WO2017159343A1 - 半導体ウェハ加工用粘着テープおよび半導体ウェハの加工方法 - Google Patents

半導体ウェハ加工用粘着テープおよび半導体ウェハの加工方法 Download PDF

Info

Publication number
WO2017159343A1
WO2017159343A1 PCT/JP2017/007709 JP2017007709W WO2017159343A1 WO 2017159343 A1 WO2017159343 A1 WO 2017159343A1 JP 2017007709 W JP2017007709 W JP 2017007709W WO 2017159343 A1 WO2017159343 A1 WO 2017159343A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor wafer
pressure
group
adhesive tape
sensitive adhesive
Prior art date
Application number
PCT/JP2017/007709
Other languages
English (en)
French (fr)
Inventor
雅人 大倉
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020177031167A priority Critical patent/KR102089928B1/ko
Priority to CN201780001306.0A priority patent/CN107960131B/zh
Publication of WO2017159343A1 publication Critical patent/WO2017159343A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • C09J201/02Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors

Definitions

  • the present invention relates to an adhesive tape for processing a semiconductor wafer and a method for processing a semiconductor wafer.
  • a semiconductor package is manufactured by slicing a high-purity silicon single crystal or the like into a semiconductor wafer, and then forming an integrated circuit on the surface of the semiconductor wafer by ion implantation, etching, or the like.
  • the semiconductor wafer is processed to a desired thickness by grinding or polishing the back surface of the semiconductor wafer on which the integrated circuit is formed.
  • an adhesive tape for protecting the surface of the semiconductor wafer hereinafter also simply referred to as “surface protective tape”.
  • the back-ground semiconductor wafer is stored in a semiconductor wafer cassette after the back-side grinding is completed, transported to a dicing process, and processed into semiconductor chips.
  • the thickness of a semiconductor wafer be about 200 to 400 ⁇ m by back grinding or the like.
  • the semiconductor wafer is becoming thinner.
  • the diameter of the original semiconductor wafer tends to be increased.
  • semiconductor wafers having a diameter of 5 inches or 6 inches have been the mainstream, but in recent years, processing of semiconductor wafers having a diameter of 8 to 12 inches has become the mainstream.
  • Flip chip mounting has been attracting attention as a method for mounting a semiconductor element in a minimum area in response to recent downsizing and higher density of electronic devices.
  • Bumps are formed on the electrodes of the semiconductor element used for the flip chip mounting, and the bumps are electrically joined to the wiring on the circuit board.
  • solder or gold is mainly used as the composition of these bumps.
  • the solder bump or gold bump is formed on an exposed aluminum terminal connected to the internal wiring of the chip by vapor deposition or plating.
  • bumped semiconductor wafers have large irregularities on the surface, making thin film processing difficult, and if the backside grinding is performed using ordinary adhesive tape, semiconductor wafer cracks may occur or the thickness of the semiconductor wafer It may cause deterioration of accuracy. For this reason, the bumped semiconductor wafer is ground using a specially designed surface protection tape (see, for example, Patent Document 1).
  • the bump height of the semiconductor wafer with bumps used in the wafer level package remains high, and bumps with a height of 250 ⁇ m or more are also mounted.
  • Wafer level packages do not require chip stacking, so they are not ground as thin as 50 ⁇ m or less like memory semiconductor wafers, but they are very easy to break even with thick film grinding because they have high bumps and are 150 ⁇ m thick. The following grinding thickness easily causes the problem of semiconductor wafer cracking.
  • a urethane acrylate oligomer in which a compound having an ethylenically unsaturated group to be reacted with an acrylic copolymer having a functional group-containing monomer unit is reacted with an aliphatic diisocyanate and an acrylate having one hydroxyl group See also).
  • the present invention is suitably used for a semiconductor wafer having a step or a protrusion, for securely holding a semiconductor wafer during processing of the semiconductor wafer, and capable of peeling without peeling or leaving a residue of the semiconductor wafer during peeling. It is an object to provide a method for processing an adhesive tape and a semiconductor wafer.
  • the present inventors have found that the molar amount per unit g of the ethylenically unsaturated group of the radiation curable pressure-sensitive adhesive is important. That is, it has been conventionally desired that the radiation curable pressure-sensitive adhesive is sufficiently crosslinked so as to reduce the apparent adhesive force (adhesive force to a smooth adherend).
  • the surface unevenness is large, such as a semiconductor wafer with bumps, curing shrinkage occurs by crosslinking, and adhesive residue bites into the semiconductor wafer with bumps. It was found that an increase in peeling force occurred.
  • the present invention has been completed based on such findings.
  • a semiconductor wafer processing pressure-sensitive adhesive tape having a pressure-sensitive adhesive layer on at least one surface of a base film, wherein the pressure-sensitive adhesive layer is a radiation-curable pressure-sensitive adhesive and has at least ethylene in the side chain.
  • Base resin having a polymerizable unsaturated group (radiation polymerizable carbon-carbon double bond and ethylenic double bond), an acrylic pressure-sensitive base resin containing no monomer unit derived from alicyclic (meth) acrylate, and A resin or oligomer selected from urethane acrylate oligomers having at least two ethylenically unsaturated groups (radiation polymerizable carbon-carbon double bonds and ethylenic double bonds) in the molecule
  • the pressure-sensitive adhesive comprises A pressure-sensitive adhesive tape for processing a semiconductor wafer, having an ethylenically unsaturated group of 0.2 to 2.0 mmol / g.
  • An acrylic pressure-sensitive base resin that does not contain a monomer unit derived from the alicyclic (meth) acrylate is an alkyl ester that may have a functional group of (meth) acrylic acid, acrylic acid, and ⁇ 1>
  • the functional group of the alkyl ester which may have a functional group of (meth) acrylic acid is a carboxy group, a hydroxyl group, an amino group, a mercapto group, a cyclic acid anhydride group, an epoxy group, an isocyanate group
  • ⁇ 4> The pressure-sensitive adhesive tape for processing a semiconductor wafer according to any one of ⁇ 1> to ⁇ 3>, wherein the mass average molecular weight of at least one kind of the oligomer is 1,100 to 20,000.
  • the oligomer is a mixture of at least an oligomer having two ethylenically unsaturated groups in the molecule and an oligomer having three or more ethylenically unsaturated groups in the molecule ⁇ 1> to The pressure-sensitive adhesive tape for processing a semiconductor wafer according to any one of ⁇ 5>.
  • ⁇ 7> The adhesive for semiconductor wafer processing according to any one of ⁇ 1> to ⁇ 6>, wherein the adhesive has the ethylenically unsaturated group of 0.72 to 2.0 mmol / g. tape.
  • ⁇ 8> The adhesive tape for processing a semiconductor wafer according to any one of ⁇ 1> to ⁇ 7>, wherein the adhesive contains a polyvalent isocyanate compound.
  • ⁇ 9> Any of ⁇ 1> to ⁇ 8>, wherein the adhesive strength after UV curing to the SUS plate is 0.3 to 3.0 N / 25 mm, and the curing shrinkage stress is 300 gf or less
  • the semiconductor wafer processing pressure-sensitive adhesive tape according to any one of ⁇ 1> to ⁇ 9> is bonded to a semiconductor wafer surface having a surface irregularity of 10 ⁇ m or more, and then irradiated with ultraviolet rays, to thereby form the semiconductor wafer A method for processing a semiconductor wafer, comprising a step of peeling the processing adhesive tape.
  • a base resin having an ethylenically unsaturated group (radiation polymerizable carbon-carbon double bond and ethylenic double bond) in the side chain, and an alicyclic (meth) acrylate “at least derived from a base resin having an ethylenically unsaturated group (radiation polymerizable carbon-carbon double bond and ethylenic double bond) in the side chain, and an alicyclic (meth) acrylate.
  • the present invention it is possible to provide a semiconductor wafer processing pressure-sensitive adhesive tape and a semiconductor wafer processing method that can securely hold a semiconductor wafer during semiconductor wafer processing and can be peeled off without being damaged or left behind when the semiconductor wafer is peeled off. became.
  • the semiconductor wafer having steps and protrusions, or the semiconductor wafer to be ground and the thickness of the semiconductor wafer after grinding are thin, the above-described effects of the present invention are effectively exhibited.
  • the pressure-sensitive adhesive tape for processing a semiconductor wafer according to the present invention has a radiation having an ethylenically unsaturated group (radiation polymerizable carbon-carbon double bond) of 0.2 to 2.0 mmol / g on at least one surface of a base film. It has an adhesive layer composed of a curable adhesive.
  • radiation polymerizable carbon-carbon double bond Radiation polymerizable carbon-carbon double bond
  • the base film is preferably made of a resin film, and known plastics, rubbers and the like can be used.
  • polyolefin resin polyethylene, polypropylene, ethylene-propylene copolymer, polybutene-1, poly-4-methylpentene-1, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid Homopolymers or copolymers of ⁇ -olefins such as methyl copolymers, ethylene-acrylic acid copolymers, ionomers, or mixtures thereof), polyester resins (polyethylene terephthalate, polyethylene naphthalate), polycarbonate resins, polyurethane resins Engineering plastics (polymethyl methacrylate, etc.), synthetic rubbers (styrene-ethylene-butene or pentene copolymers), thermoplastic elastomers (polyamide-polyol copoly
  • the thickness of the base film is 50 to 300 ⁇ m if the base material has flexibility such as polyethylene, and has rigidity such as polyester, from the viewpoints of high elongation characteristics, peelability of the surface protection tape, and cutability in the bonding machine.
  • the base material has flexibility such as polyethylene, and has rigidity such as polyester, from the viewpoints of high elongation characteristics, peelability of the surface protection tape, and cutability in the bonding machine.
  • 10 to 100 ⁇ m is appropriate.
  • 50 to 300 ⁇ m is preferable.
  • the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer is a radiation curable pressure-sensitive adhesive.
  • Radiation curable pressure-sensitive adhesives only need to have the property of being cured by radiation to form a three-dimensional network, and can be broadly divided into 1) ethylenically unsaturated groups (radiation polymerizable carbon-carbon double bonds in ethylenic groups) At least two in the molecule relative to the pressure-sensitive adhesive comprising a base resin (polymer) having a double bond) and 2) a normal rubber-based or (meth) acrylic pressure-sensitive base resin (polymer) Are classified into pressure-sensitive adhesives containing a low molecular weight compound having an ethylenically unsaturated group (hereinafter referred to as radiation-polymerizable low molecular weight compound) and a photopolymerization initiator. In the present invention, the above 2) is preferable.
  • Adhesive comprising a base resin having an ethylenically unsaturated group in the side chain
  • the adhesive having an ethylenically unsaturated group in the side chain is preferably a (meth) acrylic adhesive
  • the base resin is a (meth) acrylic Those containing a polymer or (meth) acrylic polymer as a main component are particularly preferred.
  • a (meth) acrylic polymer as a main component means that the (meth) acrylic polymer component is at least 50% by mass or more, preferably 80% by mass or more (100% by mass or less).
  • the (meth) acrylic polymer has an ethylenically unsaturated group in at least a side chain, so that it can be cured by irradiation, and may further have a functional group such as an epoxy group or a carboxy group.
  • the (meth) acrylic polymer having an ethylenically unsaturated group in the side chain may be produced in any manner.
  • the group having an ethylenically unsaturated group may be any group as long as it has a non-aromatic ethylenic double bond, but a (meth) acryloyl group, a (meth) acryloyloxy group, a (meth) acryloyl group.
  • An amino group, an allyl group, a 1-propenyl group, and a vinyl group (including styrene or substituted styrene) are preferable, and a (meth) acryloyl group and a (meth) acryloyloxy group are more preferable.
  • Examples of the functional groups ( ⁇ ) and ( ⁇ ) include a carboxy group, a hydroxyl group, an amino group, a mercapto group, a cyclic acid anhydride group, an epoxy group, and an isocyanate group (—N ⁇ C ⁇ O).
  • the cyclic acid anhydride group is a group having a cyclic acid anhydride structure.
  • one functional group of the functional group ( ⁇ ) and the functional group ( ⁇ ) is a carboxy group, a hydroxyl group, an amino group, a mercapto group, or a cyclic acid anhydride group
  • the other functional group includes an epoxy group and an isocyanate group.
  • the other functional group includes a carboxy group, a hydroxyl group, an amino group, and a mercapto group.
  • the other functional group may be an epoxy group.
  • the (meth) acrylic polymer having a functional group ( ⁇ ) in the side chain is a (meth) acrylic monomer having a functional group ( ⁇ ), preferably a (meth) acrylic ester [(particularly, a functional group in the alcohol part). It can be obtained by using (having ( ⁇ )) as a monomer component.
  • the (meth) acrylic polymer having a functional group ( ⁇ ) in the side chain is preferably a copolymer, and this copolymerization component is a (meth) acrylic acid alkyl ester, in particular, a functional group ( ⁇ ) and (meth) acrylic acid alkyl esters in which the group having an ethylenically unsaturated group is not substituted are preferred.
  • Examples of (meth) acrylic acid esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, isobutyl acrylate, n-pentyl acrylate, n-hexyl acrylate, n-octyl acrylate, isooctyl acrylate, 2 -Ethylhexyl acrylate, dodecyl acrylate, decyl acrylate hexyl acrylate, and the corresponding methacrylates.
  • the (meth) acrylic acid ester may be one type or two or more types, but it is preferable to use one having an alcohol part having 5 or less carbon atoms and one having 6 to 12 carbon atoms.
  • a glass transition point (Tg) becomes so low that a monomer with large carbon number of an alcohol part is used, the thing of a desired glass transition point can be obtained.
  • a low molecular compound having a carbon-carbon double bond such as vinyl acetate, styrene or acrylonitrile for the purpose of improving compatibility and various performances.
  • the content of is preferably in the range of 5% by mass or less.
  • Examples of (meth) acrylic monomers having a functional group ( ⁇ ) include acrylic acid, methacrylic acid, cinnamic acid, itaconic acid, fumaric acid, phthalic acid, 2-hydroxyalkyl acrylates, 2-hydroxyalkyl methacrylates, glycol Monoacrylates, glycol monomethacrylates, N-methylolacrylamide, N-methylolmethacrylamide, allyl alcohol, N-alkylaminoethyl acrylates, N-alkylaminoethyl methacrylates, acrylamides, methacrylamides, maleic anhydride, Some of the isocyanate groups of itaconic anhydride, fumaric anhydride, phthalic anhydride, glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, polyisocyanate compounds Such as those urethanization with monomers like having Bokishi groups and ethylenically unsaturated groups.
  • acrylic acid, methacrylic acid, 2-hydroxyalkyl acrylates, 2-hydroxyalkyl methacrylates, glycidyl acrylate, and glycidyl methacrylate are preferable.
  • Acrylic acid, methacrylic acid, 2-hydroxyalkyl acrylates, 2-hydroxyalkyl methacrylate Are more preferable, and 2-hydroxyalkyl acrylates and 2-hydroxyalkyl methacrylates are more preferable.
  • the functional group ( ⁇ ) in the compound having an ethylenically unsaturated group and a functional group ( ⁇ ) is preferably an isocyanate group.
  • (meth) acrylic acid ester having an isocyanate (—N ⁇ C ⁇ O) group in the alcohol part can be mentioned, and in particular, (meth) acrylic acid alkyl ester substituted with an isocyanate (—N ⁇ C ⁇ O) group.
  • examples of such a monomer include 2-isocyanatoethyl methacrylate and 2-isocyanatoethyl acrylate.
  • the compound illustrated with the (meth) acrylic-type monomer which has a functional group ((alpha)) as a preferable compound in case a functional group ((beta)) is other than an isocyanate group is mentioned.
  • the compound having an ethylenically unsaturated group and the functional group ( ⁇ ) is preferably a functional group ( ⁇ ) in the side chain of the polymer, preferably By reacting with a hydroxyl group, a polymerizable group can be incorporated into the copolymer, and the adhesive strength after irradiation can be reduced.
  • ketone, ester, alcohol, and aromatic solvents can be used, among which toluene, Generally, it is a good solvent for a (meth) acrylic polymer such as ethyl acetate, isopropyl alcohol, benzene methyl cellosolve, ethyl cellosolve, acetone, methyl ethyl ketone, and a solvent having a boiling point of 60 to 120 ° C. is preferable.
  • radical generators such as azobis compounds such as ⁇ , ⁇ '-azobisisobutyronitrile and organic peroxide compounds such as benzoyl peroxide are usually used.
  • a catalyst and a polymerization inhibitor can be used in combination, and a (meth) acrylic copolymer having a desired molecular weight can be obtained by adjusting the polymerization temperature and the polymerization time.
  • a solvent such as mercaptan or carbon tetrachloride. This reaction is not limited to solution polymerization, and other methods such as bulk polymerization and suspension polymerization may be used.
  • the mass average molecular weight of the base resin having an ethylenically unsaturated group in the side chain is preferably about 200,000 to 1,000,000. If the mass average molecular weight exceeds 1,000,000, when irradiated, the adhesive after irradiation is not flexible and is brittle, so that adhesive residue is left on the surface of the semiconductor chip during peeling. If the mass average molecular weight is less than 200,000, the cohesive force before radiation irradiation is small and the adhesive force is weak, so that the semiconductor chip cannot be held sufficiently during dicing, and there is a possibility of chip fly. In addition, curing is insufficient after irradiation, and adhesive residue is left on the surface of the semiconductor chip during peeling. In order to prevent these as much as possible, the mass average molecular weight is preferably 200,000 or more. In the present invention, the mass average molecular weight is a polystyrene-reduced mass average molecular weight by a conventional method.
  • the glass transition point of the base resin having an ethylenically unsaturated group in the side chain is preferably ⁇ 70 to ⁇ 10 ° C., more preferably ⁇ 50 to ⁇ 10 ° C. If the glass transition point is lower than ⁇ 70 ° C., the fluidity of the pressure-sensitive adhesive is high and causes residue of the adhesive. This causes grinding water to enter the wafer surface during grinding.
  • the acid value of the base resin having an ethylenically unsaturated group in the side chain is preferably 0.5 to 30, 1 to 20 is more preferable.
  • the hydroxyl value of the base resin having an ethylenically unsaturated group in the side chain is 5 To 100 is preferable, and 10 to 80 is more preferable.
  • the acid value and the hydroxyl value are prepared by adjusting the (meth) acrylic polymer having a functional group ( ⁇ ) in the side chain, the ethylenically unsaturated group, and the (meth) acrylic polymer.
  • the step of reacting a compound having a functional group ( ⁇ ) capable of reacting with the functional group ( ⁇ ) of the side chain it can be prepared as desired by leaving an unreacted functional group.
  • photopolymerization initiators include, for example, isopropyl benzoin ether, isobutyl benzoin ether, benzophenone, phenyldimethoxyacetylbenzene, Michler's ketone, chlorothioxanthone, dodecylthioxanthone, dimethylthioxanthone, diethylthioxanthone, benzyl dimethyl ketal, ⁇ -hydroxycyclohexyl phenyl ketone, Examples thereof include 2-hydroxymethylphenylpropane.
  • the blending amount of these photopolymerization initiators is preferably 0.01 to 10 parts by mass, more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the base resin. If the blending amount is too small, the reaction is insufficient, and if the blending amount is too large, the low molecular components increase, thereby affecting the contamination.
  • the pressure-sensitive adhesive made of a base resin having an ethylenically unsaturated group in the side chain preferably contains a crosslinking agent.
  • a crosslinking agent may be any, but a crosslinking agent selected from the group of polyisocyanates, melamine / formaldehyde resins and epoxy resins is preferred. Of these, polyisocyanates are preferred in the present invention.
  • the polyisocyanates are not particularly limited, and examples thereof include 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, 4,4′-diphenyl ether diisocyanate, 4,4 ′-[2,2-bis (4 -Phenoxyphenyl) propane] aromatic isocyanate such as diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethyl-hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 2,4'-dicyclohexylmethane diisocyanate Lysine diisocyanate, lysine triisocyanate and the like.
  • Coronate L made by Nippon Polyurethane Co., Ltd., trade name
  • Coronate L made by Nippon Polyurethane Co., Ltd., trade name
  • melamine / formaldehyde resin examples include Nicalac MX-45 (trade name, manufactured by Sanwa Chemical Co., Ltd.), Melan (trade name, manufactured by Hitachi Chemical Co., Ltd.), and the like.
  • TETRAD-X (trade name, manufactured by Mitsubishi Chemical Corporation) or the like can be used.
  • the amount of the crosslinking agent is preferably 0.1 to 10 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the base resin.
  • the blending amount of the crosslinking agent is less than 0.1 parts by mass, the cohesive force improving effect is not sufficient, and the fluidity of the pressure-sensitive adhesive is high, which causes the adhesive residue. If the amount of the crosslinking agent exceeds 10 parts by mass, the adhesive elastic modulus becomes too high, and the semiconductor wafer surface cannot be protected.
  • Adhesive containing a radiation-polymerizable low molecular weight compound is not particularly limited, and is a known chlorinated polypropylene resin or acrylic used for the adhesive. Resin [(meth) acrylic resin], polyester resin, polyurethane resin, epoxy resin and the like can be used.
  • the base resin of the pressure-sensitive adhesive is preferably an acrylic resin ((meth) acrylic resin), and the side chain that is a raw material for synthesizing the base resin having an ethylenically unsaturated group in the side chain is functional.
  • a (meth) acrylic polymer having a group ( ⁇ ) is particularly preferred.
  • the pressure-sensitive adhesive is preferably prepared by appropriately blending a photopolymerization initiator, a curing agent or a crosslinking agent in addition to the acrylic resin as the base resin and the radiation-polymerizable low molecular weight compound.
  • the mass average molecular weight of the adhesive base resin is preferably about 200,000 to 2,000,000. In the present invention, it is preferable to contain at least one oligomer having a mass average molecular weight of 1,000 to 20,000 in addition to the base resin.
  • the mass average molecular weight of the oligomer is more preferably 1,100 to 20,000, further preferably 2,000 to 20,000, and particularly preferably 2,000 to 10,000.
  • the radiation polymerizable low molecular weight compound a low molecular weight compound having at least two ethylenically unsaturated groups (radiation polymerizable carbon-carbon double bonds) in a molecule that can be three-dimensionally reticulated by irradiation is used.
  • the oligomer is a radiation polymerizable low molecular weight compound having an ethylenically unsaturated group.
  • radiation-polymerizable low molecular weight compounds include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, Dipentaerythritol hexa (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, oligoester (meth) acrylate, etc. Applicable.
  • urethane (meth) acrylate oligomers can also be used as radiation polymerizable low molecular weight compounds.
  • Urethane (meth) acrylate oligomers include a polyester compound or a polyether compound such as a polyhydric isocyanate compound (for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3 (Xylylene diisocyanate, 1,4-xylylene diisocyanate, diphenylmethane-4,4-diisocyanate, etc.) are reacted with a terminal isocyanate urethane prepolymer obtained by reacting (meth) acrylate having a hydroxyl group (for example, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, polyethylene glycol acrylate, polyethylene glycol methacrylate, polyethylene glycol methacrylate
  • the radiation polymerizable low molecular weight compound may be used alone or in combination of two or more.
  • the radiation curable pressure-sensitive adhesive can contain a photopolymerization initiator as required. As long as it reacts with the radiation which permeate
  • benzophenones such as benzophenone, 4,4′-dimethylaminobenzophenone, 4,4′-diethylaminobenzophenone, 4,4′-dichlorobenzophenone, acetophenones such as acetophenone, diethoxyacetophenone, phenyldimethoxyacetylbenzene, 2- Anthraquinones such as ethyl anthraquinone and t-butylanthraquinone, 2-chlorothioxanthone, benzoin ethyl ether, benzoin isopropyl ether, benzyl, 2,4,5-triarylimidazole dimer (rophine dimer), acridine compound , Acylphosphine oxides, and the like. These can be used alone or in combination of two or more.
  • the addition amount of the photopolymerization initiator is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 7.5 parts by mass, and further preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the base resin. .
  • the amount of photopolymerization initiator added is large, radiation curing occurs at multiple points and abruptly, resulting in increased radiation curing shrinkage. Therefore, photopolymerization is performed compared to conventional radiation curing type surface protection adhesive tapes. Reducing the amount of initiator is also useful from the viewpoint of suppressing radiation curing shrinkage.
  • the pressure-sensitive adhesive preferably contains a curing agent or a crosslinking agent.
  • the curing agent or crosslinking agent include polyvalent isocyanate compounds, polyvalent epoxy compounds, polyvalent aziridine compounds, chelate compounds and the like.
  • the polyvalent isocyanate compound is not particularly limited.
  • polyvalent epoxy compound examples include epoxy resins, such as ethylene glycol diglycidyl ether, terephthalic acid diglycidyl ester acrylate, and anilines substituted with two glycidyl groups on the N atom.
  • epoxy resins such as ethylene glycol diglycidyl ether, terephthalic acid diglycidyl ester acrylate
  • anilines substituted with two glycidyl groups on the N atom is an example of anilines.
  • anilines is N, N′-tetraglycidyl-m-phenylenediamine.
  • Polyvalent aziridine compounds include tris-2,4,6- (1-aziridinyl) -1,3,5-triazine, tris [1- (2-methyl) -aziridinyl] phosphine oxide, hexa [1- (2- Methyl) -aziridinyl] triphosphatriazine and the like.
  • Examples of the chelate compound include ethyl acetoacetate aluminum diisopropylate and aluminum tris (ethyl acetoacetate).
  • the blending amount of the curing agent or the crosslinking agent is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 5.0 parts by mass, and 0.5 to 4.0 parts by mass with respect to 100 parts by mass of the base resin. Is more preferable.
  • the pressure-sensitive adhesive of the pressure-sensitive adhesive layer of the present invention comprises at least a base resin having an ethylenically unsaturated group (radiation-polymerizable carbon-carbon double bond and ethylenic double bond) in the side chain, an alicyclic (metal ) Acrylic pressure-sensitive base resin containing no monomer units derived from acrylate and having at least two ethylenically unsaturated groups (radiation polymerizable carbon-carbon double bonds and ethylenic double bonds) in the molecule It has a resin or oligomer selected from urethane acrylate oligomers.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, but is selected according to the unevenness of the surface of the adherend. For example, when bonding to a bumped wafer, the thickness is about 10 to 50 ⁇ m thicker than the bump height. It is preferable. Specifically, it is preferably 10 to 500 ⁇ m, more preferably 30 to 400 ⁇ m, further preferably 50 to 300 ⁇ m, and particularly preferably 50 to 150 ⁇ m.
  • the pressure-sensitive adhesive may be a multilayer, and in this case, it is desirable that at least the outermost-layer pressure-sensitive adhesive is a radiation curable pressure-sensitive adhesive that satisfies the configuration of the present invention. For example, when the substrate film that softens by heating is used to follow the surface of the adherend, the total thickness of the layers to be followed is preferably within the above range. It is possible to reduce the thickness to about 100 ⁇ m.
  • the content of the ethylenically unsaturated group (radiation polymerizable carbon-carbon double bond) in the radiation curable pressure-sensitive adhesive is 0.2 to 2.0 mmol / g.
  • the ethylenically unsaturated group in the radiation curable adhesive is a compound having an ethylenically unsaturated group contained in the radiation curable adhesive (a polymer such as a base resin having an ethylenically unsaturated group in the side chain).
  • Radiation polymerizable low molecular weight compound is the total of all ethylenically unsaturated groups, and is the total number of moles of ethylenically unsaturated groups per unit g of the radiation curable pressure-sensitive adhesive.
  • the content of the ethylenically unsaturated group in the radiation curable pressure-sensitive adhesive is preferably 0.2 to 1.8 mmol / g, more preferably 0.2 to 1.5 mmol / g, and 0.5 to 1.5 mmol. / G is more preferable.
  • the pressure-sensitive adhesive is a multilayer, it is preferable to satisfy the above range when all the pressure-sensitive adhesives are regarded as one layer, and it is more preferable that each layer satisfies the above range.
  • the content of the ethylenically unsaturated group in the radiation curable pressure-sensitive adhesive is a (meth) acrylic polymer used when synthesizing the base resin.
  • the amount of the functional group ( ⁇ ) capable of reacting with the side chain functional group ( ⁇ ) and the amount of the compound having an ethylenically unsaturated group and the number of ethylenically unsaturated groups can be adjusted. It can adjust with the number and compounding quantity of the ethylenically unsaturated group which has.
  • the content of the ethylenically unsaturated group in the radiation curable pressure-sensitive adhesive can be determined by the amount of the compound or synthetic raw material used as described above, but the iodine value of the radiation curable pressure-sensitive adhesive [100 g of base resin G number of iodine (I 2 ) to be added] and the molecular weight of I 2 is 253.8, and thus this value can be obtained by unit conversion to mmol / g.
  • the adhesive strength after UV curing with respect to the SUS plate is preferably 0.3 to 3.0 N / 25 mm, more preferably 0.5 to 3.0 N / 25 mm. 0.5 to 1.5 is more preferable.
  • the term “after ultraviolet curing” means that the entire pressure-sensitive adhesive layer has been cured by irradiation with ultraviolet rays so as to have an integrated irradiation amount of 500 mJ / cm 2 .
  • test pieces each having a width of 25 mm and a length of 150 mm were collected from an adhesive tape for semiconductor wafer processing before radiation irradiation, and the test pieces were finished with JIS G 4305 finished with No. 280 water-resistant abrasive paper defined in JIS R 6253.
  • a 2 kg rubber roller is reciprocated three times on a SUS steel plate having a thickness of 1.5 mm to 2.0 mm, and left for 1 hour, and then cured by irradiating with 500 mJ / cm 2 ultraviolet rays.
  • the adhesive strength after UV curing on the SUS plate is the molecular weight of the pressure-sensitive adhesive composition, the type and amount of the radiation-polymerizable low molecular weight compound, the type and amount of the additive including the crosslinking agent, and the thickness of the radiation-curable pressure-sensitive adhesive layer.
  • the thickness and the like as appropriate, the scope of the present invention can be achieved. If the apparent adhesive force to the SUS plate is too small, curing shrinkage also increases, so that the peel force from an adherend having a large surface irregularity such as a bump wafer is increased. If the apparent adhesive force to the SUS plate is too large, the radiation curing is insufficient and peeling failure or adhesive residue occurs.
  • the radiation curable pressure-sensitive adhesive (pressure-sensitive adhesive layer) of the present invention has a curing shrinkage stress of preferably 300 gf or less, more preferably 50 to 250 gf, and even more preferably 50 to 200 gf.
  • the curing shrinkage stress of the pressure-sensitive adhesive can be determined as follows.
  • the curing shrinkage stress of the pressure-sensitive adhesive (pressure-sensitive adhesive layer) is obtained by laminating a coated and dried pressure-sensitive adhesive on a release-treated separator, and punching it into a pellet with a thickness of about 2 mm and a diameter of ⁇ 8 mm.
  • a curing shrinkage measuring device for example, resin curing shrinkage rate stress measuring device “CUSTRON” manufactured by Matsuo Sangyo Co., Ltd.
  • an ultraviolet ray of 500 mJ / cm 2 is irradiated at an illuminance of 50 mW from an initial load of ⁇ 60 gf.
  • the curing shrinkage stress after 5 minutes is measured.
  • the curing shrinkage stress is a force in the compression direction, the force is opposite to the initial load. Therefore, the initial load is expressed as minus.
  • the curing shrinkage stress decreases as the amount of ethylenically unsaturated groups or initiator decreases. Moreover, since the ethylenically unsaturated group is cross-linked to the base polymer or the molecular weight of the ethylenically unsaturated group is increased, the movement of the ethylenically unsaturated group during radiation cross-linking can be suppressed, so that the curing shrinkage stress can be suppressed. By reducing the curing shrinkage stress, biting and catching on the adherend surface during radiation curing shrinkage can be reduced, so that peeling failure and adhesive residue can be reduced.
  • the pressure-sensitive adhesive tape for processing a semiconductor wafer of the present invention may be provided with other layers such as an adhesive layer.
  • the adhesive layer is provided on the pressure-sensitive adhesive layer.
  • the adhesive layer contains an epoxy resin having two or more epoxy groups in the molecule, and is bisphenol type, naphthalene type, phenol novolac type, cresol novolak type, phenol aralkyl type, biphenyl type. It is preferable to contain at least one epoxy resin selected from the group consisting of triphenylmethane type and dicyclopentadiene type.
  • the adhesive layer includes a curing agent and a curing accelerator that are cured by reacting with the epoxy resin.
  • the curing agent and curing accelerator include phenolic curing agents, acid anhydrides, amine compounds, imidazoles, and phosphines.
  • the adhesive layer preferably contains a polymer compound, such as phenoxy resin, polyimide resin, polyamide resin, polycarbodiimide resin, cyanate ester resin, acrylic resin, polyester resin, polyethylene resin, polyethersulfone resin, poly Examples include ether imide resins, polyvinyl acetal resins, urethane resins, and acrylic rubbers.
  • a polymer compound such as phenoxy resin, polyimide resin, polyamide resin, polycarbodiimide resin, cyanate ester resin, acrylic resin, polyester resin, polyethylene resin, polyethersulfone resin, poly Examples include ether imide resins, polyvinyl acetal resins, urethane resins, and acrylic rubbers.
  • the adhesive layer may contain an inorganic filler.
  • the inorganic filler only needs to have insulating properties and thermal conductivity. For example, nitrogen compounds (boron nitride, aluminum nitride, silicon nitride, carbon nitride, titanium nitride, etc.), carbon compounds (silicon carbide, fluorine carbide, Boron carbide, titanium carbide, tungsten carbide, diamond, etc.), metal oxides (silica, alumina, magnesium oxide, zinc oxide, beryllium oxide, etc.) and the like.
  • the thickness of the adhesive layer is not particularly limited, but can be appropriately selected depending on the height of the bump to be embedded. For example, it can be preferably used if it is as thin as 10 to 20 ⁇ m from the height of the bump.
  • the adhesive layer is provided by coating the adhesive composition on the release film and bonding it to the adhesive layer of the base film.
  • the adhesive tape for semiconductor wafer processing may have a release liner on the adhesive layer.
  • a release liner a polyethylene terephthalate film subjected to silicone release treatment or the like is used. If necessary, a polypropylene film that is not subjected to silicone release treatment may be used.
  • the semiconductor wafer processing method of the present invention is a semiconductor wafer processing method using the semiconductor wafer processing adhesive tape of the present invention.
  • the adhesive tape for semiconductor wafer processing of the present invention may be used in any process as long as it is a semiconductor wafer processing process. For example, a semiconductor wafer back surface grinding process, a dicing process, a dicing die bonding process, and the like are preferable.
  • the adhesive tape for processing a semiconductor wafer of the present invention is preferably used by being bonded to a semiconductor wafer surface having surface irregularities of 10 ⁇ m or more. It is more preferable to apply to semiconductor wafers having surface irregularities (bump (electrode) height) of 20 to 400 ⁇ m, and more preferable to apply to 50 to 150 ⁇ m.
  • the arrangement density (high density) of bumps on the surface of the semiconductor wafer is not particularly limited, but a pitch more than twice the height of the bumps (from the apex in the height direction of the bumps to the next arranged bumps) Applicable to the distance to the apex in the height direction). It is also used for semiconductor wafers in which bumps are uniformly arranged on the entire surface.
  • the thickness of the semiconductor wafer is preferably 20 to 500 ⁇ m, more preferably 50 to 200 ⁇ m, and even more preferably 80 to 200 ⁇ m in terms of the thickness of the semiconductor wafer that has been back-ground by a processing method using a semiconductor wafer processing adhesive tape.
  • a thin film semiconductor wafer can be obtained with a high yield.
  • This semiconductor wafer processing method is suitable as a manufacturing method for thin-film grinding of a semiconductor wafer with an electrode of 50 ⁇ m or less.
  • the method for processing a semiconductor wafer of the present invention includes a step of peeling the pressure-sensitive adhesive tape for processing a semiconductor wafer by irradiating with radiation, particularly ultraviolet rays, after the pressure-sensitive adhesive tape for processing a semiconductor wafer of the present invention is bonded to the surface of the semiconductor wafer. It is preferable.
  • the adhesive tape for semiconductor wafer processing of the present invention is bonded to the circuit pattern surface (front surface) of the semiconductor wafer so that the adhesive layer becomes the bonding surface.
  • the surface side of the semiconductor wafer having no circuit pattern is ground until the thickness of the semiconductor wafer reaches a predetermined thickness, for example, 10 to 200 ⁇ m.
  • a dicing process is performed, and then a heat seal type (thermal fusion type) or adhesive type release tape is adhered to the back surface of the base film of the semiconductor wafer processing adhesive tape, and the semiconductor wafer processing adhesive tape is attached to the semiconductor wafer. Peel off.
  • a heat seal type thermal fusion type
  • adhesive type release tape is adhered to the back surface of the base film of the semiconductor wafer processing adhesive tape, and the semiconductor wafer processing adhesive tape is attached to the semiconductor wafer. Peel off.
  • Adhesive compositions 2A to 2G were prepared as follows.
  • Example 1 An adhesive composition 2A was applied on a polyethylene terephthalate (PET) separator having a thickness of 38 ⁇ m so that the thickness after drying was 90 ⁇ m, dried, and then an ethylene-vinyl acetate copolymer having a thickness of 140 ⁇ m.
  • An adhesive tape for processing a semiconductor wafer having a thickness of 230 ⁇ m was manufactured by laminating with a base film made of (EVA) film.
  • Example 2 In Example 1, the adhesive tape for semiconductor wafer processing was manufactured like Example 1 except having changed adhesive composition 2A into adhesive composition 2B.
  • Example 3 In Example 1, a pressure-sensitive adhesive tape for semiconductor wafer processing was produced in the same manner as Example 1 except that the pressure-sensitive adhesive composition 2A was changed to the pressure-sensitive adhesive composition 2C.
  • Example 4 the adhesive tape for semiconductor wafer processing was manufactured like Example 1 except having changed adhesive composition 2A into adhesive composition 2D.
  • Example 1 the adhesive tape for semiconductor wafer processing was manufactured like Example 1 except having changed adhesive composition 2A into adhesive composition 2E.
  • Example 2 the adhesive tape for semiconductor wafer processing was manufactured like Example 1 except having changed adhesive composition 2A into adhesive composition 2F.
  • Example 3 the adhesive tape for semiconductor wafer processing was manufactured like Example 1 except having changed adhesive composition 2A into adhesive composition 2G.
  • the molar content of the ethylenically unsaturated group (carbon-carbon double bond) contained in the radiation curable adhesive is the raw material used. Calculated from Moreover, the measurement of the peeling force after the radiation irradiation with respect to SUS, the measurement of the curing shrinkage stress, the evaluation of the peeling force, the evaluation of dust intrusion and the evaluation of the adhesive residue were performed.
  • test pieces each having a width of 25 mm and a length of 150 mm were sampled from the semiconductor wafer processing pressure-sensitive adhesive tape before irradiation, and the test pieces are defined in JIS R 6253.
  • a 2 kg rubber roller was pressed on a SUS steel plate with a thickness of 1.5 mm to 2.0 mm specified in JIS G 4305, finished with 280th water-resistant abrasive paper, and pressed for 3 hours.
  • a cured and shrinkage measuring device [Plastic made by Matsuo Sangyo Co., Ltd.] is used by laminating a coated and dried adhesive on a release-treated separator and punching it into a pellet with a thickness of about 2 mm and a diameter of ⁇ 8 mm.
  • Curing shrinkage stress measuring apparatus “CUSTRON” was used, and irradiation with 500 mJ / cm 2 of ultraviolet light was performed at an illuminance of 50 mW from an initial load of ⁇ 60 gf, and the curing shrinkage stress after 5 minutes was measured. Since the curing shrinkage stress is a force in the compression direction, the force is opposite to the initial load.
  • the curing shrinkage stress represents the shrinkage stress when the initial load ⁇ 60 gf is 0.
  • peeling force when the width at the time of peeling became the maximum (200 mm), the following criteria were evaluated. In Table 1, this is simply indicated as “peeling force”.
  • the adhesive tape for semiconductor wafer processing of Examples 1 to 4 in which the content of ethylenically unsaturated groups in the adhesive satisfies the range of 0.2 to 2.0 mmol / g has a curing shrinkage stress.
  • the peel force for the SUS plate can be sufficiently reduced to 3 N / 25 mm or less within a range that can be suppressed to 300 gf or less, so that the peel force for bump wafers with large surface irregularities can be suppressed to 50 N / 200 mm or less, which is excellent. I understand.
  • the content of ethylenically unsaturated groups in the adhesive exceeds 2.0 mmol / g, and the curing shrinkage stress is as high as 330 gf and 380 gf. For this reason, the peel force is also higher than 50 N / 200 mm. Moreover, in the adhesive tape for processing a semiconductor wafer of Comparative Example 2, an adhesive residue was observed. Conversely, the pressure-sensitive adhesive tape for semiconductor wafer processing of Comparative Example 3 in which the content of ethylenically unsaturated groups in the pressure-sensitive adhesive is less than 0.2 mmol / g has a low curing shrinkage stress of 120 gf.
  • the pressure-sensitive adhesive tape for processing a semiconductor wafer of the present invention is excellent in evaluation of both dust intrusion and adhesive residue, and in particular, a semiconductor wafer having a surface irregularity of 75 ⁇ m and a bump height of 10 ⁇ m or more. It turns out that it is excellent as an adhesive tape for semiconductor wafer processing used by bonding to the surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

基材フィルムの少なくとも一方の面に粘着剤層を有する半導体ウェハ加工用粘着テープであって、該粘着剤層の粘着剤が、放射線硬化型粘着剤であり、少なくとも、側鎖にエチレン性不飽和基(放射線重合性炭素-炭素二重結合でエチレン性二重結合)を有するベース樹脂、脂環式(メタ)アクリレートから導かれるモノマー単位を含むことのないアクリル系感圧性ベース樹脂および分子中に少なくとも2個のエチレン性不飽和基(放射線重合性炭素-炭素二重結合でエチレン性二重結合)を有するウレタンアクリレートオリゴマーから選択される樹脂もしくはオリゴマーを有し、かつ該粘着剤がエチレン性不飽和基を0.2~2.0mmol/g有することを特徴とする半導体ウェハ加工用粘着テープ、半導体ウェハ加工用粘着テープの製造方法及び半導体ウェハの加工方法。

Description

半導体ウェハ加工用粘着テープおよび半導体ウェハの加工方法
 本発明は、半導体ウェハ加工用粘着テープおよび半導体ウェハの加工方法に関する。
 半導体パッケージは、高純度シリコン単結晶等をスライスして半導体ウェハとした後、イオン注入、エッチング等により半導体ウェハ表面に集積回路を形成して製造される。集積回路が形成された半導体ウェハの裏面を研削、研磨等することにより、半導体ウェハは所望の厚さに加工される。この際、半導体ウェハ表面に形成された集積回路を保護するために、半導体ウェハ表面保護用粘着テープ(以下、単に「表面保護テープ」ともいう。)が用いられる。
 裏面研削された半導体ウェハは、裏面研削が終了した後に半導体ウェハカセットに収納され、ダイシング工程へ運搬され、半導体チップに加工される。
 従来は、裏面研削等により半導体ウェハの厚さを200~400μm程度とすることが求められていた。しかし、近年の高密度実装技術の進歩に伴い、半導体チップを小型化する必要が生じ、それに伴い、半導体ウェハの薄膜化も進んでいる。半導体チップの種類によっては、半導体ウェハを100μm程度まで薄くすることが必要となっている。一方で、一度の加工によって製造できる半導体チップの数を多くするために、もとの半導体ウェハを大径化する傾向にある。これまでは直径が5インチや6インチの半導体ウェハが主流だったのに対し、近年では直径8~12インチの半導体ウェハを半導体チップ化する加工が主流となっている。
 半導体ウェハを薄膜化と同時に大径化する流れは、特に、NAND型やNOR型が存在するフラッシュメモリの分野や、揮発性メモリであるDRAMなどの分野で顕著である。例えば、直径12インチの半導体ウェハを150μm以下の厚さまで研削することも珍しくない。
 これに加え、特に近年、スマートフォンの普及や携帯電話の性能向上および音楽プレーヤの小型化、かつ性能向上などに伴い、耐衝撃性などを考慮した電極付半導体ウェハを用いたフリップチップ実装に用いるウェハについても薄膜化の要求が増えてきている。またバンプ付半導体ウェハについても半導体ウェハ部分を100μm以下の薄膜研削をする必要が出てきている。フリップチップ接続されるためのバンプは、転送速度向上のため高密度化されてきており、バンプの高さ(半導体ウェハ表面からの突出高さ)が低くなってきており、それに伴ってバンプ間距離が短くなってきている。また近年ではDRAMにもフリップチップ接続が実施されてきているため半導体ウェハの薄膜化も加速している。
 フリップチップ実装は、近年の電子機器の小型化、高密度化に対して半導体素子を最小の面積で実装できる方法として注目されてきた。このフリップチップ実装に使用される半導体素子の電極上にはバンプが形成されており、バンプと回路基板上の配線とを電気的に接合する。これらのバンプの組成としては、主に半田や金が使用されている。この半田バンプや金バンプは、蒸着やメッキで、チップの内部配線につながる露出したアルミ端子上などに形成する。
 しかし、バンプ付半導体ウェハは、その表面に大きな凹凸を有しているため薄膜加工が難しく、通常の粘着テープを用いて裏面研削を行うと半導体ウェハ割れが発生してしまったり、半導体ウェハの厚み精度の悪化を起こしたりする。そのため、バンプ付半導体ウェハの研削には、特別に設計された表面保護テープを用いて加工がされている(例えば、特許文献1参照)。
 しかしながら、これらの表面保護テープではバンプを十分に吸収して研削性を確保しているため剥離性との両立が非常に難しい。これまでのフリップチップ実装されてきたチップの仕上げ厚みは200μm厚以上とある程度の厚みがあり、剛性を保てたため何とか剥離できてきた。しかし、最近、半導体ウェハ仕上げ厚みが、よりいっそう薄膜となり、バンプ密度も高くなってきているため表面保護テープは、剥離が容易にできないといった問題を引き起こしてしまっている。また逆に、剥離性を確保すると密着が不十分となり、裏面研削時に研削水の浸入や糊残りを引き起こしてしまっている。
 これに加えて、ウェハレベルパッケージに使用されるバンプ付半導体ウェハのバンプ高さは依然高いままであり、高さ250μm以上のバンプも搭載されている。ウェハレベルパッケージではチップをスタックする必要がないためメモリ系半導体ウェハのように50μm以下といった極薄研削されることがないが、高いバンプが付いているため厚膜研削でも非常に割れやすく、150μm厚以下の研削厚で容易に半導体ウェハ割れの問題が発生する。
 一方、近年、ポリマー中にエチレン性不飽和基を有する放射線硬化型粘着剤を使用して、各種の検討が行われている。例えば、半導体ウェハ表面の微細なパターンを破壊せずに、接着剤を残すことなく半導体ウェハ表面から剥離するため、官能基含有モノマー単位を有するアクリル系共重合体と、この官能基に反応する置換基を有するエチレン性不飽和基を含有する化合物を含有させることによって得られる放射線線硬化型共重合体(例えば、特許文献1、2参照)が代表的である。
 また、官能基含有モノマー単位を有するアクリル系共重合体と反応させるエチレン性不飽和基を有する化合物が、脂肪族ジイソシアネートと1つの水酸基を有するアクリレートと反応させたウレタンアクリレートオリゴマー(例えば、特許文献3参照)なども知られている。
特開2001-203255号公報 特開平9-298173号公報 特開2008-021897号公報
 しかしながら、特許文献1~3に示されているような従来の表面保護テープでは、段差や突起の高さが益々高くなり、しかも研削する半導体ウェハや半導体ウェハの研削後の厚さが益々薄くなる状況において、必ずしも十分でない。
 従って、本発明は、段差や突起を有する半導体ウェハに好適に用いられ、半導体ウェハ加工時には半導体ウェハを確実に保持し、剥離時には半導体ウェハの破損や糊残りすることなく剥離可能な半導体ウェハ加工用粘着テープおよび半導体ウェハの加工方法を提供することを課題とする。
 本発明者らは、上記の課題を達成するため、鋭意研究を重ねた結果、放射線硬化型粘着剤が有するエチレン性不飽和基の単位g当たりのモル量が重要であることがわかった。
 すなわち、従来、放射線硬化型粘着剤は、見かけの粘着力(平滑な被着体に対する粘着力)を下げるよう、十分に架橋させることが望ましいとされていた。しかしながら、詳細に観察した結果、バンプ付き半導体ウェハなど、表面凹凸が大きい場合には、架橋させることで硬化収縮が発生し、バンプ付き半導体ウェハへ粘着剤が噛み込むことが原因で、糊残りや剥離力の上昇が起きてしまうことがわかった。このような知見に基づき本発明を完成するに至った。
 すなわち、本発明の上記課題は、以下の手段によって達成された。
<1>基材フィルムの少なくとも一方の面に粘着剤層を有する半導体ウェハ加工用粘着テープであって、該粘着剤層の粘着剤が、放射線硬化型粘着剤であり、少なくとも、側鎖にエチレン性不飽和基(放射線重合性炭素-炭素二重結合でエチレン性二重結合)を有するベース樹脂、脂環式(メタ)アクリレートから導かれるモノマー単位を含むことのないアクリル系感圧性ベース樹脂および分子中に少なくとも2個のエチレン性不飽和基(放射線重合性炭素-炭素二重結合でエチレン性二重結合)を有するウレタンアクリレートオリゴマーから選択される樹脂もしくはオリゴマーを有し、かつ該粘着剤がエチレン性不飽和基を0.2~2.0mmol/g有することを特徴とする半導体ウェハ加工用粘着テープ。
<2>前記脂環式(メタ)アクリレートから導かれるモノマー単位を含むことのないアクリル系感圧性ベース樹脂が、(メタ)アクリル酸の官能基を有してもよいアルキルのエステル、アクリル酸およびメタクリル酸から導かれるモノマー単位のみからなることを特徴とする<1>に記載の半導体ウェハ加工用粘着テープ。
<3>前記(メタ)アクリル酸の官能基を有してもよいアルキルのエステルの前記官能基が、カルボキシ基、水酸基、アミノ基、メルカプト基、環状酸無水物基、エポキシ基、イソシアネート基(-N=C=O)であることを特徴とする<2>に記載の半導体ウェハ加工用粘着テープ。
<4>少なくとも1種の前記オリゴマーの質量平均分子量が1,100~20,000であることを特徴とする<1>~<3>のいずれか1項に記載の半導体ウェハ加工用粘着テープ。
<5>少なくとも1種の前記オリゴマーの質量平均分子量が1,400~20,000であることを特徴とする<1>~<3>のいずれか1項に記載の半導体ウェハ加工用粘着テープ。
<6>前記オリゴマーが、少なくとも、エチレン性不飽和基を分子内に2つ有するオリゴマーとエチレン性不飽和基を分子内に3つ以上有するオリゴマーの混合物であることを特徴とする<1>~<5>のいずれか1項に記載の半導体ウェハ加工用粘着テープ。
<7>前記粘着剤が、前記エチレン性不飽和基を0.72~2.0mmol/g有することを特徴とする<1>~<6>のいずれか1項に記載の半導体ウェハ加工用粘着テープ。
<8>前記粘着剤が、多価イソシアネート化合物を含有することを特徴とする<1>~<7>のいずれか1項に記載の半導体ウェハ加工用粘着テープ。
<9>SUS板に対する紫外線硬化後の粘着力が、0.3~3.0N/25mmであり、かつ硬化収縮応力が、300gf以下であることを特徴とする<1>~<8>のいずれか1項に記載の半導体ウェハ加工用粘着テープ。
<10>前記<1>~<9>のいずれか1項に記載の半導体ウェハ加工用粘着テープを、表面凹凸が10μm以上ある半導体ウェハ面に貼合した後、紫外線照射して、前記半導体ウェハ加工用粘着テープを剥離する工程を含むことを特徴とする半導体ウェハの加工方法。
 ここで、<1>における「少なくとも、側鎖にエチレン性不飽和基(放射線重合性炭素-炭素二重結合でエチレン性二重結合)を有するベース樹脂、脂環式(メタ)アクリレートから導かれるモノマー単位を含むことのないアクリル系感圧性ベース樹脂および分子中に少なくとも2個のエチレン性不飽和基(放射線重合性炭素-炭素二重結合でエチレン性二重結合)を有するウレタンアクリレートオリゴマーから選択される樹脂もしくはオリゴマーを有す」とは、上記の樹脂および上記のオリゴマーの群から選択される少なくともいずれか1種を有することである。従って、これらの樹脂もしくはオリゴマーを単独で使用しても、これらを併用してもよく、さらに、他の樹脂や他のオリゴマー等と組み合わせてもよい。
 本発明により、半導体ウェハ加工時には半導体ウェハを確実に保持し、剥離時には半導体ウェハの破損や糊残りすることなく剥離可能な半導体ウェハ加工用粘着テープおよび半導体ウェハの加工方法を提供することが可能となった。
 特に本発明では、段差や突起を有する半導体ウェハ、さらには、研削する半導体ウェハや半導体ウェハの研削後の厚さが薄い場合、本発明の上記効果が、効果的に発現される。
<<半導体ウェハ加工用粘着テープ>>
 本発明の半導体ウェハ加工用粘着テープは、基材フィルムの少なくとも一方の面に、エチレン性不飽和基(放射線重合性炭素-炭素二重結合)が0.2~2.0mmol/gである放射線硬化型粘着剤で構成される粘着剤層を有す。
 以下、基材フィルムから順に、詳細に説明する。
<基材フィルム>
 基材フィルムは、樹脂フィルムからなるものが好ましく、公知のプラスチック、ゴム等を用いることができる。例えば、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリブテン-1、ポリ-4-メチルペンテン-1、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸共重合体、アイオノマー等のα-オレフィンの単独重合体もしくは共重合体、またはこれらの混合物)、ポリエステル樹脂(ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリカーボネート樹脂、ポリウレタン樹脂、エンジニアリングプラスチック(ポリメチルメタクリレート等)、合成ゴム類(スチレン-エチレン-ブテンもしくはペンテン系共重合体)、熱可塑性エラストマー(ポリアミド-ポリオール共重合体等)、およびこれらの混合物が挙げられる。また、これらを複層にしたものを使用してもよい。
 本発明において、基材フィルムは、ポリオレフィン樹脂が好ましく、なかでもエチレン-酢酸ビニル共重合体フィルムが好ましい。
 基材フィルムの厚みは、強伸度特性、表面保護テープの剥離性、貼合機におけるカット性の観点から、ポリエチレンなどの柔軟性を有する基材ならば50~300μm、ポリエステルなどの剛性を有する基材ならば10~100μmが適当である。
 本発明においては、50~300μmが好ましい。
<粘着剤層(粘着剤)>
 本発明では、粘着剤層に用いる粘着剤は、放射線硬化型粘着剤である。
 放射線硬化型粘着剤は、放射線により硬化し三次元網状化する性質を有すればよく、大きく分けて、1)側鎖にエチレン性不飽和基(放射線重合性炭素-炭素二重結合でエチレン性二重結合とも称す)を有するベース樹脂(重合体)からなる粘着剤と、2)通常のゴム系あるいは(メタ)アクリル系の感圧性ベース樹脂(ポリマー)に対して、分子中に少なくとも2個のエチレン性不飽和基を有する低分子量化合物(以下、放射線重合性低分子量化合物という)および光重合開始剤を配合する粘着剤に分類される。
 本発明では、上記の2)が好ましい。
1)側鎖にエチレン性不飽和基を有するベース樹脂からなる粘着剤
 側鎖にエチレン性不飽和基を有する粘着剤は、(メタ)アクリル系粘着剤が好ましく、ベース樹脂が(メタ)アクリル系重合体もしくは(メタ)アクリル系重合体を主成分として含むものが特に好ましい。
 ここで、(メタ)アクリル系重合体を主成分とするとは、(メタ)アクリル系重合体成分が少なくとも50質量%以上であり、好ましくは80質量%以上(100質量%以下)である。
 (メタ)アクリル系重合体は、少なくとも側鎖にエチレン性不飽和基を有することで放射線照射による硬化が可能となり、さらにエポキシ基やカルボキシ基などの官能基を有してもよい。
 側鎖にエチレン性不飽和基を有する(メタ)アクリル重合体は、どのようにして製造されたものでもよいが、例えば、側鎖に官能基(α)を有する(メタ)アクリル系重合体と、(メタ)アクリルロイル基、(メタ)アクリルロイルオキシ基などのエチレン性不飽和基を有し、かつ、この(メタ)アクリル系重合体の側鎖の官能基(α)と反応し得る官能基(β)をもつ化合物とを反応させて得たものが好ましい。
 エチレン性不飽和基を有する基は、非芳香族性のエチレン性二重結合を有すればどのような基でも構わないが、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、アリル基、1-プロペニル基、ビニル基(スチレンもしくは置換スチレンを含む)が好ましく、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基がより好ましい。
 官能基(α)、(β)としては、カルボキシ基、水酸基、アミノ基、メルカプト基、環状酸無水物基、エポキシ基、イソシアネート基(-N=C=O)等が挙げられる。
 なお、環状酸無水物基は、環状の酸無水物構造を有する基である。
 ここで、官能基(α)と官能基(β)のうちの一方の官能基が、カルボキシ基、水酸基、アミノ基、メルカプト基、または環状酸無水物基である場合には、他方の官能基は、エポキシ基、イソシアネート基が挙げられ、一方の官能基が環状酸無水物基の場合、他方の官能基はカルボキシ基、水酸基、アミノ基、メルカプト基が挙げられる。なお、一方の官能基が、エポキシ基である場合は、他方の官能基はエポキシ基であってもよい。
 官能基(α)としては、カルボキシ基、水酸基が好ましく、水酸基が特に好ましい。
 側鎖に官能基(α)を有する(メタ)アクリル系重合体は、官能基(α)を有する(メタ)アクリル系モノマー、好ましくは(メタ)アクリル酸エステル〔(特に、アルコール部に官能基(α)を有するもの〕をモノマー成分に使用することで得ることができる。
 側鎖に官能基(α)を有する(メタ)アクリル系重合体は、共重合体である場合が好ましく、この共重合成分は、(メタ)アクリル酸アルキルエステル、なかでもアルコール部に官能基(α)やエチレン性不飽和基を有する基が置換していない(メタ)アクリル酸アルキルエステルが好ましい。
 (メタ)アクリル酸エステルとしては、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、n-ペンチルアクリレート、n-ヘキシルアクリレート、n-オクチルアクリレート、イソオクチルアクリレート、2-エチルヘキシルアクリレート、ドデシルアクリレート、デシルアクリレートヘキシルアクリレート、およびこれらに対応するメタクリレートが挙げられる。
 (メタ)アクリル酸エステルは1種でも2種以上でも構わないが、アルコール部の炭素数が5以下のものと炭素数が6~12のものを併用することが好ましい。
 なお、アルコール部の炭素数の大きなモノマーを使用するほどガラス転移点(Tg)は低くなるので、所望のガラス転移点のものを得ることができる。また、ガラス転移点の他、相溶性と各種性能を上げる目的で酢酸ビニル、スチレン、アクリロニトリルなどの炭素-炭素二重結合をもつ低分子化合物を配合することも好ましく、この場合、これらのモノマー成分の含有量は5質量%以下の範囲内が好ましい。
 官能基(α)を有する(メタ)アクリル系モノマーとしては、アクリル酸、メタクリル酸、けい皮酸、イタコン酸、フマル酸、フタル酸、2-ヒドロキシアルキルアクリレート類、2-ヒドロキシアルキルメタクリレート類、グリコールモノアクリレート類、グリコールモノメタクリレート類、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、アリルアルコール、N-アルキルアミノエチルアクリレート類、N-アルキルアミノエチルメタクリレート類、アクリルアミド類、メタクリルアミド類、無水マレイン酸、無水イタコン酸、無水フマル酸、無水フタル酸、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル、ポリイソシアネート化合物のイソシアネート基の一部を水酸基またはカルボキシ基およびエチレン性不飽和基を有する単量体でウレタン化したものなどが挙げられる。
 これらの中でも、アクリル酸、メタクリル酸、2-ヒドロキシアルキルアクリレート類、2-ヒドロキシアルキルメタクリレート類、グリシジルアクリレート、グリシジルメタクリレートが好ましく、アクリル酸、メタクリル酸、2-ヒドロキシアルキルアクリレート類、2-ヒドロキシアルキルメタクリレート類がより好ましく、2-ヒドロキシアルキルアクリレート類、2-ヒドロキシアルキルメタクリレート類がさらに好ましい。
 エチレン性不飽和基と官能基(β)を有する化合物における官能基(β)としては、イソシアネート基が好ましい。例えば、アルコール部にイソシアネート(-N=C=O)基を有する(メタ)アクリル酸エステルが挙げられ、なかでもイソシアネート(-N=C=O)基で置換された(メタ)アクリル酸アルキルエステルが好ましい。このようなモノマーとしては、例えば、2-イソシアナトエチルメタクリレート、2-イソシアナトエチルアクリレート等が挙げられる。
 また、官能基(β)がイソシアネート基以外の場合の好ましい化合物は、官能基(α)を有する(メタ)アクリル系モノマーで例示した化合物が挙げられる。
 エチレン性不飽和基と官能基(β)を有する化合物は、側鎖に官能基(α)を有する(メタ)アクリル系重合体に加えて重合体の側鎖の官能基(α)、好ましくは水酸基と反応することで共重合体に重合性基を組み込むことができ、放射線照射後の粘着力を低下させることができる。
 (メタ)アクリル系共重合体の合成において、反応を溶液重合で行う場合の有機溶剤としては、ケトン系、エステル系、アルコール系、芳香族系のものを使用することができるが、中でもトルエン、酢酸エチル、イソプロピルアルコール、ベンゼンメチルセロソルブ、エチルセロソルブ、アセトン、メチルエチルケトンなどの、一般に(メタ)アクリル系ポリマーの良溶媒で、沸点60~120℃の溶剤が好ましい。重合開始剤としては、α,α’-アゾビスイソブチロニトリルなどのアゾビス系、ベンゾイルペルオキシドなどの有機過酸化物系などのラジカル発生剤を通常用いる。この際、必要に応じて触媒、重合禁止剤を併用することができ、重合温度および重合時間を調節することにより、所望の分子量の(メタ)アクリル系共重合体を得ることができる。また、分子量を調節することに関しては、メルカプタン、四塩化炭素等の溶剤を用いることが好ましい。なお、この反応は溶液重合に限定されるものではなく、塊状重合、懸濁重合など別の方法でもさしつかえない。
 側鎖にエチレン性不飽和基を有するベース樹脂〔好ましくは(メタ)アクリル系共重合体〕の質量平均分子量は、20万~100万程度が好ましい。
 質量平均分子量が100万を越えると、放射線照射した場合に、放射線照射後の粘着剤の可撓性がなく、脆くなっているため、剥離時に半導体チップ面に糊残りを生じる。質量平均分子量が20万未満では、放射線照射前の凝集力が小さく、粘着力が弱いため、ダイシング時に十分に半導体チップを保持することができず、チップ飛びが生じるおそれがある。また、放射線照射後も硬化が不十分で、剥離時に半導体チップ面に糊残りを生じる。これらを極力防止するためには、質量平均分子量が20万以上であることが好ましい。
 なお、本発明において、質量平均分子量は、常法によるポリスチレン換算の質量平均分子量である。
 側鎖にエチレン性不飽和基を有するベース樹脂のガラス転移点は、-70~-10℃が好ましく、-50~-10℃がより好ましい。ガラス転移点が-70℃より低いと、粘着剤の流動性が高く糊残りの原因となってしまい、-10℃より高いと流動性が不十分で半導体ウェハの裏面になじみにくく、半導体ウェハの研削加工時に研削水がウェハ表面に浸入する原因となってしまう。
 側鎖にエチレン性不飽和基を有するベース樹脂の酸価〔ベース樹脂1g中に存在する遊離脂肪酸を中和するのに必要な水酸化カリウムのmg数〕は、0.5~30が好ましく、1~20がより好ましい。
 側鎖にエチレン性不飽和基を有するベース樹脂の水酸基価〔ベース樹脂1gをアセチル化させたとき、水酸基と結合した酢酸を中和するのに必要とする水酸化カリウムのmg数〕は、5~100が好ましく、10~80がより好ましい。
 このようにすることで、さらに半導体ウェハ加工用粘着テープ剥離時の糊残り防止効果に優れる。
 なお、酸価や水酸基価の調製は、側鎖に官能基(α)を有する(メタ)アクリル系重合体と、エチレン性不飽和基を有し、かつ、この(メタ)アクリル系重合体の側鎖の官能基(α)と反応し得る官能基(β)をもつ化合物とを反応させる段階で、未反応の官能基を残すことにより所望のものに調製することができる。
 側鎖にエチレン性不飽和基を有するベース樹脂を放射線照射によって硬化させる場合には、必要に応じて、光重合開始剤を使用できる。このような光重合開始剤は、例えばイソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、ベンゾフェノン、フェニルジメトキシアセチルベンゼン、ミヒラーズケトン、クロロチオキサントン、ドデシルチオキサントン、ジメチルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、α-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシメチルフェニルプロパン等が挙げられる。
 これら光重合開始剤の配合量は、ベース樹脂100質量部に対して0.01~10質量部が好ましく、0.01~5質量部がより好ましい。配合量が少なすぎると反応が不十分であり、配合量が多すぎると低分子成分が増加することで汚染性に影響を与えることになる。
 側鎖にエチレン性不飽和基を有するベース樹脂からなる粘着剤は、架橋剤を含有することが好ましい。
 このような架橋剤は、どのようなものでも構わないが、ポリイソシアネート類、メラミン・ホルムアルデヒド樹脂およびエポキシ樹脂の群から選択される架橋剤が好ましい。
 このなかでも、本発明では、ポリイソシアネート類が好ましい。
 ポリイソシアネート類としては、特に制限がなく、例えば、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、4,4’-〔2,2-ビス(4-フェノキシフェニル)プロパン〕ジイソシアネート等の芳香族イソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチル-ヘキサメチレンジイソシアネート、イソフォロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、2,4’-ジシクロヘキシルメタンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等が挙げられる。具体的には、コロネートL(日本ポリウレタン株式会社製、商品名)等を用いることができる。
 メラミン・ホルムアルデヒド樹脂としては、具体的には、ニカラックMX-45(三和ケミカル株式会社製、商品名)、メラン(日立化成工業株式会社製、商品名)等を用いることができる。
 エポキシ樹脂としては、TETRAD-X(三菱化学株式会社製、商品名)等を用いることができる。
 架橋剤の配合量は、ベース樹脂100質量部に対して0.1~10質量部が好ましく、1~10質量部がより好ましい。
 粘着剤塗布後に、架橋剤により、ベース樹脂が架橋構造を形成し、粘着剤の凝集力を向上させることができる。
 架橋剤の配合量が0.1質量部未満では凝集力向上効果が十分でないため、粘着剤の流動性が高く糊残りの原因となってしまう。架橋剤の配合量が10質量部を越えると粘着剤弾性率が高くなりすぎてしまい、半導体ウェハ表面を保護できなくなってしまう。
2)放射線重合性低分子量化合物を含む粘着剤
 放射線重合性低分子量化合物を含む粘着剤の主成分としては、特に限定されるものではなく、粘着剤に使用される公知の塩素化ポリプロピレン樹脂、アクリル樹脂〔(メタ)アクリル樹脂〕、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂等を使用することができる。
 本発明では、粘着剤のベース樹脂としては、アクリル樹脂〔(メタ)アクリル樹脂〕が好ましく、前述の側鎖にエチレン性不飽和基を有するベース樹脂を合成する際の原料である側鎖に官能基(α)を有する(メタ)アクリル系重合体が特に好ましい。
 この場合の粘着剤としては、ベース樹脂としてのアクリル樹脂および放射線重合性低分子量化合物に加え、光重合開始剤、硬化剤もしくは架橋剤等を適宜配合して粘着剤を調製するのが好ましい。
 粘着剤のベース樹脂の質量平均分子量は、20万~200万程度が好ましい。
 本発明では、ベース樹脂に加え、質量平均分子量が、1,000~20,000のオリゴマーを少なくとも1種含有するのが好ましい。オリゴマーの質量平均分子量は、1,100~20,000がより好ましく、2,000~20,000がさらに好ましく、2,000~10,000が特に好ましい。
 放射線重合性低分子量化合物としては、放射線照射によって三次元網状化しうる分子内にエチレン性不飽和基(放射線重合性炭素-炭素二重結合)を少なくとも2個以上有する低分子量化合物が用いられる。
 特に、本発明では、上記のオリゴマーが、エチレン性不飽和基を有する放射線重合性低分子量化合物である場合が好ましい。
 放射線重合性低分子量化合物としては、具体的には、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレートや、オリゴエステル(メタ)アクリレート等が適用可能である。
 また、上記のような(メタ)アクリレート系化合物のほかに、放射線重合性低分子量化合物として、ウレタン(メタ)アクリレート系オリゴマーを用いることもできる。ウレタン(メタ)アクリレート系オリゴマーは、ポリエステル型またはポリエーテル型などのポリオール化合物と、多価イソシアナート化合物(例えば、2,4-トリレンジイソシアナート、2,6-トリレンジイソシアナート、1,3-キシリレンジイソシアナート、1,4-キシリレンジイソシアナート、ジフェニルメタン-4,4-ジイソシアナートなど)を反応させて得られる末端イソシアナートウレタンプレポリマーに、ヒドロキシル基を有する(メタ)アクリレート(例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、ポリエチレングリコールアクリレート、ポリエチレングリコールメタクリレートなど)を反応させて得られる。
 放射線重合性低分子量化合物は1種でも2種以上併用してもよい。
 本発明では、エチレン性不飽和基を分子内に2つ有するオリゴマーとエチレン性不飽和基を分子内に3つ以上有するオリゴマーを併用するのが好ましい。
 放射線硬化型粘着剤には、必要に応じて光重合開始剤を含むことができる。光重合開始剤には基材を透過する放射線により反応するものであれば、特に制限はなく、従来知られているものを用いることができる。例えば、ベンゾフェノン、4,4’-ジメチルアミノベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、4,4’-ジクロロベンゾフェノン等のベンゾフェノン類、アセトフェノン、ジエトキシアセトフェノン、フェニルジメトキシアセチルベンゼン等のアセトフェノン類、2-エチルアントラキノン、t-ブチルアントラキノン等のアントラキノン類、2-クロロチオキサントン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジル、2,4,5-トリアリ-ルイミダゾール二量体(ロフィン二量体)、アクリジン系化合物、アシルフォスフィンオキサイド類、等を挙げることができ、これらは単独で、または2種以上を組み合わせて用いることができる。
 光重合開始剤の添加量は、ベース樹脂100質量部に対して0.1~10質量部が好ましく、0.3~7.5質量部がより好ましく、0.5~5質量部がさらに好ましい。光重合開始剤の添加量が多いと放射線硬化が多地点で、かつ、急激に発生するため、放射線硬化収縮が大きくなってしまうため、従来の放射線硬化型の表面保護用粘着テープに比べ光重合開始剤の量を少なくすることも放射線硬化収縮の抑制の点から有用である。
 粘着剤には硬化剤もしくは架橋剤を含有することが好ましい。
 硬化剤もしくは架橋剤としては、多価イソシアネート化合物、多価エポキシ化合物、多価アジリジン化合物、キレート化合物等を挙げることができる。
 多価イソシアネート化合物としては、特に制限がなく、例えば、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、4,4’-〔2,2-ビス(4-フェノキシフェニル)プロパン〕ジイソシアネート等の芳香族イソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチル-ヘキサメチレンジイソシアネート、イソフォロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、2,4’-ジシクロヘキシルメタンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等が挙げられる。具体的には、コロネートL〔日本ポリウレタン工業(株)製、商品名〕等を用いることができる。
 多価エポキシ化合物としては、エポキシ樹脂が挙げられ、例えば、エチレングリコールジグリシジルエーテル、テレフタル酸ジグリシジルエステルアクリレート、N原子に2つのグリジジル基が置換したアニリン類等を挙げることができる。
 なお、アニリン類としては、N,N’-テトラグリシジル-m-フェニレンジアミンが挙げられる。
 多価アジリジン化合物は、トリス-2,4,6-(1-アジリジニル)-1,3,5-トリアジン、トリス〔1-(2-メチル)-アジリジニル〕ホスフィンオキシド、ヘキサ〔1-(2-メチル)-アジリジニル〕トリホスファトリアジン等を挙げることができる。またキレート化合物としては、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等を挙げることができる。
 硬化剤もしくは架橋剤の配合量は、ベース樹脂100質量部に対して0.1~10質量部が好ましく、0.1~5.0質量部がより好ましく、0.5~4.0質量部がさらに好ましい。
 なお、本発明の粘着剤層の粘着剤は、少なくとも、側鎖にエチレン性不飽和基(放射線重合性炭素-炭素二重結合でエチレン性二重結合)を有するベース樹脂、脂環式(メタ)アクリレートから導かれるモノマー単位を含むことのないアクリル系感圧性ベース樹脂および分子中に少なくとも2個のエチレン性不飽和基(放射線重合性炭素-炭素二重結合でエチレン性二重結合)を有するウレタンアクリレートオリゴマーから選択される樹脂もしくはオリゴマーを有する。
(粘着剤層の厚さ)
 粘着剤層の厚みは、特に限定されるものではないが、被着体表面の凹凸に合わせて選択され、例えばバンプ付ウェハに貼合させる場合には、バンプの高さよりも10~50μm程度厚いことが好ましい。具体的には10~500μmが好ましく、30~400μmがより好ましく、50~300μmがさらに好ましく、50~150μmが特に好ましい。粘着剤は複層であってもよく、その場合は、少なくとも最外層の粘着剤が、本発明の構成を満たす放射線硬化型粘着剤であることが望ましい。また、例えば加熱により軟化する基材フィルムを用いて被着体表面に追従させる場合は、追従させる層の合計厚さが上記範囲であることが望ましく、その場合は最外層の粘着剤を1~100μm程度まで薄くすることも可能である。
(粘着剤層もしくは粘着剤の特性)
〔放射線硬化型粘着剤中に有するエチレン性不飽和基の含有量〕
 本発明では、放射線硬化型粘着剤中に有するエチレン性不飽和基(放射線重合性炭素-炭素二重結合)の含有量は、0.2~2.0mmol/gである。
 放射線硬化型粘着剤中に有するエチレン性不飽和基は、放射線硬化型粘着剤中に含有するエチレン性不飽和基を有する化合物(側鎖にエチレン性不飽和基を有するベース樹脂のような重合体、放射線重合性低分子量化合物)が有する全てのエチレン性不飽和基の総和であり、放射線硬化型粘着剤の単位g当たりのエチレン性不飽和基の総和のモル数である。
 放射線硬化型粘着剤中に有するエチレン性不飽和基の含有量は、0.2~1.8mmol/gが好ましく、0.2~1.5mmol/gがより好ましく、0.5~1.5mmol/gがより好ましい。
 粘着剤が複層の場合には、全ての粘着剤を1層と見做したときに上記範囲を満たすことが好ましく、それぞれの層が上記範囲を満たすことがより好ましい。
 放射線硬化型粘着剤中に有するエチレン性不飽和基の含有量は、側鎖にエチレン性不飽和基を有するベース樹脂の場合、該ベース樹脂を合成する際に使用する(メタ)アクリル系重合体の側鎖の官能基(α)と反応し得る官能基(β)とエチレン性不飽和基を有する化合物の使用量や有するエチレン性不飽和基の数で調節でき、放射線重合性低分子量化合物が有するエチレン性不飽和基の数や配合量で調節できる。
 放射線硬化型粘着剤中に有するエチレン性不飽和基の含有量は、上記のように使用する化合物や合成原料の量で求めることもできるが、放射線硬化型粘着剤のヨウ素価〔ベース樹脂100gに付加するヨウ素(I)のg数〕を求め、Iの分子量が253.8であることから、この値をmmol/gに単位変換することで求められる。
〔SUS板に対する紫外線硬化後の粘着力〕
 本発明の放射線硬化型粘着剤(粘着剤層)は、SUS板に対する紫外線硬化後の粘着力が、0.3~3.0N/25mmが好ましく、0.5~3.0N/25mmがより好ましく、0.5~1.5がさらに好ましい。
 なお、紫外線硬化後とは、紫外線を積算照射量500mJ/cmとなるように粘着剤層全体を照射して硬化させた後を意味する。
 具体的には、以下のようにして求めることができる。
 放射線照射前の半導体ウェハ加工用粘着テープから幅25mm×長さ150mmの試験片をそれぞれ3点採取し、その試験片をJIS R 6253に規定する280番の耐水研磨紙で仕上げたJIS G 4305に規定する厚さ1.5mm~2.0mmのSUS鋼板上に2kgのゴムローラを3往復かけ圧着し、1時間放置後、500mJ/cmの紫外線を照射して硬化させる。硬化後、測定値がその容量の15~85%の範囲に入るJIS B 7721に適合する引張試験機(例えば、インストロン社製の引張試験機:ツインコラム卓上モデル5567)を用いて、引張速度50mm/minで90°引きはがし法により常温(25℃)、湿度50%で粘着力を測定し、3点の平均値を求める。
 SUS板に対する紫外線硬化後の粘着力は、粘着剤組成物の分子量、放射線重合性低分子量化合物の種類や量、架橋剤を始めとする添加剤の種類や量、放射線硬化型粘着剤層の厚さ等を適宜調節することで本発明の範囲にできる。
 SUS板に対する見かけの粘着力を小さくしすぎると、硬化収縮も大きくなるため、バンプウェハなど表面凹凸が大きい被着体からの剥離力は逆に大きくなってしまう。SUS板に対する見かけの粘着力が大きすぎると放射線硬化が不十分で剥離不良や糊残りが発生してしまう。
〔粘着剤の硬化収縮応力〕
 本発明の放射線硬化型粘着剤(粘着剤層)は、硬化収縮応力が、300gf以下が好ましく、50~250gfがより好ましく、50~200gfがさらに好ましい。
 粘着剤の硬化収縮応力は、以下のようにして求めることができる。
 粘着剤(粘着剤層)の硬化収縮応力は、離型処理されたセパレータ上に塗布、乾燥させた粘着剤を積層し、約2mmの厚さ、Φ8mmの径にペレット状に打ち抜いたものを用い、硬化収縮測定装置〔例えば、松尾産業(株)製 樹脂硬化収縮率応力測定装置 「CUSTRON」〕を使用し、初期荷重-60gfをかけた状態から、照度50mWで500mJ/cmの紫外線照射し、5分後の硬化収縮応力を測定する。硬化収縮応力は圧縮方向の力のため、初期荷重とは逆向きの力となる。そのため、初期荷重はマイナスで表現している。本発明では、硬化収縮応力は初期荷重-60gfを0としたときの収縮応力を表し、例えば、初期荷重-60gf、紫外線照射後の応力値が+150gfとした場合、硬化収縮応力は、150gf-(-60gf)=210gfとなる。
 硬化収縮応力は、エチレン性不飽和基や開始剤が少ないほど小さくなる。また、エチレン性不飽和基がベースポリマーに架橋されていたり、その分子量を大きくすることでも、エチレン性不飽和基の放射線架橋時の動きを抑制するため、硬化収縮応力を抑制することができる。硬化収縮応力を小さくすることで、放射線硬化収縮時の被着体表面への噛みこみや引っかかりが少なくなるため、剥離不良や糊残りを減らすことができる。
<その他の層>
 本発明の半導体ウェハ加工用粘着テープは、接着剤層などの他の層を設けてもよい。
(接着剤層)
 接着剤層は、粘着剤層上に設けられる。
 接着剤層には、硬化するために、分子内に2個以上のエポキシ基を有しているエポキシ樹脂を含み、ビスフェノール型、ナフタレン型、フェノールノボラック型、クレゾールノボラック型、フェノールアラルキル型、ビフェニル型、トリフェニルメタン型およびジシクロペンタジエン型からなる群から選択される少なくとも1種のエポキシ樹脂を含有することが好ましい。
 また、接着剤層には、エポキシ樹脂と反応して硬化させる硬化剤や硬化促進剤が含まれる。
 硬化剤、硬化促進剤としては、フェノール系硬化剤、酸無水物、アミン化合物、イミダゾール類、ホスフィン類が挙げられる。
 接着剤層には、高分子化合物を含有することが好ましく、例えば、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカルボジイミド樹脂、シアネートエステル樹脂、アクリル樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリビニルアセタール樹脂、ウレタン樹脂、アクリルゴム等が挙げられる。
 接着剤層は無機フィラーを含有してもよい。
 無機フィラーとしては、絶縁性および熱伝導性を有していればよく、例えば、窒素化合物(窒化ホウ素、窒化アルミニウム、窒化ケイ素、窒化炭素、窒化チタンなど)、炭素化合物(炭化ケイ素、炭化フッ素、炭化ホウ素、炭化チタン、炭化タングステン、ダイヤモンドなど)、金属酸化物(シリカ、アルミナ、酸化マグネシウム、酸化亜鉛、酸化ベリリウムなど)などが挙げられる。
 接着剤層の厚みは、特に制限されるものではないが、埋め込む対象となるバンプの高さによって適宜選択することができる。例えば、バンプの高さから10~20μm程度薄ければ好ましく使用することができる。
 接着剤層は、接着剤組成物を、剥離フィルム上に塗工し、基材フィルムの粘着剤層と貼り合わせることで設けられる。
<剥離ライナー>
 半導体ウェハ加工用粘着テープは、接着剤層を有さない場合、粘着剤層上に剥離ライナーを有してもよい。剥離ライナーとしては、シリコーン離型処理したポリエチレンテレフタレートフィルムなどが用いられる。また必要に応じて、シリコーン離型処理をしないポリプロピレンフィルムなども用いられる。
<<半導体ウェハの加工方法>>
 本発明の半導体ウェハの加工方法は、本発明の半導体ウェハ加工用粘着テープを使用する半導体ウェハの加工方法である。
 本発明の半導体ウェハ加工用粘着テープは、半導体ウェハの加工工程ならどの工程で使用してもよい。例えば、半導体ウェハ裏面研削工程、ダイシング工程、ダイシングダイボンディング工程などが好ましく挙げられる。
 また、本発明の半導体ウェハ加工用粘着テープは、表面凹凸が10μm以上ある半導体ウェハ面に貼合して使用することが好ましい。
 半導体ウェハの表面凹凸〔バンプ(電極)の高さ〕が、20~400μmのものに適用するのがより好ましく、50~150μmのものに適用するのがさらに好ましい。
 半導体ウェハ表面のバンプの配設密度(高密度)は、特に限定されるものではないが、バンプの高さの倍以上のピッチ(バンプの高さ方向の頂点から、次に配置されたバンプの高さ方向の頂点までの距離)のものに対して適用できる。また、全面に均一にバンプが配置された半導体ウェハにも用いられる。
 半導体ウェハの厚さは、半導体ウェハ加工用粘着テープを用いる加工方法により裏面研削された半導体ウェハの厚さにおいて、20~500μmが好ましく、50~200μmがより好ましく、80~200μmがさらに好ましい。
 本発明の半導体ウェハ加工用粘着テープを用いることで、薄膜半導体ウェハを高い歩留まりで得ることができる。この半導体ウェハの加工方法は、電極付半導体ウェハを50μm以下の薄膜研削の製造方法として好適である。
 本発明の半導体ウェハの加工方法は、本発明の半導体ウェハ加工用粘着テープを半導体ウェハ面に貼合した後、放射線、特に、紫外線照射して、半導体ウェハ加工用粘着テープを剥離する工程を含むことが好ましい。
 具体的には、まず、半導体ウェハの回路パターン面(表面)に、本発明の半導体ウェハ加工用粘着テープを粘着剤層が貼合面となるように貼合する。次に、半導体ウェハの回路パターンのない面側を半導体ウェハの厚さが所定の厚さ、例えば10~200μmになるまで研削する。その後、この半導体ウェハ加工用粘着テープの貼合された面を下側にして加熱吸着台に載せ、その状態で、半導体ウェハの回路パターンのない研削した面側に、ダイシング・ダイボンディングフィルムを貼合してもよい。
 ダイシング工程を行い、その後、半導体ウェハ加工用粘着テープの基材フィルムの背面に、ヒートシールタイプ(熱融着タイプ)もしくは粘着タイプの剥離テープを接着して半導体ウェハから半導体ウェハ加工用粘着テープを剥離する。
 以下に、本発明を実施例に基づいて、さらに詳細に説明するが、本発明はこれらに限定されるものではない。
(粘着剤組成物の調製)
 以下のようにして、粘着剤組成物2A~2Gを調製した。
1)粘着剤組成物2Aの調製
 2-エチルヘキシルアクリレート80質量部、2-ヒドロキシエチルアクリレート15質量部、メタクリル酸5質量部からなる分子量50万からなる共重合体100質量部に対して、アクリレート5官能で質量平均分子量1,400のウレタンアクリレートオリゴマー100質量部およびポリイソシアネートのコロネートL〔日本ポリウレタン工業(株)製〕4.0質量部、光重合開始剤としてSPEEDCURE BKL〔DKSHジャパン(株)製〕5.0質量部を加えて混合して、粘着剤組成物2Aを得た。
2)粘着剤組成物2Bの調製
 2-エチルヘキシルアクリレート80質量部、2-ヒドロキシエチルアクリレート15質量部、メタクリル酸5質量部からなる質量平均分子量50万からなる共重合体100質量部に対して、アクリレート3官能で質量平均分子量2,000のウレタンアクリレートオリゴマー100質量部およびポリイソシアネートのコロネートL〔日本ポリウレタン工業(株)製〕4.0質量部、光重合開始剤としてSPEEDCURE BKL〔DKSHジャパン(株)製〕5.0質量部を加えて混合して、粘着剤組成物2Bを得た。
3)粘着剤組成物2Cの調製
 2-エチルヘキシルアクリレート80質量部、2-ヒドロキシエチルアクリレート15質量部、メタクリル酸5質量部からなる質量平均分子量50万からなる共重合体100質量部に対して、アクリレート3官能で質量平均分子量6,000のウレタンアクリレートオリゴマー100質量部およびポリイソシアネートのコロネートL〔日本ポリウレタン工業(株)製〕4.0質量部、光重合開始剤としてSPEEDCURE BKL〔DKSHジャパン(株)製〕5.0質量部を加えて混合して、粘着剤組成物2Cを得た。
4)粘着剤組成物2Dの調製
 2-エチルヘキシルアクリレート80質量部、2-ヒドロキシエチルアクリレート15質量部、メタクリル酸5質量部からなる分子量50万からなる共重合体100質量部に対して、アクリレート5官能で質量平均分子量1,400のウレタンアクリレートオリゴマー80質量部およびアクリレート2官能で質量平均分子量3,000のウレタンアクリレートオリゴマー20部およびポリイソシアネートのコロネートL〔日本ポリウレタン工業(株)製〕4.0質量部、光重合開始剤としてSPEEDCURE BKL〔DKSHジャパン(株)製〕5.0質量部を加えて混合して、粘着剤組成物2Dを得た。
5)粘着剤組成物2Eの調製
 2-エチルヘキシルアクリレート80質量部、2-ヒドロキシエチルアクリレート15質量部、メタクリル酸5質量部からなる質量平均分子量50万からなる共重合体100質量部に対して、アクリレート5官能で質量平均分子量1,000のウレタンアクリレートオリゴマー100質量部およびポリイソシアネートのコロネートL〔日本ポリウレタン工業(株)製〕4.0質量部、光重合開始剤としてSPEEDCURE BKL〔DKSHジャパン(株)製〕5.0質量部を加えて混合して、粘着剤組成物2Eを得た。
5)粘着剤組成物2Fの調製
 2-エチルヘキシルアクリレート80質量部、2-ヒドロキシエチルアクリレート15質量部、メタクリル酸5質量部からなる質量平均分子量50万からなる共重合体100質量部に対して、アクリレート6官能で質量平均分子量800のウレタンアクリレートオリゴマー100質量部およびポリイソシアネートのコロネートL〔日本ポリウレタン工業(株)製〕4.0質量部、光重合開始剤としてSPEEDCURE BKL〔DKSHジャパン(株)製〕5.0質量部を加えて混合して、粘着剤組成物2Fを得た。
6)粘着剤組成物2Gの調製
 2-エチルヘキシルアクリレート80質量部、2-ヒドロキシエチルアクリレート15質量部、メタクリル酸5質量部からなる質量平均分子量50万からなる共重合体100質量部に対して、アクリレート3官能で質量平均分子量3,000のウレタンアクリレートオリゴマー20質量部およびポリイソシアネートのコロネートL〔日本ポリウレタン工業(株)製〕2.0質量部、光重合開始剤としてSPEEDCURE BKL〔DKSHジャパン(株)製〕5.0質量部を加えて混合して、粘着剤組成物2Gを得た。
実施例1
 厚さ38μmのポリエチレンテレフタレート(PET)のセパレータ上に、乾燥後の膜厚が90μmとなるように粘着剤組成物2Aを塗布し、乾燥させた後、厚さ140μmのエチレン-酢酸ビニル共重合体(EVA)フィルムからなる基材フィルムと貼りあわせ、厚さ230μmの半導体ウェハ加工用粘着テープを製造した。
実施例2
 実施例1において、粘着剤組成物2Aを粘着剤組成物2Bに替えた以外は、実施例1と同様にして、半導体ウェハ加工用粘着テープを製造した。
実施例3
 実施例1において、粘着剤組成物2Aを粘着剤組成物2Cに替えた以外は、実施例1と同様にして、半導体ウェハ加工用粘着テープを製造した。
実施例4
 実施例1において、粘着剤組成物2Aを粘着剤組成物2Dに替えた以外は、実施例1と同様にして、半導体ウェハ加工用粘着テープを製造した。
比較例1
 実施例1において、粘着剤組成物2Aを粘着剤組成物2Eに替えた以外は、実施例1と同様にして、半導体ウェハ加工用粘着テープを製造した。
比較例2
 実施例1において、粘着剤組成物2Aを粘着剤組成物2Fに替えた以外は、実施例1と同様にして、半導体ウェハ加工用粘着テープを製造した。
比較例3
 実施例1において、粘着剤組成物2Aを粘着剤組成物2Gに替えた以外は、実施例1と同様にして、半導体ウェハ加工用粘着テープを製造した。
(評価試験)
 実施例1~4および比較例1~3の半導体ウェハ表面加工用粘着テープにおいて、放射線硬化型粘着剤が有するエチレン性不飽和基(炭素-炭素二重結合)の含有モル量は、使用する原料から算出した。
 また、SUSに対する放射線照射後の剥離力の測定、硬化収縮応力の測定、剥離力の評価、ダスト浸入および糊残りの評価の評価行った。
[SUSに対する放射線照射後の剥離力の測定]
 上記で作製した各半導体ウェハ加工用粘着テープにおいて、放射線照射前の半導体ウェハ加工用粘着テープから幅25mm×長さ150mmの試験片をそれぞれ3点採取し、その試験片をJIS R 6253に規定する280番の耐水研磨紙で仕上げたJIS G 4305に規定する厚さ1.5mm~2.0mmのSUS鋼板上に2kgのゴムローラを3往復かけ圧着し、1時間放置後、測定値がその容量の15~85%の範囲に入るJIS B 7721に適合する引張試験機(インストロン社製の引張試験機:ツインコラム卓上モデル5567)を用いて、引張速度50mm/minで90°引きはがし法により常温(25℃)、湿度50%で粘着力を測定し、3点の平均値を求めた。
 その後、半導体ウェハ加工用粘着テープの残り部分で上記と同様の試験片を3点採取し、上記と同様にSUS鋼板に貼合して1時間放置後、500mJ/cmの紫外線を照射して硬化させた後、上記と同様にして、紫外線照射後の半導体ウェハ加工用粘着テープの粘着力を測定し、3点の平均値を求めた。
 このうち、紫外線硬化後の剥離力を、下記表1に示した。
[粘着剤の硬化収縮応力の測定]
 離型処理されたセパレータ上に塗布、乾燥させた粘着剤を積層し、約2mmの厚さ、Φ8mmの径にペレット状に打ち抜いたものを用い、硬化収縮測定装置〔松尾産業(株)製 樹脂硬化収縮率応力測定装置 「CUSTRON」〕を使用し、初期荷重-60gfをかけた状態から、照度50mWで500mJ/cmの紫外線照射し、5分後の硬化収縮応力を測定した。硬化収縮応力は圧縮方向の力のため、初期荷重とは逆向きの力となる。そのため、初期荷重はマイナスで表現している。硬化収縮応力は初期荷重-60gfを0としたときの収縮応力を表し、例えば、初期荷重-60gf、紫外線照射後の応力値が+150gfとした場合、硬化収縮応力は、150gf-(-60gf)=210gfとなる。
(半導体ウェハの加工と剥離力の評価)
 表面に高さ75μmのバンプを有する8インチ径の半導体ウェハに、上記で製造した各半導体ウェハ加工用粘着テープを、貼合温度25℃で貼合した。その後、株式会社ディスコ製DFG8760(商品名)を用いて、上記の半導体ウェハ加工用粘着テープで貼合されたバンプ付半導体ウェハの裏面を2枚ずつ、200μmの厚さまで研削加工した。研削後の半導体ウェハ加工用粘着テープ付き半導体ウェハに500mJ/cmの紫外線を照射し、インストロン社製の引張試験機(ツインコラム卓上モデル5567)を用いて半導体ウェハ加工用粘着テープを剥離し、剥離時の幅が最大(200mm)となったときの剥離力において、以下の基準で評価した。
 なお、表1では単に「剥離力」として示した。
評価基準
 A:20N/200mm以下
 B:20N/200mmを超え50N/200mm以下
 C:50N/200mmを超える
[ダスト浸入および糊残りの評価]
 剥離後の半導体ウェハを顕微鏡観察し、ダスト浸入および糊残りを調べた。
 この結果を、以下の基準で評価した。
ダスト侵入の評価基準
 A:ダスト浸入が全く観測されなかった。
 B:ダスト浸入がかすかに観測された。
 C:ダスト浸入が明らかにはっきりと観測された。
糊残りの評価基準
 A:糊残りが全く観測されなかった。
 B:糊残りがかすかに観測された。
 C:糊残りが明らかにはっきりと観測された。
 剥離力の評価、ダスト侵入、糊残りの評価において、いずれも、Cランクは目標レベルに達していない。
 得られた結果を、下記表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1より、粘着剤中のエチレン性不飽和基の含有量が、0.2~2.0mmol/gの範囲を満たす実施例1~4の半導体ウェハ加工用粘着テープは、硬化収縮応力を300gf以下に抑制できる範囲でSUS板に対する剥離力を3N/25mm以下と十分に落とすことができるため、表面凹凸の大きいバンプウェハに対する剥離力を50N/200mm以下に抑制することができ、優れていることがわかる。
 これに対して、比較例1、2の半導体ウェハ加工用粘着テープは、粘着剤中のエチレン性不飽和基の含有量が、2.0mmol/gを超え、硬化収縮応力が330gf、380gfと高いため、剥離力も50N/200mmを超え、高い。しかも、比較例2の半導体ウェハ加工用粘着テープでは、糊残りが観察された。逆に、粘着剤中のエチレン性不飽和基の含有量が、0.2mmol/g未満の比較例3の半導体ウェハ加工用粘着テープは、硬化収縮応力は120gfと低いものの、紫外線照射後の紫外線硬化が不十分であるため、SUSに対する剥離力が5.2N/25mmと高く、ダスト侵入および糊残りが観測され、これらはいずれも不十分であった。
 本発明の半導体ウェハ加工用粘着テープは、上記のように、ダスト侵入と糊残りのいずれの評価にも優れており、特に、表面凹凸が75μmと、バンプの高さが10μm以上である半導体ウェハ面に貼合して使用する半導体ウェハ加工用粘着テープとして優れていることがわかる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2016年3月17日に日本国で特許出願された特願2016-054269に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (10)

  1.  基材フィルムの少なくとも一方の面に粘着剤層を有する半導体ウェハ加工用粘着テープであって、該粘着剤層の粘着剤が、放射線硬化型粘着剤であり、少なくとも、側鎖にエチレン性不飽和基(放射線重合性炭素-炭素二重結合でエチレン性二重結合)を有するベース樹脂、脂環式(メタ)アクリレートから導かれるモノマー単位を含むことのないアクリル系感圧性ベース樹脂および分子中に少なくとも2個のエチレン性不飽和基(放射線重合性炭素-炭素二重結合でエチレン性二重結合)を有するウレタンアクリレートオリゴマーから選択される樹脂もしくはオリゴマーを有し、かつ該粘着剤がエチレン性不飽和基を0.2~2.0mmol/g有することを特徴とする半導体ウェハ加工用粘着テープ。
  2.  前記脂環式(メタ)アクリレートから導かれるモノマー単位を含むことのないアクリル系感圧性ベース樹脂が、(メタ)アクリル酸の官能基を有してもよいアルキルのエステル、アクリル酸およびメタクリル酸から導かれるモノマー単位のみからなることを特徴とする請求項1に記載の半導体ウェハ加工用粘着テープ。
  3.  前記(メタ)アクリル酸の官能基を有してもよいアルキルのエステルの前記官能基が、カルボキシ基、水酸基、アミノ基、メルカプト基、環状酸無水物基、エポキシ基、イソシアネート基(-N=C=O)であることを特徴とする請求項2に記載の半導体ウェハ加工用粘着テープ。
  4.  少なくとも1種の前記オリゴマーの質量平均分子量が1,100~20,000であることを特徴とする請求項1~3のいずれか1項に記載の半導体ウェハ加工用粘着テープ。
  5.  少なくとも1種の前記オリゴマーの質量平均分子量が1,400~20,000であることを特徴とする請求項1~3のいずれか1項に記載の半導体ウェハ加工用粘着テープ。
  6.  前記オリゴマーが、少なくとも、エチレン性不飽和基を分子内に2つ有するオリゴマーとエチレン性不飽和基を分子内に3つ以上有するオリゴマーの混合物であることを特徴とする請求項1~5のいずれか1項に記載の半導体ウェハ加工用粘着テープ。
  7.  前記粘着剤が、前記エチレン性不飽和基を0.72~2.0mmol/g有することを特徴とする請求項1~6のいずれか1項に記載の半導体ウェハ加工用粘着テープ。
  8.  前記粘着剤が、多価イソシアネート化合物を含有することを特徴とする請求項1~7のいずれか1項に記載の半導体ウェハ加工用粘着テープ。
  9.  SUS板に対する紫外線硬化後の粘着力が、0.3~3.0N/25mmであり、かつ硬化収縮応力が、300gf以下であることを特徴とする請求項1~8のいずれか1項に記載の半導体ウェハ加工用粘着テープ。
  10.  請求項1~9のいずれか1項に記載の半導体ウェハ加工用粘着テープを、表面凹凸が10μm以上ある半導体ウェハ面に貼合した後、紫外線照射して、前記半導体ウェハ加工用粘着テープを剥離する工程を含むことを特徴とする半導体ウェハの加工方法。
PCT/JP2017/007709 2016-03-17 2017-02-28 半導体ウェハ加工用粘着テープおよび半導体ウェハの加工方法 WO2017159343A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177031167A KR102089928B1 (ko) 2016-03-17 2017-02-28 반도체 웨이퍼 가공용 점착 테이프 및 반도체 웨이퍼의 가공 방법
CN201780001306.0A CN107960131B (zh) 2016-03-17 2017-02-28 半导体晶片加工用胶带和半导体晶片的加工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-054269 2016-03-17
JP2016054269A JP6034522B1 (ja) 2016-03-17 2016-03-17 半導体ウェハ加工用粘着テープおよび半導体ウェハの加工方法

Publications (1)

Publication Number Publication Date
WO2017159343A1 true WO2017159343A1 (ja) 2017-09-21

Family

ID=57419839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007709 WO2017159343A1 (ja) 2016-03-17 2017-02-28 半導体ウェハ加工用粘着テープおよび半導体ウェハの加工方法

Country Status (5)

Country Link
JP (1) JP6034522B1 (ja)
KR (1) KR102089928B1 (ja)
CN (1) CN107960131B (ja)
TW (1) TWI744290B (ja)
WO (1) WO2017159343A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763255A (zh) * 2019-11-26 2020-02-07 衡阳开拓光电科技有限公司 一种光纤绕环固化工艺
WO2020100696A1 (ja) * 2018-11-12 2020-05-22 日立化成株式会社 半導体装置の製造方法及び半導体ウエハ加工用接着フィルム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6200611B1 (ja) * 2016-03-17 2017-09-20 古河電気工業株式会社 半導体ウェハ加工用粘着テープ、半導体ウェハ加工用粘着テープの製造方法および半導体ウェハの加工方法
KR102191706B1 (ko) 2017-02-24 2020-12-16 후루카와 덴키 고교 가부시키가이샤 마스크 일체형 표면 보호 테이프 및 그것을 이용하는 반도체 칩의 제조 방법
CN109075055B (zh) * 2017-03-31 2023-08-15 古河电气工业株式会社 半导体晶片表面保护用胶带和半导体晶片的加工方法
JP7284856B2 (ja) * 2018-03-14 2023-05-31 マクセル株式会社 バックグラインド用粘着テープ
CN116406410A (zh) * 2020-11-09 2023-07-07 电化株式会社 粘合带及加工方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249878A (ja) * 1988-03-31 1989-10-05 Furukawa Electric Co Ltd:The 半導体ウエハ固定用放射線硬化性粘着テープ
JP2011181899A (ja) * 2010-02-02 2011-09-15 Lintec Corp ダイシングシート
JP2015073056A (ja) * 2013-10-04 2015-04-16 リンテック株式会社 半導体加工用シート

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3620810B2 (ja) 1996-05-02 2005-02-16 リンテック株式会社 ウエハ保護用粘着シート
JP4369584B2 (ja) 2000-01-21 2009-11-25 日東電工株式会社 半導体ウエハ保持保護用粘着シート
JP5057697B2 (ja) * 2006-05-12 2012-10-24 日東電工株式会社 半導体ウエハ又は半導体基板加工用粘着シート
JP4861081B2 (ja) 2006-07-14 2012-01-25 電気化学工業株式会社 半導体部材固定用粘着シート及びそれを用いた電子部品製造方法。
JP5286084B2 (ja) * 2006-07-19 2013-09-11 積水化学工業株式会社 ダイシング・ダイボンディングテープ及び半導体チップの製造方法
JP5069662B2 (ja) * 2007-11-12 2012-11-07 リンテック株式会社 粘着シート
KR101140790B1 (ko) * 2010-03-30 2012-05-03 티티티케미칼 주식회사 웨이퍼 다이싱용 아크릴계 점착 조성물 및 이를 포함하는 다이싱 테이프
KR101198254B1 (ko) 2010-05-31 2012-11-07 주식회사 케이씨씨 반도체 제조용 점·접착쉬트
KR20110131772A (ko) * 2010-05-31 2011-12-07 주식회사 케이씨씨 자외선 경화성 점착수지 조성물 및 이를 포함하는 다이싱용 또는 표면보호용 점착 테이프
JP5687897B2 (ja) * 2010-12-28 2015-03-25 日東電工株式会社 放射線硬化型粘着剤組成物及び粘着シート
CN102504623B (zh) * 2011-09-28 2014-01-08 中钞特种防伪科技有限公司 一种剥离层组合物及其制备方法和应用
JP2013122005A (ja) * 2011-12-09 2013-06-20 Samsung Yokohama Research Institute Co Ltd 半導体用感光性接着フィルムおよび当該フィルムを用いた半導体装置の製造方法
JP6092161B2 (ja) * 2014-07-03 2017-03-08 リンテック株式会社 表面保護フィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249878A (ja) * 1988-03-31 1989-10-05 Furukawa Electric Co Ltd:The 半導体ウエハ固定用放射線硬化性粘着テープ
JP2011181899A (ja) * 2010-02-02 2011-09-15 Lintec Corp ダイシングシート
JP2015073056A (ja) * 2013-10-04 2015-04-16 リンテック株式会社 半導体加工用シート

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100696A1 (ja) * 2018-11-12 2020-05-22 日立化成株式会社 半導体装置の製造方法及び半導体ウエハ加工用接着フィルム
CN112930584A (zh) * 2018-11-12 2021-06-08 昭和电工材料株式会社 半导体装置的制造方法及半导体晶圆加工用胶黏膜
JPWO2020100696A1 (ja) * 2018-11-12 2021-09-24 昭和電工マテリアルズ株式会社 半導体装置の製造方法及び半導体ウエハ加工用接着フィルム
TWI795609B (zh) * 2018-11-12 2023-03-11 日商昭和電工材料股份有限公司 半導體裝置的製造方法及半導體晶圓加工用接著膜
JP7384168B2 (ja) 2018-11-12 2023-11-21 株式会社レゾナック 半導体装置の製造方法及び半導体ウエハ加工用接着フィルム
CN110763255A (zh) * 2019-11-26 2020-02-07 衡阳开拓光电科技有限公司 一种光纤绕环固化工艺

Also Published As

Publication number Publication date
KR20180020956A (ko) 2018-02-28
JP2017168739A (ja) 2017-09-21
TWI744290B (zh) 2021-11-01
CN107960131B (zh) 2022-02-25
CN107960131A (zh) 2018-04-24
JP6034522B1 (ja) 2016-11-30
KR102089928B1 (ko) 2020-03-17
TW201802207A (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
JP6034522B1 (ja) 半導体ウェハ加工用粘着テープおよび半導体ウェハの加工方法
JP5718515B1 (ja) 半導体ウエハ表面保護用粘着テープおよび半導体ウエハの加工方法
JP7079200B2 (ja) 半導体ウェハ表面保護用粘着テープ及び半導体ウェハの加工方法
JP5137538B2 (ja) 粘接着剤組成物、粘接着シートおよび半導体装置の製造方法
KR101518533B1 (ko) 반도체 장치 제조용 필름 롤
JP6053909B2 (ja) 半導体ウエハ表面保護用粘着テープおよびその製造方法
TW201906133A (zh) 切晶黏晶膜
JP5242830B1 (ja) 半導体ウェハ表面保護用粘着テープおよび半導体ウェハの製造方法
WO2005112091A1 (ja) 粘接着シート並びにそれを用いた半導体装置及びその製造方法
JP2010129816A (ja) 半導体チップ積層体および半導体チップ積層用接着剤組成物
TW201932558A (zh) 接著膜及附有切晶帶之接著膜
CN107112229B (zh) 半导体晶片表面保护用胶带
JP5089358B2 (ja) ウエハ加工用テープ
JP6200611B1 (ja) 半導体ウェハ加工用粘着テープ、半導体ウェハ加工用粘着テープの製造方法および半導体ウェハの加工方法
JP2015220377A (ja) 粘接着フィルム一体型表面保護テープおよび粘接着フィルム一体型表面保護テープを用いた半導体チップの製造方法
JP5237647B2 (ja) 粘接着剤組成物、粘接着シートおよび半導体装置の製造方法
JP2012209429A (ja) 半導体ウエハ加工用粘着テープ及び半導体ウエハの加工方法
JP5184685B1 (ja) 半導体ウエハ加工用テープ
JP5291040B2 (ja) ウエハ加工用粘着テープ
WO2020153499A1 (ja) 半導体ウェハ加工用紫外線硬化型粘着テープ及び半導体チップの製造方法並びにこのテープの使用方法
JP2011249608A (ja) 半導体ウエハ表面保護用粘着テープ
JP2022153305A (ja) ダイシングダイボンディングシート及び半導体装置の製造方法
TW202101550A (zh) 工件加工用片材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20177031167

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766346

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766346

Country of ref document: EP

Kind code of ref document: A1