average peripheral speed or rotational speed and rotate efficiently.
(2) 前記(1)項において、前記揚力型ブレードは、上下の端部に縦主軸方向に傾斜する傾斜部を有するものとする。 (2) In the item (1), the lift type blade has an inclined portion inclined in the vertical main axis direction at upper and lower ends.
 このような構成によると、上下の端部に縦主軸方向に傾斜する傾斜部を有する揚力型ブレードは、ブレードの内面に当って上下方向へ拡散する気流を傾斜部で受け止めることにより、回転力を高めて揚力(推力)を増大させることができるので、風速が速くなるほど、コアンダ効果によりブレードに生じる揚力(推力)は増大し、ロータは加速されて効率よく回転する。そのため、このような揚力型ブレードを使用すると、空転させたロータが特定の平均周速または回転速度まで速やかに加速して回転するとともに、クラッチを接続して全てのロータの回転駆動力により発電しているときの発電効率を大幅に高めることができる。 According to such a configuration, the lift-type blade having the inclined portion inclined in the vertical main axis direction at the upper and lower ends receives the airflow that diffuses in the vertical direction against the inner surface of the blade, and thereby receives the rotational force. Since the lift (thrust) can be increased by increasing the lift, the lift (thrust) generated in the blade by the Coanda effect increases as the wind speed increases, and the rotor is accelerated and rotates efficiently. For this reason, when such lift type blades are used, the idle rotor rapidly accelerates and rotates to a specific average circumferential speed or rotational speed, and a clutch is connected to generate electric power by the rotational driving force of all rotors. The power generation efficiency can be greatly increased when
 また、空転しているロータが特定の平均周速または回転速度に達するまでの時間が短くなるため、発電機に常時連結されているロータを速やかに増速させて発電することができる。 Also, since the time required for the idling rotor to reach a specific average circumferential speed or rotational speed is shortened, it is possible to quickly increase the speed of the rotor that is always connected to the generator to generate power.
(3) 前記(1)または(2)項において、空転させるロータを最上段のロータとする。 (3) In (1) or (2) above, the rotor to be idled is the uppermost rotor.
 このような構成によると、風速は、地上からの高さが高いほど速くなる傾向があるので、最上段のロータは、効率よく空転して速やかに特定の周速に達する。従って、クラッチが接続されると、空転している最上段のロータの回転駆動力が、縦主軸を介して常時発電機に連結されているロータに速やかに伝達されて増速させることができるので、低風速下においてロータが失速するおそれはさらに小さくなる。 According to such a configuration, since the wind speed tends to increase as the height from the ground increases, the uppermost rotor efficiently idles and quickly reaches a specific peripheral speed. Therefore, when the clutch is connected, the rotational driving force of the uppermost rotor that is idling can be quickly transmitted to the rotor that is always connected to the generator via the longitudinal main shaft to increase the speed. The risk of the rotor stalling under low wind speed is further reduced.
(4) 前記(1)~(3)項のいずれかにおいて、前記複数段のロータのうち、最下段のロータを常時縦主軸に連結し、この最下段のロータよりも上位の全てのロータを、クラッチを介して縦主軸に連結し、複数段のロータが予め定めた平均風速以下で回転している場合に、クラッチを切断して前記最下段のロータを除く全てのロータを空転させ、これらのロータが加速して回転しうる特定の周速または回転速度に達したとき、クラッチを接続して前記最下段のロータを増速させて発電するようにする。 (4) In any one of the above items (1) to (3), among the plurality of rotors, the lowermost rotor is always connected to the vertical main shaft, and all the rotors higher than the lowermost rotor are connected. , Connected to the longitudinal main shaft via a clutch, and when a plurality of rotors are rotating at a predetermined average wind speed or less, the clutch is disengaged and all the rotors except the lowermost rotor are idled. When the rotor reaches a specific peripheral speed or rotational speed at which the rotor can rotate by acceleration, a clutch is connected to increase the speed of the lowermost rotor to generate power.
 このような構成によると、最下段のロータを除く上位の全てのロータを特定の周速または回転速度に達するまで空転させて、クラッチを接続すると、上位の全てのロータの回転駆動力が、常時発電機に連結された最下段のロータに伝達される。従って、低風速下においても、最下段のロータを、上位の全てのロータによる大きな回転駆動トルクにより速やかに増速して発電することができる。
 本発明の多段縦軸風力発電装置によると、上記課題は、次のようにして解決される。
(5) 支持体に回転自在に支持された縦主軸と、前記縦主軸に連係された発電機と、前記縦主軸周りに回転する縦長の複数の揚力型ブレードを有し、少なくとも一つのロータが前記縦主軸に常時連結され、他のロータの少なくとも一つがクラッチを介して前記縦主軸に連結された上下複数段のロータと、前記複数段のロータの周速または回転速度を検知する回転速度検知手段と、前記ロータに向かう平均風速を検知する風速検知手段と、制御手段とを備え、
 前記制御手段は、前記風速検知手段が前記複数段のロータが予め定めた平均風速以下で回転しているのを検知したとき、前記クラッチを切断して前記他のロータの少なくとも一つを空転させ、前記回転速度検知手段が、前記空転させたロータが加速して回転する特定の周速または回転速度に達したことを検知したときに、前記クラッチを接続し、前記空転させたロータにより前記縦主軸に常時連結されたロータを増速させて前記発電機により発電するように、繰返し制御する。
According to such a configuration, when all the upper rotors except the lowermost rotor are idled until reaching a specific circumferential speed or rotational speed and the clutch is connected, the rotational driving force of all the upper rotors is constantly It is transmitted to the lowermost rotor connected to the generator. Therefore, even under a low wind speed, the lowermost rotor can be quickly increased in speed by the large rotational driving torque of all the upper rotors to generate electric power.
According to the multistage vertical wind power generator of the present invention, the above problem is solved as follows.
(5) A longitudinal main shaft rotatably supported by a support, a generator linked to the vertical main shaft, and a plurality of vertically long lift-type blades rotating around the vertical main shaft, wherein at least one rotor is Rotational speed detection that detects the circumferential speed or rotational speed of the upper and lower rotors that are always connected to the vertical spindle and at least one of the other rotors is connected to the vertical spindle via a clutch Means, wind speed detecting means for detecting the average wind speed toward the rotor, and control means,
The control means disengages the clutch and idles at least one of the other rotors when the wind speed detecting means detects that the rotors of the plurality of stages are rotating at a predetermined average wind speed or less. When the rotational speed detecting means detects that the idle rotor has reached a specific peripheral speed or rotational speed at which the rotor rotates and accelerates, the clutch is connected and the idle rotor rotates the vertical rotor. Control is repeated so that the rotor always connected to the main shaft is increased in speed and the power is generated by the generator.
 この多段縦軸風力発電装置によると、制御手段は、風速検知手段が複数段のロータが予め定めた平均風速以下で回転しているのを検知したとき、クラッチを切断してロータの少なくとも一つを空転させ、回転速度検知手段が、空転させたロータが加速して回転する特定の周速または回転速度に達したことを検知したときに、クラッチを接続し、空転させたロータにより縦主軸に常時連結されたロータを増速させて発電機により発電するように、繰返し制御するので、低風速下においても、複数のロータがコギングトルクや発電負荷により失速するのを未然に防止しながら、効率よく発電することができる。 According to this multi-stage vertical axis wind power generator, the control means disengages the clutch and disconnects at least one of the rotors when the wind speed detecting means detects that the rotors of the plurality of stages are rotating below the predetermined average wind speed. And the rotation speed detection means detects that the idle rotor has reached a specific peripheral speed or rotation speed at which the rotor rotates and the clutch is connected to the longitudinal main shaft by the idle rotor. It is controlled repeatedly to increase the speed of the rotors that are always connected and generate power with the generator, so even under low wind speeds, while preventing the multiple rotors from stalling due to cogging torque or power generation load, it is efficient It can generate electricity well.
 また、複数段のロータのうちの少なくとも一つは、発電機に連係された縦主軸に常時連結されているので、他のロータを空転させている間も、縦主軸に常時連結されているロータが回転している限り、発電が停止されることはない。 Further, since at least one of the rotors in the plurality of stages is always connected to the vertical main shaft linked to the generator, the rotor is always connected to the vertical main shaft while the other rotor is idling. As long as is rotating, power generation will not be stopped.
 さらに、クラッチを切断すると、クラッチを介して縦主軸に連結されたロータには、発電機によるコギングトルクや発電負荷が作用しなくなり、ロータは慣性で円滑に空転し続けるので、その間に風況が少しでもよくなれば、ロータは、特定の平均周速または回転速度まで速やかに加速して効率よく回転する。 Furthermore, when the clutch is disengaged, the cogging torque and power generation load generated by the generator do not act on the rotor connected to the longitudinal main shaft via the clutch, and the rotor continues to idle smoothly and inertially. If it becomes a little better, the rotor will quickly accelerate to a specific average peripheral speed or rotational speed and rotate efficiently.
(6) 前記(5)項において、前記クラッチを電磁クラッチとする。 (6) In the item (5), the clutch is an electromagnetic clutch.
 このような構成によると、制御手段による遠隔制御により、電磁クラッチを正確に、かつ短時間で断続させることができるので、風況の変化に即応して、速やかにロータを空転させたり、空転させたロータにより発電機に常時連結されたロータを速やかに増速させたりすることができる。 According to such a configuration, the electromagnetic clutch can be intermittently engaged and disengaged accurately and in a short time by remote control by the control means, so that the rotor can be quickly idled or idled in response to changes in wind conditions. The rotor always connected to the generator can be quickly accelerated by the rotor.
(7) 支持体に回転自在に設けられた縦主軸と、前記縦主軸に連係された発電機と、前記縦主軸周りに回転する縦長の複数の揚力型ブレードを有し、少なくとも一つのロータが前記縦主軸に常時連結され、他のロータの少なくとも一つがクラッチを介して前記縦主軸に連結された上下複数段のロータとを備え、
 前記クラッチは、前記複数段のロータが予め定めた平均風速以下で回転している場合に、前記縦主軸と前記他のロータの少なくとも一つとの動力の伝達を切断して、そのロータを空転させ、空転させたロータが加速して回転する特定の周速または回転速度に達したときに接続して、前記縦主軸に常時連結されたロータを増速させて前記発電機により発電するように、繰返し自動的に断続されるようになっている。
(7) A vertical main shaft rotatably provided on a support body, a generator linked to the vertical main shaft, and a plurality of vertically long lift-type blades rotating around the vertical main shaft, wherein at least one rotor is A plurality of upper and lower rotors that are always connected to the vertical main shaft and at least one of the other rotors is connected to the vertical main shaft via a clutch;
The clutch cuts off the transmission of power between the longitudinal main shaft and at least one of the other rotors when the plurality of stages of rotors rotate at a predetermined average wind speed or less, causing the rotors to idle. In order to generate power by the generator by increasing the speed of the rotor that is always connected to the longitudinal main shaft by connecting when the idle rotor has reached a specific peripheral speed or rotational speed that rotates by acceleration. It is designed to be automatically interrupted repeatedly.
 この多段縦軸風力発電装置によると、クラッチは、複数段のロータが予め定めた平均風速以下で回転している場合に、縦主軸と他のロータの少なくとも一つとの動力の伝達を切断して、そのロータを空転させ、空転させたロータが加速して回転する特定の周速または回転速度に達したときに接続して、縦主軸に常時連結されたロータを増速させて発電機により発電するように、繰返し自動的に断続されるようになっているので、低風速下においても、複数のロータがコギングトルクや発電負荷により失速するのを未然に防止しながら、効率よく発電することができる。 According to this multi-stage vertical axis wind power generator, the clutch cuts off the transmission of power between the vertical main shaft and at least one of the other rotors when a plurality of stages of rotors rotate at a predetermined average wind speed or less. The rotor is idled and connected when the idled rotor reaches a specific peripheral speed or rotational speed that accelerates and rotates, and the rotor that is always connected to the vertical main shaft is increased in speed to generate electricity. As described above, since it is designed to be automatically and intermittently repeated, it is possible to efficiently generate power while preventing a plurality of rotors from stalling due to cogging torque or power generation load even at low wind speeds. it can.
(8) 前記(7)項において、前記クラッチを、縦主軸の回転に伴う遠心力により自動的に断続する遠心クラッチとする。
 このような構成によると、クラッチを断続するための電気的な制御手段が不要となるので、風力発電装置のコスト低減が図れる。
(8) In the item (7), the clutch is a centrifugal clutch that is automatically engaged and disengaged by a centrifugal force accompanying the rotation of the longitudinal main shaft.
According to such a configuration, an electric control means for engaging / disengaging the clutch is not necessary, so that the cost of the wind turbine generator can be reduced.
(9) 前記(5)~(8)項のいずれかにおいて、前記揚力型ブレードは、上下の端部に縦主軸方向に傾斜する傾斜部を有するものとする。 (9) In any one of the above items (5) to (8), the lift-type blade has an inclined portion inclined in the vertical main axis direction at the upper and lower ends.
 このような構成によると、上下の端部に縦主軸方向に傾斜する傾斜部を有する揚力型ブレードは、ブレードの内面に当って上下方向へ拡散する気流を傾斜部で受け止めることにより、回転力を高めて揚力(推力)を増大させることができるので、風速が速くなるほど、コアンダ効果によりブレードに生じる揚力(推力)は増大し、ロータは加速されて効率よく回転する。そのため、このような揚力型ブレードを使用すると、空転させたロータが特定の平均周速または回転速度まで速やかに加速して回転するとともに、クラッチを接続して全てのロータの回転駆動力により発電しているときの発電効率を大幅に高めることができる。 According to such a configuration, the lift-type blade having the inclined portion inclined in the vertical main axis direction at the upper and lower ends receives the airflow that diffuses in the vertical direction against the inner surface of the blade, and thereby receives the rotational force. Since the lift (thrust) can be increased by increasing the lift, the lift (thrust) generated in the blade by the Coanda effect increases as the wind speed increases, and the rotor is accelerated and rotates efficiently. For this reason, when such lift type blades are used, the idle rotor rapidly accelerates and rotates to a specific average circumferential speed or rotational speed, and a clutch is connected to generate electric power by the rotational driving force of all rotors. The power generation efficiency can be greatly increased when
(10) 前記(5)~(9)項のいずれかにおいて、空転させるロータを最上段のロータとする。 (10) In any one of the items (5) to (9), the rotor to be idled is the uppermost rotor.
 このような構成によると、風速は、地上からの高さが高いほど速くなる傾向があるので、最上段のロータは、効率よく空転して速やかに特定の周速に達する。従って、クラッチが接続されると、空転している最上段のロータの回転駆動力が、縦主軸を介して常時発電機に連結されているロータに速やかに伝達されて増速させることができるので、低風速下においてロータが失速するおそれはさらに小さくなる。 According to such a configuration, since the wind speed tends to increase as the height from the ground increases, the uppermost rotor efficiently idles and quickly reaches a specific peripheral speed. Therefore, when the clutch is connected, the rotational driving force of the uppermost rotor that is idling can be quickly transmitted to the rotor that is always connected to the generator via the longitudinal main shaft to increase the speed. The risk of the rotor stalling under low wind speed is further reduced.
(11) 前記(5)~(10)項のいずれかにおいて、前記複数段のロータのうち、最下段のロータは常時縦主軸に連結され、この最下段のロータよりも上位の全てのロータをクラッチを介して縦主軸に連結する。 (11) In any one of the above items (5) to (10), the lowermost rotor of the plurality of rotors is always connected to the longitudinal main shaft, and all the rotors higher than the lowermost rotor are connected. It is connected to the vertical main shaft via a clutch.
 このような構成によると、最下段のロータを除く上位の全てのロータを特定の周速または回転速度に達するまで空転させて、クラッチを接続すると、上位の全てのロータの回転駆動力が、常時発電機に連結された最下段のロータに伝達される。従って、低風速下においても、最下段のロータを、上位の全てのロータによる大きな回転駆動トルクにより速やかに増速して発電することができる。 According to such a configuration, when all the upper rotors except the lowermost rotor are idled until reaching a specific circumferential speed or rotational speed and the clutch is connected, the rotational driving force of all the upper rotors is constantly It is transmitted to the lowermost rotor connected to the generator. Therefore, even under a low wind speed, the lowermost rotor can be quickly increased in speed by the large rotational driving torque of all the upper rotors to generate electric power.
 本発明の風力発電方法及び多段縦軸風力発電装置によると、低風速下においても、複数のロータが失速するのを未然に防止しながら、効率よく発電することができる。 According to the wind power generation method and the multistage vertical wind power generation apparatus of the present invention, it is possible to efficiently generate power while preventing a plurality of rotors from stalling even at low wind speeds.
本発明の多段縦軸風力発電装置及び本発明の方法の実施に用いられる多段縦軸風力発電装置の第1の実施形態の正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a front view of 1st Embodiment of the multistage vertical wind power generator of this invention and the multistage vertical wind power generator used for implementation of the method of this invention. 図1のII-II線における拡大横断平面図である。FIG. 2 is an enlarged cross-sectional plan view taken along line II-II in FIG. 図1のIII-III線における上段のロータの拡大横断平面図である。FIG. 3 is an enlarged cross-sectional plan view of an upper rotor taken along line III-III in FIG. 1. 第1の実施形態の多段縦軸風力発電装置を用いて本発明の方法を実施する際のフローチャートである。It is a flowchart at the time of implementing the method of this invention using the multistage vertical axis | shaft wind power generator of 1st Embodiment. 本発明の多段縦軸風力発電装置の第2の実施形態及び本発明の方法の実施に用いられる多段縦軸風力発電装置の第2の実施形態の正面図である。It is a front view of 2nd Embodiment of the multistage vertical wind power generator of this invention and 2nd Embodiment of the multistage vertical wind power generator used for implementation of the method of this invention. 本発明の多段縦軸風力発電装置の第3の実施形態及び本発明の方法の実施に用いられる多段縦軸風力発電装置の第3の実施形態の正面図である。It is a front view of 3rd Embodiment of the multistage vertical wind power generator of this invention, and 3rd Embodiment of the multistage vertical wind power generator used for implementation of the method of this invention.
 本発明の実施形態を、図面に基づいて説明する。なお、以下の実施形態においては、ブレードの回転半径1m、ブレードの翼長1.2mのロータを備える多段縦軸風力発電装置を使用した風力発電方法について説明するが、ロータは、これに限定されないことは勿論である。 Embodiments of the present invention will be described with reference to the drawings. In the following embodiments, a wind power generation method using a multistage vertical wind power generator including a rotor having a blade rotation radius of 1 m and a blade blade length of 1.2 m will be described. However, the rotor is not limited to this. Of course.
 図1~図3は、本発明の多段縦軸風力発電装置(以下、風力発電装置と略称する)及び本発明の方法を実施するようになっている多段縦軸風力発電装置の第1の実施形態を示し、この実施形態の風力発電装置1は、多段縦軸風車を構成する上下2段の縦軸型ロータ、すなわち下段の第1ロータ2A及び上段の第2ロータ2Bと、発電機4と、制御手段5とを備えている。 1 to 3 show a first embodiment of a multistage vertical wind turbine generator according to the present invention (hereinafter abbreviated as wind power generator) and a multistage vertical wind turbine generator adapted to carry out the method of the present invention. The wind power generator 1 according to this embodiment includes a vertical rotor of two upper and lower stages constituting a multistage vertical wind turbine, that is, a lower first rotor 2A and an upper second rotor 2B, and a generator 4. The control means 5 is provided.
 第1及び第2ロータ2A、2Bは、それぞれ、水平面上において外側方を向き、かつ一直線上に並ぶ水平アーム6、6と、両水平アーム6の外端部に上下方向の中央部の内面が固着され、後述する縦主軸14周りに回転する縦長の揚力型ブレード(以下ブレードと略称する)7、7と、外周面が両水平アーム6の内端部に固着された円筒形の回転軸8、8とを備えている。水平アーム6及びブレード7は、例えば繊維強化合成樹脂により形成されている。なお、水平アーム6とブレード7とは、一体成形が可能である。 Each of the first and second rotors 2A and 2B has horizontal arms 6 and 6 that are directed outward in a horizontal plane and aligned in a straight line, and the inner surface of the central portion in the vertical direction is formed at the outer ends of both horizontal arms 6. Vertically lifted blades (hereinafter abbreviated as “blades”) 7 and 7 which are fixed and rotate around a vertical main shaft 14 which will be described later, and a cylindrical rotary shaft 8 whose outer peripheral surfaces are fixed to the inner ends of both horizontal arms 6. , 8. The horizontal arm 6 and the blade 7 are made of, for example, fiber reinforced synthetic resin. The horizontal arm 6 and the blade 7 can be integrally formed.
 基礎9の上面には、平面視方形に枠組みされた上下複数(実施例では3個)の軸部支持枠10を有する支持枠体11が立設され、各軸部支持枠10の内部の平面視十字形をなす軸支持杆12の中心に圧嵌された軸受13には、縦主軸14の上下3箇所が、回転自在に支持されている。 On the upper surface of the foundation 9, a support frame body 11 having a plurality of upper and lower shaft support frames 10 (three in the embodiment) framed in a square in plan view is erected, and a plane inside each shaft support frame 10. Three vertical portions of the vertical main shaft 14 are rotatably supported by a bearing 13 press-fitted into the center of the shaft support rod 12 having a cross shape.
 支持枠体11の内部に配置された第1、第2ロータ2A、2Bの回転軸8、8は、縦主軸14の上下部に、セレーション等により、相対回転不能に結合されている。なお、図2に示すように、第1、第2のロータ2A、2Bにおけるブレード7の平面位相は、上下のブレード7が重ならないように、例えば円周方向(回転方向)に90度異ならせてある。このようにすると、変化する風向きに上下のブレード7が対応して回転するので、第1、第2のロータ2A、2Bは効率よく回転する。 The rotary shafts 8 and 8 of the first and second rotors 2A and 2B disposed inside the support frame 11 are coupled to the upper and lower portions of the vertical main shaft 14 so as not to be relatively rotatable by serrations or the like. As shown in FIG. 2, the plane phase of the blades 7 in the first and second rotors 2A, 2B is varied by 90 degrees in the circumferential direction (rotation direction), for example, so that the upper and lower blades 7 do not overlap. It is. If it does in this way, since the upper and lower blades 7 correspond to the changing wind direction, the first and second rotors 2A, 2B rotate efficiently.
 第1ロータ2Aは、その回転により発電機4を駆動させうるように、縦主軸14に常時連結されている。第1、第2ロータ2A、2B間において縦主軸14の中間部には、電磁クラッチ15が設けられ、第2ロータ2Bは、電磁クラッチ15を介して、縦主軸14及び第1ロータ2Aに断続可能に連結されている。なお、電磁クラッチ15が接続されるタイミングは、第1、第2ロータ2A、2Bのブレード7の位相が90度異なったときに行われる。この際の第1、第2ロータ2A、2Bのブレード7の回転方向の相対位相は、例えば図示しない非接触式の位置検知センサ等により検知することができる。 The first rotor 2A is always connected to the vertical main shaft 14 so that the generator 4 can be driven by its rotation. Between the first and second rotors 2A and 2B, an electromagnetic clutch 15 is provided at an intermediate portion of the vertical main shaft 14, and the second rotor 2B is intermittently connected to the vertical main shaft 14 and the first rotor 2A via the electromagnetic clutch 15. Connected as possible. Note that the timing at which the electromagnetic clutch 15 is connected is performed when the phases of the blades 7 of the first and second rotors 2A and 2B differ by 90 degrees. The relative phase in the rotational direction of the blades 7 of the first and second rotors 2A, 2B at this time can be detected by, for example, a non-contact type position detection sensor (not shown).
 電磁クラッチ15としては、例えば、若干滑りながら、すなわち半クラッチ状態を経て接続される公知の摩擦式のものを使用するのが好ましい。この電磁クラッチ15により、接続時の衝撃トルクが緩和されるので、第2ロータ2Bの回転駆動力を縦主軸14にスムーズに伝達することができる。
 電磁クラッチ15へは、後述する蓄電池18に接続された給電器16を介して給電されるようになっている。なお、蓄電池18の電力が不足している場合には、他の電源、例えば交流100V電源を直流に変換するなどして、電磁クラッチ15を作動させることができる。
As the electromagnetic clutch 15, for example, it is preferable to use a known friction type that is connected slightly through a slip, that is, through a half-clutch state. The electromagnetic clutch 15 reduces the impact torque at the time of connection, so that the rotational driving force of the second rotor 2B can be smoothly transmitted to the vertical main shaft 14.
Electric power is supplied to the electromagnetic clutch 15 via a power feeder 16 connected to a storage battery 18 to be described later. In addition, when the electric power of the storage battery 18 is insufficient, the electromagnetic clutch 15 can be operated by converting another power source, for example, an alternating current 100V power source into a direct current.
 第1、第2ロータ2A、2Bのブレード7の形状は、本願の発明者が開発した、特許第4907073号公報、特開2011-169292号公報に記載されているブレードと実質的に同形をなしている。
 すなわち、ブレード7の弦長は、ブレード7の回転半径の20%~50%とされ、翼面積は大きく設定されている。
The shapes of the blades 7 of the first and second rotors 2A and 2B are substantially the same as the blades described in Japanese Patent No. 4907073 and Japanese Patent Application Laid-Open No. 2011-169292 developed by the inventors of the present application. ing.
That is, the chord length of the blade 7 is set to 20% to 50% of the rotational radius of the blade 7, and the blade area is set large.
 ブレード7における上下両端部を除く主部7Aの横断面の形状は、図3に拡大して示すように、主部7Aの翼厚中心線Cの内方と外方における翼厚を、互いに対称的にほぼ等寸とし、かつ翼厚中心線Cは、ブレード7の翼厚中心の回転軌跡Oとほぼ重なるように設定してある。 The cross-sectional shape of the main part 7A excluding the upper and lower ends of the blade 7 is symmetrical with respect to the blade thicknesses on the inner side and the outer side of the blade thickness center line C of the main part 7A, as shown in an enlarged view in FIG. Therefore, the blade thickness center line C is set to be substantially overlapped with the rotation locus O of the blade thickness center of the blade 7.
 主部7A全体の平面形は、図2に示すように、翼厚中心の回転軌跡Oに沿うように円弧状に湾曲され、その内側面は、前縁の膨らみ部分から後縁にかけて、遠心方向へ傾斜しており、後方から内側面に風が当たると、前方へ押されるようになっている。 As shown in FIG. 2, the planar shape of the entire main portion 7A is curved in an arc shape along the rotation locus O of the blade thickness center, and the inner side surface extends in the centrifugal direction from the bulging portion of the leading edge to the trailing edge. When the wind hits the inner surface from the rear, it is pushed forward.
 主部7Aの横断面の形状は、回転方向である前側の翼厚が厚く、後方に向かって漸次薄くなる標準翼型に近いものとされている。 The shape of the cross section of the main portion 7A is assumed to be close to a standard airfoil shape in which the blade thickness on the front side that is the rotational direction is thick and gradually becomes thinner toward the rear.
 ブレード7が、その前縁方向を前として回転すると、ブレード7の内外の回転半径の差によって、内側面に比して外側面の周速度が大となり、外側面に沿って後方へ通過する気流の方が、内側面におけるそれよりも高速となる。 When the blade 7 rotates with its front edge direction as the front, the peripheral speed of the outer surface becomes larger than that of the inner surface due to the difference between the inner and outer turning radii of the blade 7, and the airflow passing rearward along the outer surface. Is faster than that on the inner surface.
 そのため、ブレード7の後縁部において、外側面を通過する気流の圧力は、内側面を通過する気流のそれよりも小となり、外側面におけるコアンダ効果によって、ブレード7の後縁部の外側面が、後方から前縁部方向に押されて、ブレード7に回転方向の推力が作用し、ブレード7の回転は促進される。 Therefore, the pressure of the airflow passing through the outer surface at the rear edge portion of the blade 7 is smaller than that of the airflow passing through the inner surface, and the outer surface of the rear edge portion of the blade 7 is caused by the Coanda effect on the outer surface. The blade 7 is pushed from the rear toward the front edge, and a thrust in the rotational direction acts on the blade 7 to accelerate the rotation of the blade 7.
 図1及び図2に示すように、ブレード7の上下両端部には、内方、すなわち縦主軸14方向に向かって、円弧状に傾斜する内向き傾斜部7B、7Bが形成されているため、ブレード7の回転に伴い、主部7Aの内側面に沿って上下方向に拡散する気流は、内向き傾斜部7Bにより受止めて回転力を高めることとなる。 As shown in FIGS. 1 and 2, inwardly inclined portions 7 </ b> B and 7 </ b> B that are inclined in an arc shape inward, that is, in the direction of the longitudinal main shaft 14, are formed at the upper and lower ends of the blade 7. As the blade 7 rotates, the airflow that diffuses in the vertical direction along the inner surface of the main portion 7A is received by the inwardly inclined portion 7B to increase the rotational force.
 また、主部7Aの内外の側面に沿って上下方向へ流れる気流は、コアンダ効果により、上下の内向き傾斜部7B、7Bの内面及び外面に沿って、後方に向かって通過するようになるので、第1、第2ロータ2A、2Bは、比較的低い風速下においても高い回転効率をもって回転する。 Further, the airflow flowing in the vertical direction along the inner and outer side surfaces of the main portion 7A passes rearward along the inner and outer surfaces of the upper and lower inwardly inclined portions 7B and 7B due to the Coanda effect. The first and second rotors 2A and 2B rotate with high rotational efficiency even under a relatively low wind speed.
 発電機4は、基礎9に設置され、その上下方向のロータ軸(図示略)に縦主軸14の下端部が連結されている。
 発電機4としては、例えば、公知の単相交流発電機または三相交流発電機が使用され、発電機4により発電された電力は、整流器、電圧レギュレータ等(図示略)を有するコントローラ17を介して、蓄電池18に蓄電された後、蓄電池18から外部の直流負荷電源に給電されるか、コントローラ17から外部の交流負荷電力系統に直接給電される。
The generator 4 is installed on the foundation 9, and the lower end portion of the vertical main shaft 14 is connected to the vertical rotor shaft (not shown).
As the generator 4, for example, a known single-phase AC generator or a three-phase AC generator is used, and the electric power generated by the generator 4 is passed through a controller 17 having a rectifier, a voltage regulator, and the like (not shown). Then, after being stored in the storage battery 18, power is supplied from the storage battery 18 to an external DC load power supply or directly supplied from the controller 17 to an external AC load power system.
 コントローラ17は、発電機4からの出力発電量を調節して、蓄電池18または直流負荷電源へ出力する電流や電圧を制御可能である。なお、発電機4は、蓄電池18や直流負荷電源系統に直接電力を供給しうる直流発電機としてもよい。 The controller 17 can control the current and voltage output to the storage battery 18 or the DC load power supply by adjusting the output power generation amount from the generator 4. The generator 4 may be a DC generator that can directly supply power to the storage battery 18 or the DC load power supply system.
 制御手段5は、平均風速判定部19と、ロータ周速判定部20と、クラッチ切替判定部21とを備えている。
 平均風速判定部19は、第1、第2ロータ2A、2Bに向かう風の一定時間毎の平均風速を検知するための、風速検知手段である風速計22に接続され、風速計22により検出された平均風速は、平均風速判定部19に入力され、制御手段5の中央処理装置(CPU)23により演算処理される。風速が予め定めた平均風速以下であると判定された場合に、判定信号は、クラッチ切替判定部21に出力される。なお、風速計22による平均風速の検知時間は、例えば10秒以下の比較的短い間隔で行うのが好ましい。
The control means 5 includes an average wind speed determination unit 19, a rotor peripheral speed determination unit 20, and a clutch switching determination unit 21.
The average wind speed determination unit 19 is connected to an anemometer 22 that is an anemometer for detecting the average wind speed of the wind toward the first and second rotors 2 </ b> A and 2 </ b> B at fixed time intervals, and is detected by the anemometer 22. The average wind speed is input to the average wind speed determination unit 19 and is processed by the central processing unit (CPU) 23 of the control means 5. When it is determined that the wind speed is equal to or lower than a predetermined average wind speed, the determination signal is output to the clutch switching determination unit 21. Note that the average wind speed detection time by the anemometer 22 is preferably performed at relatively short intervals of, for example, 10 seconds or less.
 詳細な説明は後述するが、クラッチ切替判定部21は、風速計22が予め定めた平均風速以下、例えばカットイン風速である2m/s以下を検知した場合に、給電器16に判定信号を出力し、給電器16からの給電を停止して電磁クラッチ15を切断する。これにより、第2ロータ2Bの回転駆動力が縦主軸14に伝達されなくなるとともに、第2ロータ2Bは空転するようになる。
 また、クラッチ切替判定部21へは、後述する回転速度検出センサ25からロータ周速判定部20に入力されるデータに基づいても、判定信号が出力される。
Although detailed description will be given later, the clutch switching determination unit 21 outputs a determination signal to the power feeder 16 when the anemometer 22 detects a predetermined average wind speed or less, for example, 2 m / s or less, which is a cut-in wind speed. Then, the power supply from the power feeder 16 is stopped and the electromagnetic clutch 15 is disconnected. As a result, the rotational driving force of the second rotor 2B is not transmitted to the vertical main shaft 14, and the second rotor 2B is idled.
A determination signal is also output to the clutch switching determination unit 21 based on data input to the rotor peripheral speed determination unit 20 from a rotation speed detection sensor 25 described later.
 第2ロータ2Bと電磁クラッチ15との間の縦主軸14には、第2ロータ2Bの回転速度を測定するための平歯車24が取付けられており、この平歯車24の回転数を、回転速度検出センサ25をもって検出することにより、縦主軸14を介して第2ロータ2Bの回転速度を検出しうるようになっている。なお、平歯車24に代えて、縦主軸14の外周面に、例えば1個または複数個の凸部を設けてもよい。
 回転速度検出センサ25としては、例えば磁気回転速度検出センサ、超音波回転速度検出センサ、ロータリエンコーダ等の非接触型センサが用いられる。
A spur gear 24 for measuring the rotational speed of the second rotor 2B is attached to the longitudinal main shaft 14 between the second rotor 2B and the electromagnetic clutch 15, and the rotational speed of the spur gear 24 is determined by the rotational speed. By detecting with the detection sensor 25, the rotational speed of the second rotor 2B can be detected via the vertical main shaft 14. Instead of the spur gear 24, for example, one or a plurality of convex portions may be provided on the outer peripheral surface of the vertical main shaft 14.
As the rotational speed detection sensor 25, for example, a non-contact type sensor such as a magnetic rotational speed detection sensor, an ultrasonic rotational speed detection sensor, or a rotary encoder is used.
 回転速度検出センサ25により検出された縦主軸14の回転速度は、制御手段5のロータ周速判定部20に入力され、入力された回転速度に基づいて、制御手段5の中央処理装置23は第2ロータ2Bの平均周速を演算する。すなわち、ブレード7の回転半径(r)から、第2ロータ2Bの外周の長さ(2πr)が確定されるので、その外周の長さ(2πr)に縦主軸14の回転速度(rpm)を乗じれば、周速(m/s)が得られる。上記の回転速度検出センサ25とロータ周速判定部20とにより、回転速度検知手段が構成される。 The rotational speed of the vertical main shaft 14 detected by the rotational speed detection sensor 25 is input to the rotor circumferential speed determination unit 20 of the control means 5, and the central processing unit 23 of the control means 5 is based on the input rotational speed. 2 Calculate the average peripheral speed of the rotor 2B. That is, since the outer peripheral length (2πr) of the second rotor 2B is determined from the rotational radius (r) of the blade 7, the outer peripheral length (2πr) is multiplied by the rotational speed (rpm) of the vertical main shaft 14. If so, the peripheral speed (m / s) is obtained. The rotation speed detection sensor 25 and the rotor circumferential speed determination unit 20 constitute rotation speed detection means.
 なお、第2ロータ2Bの周速は、ブレード7の角速度を、センサにより検出することによっても求めることができる。すなわち、ブレード7の角速度(rad/s)に、その回転半径(r)を乗じた値が、第2ロータ2Bの周速となる。 The peripheral speed of the second rotor 2B can also be obtained by detecting the angular speed of the blade 7 with a sensor. That is, a value obtained by multiplying the angular velocity (rad / s) of the blade 7 by the rotational radius (r) is the peripheral speed of the second rotor 2B.
 ロータ周速判定部20により、空転している第2ロータ2Bの平均周速が、該第2ロータ2Bが自力で加速して回転する特定の値(例えば5m/s)に達したと判定された場合には、ロータ周速判定部20からクラッチ切替判定部21に出力される判定信号に基づいて、給電器16から電磁クラッチ15に給電され、電磁クラッチ15がONすることにより、第2ロータ2Bの回転駆動力が縦主軸14を介して第1ロータ2Aに伝達される。これにより、速い周速で空転している第2ロータ2Bの回転駆動力により第1ロータ2Aの回転速度が増速させられ、平均風速が2m/s以下の低風速下においても、第1、第2ロータ2A、2Bの回転速度が共に上昇する。従って、発電機4のコギングトルクや発電負荷により、第1、第2ロータ2A、2Bが失速を起こすのが未然に防止され、効率よく発電することが可能となる。 The rotor peripheral speed determination unit 20 determines that the average peripheral speed of the second rotor 2B that is idling has reached a specific value (for example, 5 m / s) at which the second rotor 2B accelerates and rotates by itself. In this case, based on the determination signal output from the rotor peripheral speed determination unit 20 to the clutch switching determination unit 21, power is supplied from the power feeder 16 to the electromagnetic clutch 15, and the electromagnetic clutch 15 is turned on, whereby the second rotor The rotational driving force of 2B is transmitted to the first rotor 2A via the vertical main shaft 14. As a result, the rotational speed of the first rotor 2A is increased by the rotational driving force of the second rotor 2B that is idling at a high peripheral speed, and even when the average wind speed is 2 m / s or less, the first, The rotational speeds of the second rotors 2A and 2B are both increased. Therefore, the first and second rotors 2A and 2B are prevented from stalling due to the cogging torque and the power generation load of the generator 4, and it is possible to generate power efficiently.
 次に、上記第1の実施形態に係る風力発電装置1を用いた風力発電方法について、図4に示すフローチャートを参照して説明する。
 まず、第1ロータ2Aと第2ロータ2Bの回転が縦主軸14に伝達されるように、電磁クラッチ15を接続し、両ロータ2A、2Bの回転駆動力により発電機4を作動させている状態で、第1、第2ロータ2A、2Bの平均風速を、風速計22により測定し(S1)、その計測値に基づいて、制御手段5の平均風速判定部19及び中央処理装置23が、平均風速がカットイン風速である2m/s以下(0を含む)であるか否かを判定する(S2)。
Next, a wind power generation method using the wind turbine generator 1 according to the first embodiment will be described with reference to a flowchart shown in FIG.
First, the electromagnetic clutch 15 is connected so that the rotation of the first rotor 2A and the second rotor 2B is transmitted to the longitudinal main shaft 14, and the generator 4 is operated by the rotational driving force of both the rotors 2A and 2B. Then, the average wind speed of the first and second rotors 2A, 2B is measured by the anemometer 22 (S1), and based on the measured value, the average wind speed determination unit 19 and the central processing unit 23 of the control means 5 It is determined whether or not the wind speed is 2 m / s or less (including 0), which is the cut-in wind speed (S2).
 平均風速がカットイン風速である2m/s以下と判定された場合には、制御手段5の平均風速判定部19からクラッチ切替判定部21に判定信号が出力され、その判定信号により、給電器16から電磁クラッチ15への給電が停止されることにより、電磁クラッチ15はOFFとなる(S3)。これにより、第2ロータ2Bの回転駆動力が縦主軸14に伝達されなくなるとともに、第2ロータ2Bは空転する(S4)。 When it is determined that the average wind speed is 2 m / s or less, which is the cut-in wind speed, a determination signal is output from the average wind speed determination unit 19 of the control means 5 to the clutch switching determination unit 21, and the feeder 16 is determined based on the determination signal. When the power supply to the electromagnetic clutch 15 is stopped, the electromagnetic clutch 15 is turned off (S3). As a result, the rotational driving force of the second rotor 2B is not transmitted to the vertical main shaft 14, and the second rotor 2B rotates idly (S4).
 なお、平均風速が2m/s以下と判定された場合に、電磁クラッチ15をOFFとして第2ロータ2Bを空転させるのは、2m/s以下の低風速では、第1、第2ロータ2A、2Bが発電機4のコギングトルクや発電負荷の影響を受けて失速するおそれがあり、効率よく発電することができないからである。 When the average wind speed is determined to be 2 m / s or less, the electromagnetic clutch 15 is turned off and the second rotor 2B is idled at a low wind speed of 2 m / s or less. This is because there is a risk of stalling under the influence of the cogging torque of the generator 4 or the power generation load, and it is impossible to generate power efficiently.
 電磁クラッチ15をOFFとして、第2ロータ2Bの回転駆動力が縦主軸14に伝達されなくすると、第2ロータ2Bは抵抗なく円滑に空転し、2m/s以下の低風速でも、第2ロータ2Bは失速することなく慣性で回転し続ける。従って、第2ロータ2Bが空転している時に風況が少しでもよくなると、第2ロータ2Bはさらに加速されて空転するようになる。 When the electromagnetic clutch 15 is turned off and the rotational driving force of the second rotor 2B is not transmitted to the longitudinal main shaft 14, the second rotor 2B runs smoothly without resistance, and even at a low wind speed of 2 m / s or less, the second rotor 2B. Keeps rotating with inertia without stalling. Accordingly, if the wind condition is slightly improved when the second rotor 2B is idling, the second rotor 2B is further accelerated to idle.
 第2ロータ2Bが空転しているときの平均周速を、回転速度検出センサ25から出力されるデータに基づいて、ロータ周速判定部20及び中央処理装置23が測定し(S5)、第2ロータ2Bの平均周速が例えば5m/sに達したか否かを判定する(S6)。 Based on the data output from the rotational speed detection sensor 25, the rotor peripheral speed determination unit 20 and the central processing unit 23 measure the average peripheral speed when the second rotor 2B is idling (S5). It is determined whether or not the average peripheral speed of the rotor 2B has reached 5 m / s, for example (S6).
 第2ロータ2Bの平均周速が5m/sに達した場合には、クラッチ切替判定部21より給電器16に出力される給電信号により、電磁クラッチ15がONとなり(S7)、速い周速で空転している第2ロータ2Bの回転駆動力が縦主軸14に伝達されて、第1ロータ2Aの回転速度が増速される(S8)。これにより、第1、第2ロータ2A、2Bが失速するのが防止され、回転速度が上昇された両ロータ2,3の回転駆動トルクにより発電機4が駆動されて、効率よく発電される(S9)。なお、第2ロータ2Bの平均周速が5m/sに達していないと判定された場合は、ステップS5に戻り、引き続き第2ロータ2Bの平均周速を測定する。 When the average peripheral speed of the second rotor 2B reaches 5 m / s, the electromagnetic clutch 15 is turned on by a power supply signal output from the clutch switching determination unit 21 to the power feeder 16 (S7), and at a high peripheral speed. The rotational driving force of the idling second rotor 2B is transmitted to the vertical main shaft 14, and the rotational speed of the first rotor 2A is increased (S8). As a result, the first and second rotors 2A and 2B are prevented from stalling, and the generator 4 is driven by the rotational drive torque of the rotors 2 and 3 whose rotational speed is increased, thereby efficiently generating power ( S9). When it is determined that the average peripheral speed of the second rotor 2B has not reached 5 m / s, the process returns to step S5, and the average peripheral speed of the second rotor 2B is continuously measured.
 第2ロータ2Bの平均周速が5m/sに達したか否かを判定する理由は、上述した形状の揚力型ブレード7を備える縦軸型ロータにおいては、第2ロータ2Bの平均周速が5m/sに達すると、ブレード7の上下両端部の内向き傾斜部7Bの作用とコアンダ効果により、ブレード7に生じる揚力(推力)が増加し、第2ロータ2Bは、風速を超える周速に自力で加速しながら効率よく空転するからである。 The reason why it is determined whether or not the average peripheral speed of the second rotor 2B has reached 5 m / s is that in the case of the vertical rotor provided with the lift type blade 7 having the above-described shape, the average peripheral speed of the second rotor 2B is When reaching 5 m / s, the lift (thrust) generated in the blade 7 increases due to the action of the inwardly inclined portions 7B at the upper and lower ends of the blade 7 and the Coanda effect, and the second rotor 2B has a peripheral speed exceeding the wind speed. This is because the wheel runs efficiently while accelerating on its own.
 このように、第2ロータ2Bの平均周速が5m/sに達し、第2ロータ2Bが自力で加速しながら効率よく空転しているときに、電磁クラッチ15をONとして第2ロータ2Bの回転駆動力を縦主軸14に伝達し、第1ロータ2Aの回転速度を増速するようにすると、低風速下において、第1、第2ロータ2A、2Bが、発電機4のコギングトルクや発電負荷によって失速するおそれがなくなるので、発電効率を高めることができる。 Thus, when the average peripheral speed of the second rotor 2B reaches 5 m / s and the second rotor 2B is idling efficiently while accelerating by itself, the electromagnetic clutch 15 is turned on to rotate the second rotor 2B. When the driving force is transmitted to the longitudinal main shaft 14 and the rotational speed of the first rotor 2A is increased, the first and second rotors 2A and 2B can cause the cogging torque and power generation load of the generator 4 to be generated at a low wind speed. Therefore, the power generation efficiency can be increased.
 なお、周速が5m/sの場合の第2ロータ2Bの回転速度を例示すると、周速、回転速度及び外周の長さには、前述したような関係があるので、例えばブレード7の回転半径(r)を1mとした場合、第2ロータ2Bの外周の長さ(2πr)は6.28mとなる。従って、周速5m/sを、外周の長さ6.28mで割り、60を乗じて分速に換算すれば、第2ロータ2Bの回転速度は約48rpmとなる。 In addition, when the rotational speed of the second rotor 2B when the peripheral speed is 5 m / s is exemplified, the peripheral speed, the rotational speed, and the length of the outer periphery have the relationship as described above. When (r) is 1 m, the length (2πr) of the outer periphery of the second rotor 2B is 6.28 m. Therefore, if the peripheral speed 5 m / s is divided by the outer peripheral length of 6.28 m and multiplied by 60 to convert to a partial speed, the rotation speed of the second rotor 2B is about 48 rpm.
 第1、第2ロータ2A、2Bの回転により発電しているときに、風速計22により再度平均風速を測定し(S10)、平均風速判定部19が平均風速2m/s以下を再度検知した場合(S11)には、ステップS3に戻り、前述と同様に、電磁クラッチ15をOFFとして、再度第2ロータ2Bを空転させる(S4)。このステップS3~S11をループ状に繰り返すことにより、発電効率を大幅に高めることができる。 When power is generated by the rotation of the first and second rotors 2A and 2B, the average wind speed is measured again by the anemometer 22 (S10), and the average wind speed determination unit 19 detects again the average wind speed of 2 m / s or less. In (S11), the process returns to step S3, and similarly to the above, the electromagnetic clutch 15 is turned off and the second rotor 2B is idled again (S4). By repeating these steps S3 to S11 in a loop, the power generation efficiency can be significantly increased.
 以上説明したように、上記第1の実施形態に係る風力発電装置1及びそれを用いた風力発電方法においては、発電機4に接続された縦主軸14に、第1ロータ2Aを常時連結するとともに、第2ロータ2Bを、電磁クラッチ15を介して断続可能に連結し、第1、第2ロータ2A、2Bがカットイン風速である平均風速2m/s以下の低風速下で回転している場合に、制御手段5により電磁クラッチ15を切断して第2ロータ2Bを空転させ、第2ロータ2Bが自力で加速しながら効率よく回転しうる平均周速である5m/sに達したときに、電磁クラッチ15を接続して、空転している第2ロータ2Bの回転駆動力により第1ロータ2Aの回転を増速させて発電するように制御し、かつ第1、第2ロータ2A、2Bが再度平均風速2m/s以下の低風速で回転するようになったときに、制御手段5により電磁クラッチ15を再度切断して、第2ロータ2Bが自力で加速しながら効率よく回転しうる平均周速である5m/sに達するまで空転させたのち、電磁クラッチ15を再度接続して、空転させた第2ロータ2Bの回転駆動力により第1ロータ2Aの回転を増速させながら、第1、第2ロータ2A、2Bの回転駆動力により発電するように繰り返し制御するので、低風速下においても、第1、第2ロータ2A、2Bが発電機4のコギングトルクや発電負荷により失速するのを未然に防止しながら、効率よく発電することができる。 As described above, in the wind turbine generator 1 according to the first embodiment and the wind power generation method using the wind turbine generator 1, the first rotor 2 </ b> A is always coupled to the longitudinal main shaft 14 connected to the generator 4. When the second rotor 2B is connected to be intermittently connected via the electromagnetic clutch 15, the first and second rotors 2A and 2B are rotating at a low wind speed of 2 m / s or less, which is the cut-in wind speed. In addition, when the electromagnetic clutch 15 is disconnected by the control means 5 to cause the second rotor 2B to idle, and the second rotor 2B reaches 5 m / s, which is an average peripheral speed at which it can rotate efficiently while accelerating by itself, The electromagnetic clutch 15 is connected to control to generate electric power by increasing the rotation speed of the first rotor 2A by the rotational driving force of the idling second rotor 2B, and the first and second rotors 2A, 2B Again, average wind speed of 2m / s or more When the rotation speed is low, the electromagnetic clutch 15 is disengaged again by the control means 5 and the average peripheral speed at which the second rotor 2B can rotate efficiently while accelerating by itself is 5 m / s. After the idle rotation until it reaches, the electromagnetic clutch 15 is reconnected, and the rotation speed of the first rotor 2A is increased by the rotational driving force of the idled second rotor 2B. Since the control is repeatedly performed so as to generate power by the rotational driving force, the efficiency is improved while preventing the first and second rotors 2A and 2B from stalling due to the cogging torque and power generation load of the generator 4 even under a low wind speed. It can generate electricity well.
 また、第1、第2ロータ2A、2Bの失速が防止されるので、発電容量の大きな発電機4を使用して、より発電効率を高めることが可能となる。 Further, since the stalling of the first and second rotors 2A and 2B is prevented, it is possible to further increase the power generation efficiency by using the power generator 4 having a large power generation capacity.
 さらに、第1ロータ2Aは、発電機4に接続された縦主軸14に常時連結されているので、第2ロータ2Bが空転している間も、第1ロータ2Aが回転している限り、発電が停止されることはない。 Further, since the first rotor 2A is always coupled to the longitudinal main shaft 14 connected to the generator 4, the first rotor 2A can generate power as long as the first rotor 2A is rotating while the second rotor 2B is idling. Will never be stopped.
 次に、図5を参照して、本発明の風力発電装置の第2の実施形態及びそれを用いた本発明の発電方法について説明する。なお、前記第1の実施形態の風力発電装置1と同様の部材には、同じ符号を付すに止めて、詳細な説明を省略する。 Next, a second embodiment of the wind power generator of the present invention and a power generation method of the present invention using the same will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the member similar to the wind power generator 1 of the said 1st Embodiment, and detailed description is abbreviate | omitted.
 第2の実施形態の風力発電装置は、前記第1の実施形態の第2ロータ2Bの上方に、第3ロータ2Cを追加し、上下3段の縦軸型風車を備えるものとしたものである。すなわち、支持枠体11を上方に延長して高くするとともに、その上端部に設けた軸部支持枠10の中央に設けた軸受13より、上下寸法を大とした縦主軸14の上端部を回転自在に支持し、第2ロータ2Bよりも上方の縦主軸14に、第3ロータ2Cを相対回転不能として取付けてある。第3ロータ2Cのブレード7の平面位相は、第2ロータ2Bのブレード7に対し60度異ならせてある。 In the wind turbine generator of the second embodiment, a third rotor 2C is added above the second rotor 2B of the first embodiment, and a three-stage vertical axis wind turbine is provided. . That is, the support frame 11 is extended upward to be raised, and the upper end portion of the vertical main shaft 14 having a large vertical dimension is rotated by the bearing 13 provided at the center of the shaft support frame 10 provided at the upper end portion thereof. The third rotor 2C is attached to the longitudinal main shaft 14 above the second rotor 2B so as to be relatively unrotatable. The plane phase of the blade 7 of the third rotor 2C is different from that of the blade 7 of the second rotor 2B by 60 degrees.
 最下段の第1ロータ2Aは、第1の実施形態と同様に、縦主軸14に常時連結されている。中段の第2ロータ2Bと最上段の第3ロータ2Cは、最下段の第1ロータ2Aと中段の第2ロータ2B間において縦主軸14に設けた電磁クラッチ15を介して、縦主軸14及び第1ロータ2Aに断続可能に連結されている。なお、この実施形態のような上下3段の縦軸型風車を備える場合、電磁クラッチ15が接続されるタイミングは、第1、第2ロータ2A、2Bのブレード7の位相が60度異なったときに行われる。 The lowermost first rotor 2A is always connected to the longitudinal main shaft 14 as in the first embodiment. The middle second rotor 2B and the uppermost third rotor 2C are connected to the longitudinal main shaft 14 and the first rotor via an electromagnetic clutch 15 provided on the longitudinal main shaft 14 between the lowermost first rotor 2A and the middle second rotor 2B. It is connected to one rotor 2A in an intermittent manner. In the case where the vertical wind turbine with three upper and lower stages as in this embodiment is provided, the timing at which the electromagnetic clutch 15 is connected is when the phases of the blades 7 of the first and second rotors 2A and 2B differ by 60 degrees. To be done.
 電磁クラッチ15と第2ロータ2Bとの間の縦主軸14には、第2ロータ2Bと第3ロータ2Cの回転速度を測定するための平歯車24が取付けられ、この平歯車24の回転数を、回転速度検出センサ25により検出し、制御手段5のロータ周速判定部20に出力されるようになっている。 A spur gear 24 for measuring the rotational speed of the second rotor 2B and the third rotor 2C is attached to the longitudinal main shaft 14 between the electromagnetic clutch 15 and the second rotor 2B. The rotation speed is detected by the rotation speed detection sensor 25 and is output to the rotor peripheral speed determination unit 20 of the control means 5.
 第2の実施形態に係る風力発電装置においては、第1~第3ロータ2A、2B、2Cがカットイン風速である平均風速2m/s以下の低風速下で回転している場合に、制御手段5により電磁クラッチ15を切断して、第2、第3ロータ2B、2Cを空転させ、第2、第3ロータ2B、2Cが自力で加速しながら効率よく回転しうる平均周速である5m/sに達したときに、電磁クラッチ15を接続して、空転している第2、第3ロータ2B、2Cの回転駆動力により第1ロータ2Aの回転速度を増速させて発電するように制御し、かつ第1~第3ロータ2A、2B、2Cが再度平均風速2m/s以下の低風速で回転するようになったときに、制御手段5により電磁クラッチ15を再度切断して、第2、第3ロータ2B、2Cが自力で加速しながら効率よく回転しうる平均周速である5m/sに達するまで空転させたのち、電磁クラッチ15を再度接続して、空転させた第2、第3ロータ2B、2Cの回転駆動力により第1ロータ2Aの回転速度を増速させながら、第1~第3ロータ2A、2B、2Cの全てのロータの回転により発電するように繰り返し制御するようになっている。 In the wind turbine generator according to the second embodiment, the control means is used when the first to third rotors 2A, 2B, 2C are rotating under a low wind speed of 2 m / s or less, which is the cut-in wind speed. 5, the electromagnetic clutch 15 is disengaged, the second and third rotors 2B, 2C are idled, and the second peripheral rotor 2B, 2C is an average peripheral speed that can be efficiently rotated while accelerating by itself. When s is reached, the electromagnetic clutch 15 is connected, and control is performed such that the rotational speed of the first rotor 2A is increased by the rotational driving force of the idling second and third rotors 2B and 2C to generate power. When the first to third rotors 2A, 2B, and 2C rotate again at a low wind speed of 2 m / s or less of the average wind speed, the electromagnetic clutch 15 is disconnected again by the control means 5, and the second The third rotor 2B, 2C accelerates by itself The first rotor is rotated by the second and third rotors 2B and 2C, which are rotated idle after the idle rotation until the average peripheral speed of 5 m / s, which can be efficiently rotated, is reached. While increasing the rotational speed of 2A, control is repeatedly performed so that power is generated by the rotation of all of the first to third rotors 2A, 2B, and 2C.
 第2の実施形態に係る風力発電装置においては、第2、第3ロータ2B、2Cの上下2段のロータを空転させるので、第1ロータ2Aを増速させる際の回転駆動トルクが増大し、第1ロータ2Aを速やかに増速させることができる。 In the wind turbine generator according to the second embodiment, since the upper and lower rotors of the second and third rotors 2B and 2C are idled, the rotational driving torque for increasing the speed of the first rotor 2A increases. The first rotor 2A can be quickly increased in speed.
 なお、図5の2点鎖線で示すように、第2ロータ2Bと第3ロータ2C間において縦主軸14にも、電磁クラッチ15を設け、上下の電磁クラッチ15、15を同期して断続させるようにしてもよい。 As indicated by a two-dot chain line in FIG. 5, an electromagnetic clutch 15 is also provided on the longitudinal main shaft 14 between the second rotor 2B and the third rotor 2C so that the upper and lower electromagnetic clutches 15 and 15 are intermittently connected. It may be.
 このようにすると、上下の電磁クラッチ15を切断したとき、第2ロータ2Bと第3ロータ2Cとが、風速に対応して独立して抵抗なく空転するとともに、一般に地上からの高さが高いほど風速が速くなる傾向があるので、最上段の第3ロータ2Cは、予め定めた周速まで速やかに空転する。従って、電磁クラッチ15を接続すると、第3ロータ2Cの回転駆動力が第2ロータ2Bに伝達され、互いに加速し合って回転するので、第2、第3ロータ2B、2Cの回転駆動力により、最下段の第1ロータ2Aを効率よく、かつ速やかに増速させて発電することができる。 In this way, when the upper and lower electromagnetic clutches 15 are disengaged, the second rotor 2B and the third rotor 2C independently idle without resistance corresponding to the wind speed, and generally the higher the height from the ground. Since the wind speed tends to increase, the uppermost third rotor 2C quickly idles to a predetermined peripheral speed. Therefore, when the electromagnetic clutch 15 is connected, the rotational driving force of the third rotor 2C is transmitted to the second rotor 2B, and the two rotors 2B and 2C rotate by being accelerated by each other. Electric power can be generated by increasing the speed of the lowermost first rotor 2A efficiently and quickly.
 また、上記したように、地上からの高さが高いほど風速が速く、最上段の第3ロータ2Cは効率よく回転するので、第2ロータ2Bと第3ロータ2C間の縦主軸14に電磁クラッチ15を設けて、第3ロータ2Cのみが空転するようにし、この第3ロータ2Cの回転駆動力により、第1、第2ロータ2A、2Bを増速させて発電するようにしてもよい。 Further, as described above, the higher the height from the ground, the faster the wind speed, and the uppermost third rotor 2C rotates efficiently. Therefore, an electromagnetic clutch is applied to the longitudinal main shaft 14 between the second rotor 2B and the third rotor 2C. 15 may be provided so that only the third rotor 2C rotates idly, and the first and second rotors 2A and 2B are accelerated by the rotational driving force of the third rotor 2C to generate electric power.
 次に、図6を参照して、本発明の風力発電装置の第3の実施形態及びそれを用いた発電方法について説明する。なお、前記第2の実施形態の風力発電装置と同様の部材には、同じ符号を付すに止めて、詳細な説明を省略する。 Next, a third embodiment of the wind turbine generator of the present invention and a power generation method using the same will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the member similar to the wind power generator of the said 2nd Embodiment, and detailed description is abbreviate | omitted.
 第3の実施形態の風力発電装置においては、第2の実施形態の風力発電装置の電磁クラッチ15に代えて、遠心クラッチ26を用いている。図6に略示する遠心クラッチ26は、例えば次のように構成されている。 In the wind turbine generator of the third embodiment, a centrifugal clutch 26 is used instead of the electromagnetic clutch 15 of the wind turbine generator of the second embodiment. The centrifugal clutch 26 schematically shown in FIG. 6 is configured as follows, for example.
 すなわち、第1、第2ロータ2A、2B間において縦主軸14を2分割し、第2ロータ2B側の縦主軸14に、外周面に摩擦材を固着した複数のウエイト27、27を、遠心力によって半径方向外側に移動しうるように取付けるとともに、発電機4に常時連結された第1ロータ2A側の縦主軸14に、上面が閉塞された円筒形の従動ドラム28を、内部にウエイト27が収容されるように固着してある。 That is, the longitudinal main shaft 14 is divided into two parts between the first and second rotors 2A, 2B, and a plurality of weights 27, 27 each having a friction material fixed to the outer peripheral surface thereof are attached to the longitudinal main shaft 14 on the second rotor 2B side. Is attached to the longitudinal main shaft 14 on the side of the first rotor 2A, which is always connected to the generator 4, and a cylindrical driven drum 28 whose upper surface is closed, and a weight 27 therein. It is fixed so that it can be accommodated.
 第3の実施形態の風力発電装置を用いて発電を行う場合、次のようにして行われる。
 遠心クラッチ26は、ウエイト27に作用する遠心力が小さい場合、すなわち第1~第3ロータ2A、2B、2Cがカットイン風速である平均風速2m/s以下の低風速で回転している場合に、ウエイト28は従動ドラム29の内面から離間するように設定されている。従って、平均風速が2m/s以下の場合には、遠心クラッチ26は自動的に切れ、第2、第3ロータ2B、2Cの回転駆動力が縦主軸14及び第1ロータ2Aに伝達されなくなるとともに、第2、第3ロータ2B、2Cは空転することとなる。
When power generation is performed using the wind turbine generator of the third embodiment, it is performed as follows.
The centrifugal clutch 26 is used when the centrifugal force acting on the weight 27 is small, that is, when the first to third rotors 2A, 2B, and 2C are rotating at a low wind speed of an average wind speed of 2 m / s or less, which is a cut-in wind speed. The weight 28 is set so as to be separated from the inner surface of the driven drum 29. Therefore, when the average wind speed is 2 m / s or less, the centrifugal clutch 26 is automatically disengaged, and the rotational driving force of the second and third rotors 2B and 2C is not transmitted to the longitudinal main shaft 14 and the first rotor 2A. The second and third rotors 2B and 2C are idled.
 また、空転している第2、第3ロータ2B、2Cの平均周速が例えば5m/sに達した場合、すなわち、5m/sの平均周速のときの縦主軸14の回転速度が、予め定めた値に達した場合には、ウエイト27が遠心力により従動ドラム28の内面に接触し、遠心クラッチ26が自動的に接続されるように設定されている。従って、空転している第2、第3ロータ2B、2Cの平均周速が例えば5m/sに達すると、それらの回転駆動力が第1ロータ2A側の縦主軸14に伝達されて、第1ロータ2Aの回転が増速されるようになる。 In addition, when the average peripheral speed of the second and third rotors 2B and 2C that are idling has reached, for example, 5 m / s, that is, when the average peripheral speed is 5 m / s, the rotational speed of the longitudinal main shaft 14 is When the set value is reached, the weight 27 contacts the inner surface of the driven drum 28 by centrifugal force, and the centrifugal clutch 26 is automatically connected. Accordingly, when the average peripheral speed of the idle second and third rotors 2B and 2C reaches 5 m / s, for example, their rotational driving force is transmitted to the longitudinal main shaft 14 on the first rotor 2A side, and the first The rotation of the rotor 2A is increased.
 第3の実施形態の風力発電装置においても、平均風速が2m/s以下の低風速になると、遠心クラッチ26が自動的に切断されて第2、第3ロータ2B、2Cが空転し、平均周速が5m/sに達して第2、第3ロータ2B、2Cが自力で加速しながら回転するようになると、遠心クラッチ26が自動的に接続されて、空転している第2、第3ロータ2B、2Cの回転駆動力により、第1ロータ2Aの回転が増速され、第1~第3ロータ2A、2B、2Cの全てのロータにより発電機4を駆動して発電されるようになっているので、上記実施形態と同様に、低風速下において第1~第3ロータ2A、2B、2Cが発電機4のコギングトルクや発電負荷により失速するのを未然に防止しながら、効率よく発電することができる。 Also in the wind turbine generator of the third embodiment, when the average wind speed becomes a low wind speed of 2 m / s or less, the centrifugal clutch 26 is automatically disconnected, and the second and third rotors 2B and 2C are idled, and the average circumference is reduced. When the speed reaches 5 m / s and the second and third rotors 2B and 2C rotate while accelerating by themselves, the centrifugal clutch 26 is automatically connected, and the second and third rotors are idling. Due to the rotational driving force of 2B and 2C, the rotation of the first rotor 2A is increased, and the generator 4 is driven by all of the first to third rotors 2A, 2B and 2C to generate electric power. Therefore, as in the above-described embodiment, the first to third rotors 2A, 2B, and 2C generate power efficiently while preventing the first to third rotors 2A, 2B, and 2C from stalling due to the cogging torque and power generation load of the generator 4 under low wind speed. be able to.
 また、機械的な遠心クラッチ26を用いると、第1、第2の実施形態のような、電磁クラッチ14をON、OFF制御するための制御手段5等が不要となるので、安価な風力発電装置を提供することができる。 Further, when the mechanical centrifugal clutch 26 is used, the control means 5 for controlling the ON / OFF of the electromagnetic clutch 14 as in the first and second embodiments becomes unnecessary, so that an inexpensive wind power generator is provided. Can be provided.
 本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で、例えば次のような種々の変形や変更を施すことが可能である。 The present invention is not limited to the above-described embodiment, and various modifications and changes such as the following can be made without departing from the gist of the present invention.
 上記第1、第2の実施形態では、平均風速が2m/s以下と判定された場合に、電磁クラッチ15をOFFとして、第2ロータ2Bまたは第2、第3ロータ2B、2Cを空転させるようにしているが、平均風速が2m/s以下のときの縦主軸14の平均回転速度、または全てのロータの平均周速が予め定めた値となったときに、電磁クラッチ15をOFFとするようにしてもよい。 In the first and second embodiments, when the average wind speed is determined to be 2 m / s or less, the electromagnetic clutch 15 is turned OFF, and the second rotor 2B or the second and third rotors 2B and 2C are idled. However, when the average rotational speed of the longitudinal main shaft 14 when the average wind speed is 2 m / s or less, or the average peripheral speed of all the rotors becomes a predetermined value, the electromagnetic clutch 15 is turned off. It may be.
 また、空転させた第2、第3ロータ2B、2Cの平均周速が5m/sに達したとき、電磁クラッチ15をONとして、第1ロータ2Aの回転を増速するようにしたが、前述したように、ロータの周速は回転速度に換算できるため、平均周速が5m/sに達したときの第2、第3ロータ2B、2Cの回転速度を回転速度センサ25が検出したときに、電磁クラッチ15をONとして、第1ロータ2Aの回転を増速するようにすることもできる。 Further, when the average peripheral speed of the idled second and third rotors 2B and 2C reaches 5 m / s, the electromagnetic clutch 15 is turned on to increase the rotation speed of the first rotor 2A. As described above, since the circumferential speed of the rotor can be converted into a rotational speed, when the rotational speed sensor 25 detects the rotational speed of the second and third rotors 2B and 2C when the average circumferential speed reaches 5 m / s. The electromagnetic clutch 15 can be turned on to increase the rotation speed of the first rotor 2A.
 さらに、電磁クラッチ15をOFFとする平均風速を2m/s以下としたが、この際の平均風速の上限値は、ブレード7の回転半径の大小に対応して適切に設定される。
 例えば、ブレード7の回転半径が上記実施形態の1mより小さい場合には、各ロータの回転トルクが小さくなって、コギングトルクや発電負荷の影響を受けやすくなるので、電磁クラッチ15をOFFとする平均風速の上限値を2m/s以上に設定すればよい。
Furthermore, although the average wind speed at which the electromagnetic clutch 15 is turned off is set to 2 m / s or less, the upper limit value of the average wind speed at this time is appropriately set according to the magnitude of the rotation radius of the blade 7.
For example, when the rotational radius of the blade 7 is smaller than 1 m of the above embodiment, the rotational torque of each rotor becomes small and is easily affected by cogging torque and power generation load. What is necessary is just to set the upper limit of a wind speed to 2 m / s or more.
 また、ブレード7の回転半径が1mより大きい場合には、ロータの回転速度が低くても、回転トルクが大となってコギングトルクや発電負荷の影響を受けにくくなるので、電磁クラッチ15をOFFとする平均風速の上限値を2m/s以下に設定すればよい。 Further, when the rotational radius of the blade 7 is larger than 1 m, even if the rotational speed of the rotor is low, the rotational torque becomes large and is not easily influenced by the cogging torque or the power generation load. What is necessary is just to set the upper limit of the average wind speed to perform to 2 m / s or less.
 上記実施形態では、空転している第2、第3ロータ2B、2Cの平均周速が5m/sに達したときに、電磁クラッチ15をONとするようにしたが、この場合の平均周速の値は、ブレード7の回転半径の大小に応じて適切に設定される。 In the above embodiment, the electromagnetic clutch 15 is turned on when the average peripheral speed of the second and third rotors 2B and 2C that are idling reaches 5 m / s. Is appropriately set according to the rotation radius of the blade 7.
 上記第1、第2実施形態では、最下段と上段のロータの回転駆動力を断続するのに、電磁クラッチ15を用いているが、例えば制御手段5によりON、OFF制御可能な電動式のアクチュエータを備える摩擦クラッチや噛合クラッチ等を用いることもできる。 In the first and second embodiments, the electromagnetic clutch 15 is used to intermittently rotate the rotational driving force of the lowermost and upper rotors. For example, an electric actuator that can be turned on and off by the control means 5. It is also possible to use a friction clutch or a meshing clutch provided with
 上記実施形態では、最下段の第1ロータ2Aを、縦主軸14を介して常時発電機4の連結しているが、第1の実施形態の風力発電装置の場合には、第2ロータ2Bが連結されている縦主軸14の上端部を、支持枠体11の上部等に設置した発電機に常時連結し、第1ロータ2Aを電磁クラッチ15を介して空転させうるようにしてもよい。 In the above embodiment, the lowermost first rotor 2A is always connected to the generator 4 via the vertical main shaft 14, but in the case of the wind power generator of the first embodiment, the second rotor 2B is The upper end portion of the connected vertical main shaft 14 may be always connected to a generator installed on the upper portion of the support frame 11 or the like so that the first rotor 2A can be idled via the electromagnetic clutch 15.
 また、第2の実施形態の風力発電装置の場合には、最上段の第3ロータ2Cが連結されている縦主軸14の上端部を、支持枠体11の上部等に設置した発電機に常時連結し、最下段の第1ロータ2Aと中段の第2ロータ2Bとを、電磁クラッチ15を介して空転させうるようにするか、または、中段の第2ロータ2Bが連結されている縦主軸14の適所に、プーリやスプロケットを取り付けて、それらに接続したベルトやチェーン等の伝動手段を介して、縦主軸14の側方に配置した発電機を駆動するようにし、最下段の第1ロータ2Aと最上段の第3ロータ2Cとを、電磁クラッチ15を介して空転させうるようにしてもよい。 In the case of the wind turbine generator of the second embodiment, the upper end of the vertical main shaft 14 to which the uppermost third rotor 2C is connected is always attached to the generator installed on the upper part of the support frame 11 or the like. The lower main shaft 2A and the middle second rotor 2B can be idled via the electromagnetic clutch 15, or the longitudinal main shaft 14 to which the middle second rotor 2B is coupled. A pulley and a sprocket are attached at appropriate positions, and a generator disposed on the side of the longitudinal main shaft 14 is driven via a belt, a chain, or the like connected to the pulley, and the lowermost first rotor 2A is driven. And the uppermost third rotor 2 </ b> C may be idled via the electromagnetic clutch 15.
 さらに、第3の実施形態の風力発電装置の場合には、最上段の第3ロータ2Cが連結されている縦主軸14の上端部を、支持枠体11の上部等に設置した発電機に常時連結し、最下段の第1ロータ2Aと中段の第2ロータ2Bとを、遠心クラッチ26を介して空転させうるようにしてもよい。 Furthermore, in the case of the wind turbine generator according to the third embodiment, the upper end of the vertical main shaft 14 to which the uppermost third rotor 2C is connected is always attached to the generator installed on the upper portion of the support frame 11 or the like. The lowermost first rotor 2A and the middle second rotor 2B may be idled via the centrifugal clutch 26.
 本発明は、3段以上のロータを備える風力発電装置にも適用しうることは言うまでもない。 Needless to say, the present invention can also be applied to a wind turbine generator having three or more stages of rotors.
1 風力発電装置
2A 第1ロータ
2B 第2ロータ
2C 第3ロータ
4 発電機
5 制御手段
6 水平アーム
7 揚力型ブレード
7A 主部
7B 内向き傾斜部
8 回転軸
9 基礎
10 軸部支持枠
11 支持枠体
12 軸支持杆
13 軸受
14 縦主軸
15 電磁クラッチ
16 給電器
17 コントローラ
18 蓄電池
19 平均風速判定部
20 ロータ周速判定部
21 クラッチ切替判定部
22 風速計(風速検知手段)
23 中央処理装置
24 平歯車
25 回転速度検出センサ
26 遠心クラッチ
27 ウエイト
28 従動ドラム
 C 翼厚中心線
 O 回転軌跡
DESCRIPTION OF SYMBOLS 1 Wind power generator 2A 1st rotor 2B 2nd rotor 2C 3rd rotor 4 Generator 5 Control means 6 Horizontal arm 7 Lifting type blade 7A Main part 7B Inwardly inclined part 8 Rotating shaft 9 Base 10 Shaft support frame 11 Support frame Body 12 Shaft support rod 13 Bearing 14 Vertical main shaft 15 Electromagnetic clutch 16 Power feeder 17 Controller 18 Storage battery 19 Average wind speed determination unit 20 Rotor circumferential speed determination unit 21 Clutch switching determination unit 22 Anemometer (wind speed detection means)
23 Central processing unit 24 Spur gear 25 Rotational speed detection sensor 26 Centrifugal clutch 27 Weight 28 Followed drum C Blade thickness center line O Rotation locus

Claims (11)

  1.  発電機に連係された縦主軸に、縦主軸周りに回転する縦長の複数の揚力型ブレードを有する上下複数段のロータのうちの少なくとも一つを常時連結し、かつ他のロータの少なくとも一つをクラッチを介して連結し、
     前記複数段のロータが予め定めた平均風速以下で回転している場合に、前記クラッチを切断して前記他のロータの少なくとも一つを空転させ、
     このロータが加速して回転する特定の周速または回転速度に達したとき、前記クラッチを接続して前記空転させたロータにより前記縦主軸に常時連結されたロータを増速させて前記発電機により発電するようにし、
     前記複数段のロータが再度、前記平均風速以下で回転するようになったとき、前記クラッチを再度切断して、前記他のロータの少なくとも一つを前記特定の周速または回転速度に達するまで空転させ、
     前記クラッチを再度接続して前記空転させたロータにより前記縦主軸に常時連結されたロータを再度増速させて発電することを繰返させることを特徴とする多段縦軸風車における風力発電方法。
    At least one of a plurality of upper and lower rotors having a plurality of vertically long lift-type blades rotating around the vertical main shaft is always connected to the vertical main shaft linked to the generator, and at least one of the other rotors is connected. Connected through a clutch,
    When the plurality of rotors are rotating at a predetermined average wind speed or less, the clutch is disengaged to idle at least one of the other rotors,
    When a specific peripheral speed or rotational speed at which the rotor is accelerated and rotates is reached, the rotor always connected to the longitudinal main shaft is accelerated by the idled rotor connected to the clutch, and the generator To generate electricity,
    When the plurality of rotors rotate again below the average wind speed, the clutch is disengaged again, and at least one of the other rotors is idled until the specific circumferential speed or rotational speed is reached. Let
    A wind power generation method in a multi-stage vertical wind turbine, characterized in that power generation is repeated by increasing the speed of a rotor that is always connected to the longitudinal main shaft by the idled rotor after the clutch is reconnected.
  2.  前記揚力型ブレードは、上下の端部に縦主軸方向に傾斜する傾斜部を有することを特徴とする請求項1に記載の多段縦軸風車における風力発電方法。 The wind power generation method for a multistage vertical wind turbine according to claim 1, wherein the lift type blade has inclined portions inclined in the longitudinal main axis direction at upper and lower ends.
  3.  空転させるロータを最上段のロータとすることを特徴とする請求項1または2に記載の多段縦軸風車における風力発電方法。 The method of wind power generation in a multistage vertical wind turbine according to claim 1 or 2, wherein the rotor to be idled is the uppermost rotor.
  4.  前記複数段のロータのうち、最下段のロータを常時縦主軸に連結し、この最下段のロータよりも上位の全てのロータを、クラッチを介して縦主軸に連結し、複数段のロータが予め定めた平均風速以下で回転している場合に、クラッチを切断して前記最下段のロータを除く全てのロータを空転させ、これらのロータが加速して回転しうる特定の周速または回転速度に達したとき、クラッチを接続して前記最下段のロータを増速させて発電することを特徴とする請求項1~3のいずれかに記載の多段縦軸風車における風力発電方法。 Of the multi-stage rotors, the lowermost rotor is always connected to the vertical main shaft, and all the rotors higher than the lowermost rotor are connected to the vertical main shaft via a clutch. When rotating at a specified average wind speed or less, the clutch is disengaged and all the rotors except the lowermost rotor are idled to a specific peripheral speed or rotational speed at which these rotors can accelerate and rotate. 4. The wind power generation method for a multi-stage vertical axis wind turbine according to claim 1, wherein when the power reaches the clutch, a clutch is connected to increase the speed of the lowermost rotor to generate electric power.
  5.  支持体に回転自在に支持された縦主軸と、
     前記縦主軸に連係された発電機と、
     前記縦主軸周りに回転する縦長の複数の揚力型ブレードを有し、少なくとも一つのロータが前記縦主軸に常時連結され、他のロータの少なくとも一つがクラッチを介して前記縦主軸に連結された上下複数段のロータと、
     前記複数段のロータの周速または回転速度を検知する回転速度検知手段と、
     前記ロータに向かう平均風速を検知する風速検知手段と、
     制御手段とを備え、
     前記制御手段は、前記風速検知手段が前記複数段のロータが予め定めた平均風速以下で回転しているのを検知したとき、前記クラッチを切断して前記他のロータの少なくとも一つを空転させ、前記回転速度検知手段が、前記空転させたロータが加速して回転する特定の周速または回転速度に達したことを検知したときに、前記クラッチを接続し、前記空転させたロータにより前記縦主軸に常時連結されたロータを増速させて前記発電機により発電するように、繰返し制御するようになっていることを特徴とする多段縦軸風力発電装置。
    A longitudinal main shaft rotatably supported by a support;
    A generator linked to the longitudinal spindle;
    A plurality of vertically long lift-type blades rotating around the vertical main shaft, wherein at least one rotor is always connected to the vertical main shaft, and at least one of the other rotors is connected to the vertical main shaft via a clutch; A multi-stage rotor;
    Rotation speed detection means for detecting the circumferential speed or rotation speed of the rotors of the plurality of stages;
    Wind speed detection means for detecting an average wind speed toward the rotor;
    Control means,
    The control means disengages the clutch and idles at least one of the other rotors when the wind speed detecting means detects that the rotors of the plurality of stages are rotating at a predetermined average wind speed or less. When the rotational speed detecting means detects that the idle rotor has reached a specific peripheral speed or rotational speed at which the rotor rotates and accelerates, the clutch is connected and the idle rotor rotates the vertical rotor. A multi-stage vertical axis wind power generator characterized by being repeatedly controlled so as to increase the speed of a rotor always connected to a main shaft and generate electric power by the generator.
  6.  前記クラッチを電磁クラッチとしたことを特徴とする請求項5に記載の多段縦軸風力発電装置。 The multistage vertical axis wind power generator according to claim 5, wherein the clutch is an electromagnetic clutch.
  7.  支持体に回転自在に設けられた縦主軸と、
     前記縦主軸に連係された発電機と、
     前記縦主軸周りに回転する縦長の複数の揚力型ブレードを有し、少なくとも一つのロータが前記縦主軸に常時連結され、他のロータの少なくとも一つがクラッチを介して前記縦主軸に連結された上下複数段のロータとを備え、
     前記クラッチは、前記複数段のロータが予め定めた平均風速以下で回転している場合に、前記縦主軸と前記他のロータの少なくとも一つとの動力の伝達を切断して、そのロータを空転させ、空転させたロータが加速して回転する特定の周速または回転速度に達したときに接続して、前記縦主軸に常時連結されたロータを増速させて前記発電機により発電するように、繰返し自動的に断続されるようになっていることを特徴とする多段縦軸風力発電装置。
    A longitudinal main shaft rotatably provided on the support;
    A generator linked to the longitudinal spindle;
    A plurality of vertically long lift-type blades rotating around the vertical main shaft, wherein at least one rotor is always connected to the vertical main shaft, and at least one of the other rotors is connected to the vertical main shaft via a clutch; With multiple stages of rotors,
    The clutch cuts off the transmission of power between the longitudinal main shaft and at least one of the other rotors when the plurality of stages of rotors rotate at a predetermined average wind speed or less, causing the rotors to idle. In order to generate power by the generator by increasing the speed of the rotor that is always connected to the longitudinal main shaft by connecting when the idle rotor has reached a specific peripheral speed or rotational speed that rotates by acceleration. A multi-stage vertical axis wind power generator characterized by being automatically and repeatedly interrupted.
  8.  前記クラッチを、縦主軸の回転に伴う遠心力により自動的に断続する遠心クラッチとしたことを特徴とする請求項7に記載の多段縦軸風力発電装置。 The multi-stage vertical axis wind power generator according to claim 7, wherein the clutch is a centrifugal clutch that is automatically engaged and disengaged by a centrifugal force accompanying rotation of the longitudinal main shaft.
  9.  前記揚力型ブレードは、上下の端部に縦主軸方向に傾斜する傾斜部を有するものであることを特徴とする請求項5~8のいずれかに記載の多段縦軸風力発電装置。 The multistage vertical wind power generator according to any one of claims 5 to 8, wherein the lift-type blade has inclined portions inclined in the longitudinal main axis direction at upper and lower ends.
  10.  空転させるロータを最上段のロータとしたことを特徴とする請求項5~9のいずれかに記載の多段縦軸風力発電装置。 The multistage longitudinal wind power generator according to any one of claims 5 to 9, wherein the rotor to be idled is the uppermost rotor.
  11.  前記複数段のロータのうち、最下段のロータは常時縦主軸に連結され、この最下段のロータよりも上位の全てのロータをクラッチを介して縦主軸に連結したことを特徴とする請求項5~10のいずれかに記載の多段縦軸風力発電装置。 6. The lowermost rotor among the plurality of rotors is always connected to a vertical main shaft, and all the upper rotors than the lowermost rotor are connected to the vertical main shaft via a clutch. The multistage vertical wind power generator according to any one of 1 to 10.
PCT/JP2017/009620 2016-03-14 2017-03-09 Method for generating wind power using multi-stage vertical axis wind turbine, and multi-stage vertical axis wind power generation device WO2017159550A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016049107A JP6714398B2 (en) 2016-03-14 2016-03-14 Wind power generation method in multi-stage vertical wind turbine
JP2016-049107 2016-03-14
JP2016057211A JP6714404B2 (en) 2016-03-22 2016-03-22 Multi-stage vertical axis wind turbine generator
JP2016-057211 2016-03-22

Publications (1)

Publication Number Publication Date
WO2017159550A1 true WO2017159550A1 (en) 2017-09-21

Family

ID=59850719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009620 WO2017159550A1 (en) 2016-03-14 2017-03-09 Method for generating wind power using multi-stage vertical axis wind turbine, and multi-stage vertical axis wind power generation device

Country Status (1)

Country Link
WO (1) WO2017159550A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566669A (en) * 1978-11-14 1980-05-20 Chuji Saito Wind power generator
JP2006118384A (en) * 2004-10-20 2006-05-11 Fjc:Kk Vertical-shaft windmill

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566669A (en) * 1978-11-14 1980-05-20 Chuji Saito Wind power generator
JP2006118384A (en) * 2004-10-20 2006-05-11 Fjc:Kk Vertical-shaft windmill

Similar Documents

Publication Publication Date Title
JP7161827B2 (en) Wind power generation method and wind power generation device
TWI726895B (en) Rotation speed control method of windmill and wind power generation device
JP2006050835A5 (en)
JP6714398B2 (en) Wind power generation method in multi-stage vertical wind turbine
JP2018040306A (en) Wind and water power generation device
JP4134582B2 (en) Wind power generator
WO2017159550A1 (en) Method for generating wind power using multi-stage vertical axis wind turbine, and multi-stage vertical axis wind power generation device
JP6649727B2 (en) Wind power generator
JP6917673B2 (en) Windmill rotation speed control method
JP6917674B2 (en) Wind power generator
JP2017172392A (en) Multistage vertical shaft wind power generation device
JP6609129B2 (en) Wind power generator
JP2017020374A5 (en)
JP6774172B2 (en) Wind power generation method
JP2017053304A5 (en)
JP2017053303A5 (en)
JP6609128B2 (en) Windmill rotational speed control method
JP2017020373A5 (en)
CN207184298U (en) Permanent-magnetic synchronous motor rotor with cut-out winding function
US20200102931A1 (en) Wind Turbine
Rosmin et al. Power limitation at high wind speed for a variable speed fixed pitch wind turbine using close-loop scalar control
JP2004100546A (en) Wind power generating method and device
KR101242766B1 (en) wind-driven generator with Apparatus of reducing rotor load and method of reducing rotor load for wind-driven generator with Apparatus of reducing rotor load
KR102690967B1 (en) Wind power generation method and wind power generation system
JP2002327678A (en) Wind power generation device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766551

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766551

Country of ref document: EP

Kind code of ref document: A1