WO2017159340A1 - 内燃機関用リンク機構のアクチュエータ及び波動歯車減速機 - Google Patents

内燃機関用リンク機構のアクチュエータ及び波動歯車減速機 Download PDF

Info

Publication number
WO2017159340A1
WO2017159340A1 PCT/JP2017/007667 JP2017007667W WO2017159340A1 WO 2017159340 A1 WO2017159340 A1 WO 2017159340A1 JP 2017007667 W JP2017007667 W JP 2017007667W WO 2017159340 A1 WO2017159340 A1 WO 2017159340A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
internal
teeth
flexible external
combustion engine
Prior art date
Application number
PCT/JP2017/007667
Other languages
English (en)
French (fr)
Inventor
健 ブライアン 池口
言典 矢内
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201780018238.9A priority Critical patent/CN108779842A/zh
Priority to US16/084,193 priority patent/US20200318720A1/en
Priority to DE112017001399.2T priority patent/DE112017001399T5/de
Publication of WO2017159340A1 publication Critical patent/WO2017159340A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/323Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear comprising eccentric crankshafts driving or driven by a gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • F16H2049/003Features of the flexsplines therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling
    • F16H55/0833Flexible toothed member, e.g. harmonic drive

Definitions

  • the present invention relates to an actuator and a wave gear reducer for a link mechanism for an internal combustion engine.
  • the actuator of the link mechanism for an internal combustion engine for example, the one described in Patent Document 1 is known.
  • the actuator of the link mechanism for the internal combustion engine has a control shaft of the variable compression ratio mechanism and an actuator that changes the rotational position of the control shaft.
  • the actuator reduces the rotational speed of the electric motor to the control shaft.
  • a transmitting wave gear reducer is installed.
  • the technique of patent document 2 is known as a wave gear reducer. This wave gear reducer was invented by Mr. C. W. Musser, bent the planetary gear classified as KHV type planetary gear into an elliptical shape, meshed the long shaft end, and rotated the long shaft as one system To do.
  • the wave gear reducer is composed of a thin-walled cylindrical flexible external gear arranged coaxially and a rigid internal gear having an even number of teeth greater than that of the flexible external gear. It is bent into an elliptical shape by the inserted wave generator. The long axis of the ellipse rotates in synchronization with the rotational motion input to the wave generator, but the flexible external gear is deformed and held with a degree of freedom of rotation in the circumferential direction.
  • the gear performs a deformation motion while changing the meshing position on the elliptical long axis with the rigid internal gear. During this deformation movement, due to the difference in the number of teeth between the flexible external gear and the rigid internal gear, the relative position in the circumferential direction between the rigid internal gear and the flexible external gear changes, and this difference is output as a reduced speed rotation. .
  • the wave gear reducer moves relative to the gear radial direction in a state where the teeth are in contact with each other and changes the meshing position, the tooth shape of the flexible external gear and the rigid internal gear considering the relative movement of the teeth. It is important to consider Since the wave gear reducer described in Patent Document 2 can always transmit rotation while having meshing at both ends of the long axis, the meshing area has been increased so far to improve high load torque performance and high positioning accuracy. Tooth forms that seek for have been considered. Therefore, even if the tooth contact point position changes due to relative movement, the tooth contact area is increased by, for example, making the tooth profile curvature of the flexible external gear and the rigid internal gear equal on the contact point, and the meshing area is increased. Has increased.
  • the contact area between the internal teeth and the external teeth can be reduced, and the input efficiency, drive efficiency, and torque resistance of the wave gear reducer can be improved.
  • FIG. 1 is a schematic view of an internal combustion engine including an actuator for a link mechanism for an internal combustion engine according to a first embodiment.
  • FIG. 3 is a cross-sectional view of an actuator of the internal combustion engine link mechanism according to the first embodiment.
  • 1 is an exploded isometric view of a wave gear reducer of Example 1.
  • FIG. It is the schematic showing the meshing state of the flexible external gear of Example 1 and a rigid internal gear. It is a figure showing the relationship between toothpick and tooth root of Example 1. It is a figure showing the movement of the meshing position of the rigid internal gear of Example 1 and a flexible external gear.
  • FIG. 1 is a schematic view of an internal combustion engine provided with an actuator for a link mechanism for an internal combustion engine according to a first embodiment.
  • the basic configuration is the same as that described in FIG. 1 of JP 2011-169152 A, and will be described briefly.
  • An upper link 3 is rotatably connected to a piston 1 which reciprocates in a cylinder block of an internal combustion engine through a piston pin 2.
  • a lower link 5 is rotatably connected to the lower end of the upper link 3 via a connecting pin 6.
  • a crankshaft 4 is rotatably connected to the lower link 5 via a crankpin 4a.
  • the upper end of the first control link 7 is rotatably connected to the lower link 5 via a connecting pin 8.
  • a lower end portion of the first control link 7 is coupled to a coupling mechanism 9 having a plurality of link members.
  • the connection mechanism 9 includes a first control shaft 10, a second control shaft 11, and a second control link 12 that connects the first control shaft 10 and the second control shaft 11.
  • the first control shaft 10 extends in parallel with the crankshaft 4 extending in the cylinder row direction inside the internal combustion engine.
  • the first control shaft 10 includes a first journal portion 10a that is rotatably supported by the internal combustion engine body, a control eccentric shaft portion 10b that is rotatably connected to a lower end portion of the first control link 7, and a second control link. 12 has an eccentric shaft portion 10c in which one end portion 12a is rotatably connected.
  • One end of the first arm portion 10 d is connected to the first journal portion 10 a and the other end is connected to the lower end portion of the first control link 7.
  • the control eccentric shaft portion 10b is provided at a position that is eccentric by a predetermined amount with respect to the first journal portion 10a.
  • the drive motor 22 is a brushless motor, and has a bottomed cylindrical motor casing 45, a cylindrical coil 46 fixed to the inner peripheral surface of the motor casing 45, and a rotor rotatably provided inside the coil 46. 47 and a motor drive shaft 48 with one end 48 a fixed to the center of the rotor 47.
  • the motor drive shaft 48 is rotatably supported by a ball bearing 52 provided at the bottom of the motor casing 45.
  • the second control shaft 11 includes a shaft portion main body 23 that extends in the axial direction, and a fixing flange 24 that is expanded in diameter from the shaft portion main body 23. In the second control shaft 11, a shaft body 23 and a fixing flange 24 are integrally formed of a ferrous metal material.
  • the fixing flange 24 has a plurality of bolt insertion holes formed at equal intervals in the circumferential direction of the outer peripheral portion. Bolts are inserted into the bolt insertion holes and coupled to the flange portion 36 b of the flexible external gear 36 of the wave gear reducer 21.
  • the wave gear reducer 21 is accommodated in the opening groove 20 a of the housing 20.
  • a supply hole 20b for supplying lubricating oil from a hydraulic source or the like not shown is opened in the opening groove 20a and above the wave gear reducer 21 in the direction of gravity.
  • the lubricating oil is supplied from the supply hole 20b, the lubricating oil is dropped on the wave gear reducer 21 below and lubricates between the rotating elements.
  • the wave gear reducer 21 is bolted in the opening groove 20 a of the housing 20 and is disposed on the inner diameter side of the annular rigid internal gear 27 having a plurality of internal teeth 27 a formed on the inner periphery thereof, and the rigid internal gear 27.
  • a flexible external gear 36 that is deformable and has outer teeth 36 a meshing with the inner teeth 27 a on the outer peripheral surface, and an outer peripheral surface that is formed in an elliptical shape along the inner peripheral surface of the flexible outer gear 36.
  • a wave generator 37 that slides.
  • the flexible external gear 36 is a thin-walled cylindrical member that is formed of a metal material and has a bottom and is capable of bending deformation.
  • the number of external teeth 36 a of the flexible external gear 36 is two fewer than the number of teeth of the internal teeth 27 a of the rigid internal gear 27.
  • An insertion hole 36 c through which the second control shaft 11 passes is formed in the inner periphery of the flange portion 36 b formed at the bottom of the flexible external gear 36.
  • FIG. 4 is a schematic diagram showing the meshing state of the flexible external gear and the rigid internal gear of the first embodiment. Since the wave generating plug 371 having an elliptical outer shape is fitted to the inner ring of the deep groove ball bearing 372 to follow the elliptical shape, the outer shape of the wave generator 37 is also elliptical. Further, by fitting the wave generator 37 to the inner diameter of the flexible external gear 36, the flexible external gear 36 whose initial state is circular is also deformed into an elliptical shape.
  • the flexible external gear 36 bent into an ellipse has two teeth fewer than the rigid internal gear 27, it meshes with the deviation of the tooth pitch on the major axis of the ellipse, and the tooth pitch matches on the minor axis of the ellipse. Since the flexible external gear 36 is bent in the axial direction, the teeth do not overlap and do not interfere with each other. For this reason, the flexible external gear 36 and the rigid internal gear 27 having an even-numbered difference in the number of teeth can be meshed as in the meshed state shown in FIG.
  • the tooth portion of the flexible external gear 36 is flexible, the flange portion 36b cannot be deformed from a circular shape in order to extract the output, and is directly fastened to the second control shaft 11. Starting from 36b, the shape expands into an elliptical shape toward the end of the thin cylindrical opening. That is, the rotational motion of the flexible external gear 36 extracted from the deformation motion in the vicinity of the opening end can be transmitted from the flange portion 36 b to the second control shaft 11.
  • the increase / decrease of the radius due to the rotation of the wave generation plug 371 is transmitted to the outer ring of the wave generation plug 371 via the ball.
  • the inner and outer rings have a flexible thin-walled structure, when the degree of freedom in the circumferential direction of the outer ring of the deep groove ball bearing 372 is restricted, the outer ring performs a deformation motion synchronized with the increase and decrease of the radius.
  • FIG. 6 is a diagram illustrating movement of the meshing position between the rigid internal gear and the flexible external gear according to the first embodiment.
  • the flexible external gear 36 Since the flexible external gear 36 is fastened to the second control shaft 11, when the second control shaft 11 receives torque from an external system, the torque is applied to the flexible external gear 36 via the flange portion 36b.
  • the rigid internal gear 27 receives torque.
  • the curvature of the internal teeth 27a is defined as ⁇ s
  • the curvature of the external teeth 36a is defined as ⁇ e.
  • the flexible external gear 36 having a low tooth linear tooth profile is used in the tooth profile design, from the basic specifications of the reference pitch circle DS, the reduction ratio ID, and the reference pressure angle ⁇ of the rigid internal gear 27, the flexible external gear 36 having a low tooth linear tooth profile is used. Then, the meshing state of the rigid internal gear 27 is obtained, and at each meshing position, the straight tooth surface of the flexible external gear 36 is corrected to a single arc of curvature ⁇ e in contact with the tooth root R and the tooth tip R so that there is no meshing interference. It is characterized by that.
  • FIG. 8 is a diagram showing each reference pitch circle of the cross section perpendicular to the axis at the meshing representative tooth width position of the wave gear reducer of the first embodiment.
  • Each reference pitch circle is a reference pitch circle DS, DE of the rigid internal gear 27 and the flexible external gear 36.
  • the reference pitch circle DE of the flexible external gear 36 is deformed by the wave generator 37 and is inscribed at both ends of the major axis with the reference pitch circle DS of the rigid internal gear 27 at all times. Therefore, for example, when the wave generation plug 371 rotates ⁇ / 2, the reference pitch circle of the flexible external gear 36 is deformed like DE ′.
  • the flexible external gear 36 does not interfere with the rigid internal gear 27 on the short axis, and the reference pitch circles DS and DE are in contact with each other on the long axis.
  • the radial movement amount of the wave gear reducer 21 with which the teeth can mesh can be obtained.
  • This radial movement amount is the total amplitude S shown in FIG. 8, and the major axis radius A and minor axis radius B are expressed by the following formulas (3) and (4).
  • [Expression (3)] A RDS
  • B RDS-S
  • an appropriate S satisfying HA ⁇ S is selected based on the above requirement of the movement amount.
  • the reference pitch circle radius RD which is the elliptical deformation state of the flexible external gear 36
  • the reference pitch circle radius RDn of the neutral circle before the elliptical deformation is (A + B) / 2.
  • the low-tooth linear tooth profile of the flexible external gear 36 having the same module and the number of teeth (Z-2) can be obtained.
  • the meshing state with the rigid internal gear 27 is obtained by elliptically deforming the teeth on the flexible outer gear 36 in the neutral circle state, but the equal pitch points on the circumference change due to the elliptical deformation.
  • the cross section perpendicular to the axis of the wave gear reducer 21 shown in FIG. 8 attention is paid to deformation in a state in which a plane is defined with the axis as the origin and the horizontal plane and the vertical plane as the X axis and the Y axis, respectively.
  • Equation (5) is a model expression representing the present invention, and the pitch deviation angle after deformation can be obtained by adjusting the coefficient according to the actual deformation.
  • first and second control links 7 and 12 having one end connected to a link mechanism of an internal combustion engine;
  • a second control shaft 11 control shaft that changes the posture of the first and second control links 7 and 12 by rotating;
  • a housing 20 that rotatably supports the second control shaft 11;
  • a wave gear reducer 21 that reduces the rotational speed of the motor drive shaft 48 (output shaft) of the drive motor 22 and transmits it to the second control shaft 11;
  • the wave gear reducer 21 is A rigid internal gear 27 (internal gear portion) provided in the housing 20 and having internal teeth 27a;
  • a flexible external gear 36 disposed inside the rigid internal gear 27 and having outer teeth 36a formed on the outer periphery thereof to transmit rotation to the second control shaft 11, It rotates by the motor drive shaft 48 of the drive motor 22, and the flexible external gear 36 is bent into an elliptical shape so that the external teeth 36 a of the flexible external gear 36 are partially meshed with the internal teeth 27
  • a wave generator 37 for rotating the meshing portion of the flexible external gear 36 and the rigid internal gear 27 Have The curvature of the external teeth 36a at the contact portion between the internal teeth 27a and the external teeth 36a is larger than the curvature of the internal teeth 27a. Therefore, the contact area between the inner teeth 27a and the outer teeth 36a can be reduced, and the driving efficiency and torque resistance of the actuator of the internal combustion engine link mechanism can be improved.
  • a rigid internal gear 27 (internal gear portion) provided in the housing 20 and having internal teeth 27a;
  • a flexible external gear 36 disposed inside the rigid internal gear 27 and having outer teeth 36a formed on the outer periphery thereof to transmit rotation to the second control shaft 11 (output shaft); It rotates by the motor drive shaft 48 (input shaft), the flexible external gear 36 is bent into an elliptical shape, and the external teeth 36a of the flexible external gear 36 are partially meshed with the internal teeth 27a of the rigid internal gear 27.
  • a wave generator 37 for rotating the meshing portion of the flexible external gear 36 and the rigid internal gear 27 Have The curvature of the external teeth 36a at the contact portion between the internal teeth 27a and the external teeth 36a is larger than the curvature of the internal teeth 27a. Therefore, the driving efficiency and torque resistance of the wave gear reducer 21 can be improved.
  • the angle formed by the line connecting the pitch point of the elliptical circumference and the origin to the X axis is ⁇ , the reference pitch circle radius RDn that is the basis of the external teeth 36a and the internal teeth 27a, and the flexible external gear 36 is on the short axis
  • arg ⁇ arcsin [ ⁇ (RDn, where S is the total amplitude, which is the amount of radial movement that can engage with the tooth at the position where the reference pitch circle Dn contacts on the long axis without interfering with the rigid internal gear 27. -(S * cos 3 ⁇ )) / ((A 2 sin 2 ⁇ + B 2 cos 2 ⁇ ) 1/2 -RDn) ⁇ * cos ⁇ ]. Therefore, each tooth profile of the wave gear device in which the tooth surface sliding resistance is reduced and the meshing is ensured can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Retarders (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Gears, Cams (AREA)

Abstract

入力効率及び駆動効率の両方を向上可能な内燃機関用リンク機構のアクチュエータ及び波動歯車減速機を提供すること。 本発明では、入力軸によって回転する波動発生器により、可撓性外歯車を楕円形に撓ませて可撓性外歯車の外歯を内歯車部の内歯に部分的に噛み合わせると共に、可撓性外歯車と内歯車部との噛合い箇所を回転させる波動歯車減速機において、内歯と外歯の接触部分における外歯の曲率を、内歯より大きくした。

Description

内燃機関用リンク機構のアクチュエータ及び波動歯車減速機
 本発明は、内燃機関用リンク機構のアクチュエータ及び波動歯車減速機に関する。
 従来、内燃機関用リンク機構のアクチュエータとして、例えば、特許文献1に記載するものが知られている。この内燃機関用リンク機構のアクチュエータは、可変圧縮比機構の制御軸と、この制御軸の回転位置を変更するアクチュエータとを有し、アクチュエータには電動モータの回転数を減速して前記制御軸へ伝達する波動歯車減速機が搭載されている。また、波動歯車減速機として、特許文献2の技術が知られている。この波動歯車減速機は、C. W. Musser氏により発明され、K-H-V型遊星歯車に分類される遊星歯車を楕円形状に撓ませて長軸端を噛み合わせ、長軸回転を装置の1系統とするものである。
 波動歯車減速機は、同軸上に配置された薄肉円筒状の可撓性外歯車と、可撓性外歯車より偶数倍歯数の多い剛性内歯車とで構成され、可撓性外歯車内に嵌入された波動発生器により楕円形状に撓められる。楕円長軸は波動発生器へ入力される回転運動と同期して回転するが、可撓性外歯車は周方向への回転自由度が与えられた状態で変形保持されるため、可撓性外歯車は剛性内歯車と楕円長軸上での噛み合い位置を変えながら変形運動を行う。この変形運動の際、可撓性外歯車と剛性内歯車の歯数差のため、剛性内歯車と可撓性外歯車間の周方向相対位置が差分変化し、この差分を減速回転として出力する。
特開2012-251446号公報 米国特許第2906143号
 ここで波動歯車減速機は、歯同士が接触した状態で歯車径方向へ相対運動して噛み合い位置を変えていくため、歯の相対運動を考慮した可撓性外歯車及び剛性内歯車の歯形状を考察することが重要となる。特許文献2に記載の波動歯車減速機は、常に長軸両端で噛み合いを有しつつ回転伝達が可能であるという点から、これまで噛み合い領域を増やして高負荷トルク性能を向上させ、高位置決め精度を求める歯形が考察されてきた。そのため歯の接触点位置が相対運動により変化しても、接触点上における可撓性外歯車及び剛性内歯車の歯断面曲率が等しくなる歯形状にする等により歯接触面積を増やし、噛み合い領域を増大させてきた。しかしながら、負荷状態で回転運動を行う場合では歯接触面積の増大により入力効率が比較的小さくなるが、駆動効率を考慮した歯形の考察はこれまでされて来なかった。
 本発明の一実施形態は、上記課題に鑑みてなされたものであり、入力効率及び駆動効率の両方を向上可能な内燃機関用リンク機構のアクチュエータ及び波動歯車減速機を提供することを目的とする。
 上記目的を達成するため、本発明の一実施形態では、入力軸によって回転する波動発生器により、可撓性外歯車を楕円形に撓ませて可撓性外歯車の外歯を内歯車部の内歯に部分的に噛み合わせると共に、可撓性外歯車と内歯車部との噛合い箇所を回転させる波動歯車減速機において、内歯と外歯の接触部分における外歯の曲率を、内歯より大きくした。
 よって、本発明の一実施形態では、内歯と外歯の接触面積を低下させることが可能となり、波動歯車減速機の入力効率、駆動効率及び耐トルク性を向上できる。
実施例1の内燃機関用リンク機構のアクチュエータを備えた内燃機関の概略図である。 実施例1の内燃機関用リンク機構のアクチュエータの断面図である。 実施例1の波動歯車減速機の分解等角図である。 実施例1の可撓性外歯車と剛性内歯車との噛合い状態を表す概略図である。 実施例1の歯末たけ及び歯元たけの関係を表す図である。 実施例1の剛性内歯車と可撓性外歯車との噛合い位置の移動を表す図である。 剛性内歯歯車と可撓性外歯車との接触面積と、剛性内歯車歯面及び可撓性外歯車歯面の曲率比の相関図である。 実施例1の波動歯車減速機の噛み合い代表歯幅位置における軸直角断面の各基準ピッチ円を表す図である。
 〔実施例1〕 図1は実施例1の内燃機関用リンク機構のアクチュエータを備えた内燃機関の概略図である。基本的な構成は、特開2011-169152号公報の図1に記載されているものと同じであるため、簡単に説明する。内燃機関のシリンダブロックのシリンダ内を往復運動するピストン1には、ピストンピン2を介してアッパリンク3の上端が回転自在に連結されている。アッパリンク3の下端には、連結ピン6を介してロアリンク5が回転自在に連結されている。ロアリンク5には、クランクピン4aを介してクランクシャフト4が回転自在に連結されている。また、ロアリンク5には、連結ピン8を介して第1制御リンク7の上端部が回転自在に連結されている。第1制御リンク7の下端部は、複数のリンク部材を有する連結機構9と連結されている。連結機構9は、第1制御軸10と、第2制御軸11と、第1制御軸10及び第2制御軸11とを連結する第2制御リンク12と、を有する。
 第1制御軸10は、内燃機関内部の気筒列方向に延在するクランクシャフト4と平行に延在する。第1制御軸10は、内燃機関本体に回転自在に支持される第1ジャーナル部10aと、第1制御リンク7の下端部が回転自在に連結される制御偏心軸部10bと、第2制御リンク12の一端部12aが回転自在に連結された偏心軸部10cと、を有する。第1アーム部10dは、一端が第1ジャーナル部10aと連結され、他端が第1制御リンク7の下端部と連結される。制御偏心軸部10bは、第1ジャーナル部10aに対して所定量偏心した位置に設けられる。第2アーム部10eは、一端が第1ジャーナル部10aと連結され、他端が第2制御リンク12の一端部12aと連結される。偏心軸部10cは、第1ジャーナル部10aに対して所定量偏心した位置に設けられる。第2制御リンク12の他端部12bは、アームリンク13の一端が回転自在に連結されている。アームリンク13の他端には、第2制御軸11が連結されている。アームリンク13と第2制御軸11は相対移動しない。第2制御軸11は、後述するハウジング20内に複数のジャーナル部を介して回転自在に支持されている。
 第2制御リンク12は、レバー形状であり、偏心軸部10cに連結された一端部12aは、略直線的に形成されている。一方、アームリンク13が連結された他端部12bは、湾曲形成されている。一端部12aの先端部には、偏心軸部10cが回動自在に挿通される挿通孔が貫通形成されている。アームリンク13は、第2制御軸11とは別体として形成されている。第2制御軸11は、内燃機関用リンク機構のアクチュエータの一部である波動歯車減速機21を介して駆動モータ22から伝達されたトルクによって回転位置が変更される。第2制御軸11の回転位置が変更されると、第2制御リンク12を介して第1制御軸10が回転し、第1制御リンク7の下端部の位置を変更する。これにより、ロアリンク5の姿勢が変化し、ピストン1のシリンダ内におけるストローク位置やストローク量を変化させ、これに伴って機関圧縮比を変更する。
 (内燃機関用リンク機構のアクチュエータの構成)
 図2は実施例1の内燃機関用リンク機構のアクチュエータの断面図、図3は実施例1の波動歯車装置3の分解等角図である。内燃機関用リンク機構のアクチュエータは、駆動モータ22と、駆動モータ22の先端側に取り付けられた波動歯車減速機21と、波動歯車減速機21を内部に収容するハウジング20と、ハウジング20に回転自在に支持された第2制御軸11と、を有する。
 駆動モータ22は、ブラシレスモータであり、有底円筒状のモータケーシング45と、モータケーシング45の内周面に固定された筒状のコイル46と、コイル46の内側に回転自在に設けられたロータ47と、一端部48aがロータ47の中心に固定されたモータ駆動軸48と、を有する。モータ駆動軸48は、モータケーシング45の底部に設けられたボールベアリング52により回転可能に支持されている。
 第2制御軸11は、軸方向に延在された軸部本体23と、軸部本体23から拡径した固定用フランジ24とを有する。第2制御軸11は、鉄系金属材料により軸部本体23及び固定用フランジ24が一体形成されている。固定用フランジ24は、外周部の円周方向に複数のボルト挿通孔が等間隔に形成されている。このボルト挿通孔にボルトを挿通し、波動歯車減速機21の可撓性外歯車36のフランジ部36bと結合する。
 (波動歯車減速機の構成)
 波動歯車減速機21は、ハウジング20の開口溝部20a内に収容されている。開口溝部20a内であって、波動歯車減速機21の重力方向上方には、図外の油圧源等から潤滑油を供給する供給孔20bが開口している。供給孔20bから潤滑油が供給されると、下方の波動歯車減速機21に潤滑油が滴下され、各回転要素間を潤滑する。波動歯車減速機21は、ハウジング20の開口溝部20a内にボルト固定され、内周に複数の内歯27aが形成された円環状の剛性内歯車27と、剛性内歯車27の内径側に配置され、撓み変形可能であって外周面に内歯27aと噛合する外歯36aを有する可撓性外歯車36と、楕円形上に形成され外周面が可撓性外歯車36の内周面に沿って摺動する波動発生器37と、を有する。
 可撓性外歯車36は、金属材料によって形成され、底部を有する撓み変形可能な薄肉円筒状部材である。可撓性外歯車36の外歯36aの歯数は、剛性内歯車27の内歯27aの歯数より2歯少ない。可撓性外歯車36の底部に形成されたフランジ部36b内周には、第2制御軸11が貫通する挿通孔36cが形成されている。よって、可撓性外歯車36の薄肉円筒状部材側から挿通孔36cに第2制御軸11を挿入し、第2制御軸11の固定用フランジ24とフランジ部36bとをボルトで結合するため、挿通孔36c内周を第2制御軸11で支持することができ、可撓性外歯車36の底部の剛性を確保できる。
 波動発生器37は、楕円形状の波動生成プラグ371と、波動生成プラグ371の外周と可撓性外歯車36の内周との間の相対回転を許容する可撓性の薄肉内外輪を有する深溝玉軸受372と、を有する。波動生成プラグ371の中央には、モータ駆動軸48が圧入され結合している。
 図4は実施例1の可撓性外歯車と剛性内歯車との噛合い状態を表す概略図である。外形が楕円形状である波動生成プラグ371は深溝玉軸受372の内輪へ嵌合されて楕円形状へと倣うため、波動発生器37の外形も楕円となる。また、可撓性外歯車36の内径へ波動発生器37を嵌合することにより、初期状態が円形である可撓性外歯車36も楕円形状へと変形する。楕円へ撓ませられた可撓性外歯車36は剛性内歯車27より2歯少ない歯数であるため、楕円長軸上で歯ピッチのずれにより噛み合い、楕円短軸上では歯ピッチは一致するが、可撓性外歯車36が軸方向へと撓められているために歯が重なることはなく干渉しない。このため、偶数倍の歯数差を持つ可撓性外歯車36と剛性内歯車27は、図4で示す噛み合い状態のように、噛み合わせることができる。
 可撓性外歯車36の歯部は可撓性であるが、フランジ部36bは出力を取り出すために円形状から変形させることはできず、第2制御軸11と直接締結されるため、フランジ部36bを起点として薄肉円筒開口端部に向かって楕円形状へと広がる形となる。すなわち、開口端部付近での変形運動から取り出される可撓性外歯車36の回転運動をフランジ部36bから第2制御軸11へと伝達できる。
 波動歯車装置への回転入力は波動発生器37により回転入力軸と直交する方向への往復変位運動へと変換される。回転伝達機構を有する波動生成プラグ371は接続された入力軸により駆動されるが、嵌合相手である深溝玉軸受372の内輪もこれに追従する。深溝玉軸受372の外輪は、内外輪間に挟まれた玉により内輪の形状が外輪へと伝達されるが、玉は並進及び回転の六自由度を有するために内輪と外輪はそれぞれ独立した周方向自由度を持つ。回転入力により駆動された波動生成プラグ371は楕円体であるため、楕円周上の各位置によって異なる半径を持つ。この楕円の性質により、波動生成プラグ371の回転による半径の増減が玉を介して波動生成プラグ371の外輪へ伝達される。この時、可撓性薄肉構造の内外輪であることから、深溝玉軸受372の外輪の周方向自由度を規制した場合において外輪が半径の増減と同期した変形運動を行う。
 また、深溝玉軸受372の外輪と可撓性外歯車36は嵌合されている為に、外輪の変形運動に追従して可撓性外歯車36も変形運動を行う。この変形運動が、剛性内歯車27と可撓性外歯車36との間における長軸上噛み合い位置を変化させる。図6は、実施例1の剛性内歯車と可撓性外歯車との噛合い位置の移動を表す図である。剛性内歯車27上の定点から歯部を拡大して観測した場合、図6に示す歯同士での軸直交方向への相対運動となる。そして可撓性外歯車36が剛性内歯車27に対し差分による周方向位置が変化することにより周方向への運動が重ね合わせられて、可撓性外歯車36の歯は図6に示す矢印(4-a)方向への運動を行う。具体的には内歯27aの歯面に沿って内径側に移動する。
 可撓性外歯車36は第2制御軸11と締結されている為、第2制御軸11がトルクを外部の系から受けると、フランジ部36bを介して可撓性外歯車36へとトルクが伝達されて可撓性外歯車36の歯が剛性内歯車27の歯を押すことで、剛性内歯車27がトルクを受ける。ここで、内歯27aの曲率をγs、外歯36aの曲率をγeと定義する。この時、歯の接触点における可撓性外歯車36と剛性内歯車27の歯断面曲率が、従来の波動歯車装置の歯形であるγs≒γeであると、弾性接触理論から接触面が増大し、歯面摺動抵抗が増大することによって波動歯車減速機21の負荷時における入力効率が低減する。
 この問題に対し、可撓性外歯車36と剛性内歯車27の歯接触点における歯断面曲率をγs << γeとし、かつ可撓性外歯車36の変形運動による噛み合い位置の変化運動を可能とする歯形状とした。これにより、歯接触点における接触面積を低減し、歯面摺動抵抗を低減することが可能となり、入力効率を向上できる。図7は、接触面積と剛性内歯車歯面及び可撓性外歯車歯面の曲率比の相関図である。図7は対数グラフであり、点線に示す特性が曲線同士の接触を表し、実線に示す特性が直線と曲線との接触を表す。従来の曲線同士の歯形接触面積(Curve-Curve Contact)と実施例1の歯形接触面積(Line-Curve Contact)では、第2制御軸11から同様のトルクを受けて曲線がY軸鉛直上向きへシフトしたとしても、実施例1の歯形では接触面積が低減しており、これにより歯接触面接線方向の抗力も低減する。
 実施例1の波動歯車減速機21では、歯形設計において、剛性内歯車27の基準ピッチ円DS及び減速比ID、基準圧力角αの基本諸元から、低歯直線歯形の可撓性外歯車36及び剛性内歯車27の噛み合い状態を求め、各噛み合い位置において、噛み合い干渉のないように可撓性外歯車36の直線歯面を歯元R及び歯先Rと接する曲率γeの単円弧に修正することを特徴としている。
 図8は実施例1の波動歯車減速機の噛み合い代表歯幅位置における軸直角断面の各基準ピッチ円を表す図である。各基準ピッチ円は、剛性内歯車27及び可撓性外歯車36の各基準ピッチ円DS,DEである。可撓性外歯車36の基準ピッチ円DEは、波動発生器37により変形し、剛性内歯車27の基準ピッチ円DSと常に長軸両端で内接している。よって、例えば波動生成プラグ371がπ/2回転すると、DE'のように可撓性外歯車36の基準ピッチ円が変形する。このことより、剛性内歯車27の基準ピッチ円半径RDSと、設定した減速比IDより定まる歯数Zとから波動歯車減速機21のモジュールM(ピッチ円直径を歯数で除した値)が求められる。よって、実施例1の波動歯車減速機21の楕円変形前である中立円の基準ピッチ円半径RDnからの歯末たけ長さHAと歯元たけ長さHFが定まる。図5は歯末たけ及び歯元たけの関係を表す図である。図5に示すように、外歯36aの先端が直線の歯形(以下、低歯直線歯型と記載する。)の歯末たけHAと歯元たけHFは、モジュールMを用いて下記式(1)及び式(2)により表される。〔式(1)〕HA=0.8*M〔式(2)〕HF=1.0*M
 上記式(1)により与えられる歯末たけHAから、可撓性外歯車36が短軸上で剛性内歯車27と干渉せず、かつ長軸上で基準ピッチ円DS,DEが接触する位置で歯が噛み合い可能な波動歯車減速機21の径方向移動量を求めることができる。この径方向移動量が図8に示す全振幅Sであり、長軸半径A、短軸半径Bは下記式(3)及び式(4)で示される。〔式(3)〕A=RDS〔式(4)〕B=RDS-Sここで、上記移動量の必要条件よりHA<Sとなる適切なSを選択する。可撓性外歯車36の楕円変形状態である基準ピッチ円半径RDが定まることにより、楕円変形前である中立円の基準ピッチ円半径RDnが(A+B)/2となり、剛性内歯車27と同モジュールかつ歯数が(Z-2)である可撓性外歯車36の低歯直線歯形を求めることができる。
 次に中立円状態の可撓性外歯車36に歯を乗せた状態で楕円変形させることにより剛性内歯車27との噛み合い状態を求めるが、円周上の等ピッチ点は楕円変形により変化する。図8に示される波動歯車減速機21の軸直角断面上において、軸線を原点とし、水平面及び鉛直面をそれぞれX軸、Y軸とした平面を定義した状態における変形に着目する。中立円状態の円周上ピッチ点と原点を結んだ線分がX軸となす角θと、楕円変形後の楕円周上ピッチ点のなす角φ(偏角)の関係は、下記式(5)に表される。式(5)は、本発明を表すモデル式であり、実際の変形に合わせた係数の調整により、変形後のピッチ偏角を得ることができる。〔式(5)〕argφ=arcsin[{(RDn-(S*cos3θ))/P}*cosθ]また、Pは、なす角θにおける楕円の半径と中立円の半径の差を表し、P=(A2sin2θ+B2cos2θ)1/2-RDnである。
 上記式(5)で得た可撓性外歯車軸直角断面形状と剛性内歯車軸直角断面形状を重ね合わせて干渉のない歯厚及び歯溝を設定することで、低歯直線歯形を用いた波動歯車減速機21が得られる。本発明の特徴として、直線歯形の歯面を曲率γeとなる単円弧形状とすることで、歯面摺動抵抗を低減させる。ここで図5に示すように、修正歯面を得る手法として、低歯直線歯の歯先R及び歯底Rとそれぞれ内接及び外接の関係にあり、かつ上記噛み合い状態において剛性内歯車の低歯直線歯と干渉のないように設定する。このようにして摺動抵抗を低減し、かつ噛み合いを確保した波動歯車装置の各歯形が完成する。
 [実施例1の効果]
  以上説明したように、実施例1にあっては、下記に列挙する効果が得られる。
 (1)一端部が内燃機関のリンク機構に連結された第1及び第2制御リンク7,12(制御リンク)と、
 回転することにより第1及び第2制御リンク7,12の姿勢を変化させる第2制御軸11(制御軸)と、
 第2制御軸11を回転自在に支持するハウジング20と、
 駆動モータ22のモータ駆動軸48(出力軸)の回転速度を減速して第2制御軸11に伝達する波動歯車減速機21と、
 を備え、
 波動歯車減速機21は、
 ハウジング20に設けられ、内歯27aを有する剛性内歯車27(内歯車部)と、
 剛性内歯車27の内側に配置されると共に外周に外歯36aが形成され、第2制御軸11に回転を伝達する可撓性外歯車36と、
 駆動モータ22のモータ駆動軸48によって回転し、可撓性外歯車36を楕円形に撓ませて可撓性外歯車36の外歯36aを剛性内歯車27の内歯27aに部分的に噛み合わせると共に、可撓性外歯車36と剛性内歯車27との噛合い箇所を回転させる波動発生器37と、
 を有し、
 内歯27aと外歯36aの接触部分における外歯36aの曲率が、内歯27aの曲率より大きい。
 よって、内歯27aと外歯36aの接触面積を低下させることが可能となり、内燃機関用リンク機構のアクチュエータの駆動効率及び耐トルク性を向上できる。
 (2)上記(1)に記載の内燃機関用リンク機構のアクチュエータであって、可撓性外歯車36の外歯36aは、可撓性外歯車36を波動発生器37で径方向最大まで撓ませた状態で内歯27aと接触しない直線歯形を基本とし、該直線歯形に対して可撓性外歯車36を波動発生器37で径方向最大まで撓ませた状態で接触するように歯厚が肉盛り形成されている。ここで、歯厚は特に、可撓性外歯車36の楕円変形状態である基準ピッチ円半径RD上における歯厚を指す。
 よって、外歯36aの剛性を確保できる。
 (3)上記(1)に記載の内燃機関用リンク機構のアクチュエータであって、内歯27aは直線歯形で形成されている。
 よって、内歯27aに沿って外歯36aが径方向内側に移動する際の接触抵抗を低減できる。
 (4)上記(3)に記載の内燃機関用リンク機構のアクチュエータであって、外歯36aは曲線歯形で形成されている。 よって、内歯27aと外歯36aの接触面積を低減できる。
 (5)上記(1)に記載の内燃機関用リンク機構のアクチュエータであって、ハウジング20は、波動歯車減速機21に潤滑油を供給する供給孔20bを有する。
 よって、波動歯車減速機21を潤滑できる。
 (6)上記(5)に記載の内燃機関用リンク機構のアクチュエータであって、供給孔20bは第2制御軸11の軸心よりも重力方向上側に設けられている。よって、別途、潤滑油を供給するための機構等を備えることなく、供給孔20bから供給された潤滑油を滴下により供給できる。
 (7)上記(1)に記載の内燃機関用リンク機構のアクチュエータであって、剛性内歯車27は、ハウジング20に取り付けられた円環状部材であり、可撓性外歯車36は、有底円筒状に設けられ、円筒部の外周に外歯36aが形成されると共に、底部であるフランジ部36bに第2制御軸11が取り付けられる。
 よって、可撓性外歯車36の剛性を確保できる。
 (8)上記(7)に記載の内燃機関用リンク機構のアクチュエータであって、
 可撓性外歯車36の底部であるフランジ部36bは、第2制御軸11が挿通する挿通孔36cを有する。よって、底部であるフランジ部36bを第2制御軸11で支持することができ、可撓性外歯車36の剛性を確保できる。
 (9)ハウジング20に設けられ、内歯27aを有する剛性内歯車27(内歯車部)と、
 剛性内歯車27の内側に配置されると共に外周に外歯36aが形成され、第2制御軸11(出力軸)に回転を伝達する可撓性外歯車36と、
 モータ駆動軸48(入力軸)によって回転し、可撓性外歯車36を楕円形に撓ませて可撓性外歯車36の外歯36aを剛性内歯車27の内歯27aに部分的に噛み合わせると共に、可撓性外歯車36と剛性内歯車27との噛合い箇所を回転させる波動発生器37と、
 を有し、
 内歯27aと外歯36aの接触部分における外歯36aの曲率が、内歯27aの曲率より大きい。
 よって、波動歯車減速機21の駆動効率及び耐トルク性を向上できる。
 (10)上記(9)に記載の波動歯車減速機21であって、
 可撓性外歯車36の外歯36aは、可撓性外歯車36を波動発生器37で径方向最大まで撓ませた状態で内歯27aと接触しない直線歯形を基本とし、該直線歯形に対して可撓性外歯車36を波動発生器37で径方向最大まで撓ませた状態で接触するように歯厚が肉盛り形成されている。
 よって、外歯36aの剛性を確保できる。
 (11)上記(9)に記載の波動歯車減速機21であって、内歯27aは直線歯形で形成されている。
 よって、内歯27aに沿って外歯36aが径方向内側に移動する際の接触抵抗を低減できる。
 (12)上記(11)に記載の波動歯車減速機21であって、外歯36aは曲線歯形で形成されている。
 よって、内歯27aと外歯36aの接触面積を低減できる。
 (13)上記(9)に記載の波動歯車減速機21であって、可撓性外歯車36の回転軸に対し直交する断面上において、回転軸を原点として直交するX軸とY軸とからなる平面を定義し、可撓性外歯車36が中立円状態の円周上ピッチ点と原点とを結んだ線分がX軸となす角をθとし、可撓性外歯車36が楕円変形後の楕円周上ピッチ点と原点とを結んだ線分がX軸となす角をφ、外歯36a及び内歯27aの基本となる基準ピッチ円半径RDn、可撓性外歯車36が短軸上で剛性内歯車27と干渉せず、かつ長軸上で基準ピッチ円Dnが接触する位置で歯が噛み合い可能な径方向移動量である全振幅をSとしたとき、argφ=arcsin[{(RDn-(S*cos3θ))/((A2sin2θ+B2cos2θ)1/2-RDn )}*cosθ]の関係を満たす。
 よって、歯面摺動抵抗を低減し、かつ、噛み合いを確保した波動歯車装置の各歯形を得ることができる。
 〔他の実施例〕
 以上、各実施例に基づいて説明したが、上記実施例に限らず、他の構成を採用しても構わない。例えば、実施例1では内燃機関の圧縮比を可変とする圧縮比可変機構に本発明を採用したが、特開2015-1190や特開2011-231700等に記載される内燃機関のバルブタイミング制御装置や、操舵角に対する転舵角を変更可能な可変舵角機構に本発明を採用してもよい。
 以上、本発明の幾つかの実施形態のみを説明したが、本発明の新規の教示や利点から実質的に外れることなく例示の実施形態に、多様な変更または改良を加えることが可能であることが当業者には容易に理解できるであろう。従って、その様な変更または改良を加えた形態も本発明の技術的範囲に含むことを意図する。上記実施形態を任意に組み合わせても良い。
 本願は、2016年3月18日付出願の日本国特許出願第2016-054589号に基づく優先権を主張する。2016年3月18日付出願の日本国特許出願第2016-054589号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
1  ピストン7  第1制御リンク10  第1制御軸11  第2制御軸12  第2制御リンク20  ハウジング20b  供給孔21  波動歯車減速機22  駆動モータ24  固定用フランジ27  剛性内歯車27a  内歯36  可撓性外歯車36a  外歯36b  フランジ部36c  挿通孔37  波動発生器48  モータ駆動軸371  波動生成プラグ372  深溝玉軸受

Claims (14)

  1. 内燃機関用リンク機構のアクチュエータであって、
     制御軸を回転することにより内燃機関のリンク機構に連結された制御リンクの姿勢を変化させる前記制御軸と、
     該制御軸を回転自在に支持するハウジングと、
     駆動モータの出力軸の回転速度を減速して前記制御軸に伝達する波動歯車減速機と、
     を備え、
     前記波動歯車減速機は、
     前記ハウジングに設けられ、内歯を有する内歯車部と、
     前記内歯車部の内側に配置されると共に、可撓性外歯車の外周に外歯が形成され、前記制御軸に回転を伝達する前記可撓性外歯車と、
     前記駆動モータの出力軸によって回転する波動発生器であって、前記可撓性外歯車を楕円形に撓ませて前記可撓性外歯車の外歯を前記内歯車部の内歯に部分的に噛み合わせると共に、前記可撓性外歯車と前記内歯車部との噛合い箇所を回転させる前記波動発生器と、
     を有し、
     前記内歯と前記外歯の接触部分における前記外歯の曲率が、前記内歯の曲率より大きいことを特徴とする内燃機関用リンク機構のアクチュエータ。
  2.  請求項1に記載の内燃機関用リンク機構のアクチュエータであって、
     前記可撓性外歯車の外歯は、前記可撓性外歯車を前記波動発生器で径方向最大まで撓ませた状態の前記外歯の基準ピッチ円上の歯面が前記内歯の歯面と接触しない直線歯形を基本とし、
     該直線歯形に対して前記可撓性外歯車を前記波動発生器で径方向最大まで撓ませた状態で、前記内歯の歯面と接触可能に前記外歯の基準ピッチ円上の歯厚が肉盛り形成されていることを特徴とする内燃機関用リンク機構のアクチュエータ。
  3.  請求項1に記載の内燃機関用リンク機構のアクチュエータであって、
     前記内歯のうち、前記外歯の歯面との接触部分が、直線歯形で形成されていることを特徴とする内燃機関用リンク機構のアクチュエータ。
  4.  請求項3に記載の内燃機関用リンク機構のアクチュエータであって、
     前記外歯のうち、前記内歯の歯面との接触部分が、曲線歯形で形成されていることを特徴とする内燃機関用リンク機構のアクチュエータ。
  5.  請求項1に記載の内燃機関用リンク機構のアクチュエータであって、
     前記ハウジングは、前記波動歯車減速機に潤滑油を供給する供給孔を有することを特徴とする内燃機関用リンク機構のアクチュエータ。
  6.  請求項5に記載の内燃機関用リンク機構のアクチュエータであって、
     前記供給孔は、前記制御軸の軸心よりも重力方向上側に設けられていることを特徴とする内燃機関用リンク機構のアクチュエータ。
  7.  請求項1に記載の内燃機関用リンク機構のアクチュエータであって、
     前記内歯車部は、前記ハウジングに取り付けられた円環状部材であり、
     前記可撓性外歯車は、有底円筒状に設けられており、
     前記可撓性外歯車の円筒部の外周に前記外歯が形成されると共に、前記可撓性外歯車の底部に前記制御軸が取り付けられることを特徴とする内燃機関用リンク機構のアクチュエータ。
  8.  請求項7に記載の内燃機関用リンク機構のアクチュエータであって、
     前記可撓性外歯車の底部は、前記制御軸が挿通する挿通孔を有することを特徴とする内燃機関用リンク機構のアクチュエータ。
  9.  請求項1に記載の内燃機関用リンク機構のアクチュエータにおいて、
     前記可撓性外歯車の回転軸に対し直交する断面上において、前記回転軸を原点として直交するX軸とY軸とからなる平面を定義し、
     前記可撓性外歯車が中立円状態の円周上ピッチ点と前記原点とを結んだ線分が前記X軸となす角をθとし、
     前記可撓性外歯車が楕円変形後の楕円周上ピッチ点と前記原点とを結んだ線分が前記X軸となす角をφ、前記外歯及び前記内歯の基本となる基準ピッチ円半径RDn、前記可撓性外歯車が短軸上で前記剛性内歯車と干渉せず、かつ長軸上で基準ピッチ円が接触する位置で歯が噛み合い可能な径方向移動量である全振幅をSとしたとき、argφ=arcsin[{(RDn-(S*cos3θ))/((A2sin2θ+B2cos2θ)1/2-RDn )}*cosθ]の関係を満たすことを特徴とする内燃機関用リンク機構のアクチュエータ。
  10.  波動歯車減速機であって、
     ハウジングに設けられ、内歯を有する内歯車部と、
     前記内歯車部の内側に配置されると共に、可撓性外歯車の外周に外歯が形成され、出力軸に回転を伝達する前記可撓性外歯車と、
     入力軸によって回転する波動発生器であって、前記可撓性外歯車を楕円形に撓ませて前記可撓性外歯車の外歯を前記内歯車部の内歯に部分的に噛み合わせると共に、前記可撓性外歯車と前記内歯車部との噛合い箇所を回転させる前記波動発生器と、
     を有し、前記内歯と前記外歯の接触部分における前記外歯の曲率が、前記内歯の曲率より大きいことを特徴とする波動歯車減速機。
  11.  請求項10に記載の波動歯車減速機であって、
     前記可撓性外歯車の外歯は、前記可撓性外歯車を前記波動発生器で径方向最大まで撓ませた状態で前記内歯車と接触しない直線歯形を基本とし、
     該直線歯形に対して前記可撓性外歯車を前記波動発生器で径方向最大まで撓ませた状態で前記内歯車と接触するように前記可撓性外歯車の外歯の歯厚が肉盛り形成されていることを特徴とする波動歯車減速機。
  12.  請求項10に記載の波動歯車減速機であって、
     前記内歯は直線歯形で形成されていることを特徴とする波動歯車減速機。
  13.  請求項12に記載の波動歯車減速機であって、
     前記外歯は曲線歯形で形成されていることを特徴とする波動歯車減速機。
  14.  請求項10に記載の波動歯車減速機において、
     前記可撓性外歯車の回転軸に対し直交する断面上において、前記回転軸を原点として直交するX軸とY軸とからなる平面を定義し、
     前記可撓性外歯車が中立円状態の円周上ピッチ点と前記原点とを結んだ線分が前記X軸となす角をθとし、
     前記可撓性外歯車が楕円変形後の楕円周上ピッチ点と前記原点とを結んだ線分が前記X軸となす角をφ、前記外歯及び前記内歯の基本となる基準ピッチ円半径RDn、前記可撓性外歯車が短軸上で前記剛性内歯車と干渉せず、かつ長軸上で基準ピッチ円が接触する位置で歯が噛み合い可能な径方向移動量である全振幅をSとしたとき、argφ=arcsin[{(RDn-(S*cos3θ))/((A2sin2θ+B2cos2θ)1/2-RDn )}*cosθ]の関係を満たすことを特徴とする波動歯車減速機。
PCT/JP2017/007667 2016-03-18 2017-02-28 内燃機関用リンク機構のアクチュエータ及び波動歯車減速機 WO2017159340A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780018238.9A CN108779842A (zh) 2016-03-18 2017-02-28 内燃机用连杆机构的促动器以及波动齿轮减速机
US16/084,193 US20200318720A1 (en) 2016-03-18 2017-02-28 Actuator for link mechanism for internal combustion engine and wave gear speed reducer
DE112017001399.2T DE112017001399T5 (de) 2016-03-18 2017-02-28 Aktuator für einen Verbrennungsmotor-Verbindungsmechanismus und Wellenuntersetzungsgetriebe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016054589A JP6587064B2 (ja) 2016-03-18 2016-03-18 内燃機関用リンク機構のアクチュエータ及び波動歯車減速機
JP2016-054589 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017159340A1 true WO2017159340A1 (ja) 2017-09-21

Family

ID=59851457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007667 WO2017159340A1 (ja) 2016-03-18 2017-02-28 内燃機関用リンク機構のアクチュエータ及び波動歯車減速機

Country Status (5)

Country Link
US (1) US20200318720A1 (ja)
JP (1) JP6587064B2 (ja)
CN (1) CN108779842A (ja)
DE (1) DE112017001399T5 (ja)
WO (1) WO2017159340A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019056454A (ja) * 2017-09-22 2019-04-11 日立オートモティブシステムズ株式会社 波動歯車装置、及び内燃機関の可変圧縮比機構のアクチュエータ
CN108533715B (zh) * 2018-06-28 2020-01-21 西安交通大学 一种用于谐波齿轮传动的双向共轭齿形设计方法
JP6911827B2 (ja) * 2018-09-10 2021-07-28 株式会社デンソー バルブタイミング調整装置
JP7319822B2 (ja) * 2019-05-10 2023-08-02 ナブテスコ株式会社 波動歯車装置
CN112502829B (zh) * 2020-02-24 2022-02-01 长城汽车股份有限公司 可变压缩比驱动结构的装配方法
JP7108725B1 (ja) 2021-01-26 2022-07-28 株式会社リケン 波動歯車装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116737A (ja) * 2002-09-27 2004-04-15 Toyota Motor Corp 遊星歯車装置およびパワートレーン
JP2014020496A (ja) * 2012-07-20 2014-02-03 Aisin Seiki Co Ltd 波動歯車装置
JP2014206265A (ja) * 2013-03-19 2014-10-30 株式会社ハーモニック・ドライブ・システムズ 波動歯車装置および中空型回転アクチュエータ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2906143A (en) 1955-03-21 1959-09-29 United Shoe Machinery Corp Strain wave gearing
JP5471560B2 (ja) * 2010-02-16 2014-04-16 日産自動車株式会社 内燃機関の可変圧縮比装置
CN104565219A (zh) * 2013-10-29 2015-04-29 上银科技股份有限公司 谐波式减速机构
JP2016054589A (ja) 2014-09-03 2016-04-14 多摩川精機株式会社 レゾルバステータの巻線構造及び方法
CN104747660A (zh) * 2015-04-14 2015-07-01 上海鑫君传动科技有限公司 提高寿命的谐波减速机结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116737A (ja) * 2002-09-27 2004-04-15 Toyota Motor Corp 遊星歯車装置およびパワートレーン
JP2014020496A (ja) * 2012-07-20 2014-02-03 Aisin Seiki Co Ltd 波動歯車装置
JP2014206265A (ja) * 2013-03-19 2014-10-30 株式会社ハーモニック・ドライブ・システムズ 波動歯車装置および中空型回転アクチュエータ

Also Published As

Publication number Publication date
DE112017001399T5 (de) 2018-12-06
JP6587064B2 (ja) 2019-10-09
US20200318720A1 (en) 2020-10-08
CN108779842A (zh) 2018-11-09
JP2017166649A (ja) 2017-09-21

Similar Documents

Publication Publication Date Title
JP6587064B2 (ja) 内燃機関用リンク機構のアクチュエータ及び波動歯車減速機
KR100854517B1 (ko) 파동 기어 장치
US11162568B2 (en) Adjustment gearing device for a shaft, and vehicle comprising the adjustment gearing device
CN107923510B (zh) 具有柔性齿轮的传动装置
JP6566567B2 (ja) 内燃機関用リンク機構のアクチュエータ
JP6869465B2 (ja) ギヤ減速装置
JP2018165531A (ja) ギヤ伝動装置
JP6748595B2 (ja) 波動歯車減速機および内燃機関の可変圧縮装置のアクチュエータ
JP4710786B2 (ja) バルブタイミング調整装置
WO2020129661A1 (ja) 減速機及び内燃機関の可変圧縮機構のアクチュエータ
WO2020217562A1 (ja) 波動歯車ユニット、歯車変速装置及びバルブタイミング変更装置
JP6451029B2 (ja) 内燃機関用リンク機構のアクチュエータ
JP2019056454A (ja) 波動歯車装置、及び内燃機関の可変圧縮比機構のアクチュエータ
JP4438768B2 (ja) バルブタイミング調整装置
JP6759120B2 (ja) 波動歯車減速機の製造方法
JP2016061234A (ja) 弁開閉時期制御装置
JP5434883B2 (ja) 可変バルブタイミング装置
JP2007162744A (ja) 回転−直動変換機構およびその組み立て方法
JP6965215B2 (ja) 波動歯車減速機、及び内燃機関用リンク機構のアクチュエータ
US10975737B2 (en) Valve timing adjustment device
JP2007127188A (ja) 回転直動式アクチュエータ及びエンジンの可変動弁機構
JP6874983B2 (ja) 減速装置
JP2019056441A (ja) 波動歯車減速機および内燃機関の可変圧縮比機構のアクチュエータ
JP2007064441A (ja) 回転−直動変換機構およびその組み立て方法
JP2017172656A (ja) 遊星歯車装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766343

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766343

Country of ref document: EP

Kind code of ref document: A1