WO2017158688A1 - Resin powder material and method for producing resin shaped article - Google Patents

Resin powder material and method for producing resin shaped article Download PDF

Info

Publication number
WO2017158688A1
WO2017158688A1 PCT/JP2016/057995 JP2016057995W WO2017158688A1 WO 2017158688 A1 WO2017158688 A1 WO 2017158688A1 JP 2016057995 W JP2016057995 W JP 2016057995W WO 2017158688 A1 WO2017158688 A1 WO 2017158688A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
resin
resin powder
flame retardant
polyamide
Prior art date
Application number
PCT/JP2016/057995
Other languages
French (fr)
Japanese (ja)
Inventor
広毅 高橋
悦子 高根
聡 荒井
浩朗 古市
充 針替
邦彦 高尾
浩之 橘内
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to PCT/JP2016/057995 priority Critical patent/WO2017158688A1/en
Publication of WO2017158688A1 publication Critical patent/WO2017158688A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/08Organic materials containing halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/10Organic materials containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles

Definitions

  • the present invention relates to a method for manufacturing a resin powder material and a resin model, and in particular, it is used for three-dimensional additive manufacturing for manufacturing a desired structure by laminating the cross-sectional shape based on three-dimensional data created by a computer.
  • the present invention relates to a resin powder material and a method for producing a resin molded article using the same.
  • three-dimensional additive manufacturing techniques have attracted attention in the fields of rapid prototyping and small-scale mass-production products, which are performed in the prototype stage of product design.
  • Three-dimensional additive manufacturing is roughly divided into four methods: powder lamination, stereolithography, melt deposition, and inkjet.
  • the powder lamination method can be applied with a thermoplastic resin or glass fiber, and has good dimensional accuracy, similar to the injection molding widely used in the resin molding technology. Therefore, the shaped article manufactured by the powder lamination method is advantageous in terms of quality and reliability as compared with the shaped article manufactured by the other three methods.
  • the powder laminating method is also called SLS (Selective Laser Sintering) method, and in order to avoid deformation phenomenon during production, the surface temperature of the material immediately before sintering is changed to the melting point of the material by preheating means such as a heater ( Hereinafter, it is necessary to set between Tm) and the crystallization temperature (hereinafter referred to as Tc). Therefore, as a powder material used in the powder lamination method, it is desirable to use a material having a Tm as low as possible and a temperature difference between Tm and Tc as large as possible.
  • ⁇ Hm melting enthalpy
  • Patent Document 1 mentions polyamide 12 powder as a powder material suitable for the powder lamination method using laser light.
  • the shaped object obtained as described above When the shaped object obtained as described above is applied to a specific application such as a home appliance, a building material, a part for electric / electronic use, an analysis device or a housing part of a medical device, it is ignited depending on the use environment. It is necessary not to promote the spread of fire. For this reason, it is necessary to manufacture the molded object used for these uses so that it may have a flame retardance or a nonflammability, and may satisfy
  • the particle size of the powder material used in the powder lamination method is generally larger than the particle size of the pellet-shaped material used for injection molding, the specific surface area of the material is increased, and the material surface is in contact with the molded object. Vaporization (combustible gasification) is promoted. For this reason, the modeled article by the powder lamination method is easier to burn than the molded article by injection molding, and this tendency becomes more prominent as the modeled article becomes thinner. Since the polyamide 12 described in Patent Document 1 is flammable, a molded article produced using the polyamide 12 by a powder lamination method has neither flame retardancy nor incombustibility.
  • an object of the present invention is to provide a resin powder material and a method for producing a resin shaped article that can obtain desired flame retardancy in a resin shaped article produced by a powder lamination method.
  • a preferred embodiment of the resin powder material according to the present invention is a resin powder material used for powder additive manufacturing, including polyamide 12 powder and at least one flame retardant material powder having an oxygen index of 27 or more, The oxygen index is 23 or more.
  • FIG. 1 is a diagram illustrating a resin powder material according to an example.
  • the resin powder material has (a) polyamide 12 powder 1a and (b) at least one flame retardant material powder 1b having an oxygen index of 27 or more.
  • (A) Polyamide 12 powder The polyamide 12 is obtained by a ring-opening polycondensation reaction of lauryl lactam, which is an ⁇ -amino acid having 12 carbon atoms, as shown in the following formula (1).
  • lauryl lactam which is an ⁇ -amino acid having 12 carbon atoms
  • the molecular weight distribution is controlled, and characteristics such as Tm, Tc, ⁇ Hm, particle size distribution, melt viscosity and the like are controlled.
  • the polyamide 12 will be described as including a plurality of types having different Tm, Tc, and ⁇ Hm depending on the molecular weight distribution.
  • the resin powder material of an Example should just contain the powder of the at least 1 sort (s) of polyamide 12 of these.
  • the polyamide 12 powder 1a it is desirable to use a material for a powder lamination method in which a temperature difference between Tm and Tc is relatively large and ⁇ Hm is relatively large (for example, see Patent Document 1). Further, as the polyamide 12 powder 1a, in addition to the above, after the pellet material of polyamide 12 commercial product for injection molding or extrusion molding is pulverized at low temperature, the pulverized product is classified to obtain an average particle size of 20 ⁇ m or more and 100 ⁇ m. You may use the powder adjusted to the following ranges. In that case, by adjusting preheating means (see FIG. 2) such as the heater 25 to be described later, it is possible to manufacture a resin molded article having a desired shape by suppressing variations in the surface temperature of the material immediately before sintering. become.
  • preheating means see FIG. 2 such as the heater 25 to be described later
  • polyamide 11 powder having characteristics relatively close to the polyamide 12 powder 1a may be used.
  • Polyamide 11 has a slightly higher Tm than polyamide 12 and a high crystallization speed, so that it is difficult to suppress deformation when manufacturing a molded article, but flexibility, low temperature impact resistance, heat resistance, gas barrier properties, wear resistance It is superior to polyamide 12 in terms of properties and bending fatigue resistance.
  • Polyamide 11 is desirable as a renewable raw material because it is obtained by a ring-opening polycondensation reaction of undecane lactam ( ⁇ -amino acid having 11 carbon atoms) synthesized from plant castor oil.
  • Table 1 shows the results of Tm, Tc, and ⁇ Hm measured by differential scanning calorimetry for polyamide 12 powder and polyamide 11 powder.
  • the polyamide 12 powder 1a may be used by appropriately mixing the polyamide 12 powders shown in Table 1 or may be used by mixing the polyamide 11 powder shown in Table 1.
  • polyamide 6 powder or polyamide 6,6 powder may be mixed with polyamide 12 powder.
  • a powder of a copolycondensation polymer obtained by copolycondensation of polyamide 12 with polyamide 11, polyamide 6 or polyamide 6,6 may be used in combination. In that case, Tm, Tc, ⁇ Hm and melt viscosity as the resin powder material can be freely controlled.
  • (B) Flame retardant material powder As a representative index relating to flammability, an oxygen index defined in JIS-K7201-2 or a classification according to UL94 standard established by the US Insurer Safety Laboratory is used. As the flame retardant material powder 1b of the examples, at least one of those having an oxygen index of 27 or more measured according to JIS-K7201-2 is used.
  • the oxygen index is an index indicating, as a percentage, the minimum oxygen concentration necessary for the combustion to continue in a state where the resin material is lit.
  • an oxygen index of less than 22 is classified as flammable
  • an oxygen index of 22 or more and less than 27 is self-extinguishing
  • an oxygen index of 27 or more is classified as flame retardant.
  • resin materials with an oxygen index of less than 26 fall under the category of designated combustible materials, and it is necessary to install fire extinguishing equipment stipulated by law for storage.
  • the UL94 standard mainly includes determination by a horizontal combustion test and determination by a vertical combustion test.
  • Table 2 shows the flammability classification according to the UL94 standard.
  • Table 3 shows the evaluation results of the combustibility of typical resin materials.
  • the conditions for determining V-2 are almost satisfied in the UL94 standard, and if the resin material has an oxygen index of 27 or more, the conditions for determining V-1 in the UL94 standard are satisfied. Is almost satisfied.
  • the difference in the combustibility of resin materials is thought to be due to the molecular structure of the resin materials.
  • polyethylene, polypropylene, polystyrene, and the like have only a carbon (C) and hydrogen (H) chemical component, and thus have a small oxygen index, and do not reach V-2 even in the UL94 standard.
  • polyvinyl chloride, flame-retardant chloroprene rubber, polyvinylidene fluoride and the like are at least one selected from halogen (F, Cl, Br, I) in addition to carbon (C) and hydrogen (H) in the molecule. Therefore, the oxygen index is large and is equivalent to V-0 in the UL94 standard. This is because the bond between carbon (C) and the halogen element suppresses combustion, which is an oxidation reaction.
  • the flame retardant material powder 1b is desirably adjusted to a mean particle size of 20 ⁇ m or more and 100 ⁇ m or less by low-temperature pulverization of a resin material having an oxygen index of 27 or higher and then classifying the pulverized product. Moreover, as the flame retardant material powder 1b, it is preferable to include at least one of those having a sublimation point or a vaporization temperature of 300 ° C. or higher. That is, since the sintering temperature in the powder lamination method reaches nearly 300 ° C., if the sublimation point or vaporization temperature of the flame retardant material powder 1b is low, the flame retardant material powder 1b sublimates or vaporizes during heating, and its concentration decreases.
  • the flame retardant material powder 1b the one having a sublimation point or vaporization temperature of 300 ° C. or higher is used. Concentration fluctuation due to sublimation or vaporization of 1b is suppressed. For this reason, the quality of the resin modeling thing manufactured is stabilized. Further, since the flame retardant material powder 1b remains in the unsintered resin powder material, the resin powder material can be reused.
  • the flame retardant material powder 1b instead of a resin material having an oxygen index of 27 or more, at least one kind selected from an organic material powder having an oxygen index of 27 or more or an inorganic material powder having an oxygen index of 27 or more is used. Also good.
  • an organic material powder or an inorganic material powder is used as the flame retardant material powder 1b, a commercially available flame retardant can be selected. However, in that case, there are side effects such as a decrease in mechanical strength such as tensile strength and bending strength in the resin molding, generation of bleed (precipitate on the surface of the resin molding), and generation of voids (cavities inside the resin molding). Need to be considered.
  • the resin material having an oxygen index of 27 or higher is preferably used in combination.
  • the organic material powder and the inorganic material powder are preferably adjusted to have an average particle size of 20 ⁇ m to 100 ⁇ m and a sublimation point or vaporization temperature of 300 ° C. or higher.
  • a material having a plurality of halogen atoms in the molecular structure and having an aromatic hydrocarbon or cyclic hydrocarbon as a basic skeleton that is easily liberated from the halogen atoms is difficult for polyamide 12. Desirable because of its good flammability effect.
  • a halogen compound having an aromatic hydrocarbon having a halogen atom or a cyclic hydrocarbon having a halogen atom as a basic skeleton has a halogen atom liberated from the aromatic hydrocarbon or the cyclic hydrocarbon so that the C—H of the polyamide 12 It acts on the bond and suppresses the combustion reaction.
  • strength can be acquired as a resin powder material by using the compound which has an aromatic hydrocarbon and cyclic hydrocarbon as a basic skeleton as a flame retardant material powder.
  • a resin powder material for example, brominated polyphenylene oxide, brominated polystyrene, pentabromobenzyl acrylate (polymer), brominated epoxy, polypentabromobenzyl acrylate, tetrabromobisphenol A diglycidyl ether / bromobisphenol A adduct (polymer), etc.
  • These halogen compounds are mentioned. From the viewpoint of ease of density management, it is desirable to use any one of these alone, but of course, two or more may be used in combination.
  • the following halogen compounds can be preferably used from the viewpoint of obtaining a good flame retarding effect on the polyamide 12.
  • the following non-halogen compounds can be suitably used from the viewpoint of obtaining a good flame retarding effect on the polyamide 12.
  • melamine compounds such as melamine polyphosphate and melamine cyanurate, for example ammonium polyphosphate, bisphenol A bis (diphenyl phosphate ester), resorcinol bis (diphenyl phosphate ester), triisopropylphenyl phosphate ester
  • phosphorus compounds such as triphenyl phosphate, trimethyl phosphate, triethyl phosphate, tricresyl phosphate, tris (chloroisopropyl) phosphate, and phosphazene compounds.
  • the molecular structure is a material having a cyclic CN unsaturated bond group as a basic skeleton and a nitrogen compound easily generated as an inert gas. Thereby, the dilution effect with respect to combustible gas and oxygen gas is fully acquired.
  • phosphorus compounds those having a functional group of phosphoric acid having a radical trapping effect in the molecular structure are desirable.
  • production and the suppression effect of gas diffusion by promoting the carbonization of a combustible material is good.
  • an inorganic material having an oxygen index of 27 or more from the viewpoint of obtaining a good flame retardant effect on the polyamide 12, for example, metal compounds such as magnesium hydroxide, aluminum hydroxide, zinc borate, antimony trioxide, expanded graphite, etc. Is mentioned.
  • antimony trioxide it is desirable to use in combination with the above-mentioned resin material or organic material having a halogen atom. Thereby, a coating of antimony halide is formed on the surface of the combustible material, and liberation of halogen atoms is promoted.
  • Magnesium hydroxide, aluminum hydroxide, and zinc borate can provide effects such as suppression of exothermic reaction of combustibles by endothermic action, that is, suppression of combustible gas generation and reduction of combustible concentration by dehydrated product water.
  • magnesium hydroxide, aluminum hydroxide, and zinc borate in combination with the above-described resin material having an oxygen index of 27 or higher or an organic material having an oxygen index of 27 or higher.
  • Expanded graphite expands in volume when exposed to high temperatures and covers the surface of the combustible material, thereby preventing the reaction between the combustible gas and the oxygen gas and preventing combustion. Furthermore, expanded graphite also has an effect of suppressing the generation of combustible gas by an endothermic action during volume expansion. Expanded graphite alone exhibits a sufficient flame retarding effect, but it may be used in combination with the above-described resin material having an oxygen index of 27 or more and an organic material having an oxygen index of 27 or more.
  • the melamine compound also has an effect as a lubricant. For this reason, when a melamine compound is mix
  • the resin powder material As the resin powder material, excellent flame retardancy can be obtained by having the above-described polyamide 12 powder 1a and flame retardant material powder 1b.
  • the resin powder material preferably has an oxygen index defined by JIS-K7201-2 of 23 or more.
  • the resin powder material achieves V-2 determination, V-1 determination, and V-0 determination according to the UL94 standard.
  • the average particle size of the resin powder material is preferably 20 ⁇ m or more and 100 ⁇ m or less. As a result, it is possible to achieve both the stable deposition of the resin powder material and the improvement of the dimensional accuracy of the resin molded article to be manufactured. When the average particle diameter of the resin powder material is less than 20 ⁇ m, it is difficult to stably deposit the resin powder material. Moreover, when the average particle diameter of resin powder material exceeds 100 micrometers, the dimensional accuracy of a resin molded article will fall.
  • the crystallization temperature of the resin powder material is preferably 144 degrees or more and 161 degrees or less.
  • the crystallization temperature is in the above range, a sufficient temperature difference between Tm and Tc as the resin powder material is ensured. For this reason, the tolerance of the process which sets the surface temperature of the resin powder material just before sintering is ensured.
  • a resin powder material having an oxygen index of 23 or more By uniformly mixing the polyamide 12 powder 1a and the flame retardant material powder 1b having an oxygen index of 27 or more in a desired blending amount, a resin powder material having an oxygen index of 23 or more can be obtained.
  • the means for uniformly mixing include a method using a dry powder mixer (dry blending).
  • dry powder mixer any of rotary mixing, rocking mixing, and V-type mixing can be selected according to the type of powder.
  • inert gas or dry air In order to prevent an increase in the average particle size due to aggregation of powder particles and to prevent a non-uniform mixing state due to sedimentation of components with high density in the resin powder material, it is filled with inert gas or dry air. It is desirable to mix immediately before carrying out powder additive manufacturing in an atmosphere where the humidity is as low as possible.
  • a pellet (resin compound) obtained by melting and mixing the polyamide 12 powder or the polyamide 12 pellet and the flame retardant material powder is manufactured once, and this resin compound is produced.
  • a resin powder material having an oxygen index of 23 or more can be obtained by low-temperature pulverization and classification. This method makes the mixed state of the resin powder material more uniform as compared with dry blending, while Tc is higher than that of the polyamide 12 before melt mixing. As a result, the temperature difference between Tm and Tc becomes small, and it is necessary to suppress variations in the surface temperature of the material just before sintering by adjusting the preheating means.
  • the blending amount of the flame retardant material powder 1b having an oxygen index of 27 or more is preferably 5% by mass or more and less than 50% by mass, more preferably 10% by mass or more and less than 40% by mass. If the blending amount of the flame retardant material powder 1b is too small, the oxygen index of the resin powder material becomes less than 23 and flame retardancy is lost. Moreover, when there are too many compounding quantities of the flame retardant material powder 1b, side effects, such as the fall of mechanical strength, generation
  • FIG. 2 is a diagram illustrating an example of a process of manufacturing a resin molded article using the resin powder material manufactured based on the above [Preparation of resin powder material].
  • the powder additive manufacturing apparatus raises a part cartridge (hereinafter referred to as a powder bed) 21 for arranging a powder material and a model, a feed cartridge 22 for supplying the part cartridge and the powder material, and a feed cartridge.
  • a piston 23 for newly supplying a powder material, a heater 25 for heating the powder bed and the material supply portion, and a laser irradiator 26 for selectively heating a part of the surface of the powder bed with a laser beam, Consists of.
  • a layer of the resin powder material 20 is laid on the powder bed 21 with the roller 24 (FIG. 2A).
  • laser light is irradiated from the laser irradiator 26 to selectively sinter and solidify the resin powder material of the powder bed 21 (FIG. 2 ( b)).
  • the feed cartridge 22a near the roller 24 is raised by the piston 23a, and the powder bed 21 and the other feed cartridge 22b are lowered by the pistons 23c and 23b (FIG. 2C).
  • the resin powder material is supplied (powder laying by roller movement) (FIG.
  • the resin molded material manufactured by the powder lamination method using laser light using the above-described resin powder material can ensure the desired flame retardancy even if the resin molded product is thinned. It becomes possible.
  • the polyamide 12 powder As the polyamide 12 powder, a pulverized product (average particle diameter of 65 ⁇ m) of the commercially available polyamide 12 for injection molding listed in Table 1 was used.
  • the flame retardant powder is a mixture of 75% by mass of tetrabromobisphenol A diglycidyl ether / brominated bisphenol A adduct, which is a halogen-based resin material, and 25% by mass of antimony trioxide, and then pulverized. Were used to adjust the average particle size to 67 ⁇ m.
  • a polyamide 12 powder was mixed in an amount of 60% by mass and a flame retardant material powder was mixed in an amount of 40% by mass to prepare a combustion test piece, a tensile test piece, and a bending test piece.
  • the polyamide 12 powder is the same as the polyamide 12 powder described in Example 1.
  • the flame retardant material powder is obtained by subjecting a mixture of 5% by mass of brominated polystyrene, which is a halogen-based resin material, and 95% by mass of antimony trioxide, to low temperature pulverization, and then classifying the pulverized material to obtain an average particle size of 21 ⁇ m. The adjusted one was used.
  • a polyamide 12 powder was mixed in an amount of 60% by mass and a flame retardant material powder was mixed in an amount of 40% by mass to prepare a combustion test piece, a tensile test piece, and a bending test piece.
  • the polyamide 12 powder is the same as the polyamide 12 powder described in Example 1.
  • melamine polyphosphate (average particle size of less than 5 ⁇ m), which is an organic material and is a non-halogen compound, was used.
  • a polyamide 12 powder was mixed in a blending amount of 90% by mass and a flame retardant material powder was mixed in an amount of 10% by mass to prepare a combustion test piece, a tensile test piece, and a bending test piece.
  • the polyamide 12 powder is the same as the polyamide 12 powder described in Example 1.
  • As the flame retardant material powder melamine cyanurate (average particle size: 14 ⁇ m), which is an organic material and is a non-halogen compound, was used.
  • a polyamide 12 powder and a flame retardant material powder were mixed in a blending amount of 70% by mass, and a combustion test piece, a tensile test piece, and a bending test piece were prepared.
  • the polyamide 12 powder is the same as the polyamide 12 powder described in Example 1.
  • the flame retardant material powder was an inorganic material and was adjusted to an average particle size of less than 100 ⁇ m by classifying expanded graphite powder, which is a non-halogen compound.
  • a polyamide 12 powder and a flame retardant material powder were mixed in a blending amount of 70% by mass, and a combustion test piece, a tensile test piece, and a bending test piece were prepared.
  • Combustion test pieces, tensile test pieces, and bending test pieces were produced using only the polyamide 12 powder described in Example 1.
  • the UL94 vertical combustion test, the tensile test, and the bending test were performed on the combustion test piece, the tensile test piece, and the bending test piece prepared for each of Examples 1 to 6 and the comparative example.
  • the evaluation results are shown in Table 4.
  • the tensile test was performed in accordance with the ISO 3167 standard.
  • the bending test was performed in accordance with ISO178 standard. Since all the components of the flame retardant material powder in Examples 1 to 6 have a vaporization temperature of 300 ° C. or higher, it is clear that the concentration is hardly lowered in the process of preparing the test piece.
  • test piece of the comparative example had a V-Not determination with no flame retardancy because the maximum burning time exceeded 30 seconds.
  • the test piece of Example 1 had a maximum burning time of 10 seconds or less, a total burning time of 50 seconds or less, and the lower cotton was not ignited, so it was determined as V-0 and exhibited particularly good flame retardancy. Moreover, tensile strength and bending strength were higher than the comparative example, and favorable mechanical strength was shown.
  • the test piece of Example 2 had a maximum combustion time of 10 seconds or less, a total combustion time of 50 seconds or less, and the lower cotton was not ignited.
  • the test piece of Example 3 had a maximum burning time of 30 seconds or less and a total burning time of 250 seconds or less. However, since the lower cotton ignited, it was judged as V-2 and showed a slight flame retardancy.
  • the test piece of Example 4 had a maximum burning time of 10 seconds or less, a total burning time of 50 seconds or less, and the lower cotton was not ignited, so it was determined as V-0 and exhibited particularly good flame retardancy.
  • the test piece of Example 5 had a maximum burning time of 10 seconds or less, a total burning time of 50 seconds or less, and the lower cotton was not ignited, so it was determined as V-0 and exhibited particularly good flame retardancy.
  • the test piece of Example 6 had a maximum combustion time of 10 seconds or less and a total combustion time of 50 seconds or less. However, since the lower cotton ignited, it was judged as V-2 and showed a slight flame retardancy.
  • test pieces described in Examples 1 to 6 have a shorter burning time and exhibit flame retardancy than the test pieces described in Comparative Examples.
  • the test piece of Example 1 has the highest concentration of the halogen-based resin material whose basic skeleton is an aromatic hydrocarbon in which halogen atoms are easily liberated, it can achieve both good flame retardancy and mechanical strength. did it.
  • the polyamide 12 powder most commonly used in the powder laminating method using laser light has been described as an example, but the polyamide is a low melting crystalline resin having a Tm of 200 degrees or less. 11. Even if powder, such as 11, polyethylene, a polypropylene, polyoxymethylene, is used with polyamide 12 powder, it can implement similarly. Further, for example, by improving the preheating means (heater 25 in FIG. 2), polybutylene terephthalate, polyphenylene sulfide, polyamide 6, polyamide 6,6, polyamide 6T, which are crystalline resins having a high melting point exceeding Tm of 200 degrees.
  • polyamide 9T polyetheretherketone
  • liquid crystal polymer polyethylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polytetrafluoroethylene and the like together with polyamide 12 powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are: a resin powder material that enables a shaped article, which is produced by a powder lamination method, to achieve desired flame retardancy; and a method for producing a resin shaped article. A resin powder material which is used in powder lamination shaping and contains a polyamide 12 powder 1a and at least one flame-retardant material powder 1b that has an oxygen index of 27 or more.

Description

樹脂粉末材料及び樹脂造形物の製造方法Manufacturing method of resin powder material and resin molding
 本発明は、樹脂粉末材料及び樹脂造形物の製造方法に係り、特に、コンピュータで作成した三次元データに基づいて、その断面形状を積層して所望の構造体を製造する三次元積層造形に用いる樹脂粉末材料及びこれを用いた樹脂造形物の製造方法に関する。 The present invention relates to a method for manufacturing a resin powder material and a resin model, and in particular, it is used for three-dimensional additive manufacturing for manufacturing a desired structure by laminating the cross-sectional shape based on three-dimensional data created by a computer. The present invention relates to a resin powder material and a method for producing a resin molded article using the same.
 近年、製品の設計段階の試作等の場面で行われるラピッドプロトタイピングや小規模量産品の製造等の分野において、三次元積層造形の技術が注目されている。三次元積層造形は、粉末積層法、光造形法、溶融堆積法及びインクジェット法の4つの方式に大別される。中でも粉末積層法は、樹脂成型技術において汎用されている射出成形と同様に、熱可塑性樹脂の適用やガラス繊維の添加が可能であり、かつ寸法精度が良い。従って、粉末積層法により製造された造形物は、他の3つの方式により製造された造形物と比較して、品質や信頼性の面で有利とされている。 In recent years, three-dimensional additive manufacturing techniques have attracted attention in the fields of rapid prototyping and small-scale mass-production products, which are performed in the prototype stage of product design. Three-dimensional additive manufacturing is roughly divided into four methods: powder lamination, stereolithography, melt deposition, and inkjet. In particular, the powder lamination method can be applied with a thermoplastic resin or glass fiber, and has good dimensional accuracy, similar to the injection molding widely used in the resin molding technology. Therefore, the shaped article manufactured by the powder lamination method is advantageous in terms of quality and reliability as compared with the shaped article manufactured by the other three methods.
 粉末積層法は、SLS(Selective Laser Sintering)法とも呼ばれており、製造時における変形現象を避けるため、焼結直前の材料の表面温度を、ヒーターなどの予備加熱手段によって、その材料の融点(以下、Tmと示す)と結晶化温度(以下、Tcと示す)との間に設定する必要がある。従って、粉末積層法に用いる粉末材料としては、Tmが極力低く、かつTmとTcとの温度差が極力大きい材料を用いることが望ましい。また、材料の融解エンタルピー(以下、ΔHmと示す)が小さいと、レーザー光エネルギーの熱伝導により粉末材料が凝結し、造形物の幾何形状の精度が悪くなる。このため、ΔHmが極力大きい材料を用いることが望ましい。 The powder laminating method is also called SLS (Selective Laser Sintering) method, and in order to avoid deformation phenomenon during production, the surface temperature of the material immediately before sintering is changed to the melting point of the material by preheating means such as a heater ( Hereinafter, it is necessary to set between Tm) and the crystallization temperature (hereinafter referred to as Tc). Therefore, as a powder material used in the powder lamination method, it is desirable to use a material having a Tm as low as possible and a temperature difference between Tm and Tc as large as possible. Further, if the melting enthalpy (hereinafter referred to as ΔHm) of the material is small, the powder material is condensed due to the heat conduction of the laser light energy, and the accuracy of the geometric shape of the shaped object is deteriorated. For this reason, it is desirable to use a material having a maximum ΔHm.
 以上の理由から、レーザー光を用いた粉末積層法に好適な粉末材料として、特許文献1には、ポリアミド12粉末が挙げられている。 For the above reasons, Patent Document 1 mentions polyamide 12 powder as a powder material suitable for the powder lamination method using laser light.
欧州特許第0911142号European Patent No. 0911142
 上記のようにして得られた造形物を、例えば家電製品、建材、電気・電子用途部品、分析装置や医療機器の筐体部分等の特定の用途に適用する場合には、使用環境によって発火したり、延焼を助長したりしないようにする必要がある。このため、これらの用途に用いる造形物は、難燃性あるいは不燃性を有し、かつ煙霧や有害物質を排出しないという基準を満たすように製造する必要がある。 When the shaped object obtained as described above is applied to a specific application such as a home appliance, a building material, a part for electric / electronic use, an analysis device or a housing part of a medical device, it is ignited depending on the use environment. It is necessary not to promote the spread of fire. For this reason, it is necessary to manufacture the molded object used for these uses so that it may have a flame retardance or a nonflammability, and may satisfy | fill the standard of not discharging | emitting fumes or a harmful substance.
 しかしながら、粉末積層法で用いる粉末材料の粒径は、一般に、射出成形に用いるペレット状の材料の粒径より大きいため、材料の比表面積が増大し、造形物に接炎した際に、材料表面における気化(可燃性ガス化)が促進される。このため、粉末積層法による造形物は、射出成形による成形品より燃焼しやすく、この傾向は、造形物を薄肉化するほど顕著となる。特許文献1に記載のポリアミド12は可燃性であるため、これを用いて粉末積層法により製造した造形物は、難燃性も不燃性も有しない。 However, since the particle size of the powder material used in the powder lamination method is generally larger than the particle size of the pellet-shaped material used for injection molding, the specific surface area of the material is increased, and the material surface is in contact with the molded object. Vaporization (combustible gasification) is promoted. For this reason, the modeled article by the powder lamination method is easier to burn than the molded article by injection molding, and this tendency becomes more prominent as the modeled article becomes thinner. Since the polyamide 12 described in Patent Document 1 is flammable, a molded article produced using the polyamide 12 by a powder lamination method has neither flame retardancy nor incombustibility.
 そこで、本発明の目的は、粉末積層法で製造される樹脂造形物において、所望の難燃性を得られる樹脂粉末材料及び樹脂造形物の製造方法を提供することにある。 Therefore, an object of the present invention is to provide a resin powder material and a method for producing a resin shaped article that can obtain desired flame retardancy in a resin shaped article produced by a powder lamination method.
 本発明に係る樹脂粉末材料の好ましい実施形態としては、粉末積層造形に用いる樹脂粉末材料であって、ポリアミド12粉末と、酸素指数が27以上である少なくとも一種の難燃材料粉末と、を含み、酸素指数が23以上であることを特徴とする。 A preferred embodiment of the resin powder material according to the present invention is a resin powder material used for powder additive manufacturing, including polyamide 12 powder and at least one flame retardant material powder having an oxygen index of 27 or more, The oxygen index is 23 or more.
 また、本発明に係る樹脂造形物の製造方法の好ましい実施形態としては、上記した実施形態に係る樹脂粉末材料を堆積させる工程と、堆積された前記樹脂粉末材料にレーザーを照射し、前記レーザーの照射領域の前記樹脂粉末材料を焼結又は溶融させるレーザー照射工程と、を有することを特徴とする。 Further, as a preferred embodiment of the method for producing a resin shaped article according to the present invention, a step of depositing the resin powder material according to the above-described embodiment, a laser irradiation to the deposited resin powder material, And a laser irradiation step of sintering or melting the resin powder material in the irradiation region.
 本発明によれば、粉末積層法で製造される樹脂造形物において、所望の難燃性を得られる樹脂粉末材料及び樹脂造形物の製造方法を実現することができる。 According to the present invention, it is possible to realize a resin powder material and a method for producing a resin shaped article that can obtain desired flame retardancy in a resin shaped article produced by a powder lamination method.
実施例に係る樹脂粉末材料を示す図である。It is a figure which shows the resin powder material which concerns on an Example. 実施例に係る樹脂粉末材料を用いて樹脂造形物を製造する工程の一例を示す図である。It is a figure which shows an example of the process of manufacturing a resin molded article using the resin powder material which concerns on an Example.
 [原材料] 
 図1は、実施例に係る樹脂粉末材料を示す図である。樹脂粉末材料は、(a)ポリアミド12粉末1aと、(b)酸素指数が27以上である少なくとも一種の難燃材料粉末1bと、を有する。
[raw materials]
FIG. 1 is a diagram illustrating a resin powder material according to an example. The resin powder material has (a) polyamide 12 powder 1a and (b) at least one flame retardant material powder 1b having an oxygen index of 27 or more.
 (a)ポリアミド12粉末 
 ポリアミド12は、下記式(1)に示されるように、炭素数12のω-アミノ酸であるラウリルラクタムの開環重縮合反応によって得られる。ラウリルラクタムの開環重縮合反応の進行度を調整することによって、分子量分布が制御され、Tm、Tc、ΔHm、粒径分布、溶融粘度等の特性が制御される。以下では、ポリアミド12は、分子量分布に応じて異なるTm、Tc、ΔHmを有する複数種を包含するものとして説明する。実施例の樹脂粉末材料は、このうちの少なくとも1種のポリアミド12の粉末を含んでいればよい。
Figure JPOXMLDOC01-appb-C000001
(A) Polyamide 12 powder
The polyamide 12 is obtained by a ring-opening polycondensation reaction of lauryl lactam, which is an ω-amino acid having 12 carbon atoms, as shown in the following formula (1). By adjusting the degree of progress of the ring-opening polycondensation reaction of lauryl lactam, the molecular weight distribution is controlled, and characteristics such as Tm, Tc, ΔHm, particle size distribution, melt viscosity and the like are controlled. Hereinafter, the polyamide 12 will be described as including a plurality of types having different Tm, Tc, and ΔHm depending on the molecular weight distribution. The resin powder material of an Example should just contain the powder of the at least 1 sort (s) of polyamide 12 of these.
Figure JPOXMLDOC01-appb-C000001
 ポリアミド12粉末1aとしては、TmとTcの温度差が比較的大きく、かつΔHmが比較的大きい材料の粉末積層法用のものを用いることが望ましい(例えば、特許文献1参照)。また、ポリアミド12粉末1aとしては、上記のもの以外でも、射出成形用又は押出成形用のポリアミド12市販品のペレット材料を低温粉砕した後、粉砕物を分級することによって、平均粒径20μm以上100μm以下の範囲に調整した粉末を用いてもよい。その場合、後述するヒーター25等の予備加熱手段(図2参照)の調整により、焼結直前の材料の表面温度のばらつきを抑制することで、所望の形状の樹脂造形物を製造することが可能になる。 As the polyamide 12 powder 1a, it is desirable to use a material for a powder lamination method in which a temperature difference between Tm and Tc is relatively large and ΔHm is relatively large (for example, see Patent Document 1). Further, as the polyamide 12 powder 1a, in addition to the above, after the pellet material of polyamide 12 commercial product for injection molding or extrusion molding is pulverized at low temperature, the pulverized product is classified to obtain an average particle size of 20 μm or more and 100 μm. You may use the powder adjusted to the following ranges. In that case, by adjusting preheating means (see FIG. 2) such as the heater 25 to be described later, it is possible to manufacture a resin molded article having a desired shape by suppressing variations in the surface temperature of the material immediately before sintering. become.
 ポリアミド12粉末1aに加えて、ポリアミド12粉末1aに比較的近い特性を有するポリアミド11粉末を用いてもよい。ポリアミド11は、ポリアミド12と比較してややTmが高く、結晶化速度が速いため、造形物を製造する際の変形の抑制が難しいが、柔軟性、低温衝撃性、耐熱性、ガスバリア性、耐摩耗性、耐屈曲疲労性等の点で、ポリアミド12より優れている。また、ポリアミド11は、植物のひまし油を原料として合成されるウンデカンラクタム(炭素数11のω-アミノ酸)の開環重縮合反応によって得られるため、再生可能な原料として望ましい。 In addition to the polyamide 12 powder 1a, a polyamide 11 powder having characteristics relatively close to the polyamide 12 powder 1a may be used. Polyamide 11 has a slightly higher Tm than polyamide 12 and a high crystallization speed, so that it is difficult to suppress deformation when manufacturing a molded article, but flexibility, low temperature impact resistance, heat resistance, gas barrier properties, wear resistance It is superior to polyamide 12 in terms of properties and bending fatigue resistance. Polyamide 11 is desirable as a renewable raw material because it is obtained by a ring-opening polycondensation reaction of undecane lactam (ω-amino acid having 11 carbon atoms) synthesized from plant castor oil.
 表1に、ポリアミド12粉末及びポリアミド11粉末について、Tm、Tc、ΔHmを示差走査熱量測定によって測定した結果を示す。ポリアミド12粉末1aは、表1中に示すポリアミド12粉末同士を適宜混ぜ合わせて用いても良く、表1中に示すポリアミド11粉末を混ぜて用いても良い。また、機械強度を上げるために、ポリアミド6粉末やポリアミド6,6粉末をポリアミド12粉末に混ぜて用いても良い。またさらに、ポリアミド12を、ポリアミド11、ポリアミド6又はポリアミド6,6と共縮重合させた共縮重合体の粉末を混ぜて用いてもよい。その場合、樹脂粉末材料としてのTm、Tc、ΔHmおよび溶融粘度を自在に制御することが可能になる。
Figure JPOXMLDOC01-appb-T000002
Table 1 shows the results of Tm, Tc, and ΔHm measured by differential scanning calorimetry for polyamide 12 powder and polyamide 11 powder. The polyamide 12 powder 1a may be used by appropriately mixing the polyamide 12 powders shown in Table 1 or may be used by mixing the polyamide 11 powder shown in Table 1. In order to increase the mechanical strength, polyamide 6 powder or polyamide 6,6 powder may be mixed with polyamide 12 powder. Further, a powder of a copolycondensation polymer obtained by copolycondensation of polyamide 12 with polyamide 11, polyamide 6 or polyamide 6,6 may be used in combination. In that case, Tm, Tc, ΔHm and melt viscosity as the resin powder material can be freely controlled.
Figure JPOXMLDOC01-appb-T000002
 (b)難燃材料粉末 
 燃焼性に関する代表的な指標としては、JIS-K7201-2で規定される酸素指数又は米国保険業者安全試験所によって策定されたUL94規格による区分けが用いられている。実施例の難燃材料粉末1bとしては、JIS-K7201-2に準拠して測定される酸素指数が27以上のものの少なくとも一種を用いる。酸素指数とは、樹脂材料に火をつけた状態で、その燃焼が持続するのに必要な最低酸素濃度をパーセンテージで示した指標である。一般に、酸素指数22未満を可燃性、酸素指数22以上27未満を自己消火性、酸素指数27以上を難燃性として区分されている。なお、消防法において、酸素指数26未満の樹脂材料は指定可燃物に該当しており、保管には、法令で定められた消火設備の設置が必要である。
(B) Flame retardant material powder
As a representative index relating to flammability, an oxygen index defined in JIS-K7201-2 or a classification according to UL94 standard established by the US Insurer Safety Laboratory is used. As the flame retardant material powder 1b of the examples, at least one of those having an oxygen index of 27 or more measured according to JIS-K7201-2 is used. The oxygen index is an index indicating, as a percentage, the minimum oxygen concentration necessary for the combustion to continue in a state where the resin material is lit. Generally, an oxygen index of less than 22 is classified as flammable, an oxygen index of 22 or more and less than 27 is self-extinguishing, and an oxygen index of 27 or more is classified as flame retardant. According to the Fire Service Act, resin materials with an oxygen index of less than 26 fall under the category of designated combustible materials, and it is necessary to install fire extinguishing equipment stipulated by law for storage.
 UL94規格には、主に水平燃焼試験による判定と垂直燃焼試験による判定がある。表2に、UL94規格による燃焼性の区分けを示す。
Figure JPOXMLDOC01-appb-T000003
The UL94 standard mainly includes determination by a horizontal combustion test and determination by a vertical combustion test. Table 2 shows the flammability classification according to the UL94 standard.
Figure JPOXMLDOC01-appb-T000003
 表3に、代表的な樹脂材料の燃焼性の評価結果を示す。
Figure JPOXMLDOC01-appb-T000004
Table 3 shows the evaluation results of the combustibility of typical resin materials.
Figure JPOXMLDOC01-appb-T000004
 例えば、酸素指数が23以上の樹脂材料であれば、UL94規格でV-2判定の条件をほぼ満たしており、酸素指数が27以上の樹脂材料であれば、UL94規格でV-1判定の条件をほぼ満たしている。 For example, if the resin material has an oxygen index of 23 or more, the conditions for determining V-2 are almost satisfied in the UL94 standard, and if the resin material has an oxygen index of 27 or more, the conditions for determining V-1 in the UL94 standard are satisfied. Is almost satisfied.
 樹脂材料の燃焼性の違いは樹脂材料の分子構造に起因すると考えられている。例えばポリエチレン、ポリプロピレン、ポリスチレン等は、分子を構成する化学成分が、炭素(C)と水素(H)のみであるため、酸素指数が小さく、UL94規格でもV-2には到達しない。一方、ポリ塩化ビニル、難燃クロロプレンゴム、ポリビニリデンフロライドなどは、分子中に、炭素(C)及び水素(H)に加え、ハロゲン元素(F、Cl、Br、Iから選ばれる少なくとも1種類以上)を含むため、酸素指数が大きく、UL94規格ではV-0相当である。これは、炭素(C)とハロゲン元素との結合が酸化反応である燃焼を抑制するためである。 The difference in the combustibility of resin materials is thought to be due to the molecular structure of the resin materials. For example, polyethylene, polypropylene, polystyrene, and the like have only a carbon (C) and hydrogen (H) chemical component, and thus have a small oxygen index, and do not reach V-2 even in the UL94 standard. On the other hand, polyvinyl chloride, flame-retardant chloroprene rubber, polyvinylidene fluoride and the like are at least one selected from halogen (F, Cl, Br, I) in addition to carbon (C) and hydrogen (H) in the molecule. Therefore, the oxygen index is large and is equivalent to V-0 in the UL94 standard. This is because the bond between carbon (C) and the halogen element suppresses combustion, which is an oxidation reaction.
 難燃材料粉末1bは、酸素指数27以上の樹脂材料を低温粉砕したのち、粉砕物を分級することによって、平均粒径20μm以上100μm以下の範囲に調整したものであることが望ましい。また、難燃材料粉末1bとしては、昇華点又は気化温度が300度以上であるものを、少なくとも一種含むことが好ましい。即ち、粉末積層法での焼結温度は300度近くに達するため、難燃材料粉末1bの昇華点又は気化温度が低いと、加熱時に難燃材料粉末1bが昇華又は気化し、その濃度が低下することがある。これを防ぐため、難燃材料粉末1bとして、昇華点又は気化温度が300度以上のものを用いることで、例えばレーザー光を照射して、樹脂粉末材料を焼結させる工程において、難燃材料粉末1bが昇華したり気化したりすることによる濃度変動が抑制される。このため、製造される樹脂造形物の品質が安定する。また、未焼結の樹脂粉末材料中に、難燃材料粉末1bが残存するため、この樹脂粉末材料を再利用することが可能になる。 The flame retardant material powder 1b is desirably adjusted to a mean particle size of 20 μm or more and 100 μm or less by low-temperature pulverization of a resin material having an oxygen index of 27 or higher and then classifying the pulverized product. Moreover, as the flame retardant material powder 1b, it is preferable to include at least one of those having a sublimation point or a vaporization temperature of 300 ° C. or higher. That is, since the sintering temperature in the powder lamination method reaches nearly 300 ° C., if the sublimation point or vaporization temperature of the flame retardant material powder 1b is low, the flame retardant material powder 1b sublimates or vaporizes during heating, and its concentration decreases. There are things to do. In order to prevent this, as the flame retardant material powder 1b, the one having a sublimation point or vaporization temperature of 300 ° C. or higher is used. Concentration fluctuation due to sublimation or vaporization of 1b is suppressed. For this reason, the quality of the resin modeling thing manufactured is stabilized. Further, since the flame retardant material powder 1b remains in the unsintered resin powder material, the resin powder material can be reused.
 難燃材料粉末1bとしては、酸素指数27以上の樹脂材料の代りに、酸素指数27以上の有機材料の粉末又は酸素指数27以上の無機材料の粉末の中から選ばれる少なくとも1種類以上を用いても良い。難燃材料粉末1bとして、有機材料の粉末や無機材料の粉末を用いる場合、難燃剤として市販されているものを選ぶことができる。但し、その場合には、樹脂造形物における引張強度や曲げ強度などの機械的強度の低下、ブリード(樹脂造形物表面の析出物)の発生、ボイド(樹脂造形物内部の空洞)の発生といった副作用を考慮する必要がある。そのため、難燃材料粉末1bとして有機材料の粉末や無機材料の粉末を用いる場合には、前記の酸素指数27以上の樹脂材料と併用するのが良い。また、その場合には、有機材料の粉末や無機材料の粉末は、平均粒径が20μm以上100μm以下の範囲に調整され、また昇華点又は気化温度が300度以上であることが望ましい。 As the flame retardant material powder 1b, instead of a resin material having an oxygen index of 27 or more, at least one kind selected from an organic material powder having an oxygen index of 27 or more or an inorganic material powder having an oxygen index of 27 or more is used. Also good. When an organic material powder or an inorganic material powder is used as the flame retardant material powder 1b, a commercially available flame retardant can be selected. However, in that case, there are side effects such as a decrease in mechanical strength such as tensile strength and bending strength in the resin molding, generation of bleed (precipitate on the surface of the resin molding), and generation of voids (cavities inside the resin molding). Need to be considered. Therefore, when using an organic material powder or an inorganic material powder as the flame retardant material powder 1b, the resin material having an oxygen index of 27 or higher is preferably used in combination. In that case, the organic material powder and the inorganic material powder are preferably adjusted to have an average particle size of 20 μm to 100 μm and a sublimation point or vaporization temperature of 300 ° C. or higher.
 酸素指数27以上の樹脂材料としては、分子構造において複数個のハロゲン原子が存在し、かつこのハロゲン原子が遊離しやすい芳香族炭化水素又は環状炭化水素を基本骨格とするものが、ポリアミド12に対する難燃化効果が良好なため望ましい。このような、ハロゲン原子を有する芳香族炭化水素又はハロゲン原子を有する環状炭化水素を基本骨格とするハロゲン化合物は、芳香族炭化水素や環状炭化水素から遊離したハロゲン原子が、ポリアミド12のC-H結合に作用し、燃焼反応を抑制する。また、芳香族炭化水素や環状炭化水素を基本骨格とする化合物を、難燃材料粉末として用いることで、樹脂粉末材料として高い強度を得ることができる。具体的には、例えば臭素化ポリフェニレンオキサイド、臭素化ポリスチレン、ペンタブロモベンジルアクリレート(ポリマー)、臭素化エポキシ、ポリペンタブロモベンジルアクリレート、テトラブロモビスフェノールAジグリシジルエーテル・ブロモビスフェノールA付加物(ポリマー)などのハロゲン化合物が挙げられる。濃度管理のしやすさの観点から、これらの何れか1種類を単独で用いるのが望ましいが、もちろん2種類以上を混合して用いても良い。 As a resin material having an oxygen index of 27 or more, a material having a plurality of halogen atoms in the molecular structure and having an aromatic hydrocarbon or cyclic hydrocarbon as a basic skeleton that is easily liberated from the halogen atoms is difficult for polyamide 12. Desirable because of its good flammability effect. Such a halogen compound having an aromatic hydrocarbon having a halogen atom or a cyclic hydrocarbon having a halogen atom as a basic skeleton has a halogen atom liberated from the aromatic hydrocarbon or the cyclic hydrocarbon so that the C—H of the polyamide 12 It acts on the bond and suppresses the combustion reaction. Moreover, high intensity | strength can be acquired as a resin powder material by using the compound which has an aromatic hydrocarbon and cyclic hydrocarbon as a basic skeleton as a flame retardant material powder. Specifically, for example, brominated polyphenylene oxide, brominated polystyrene, pentabromobenzyl acrylate (polymer), brominated epoxy, polypentabromobenzyl acrylate, tetrabromobisphenol A diglycidyl ether / bromobisphenol A adduct (polymer), etc. These halogen compounds are mentioned. From the viewpoint of ease of density management, it is desirable to use any one of these alone, but of course, two or more may be used in combination.
 酸素指数27以上の有機材料としては、ポリアミド12に対して良好な難燃化効果を得る観点から、以下のハロゲン化合物を好適に用いることができる。具体的には、例えばビス(ペンタブロモフェニル)エタン、デカブロモジフェニルエーテル、トリス(トリブロモフェノキシ)トリアジン、テトラブロモビスフェノールA、テトラブロモビスフェノールA・ビス(ジブロモプロピルエーテル)、エチレンビステトラブロモフタルイミド、テトラブロモ無水フタル酸、テトラブロモビスフェノールA・ビス(アリールエーテル)、テトラブロモビスフェノールA・カーボネートオリゴマー、トリス(2,3-ジブロモプロピル)イソシアヌレート、臭素化エポキシオリゴマー、パークロロペンタシクロデカン等のハロゲン化合物が挙げられる。濃度管理のしやすさの観点から、これらの何れか1種類を単独で用いるのが望ましいが、もちろん2種類以上を混合して用いても良い。 As the organic material having an oxygen index of 27 or more, the following halogen compounds can be preferably used from the viewpoint of obtaining a good flame retarding effect on the polyamide 12. Specifically, for example, bis (pentabromophenyl) ethane, decabromodiphenyl ether, tris (tribromophenoxy) triazine, tetrabromobisphenol A, tetrabromobisphenol A.bis (dibromopropyl ether), ethylenebistetrabromophthalimide, tetrabromo Halogen compounds such as phthalic anhydride, tetrabromobisphenol A / bis (aryl ether), tetrabromobisphenol A / carbonate oligomer, tris (2,3-dibromopropyl) isocyanurate, brominated epoxy oligomer, perchloropentacyclodecane, etc. Can be mentioned. From the viewpoint of ease of density management, it is desirable to use any one of these alone, but of course, two or more may be used in combination.
 酸素指数27以上の有機材料としては、ポリアミド12に対して良好な難燃化効果を得る観点から、以下のノンハロゲン化合物を好適に用いることができる。具体的には、例えばメラミンポリフォスフェート、メラミンシアヌレートなどのメラミン化合物や、例えばポリリン酸アンモニウム、ビスフェノールAビス(ジフェニルリン酸エステル)、レゾルシノールビス(ジフェニルリン酸エステル)、トリイソプロピルフェニルリン酸エステル、トリフェニルリン酸エステル、トリメチルリン酸エステル、トリエチルリン酸エステル、トリクレジルリン酸エステル、トリス(クロロイソプロピル)リン酸エステル、ホスファゼン化合物などのリン化合物が挙げられる。濃度管理のしやすさの観点から、これらの何れか1種類を単独で用いるのが望ましいが、もちろん2種類以上を混合して用いても良い。メラミン化合物の場合は、分子構造において、環状のC-N不飽和結合群を基本骨格とし、かつ不活性ガスとして窒素化合物が発生しやすい材料であることが望ましい。これにより、可燃物ガスや酸素ガスに対する希釈効果が十分に得られる。リン化合物の場合は、分子構造において、ラジカルトラップ効果のあるリン酸の官能基を有しているものが望ましい。また、可燃物の炭化を促進することで、可燃物ガス発生の抑制効果やガス拡散の抑制効果が得られるものが良い。 As the organic material having an oxygen index of 27 or more, the following non-halogen compounds can be suitably used from the viewpoint of obtaining a good flame retarding effect on the polyamide 12. Specifically, for example, melamine compounds such as melamine polyphosphate and melamine cyanurate, for example ammonium polyphosphate, bisphenol A bis (diphenyl phosphate ester), resorcinol bis (diphenyl phosphate ester), triisopropylphenyl phosphate ester And phosphorus compounds such as triphenyl phosphate, trimethyl phosphate, triethyl phosphate, tricresyl phosphate, tris (chloroisopropyl) phosphate, and phosphazene compounds. From the viewpoint of ease of density management, it is desirable to use any one of these alone, but of course, two or more may be used in combination. In the case of a melamine compound, it is desirable that the molecular structure is a material having a cyclic CN unsaturated bond group as a basic skeleton and a nitrogen compound easily generated as an inert gas. Thereby, the dilution effect with respect to combustible gas and oxygen gas is fully acquired. In the case of phosphorus compounds, those having a functional group of phosphoric acid having a radical trapping effect in the molecular structure are desirable. Moreover, the thing which can obtain the suppression effect of combustible gas generation | occurrence | production and the suppression effect of gas diffusion by promoting the carbonization of a combustible material is good.
 酸素指数27以上の無機材料としては、ポリアミド12に対して良好な難燃化効果を得る観点から、例えば水酸化マグネシウム、水酸化アルミニウム、ホウ酸亜鉛等の金属化合物、三酸化アンチモン、膨張黒鉛などが挙げられる。三酸化アンチモンの場合、前記のハロゲン原子を有する樹脂材料又は有機材料と併用するのが望ましい。これにより、可燃物材料の表面にハロゲン化アンチモンの被膜が形成され、ハロゲン原子の遊離が促進される。水酸化マグネシウム、水酸化アルミニウム、ホウ酸亜鉛は、吸熱作用による可燃物の発熱反応の抑制、即ち可燃物ガス発生の抑制や、脱水生成水による可燃物濃度の低減などの効果を得られる。但し、水酸化マグネシウム等を高濃度に添加しないと難燃化しにくい。このため、水酸化マグネシウム、水酸化アルミニウム、ホウ酸亜鉛は、前記の酸素指数27以上の樹脂材料又は酸素指数27以上の有機材料と併用するのが望ましい。膨張黒鉛は、高温に曝されると体積膨張して可燃物表面を覆うことで、可燃物ガスと酸素ガスとの反応を防止し、燃焼を防ぐ性質を有する。さらに、膨張黒鉛には、体積膨張時の吸熱作用によって、可燃物ガスの発生を抑制する効果もある。膨張黒鉛は、単独でも十分な難燃化効果を発揮するが、前記の酸素指数27以上の樹脂材料、酸素指数27以上の有機材料と併用しても良い。 As an inorganic material having an oxygen index of 27 or more, from the viewpoint of obtaining a good flame retardant effect on the polyamide 12, for example, metal compounds such as magnesium hydroxide, aluminum hydroxide, zinc borate, antimony trioxide, expanded graphite, etc. Is mentioned. In the case of antimony trioxide, it is desirable to use in combination with the above-mentioned resin material or organic material having a halogen atom. Thereby, a coating of antimony halide is formed on the surface of the combustible material, and liberation of halogen atoms is promoted. Magnesium hydroxide, aluminum hydroxide, and zinc borate can provide effects such as suppression of exothermic reaction of combustibles by endothermic action, that is, suppression of combustible gas generation and reduction of combustible concentration by dehydrated product water. However, it is difficult to make it flame retardant unless magnesium hydroxide or the like is added at a high concentration. For this reason, it is desirable to use magnesium hydroxide, aluminum hydroxide, and zinc borate in combination with the above-described resin material having an oxygen index of 27 or higher or an organic material having an oxygen index of 27 or higher. Expanded graphite expands in volume when exposed to high temperatures and covers the surface of the combustible material, thereby preventing the reaction between the combustible gas and the oxygen gas and preventing combustion. Furthermore, expanded graphite also has an effect of suppressing the generation of combustible gas by an endothermic action during volume expansion. Expanded graphite alone exhibits a sufficient flame retarding effect, but it may be used in combination with the above-described resin material having an oxygen index of 27 or more and an organic material having an oxygen index of 27 or more.
 難燃材料粉末1bのうち、前記のメラミン化合物は、潤滑剤としての効果も有している。このため、難燃材料粉末1bとしてメラミン化合物を配合した場合には、樹脂粉末材料の流動性が向上する。このため、粉末積層法を実施する際に、樹脂粉末材料を、その堆積面に安定的に敷き詰めることができる。また、この樹脂粉末材料を用いて製造した樹脂造形物が接炎した際には、造形物の溶融粘度が低下し、滞留に伴って可燃性ガス化する現象が抑制される。このため、流動性の向上は、難燃性を確保する上で補助的な役割を果たし、かつ煙霧や有害物質が広範囲に排出される現象を防止する。難燃材料粉末1bとして、メラミン化合物を用いない場合には、樹脂粉末材料に、潤滑剤成分として別途シリカを添加することにより、流動性を改善させることもできる。 Of the flame retardant material powder 1b, the melamine compound also has an effect as a lubricant. For this reason, when a melamine compound is mix | blended as the flame-retardant material powder 1b, the fluidity | liquidity of a resin powder material improves. For this reason, when carrying out the powder lamination method, the resin powder material can be stably spread on the deposition surface. Moreover, when the resin modeling thing manufactured using this resin powder material flame-contacted, the melt viscosity of a modeling thing falls and the phenomenon which combustible gasification with a residence is suppressed. For this reason, improvement in fluidity plays an auxiliary role in ensuring flame retardancy, and prevents a phenomenon in which fumes and harmful substances are discharged in a wide range. When a melamine compound is not used as the flame retardant material powder 1b, the fluidity can be improved by adding silica as a lubricant component to the resin powder material.
 樹脂粉末材料としては、上記したポリアミド12粉末1aと、難燃材料粉末1bとを有することで、優れた難燃性を得ることができる。樹脂粉末材料としては、JIS-K7201-2で規定される酸素指数が23以上の値を示すことが好ましい。 As the resin powder material, excellent flame retardancy can be obtained by having the above-described polyamide 12 powder 1a and flame retardant material powder 1b. The resin powder material preferably has an oxygen index defined by JIS-K7201-2 of 23 or more.
 樹脂粉末材料としては、UL94規格でV-2判定、V-1判定、V-0判定を達成するものであることが好ましい。 It is preferable that the resin powder material achieves V-2 determination, V-1 determination, and V-0 determination according to the UL94 standard.
 樹脂粉末材料の平均粒子径は、20μm以上100μm以下であることが好ましい。これにより、樹脂粉末材料を安定的に堆積させることと、製造される樹脂造形物の寸法精度の向上とを両立させることが可能となる。樹脂粉末材料の平均粒子径が20μm未満であると、樹脂粉末材料を安定的に堆積させることが困難となる。また、樹脂粉末材料の平均粒子径が100μmを超えると、樹脂造形物の寸法精度が低下する。 The average particle size of the resin powder material is preferably 20 μm or more and 100 μm or less. As a result, it is possible to achieve both the stable deposition of the resin powder material and the improvement of the dimensional accuracy of the resin molded article to be manufactured. When the average particle diameter of the resin powder material is less than 20 μm, it is difficult to stably deposit the resin powder material. Moreover, when the average particle diameter of resin powder material exceeds 100 micrometers, the dimensional accuracy of a resin molded article will fall.
 樹脂粉末材料の結晶化温度は、144度以上161度以下であることが好ましい。結晶化温度が上記範囲であることで、樹脂粉末材料としてのTmとTcとの温度差が十分に確保される。このため、焼結直前の樹脂粉末材料の表面温度を設定する工程の裕度が確保される。 The crystallization temperature of the resin powder material is preferably 144 degrees or more and 161 degrees or less. When the crystallization temperature is in the above range, a sufficient temperature difference between Tm and Tc as the resin powder material is ensured. For this reason, the tolerance of the process which sets the surface temperature of the resin powder material just before sintering is ensured.
 [樹脂粉末材料の作製] 
 前記のポリアミド12粉末1aと、前記の酸素指数27以上の難燃材料粉末1bとを所望の配合量で均一に混合することによって、酸素指数23以上の樹脂粉末材料が得られる。均一に混合する手段としては、例えば乾式粉体混合機を用いる方法(ドライブレンド)が挙げられる。乾式粉体混合機の方式については、粉末の種類に応じて、回転混合、揺動混合、V型混合の何れかを選ぶことができる。粉末粒子同士の凝集に伴う平均粒径の増大を防ぎ、かつ樹脂粉末材料の中で密度の大きい成分の沈降に伴う不均一混合状態を防ぐ目的から、不活性ガスや乾燥空気などを充填して湿度を極力低くした雰囲気で、粉末積層造形を実施する直前に混合するのが望ましい。
[Production of resin powder material]
By uniformly mixing the polyamide 12 powder 1a and the flame retardant material powder 1b having an oxygen index of 27 or more in a desired blending amount, a resin powder material having an oxygen index of 23 or more can be obtained. Examples of the means for uniformly mixing include a method using a dry powder mixer (dry blending). As for the method of the dry powder mixer, any of rotary mixing, rocking mixing, and V-type mixing can be selected according to the type of powder. In order to prevent an increase in the average particle size due to aggregation of powder particles and to prevent a non-uniform mixing state due to sedimentation of components with high density in the resin powder material, it is filled with inert gas or dry air. It is desirable to mix immediately before carrying out powder additive manufacturing in an atmosphere where the humidity is as low as possible.
 前記のドライブレンドの代りに、例えば、前記のポリアミド12粉末又は前記のポリアミド12ペレットと、前記の難燃材料粉末とを溶融混合して得られるペレット(樹脂コンパウンド)をいったん製造し、この樹脂コンパウンドを低温粉砕および分級することによっても、同様に酸素指数23以上の樹脂粉末材料が得られる。この方法は、ドライブレンドと比較して、樹脂粉末材料の混合状態がより均一になる一方、Tcは溶融混合前のポリアミド12のそれよりも高くなる。その結果として、TmとTcとの温度差が小さくなり、予備加熱手段の調整による焼結直前の材料の表面温度のばらつきの抑制が必要になる。 Instead of the dry blend, for example, a pellet (resin compound) obtained by melting and mixing the polyamide 12 powder or the polyamide 12 pellet and the flame retardant material powder is manufactured once, and this resin compound is produced. Similarly, a resin powder material having an oxygen index of 23 or more can be obtained by low-temperature pulverization and classification. This method makes the mixed state of the resin powder material more uniform as compared with dry blending, while Tc is higher than that of the polyamide 12 before melt mixing. As a result, the temperature difference between Tm and Tc becomes small, and it is necessary to suppress variations in the surface temperature of the material just before sintering by adjusting the preheating means.
 樹脂粉末材料において、前記の酸素指数27以上の難燃材料粉末1bの配合量は5質量%以上50質量%未満が好ましく、より好ましくは10質量%以上40質量%未満である。難燃材料粉末1bの配合量が少なすぎると、樹脂粉末材料の酸素指数が23未満となって難燃性が失われる。また、難燃材料粉末1bの配合量が多すぎると機械的強度の低下やブリードの発生やボイドの発生といった副作用が生じてしまう。 In the resin powder material, the blending amount of the flame retardant material powder 1b having an oxygen index of 27 or more is preferably 5% by mass or more and less than 50% by mass, more preferably 10% by mass or more and less than 40% by mass. If the blending amount of the flame retardant material powder 1b is too small, the oxygen index of the resin powder material becomes less than 23 and flame retardancy is lost. Moreover, when there are too many compounding quantities of the flame retardant material powder 1b, side effects, such as the fall of mechanical strength, generation | occurrence | production of a bleed, and generation | occurrence | production of a void will arise.
 [樹脂造形物の製造] 
 図2は、前記の[樹脂粉末材料の作製]に基づいて製造された樹脂粉末材料を用いて、樹脂造形物を製造する工程の一例を示す図である。粉末積層造形装置は、粉末材料及び造形物を配置するパートカートリッジ(以下、造形する場所のことをパウダーベッドと呼ぶ)21と、パートカートリッジや粉末材料を供給するフィードカートリッジ22と、フィードカートリッジを上昇するピストン23と、粉末材料を新たに供給するローラー24と、パウダーベッド及び材料供給箇所を加熱するヒーター25と、パウダーベッドの表面の一部をレーザー光で選択的に加熱するレーザー照射器26とによって構成される。
[Manufacture of resin moldings]
FIG. 2 is a diagram illustrating an example of a process of manufacturing a resin molded article using the resin powder material manufactured based on the above [Preparation of resin powder material]. The powder additive manufacturing apparatus raises a part cartridge (hereinafter referred to as a powder bed) 21 for arranging a powder material and a model, a feed cartridge 22 for supplying the part cartridge and the powder material, and a feed cartridge. A piston 23 for newly supplying a powder material, a heater 25 for heating the powder bed and the material supply portion, and a laser irradiator 26 for selectively heating a part of the surface of the powder bed with a laser beam, Consists of.
 まず、ローラー24でパウダーベッド21に樹脂粉末材料20の層を敷く(図2(a))。次に、コンピュータ上で作った三次元データのスライスデータに基づいて、レーザー照射器26よりレーザー光を照射し、パウダーベッド21の樹脂粉末材料を選択的に焼結・固体化させる(図2(b))。その後、ローラー24が配置されている近辺のフィードカートリッジ22aがピストン23aによって上昇するとともに、パウダーベッド21及びもう一方のフィードカートリッジ22bがピストン23c、23bによって下降する(図2(c))。以降、樹脂粉末材料の供給(ローラ移動による粉末敷設)(図2(d))、レーザー光の照射による選択的固体化、下層との焼結を繰り返すことによって三次元形状化する。造形中において、ヒーター25はパウダーベッド21の温度を樹脂粉末材料のTc以上かつTm近傍まで予熱し保持している。 First, a layer of the resin powder material 20 is laid on the powder bed 21 with the roller 24 (FIG. 2A). Next, based on the slice data of the three-dimensional data created on the computer, laser light is irradiated from the laser irradiator 26 to selectively sinter and solidify the resin powder material of the powder bed 21 (FIG. 2 ( b)). Thereafter, the feed cartridge 22a near the roller 24 is raised by the piston 23a, and the powder bed 21 and the other feed cartridge 22b are lowered by the pistons 23c and 23b (FIG. 2C). Thereafter, the resin powder material is supplied (powder laying by roller movement) (FIG. 2D), selective solidification by laser light irradiation, and sintering with the lower layer are repeated to form a three-dimensional shape. During modeling, the heater 25 preheats and holds the temperature of the powder bed 21 to Tc of the resin powder material and near Tm.
 以上説明したように、上記した樹脂粉末材料を用いて、レーザー光を用いた粉末積層法により製造された樹脂造形物では、樹脂造形物を薄肉化しても所望の難燃性を確保することが可能になる。 As described above, the resin molded material manufactured by the powder lamination method using laser light using the above-described resin powder material can ensure the desired flame retardancy even if the resin molded product is thinned. It becomes possible.
 後述する実施例1~実施例6及び比較例の燃焼試験、引張試験、曲げ試験に用いる試験片を、それぞれ以下のようにして作成した。 Specimens used in the combustion test, tensile test, and bending test of Examples 1 to 6 and Comparative Examples described later were prepared as follows.
 [燃焼試験片の作製] 
 前記の[樹脂造形物の製造]に基づいて、長さ125mm、幅13mm、厚み2mmの三次元形状(直方体)にした造形物を5本作製し、これらを燃焼試験片とした。なお、この三次元形状は単純であるため、従来の樹脂成形技術で最も広く利用されている射出成形や、金型を用いた他の成形法でも同様に作製することができる。
[Production of combustion test piece]
Based on the above [Manufacture of resin molded article], five three-dimensional articles (cuboids) having a length of 125 mm, a width of 13 mm, and a thickness of 2 mm were produced, and these were used as combustion test pieces. In addition, since this three-dimensional shape is simple, it can be similarly produced by injection molding that is most widely used in the conventional resin molding technique and other molding methods using a mold.
 [引張試験片の作製] 
 前記の[樹脂造形物の製造]に基づいて、ISO3167規格に準拠する三次元形状(ダンベル状)に作製した造形物を引張試験片とした。なお、この三次元形状は単純であるため、射出成形や、金型を用いた他の成形法でも同様に作製することができる。
[Preparation of tensile specimen]
Based on the above [Manufacture of resin shaped article], a shaped article produced in a three-dimensional shape (dumbbell shape) conforming to the ISO 3167 standard was used as a tensile test piece. Since this three-dimensional shape is simple, it can be similarly produced by injection molding or other molding methods using a mold.
 [曲げ試験片の作製] 
 前記の[樹脂造形物の製造]に基づいて、長さ80mm、幅10mm、厚み4mmの三次元形状(直方体)にした造形物(ISO178規格に準拠)を曲げ試験片とした。なお、この三次元形状は単純であるため、射出成形や、金型を用いた他の成形法でも同様に作製することができる。
[Preparation of bending specimen]
Based on the above [Manufacture of resin shaped article], a three-dimensional shape (rectangular solid) having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm (conforming to ISO 178 standard) was used as a bending test piece. Since this three-dimensional shape is simple, it can be similarly produced by injection molding or other molding methods using a mold.
 ポリアミド12粉末は、表1に記載の射出成形用ポリアミド12市販品3の粉砕物(平均粒径65μm)を用いた。難燃材料粉末は、ハロゲン系樹脂材料であるテトラブロモビスフェノールAジグリシジルエーテル・ブロモ化ビスフェノールA付加物75質量%と、三酸化アンチモン25質量%との混合物を低温粉砕したのち、粉砕されたものを分級することによって、平均粒径67μmに調整したものを用いた。ポリアミド12粉末を60質量%、難燃材料粉末を40質量%の配合量で混合し、燃焼試験片、引張試験片及び曲げ試験片を作製した。 As the polyamide 12 powder, a pulverized product (average particle diameter of 65 μm) of the commercially available polyamide 12 for injection molding listed in Table 1 was used. The flame retardant powder is a mixture of 75% by mass of tetrabromobisphenol A diglycidyl ether / brominated bisphenol A adduct, which is a halogen-based resin material, and 25% by mass of antimony trioxide, and then pulverized. Were used to adjust the average particle size to 67 μm. A polyamide 12 powder was mixed in an amount of 60% by mass and a flame retardant material powder was mixed in an amount of 40% by mass to prepare a combustion test piece, a tensile test piece, and a bending test piece.
 ポリアミド12粉末は、実施例1に記載されたポリアミド12粉末と同様である。難燃材料粉末は、ハロゲン系樹脂材料である臭素化ポリスチレン5質量%と、三酸化アンチモン95質量%との混合物を低温粉砕したのち、粉砕されたものを分級することによって、平均粒径21μmに調整したものを用いた。ポリアミド12粉末を60質量%、難燃材料粉末を40質量%の配合量で混合し、燃焼試験片、引張試験片及び曲げ試験片を作製した。 The polyamide 12 powder is the same as the polyamide 12 powder described in Example 1. The flame retardant material powder is obtained by subjecting a mixture of 5% by mass of brominated polystyrene, which is a halogen-based resin material, and 95% by mass of antimony trioxide, to low temperature pulverization, and then classifying the pulverized material to obtain an average particle size of 21 μm. The adjusted one was used. A polyamide 12 powder was mixed in an amount of 60% by mass and a flame retardant material powder was mixed in an amount of 40% by mass to prepare a combustion test piece, a tensile test piece, and a bending test piece.
 ポリアミド12粉末は、実施例1に記載されたポリアミド12粉末と同様である。難燃材料粉末は、有機材料であり、かつノンハロゲン化合物であるメラミンポリフォスフェート(平均粒径5μm未満)を用いた。ポリアミド12粉末を90質量%、難燃材料粉末を10質量%の配合量で混合し、燃焼試験片、引張試験片及び曲げ試験片を作製した。 The polyamide 12 powder is the same as the polyamide 12 powder described in Example 1. As the flame retardant material powder, melamine polyphosphate (average particle size of less than 5 μm), which is an organic material and is a non-halogen compound, was used. A polyamide 12 powder was mixed in a blending amount of 90% by mass and a flame retardant material powder was mixed in an amount of 10% by mass to prepare a combustion test piece, a tensile test piece, and a bending test piece.
 ポリアミド12粉末は、実施例1に記載されたポリアミド12粉末と同様である。難燃材料粉末は、有機材料であり、かつノンハロゲン化合物であるメラミンシアヌレート(平均粒径14μm)を用いた。ポリアミド12粉末を70質量%、難燃材料粉末を30質量%の配合量で混合し、燃焼試験片、引張試験片及び曲げ試験片を作製した。 The polyamide 12 powder is the same as the polyamide 12 powder described in Example 1. As the flame retardant material powder, melamine cyanurate (average particle size: 14 μm), which is an organic material and is a non-halogen compound, was used. A polyamide 12 powder and a flame retardant material powder were mixed in a blending amount of 70% by mass, and a combustion test piece, a tensile test piece, and a bending test piece were prepared.
 ポリアミド12粉末は、実施例1に記載されたポリアミド12粉末と同様である。難燃材料粉末は、無機材料であり、かつノンハロゲン化合物である膨張黒鉛の粉末を分級することによって、平均粒径100μm未満に調整したものを用いた。ポリアミド12粉末を70質量%、難燃材料粉末を30質量%の配合量で混合し、燃焼試験片、引張試験片及び曲げ試験片を作製した。 The polyamide 12 powder is the same as the polyamide 12 powder described in Example 1. The flame retardant material powder was an inorganic material and was adjusted to an average particle size of less than 100 μm by classifying expanded graphite powder, which is a non-halogen compound. A polyamide 12 powder and a flame retardant material powder were mixed in a blending amount of 70% by mass, and a combustion test piece, a tensile test piece, and a bending test piece were prepared.
ポリアミド12を70乃至90質量%、メラミンシアヌレートを10乃至25質量%、安定剤等その他成分を0乃至5質量%の配合量にて混合された樹脂コンパウンドの市販品を低温粉砕及び分級することによって、平均粒径59μmに調整したものを用いて、燃焼試験片、引張試験片及び曲げ試験片を作製した。 Low-temperature pulverization and classification of a commercial product of a resin compound in which polyamide 12 is mixed at 70 to 90% by mass, melamine cyanurate is mixed at 10 to 25% by mass, and other components such as stabilizers are mixed at 0 to 5% by mass. Using the samples adjusted to an average particle size of 59 μm, combustion test pieces, tensile test pieces and bending test pieces were produced.
比較例Comparative example
 実施例1に記載されたポリアミド12粉末のみで燃焼試験片、引張試験片及び曲げ試験片を作製した。 Combustion test pieces, tensile test pieces, and bending test pieces were produced using only the polyamide 12 powder described in Example 1.
 実施例1乃至6及び比較例についてそれぞれ作製した燃焼試験片、引張試験片、及び曲げ試験片について、UL94垂直燃焼試験、引張試験、曲げ試験を実施した。評価結果を表4に示す。引張試験は、ISO3167規格に準拠して行った。曲げ試験は、ISO178規格に準拠して行った。実施例1乃至6における難燃材料粉末の成分は、全て気化温度300度以上であるため、試験片を作製する過程において、濃度がほとんど低下していないことは明らかである。
Figure JPOXMLDOC01-appb-T000005
The UL94 vertical combustion test, the tensile test, and the bending test were performed on the combustion test piece, the tensile test piece, and the bending test piece prepared for each of Examples 1 to 6 and the comparative example. The evaluation results are shown in Table 4. The tensile test was performed in accordance with the ISO 3167 standard. The bending test was performed in accordance with ISO178 standard. Since all the components of the flame retardant material powder in Examples 1 to 6 have a vaporization temperature of 300 ° C. or higher, it is clear that the concentration is hardly lowered in the process of preparing the test piece.
Figure JPOXMLDOC01-appb-T000005
 比較例の試験片は、最大燃焼時間が30秒を超えたため、難燃性のないV-Not判定であった。 The test piece of the comparative example had a V-Not determination with no flame retardancy because the maximum burning time exceeded 30 seconds.
 実施例1の試験片は、最大燃焼時間が10秒以下、合計燃焼時間が50秒以下、下部の綿に着火なしであったため、V-0判定となり特に良好な難燃性を示した。また、引張強度、曲げ強度が比較例より高く、良好な機械的強度を示した。 The test piece of Example 1 had a maximum burning time of 10 seconds or less, a total burning time of 50 seconds or less, and the lower cotton was not ignited, so it was determined as V-0 and exhibited particularly good flame retardancy. Moreover, tensile strength and bending strength were higher than the comparative example, and favorable mechanical strength was shown.
 実施例2の試験片は、最大燃焼時間が10秒以下、合計燃焼時間が50秒以下、下部の綿に着火なしであったため、V-0判定となり特に良好な難燃性を示した。 The test piece of Example 2 had a maximum combustion time of 10 seconds or less, a total combustion time of 50 seconds or less, and the lower cotton was not ignited.
 実施例3の試験片は、最大燃焼時間が30秒以下、合計燃焼時間が250秒以下であったが、下部の綿が着火したため、V-2判定となりわずかな難燃性を示した。 The test piece of Example 3 had a maximum burning time of 30 seconds or less and a total burning time of 250 seconds or less. However, since the lower cotton ignited, it was judged as V-2 and showed a slight flame retardancy.
 実施例4の試験片は、最大燃焼時間が10秒以下、合計燃焼時間が50秒以下、下部の綿に着火なしであったため、V-0判定となり特に良好な難燃性を示した。 The test piece of Example 4 had a maximum burning time of 10 seconds or less, a total burning time of 50 seconds or less, and the lower cotton was not ignited, so it was determined as V-0 and exhibited particularly good flame retardancy.
 実施例5の試験片は、最大燃焼時間が10秒以下、合計燃焼時間が50秒以下、下部の綿に着火なしであったため、V-0判定となり特に良好な難燃性を示した。 The test piece of Example 5 had a maximum burning time of 10 seconds or less, a total burning time of 50 seconds or less, and the lower cotton was not ignited, so it was determined as V-0 and exhibited particularly good flame retardancy.
 実施例6の試験片は、最大燃焼時間が10秒以下、合計燃焼時間が50秒以下であったが、下部の綿が着火したため、V-2判定となりわずかな難燃性を示した。 The test piece of Example 6 had a maximum combustion time of 10 seconds or less and a total combustion time of 50 seconds or less. However, since the lower cotton ignited, it was judged as V-2 and showed a slight flame retardancy.
 表4に示されるように、実施例1乃至6に記載された試験片は、比較例に記載された試験片と比べて、燃焼時間が短く、難燃性を示すことが明らかである。特に、実施例1の試験片は、ハロゲン原子が遊離しやすい芳香族炭化水素を基本骨格としているハロゲン系樹脂材料の濃度が最も高いため、良好な難燃性と機械的強度を両立することができた。 As shown in Table 4, it is clear that the test pieces described in Examples 1 to 6 have a shorter burning time and exhibit flame retardancy than the test pieces described in Comparative Examples. In particular, since the test piece of Example 1 has the highest concentration of the halogen-based resin material whose basic skeleton is an aromatic hydrocarbon in which halogen atoms are easily liberated, it can achieve both good flame retardancy and mechanical strength. did it.
 前記の[樹脂造形物の製造]を利用することで、金型を用いた樹脂成形法では製造が困難であった複雑形状(高アスペクト比の凹凸や中空部など)を有する樹脂製部品、少量の受注生産あるいはカスタマイズ生産の装置などに搭載される樹脂製部品において、所望の難燃性が確保されるため、各種製品に適用することが可能になる。例えば電子顕微鏡、集束イオンビーム、走査型プローブ顕微鏡、臨床検査用装置、生化学分析装置、分光光度計、熱分析装置、各種X線分析装置、各種クロマトグラフ分析装置、電子デバイス製造用プラスマエッチング装置、ウェーハ表面検査装置などにおけるステージカバーを初めとした各種カバー、コントローラ、操作パネル、ダクト部品などが挙げられる。 By utilizing the above-mentioned [Manufacture of resin moldings], resin parts having complicated shapes (high aspect ratio unevenness and hollow portions, etc.) that were difficult to manufacture by a resin molding method using a mold, a small amount Since the desired flame retardance is ensured in the resin parts mounted on the custom-made or customized production apparatus, it can be applied to various products. For example, electron microscope, focused ion beam, scanning probe microscope, clinical laboratory equipment, biochemical analyzer, spectrophotometer, thermal analyzer, various X-ray analyzers, various chromatograph analyzers, plasma etching apparatus for manufacturing electronic devices And various covers such as a stage cover in a wafer surface inspection apparatus, a controller, an operation panel, a duct part, and the like.
 なお、上記実施例では、レーザー光を用いた粉末積層法で最も一般的に用いられているポリアミド12粉末を例にして説明したが、Tmが200度以下の低融点の結晶性樹脂であるポリアミド11、ポリエチレン、ポリプロピレン、ポリオキシメチレンなどの粉末を、ポリアミド12粉末と共に用いても、同様に実施することができる。また、例えば予備加熱手段(図2のヒーター25)を改良することによって、Tmが200度を超える高融点の結晶性樹脂であるポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリアミド6、ポリアミド6,6、ポリアミド6T、ポリアミド9T、ポリエーテルエーテルケトン、液晶ポリマー、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリテトラフルオロエチレンなどの粉末を、ポリアミド12粉末と共に用いても、同様に実施することができる。 In the above embodiment, the polyamide 12 powder most commonly used in the powder laminating method using laser light has been described as an example, but the polyamide is a low melting crystalline resin having a Tm of 200 degrees or less. 11. Even if powder, such as 11, polyethylene, a polypropylene, polyoxymethylene, is used with polyamide 12 powder, it can implement similarly. Further, for example, by improving the preheating means (heater 25 in FIG. 2), polybutylene terephthalate, polyphenylene sulfide, polyamide 6, polyamide 6,6, polyamide 6T, which are crystalline resins having a high melting point exceeding Tm of 200 degrees. It can be similarly carried out by using polyamide 9T, polyetheretherketone, liquid crystal polymer, polyethylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polytetrafluoroethylene and the like together with polyamide 12 powder.
1a…ポリアミド12粉末
1b…難燃材料粉末
20…樹脂粉末材料
21…パウダーベッド
22a、22b…フィードカートリッジ
23a、23b、23c…ピストン
24…ローラー
25…ヒーター
26…レーザー照射器
DESCRIPTION OF SYMBOLS 1a ... Polyamide 12 powder 1b ... Flame retardant material powder 20 ... Resin powder material 21 ... Powder bed 22a, 22b ... Feed cartridge 23a, 23b, 23c ... Piston 24 ... Roller 25 ... Heater 26 ... Laser irradiator

Claims (11)

  1.  粉末積層造形に用いる樹脂粉末材料であって、
     ポリアミド12粉末と、酸素指数が27以上である少なくとも一種の難燃材料粉末と、を含むことを特徴とする樹脂粉末材料。
    A resin powder material used for powder additive manufacturing,
    A resin powder material comprising a polyamide 12 powder and at least one flame retardant material powder having an oxygen index of 27 or more.
  2.  前記難燃材料粉末は、酸素指数が23以上であることを特徴とする請求項1に記載の樹脂粉末材料。 The resin powder material according to claim 1, wherein the flame retardant material powder has an oxygen index of 23 or more.
  3.  前記難燃材料粉末は、UL94規格垂直燃焼試験でV-2、V-1、又はV-0を達成することを特徴とする請求項1に記載の樹脂粉末材料。 The resin powder material according to claim 1, wherein the flame retardant material powder achieves V-2, V-1, or V-0 in a UL94 standard vertical combustion test.
  4.  平均粒子径が20μm以上100μm以下であることを特徴とする請求項1に記載の樹脂粉末材料。 The resin powder material according to claim 1, wherein the average particle diameter is 20 µm or more and 100 µm or less.
  5.  結晶化温度が144度以上161度以下であることを特徴とする請求項1に記載の樹脂粉末材料。 2. The resin powder material according to claim 1, wherein the crystallization temperature is 144 degrees or more and 161 degrees or less.
  6.  昇華点又は気化温度が300度以上である難燃材料粉末を、少なくとも一種含むことを特徴とする請求項1に記載の樹脂粉末材料。 2. The resin powder material according to claim 1, comprising at least one flame retardant material powder having a sublimation point or a vaporization temperature of 300 ° C. or more.
  7.  潤滑剤としての機能を併せ持つ難燃材料粉末を含有することを特徴とする請求項1に記載の樹脂粉末材料。 2. The resin powder material according to claim 1, comprising a flame retardant material powder having a function as a lubricant.
  8.  前記難燃材料粉末は、ハロゲン化合物、メラミン化合物、リン化合物、アンチモン化合物、金属化合物、膨張黒鉛からなる群から選択される少なくとも一の化合物を含むことを特徴とする請求項1に記載の樹脂粉末材料。 2. The resin powder according to claim 1, wherein the flame retardant material powder includes at least one compound selected from the group consisting of a halogen compound, a melamine compound, a phosphorus compound, an antimony compound, a metal compound, and expanded graphite. material.
  9.  前記難燃材料粉末は、ハロゲン原子を有する芳香族炭化水素又はハロゲン原子を有する環状炭化水素を基本骨格とするハロゲン化合物を含有する樹脂材料であることを特徴とする請求項8に記載の樹脂粉末材料。 9. The resin powder according to claim 8, wherein the flame retardant material powder is a resin material containing a halogen compound having a basic skeleton of an aromatic hydrocarbon having a halogen atom or a cyclic hydrocarbon having a halogen atom. material.
  10.  前記樹脂粉末材料における前記難燃材料粉末の配合量は5質量%以上50質量%未満であることを特徴とする請求項1に記載の樹脂粉末材料。 The resin powder material according to claim 1, wherein the amount of the flame retardant material powder in the resin powder material is 5 mass% or more and less than 50 mass%.
  11.  請求項1に記載の樹脂粉末材料を堆積させる工程と、
     堆積された前記樹脂粉末材料にレーザーを照射し、前記レーザーの照射領域の前記樹脂粉末材料を焼結又は溶融させるレーザー照射工程と、を有することを特徴とする樹脂造形物の製造方法。
    Depositing the resin powder material according to claim 1;
    And a laser irradiation step of irradiating the deposited resin powder material with a laser to sinter or melt the resin powder material in an irradiation region of the laser.
PCT/JP2016/057995 2016-03-14 2016-03-14 Resin powder material and method for producing resin shaped article WO2017158688A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057995 WO2017158688A1 (en) 2016-03-14 2016-03-14 Resin powder material and method for producing resin shaped article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057995 WO2017158688A1 (en) 2016-03-14 2016-03-14 Resin powder material and method for producing resin shaped article

Publications (1)

Publication Number Publication Date
WO2017158688A1 true WO2017158688A1 (en) 2017-09-21

Family

ID=59851081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057995 WO2017158688A1 (en) 2016-03-14 2016-03-14 Resin powder material and method for producing resin shaped article

Country Status (1)

Country Link
WO (1) WO2017158688A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019068659A1 (en) * 2017-10-04 2019-04-11 Basf Se Sinter powder containing a mineral flame retardant for producing moulded bodies
JP2021532244A (en) * 2018-08-01 2021-11-25 ブラスケム・アメリカ・インコーポレイテッド Thermoplastic compositions with improved robustness, articles thereof, and methods thereof.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216779A (en) * 1997-10-27 1999-08-10 Huels Ag Manufacture of molded body by selective laser sintering of powdery material
JP2005048187A (en) * 2003-07-29 2005-02-24 Degussa Ag Polymer powder for processing in laminating method, production process of the same, production process for molding and molded product of the same
JP2007529340A (en) * 2004-03-16 2007-10-25 デグサ ゲーエムベーハー Method and apparatus for producing three-dimensional objects by applying absorbers by laser technology and ink jet methods
JP2007534524A (en) * 2004-04-27 2007-11-29 デグサ ゲーエムベーハー Method for manufacturing three-dimensional object and apparatus for manufacturing three-dimensional object in which absorbent is applied by inkjet method and electromagnetic radiation is irradiated
JP2008505243A (en) * 2004-07-20 2008-02-21 アルケマ フランス Non-combustible polyamide powder and its use in melt condensation
JP2010514855A (en) * 2006-12-21 2010-05-06 ザ・ボーイング・カンパニー Method and system for processing flame retardant materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216779A (en) * 1997-10-27 1999-08-10 Huels Ag Manufacture of molded body by selective laser sintering of powdery material
JP2005048187A (en) * 2003-07-29 2005-02-24 Degussa Ag Polymer powder for processing in laminating method, production process of the same, production process for molding and molded product of the same
JP2007529340A (en) * 2004-03-16 2007-10-25 デグサ ゲーエムベーハー Method and apparatus for producing three-dimensional objects by applying absorbers by laser technology and ink jet methods
JP2007534524A (en) * 2004-04-27 2007-11-29 デグサ ゲーエムベーハー Method for manufacturing three-dimensional object and apparatus for manufacturing three-dimensional object in which absorbent is applied by inkjet method and electromagnetic radiation is irradiated
JP2008505243A (en) * 2004-07-20 2008-02-21 アルケマ フランス Non-combustible polyamide powder and its use in melt condensation
JP2010514855A (en) * 2006-12-21 2010-05-06 ザ・ボーイング・カンパニー Method and system for processing flame retardant materials

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019068659A1 (en) * 2017-10-04 2019-04-11 Basf Se Sinter powder containing a mineral flame retardant for producing moulded bodies
CN111183015A (en) * 2017-10-04 2020-05-19 巴斯夫欧洲公司 Sinter powder comprising mineral flame retardants for producing shaped bodies
JP2020535996A (en) * 2017-10-04 2020-12-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Sintered powder containing inorganic flame retardant for the production of moldings
US11613074B2 (en) 2017-10-04 2023-03-28 Basf Se Sinter powder containing a mineral flame retardant for producing moulded bodies
JP2021532244A (en) * 2018-08-01 2021-11-25 ブラスケム・アメリカ・インコーポレイテッド Thermoplastic compositions with improved robustness, articles thereof, and methods thereof.

Similar Documents

Publication Publication Date Title
Zhang et al. Highly effective P–P synergy of a novel DOPO-based flame retardant for epoxy resin
Wang et al. Regulating effects of nitrogenous bases on the char structure and flame retardancy of polypropylene/intumescent flame retardant composites
Yang et al. Preparation, thermal degradation, and fire behaviors of intumescent flame retardant polypropylene with a charring agent containing pentaerythritol and triazine
Wilke et al. Halogen-free multicomponent flame retardant thermoplastic styrene–ethylene–butylene–styrene elastomers based on ammonium polyphosphate–expandable graphite synergy
Zheng et al. Preparation of a novel phosphorus‐and nitrogen‐containing flame retardant and its synergistic effect in the intumescent flame‐retarding polypropylene system
Sai et al. Fabrication and mechanism study of cerium-based P, N-containing complexes for reducing fire hazards of polycarbonate with superior thermostability and toughness
Liu et al. Comparative study of aluminum diethylphosphinate and aluminum methylethylphosphinate‐filled epoxy flame‐retardant composites
Matykiewicz et al. Modification of glass reinforced epoxy composites by ammonium polyphosphate (APP) and melamine polyphosphate (PNA) during the resin powder molding process
Chang et al. Preparation and characterization of double‐layered microencapsulated red phosphorus and its flame retardance in poly (lactic acid)
Ray et al. Halogen-free flame-retardant polymers
Chao et al. Expanded graphite: Borax synergism in the flame-retardant flexible polyurethane foams
Singh et al. Effect of phosphorus‐nitrogen additives on fire retardancy of rigid polyurethane foams
Liu et al. Smoke and toxicity suppression by zinc salts in flame‐retardant polyurethane‐polyisocyanurate foams filled with phosphonate and chlorinated phosphate
Xiao et al. Improvement of flame retardancy and antidripping properties of intumescent polybutylene succinate combining piperazine pyrophosphate and zinc borate
Yin et al. Red phosphorus acts as second acid source to form a novel intumescent-contractive flame-retardant system on ABS
Guo et al. Synthesis, structures, and properties of a new pentaerythritol-derived flame retardant used in polyamide 66
Zhuo et al. The synergistic effect of hollow glass microsphere in intumescent flame-retardant epoxy resin
KR20210138061A (en) Method for Produce Partially Recycled Polyaryletherketone Powder by Sintering
WO2017158688A1 (en) Resin powder material and method for producing resin shaped article
Savas Atabek et al. The flame‐retardant effect of calcium hypophosphite in various thermoplastic polymers
Liu et al. An efficient and convenient strategy toward fire safety and water resistance of polypropylene composites through design and synthesis of a novel mono‐component intumescent flame retardant
Xu et al. Eco-friendly phosphonic acid piperazine salt toward high-efficiency smoke suppression and flame retardancy for epoxy resins
Gu et al. Thermal stability and fire behavior of aluminum diethylphosphinate-epoxy resin nanocomposites
Hu et al. Ecofriendly microencapsulated phase-change materials with hybrid core materials for thermal energy storage and flame retardancy
Schinazi et al. Fire testing methods of bio-based flame-retardant polymeric materials

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894312

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP