WO2017158284A1 - Rare-earth-free luminescent composite material - Google Patents

Rare-earth-free luminescent composite material Download PDF

Info

Publication number
WO2017158284A1
WO2017158284A1 PCT/FR2017/050584 FR2017050584W WO2017158284A1 WO 2017158284 A1 WO2017158284 A1 WO 2017158284A1 FR 2017050584 W FR2017050584 W FR 2017050584W WO 2017158284 A1 WO2017158284 A1 WO 2017158284A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminescent
composite material
formula
organic pigment
acetate
Prior art date
Application number
PCT/FR2017/050584
Other languages
French (fr)
Inventor
Geneviève CHADEYRON
Fabrice Leroux
Rachid Mahiou
Damien Boyer
Pierre VIALAT
Rachod BOONSIN
Original Assignee
Universite Blaise Pascal - Clermont Ii
Centre National De La Recherche Scientifique - Cnrs -
Sigma-Clermont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Blaise Pascal - Clermont Ii, Centre National De La Recherche Scientifique - Cnrs -, Sigma-Clermont filed Critical Universite Blaise Pascal - Clermont Ii
Publication of WO2017158284A1 publication Critical patent/WO2017158284A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to a novel rare earth-less light-emitting composite material, to a process for its manufacture and to its use as a luminescent material.
  • Context of the invention is a novel rare earth-less light-emitting composite material, to a process for its manufacture and to its use as a luminescent material.
  • LED luminaires (Electro-Luminescent Diode or Light-Emitting Diode) represent a "green" alternative to fluorescent lamps by meeting, in particular, environmental preservation criteria: reduction of energy consumption, mercury-free technologies, lead-free technologies and 98% recyclable. LED luminaires could occupy nearly 70% of the global market in 2020, representing a turnover of more than 70 billion dollars, despite the current economic crisis.
  • an LED luminaire is associated with a rare earth-containing phosphor to form a white LED luminaire.
  • the price of the phosphor which accounts for 12% of the total price of a white LED luminaire, is strongly related to the prices of the rare earths that come into the formulation of the latter.
  • Luminescent organic pigments are an interesting alternative to phosphors comprising rare earths currently used. Indeed these pigments do not include rare earth and are known to have high luminous efficiency, low cost and can be associated with commercial blue or UV LEDs to generate color light and white light. However, they exhibit luminescence properties only in solution, and their thermal stability at the LED heating temperature (between 80 ° C and 120 ° C) is low. These disadvantages therefore prevent the use of luminescent organic pigments in LED luminaires.
  • this luminescent composite material comprising a lamellar single hydroxide compound and a luminescent organic pigment, has increased optical properties with respect to an aqueous solution of said pigment, and the chemical interaction between the single-layered hydroxide compound and the luminescent organic pigment. increases the thermal and chemical stability of said pigment.
  • the subject of the invention is a luminescent composite material comprising a luminescent organic pigment and a single-layered hydroxide compound of Formula 1:
  • - y is a number, integer or decimal, between 0 and 2
  • n is a number, integer or decimal, between 0 and 2
  • M is a divalent transition metal cation, preferably selected from Zn 2+ ; Ni 2+ , Co 2+ , Cu 2+ and Mg 2+ , more preferably M is Zn 2+ ,
  • X is an anion chosen from acetate, nitrate, benzoate and their mixture, preferably X is acetate,
  • the lamellar single hydroxide compound is not Zn (OH) 1; 6 (NO 3 ) o, 4.0, 4H 2 0.
  • a subject of the invention is a luminescent composition
  • a luminescent composition comprising a polymer matrix, a luminescent organic pigment and a single platy hydroxide compound of Formula 1:
  • - y is a number, integer or decimal, between 0 and 2
  • n is a number, integer or decimal, between 0 and 2
  • M is a divalent transition metal cation, preferably selected from Zn 2+ ; Ni 2+ , Co 2+ , Cu 2+ and Mg 2+ , more preferably M is Zn 2+ ,
  • X is an anion chosen from acetate, nitrate, benzoate and their mixture, preferably X is acetate.
  • the subject of the invention is also a process for obtaining a luminescent composite material according to the invention, characterized in that it comprises the following steps:
  • z is a number, integer or decimal, between 0 and 2
  • n is a number, integer or decimal, between 0 and 2
  • M is a divalent transition metal cation, preferably selected from Zn 2+ ; Ni 2+ , Co 2+ , Cu 2+ and Mg 2+ , more preferably M is Zn 2+ ,
  • X is an anion chosen from acetate, nitrate, benzoate and their mixture, preferably X is acetate,
  • step b) mixing a luminescent organic pigment with the single-layered hydroxide compound of Formula I obtained in step a) to obtain the luminescent composite material according to the invention.
  • the subject of the invention is also a process for obtaining a luminescent composition according to the invention, characterized in that it comprises the following stages:
  • z is a number, integer or decimal, between 0 and 2
  • n is a number, integer or decimal, between 0 and 2
  • M is a divalent transition metal cation, preferably selected from Zn 2+
  • X is an anion chosen from acetate, nitrate, benzoate and their mixture, preferably X is acetate,
  • step b) mixing the polymer matrix with the luminescent composite material obtained in step b) to obtain the luminescent composition according to the invention.
  • the subject of the invention is also the use of a luminescent composite material according to the invention or obtained by the process according to the invention, of a luminescent composition according to the invention or obtained by the process according to the invention as as luminescent material.
  • the present invention relates to a luminescent composite material comprising a luminescent organic pigment and a single-layered lamellar hydroxide compound of Formula 1:
  • - y is a number, integer or decimal, between 0 and 2
  • n is a number, integer or decimal, between 0 and 2
  • M is a divalent transition metal cation
  • X is an anion chosen from acetate, nitrate, benzoate and their mixture, provided that if the luminescent organic pigment is pyranine, then the single lamellar hydroxide compound is not Zn (OH) 1; N0 3 ) o, 4.0.4H 2 0.
  • a simple lamellar hydroxide compound is an inorganic compound whose chemical structure comprises M (OH) 2 brucitic layers formed by the pooling of octahedron boundaries.
  • M is a divalent transition metal cation selected from Zn 2+ ; Ni 2+ , Co 2+ , Cu 2+ and Mg 2+ , more preferably M is Zn 2+ .
  • the color emitted by the luminescent composite material of the invention may be different. This is particularly interesting because it makes it easy to obtain luminescent composite materials emitting different colors and thus to easily obtain a greater range of emitted color light.
  • the luminescent composite material can emit at wavelengths that do not belong to the visible spectrum, such as in ultraviolet (UV) or infrared.
  • the various layers of the simple lamellar hydroxide compound comprise octahedral gaps and tetrahedral sites located on either side of these octahedral gaps.
  • the anion X said interlayer, is coordinated with M in tetrahedral environment by iono-covalent bonding.
  • the anion X is acetate.
  • the compound single layered hydroxide may be chosen from Zn (OH) 2 _ y (CH 3 COO) y .2H 2 0, Ni (OH) 2. y (CH 3 COO ') y .2H 2 0, Co (OH) 2. y (CH 3 COO') y .2H 2 0, Cu (OH) 2 _ y (CH 3 COO ") .2H 2 0 y , Mg (OH) 2. y (CH 3 COO ') y .2H 2 0 and mixtures thereof, preferably lamellar compound is easy hydroxide Zn (OH) 2. y (CH 3 COO ') y .2H 2 0.
  • the luminescent composite material may comprise any type of known luminescent organic pigment.
  • the luminescent organic pigment generates color light or white light under blue and / or UV LED excitation.
  • the luminescent organic pigment is preferably chosen from luminescent organic pigments having negative charges because the lamellar single hydroxide compound is positively charged. This makes it possible to avoid any electrostatic repulsion between the luminescent organic pigment and the lamellar single hydroxide compound, and thus promotes their interaction.
  • the luminescent organic pigment can be immobilized by so-called weak chemical bonds such as electrostatic, hydrogen or van der Walls type bonds between said pigment and the lamellar single hydroxide compound sheets. These immobilization sites are present between the lamellar single hydroxide compounds.
  • the luminescent organic pigment is also preferably selected from stable luminescent organic pigments at basic pH, pH for which the formation of single platy hydroxide compound is favored.
  • the luminescent organic pigment may comprise at least one acid anchoring function.
  • the acidic anchoring function allows the luminescent organic pigment comprising at least one acid anchoring function to be substituted, by anion exchange, with the X anion for anchoring to a transition metal cation M of the single lamellar hydroxide compound in a tetrahedral environment by iono-covalent chemical bonding.
  • This anchoring is carried out on the anchoring sites present on the surface of the lamellar single hydroxide compounds.
  • acid anchoring functions are possible since the value of their pKa ensures their anionic form necessary for the formation of the luminescent composite material.
  • acid anchoring functions include those comprising an acid group selected from -COOH, -PO (OH) 3, - SO 2 OH and mixtures thereof, preferably the acid group is -COOH, -SO 2 OH and their mixture.
  • said pigment is preferably chosen from luminescent organic pigments soluble in the solvent in which the anion exchange is carried out.
  • the solvent is typically water or ethanol.
  • the luminescent organic pigment is chemically bonded to a single lamellar single hydroxide compound of Formula 1.
  • the luminescent organic pigment is chemically bonded by single-layer anchoring of the single-layered hydroxide compound. or is chemically bonded to a single sheet of the single lamellar hydroxide compound by so-called weak chemical bonds such as electrostatic, hydrogen or Van der Walls type bonds between said pigment and the single lamellar hydroxide compound sheet.
  • the luminescent organic pigment is chosen from acriflavines, arylsulfonates, benzene and its derivatives, coumarins, cyanines, lactones, oxazines, porphyrins, pyranes, stilbenes, xanthenes and their mixture.
  • the luminescent organic pigment is chosen from acriflavines, arylsulfonates, benzene and its derivatives, coumarins, cyanines, oxazines, porphyrins, pyrans, xanthenes and their mixture.
  • the luminescent organic pigment is chosen from anthracene, acriflavine, auramine, benzene, coumarin 102, coumarin 153, coumarin 343, DCM or 4- (Dicyanomethylene) -2-methyl- 6- (4-dimethylaminostyryl) -4H-pyran, 4-dimethylamino-4-nitrostilbene, eosin, esculin, fluorescein, HEDITCP, HITCI, HPDITCP, IR-125, IR -140, naphthacene, naphthalene, ONITCP, ODNITCP, oxazine 1, oxazine 170, pentacene, pyrene, pyranine, rhodamine 6G, rhodamine 610, rhodamine B, riboflavin, Quinine hemisulfate, quinine sulfate, tryptophan, L-tyrosine,
  • the luminescent organic pigment is selected from anthracene, acriflavine, auramine, benzene, coumarin 102, coumarin 153, DCM or 4- (Dicyanomethylene) -2-methyl-6- (4- dimethylaminostyryl) -4H-pyran, eosin, esculin, fluorescein, HEDITCP, HITCI, HPDITCP, 1TR-125, IR-140, naphthacene, naphthalene, ONITCP, ODNITCP, oxazine 1O, oxazine 170, pentacene, pyrene, pyranine, rhodamine 6G, rhodamine 610, rhodamine B, riboflavin, quinine semisulfate, quinine sulfate, tryptophan, L- tyrosine, Cresyl violet, pigments marketed by Abcam Biochemicals such
  • the organic luminescent pigment is chosen especially from 5-FAM or carboxyfluorescein, alexafluor 488, 1 ⁇ 0465, 1 TTO490LS, auramine, calcein, carboxyrhodamine 6G, eosin, esculin, FAM-FLIVO, FITC, fluorescein, pyranine, rhodamine 101, rhodamine 110, rhodamine 123, rhodamine 6G, rhodamine 610, rhodamine B, rhodamine B Octadecyl chloride (RI 8), rhodamine Green, riboflavin, R-PE (or R-phycoerythrin), tryptophan, L-tyrosine, Cresyl violet and mixtures thereof, and even more particularly fluorescein Rhodamine 610, 1 ⁇ 0465, ATTO490LS and their mixture.
  • the lamellar single hydroxide compound improves the thermal stability and the chemical stability enhances the optical properties of said organic luminescent pigment.
  • the lamellar single hydroxide compound sheets act as a physical barrier to protect the pigment from the heat generated by the LEDs, typically between 80 ° C and 120 ° C.
  • the sheets which also increase the tortuosity phenomena within the luminescent composite material, the permeability of said material to the diffusion of gas, such as the oxygen known to chemically degrade the pigments, is low and the chemical stability of the pigment is improved.
  • the anchoring sites on the surface of the sheets and the sites of immobilization between the sheets are nanoscopically distant from each other. This distance makes it possible to avoid the aggregation of luminescent organic pigments detrimental to their optical properties ("quenching" or optical quenching phenomenon), and even makes it possible to increase the optical properties of the luminescent organic pigments.
  • the intensity of the light emitted by the luminescent composite material and the quantum yield of said material are greater than the intensity of the light emitted by an aqueous solution of said organic pigment and the quantum yield of said aqueous solution.
  • a wide range of luminescent composite materials are provided by varying the divalent transition metal cation M of the lamellar single hydroxide or the luminescent organic pigment by mixing different single lamellar hydroxide compounds or different pigments. luminescent organic compounds or by mixing different simple lamellar hydroxide compounds and various luminescent organic pigments.
  • luminescent composite materials can be excitable over a wide range of wavelengths from UV to infrared through visible. They can also emit a wide range of color light or white light. They can also emit at wavelengths that do not belong to the visible spectrum, such as in the UV or in the infrared.
  • the luminescent composite material according to the invention can be used as a luminescent material. It can also be associated with a blue LED or a UV LED. This association makes it possible to generate a color light or a white light.
  • the weight content of the organic luminescent pigment in the luminescent composite material is advantageously low.
  • the weight content of luminescent organic pigment in the luminescent composite material, T p is 0.01% to 10%, in particular 0.1% to 7.5%, more particularly 0.2% to 5%), more particularly 0.25% to 2% .
  • the luminescent composite material according to the invention may further comprise a base such as KOH, NaOH, NH 4 OH, in particular NaOH.
  • the mass ratio between the base and the organic luminescent pigment is from 1: 1 to 1000: 1, in particular from 50: 1 to 500: 1, most preferably from 150: 1 to 200: 1.
  • the inventors are of the opinion that the presence of the base in the luminescent composite material according to the invention activates the optical properties of the organic pigment so that the quantum yield of said material is greater than the quantum yield of an aqueous solution of said organic pigment.
  • the luminescent composite material according to the invention is inexpensive.
  • lamellar single hydroxide compounds and luminescent organic pigments are potentially recyclable and are not hazardous to health.
  • the use of the luminescent composite material in consumer and wide-diffusion products such as white LEDs resulting from the combination of blue LEDS or UV LEDs with said luminescent composite material is thus facilitated.
  • the invention also relates to a luminescent composition
  • a luminescent composition comprising a polymer matrix, a luminescent organic pigment and a single platy hydroxide compound of Formula 1:
  • - y is a number, integer or decimal, between 0 and 2
  • n is a number, integer or decimal, between 0 and 2
  • M is a divalent transition metal cation
  • X is an anion chosen from acetate, nitrate, benzoate and their mixture.
  • the lamellar single hydroxide compound and the luminescent organic pigment are as defined in the part on the luminescent composite material according to the invention.
  • the luminescent composition may further comprise a base such as KOH, NaOH, NH 4 OH, especially NaOH.
  • a base such as KOH, NaOH, NH 4 OH, especially NaOH.
  • the mass ratio between the base and the organic luminescent pigment is from 1: 1 to 1000: 1, in particular from 50: 1 to 500: 1, most preferably from 150: 1 to 200: 1.
  • the inventors are of the opinion that the presence of a base in the luminescent composition according to the invention activates the optical properties of the organic pigment so that the quantum yield of said composition is greater than the quantum yield.
  • a luminescent composition according to the invention devoid of base.
  • the polymer matrix is chosen from a silicone polymer matrix, epoxy, polymethyl methacrylate (PMMA), polycarbonate (PC), polystyrene (PS), preferably the polymer matrix is a silicone matrix such as a polydimethylsiloxane silicone matrix (PDMS) .
  • Such a polymer matrix does not alter the optical properties of the luminescent composition. It also serves to encapsulate the organic luminescent pigment according to the invention to facilitate its coupling to the semiconductor chip of an LED.
  • Such a polymer matrix can also give the luminescent composition its thermal and chemical stability by protecting the luminescent organic pigment from the heat generated by the LED and gas, such as the oxygen known to chemically degrade the pigments.
  • Such a polymer matrix gives the luminescent composition its mechanical properties. It allows a varied shaping of the luminescent composition, for example in the form of films, panels, screens, sheets, substrates.
  • the intensity of the light emitted by the luminescent composition of the invention and the quantum yield of said composition are of the same order of magnitude as the intensity of the light emitted by an aqueous solution. said luminescent organic pigment and the quantum yield of said solution.
  • the luminescent organic pigment is the luminescent organic pigment which may comprise at least one acid anchoring function described above in the preferred embodiment of the luminescent composite material according to the invention.
  • the luminescent organic pigment can be anchored to a single sheet of the lamellar single hydroxide compound, as explained above.
  • the luminescent organic pigment and the single lamellar hydroxide compound are uniformly dispersed in the polymer matrix.
  • the luminescent organic pigment does not migrate into the polymer matrix.
  • the optical properties of the luminescent composition are homogeneous.
  • the "optical properties are homogeneous" if, irrespective of the measuring point of the luminous composition, the intensity of the light emitted at the measurement point is less than 10%, preferably less than 5%. %, more preferably still less than 1% of the average intensity of the light emitted by the luminescent composition.
  • the luminescent composition according to the invention can therefore be used as a luminescent material. It can thus be associated with a blue LED or a UV LED. This association makes it possible to generate a color light or a white light.
  • the weight content of the organic luminescent pigment in the luminescent composition is very low.
  • the weight content of luminescent organic pigment in the composition, T m is 0.0001% to 1%.
  • T m is 0.0002% to 0.5%, more particularly 0.0003% to 0.1%. Consequently, the luminescent composition according to the invention is advantageously inexpensive.
  • its constituents are potentially recyclable and are not dangerous to health. The use of the light-emitting composition in consumer and wide-diffusion products such as the white LEDs resulting from the combination of blue LEDS or UV LEDs with said luminescent composition is thus facilitated.
  • the invention relates to a method for obtaining a luminescent composite material according to the invention, characterized in that it comprises the following steps:
  • z is a number, integer or decimal, between 0 and 2
  • n is a number, integer or decimal, between 0 and 2
  • M is a divalent transition metal cation, preferably selected from Zn 2+ ; Ni 2+ , Co 2+ , Cu 2+ and Mg 2+ , more preferably M is Zn 2+ ,
  • X is an anion chosen from acetate, nitrate, benzoate and their mixture, preferably X is acetate,
  • step b) mixing a luminescent organic pigment with the single-layered hydroxide compound of Formula I obtained in step a) to obtain the luminescent composite material according to the invention.
  • this process is simple and quick to implement, so it is adaptable on an industrial scale. In addition, it does not require the use of hazardous operating conditions such as high temperatures or pressures. Indeed, all the steps of the process can be carried out at room temperature and atmospheric pressure, or slight depression.
  • step a) the hydrolysis of the solution can be carried out by adding water to the solution or introducing the solution into water.
  • h be the degree of hydrolysis defined as the number of moles of water used during the hydrolysis (n H 2o) over the number of moles of organic precursor in the solution (n M ).
  • h min is from 1 to 50, in particular h min is chosen from values 1, 10, 20, 30, 40, 50.
  • h max is 50 to 100, in particular h max is chosen from values 50, 60, 70, 80, 90.100.
  • h is equal to 40.
  • such a degree of hydrolysis increases the kinetics of the reaction.
  • the choice of the inorganic precursor of Formula 2 depends on the desired luminescent composite material.
  • the inorganic precursor is selected from zinc acetate, nickel acetate, cobalt acetate, copper acetate, magnesium acetate, zinc nitrate, nickel nitrate, nitrate cobalt, copper nitrate, magnesium nitrate, preferably the precursor is zinc acetate.
  • the polyol is selected from diethylene glycol, 1,2-propanediol, and their mixture, preferably the polyol is diethylene glycol.
  • the solution may further comprise a solvent such as ethanol.
  • the lamellar single hydroxide compound is typically formed as a precipitate.
  • the precipitate can be separated from the reaction medium by filtration under vacuum, by evaporation or by centrifugation. The precipitate thus separated can then be preserved, with or without drying.
  • step b) the luminescent organic pigment is mixed with the single layered hydroxide compound formed in step a) in a solvent such as ethanol or water.
  • the luminescent composite material according to the invention is then obtained by anion exchange between the luminescent organic pigment and the single layered hydroxide compound in the solvent.
  • the anion exchange is facilitated if the luminescent organic pigment is soluble in the solvent.
  • Anion exchange is also facilitated when the mixture is kept under constant agitation throughout step b).
  • the luminescent organic pigment is as defined in the part on the luminescent composite material.
  • the luminescent organic pigment is the luminescent organic pigment which may comprise at least one acid anchoring function described above in the preferred embodiment of the luminescent composite material according to the invention.
  • the method according to the invention comprises a step b1) of adding the base to the luminescent composite material obtained at the end of step b).
  • the luminescent composite material obtained at the end of step b) or bl) may optionally be dried and shaped.
  • the luminescent composite material obtained at the end of step b) or bl) may optionally be maintained in undried form, Le. in the form of paste.
  • the process comprises, before step a), a step of mixing the inorganic precursor of Formula 2 with the polyol solution.
  • the precursor is introduced into the polyol solution.
  • this solution is mixed by mechanical mixing, for example, using a magnetic stirrer.
  • the invention therefore also relates to a process for obtaining the luminescent composition according to the invention, characterized in that it comprises the following steps:
  • z is a number, integer or decimal, between 0 and 2
  • n is a number, integer or decimal, between 0 and 2
  • M is a divalent transition metal cation, preferably selected from Zn 2+ ; Ni 2+ , Co 2+ , Cu 2+ and Mg 2+ , more preferably M is Zn 2+ ,
  • X is an anion chosen from acetate, nitrate, benzoate and their mixture, preferably X is acetate,
  • step b) mixing a luminescent organic pigment with the single-layered hydroxide compound of Formula I obtained in step a) to obtain a luminescent composite material.
  • step b) mixing the polymer matrix with the luminescent composite material obtained in step b) to obtain the luminescent composition according to the invention.
  • this process is simple and quick to implement and is adaptable on an industrial scale. In addition, it does not require the use of hazardous operating conditions such as high temperatures or pressures. Indeed, all the steps of the process can be carried out at room temperature and atmospheric pressure, or under slight depression.
  • Steps a) and b) are as described above.
  • the luminescent organic pigment is as defined in the part on the luminescent composite material.
  • the luminescent organic pigment is the luminescent organic pigment which may comprise at least one acid anchoring function described above in the preferred embodiment of the luminescent composite material according to the invention.
  • the method according to the invention comprises a step b1) of adding the base to the luminescent composite material obtained at the end of step b).
  • the mixture of the polymer matrix and the luminescent composite material can be homogenized. Typically this homogenization is carried out by mechanical action.
  • the luminescent composite material obtained at the end of step b) or bl) is kept in undried form, Le. in the form of paste, then the luminescent organic pigment included in said luminescent composite material is better dispersed in the polymer matrix than if said luminescent composite material had been dried.
  • the inventors are of the opinion that keeping the luminescent composite material in undried form makes it possible to avoid the phenomena of agglomeration of the organic pigment.
  • the luminescent composition obtained in step c) can then be shaped, in particular in the form of films, panels, screens, sheets, substrates, according to known techniques.
  • the luminescent composition obtained in step c) can then be shaped, in particular in the form of films, panels, screens, sheets, substrates, according to known techniques.
  • the process comprises, before step a), a step of mixing the inorganic precursor of Formula 2 with the polyol solution.
  • the precursor is introduced into the polyol solution.
  • this solution is mixed by mechanical mixing, for example, using a magnetic stirrer.
  • a luminescent composition according to the invention or obtained by the process according to the invention can be used as luminescent material.
  • they can be used as luminescent materials in combination with a blue LED or a UV LED, in particular to generate white light or colored light.
  • Figure 1 shows the emission spectra of six different samples (A-F) recorded under excitation with a blue LED emitting at 450 nm.
  • Figure 2 shows the absolute fluorescence quantum yield recorded for these six different samples (A-F) after excitation with a blue LED emitting at 450 nm.
  • Figure 3 shows two photographs. On the left, a film obtained from the mixture of a polydimethylsiloxane silicone matrix (PDMS) and the material G according to the invention and, on the right, a film obtained from the mixture of the same polymer matrix and material H.
  • PDMS polydimethylsiloxane silicone matrix
  • Lamellar single hydroxide compound Zn (OH) 2 . x (CH 3 COO) x . nH 2 0 0.1 ⁇ x ⁇ 0.33.
  • Fluorescent organic pigment Fluorescein.
  • a solution of zinc acetate is prepared in a solution of polyol (diethylene glycol) with ethanol as a solvent.
  • the hydrolysis of the lamellar single hydroxyl phases in polyol medium is then caused by the addition of deionized water in the initial mixture at room temperature. The degree of hydrolysis is 40.
  • Zn (OH) 2 . x (CH 3 COO) x .nH 2 0 is then obtained in the form of precipitates.
  • the precipitates of Zn (OH) 2 . x (CH 3 COO) x .nH 2 O are recovered by centrifugation (5000 rpm, 5 minutes) and then stored without drying in the form of a paste.
  • Example 2 Synthesis of a luminescent composition.
  • Polymer polydimethylsiloxane silicone matrix (PDMS).
  • the luminescent composite material of the undried Example 1 is mixed with the polymer.
  • the content by weight of fluorescein in the synthesized luminescent composition is 0.0003%.
  • the homogenization of the mixture is carried out under mechanical action.
  • the luminescent composition is then obtained.
  • Example 3 Shaping of the luminescent composition.
  • the luminescent composition of Example 2 is then deposited by means of a coating plant on a Teflon sheet.
  • the height of the knife is fixed at 400 ⁇ (the thickness of the liquid coating) with the deposition rate set at 20 mm / s.
  • the film is dried at 60 ° C for 2 hours and then in an oven at 60 ° C for several hours to remove volatiles. A film of the luminescent composition is then obtained.
  • optical properties, emission spectrum and absolute quantum yield after excitation at 450 nm, of six A-F samples were evaluated.
  • Example D a luminescent composite material obtained according to the protocol of Example 1 and comprising 95% by weight of Zn (OH) 2 . x (CH 3 COO) x . nH 2 0 and 0.5% by weight of fluorescein,
  • F an aqueous solution of fluorescein comprising 0.35% by weight of fluorescein
  • the emission spectra of the powders and films were recorded between 400-700 nm in a quartz cell using an apparatus equipped with an integrating sphere.
  • the powder A and the film C do not emit light after excitation with a blue LED.
  • the luminescent composite material D emits intense light after excitation at 450 nm, which covers a wide range of wavelengths in the visible range and leads to a violet color.
  • the introduction of this material D into a silicone matrix (film E) offers optical properties comparable to that of the aqueous solution F of fluorescein.
  • the absolute quantum yield is zero for samples A, B and C.
  • a high absolute quantum yield is obtained for the luminescent composite material D (22% quantum yield). This yield is much higher than that of the fluorescein aqueous solution F while the luminescent composite material D comprises only 0.5% by weight of fluorescein.
  • the quantum yield of the film E is of the same order of magnitude as that of the aqueous solution F of fluorescein whereas this film E comprises only 0.0003% by weight of fluorescein.
  • the luminescent composite material D has increased optical properties compared to the aqueous solution F of fluorescein.
  • the film E has optical properties of the same order of magnitude as the aqueous solution F fluorescein.
  • the highest absolute quantum yield is obtained for the luminescent composite material I and measured at more than 52.2%. This yield is much higher than that of the aqueous solution F of fluorescein while the luminescent composite material G comprises only 1% by weight of fluorescein.
  • a luminescent composite material G is synthesized according to the protocol of Example 1. The only difference is the content of fluorescein which is 98: 2 by mass.
  • the luminescent material included in the state of the art is a luminescent material H comprising a double lamellar zinc hydroxide and fluorescein. The content of fluorescein is 98: 2 by mass.
  • optical properties, emission spectrum and absolute quantum yield after excitation at 450 nm, of these two materials were evaluated.
  • the material G has a quantum yield more than 2 times greater than that of the material H.
  • the material G and the material H are mixed, respectively, in a PDMS silicone matrix. Two films are formed from these mixtures following the protocol described in Example 3.
  • the material G and the material H are mixed, respectively, in a PDMS silicone matrix. Two films are formed from these mixtures following the protocol described in Example 3.
  • Comparative Example 6 Luminescent compositions comprising a luminescent composite material comprising a double layered hydroxide compound or a single layered hydroxide compound.
  • a luminescent composite material comprising a lamellar double hydroxide compound and a luminescent composite material comprising a lamellar single hydroxide compound were synthesized according to the method described in Constantino et al. (Langmuir, Vol.16, No. 26, 2000-12-01, 10351-10358). These two materials comprise 16% by weight of fluorescein.
  • the absolute quantum yield of the film comprising the luminescent composition comprising a luminescent composite material comprising a double lamellar hydroxide compound is 0%.
  • the absolute quantum yield of the film comprising the luminescent composition comprising a luminescent composite material comprising a lamellar single hydroxide compound is of the same order of magnitude as the quantum yield of the film E of Example 4, although the film E comprises 6 times less than fluorescein.
  • the luminescent films prepared under the conditions described by Constantino et al. do not allow to obtain results in terms of optical properties as good as the films prepared under the conditions of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

The invention relates to a new rare-earth-free luminescent composite material, a method for the production thereof, and the use thereof as a luminescent material.

Description

MATERIAU COMPOSITE LUMINESCENT SANS TERRE RARE  MATERIAL COMPOSITE LUMINESCENT WITHOUT RARE EARTH
Domaine de l'invention Field of the invention
La présente invention concerne un nouveau matériau composite luminescent sans terre rare, son procédé de fabrication et son utilisation en tant que matériau luminescent. Contexte de l'invention The present invention relates to a novel rare earth-less light-emitting composite material, to a process for its manufacture and to its use as a luminescent material. Context of the invention
L'éclairage représente une part importante de la consommation totale d'électricité mondiale. Les luminaires à LEDs (Diode ElectroLuminescente ou Light-Emitting Diode) représentent une alternative "verte" aux lampes fluorescentes en répondant notamment à des critères de préservation de l'environnement : réduction de la consommation d'énergie, technologies sans mercure, ni plomb et recyclables à 98%. Les luminaires à LEDs pourraient occuper près de 70% du marché mondial en 2020, représentant un chiffre d'affaires de plus de 70 milliards de dollars et ce malgré la crise économique actuelle. Actuellement, pour obtenir une lumière blanche, un luminaire à LEDs est associé à un luminophore contenant des terres rares pour former un luminaire blanc à LEDs. Le prix du luminophore, qui représente 12%> du prix total d'un luminaire blanc à LEDs, est fortement lié aux prix des terres rares qui entrent dans la formulation de ce dernier. Ces éléments de terres rares sont issus à 95% de Chine, créant de fait une situation de quasi-monopole. L'explosion de la demande combinée à une source d'approvisionnement monopolistique représente un risque réel pour le déploiement de la technologie LED dans les années à venir. Développer des luminophores sans terres rares représente donc un enjeu majeur. Lighting is an important part of total global electricity consumption. LED luminaires (Electro-Luminescent Diode or Light-Emitting Diode) represent a "green" alternative to fluorescent lamps by meeting, in particular, environmental preservation criteria: reduction of energy consumption, mercury-free technologies, lead-free technologies and 98% recyclable. LED luminaires could occupy nearly 70% of the global market in 2020, representing a turnover of more than 70 billion dollars, despite the current economic crisis. Currently, to obtain white light, an LED luminaire is associated with a rare earth-containing phosphor to form a white LED luminaire. The price of the phosphor, which accounts for 12% of the total price of a white LED luminaire, is strongly related to the prices of the rare earths that come into the formulation of the latter. These rare earth elements are 95% Chinese, creating a quasi-monopoly situation. The explosion of demand combined with a monopoly supply source represents a real risk for the deployment of LED technology in the years to come. Developing rare earth-free phosphors is therefore a major challenge.
Les pigments organiques luminescents sont une alternative intéressante aux luminophores comprenant des terres rares utilisées actuellement. En effet ces pigments ne comprennent pas de terre rare et sont connus pour présenter une grande efficacité lumineuse, un faible coût et peuvent être associés à des LEDs bleues ou UV commerciales pour générer de la lumière de couleur et de la lumière blanche. Cependant, ils ne présentent de propriétés de luminescence qu'en solution, et leur stabilité thermique à la température de chauffe des LEDs (entre 80°C et 120°C) est faible. Ces inconvénients empêchent donc l'utilisation des pigments organiques luminescents dans les luminaires LEDs. Luminescent organic pigments are an interesting alternative to phosphors comprising rare earths currently used. Indeed these pigments do not include rare earth and are known to have high luminous efficiency, low cost and can be associated with commercial blue or UV LEDs to generate color light and white light. However, they exhibit luminescence properties only in solution, and their thermal stability at the LED heating temperature (between 80 ° C and 120 ° C) is low. These disadvantages therefore prevent the use of luminescent organic pigments in LED luminaires.
Afin de lever ces inconvénients, des études ont été réalisées sur des matériaux comprenant un pigment organique luminescent dispersé directement dans une matrice polymère. Cependant les stabilités thermiques et chimiques de ces matériaux sont faibles. De plus, la dispersion inhomogène du pigment dans la matrice polymère altère les propriétés optiques de ces matériaux, en particulier l'intensité de la lumière émise par ces matériaux et leur rendement quantique sont inférieurs à ceux d'une solution aqueuse comprenant le pigment organique luminescent seul.  In order to overcome these drawbacks, studies have been carried out on materials comprising a luminescent organic pigment dispersed directly in a polymer matrix. However, the thermal and chemical stabilities of these materials are low. In addition, the inhomogeneous dispersion of the pigment in the polymer matrix alters the optical properties of these materials, in particular the intensity of the light emitted by these materials and their quantum efficiency are lower than those of an aqueous solution comprising the luminescent organic pigment. alone.
Des études ont également été réalisées sur des matériaux obtenus par mélange d'un pigment et d'un composé hydroxyde double lamellaire (Constantino et al, Langmuir 2000, 16, 10351-10358 ; Aloisi et al. Journal of Physics and Chemistry of Solids 67 (2006) 909-914 ; Marangoni et al, Journal of Colloid and Interface Science 333 (2009) 120-127 ; Sun et al Chemical Engineering Journal 161 (2010) 293-300). Cependant, les propriétés optiques de ces matériaux, en particulier leur rendement, ne sont pas satisfaisantes, leur stabilité thermique est faible car les pigments sont agglomérés. Studies have also been conducted on materials obtained by mixing a pigment and a double-layered hydroxide compound (Constantino et al., Langmuir 2000, 16, 10351-10358, Aloisi et al., Journal of Physics and Chemistry of Solids. (2006) 909-914, Marangoni et al, Journal of Colloid and Interface Science 333 (2009) 120-127; Sun et al Chemical Engineering Journal 161 (2010) 293-300). However, the optical properties of these materials, in particular their performance, are not satisfactory, their thermal stability is low because the pigments are agglomerated.
De façon surprenante, la Demanderesse a trouvé un matériau luminescent qui permet de lever les inconvénients mentionnés ci-dessous. En effet, ce matériau composite luminescent, comprenant un composé hydroxyde simple lamellaire et un pigment organique luminescent, présente des propriétés optiques accrues par rapport à une solution aqueuse dudit pigment, et l'interaction chimique entre le composé hydroxyde simple lamellaire et le pigment organique luminescent augmente la stabilité thermique et chimique dudit pigment.  Surprisingly, the Applicant has found a luminescent material that overcomes the disadvantages mentioned below. Indeed, this luminescent composite material, comprising a lamellar single hydroxide compound and a luminescent organic pigment, has increased optical properties with respect to an aqueous solution of said pigment, and the chemical interaction between the single-layered hydroxide compound and the luminescent organic pigment. increases the thermal and chemical stability of said pigment.
Ainsi l'invention a pour objet un matériau composite luminescent comprenant un pigment organique luminescent et un composé hydroxyde simple lamellaire de Formule 1 : Thus, the subject of the invention is a luminescent composite material comprising a luminescent organic pigment and a single-layered hydroxide compound of Formula 1:
M(OH)2_yXy.nH20 Formule 1 M (OH) 2 - y X y .nH 2 0 Formula 1
dans laquelle :  in which :
- y est un nombre, entier ou décimal, entre 0 et 2,  - y is a number, integer or decimal, between 0 and 2,
- n est un nombre, entier ou décimal, entre 0 et 2,  n is a number, integer or decimal, between 0 and 2,
- M est un cation de métal de transition divalent, de préférence choisi parmi Zn2+ ; Ni2+, Co2+, Cu2+ et Mg2+, plus préférentiellement encore M est Zn2+, M is a divalent transition metal cation, preferably selected from Zn 2+ ; Ni 2+ , Co 2+ , Cu 2+ and Mg 2+ , more preferably M is Zn 2+ ,
- X est un anion choisi parmi l'acétate, le nitrate, le benzoate et leur mélange, de préférence X est l'acétate,  X is an anion chosen from acetate, nitrate, benzoate and their mixture, preferably X is acetate,
à la condition que si le pigment organique luminescent est la pyranine alors le composé hydroxyde simple lamellaire n'est pas Zn(OH)1;6(N03)o,4.0,4H20. provided that if the luminescent organic pigment is pyranine then the lamellar single hydroxide compound is not Zn (OH) 1; 6 (NO 3 ) o, 4.0, 4H 2 0.
Selon un autre aspect, l'invention a pour objet une composition luminescente comprenant une matrice polymère, un pigment organique luminescent et un composé hydroxyde simple lamellaire de Formule 1 : In another aspect, a subject of the invention is a luminescent composition comprising a polymer matrix, a luminescent organic pigment and a single platy hydroxide compound of Formula 1:
M(OH)2_yXy.nH20 Formule 1 M (OH) 2 - y X y .nH 2 0 Formula 1
dans laquelle :  in which :
- y est un nombre, entier ou décimal, entre 0 et 2,  - y is a number, integer or decimal, between 0 and 2,
- n est un nombre, entier ou décimal, entre 0 et 2,  n is a number, integer or decimal, between 0 and 2,
- M est un cation de métal de transition divalent, de préférence choisi parmi Zn2+ ; Ni2+, Co2+, Cu2+ et Mg2+, plus préférentiellement encore M est Zn2+, M is a divalent transition metal cation, preferably selected from Zn 2+ ; Ni 2+ , Co 2+ , Cu 2+ and Mg 2+ , more preferably M is Zn 2+ ,
- X est un anion choisi parmi l'acétate, le nitrate, le benzoate et leur mélange, de préférence X est l'acétate.  X is an anion chosen from acetate, nitrate, benzoate and their mixture, preferably X is acetate.
L'invention a également pour objet un procédé d'obtention d'un matériau composite luminescent selon l'invention, caractérisé en ce qu'il comprend les étapes suivantes :  The subject of the invention is also a process for obtaining a luminescent composite material according to the invention, characterized in that it comprises the following steps:
a) hydrolyse d'une solution comprenant un polyol et un précurseur inorganique du composé hydroxyde simple lamellaire de Formule 1 dans une solution de polyol pour obtenir le composé hydroxyde simple lamellaire de Formule 1, le précurseur inorganique étant de Formule 2 : a) hydrolyzing a solution comprising a polyol and an inorganic precursor of the single platy hydroxide compound of Formula 1 in a polyol solution to obtain the lamellar single hydroxide compound of Formula 1, the inorganic precursor being of Formula 2:
MXz.mH20 Formule 2 MX z .mH 2 0 Formula 2
dans laquelle :  in which :
- z est un nombre, entier ou décimal, entre 0 et 2,  z is a number, integer or decimal, between 0 and 2,
- m est un nombre, entier ou décimal, entre 0 et 2,  m is a number, integer or decimal, between 0 and 2,
- M est un cation de métal de transition divalent, de préférence choisi parmi Zn2+ ; Ni2+, Co2+, Cu2+ et Mg2+, plus préférentiellement encore M est Zn2+, M is a divalent transition metal cation, preferably selected from Zn 2+ ; Ni 2+ , Co 2+ , Cu 2+ and Mg 2+ , more preferably M is Zn 2+ ,
- X est un anion choisi parmi l'acétate, le nitrate, le benzoate et leur mélange, de préférence X est l'acétate,  X is an anion chosen from acetate, nitrate, benzoate and their mixture, preferably X is acetate,
et  and
b) mélange d'un pigment organique luminescent avec le composé hydroxyde simple lamellaire de Formule 1 obtenue à l'étape a) pour obtenir le matériau composite luminescent selon l'invention.  b) mixing a luminescent organic pigment with the single-layered hydroxide compound of Formula I obtained in step a) to obtain the luminescent composite material according to the invention.
L'invention a également pour objet un procédé d'obtention d'une composition luminescente selon l'invention, caractérisé en ce qu'il comprend les étapes suivantes : The subject of the invention is also a process for obtaining a luminescent composition according to the invention, characterized in that it comprises the following stages:
a) hydrolyse d'une solution comprenant un polyol et un précurseur inorganique du composé hydroxyde simple lamellaire de Formule 1 dans une solution de polyol pour obtenir le composé hydroxyde simple lamellaire de Formule 1, le précurseur inorganique étant de Formule 2 :  a) hydrolyzing a solution comprising a polyol and an inorganic precursor of the single platy hydroxide compound of Formula 1 in a polyol solution to obtain the single platy hydroxide compound of Formula 1, the inorganic precursor being of Formula 2:
MXz.mH20 Formule 2 MX z .mH 2 0 Formula 2
dans laquelle :  in which :
- z est un nombre, entier ou décimal, entre 0 et 2,  z is a number, integer or decimal, between 0 and 2,
- m est un nombre, entier ou décimal, entre 0 et 2,  m is a number, integer or decimal, between 0 and 2,
- M est un cation de métal de transition divalent, de préférence choisi parmi Zn2+ M is a divalent transition metal cation, preferably selected from Zn 2+
Ni2+, Co2+, Cu2+ et Mg2+, plus préférentiellement encore M est Zn2+, Ni 2+ , Co 2+ , Cu 2+ and Mg 2+ , more preferably M is Zn 2+ ,
- X est un anion choisi parmi l'acétate, le nitrate, le benzoate et leur mélange, de préférence X est l'acétate,  X is an anion chosen from acetate, nitrate, benzoate and their mixture, preferably X is acetate,
et  and
b) mélange d'un pigment organique luminescent avec le composé hydroxyde simple lamellaire de b) mixing a luminescent organic pigment with the single layered hydroxide compound of
Formule 1 obtenue à l'étape a) pour obtenir un matériau composite luminescent. Formula 1 obtained in step a) to obtain a luminescent composite material.
c) mélange de la matrice polymère avec le matériau composite luminescent obtenu à l'étape b) pour obtenir la composition luminescente selon l'invention.  c) mixing the polymer matrix with the luminescent composite material obtained in step b) to obtain the luminescent composition according to the invention.
L'invention a aussi pour objet l'utilisation d'un matériau composite luminescent selon l'invention ou obtenu par le procédé selon l'invention, d'une composition luminescente selon l'invention ou obtenue par le procédé selon l'invention en tant que matériau luminescent.  The subject of the invention is also the use of a luminescent composite material according to the invention or obtained by the process according to the invention, of a luminescent composition according to the invention or obtained by the process according to the invention as as luminescent material.
Description détaillée de l'invention Matériau composite luminescent Detailed description of the invention Luminescent composite material
La présente invention concerne un matériau composite luminescent comprenant un pigment organique luminescent et un composé hydroxyde simple lamellaire de Formule 1 :  The present invention relates to a luminescent composite material comprising a luminescent organic pigment and a single-layered lamellar hydroxide compound of Formula 1:
M(OH)2_yXy.nH20 Formule 1 M (OH) 2 - y X y .nH 2 0 Formula 1
dans laquelle :  in which :
- y est un nombre, entier ou décimal, entre 0 et 2,  - y is a number, integer or decimal, between 0 and 2,
- n est un nombre, entier ou décimal, entre 0 et 2,  n is a number, integer or decimal, between 0 and 2,
- M est un cation de métal de transition divalent,  M is a divalent transition metal cation,
- X est un anion choisi parmi l'acétate, le nitrate, le benzoate et leur mélange, à la condition que si le pigment organique luminescent est la pyranine alors le composé hydroxyde simple lamellaire n'est pas Zn(OH)1;6(N03)o,4.0,4H20. X is an anion chosen from acetate, nitrate, benzoate and their mixture, provided that if the luminescent organic pigment is pyranine, then the single lamellar hydroxide compound is not Zn (OH) 1; N0 3 ) o, 4.0.4H 2 0.
Un composé hydroxyde simple lamellaire est un composé inorganique dont la structure chimique comprend des feuillets brucitiques M(OH)2 bâtis par la mise en commun d'arrêtés d'octaèdres. De préférence, M est un cation de métal de transition divalent choisi parmi Zn2+ ; Ni2+, Co2+, Cu2+ et Mg2+, plus préférentiellement encore M est Zn2+. A simple lamellar hydroxide compound is an inorganic compound whose chemical structure comprises M (OH) 2 brucitic layers formed by the pooling of octahedron boundaries. Preferably, M is a divalent transition metal cation selected from Zn 2+ ; Ni 2+ , Co 2+ , Cu 2+ and Mg 2+ , more preferably M is Zn 2+ .
En fonction du cation de métal de transition divalent M, la couleur émise par le matériau composite luminescent de l'invention peut être différente. Ceci est particulièrement intéressant car permet d'obtenir facilement des matériaux composites luminescents émettant des couleurs différentes et donc d'obtenir facilement une plus grande gamme de lumière de couleur émise.  Depending on the divalent transition metal cation M, the color emitted by the luminescent composite material of the invention may be different. This is particularly interesting because it makes it easy to obtain luminescent composite materials emitting different colors and thus to easily obtain a greater range of emitted color light.
En fonction du cation du métal de transition divalent M, le matériau composite luminescent peut émettre à des longueurs d'ondes n'appartenant pas au spectre visible, telles que dans les ultra-violets (UV) ou dans les infrarouges. Depending on the cation of the divalent transition metal M, the luminescent composite material can emit at wavelengths that do not belong to the visible spectrum, such as in ultraviolet (UV) or infrared.
Les différents feuillets du composé hydroxyde simple lamellaire comprennent des lacunes octaédriques et des sites tétraédriques localisés de part et d'autre de ces lacunes octaédriques. L'anion X, dit interfoliaire, est coordonné à M en environnement tétraédrique par liaison iono-covalente. De préférence, l'anion X est l'acétate.  The various layers of the simple lamellar hydroxide compound comprise octahedral gaps and tetrahedral sites located on either side of these octahedral gaps. The anion X, said interlayer, is coordinated with M in tetrahedral environment by iono-covalent bonding. Preferably, the anion X is acetate.
Typiquement, le composé hydroxyde simple lamellaire peut être choisi parmi Zn(OH)2_y (CH3COO )y.2H20, Ni(OH)2.y(CH3COO")y.2H20, Co(OH)2.y(CH3COO")y.2H20, Cu(OH)2_y (CH3COO")y.2H20, Mg(OH)2.y(CH3COO")y.2H20 et leur mélange, de préférence le composé hydroxyde simple lamellaire est Zn(OH)2.y(CH3COO")y.2H20. Typically, the compound single layered hydroxide may be chosen from Zn (OH) 2 _ y (CH 3 COO) y .2H 2 0, Ni (OH) 2. y (CH 3 COO ') y .2H 2 0, Co (OH) 2. y (CH 3 COO') y .2H 2 0, Cu (OH) 2 _ y (CH 3 COO ") .2H 2 0 y , Mg (OH) 2. y (CH 3 COO ') y .2H 2 0 and mixtures thereof, preferably lamellar compound is easy hydroxide Zn (OH) 2. y (CH 3 COO ') y .2H 2 0.
Le matériau composite luminescent peut comprendre tout type de pigment organique luminescent connu. De préférence, le pigment organique luminescent génère de la lumière de couleur ou de la lumière blanche sous excitation LEDs bleues et/ ou UV.  The luminescent composite material may comprise any type of known luminescent organic pigment. Preferably, the luminescent organic pigment generates color light or white light under blue and / or UV LED excitation.
Le pigment organique luminescent est préférentiellement choisi parmi les pigments organiques luminescents présentant des charges négatives car le composé hydroxyde simple lamellaire est chargé positivement. Ceci permet d'éviter toute répulsion électrostatique entre le pigment organique luminescent et le composé hydroxyde simple lamellaire, et donc favorise leur interaction. Typiquement, dans le matériau composite luminescent, le pigment organique luminescent peut être immobilisé par des liaisons chimiques dites faibles telles que les liaisons de type électrostatique, hydrogène ou de Van der Walls entre ledit pigment et les feuillets du composé hydroxyde simple lamellaire. Ces sites d'immobilisation sont présents entre les feuillets du composé hydroxyde simple lamellaire. The luminescent organic pigment is preferably chosen from luminescent organic pigments having negative charges because the lamellar single hydroxide compound is positively charged. This makes it possible to avoid any electrostatic repulsion between the luminescent organic pigment and the lamellar single hydroxide compound, and thus promotes their interaction. Typically, in the luminescent composite material, the luminescent organic pigment can be immobilized by so-called weak chemical bonds such as electrostatic, hydrogen or van der Walls type bonds between said pigment and the lamellar single hydroxide compound sheets. These immobilization sites are present between the lamellar single hydroxide compounds.
Le pigment organique luminescent est également préférentiellement choisi parmi les pigments organiques luminescents stables à pH basique, pH pour lequel la formation du composé hydroxyde simple lamellaire est favorisée.  The luminescent organic pigment is also preferably selected from stable luminescent organic pigments at basic pH, pH for which the formation of single platy hydroxide compound is favored.
Selon un mode de réalisation préféré, le pigment organique luminescent peut comprendre au moins une fonction d'ancrage acide.  According to a preferred embodiment, the luminescent organic pigment may comprise at least one acid anchoring function.
La fonction d'ancrage acide permet au pigment organique luminescent comprenant au moins une fonction d'ancrage acide de se substituer, par échange anionique, à l'anion X pour s'ancrer à un cation de métal de transition M du composé hydroxyde simple lamellaire en environnement tétraédrique par liaison chimique iono-covalente. Cet ancrage est réalisé sur les sites d'ancrage présents à la surface des feuillets du composé hydroxyde simple lamellaire.  The acidic anchoring function allows the luminescent organic pigment comprising at least one acid anchoring function to be substituted, by anion exchange, with the X anion for anchoring to a transition metal cation M of the single lamellar hydroxide compound in a tetrahedral environment by iono-covalent chemical bonding. This anchoring is carried out on the anchoring sites present on the surface of the lamellar single hydroxide compounds.
Typiquement, toutes les fonctions d'ancrage acide sont possibles puisque la valeur de leur pKa assure leur forme anionique nécessaire à la formation du matériau composite luminescent. Parmi les fonctions d'ancrage acide, on peut citer celles comprenant un groupement acide choisi parmi -COOH, -PO(OH)3, - SO2OH et leur mélange, de préférence le groupement acide est -COOH, -SO2OH et leur mélange. Typically, all acid anchoring functions are possible since the value of their pKa ensures their anionic form necessary for the formation of the luminescent composite material. Among acid anchoring functions include those comprising an acid group selected from -COOH, -PO (OH) 3, - SO 2 OH and mixtures thereof, preferably the acid group is -COOH, -SO 2 OH and their mixture.
Afin de favoriser l'échange anionique permettant l'ancrage du pigment organique luminescent comprenant au moins une fonction d'ancrage acide, ledit pigment est préférentiellement choisi parmi les pigments organiques luminescents solubles dans le solvant dans lequel l'échange anionique est réalisé. Le solvant est typiquement de l'eau ou de l'éthanol.  In order to promote the anion exchange for anchoring the luminescent organic pigment comprising at least one acid anchoring function, said pigment is preferably chosen from luminescent organic pigments soluble in the solvent in which the anion exchange is carried out. The solvent is typically water or ethanol.
Selon un mode de réalisation particulier, le pigment organique luminescent est chimiquement lié à un seul composé hydroxyde simple lamellaire de Formule 1. Dans ce mode de réalisation particulier, le pigment organique luminescent est chimiquement lié par ancrage à un seul feuillet du composé hydroxyde simple lamellaire ou est chimiquement lié à un seul feuillet du composé hydroxyde simple lamellaire par des liaisons chimiques dites faibles telles que les liaisons de type électrostatique, hydrogène ou de Van der Walls entre ledit pigment et le feuillet du composé hydroxyde simple lamellaire. According to a particular embodiment, the luminescent organic pigment is chemically bonded to a single lamellar single hydroxide compound of Formula 1. In this particular embodiment, the luminescent organic pigment is chemically bonded by single-layer anchoring of the single-layered hydroxide compound. or is chemically bonded to a single sheet of the single lamellar hydroxide compound by so-called weak chemical bonds such as electrostatic, hydrogen or Van der Walls type bonds between said pigment and the single lamellar hydroxide compound sheet.
Selon un mode de réalisation particulier, le pigment organique luminescent est choisi parmi les acriflavines, les aryles-sulfonates, le benzène et ses dérivés, les coumarines, les cyanines, les lactones, les oxazines, les porphyrines, les pyranes, les stilbènes, les xanthènes et leur mélange.  According to one particular embodiment, the luminescent organic pigment is chosen from acriflavines, arylsulfonates, benzene and its derivatives, coumarins, cyanines, lactones, oxazines, porphyrins, pyranes, stilbenes, xanthenes and their mixture.
Selon un mode de réalisation particulier, le pigment organique luminescent est choisi parmi les acriflavines, les aryles-sulfonates, le benzène et ses dérivés, les coumarines, les cyanines, les oxazines, les porphyrines, les pyranes, les xanthènes et leur mélange. En particulier, le pigment organique luminescent est choisi parmi l'anthracène, l'acriflavine, l'auramine, le benzène, la coumarine 102, la coumarine 153, la coumarine 343, le DCM ou 4-(Dicyanométhylène)-2- méthyl-6-(4-diméthylaminostyryl)-4H-pyrane, le 4-diméthylamino-4'nitrostilbène, l'éosine, l'esculine, la fluorescéine, le HEDITCP, le HITCI, le HPDITCP, l'IR-125, l'IR-140, le naphtacène, le naphtalène, le ONITCP, le ODNITCP, l'oxazine 1 , l'oxazine 170, le pentacène, le pyrène, la pyranine, la rhodamine 6G, la rhodamine 610, la rhodamine B, la riboflavine, l'hémisulfate de quinine, le sulfate de quinine, le tryptophane, la L-tyrosine, le violet de Crésyle, les pigments commercialisés par Abcam Biochemicals tels que le FFN et le Evans Blue, les pigments commercialisés par Addgene tels que le flkl, le GCaMP et la iRFP, les pigments commercialisés par BD Biosciences tels que le FITC Annexine V, le FITC Rat Anti-Mouse CD2 et le FITC Rat Anti-Mouse Flk-1, les pigments commercialisés par Clontech comme le tdTomato, les pigments commercialisés par fluoptics comme lAngiostamp 700, les pigments commercialisés par ImmunoChemistry Technologies comme le FAM-FLIVO, les pigments commercialisés par Life Technologies tels que le 5-FAM ou carboxyfluorescéine, l'alexafluor 350, l'alexafluor 405, l'alexafluor 430, l'alexafluor 488, l'alexafluor 500, l'alexafluor 514, l'alexafluor 532, l'alexafluor 546, l'alexafluor 555, l'alexafluor 568, l'alexafluor 594, l'alexafluor 610, l'alexafluor 633, l'alexafluor 635, l'alexafluor 647, l'alexafluor 660, l'alexafluor 680, l'alexafluor 700, l'alexafluor 750, l'alexafluor 790, le BCECF, le Bodipy FL, la calcéine, le calcium green 1 , le pigment caméléon, la carboxyrhodamine 6G, le le CMFDA, le CTb-488, le Cy2, l'agent CyQUANT GR, le DAF-FM, le DCF, le Di-4 ANEPPS, le Di-8 ANEPPS, le DiA, le DiD, le DiO, la eGFP, le Fluo 3, le Fluo 4, le FluoSphere yellow green, le FM 1-43, le Fura Red, le LysoTracker Green, le LysoTracker Yellow HCK-123, le Magnésium Green, le MitoTracker Green FM, le NeuroTrace 500/525, l'orangé d'acridine, la rhodamine B Octadécyle chlorure (RI 8), l'Oregon Green 488, la rhodamine 123, la rhodamine Green, le Sodium Green Indicator, le SYTO 13, le SYTO 16, le SYTO RNASelect, le SYTOX Green, le Texas Red, le TO- PRO 1, le Vybrant Dye Cycle Green stain, le Vybrant Dye Cycle Orange, le YFP, le YO-PRO-1 et le YOYO-1, les pigments commercialisés par Perkin Elmer tels que l'AminoSPARK 680, l'AngioSense 680 EX, l'AngioSPARK 680, le BombesinRSense 680, Cat B 680 FAST, le Cat K 680 FAST, le Cy3, le Cy5,le FolateRSense 680, le Genhance 680, le GFR -Vivo 680, le HER2Sense 645, le HypoxiSense 645, le HypoxiSense 680, l'IntegriSense 645, l'IntegriSense 680, la MMPSense 645 FAST, la MMPSense 680, le Neutrophil Elastase 680 FAST, l'OsteoSense 680 EX, la ProSense 680, le ReninSense 680 FAST, le Superhance 680 la TLectinSense 680, le VivoTag 645, le VivoTag 645 MAL, le VivoTag 680 XL, le VivoTag 680 XL-MAL, le VivoTag-S 680, la Xenolight CF 680 Fluorescent Labeeling Dye et la Xenolight CF 680 Free Acid, les pigments commercialisés par Sigma-Aldrich tels que 1ΆΤΤ0465, 1 TTO490LS, la crypto-cyanine, le POPOP ou l,4-bis(5-phenyloxazole-2-yl)benzène, la rhodamine 101, la rhodamine 110 et la safranine, les pigments commercialisés par Thermo Scientific tels que le DRAQ5, le DyLight 488, le DyLight 650, le DyLight 680, le FITC, le Fluo-8 AM, le MitoSensor Green, le Red Fat Dyes, le R-PE (ou R- phycoérythrine) et la rhod-4 AM et leur mélange. En particulier, le pigment organique luminescent est choisi parmi l'anthracène, l'acriflavine, l'auramine, le benzène, coumarine 102, la coumarine 153, le DCM ou 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyrane, l'éosine, l'esculine, la fluorescéine, le HEDITCP, le HITCI, le HPDITCP, 1TR- 125, l'IR-140, le naphtacène, le naphtalène, le ONITCP, le ODNITCP, l'oxazine 1, l'oxazine 170, le pentacène, le pyrène, la pyranine, la rhodamine 6G, la rhodamine 610, la rhodamine B, la riboflavine, l'hémisulfate de quinine, le sulfate de quinine, le tryptophane, la L-tyrosine, le violet de Crésyle, les pigments commercialisés par Abcam Biochemicals tels que le FFN et le Evans Blue, les pigments commercialisés par Addgene tels que le flkl, le GCaMP et la iRFP, les pigments commercialisés par BD Biosciences tels que le FITC Annexine V, le FITC Rat Anti-Mouse CD2 et le FITC Rat Anti-Mouse Flk-1, les pigments commercialisés par Clontech comme le tdTomato, les pigments commercialisés par fluoptics comme lAngiostamp 700, les pigments commercialisés par ImmunoChemistry Technologies comme le FAM-FLIVO, les pigments commercialisés par Life Technologies tels que le 5-FAM ou carboxyfluorescéine, l'alexafluor 350, l'alexafluor 405, l'alexafluor 430, l'alexafluor 488, l'alexafluor 500, l'alexafluor 514, l'alexafluor 532, l'alexafluor 546, l'alexafluor 555, l'alexafluor 568, l'alexafluor 594, l'alexafluor 610, l'alexafluor 633, l'alexafluor 635, l'alexafluor 647, l'alexafluor 660, l'alexafluor 680, l'alexafluor 700, l'alexafluor 750, l'alexafluor 790, le BCECF, le Bodipy FL, la calcéine, le calcium green 1, le pigment caméléon, la carboxyrhodamine 6G, le le CMFDA, le CTb-488, le Cy2, l'agent CyQUANT GR, le DAF-FM, le DCF, le Di-4 ANEPPS, le Di-8 ANEPPS, le DiA, le DiD, le DiO, la eGFP, le Fluo 3, le Fluo 4, le FluoSphere yellow green, le FM 1-43, le Fura Red, le LysoTracker Green, le LysoTracker Yellow HCK-123, le Magnésium Green, le MitoTracker Green FM, le NeuroTrace 500/525, l'orangé d'acridine, la rhodamine B Octadécyle chlorure (RI 8), l'Oregon Green 488, la rhodamine 123, la rhodamine Green, le Sodium Green Indicator, le SYTO 13, le SYTO 16, le SYTO RNASelect, le SYTOX Green, le Texas Red, le TO-PRO 1, le Vybrant Dye Cycle Green stain, le Vybrant Dye Cycle Orange, le YFP, le YO-PRO-1 et le YOYO-1, les pigments commercialisés par Perkin Elmer tels que l'AminoSPARK 680, l'AngioSense 680 EX, l'AngioSPARK 680, le BombesinRSense 680, Cat B 680 FAST, le Cat K 680 FAST, le Cy3, le Cy5,le FolateRSense 680, le Genhance 680, le GFR -Vivo 680, le HER2Sense 645, le HypoxiSense 645, le HypoxiSense 680, l'IntegriSense 645, l'IntegriSense 680, la MMPSense 645 FAST, la MMPSense 680, le Neutrophil Elastase 680 FAST, l'OsteoSense 680 EX, la ProSense 680, le ReninSense 680 FAST, le Superhance 680 la TLectinSense 680, le VivoTag 645, le VivoTag 645 MAL, le VivoTag 680 XL, le VivoTag 680 XL-MAL, le VivoTag-S 680, la Xenolight CF 680 Fluorescent Labeeling Dye et la Xenolight CF 680 Free Acid, les pigments commercialisés par Sigma-Aldrich tels que 1ΆΤΤ0465, 1 TTO490LS, la crypto-cyanine, le POPOP ou l,4-bis(5-phenyloxazole-2-yl)benzène, la rhodamine 101, la rhodamine 110 et la safranine, les pigments commercialisés par Thermo Scientific tels que le DRAQ5, le DyLight 488, le DyLight 650, le DyLight 680, le FITC, le Fluo-8 AM, le MitoSensor Green, le Red Fat Dyes, le R-PE (ou R-phycoérythrine) et la rhod-4 AM et leur mélange. According to a particular embodiment, the luminescent organic pigment is chosen from acriflavines, arylsulfonates, benzene and its derivatives, coumarins, cyanines, oxazines, porphyrins, pyrans, xanthenes and their mixture. In particular, the luminescent organic pigment is chosen from anthracene, acriflavine, auramine, benzene, coumarin 102, coumarin 153, coumarin 343, DCM or 4- (Dicyanomethylene) -2-methyl- 6- (4-dimethylaminostyryl) -4H-pyran, 4-dimethylamino-4-nitrostilbene, eosin, esculin, fluorescein, HEDITCP, HITCI, HPDITCP, IR-125, IR -140, naphthacene, naphthalene, ONITCP, ODNITCP, oxazine 1, oxazine 170, pentacene, pyrene, pyranine, rhodamine 6G, rhodamine 610, rhodamine B, riboflavin, Quinine hemisulfate, quinine sulfate, tryptophan, L-tyrosine, Cresyl violet, pigments marketed by Abcam Biochemicals such as FFN and Evans Blue, pigments marketed by Addgene such as flkl, GCaMP and iRFP, pigments marketed by BD Biosciences such as FITC Annexin V, FITC Rat Anti-Mouse CD2 and FITC Rat Anti-Mouse Flk-1, pigments sold by Clontech such as tdTomato, pigments marketed by fluoptics such as Angiostamp 700, pigments marketed by ImmunoChemistry Technologies such as FAM-FLIVO, pigments marketed by Life Technologies such as 5-FAM or carboxyfluorescein, alexafluor 350, alexafluor 405, alexafluor 430, alexafluor 488, alexafluor 500, alexafluor 514, alexafluor 532, alexafluor 546, alexafluor 555, alexafluor 568, alexafluor 594, the alexafluor 610, alexafluor 633, alexafluor 635, alexafluor 647, alexafluor 660, alexafluor 680, alexafluor 700, alexafluor 750, alexafluor 790, the BCECF, the Bodipy FL, calcein, calcium green 1, chameleon pigment, carboxyrhodamine 6G, CMFDA, CTb-488, Cy2, CyQUANT GR agent, DAF-FM, DCF, Di-4 ANEPPS, Di -8 ANEPPS, DiA, DiD, DiO, eGFP, Fluo 3, Fluo 4, FluoSphere yellow green, FM 1-43, Fura Red, LysoTracker Green, LysoTr acker Yellow HCK-123, Green Magnesium, MitoTracker Green FM, NeuroTrace 500/525, Acridine Orange, Rhodamine B Octadecyl Chloride (IR 8), Oregon Green 488, Rhodamine 123, Rhodamine Green, Sodium Green Indicator, SYTO 13, SYTO 16, SYTO RNASelect, SYTOX Green, Texas Red, TO-PRO 1, Vybrant Dye Cycle Green stain, Vybrant Dye Cycle Orange, YFP, YO-PRO-1 and YOYO-1, pigments marketed by Perkin Elmer such as AminoSPARK 680, AngioSense 680 EX, AngioSPARK 680, BombesinRSense 680, Cat B 680 FAST, Cat K 680 FAST, Cy3, Cy5, FolateRSense 680, Genhance 680, GFR -Vivo 680, HER2Sense 645, HypoxiSense 645, HypoxiSense 680, IntegriSense 645, IntegriSense 680, MMPSense 645 FAST, MMPSense 680 , the Neutrophil Elastase 680 FAST, the OsteoSense 680 EX, the ProSense 680, the ReninSense 680 FAST, the Superhance 680 the TLectinSense 680, the VivoTag 645, the VivoTag 645 MAL, the VivoTag 680 XL, the Vivo Tag 680 XL-MAL, VivoTag-S 680, Xenolight CF 680 Fluorescent Labeeling Dye and Xenolight CF 680 Free Acid, pigments marketed by Sigma-Aldrich such as 1ΆΤΤ0465, 1 TTO490LS, crypto-cyanine, POPOP or , 4-bis (5-phenyloxazol-2-yl) benzene, rhodamine 101, rhodamine 110 and safranin, the pigments marketed by Thermo Scientific such as DRAQ5, DyLight 488, DyLight 650, DyLight 680, FITC, Fluo-8 AM, MitoSensor Green, Red Fat Dyes, R-PE (or R-phycoerythrin) and rhod-4 AM and their mixture. In particular, the luminescent organic pigment is selected from anthracene, acriflavine, auramine, benzene, coumarin 102, coumarin 153, DCM or 4- (Dicyanomethylene) -2-methyl-6- (4- dimethylaminostyryl) -4H-pyran, eosin, esculin, fluorescein, HEDITCP, HITCI, HPDITCP, 1TR-125, IR-140, naphthacene, naphthalene, ONITCP, ODNITCP, oxazine 1O, oxazine 170, pentacene, pyrene, pyranine, rhodamine 6G, rhodamine 610, rhodamine B, riboflavin, quinine semisulfate, quinine sulfate, tryptophan, L- tyrosine, Cresyl violet, pigments marketed by Abcam Biochemicals such as FFN and Evans Blue, pigments marketed by Addgene such as flkl, GCaMP and iRFP, pigments marketed by BD Biosciences such as FITC Annexine V , FITC Rat Anti-Mouse CD2 and FITC Rat Anti-Mouse Flk-1, the pigments marketed by Clontech as the tdTomato, pigments co marketed by ImmunoChemistry Technologies such as FAM-FLIVO, the pigments marketed by Life Technologies such as 5-FAM or carboxyfluorescein, alexafluor 350, alexafluor 405, alexafluor 430, alexafluor 488, alexafluor 500, alexafluor 514, alexafluor 532, alexafluor 546, alexafluor 555, alexafluor 568, alexafluor 594, alexafluor 610, alexafluor 633, alexafluor 635, alexafluor 647, alexafluor 660, alexafluor 680, alexafluor 700, alexafluor 750, alexafluor 790, BCECF, Bodipy FL, calcein, calcium green 1, Chameleon pigment, carboxyrhodamine 6G, CMFDA, CTb-488, Cy2, CyQUANT GR agent, DAF-FM, DCF, Di-4 ANEPPS, Di-8 ANEPPS, DiA, DiD , DiO, eGFP, Fluo 3, Fluo 4, FluoSphere yellow green, FM 1-43, Fura Red, LysoTracker Green, LysoTracker Yellow HCK-123, Green Magnesium, MitoTracker Green F M, NeuroTrace 500/525, Acridine Orange, Rhodamine B Octadecyl Chloride (RI 8), Oregon Green 488, Rhodamine 123, Rhodamine Green, Sodium Green Indicator, SYTO 13, SYTO 16, SYTO RNASelect, SYTOX Green, Texas Red, TO-PRO 1, Vybrant Dye Cycle Green stain, Vybrant Dye Cycle Orange, YFP, YO-PRO-1 and YOYO-1, pigments marketed by Perkin Elmer such as AminoSPARK 680, AngioSense 680 EX, AngioSPARK 680, BombesinRSense 680, Cat B 680 FAST, Cat K 680 FAST, Cy3, Cy5, FolateRSense 680, Genhance 680 , GFR -Vivo 680, HER2Sense 645, HypoxiSense 645, HypoxiSense 680, IntegriSense 645, IntegriSense 680, MMPSense 645 FAST, MMPSense 680, Neutrophil Elastase 680 FAST, OsteoSense 680 EX, the ProSense 680, the ReninSense 680 FAST, the Superhance 680 the TLectinSense 680, the VivoTag 645, the VivoTag 645 MAL, the VivoTag 680 XL, the VivoTag 680 XL-MAL, the VivoTag-S 680, the Xenolight CF 680 Fluorescent Labeeling Dye and Xenolight CF 680 Free Acid, pigments marketed by Sigma-Aldrich such as 1ΆΤΤ0465, 1 TTO490LS, crypto-cyanine, POPOP or 1,4-bis (5-phenyloxazol-2-yl) benzene, rhodamine 101, rhodamine 110 and safranin, pigments marketed by Thermo Scientific such as DRAQ5, DyLight 488, DyLight 650, DyLight 680, FITC, Fluo-8 AM, MitoSensor Green, Red Fat Dyes, R-PE (or R-phycoerythrin) and rhod-4 AM and their mixture.
Le pigment organique luminescent est choisi tout particulièrement parmi le 5-FAM ou carboxyfluorescéine, l'alexafluor 488, 1ΆΤΤ0465, 1 TTO490LS, l'auramine, la calcéine, la carboxyrhodamine 6G, l'éosine, l'esculine, le FAM-FLIVO, le FITC, la fluorescéine, la pyranine, la rhodamine 101, la rhodamine 110, la rhodamine 123, la rhodamine 6G, la rhodamine 610, la rhodamine B, la rhodamine B Octadécyle chlorure (RI 8), la rhodamine Green, la riboflavine, le R-PE (ou R- phycoérythrine), le tryptophane, la L-tyrosine, le violet de Crésyle et leur mélange, et encore plus particulièrement parmi la fluorescéine, la rhodamine 610, 1ΆΤΤ0465, l'ATTO490LS et leur mélange.The organic luminescent pigment is chosen especially from 5-FAM or carboxyfluorescein, alexafluor 488, 1ΆΤΤ0465, 1 TTO490LS, auramine, calcein, carboxyrhodamine 6G, eosin, esculin, FAM-FLIVO, FITC, fluorescein, pyranine, rhodamine 101, rhodamine 110, rhodamine 123, rhodamine 6G, rhodamine 610, rhodamine B, rhodamine B Octadecyl chloride (RI 8), rhodamine Green, riboflavin, R-PE (or R-phycoerythrin), tryptophan, L-tyrosine, Cresyl violet and mixtures thereof, and even more particularly fluorescein Rhodamine 610, 1ΆΤΤ0465, ATTO490LS and their mixture.
Que le pigment organique luminescent soit immobilisé entre les feuillets ou ancré à un feuillet du composé hydroxyde simple lamellaire, le composé hydroxyde simple lamellaire améliore la stabilité thermique et la stabilité chimique augmente les propriétés optiques dudit pigment organique luminescent.Whether the luminescent organic pigment is immobilized between the sheets or anchored to a lamellar single hydroxide compound sheet, the lamellar single hydroxide compound improves the thermal stability and the chemical stability enhances the optical properties of said organic luminescent pigment.
Les feuillets du composé hydroxyde simple lamellaire agissent en effet comme une barrière physique permettant de protéger le pigment de la chaleur générée par les LEDs, typiquement entre 80°C et 120°C.The lamellar single hydroxide compound sheets act as a physical barrier to protect the pigment from the heat generated by the LEDs, typically between 80 ° C and 120 ° C.
Grâce aux feuillets, qui augmentent également les phénomènes de tortuosité au sein du matériau composite luminescent, la perméabilité dudit matériau à la diffusion de gaz, tel que le dioxygène connu pour dégrader chimiquement les pigments, est faible et la stabilité chimique du pigment est améliorée.Thanks to the sheets, which also increase the tortuosity phenomena within the luminescent composite material, the permeability of said material to the diffusion of gas, such as the oxygen known to chemically degrade the pigments, is low and the chemical stability of the pigment is improved.
De plus, les sites d'ancrage à la surface des feuillets et les sites d'immobilisation entre les feuillets sont, à l'échelle nanoscopique, éloignés les uns des autres. Cet éloignement permet d'éviter l'agrégation des pigments organiques luminescents nuisible à leurs propriétés optiques (phénomène de "quenching" ou de trempe optique), et permet même d'accroître les propriétés optiques des pigments organiques luminescents. En particulier, pour un pigment organique luminescent donné, l'intensité de la lumière émise par le matériau composite luminescent et le rendement quantique dudit matériau sont supérieurs à l'intensité de la lumière émise par une solution aqueuse dudit pigment organique et au rendement quantique de ladite solution aqueuse. In addition, the anchoring sites on the surface of the sheets and the sites of immobilization between the sheets are nanoscopically distant from each other. This distance makes it possible to avoid the aggregation of luminescent organic pigments detrimental to their optical properties ("quenching" or optical quenching phenomenon), and even makes it possible to increase the optical properties of the luminescent organic pigments. In particular, for a given luminescent organic pigment, the intensity of the light emitted by the luminescent composite material and the quantum yield of said material are greater than the intensity of the light emitted by an aqueous solution of said organic pigment and the quantum yield of said aqueous solution.
Grâce à la présente invention, on met à disposition une large gamme de matériaux composites luminescent en faisant varier le cation de métal de transition divalent M de l'hydroxyde simple lamellaire ou le pigment organique luminescent, en mélangeant différents composés hydroxydes simples lamellaires ou différents pigments organiques luminescents ou en mélangeant différents composés hydroxydes simples lamellaires et différents pigments organiques luminescents.  By virtue of the present invention, a wide range of luminescent composite materials are provided by varying the divalent transition metal cation M of the lamellar single hydroxide or the luminescent organic pigment by mixing different single lamellar hydroxide compounds or different pigments. luminescent organic compounds or by mixing different simple lamellar hydroxide compounds and various luminescent organic pigments.
Ces nombreux matériaux composites luminescents peuvent être excitables sur une large gamme de longueur d'onde allant de l'UV aux infrarouges en passant par le visible. Ils peuvent également émettre une large gamme de lumière de couleur ou de lumière blanche. Ils peuvent aussi émettre à des longueurs d'ondes n'appartenant pas au spectre visible, telles que dans les UV ou dans les infrarouges.  These many luminescent composite materials can be excitable over a wide range of wavelengths from UV to infrared through visible. They can also emit a wide range of color light or white light. They can also emit at wavelengths that do not belong to the visible spectrum, such as in the UV or in the infrared.
Grâce à ces propriétés optiques, le matériau composite luminescent selon l'invention peut être utilisé en tant que matériau luminescent. Il peut aussi être associé à une LED bleue ou une LED UV. Cette association permet de générer une lumière de couleur ou une lumière blanche.  Thanks to these optical properties, the luminescent composite material according to the invention can be used as a luminescent material. It can also be associated with a blue LED or a UV LED. This association makes it possible to generate a color light or a white light.
De plus, la teneur en poids du pigment organique luminescent dans le matériau composite luminescent est avantageusement faible. Typiquement, la teneur en poids de pigment organique luminescent dans le matériau composite luminescent, Tp, est 0,01% à 10%, en particulier 0,1% à 7,5%, plus particulièrement 0,2%) à 5%), plus particulièrement encore 0,25% à 2%. In addition, the weight content of the organic luminescent pigment in the luminescent composite material is advantageously low. Typically, the weight content of luminescent organic pigment in the luminescent composite material, T p , is 0.01% to 10%, in particular 0.1% to 7.5%, more particularly 0.2% to 5%), more particularly 0.25% to 2% .
Typiquement le matériau composite luminescent selon l'invention peut comprendre en outre une base telle que KOH, NaOH, NH4OH, en particulier NaOH. Typically the luminescent composite material according to the invention may further comprise a base such as KOH, NaOH, NH 4 OH, in particular NaOH.
Typiquement le ratio massique entre la base et le pigment organique luminescent est de 1 :1 à 1000: 1, en particulier de 50: 1 à 500: 1, tout particulièrement de 150: 1 à 200:1. Typically the mass ratio between the base and the organic luminescent pigment is from 1: 1 to 1000: 1, in particular from 50: 1 to 500: 1, most preferably from 150: 1 to 200: 1.
Sans vouloir être liés par aucune théorie, les inventeurs sont d'avis que la présence de la base dans le matériau composite luminescent selon l'invention active les propriétés optiques du pigment organique de sorte que le rendement quantique dudit matériau est supérieur au rendement quantique d'une solution aqueuse dudit pigment organique.  Without wishing to be bound by any theory, the inventors are of the opinion that the presence of the base in the luminescent composite material according to the invention activates the optical properties of the organic pigment so that the quantum yield of said material is greater than the quantum yield of an aqueous solution of said organic pigment.
En conséquence, le matériau composite luminescent selon l'invention est peu onéreux. De plus, les composés hydroxydes simples lamellaires et les pigments organiques luminescents sont potentiellement recyclables et ne sont pas dangereux pour la santé. L'utilisation du matériau composite luminescent dans des produits de consommation courante et à large diffusion telles que les LEDs blanches résultant de l'association de LEDS bleues ou de LEDs UV avec ledit matériau composite luminescent est donc facilitée.  As a result, the luminescent composite material according to the invention is inexpensive. In addition, lamellar single hydroxide compounds and luminescent organic pigments are potentially recyclable and are not hazardous to health. The use of the luminescent composite material in consumer and wide-diffusion products such as white LEDs resulting from the combination of blue LEDS or UV LEDs with said luminescent composite material is thus facilitated.
Composition luminescente  Luminescent composition
L'invention porte également sur une composition luminescente comprenant une matrice polymère, un pigment organique luminescent et un composé hydroxyde simple lamellaire de Formule 1 :  The invention also relates to a luminescent composition comprising a polymer matrix, a luminescent organic pigment and a single platy hydroxide compound of Formula 1:
M(OH)2.yXy.nH20 Formule 1 M (OH) 2 . y X y .nH 2 0 Formula 1
dans laquelle :  in which :
- y est un nombre, entier ou décimal, entre 0 et 2,  - y is a number, integer or decimal, between 0 and 2,
- n est un nombre, entier ou décimal, entre 0 et 2,  n is a number, integer or decimal, between 0 and 2,
- M est un cation de métal de transition divalent,  M is a divalent transition metal cation,
- X est un anion choisi parmi l'acétate, le nitrate, le benzoate et leur mélange.  X is an anion chosen from acetate, nitrate, benzoate and their mixture.
Le composé hydroxyde simple lamellaire et le pigment organique luminescent sont tels que définis dans la partie sur le matériau composite luminescent selon l'invention.  The lamellar single hydroxide compound and the luminescent organic pigment are as defined in the part on the luminescent composite material according to the invention.
Typiquement la composition luminescente peut comprendre en outre une base telle que KOH, NaOH, NH4OH, en particulier NaOH. Typically the luminescent composition may further comprise a base such as KOH, NaOH, NH 4 OH, especially NaOH.
Typiquement le ratio massique entre la base et le pigment organique luminescent est de 1 :1 à 1000: 1, en particulier de 50: 1 à 500: 1, tout particulièrement de 150: 1 à 200:1. Typically the mass ratio between the base and the organic luminescent pigment is from 1: 1 to 1000: 1, in particular from 50: 1 to 500: 1, most preferably from 150: 1 to 200: 1.
Sans vouloir être liés par aucune théorie, les inventeurs sont d'avis que la présence d'une base dans la composition luminescente selon l'invention active les propriétés optiques du pigment organique de sorte que le rendement quantique de ladite composition est supérieur au rendement quantique d'une composition luminescente selon l'invention dépourvue de base. Typiquement, la matrice polymère est choisie parmi une matrice polymère silicone, époxy, polyméthylméthacrylate (PMMA), Polycarbonate (PC), Polystyrène (PS), de préférence la matrice polymère est une matrice silicone telle qu'une matrice silicone de polydiméthylsiloxane (PDMS). Without wishing to be bound by any theory, the inventors are of the opinion that the presence of a base in the luminescent composition according to the invention activates the optical properties of the organic pigment so that the quantum yield of said composition is greater than the quantum yield. a luminescent composition according to the invention devoid of base. Typically, the polymer matrix is chosen from a silicone polymer matrix, epoxy, polymethyl methacrylate (PMMA), polycarbonate (PC), polystyrene (PS), preferably the polymer matrix is a silicone matrix such as a polydimethylsiloxane silicone matrix (PDMS) .
Une telle matrice polymère n'altère pas les propriétés optiques de la composition luminescente. Elle sert également à encapsuler le pigment organique luminescent selon l'invention pour faciliter son couplage à la puce semi-conductrice d'une LED.  Such a polymer matrix does not alter the optical properties of the luminescent composition. It also serves to encapsulate the organic luminescent pigment according to the invention to facilitate its coupling to the semiconductor chip of an LED.
Une telle matrice polymère peut également conférer à la composition luminescente sa stabilité thermique et chimique en protégeant le pigment organique luminescent de la chaleur générée par la LED et du gaz, tel que le dioxygène connu pour dégrader chimiquement les pigments.  Such a polymer matrix can also give the luminescent composition its thermal and chemical stability by protecting the luminescent organic pigment from the heat generated by the LED and gas, such as the oxygen known to chemically degrade the pigments.
Une telle matrice polymère confère à la composition luminescente ses propriétés mécaniques. Elle permet une mise en forme variée de la composition luminescente, par exemple sous forme de films, panneaux, écrans, feuillets, substrats. Such a polymer matrix gives the luminescent composition its mechanical properties. It allows a varied shaping of the luminescent composition, for example in the form of films, panels, screens, sheets, substrates.
De plus, pour un pigment organique luminescent donné, l'intensité de la lumière émise par la composition luminescente de l'invention et le rendement quantique de ladite composition sont du même ordre de grandeur que l'intensité de la lumière émise par une solution aqueuse dudit pigment organique luminescent et le rendement quantique de ladite solution.  In addition, for a given luminescent organic pigment, the intensity of the light emitted by the luminescent composition of the invention and the quantum yield of said composition are of the same order of magnitude as the intensity of the light emitted by an aqueous solution. said luminescent organic pigment and the quantum yield of said solution.
Selon un mode de réalisation préféré, le pigment organique luminescent est le pigment organique luminescent qui peut comprendre au moins une fonction d'ancrage acide décrit ci-dessus dans le mode de réalisation préféré du matériau composite luminescent selon l'invention.  According to a preferred embodiment, the luminescent organic pigment is the luminescent organic pigment which may comprise at least one acid anchoring function described above in the preferred embodiment of the luminescent composite material according to the invention.
Selon ce mode de réalisation préféré, le pigment organique luminescent peut être ancré à un seul feuillet du composé hydroxyde simple lamellaire, comme expliqué ci-dessus. According to this preferred embodiment, the luminescent organic pigment can be anchored to a single sheet of the lamellar single hydroxide compound, as explained above.
Selon ce mode de réalisation préféré, le pigment organique luminescent et le composé hydroxyde simple lamellaire sont uniformément dispersés dans la matrice polymère. De plus, le pigment organique luminescent ne migre pas dans la matrice polymère. En conséquence, les propriétés optiques de la composition luminescente sont homogènes.  According to this preferred embodiment, the luminescent organic pigment and the single lamellar hydroxide compound are uniformly dispersed in the polymer matrix. In addition, the luminescent organic pigment does not migrate into the polymer matrix. As a result, the optical properties of the luminescent composition are homogeneous.
Au sens de la présente demande, les "propriétés optiques sont homogènes" si, quel que soit le point de mesure de la composition lumineuse, l'intensité de la lumière émise au point de mesure est inférieure à 10%, de préférence inférieure à 5%, plus préférentiellement encore inférieure à 1% de l'intensité moyenne de la lumière émise par la composition luminescente.  For the purposes of the present application, the "optical properties are homogeneous" if, irrespective of the measuring point of the luminous composition, the intensity of the light emitted at the measurement point is less than 10%, preferably less than 5%. %, more preferably still less than 1% of the average intensity of the light emitted by the luminescent composition.
Grâce à ces propriétés optiques, la composition luminescente selon l'invention peut donc être utilisée en tant que matériau luminescent. Elle peut ainsi être associée à une LED bleue ou une LED UV. Cette association permet de générer une lumière de couleur ou une lumière blanche. Thanks to these optical properties, the luminescent composition according to the invention can therefore be used as a luminescent material. It can thus be associated with a blue LED or a UV LED. This association makes it possible to generate a color light or a white light.
De plus, la teneur en poids du pigment organique luminescent dans la composition luminescente est très faible. Typiquement, la teneur en poids de pigment organique luminescent dans la composition, Tm, est 0,0001% à 1%. En particulier Tm est 0,0002% à 0,5%, plus particulièrement 0,0003% à 0,1%. En conséquence, la composition luminescente selon l'invention est avantageusement peu onéreuse. De plus, ses constituants sont potentiellement recyclables et ne sont pas dangereux pour la santé. L'utilisation de la composition luminescente dans des produits de consommation courante et à large diffusion telles que les LEDs blanches résultant de l'association de LEDS bleues ou de LEDs UV avec ladite composition luminescente est donc facilitée. In addition, the weight content of the organic luminescent pigment in the luminescent composition is very low. Typically, the weight content of luminescent organic pigment in the composition, T m , is 0.0001% to 1%. In particular, T m is 0.0002% to 0.5%, more particularly 0.0003% to 0.1%. Consequently, the luminescent composition according to the invention is advantageously inexpensive. In addition, its constituents are potentially recyclable and are not dangerous to health. The use of the light-emitting composition in consumer and wide-diffusion products such as the white LEDs resulting from the combination of blue LEDS or UV LEDs with said luminescent composition is thus facilitated.
Procédés d'obtention du matériau composite / composition luminescente  Processes for obtaining the composite material / luminescent composition
Selon un autre aspect, l'invention porte sur un procédé d'obtention d'un matériau composite luminescent selon l'invention, caractérisé en ce qu'il comprend les étapes suivantes :  According to another aspect, the invention relates to a method for obtaining a luminescent composite material according to the invention, characterized in that it comprises the following steps:
a) hydrolyse d'une solution comprenant un polyol et un précurseur inorganique du composé hydroxyde simple lamellaire de Formule 1 dans une solution de polyol pour obtenir le composé hydroxyde simple lamellaire de Formule 1, le précurseur inorganique étant de Formule 2:  a) hydrolyzing a solution comprising a polyol and an inorganic precursor of the single platy hydroxide compound of Formula 1 in a polyol solution to obtain the single platy hydroxide compound of Formula 1, the inorganic precursor being of Formula 2:
MXz.mH20 Formule 2 MX z .mH 2 0 Formula 2
dans laquelle :  in which :
- z est un nombre, entier ou décimal, entre 0 et 2,  z is a number, integer or decimal, between 0 and 2,
- m est un nombre, entier ou décimal, entre 0 et 2,  m is a number, integer or decimal, between 0 and 2,
- M est un cation de métal de transition divalent, de préférence choisi parmi Zn2+ ; Ni2+, Co2+, Cu2+ et Mg2+, plus préférentiellement encore M est Zn2+, M is a divalent transition metal cation, preferably selected from Zn 2+ ; Ni 2+ , Co 2+ , Cu 2+ and Mg 2+ , more preferably M is Zn 2+ ,
- X est un anion choisi parmi l'acétate, le nitrate, le benzoate et leur mélange, de préférence X est l'acétate,  X is an anion chosen from acetate, nitrate, benzoate and their mixture, preferably X is acetate,
et  and
b) mélange d'un pigment organique luminescent avec le composé hydroxyde simple lamellaire de Formule 1 obtenue à l'étape a) pour obtenir le matériau composite luminescent selon l'invention.  b) mixing a luminescent organic pigment with the single-layered hydroxide compound of Formula I obtained in step a) to obtain the luminescent composite material according to the invention.
De façon avantageuse, ce procédé est simple et rapide à mettre en œuvre, il est donc adaptable à l'échelle industrielle. De plus, il ne nécessite pas l'utilisation de conditions opératoires dangereuses telles que des températures ou des pressions élevées. En effet, toutes les étapes du procédé peuvent être réalisées à température ambiante et pression atmosphérique, ou en légère dépression. Advantageously, this process is simple and quick to implement, so it is adaptable on an industrial scale. In addition, it does not require the use of hazardous operating conditions such as high temperatures or pressures. Indeed, all the steps of the process can be carried out at room temperature and atmospheric pressure, or slight depression.
Lors de l'étape a), l'hydrolyse de la solution peut être réalisée en ajoutant de l'eau à la solution ou en introduisant la solution dans de l'eau.  In step a), the hydrolysis of the solution can be carried out by adding water to the solution or introducing the solution into water.
Soit h le taux d'hydrolyse défini comme étant le nombre de mole d'eau mis en œuvre lors de l'hydrolyse (nH2o) sur le nombre de mole de précurseur organique dans la solution (nM). Typiquement, hmin < h < hmax, les ratios hmin et hmax sont choisis indépendamment l'un de l'autre. hmin est de 1 à 50, en particulier hmin est choisi parmi les valeurs 1 , 10, 20, 30, 40, 50. hmax est de 50 à 100, en particulier hmax est choisi parmi les valeurs 50, 60, 70, 80, 90,100. En particulier, h est égal à 40. De façon avantageuse, un tel taux d'hydrolyse augmente la cinétique de la réaction. Le choix du précurseur inorganique de Formule 2 dépend du matériau composite luminescent souhaité. Typiquement, le précurseur inorganique est choisi parmi l'acétate de zinc, l'acétate de nickel, l'acétate de cobalt, l'acétate de cuivre, l'acétate de magnésium, le nitrate de zinc, le nitrate de nickel, le nitrate de cobalt, le nitrate de cuivre, le nitrate de magnésium, de préférence le précurseur est l'acétate de zinc. Typiquement le polyol est choisi parmi le diéthylène glycol, le 1 ,2-propanediol, et leur mélange, de préférence le polyol est le diéthylène glycol. Let h be the degree of hydrolysis defined as the number of moles of water used during the hydrolysis (n H 2o) over the number of moles of organic precursor in the solution (n M ). Typically, h min <h <h max , the ratios h min and h max are chosen independently of one another. h min is from 1 to 50, in particular h min is chosen from values 1, 10, 20, 30, 40, 50. h max is 50 to 100, in particular h max is chosen from values 50, 60, 70, 80, 90.100. In particular, h is equal to 40. Advantageously, such a degree of hydrolysis increases the kinetics of the reaction. The choice of the inorganic precursor of Formula 2 depends on the desired luminescent composite material. Typically, the inorganic precursor is selected from zinc acetate, nickel acetate, cobalt acetate, copper acetate, magnesium acetate, zinc nitrate, nickel nitrate, nitrate cobalt, copper nitrate, magnesium nitrate, preferably the precursor is zinc acetate. Typically the polyol is selected from diethylene glycol, 1,2-propanediol, and their mixture, preferably the polyol is diethylene glycol.
La solution peut en outre comprendre un solvant tel que l'éthanol.  The solution may further comprise a solvent such as ethanol.
A la fin de l'étape a), le composé hydroxyde simple lamellaire est typiquement formé sous forme de précipité. Le précipité peut être séparé du milieu réactionnel par fîltration sous vide, par évaporation ou par centrifugation. Le précipité ainsi séparé peut ensuite être conservé, avec ou sans séchage.  At the end of step a), the lamellar single hydroxide compound is typically formed as a precipitate. The precipitate can be separated from the reaction medium by filtration under vacuum, by evaporation or by centrifugation. The precipitate thus separated can then be preserved, with or without drying.
Au cours de l'étape b), le pigment organique luminescent est mélangé au composé hydroxyde simple lamellaire formé à l'étape a) dans un solvant tel que l'éthanol ou l'eau. Le matériau composite luminescent selon l'invention est alors obtenu par échange anionique entre le pigment organique luminescent et le composé hydroxyde simple lamellaire dans le solvant. De façon avantageuse, l'échange anionique est facilité si le pigment organique luminescent est soluble dans le solvant. L'échange anionique est également facilité lorsque le mélange est maintenu sous agitation constante pendant toute l'étape b). In step b), the luminescent organic pigment is mixed with the single layered hydroxide compound formed in step a) in a solvent such as ethanol or water. The luminescent composite material according to the invention is then obtained by anion exchange between the luminescent organic pigment and the single layered hydroxide compound in the solvent. Advantageously, the anion exchange is facilitated if the luminescent organic pigment is soluble in the solvent. Anion exchange is also facilitated when the mixture is kept under constant agitation throughout step b).
Le pigment organique luminescent est tel que défini dans la partie sur le matériau composite luminescent.The luminescent organic pigment is as defined in the part on the luminescent composite material.
Selon un mode de réalisation préféré, le pigment organique luminescent est le pigment organique luminescent qui peut comprendre au moins une fonction d'ancrage acide décrit ci-dessus dans le mode de réalisation préféré du matériau composite luminescent selon l'invention. According to a preferred embodiment, the luminescent organic pigment is the luminescent organic pigment which may comprise at least one acid anchoring function described above in the preferred embodiment of the luminescent composite material according to the invention.
Typiquement, lorsque le matériau composite luminescent comprend une base, alors le procédé selon l'invention comprend une étape bl) d'ajout de la base au matériau composite luminescent obtenu à la fin de l'étape b).  Typically, when the luminescent composite material comprises a base, then the method according to the invention comprises a step b1) of adding the base to the luminescent composite material obtained at the end of step b).
Le matériau composite luminescent obtenu à la fin de l'étape b) ou bl) peut éventuellement être séché et mis en forme. Le matériau composite luminescent obtenu à la fin de l'étape b) ou bl) peut éventuellement être maintenu sous forme non séchée, Le. sous forme de pâte.  The luminescent composite material obtained at the end of step b) or bl) may optionally be dried and shaped. The luminescent composite material obtained at the end of step b) or bl) may optionally be maintained in undried form, Le. in the form of paste.
Selon un mode de réalisation, le procédé comprend, avant l'étape a), une étape de mélange du précurseur inorganique de Formule 2 à la solution de polyol. Typiquement, le précurseur est introduit dans la solution de polyol. Puis, cette solution est mélangée par mélange mécanique, par exemple, en utilisant un agitateur magnétique.  According to one embodiment, the process comprises, before step a), a step of mixing the inorganic precursor of Formula 2 with the polyol solution. Typically, the precursor is introduced into the polyol solution. Then, this solution is mixed by mechanical mixing, for example, using a magnetic stirrer.
L'invention a donc également pour objet un procédé d'obtention de la composition luminescente selon l'invention, caractérisé en ce qu'il comprend les étapes suivantes :  The invention therefore also relates to a process for obtaining the luminescent composition according to the invention, characterized in that it comprises the following steps:
a) hydrolyse d'une solution comprenant un polyol et un d'un précurseur inorganique du composé hydroxyde simple lamellaire de Formule 1 dans une solution de polyol pour obtenir le composé hydroxyde simple lamellaire de Formule 1, le précurseur inorganique étant de Formule 2: a) hydrolyzing a solution comprising a polyol and an inorganic precursor of the single platy hydroxide compound of Formula 1 in a polyol solution to obtain the lamellar single hydroxide compound of Formula 1, the inorganic precursor being of Formula 2:
MXz.mH20 Formule 2 MX z .mH 2 0 Formula 2
dans laquelle :  in which :
- z est un nombre, entier ou décimal, entre 0 et 2,  z is a number, integer or decimal, between 0 and 2,
- m est un nombre, entier ou décimal, entre 0 et 2,  m is a number, integer or decimal, between 0 and 2,
- M est un cation de métal de transition divalent, de préférence choisi parmi Zn2+ ; Ni2+, Co2+, Cu2+ et Mg2+, plus préférentiellement encore M est Zn2+, M is a divalent transition metal cation, preferably selected from Zn 2+ ; Ni 2+ , Co 2+ , Cu 2+ and Mg 2+ , more preferably M is Zn 2+ ,
- X est un anion choisi parmi l'acétate, le nitrate, le benzoate et leur mélange, de préférence X est l'acétate,  X is an anion chosen from acetate, nitrate, benzoate and their mixture, preferably X is acetate,
et  and
b) mélange d'un pigment organique luminescent avec le composé hydroxyde simple lamellaire de Formule 1 obtenue à l'étape a) pour obtenir un matériau composite luminescent.  b) mixing a luminescent organic pigment with the single-layered hydroxide compound of Formula I obtained in step a) to obtain a luminescent composite material.
c) mélange de la matrice polymère avec le matériau composite luminescent obtenu à l'étape b) pour obtenir la composition luminescente selon l'invention.  c) mixing the polymer matrix with the luminescent composite material obtained in step b) to obtain the luminescent composition according to the invention.
De façon avantageuse, ce procédé est simple et rapide à mettre en œuvre et il est adaptable à l'échelle industrielle. De plus, il ne nécessite pas l'utilisation de conditions opératoires dangereuses telles que des températures ou des pressions élevées. En effet, toutes les étapes du procédé peuvent être réalisées à température ambiante et pression atmosphérique, ou sous légère dépression.  Advantageously, this process is simple and quick to implement and is adaptable on an industrial scale. In addition, it does not require the use of hazardous operating conditions such as high temperatures or pressures. Indeed, all the steps of the process can be carried out at room temperature and atmospheric pressure, or under slight depression.
Les étapes a) et b) sont telles que décrites ci-dessus. Steps a) and b) are as described above.
Le pigment organique luminescent est tel que défini dans la partie sur le matériau composite luminescent. The luminescent organic pigment is as defined in the part on the luminescent composite material.
Selon un mode de réalisation préféré, le pigment organique luminescent est le pigment organique luminescent qui peut comprendre au moins une fonction d'ancrage acide décrit ci-dessus dans le mode de réalisation préféré du matériau composite luminescent selon l'invention. According to a preferred embodiment, the luminescent organic pigment is the luminescent organic pigment which may comprise at least one acid anchoring function described above in the preferred embodiment of the luminescent composite material according to the invention.
Typiquement, lorsque le matériau composite luminescent comprend une base, alors le procédé selon l'invention comprend une étape bl) d'ajout de la base au matériau composite luminescent obtenu à la fin de l'étape b). Typically, when the luminescent composite material comprises a base, then the method according to the invention comprises a step b1) of adding the base to the luminescent composite material obtained at the end of step b).
Au cours de l'étape c), le mélange de la matrice polymère et du matériau composite luminescent peut être homogénéisé. Typiquement cette homogénéisation est réalisée par action mécanique.  During step c), the mixture of the polymer matrix and the luminescent composite material can be homogenized. Typically this homogenization is carried out by mechanical action.
De façon avantageuse lorsque le matériau composite luminescent obtenu à la fin de l'étape b) ou bl) est maintenu sous forme non séchée, Le. sous forme de pâte, alors le pigment organique luminescent compris dans ledit matériau composite luminescent est mieux dispersé dans la matrice polymère que si ledit matériau composite luminescent avait été séché. Sans vouloir être liés par aucune théorie, les inventeurs sont d'avis que maintenir le matériau composite luminescent sous forme non séchée permet d'éviter les phénomènes d'agglomération du pigment organique. La composition luminescente obtenue à l'étape c) peut ensuite être mise en forme, en particulier sous forme de films, panneaux, écrans, feuillets, substrats, selon des techniques connues. Advantageously when the luminescent composite material obtained at the end of step b) or bl) is kept in undried form, Le. in the form of paste, then the luminescent organic pigment included in said luminescent composite material is better dispersed in the polymer matrix than if said luminescent composite material had been dried. Without wishing to be bound by any theory, the inventors are of the opinion that keeping the luminescent composite material in undried form makes it possible to avoid the phenomena of agglomeration of the organic pigment. The luminescent composition obtained in step c) can then be shaped, in particular in the form of films, panels, screens, sheets, substrates, according to known techniques.
La composition luminescente obtenue à l'étape c) peut ensuite être mise en forme, en particulier sous forme de films, panneaux, écrans, feuillets, substrats, selon des techniques connues.  The luminescent composition obtained in step c) can then be shaped, in particular in the form of films, panels, screens, sheets, substrates, according to known techniques.
Selon un mode de réalisation, le procédé comprend, avant l'étape a), une étape de mélange du précurseur inorganique de Formule 2 à la solution de polyol. Typiquement, le précurseur est introduit dans la solution de polyol. Puis, cette solution est mélangée par mélange mécanique, par exemple, en utilisant un agitateur magnétique.  According to one embodiment, the process comprises, before step a), a step of mixing the inorganic precursor of Formula 2 with the polyol solution. Typically, the precursor is introduced into the polyol solution. Then, this solution is mixed by mechanical mixing, for example, using a magnetic stirrer.
Utilisation  use
Compte tenu des propriétés optiques du matériau composite luminescent selon l'invention ou obtenu par le procédé selon l'invention, d'une composition luminescente selon l'invention ou obtenue par le procédé selon l'invention, ces derniers peuvent être utilisés en tant que matériau luminescent.  Given the optical properties of the luminescent composite material according to the invention or obtained by the method according to the invention, a luminescent composition according to the invention or obtained by the process according to the invention, these can be used as luminescent material.
Typiquement, ils peuvent être utilisés en tant que matériaux luminescent en association avec une LED bleue ou une LED UV, en particulier pour générer de la lumière blanche ou de la lumière colorée.  Typically, they can be used as luminescent materials in combination with a blue LED or a UV LED, in particular to generate white light or colored light.
L'invention va être décrite plus en détail à l'aide des exemples suivants donnés à titre d'illustration seulement et des Figures annexées.  The invention will be described in more detail with the aid of the following examples given by way of illustration only and the accompanying figures.
Description des Figures Description of the Figures
La Figure 1 représente les spectres d'émission de six échantillons différents (A-F) enregistrés sous excitation avec une LED bleue émettant à 450 nm. Figure 1 shows the emission spectra of six different samples (A-F) recorded under excitation with a blue LED emitting at 450 nm.
La Figure 2 représente le rendement quantique absolu de fluorescence enregistré pour ces six différents échantillons (A-F) après excitation avec une LED bleue émettant à 450 nm. Figure 2 shows the absolute fluorescence quantum yield recorded for these six different samples (A-F) after excitation with a blue LED emitting at 450 nm.
La Figure 3 présente deux photographies. A gauche, un film obtenu à partir du mélange d'une matrice silicone de polydiméthylsiloxane (PDMS) et du matériau G selon l'invention et, à droite, un film obtenu à partir du mélange de la même matrice polymère et du matériau H. Exemples  Figure 3 shows two photographs. On the left, a film obtained from the mixture of a polydimethylsiloxane silicone matrix (PDMS) and the material G according to the invention and, on the right, a film obtained from the mixture of the same polymer matrix and material H. Examples
Exemple 1 : Synthèse d'un matériau composite luminescent. Example 1 Synthesis of a Luminescent Composite Material
Composé hydroxyde simple lamellaire : Zn(OH)2.x(CH3COO)x . nH20 0,1 < x < 0,33. Lamellar single hydroxide compound: Zn (OH) 2 . x (CH 3 COO) x . nH 2 0 0.1 <x <0.33.
Pigment organique fluorescent : Fluorescéine. Fluorescent organic pigment: Fluorescein.
Une solution d'acétate de zinc est préparée dans une solution de polyol (diéthylène glycol) avec de l'éthanol comme solvant. L'hydrolyse des phases hydroxydes simples lamellaires en milieu polyol est alors provoquée par l'addition d'eau dé-ionisée dans le mélange initial à température ambiante. Le taux d'hydrolyse est de 40. Zn(OH)2.x(CH3COO)x.nH20 est alors obtenu sous forme de précipités. Les précipités de Zn(OH)2.x(CH3COO)x.nH20 sont récupérés par centrifugation (5000 tpm, 5 minutes) puis conservés sans séchage sous forme de pâte. A solution of zinc acetate is prepared in a solution of polyol (diethylene glycol) with ethanol as a solvent. The hydrolysis of the lamellar single hydroxyl phases in polyol medium is then caused by the addition of deionized water in the initial mixture at room temperature. The degree of hydrolysis is 40. Zn (OH) 2 . x (CH 3 COO) x .nH 2 0 is then obtained in the form of precipitates. The precipitates of Zn (OH) 2 . x (CH 3 COO) x .nH 2 O are recovered by centrifugation (5000 rpm, 5 minutes) and then stored without drying in the form of a paste.
Zn(OH)2-x(CH3COO)x.nH20 et la fluorescéine. (99:1 en masse) sont mélangés en même temps à 30 mL d'éthanol. Le matériau composite luminescent est alors obtenu par échange anionique. Le mélange est maintenu, pendant 24 heures, sous agitation à température ambiante et sous atmosphère d'air. Des précipités colorés du matériau composite luminescent sont obtenus et récupérés par centrifugation (5000 rpm, 5 minutes) puis séché. Zn (OH) 2 - x (CH 3 COO) x .nH 2 O and fluorescein. (99: 1 by weight) are mixed at the same time with 30 mL of ethanol. The luminescent composite material is then obtained by anion exchange. The mixture is kept stirring for 24 hours at ambient temperature and under an atmosphere of air. Colored precipitates of the luminescent composite material are obtained and recovered by centrifugation (5000 rpm, 5 minutes) and then dried.
Exemple 2 : Synthèse d'une composition luminescente.  Example 2: Synthesis of a luminescent composition.
Polymère : matrice silicone de polydiméthylsiloxane (PDMS). Polymer: polydimethylsiloxane silicone matrix (PDMS).
Le matériau composite luminescent de l'Exemple 1 non séché, est mélangé au polymère. La teneur en poids de fluorescéine dans la composition luminescente synthétisée est de 0,0003%. L'homogénéisation du mélange est réalisée sous action mécanique. La composition luminescente est alors obtenue. The luminescent composite material of the undried Example 1 is mixed with the polymer. The content by weight of fluorescein in the synthesized luminescent composition is 0.0003%. The homogenization of the mixture is carried out under mechanical action. The luminescent composition is then obtained.
Exemple 3 : Mise en forme de la composition luminescente.  Example 3: Shaping of the luminescent composition.
La composition luminescente de l'Exemple 2 est ensuite déposée au moyen d'un banc d'enduction sur une feuille de Téflon. La hauteur du couteau est fixée à 400 μιη (soit l'épaisseur du revêtement liquide) avec la vitesse de dépôt fixée à 20 mm/s. Le film est séché à60°C pendant 2 heures puis à l'étuve à 60°C pendant plusieurs heures pour éliminer les produits volatils. Un film de la composition luminescente est alors obtenu.  The luminescent composition of Example 2 is then deposited by means of a coating plant on a Teflon sheet. The height of the knife is fixed at 400 μιη (the thickness of the liquid coating) with the deposition rate set at 20 mm / s. The film is dried at 60 ° C for 2 hours and then in an oven at 60 ° C for several hours to remove volatiles. A film of the luminescent composition is then obtained.
Exemple 4 : Evaluation des propriétés optiques d'un matériau composite luminescent et d'une  Example 4 Evaluation of the Optical Properties of a Luminescent Composite Material and a
composition luminescente de l'invention. luminescent composition of the invention.
Les propriétés optiques, spectre d'émission et rendement quantique absolu après excitation à 450 nm, de six échantillons A-F ont été évaluées.  The optical properties, emission spectrum and absolute quantum yield after excitation at 450 nm, of six A-F samples were evaluated.
Liste des échantillons :  List of samples:
A : une poudre de fluorescéine seule,  A: a fluorescein powder alone,
B : un film de silicone pur,  B: a pure silicone film,
C : un film comprenant 5% en poids de poudre de fluorescéine dispersée dans 95% en poids de silicone,  C: a film comprising 5% by weight of fluorescein powder dispersed in 95% by weight of silicone,
D : un matériau composite luminescent obtenu selon le protocole de l'Exemple 1 et comprenant 95% en poids de Zn(OH)2.x(CH3COO)x . nH20 et 0,5 % en poids de fluorescéine, D: a luminescent composite material obtained according to the protocol of Example 1 and comprising 95% by weight of Zn (OH) 2 . x (CH 3 COO) x . nH 2 0 and 0.5% by weight of fluorescein,
- E : un film obtenu selon le protocole de l'Exemple 3, comprenant 5% en poids du matériau D et E: a film obtained according to the protocol of Example 3, comprising 5% by weight of material D and
95% en poids de silicone, 95% by weight of silicone,
F : une solution aqueuse de fluorescéine comprenant 0,35% en poids de fluorescéine, et  F: an aqueous solution of fluorescein comprising 0.35% by weight of fluorescein, and
I : un matériau composite luminescent obtenu selon le protocole de l'Exemple 1, ledit matériau comprenant 95% en poids de Zn(OH)2.x(CH3COO)x . nH20 et 1 % en poids d'un mélange NaOH/fluorescéine avec un ratio massique NaOH/fluorescéine égal à 188:1 maintenu sous forme non séchée (sous forme de pâte). a) Spectre d'émission I: a luminescent composite material obtained according to the protocol of Example 1, said material comprising 95% by weight of Zn (OH) 2 . x (CH 3 COO) x . nH 2 0 and 1% by weight of a mixture NaOH / fluorescein with a mass ratio NaOH / fluorescein equal to 188: 1 maintained in undried form (in paste form). a) Emission spectrum
Les spectres d'émission des poudres et des films ont été enregistrés entre 400-700 nm dans une cellule en quartz au moyen d'un appareil équipé d'une sphère d'intégration. Cet appareil comprend une source d'excitation monochromatique Xénon (150 W, 250-500 nm, avec une résolution de bande spectrale = 5 nm) et une sphère d'intégration (Spectralon Coating, φ = 3.3 inches)  The emission spectra of the powders and films were recorded between 400-700 nm in a quartz cell using an apparatus equipped with an integrating sphere. This apparatus comprises a monochromatic Xenon excitation source (150 W, 250-500 nm, with a spectral band resolution = 5 nm) and an integrating sphere (Spectralon Coating, φ = 3.3 inches)
Comme illustré sur la Figure 1 , la poudre A et le film C n'émettent pas de lumière après excitation avec une LED bleue. Le matériau composite luminescent D émet une lumière intense après excitation à 450 nm, celui-ci couvre un large domaine de longueurs d'ondes du domaine du visible et conduit à une couleur violette. Enfin, l'introduction de ce matériau D dans une matrice silicone (film E) offre des propriétés optiques comparables à celle de la solution aqueuse F de fluorescéine.  As illustrated in FIG. 1, the powder A and the film C do not emit light after excitation with a blue LED. The luminescent composite material D emits intense light after excitation at 450 nm, which covers a wide range of wavelengths in the visible range and leads to a violet color. Finally, the introduction of this material D into a silicone matrix (film E) offers optical properties comparable to that of the aqueous solution F of fluorescein.
b) Mesure du rendement quantique  b) Measurement of quantum yield
Les mesures du rendement quantique de fluorescence des poudres et des films ont été enregistrées entre 400-700 nm avec le même dispositif que les spectres d'émission. Le rendement quantique absolu est défini par le produit d'un rendement quantique interne et son absorption relative.  Measurements of the fluorescence quantum yield of the powders and films were recorded between 400-700 nm with the same device as the emission spectra. Absolute quantum yield is defined by the product of an internal quantum efficiency and its relative absorption.
Comme illustré sur la Figure 2, le rendement quantique absolu est nul pour les échantillons A, B et C.As illustrated in FIG. 2, the absolute quantum yield is zero for samples A, B and C.
Un rendement quantique absolu élevé est obtenu pour le matériau composite luminescent D (rendement quantique de 22%). Ce rendement est largement supérieur à celui de la solution aqueuse F de fluorescéine alors que le matériau composite luminescent D ne comprend que 0,5% en poids de fluorescéine. A high absolute quantum yield is obtained for the luminescent composite material D (22% quantum yield). This yield is much higher than that of the fluorescein aqueous solution F while the luminescent composite material D comprises only 0.5% by weight of fluorescein.
Enfin le rendement quantique du film E est du même ordre de grandeur que celui de la solution aqueuse F de fluorescéine alors que ce film E ne comprend que 0,0003% en poids de fluorescéine.  Finally, the quantum yield of the film E is of the same order of magnitude as that of the aqueous solution F of fluorescein whereas this film E comprises only 0.0003% by weight of fluorescein.
Bien qu'il ne comprenne que 0,5% en poids de fluorescéine, le matériau composite luminescent D présente des propriétés optiques accrues par rapport à la solution aqueuse F de fluorescéine.  Although it comprises only 0.5% by weight of fluorescein, the luminescent composite material D has increased optical properties compared to the aqueous solution F of fluorescein.
Bien qu'il ne comprenne que 0,0003%> en poids de fluorescéine, le film E présente des propriétés optiques du même ordre de grandeur que la solution aqueuse F de fluorescéine.  Although it comprises only 0.0003% by weight of fluorescein, the film E has optical properties of the same order of magnitude as the aqueous solution F fluorescein.
Le rendement quantique absolu le plus élevé est obtenu pour le matériau composite luminescent I et mesuré à plus de 52,2%. Ce rendement est largement supérieur à celui de la solution aqueuse F de fluorescéine alors que le matériau composite luminescent G ne comprend que 1% en poids de fluorescéine. The highest absolute quantum yield is obtained for the luminescent composite material I and measured at more than 52.2%. This yield is much higher than that of the aqueous solution F of fluorescein while the luminescent composite material G comprises only 1% by weight of fluorescein.
Exemple 5 : Comparaison des propriétés optiques d'un matériau composite luminescent de l'invention et d'un matériau luminescent compris dans l'état de la technique et de leur dispersion dans une matrice polymère.  EXAMPLE 5 Comparison of the Optical Properties of a Luminescent Composite Material of the Invention and a Luminescent Material Included in the State of the Art and Their Dispersion in a Polymer Matrix
Un matériau composite luminescent G est synthétisé selon le protocole de l'Exemple 1. La seule différence est la teneur en fluorescéine qui est de 98:2 en masse. Le matériau luminescent compris dans l'état de la technique est un matériau luminescent H comprenant un hydroxyde de zinc double lamellaire et de la fluorescéine. La teneur en fluorescéine est de 98:2 en masse. A luminescent composite material G is synthesized according to the protocol of Example 1. The only difference is the content of fluorescein which is 98: 2 by mass. The luminescent material included in the state of the art is a luminescent material H comprising a double lamellar zinc hydroxide and fluorescein. The content of fluorescein is 98: 2 by mass.
Les propriétés optiques, spectre d'émission et rendement quantique absolu après excitation à 450 nm, de ces deux matériaux ont été évaluées.  The optical properties, emission spectrum and absolute quantum yield after excitation at 450 nm, of these two materials were evaluated.
Les résultats sont présentés dans le Tableau 1 ci-dessous. Bien que les deux matériaux émettent à une longueur d'onde de 544 nm, le matériau G, selon l'invention, a un rendement quantique plus de 2 fois supérieur à celui du matériau H.  The results are shown in Table 1 below. Although the two materials emit at a wavelength of 544 nm, the material G, according to the invention, has a quantum yield more than 2 times greater than that of the material H.
Tableau 1  Table 1
Figure imgf000019_0001
Figure imgf000019_0001
Le matériau G et le matériau H sont mélangés, respectivement, dans une matrice silicone PDMS. Deux films sont formés à partir de ces mélanges en suivant le protocole décrit dans l'Exemple 3. The material G and the material H are mixed, respectively, in a PDMS silicone matrix. Two films are formed from these mixtures following the protocol described in Example 3.
Le matériau G et le matériau H sont mélangés, respectivement, dans une matrice silicone PDMS. Deux films sont formés à partir de ces mélanges en suivant le protocole décrit dans l'Exemple 3.  The material G and the material H are mixed, respectively, in a PDMS silicone matrix. Two films are formed from these mixtures following the protocol described in Example 3.
Sur la Figure 3, on distingue sur le film de droite de nombreuses petites taches. Ces nombreuses petites taches mettent en évidence que le matériau H n'est pas dispersé de façon homogène dans la matrice polymère. Sur le film de gauche le nombre de petites taches est bien moindre, ce qui met en évidence que le matériau G, selon l'invention, est dispersé de façon plus homogène dans la matrice polymère.  In Figure 3, there are many small spots on the film on the right. These numerous small spots show that the material H is not dispersed homogeneously in the polymer matrix. In the film on the left the number of small spots is much lower, which shows that the material G according to the invention is dispersed more homogeneously in the polymer matrix.
Exemple 6 Comparatif: Compositions luminescentes comprenant un matériau composite luminescent comprenant un composé hydroxyde double lamellaire ou un composé hydroxyde simple lamellaire.  Comparative Example 6: Luminescent compositions comprising a luminescent composite material comprising a double layered hydroxide compound or a single layered hydroxide compound.
Un matériau composite luminescent comprenant un composé hydroxyde double lamellaire et un matériau composite luminescent comprenant un composé hydroxyde simple lamellaire ont été synthétisés selon le procédé décrit dans Constantino et al. (Langmuir, vol.16, no 26, 2000-12-01, 10351-10358). Ces deux matériaux comprennent 16% en poids de fluorescéine. A luminescent composite material comprising a lamellar double hydroxide compound and a luminescent composite material comprising a lamellar single hydroxide compound were synthesized according to the method described in Constantino et al. (Langmuir, Vol.16, No. 26, 2000-12-01, 10351-10358). These two materials comprise 16% by weight of fluorescein.
Ces deux matériaux sont mélangés, respectivement, dans une matrice silicone PDMS pour obtenir les deux compositions luminescentes comprenant 0,16% en poids de fluorescéine. Deux films sont formés à partir de ces deux compositions luminescentes en suivant le protocole décrit dans l'Exemple 3. Le rendement quantique absolu du film comprenant la composition luminescente comprenant un matériau composite luminescent comprenant un composé hydroxyde double lamellaire est de 0%. These two materials are mixed, respectively, in a PDMS silicone matrix to obtain the two luminescent compositions comprising 0.16% by weight of fluorescein. Two films are formed from these two luminescent compositions following the protocol described in Example 3. The absolute quantum yield of the film comprising the luminescent composition comprising a luminescent composite material comprising a double lamellar hydroxide compound is 0%.
Le rendement quantique absolu du film comprenant la composition luminescente comprenant un matériau composite luminescent comprenant un composé hydroxyde simple lamellaire est du même ordre de grandeur que le rendement quantique du film E de l'Exemple 4, bien que le film E comprenne 6 fois moins de fluorescéine.  The absolute quantum yield of the film comprising the luminescent composition comprising a luminescent composite material comprising a lamellar single hydroxide compound is of the same order of magnitude as the quantum yield of the film E of Example 4, although the film E comprises 6 times less than fluorescein.
En conclusion, les films luminescents préparés dans les conditions décrites par Constantino et al. ne permettent pas d'obtenir de résultats en termes de propriétés optiques aussi bons que le films préparés dans les conditions de l'invention.  In conclusion, the luminescent films prepared under the conditions described by Constantino et al. do not allow to obtain results in terms of optical properties as good as the films prepared under the conditions of the invention.

Claims

REVENDICATIONS Matériau composite luminescent comprenant un pigment organique luminescent et un composé hydroxyde simple lamellaire de Formule 1 : M(OH)2_yXy.nH20 Formule 1 dans laquelle : - y est un nombre, entier ou décimal, entre 0 et 2, - n est un nombre, entier ou décimal, entre 0 et 2, - M est un cation de métal de transition divalent, de préférence choisi parmi Zn2+; Ni2+, Co2+, Cu2+ et Mg2+, plus préférentiellement encore M est Zn2+, - X est un anion choisi parmi l'acétate, le nitrate, le benzoate et leur mélange, de préférence X est l'acétate, à la condition que si le pigment organique luminescent est la pyranine alors le composé hydroxyde simple lamellaire n'est pas Zn(OH)i;6(N03)o,4.0,4H20. Matériau composite luminescent selon la revendication 1, dans lequel le pigment organique luminescent est choisi parmi les acriflavines, les aryles-sulfonates, le benzène et ses dérivés, les coumarines, les cyanines, les lactones, les oxazines, les porphyrines, les pyranes, les stilbènes, les xanthènes et leur mélange. Matériau composite luminescent selon la revendication 1 ou la revendication 2, dans lequel le pigment organique luminescent comprend au moins une fonction d'ancrage acide. Matériau composite luminescent selon l'une quelconque des revendications 1 à 3, dans lequel le composé hydroxyde simple lamellaire de Formule 1 est choisi parmi Zn(OH)2_y (CH3COO )y.2H20, Ni(OH)2_y(CH3COO )y.2H20, Co(OH)2_y(CH3COO )y.2H20, Cu(OH)2_y (CH3COO )y.2H20, Mg(OH)2.y(CH3COO")y.2H20 et leur mélange, de préférence Zn(OH)2_ y(CH3COO )y. 2H20. Composition luminescente comprenant une matrice polymère, un pigment organique luminescent et un composé hydroxyde simple lamellaire de Formule 1 M(OH)2.yXy.nH20 Formule 1 dans laquelle : - y est un nombre, entier ou décimal, entre 0 et 2, - n est un nombre, entier ou décimal, entre 0 et 2, - M est un cation de métal de transition divalent, de préférence choisi parmi Zn2+; Ni2+, Co2+, Cu2+ et Mg2+, plus préférentiellement encore M est Zn2+, - X est un anion choisi parmi l'acétate, le nitrate, le benzoate et leur mélange, de préférence X est l'acétate. Composition luminescente selon la revendication 5, dans laquelle le pigment organique luminescent comprend au moins une fonction d'ancrage acide. Composition luminescente selon la revendication 5 ou la revendication 6 dans laquelle la matrice polymère est choisie parmi une matrice polymère silicone, époxy, polyméthylméthacrylate, Polycarbonate, Polystyrène, de préférence une matrice silicone. Procédé d'obtention d'un matériau composite luminescent tel que défini dans l'une quelconques des revendications 1 à 4, caractérisé en ce qu'il comprend les étapes suivantes : a) hydrolyse d'une solution comprenant un polyol et un précurseur inorganique du composé hydroxyde simple lamellaire de Formule 1 dans une solution de polyol pour obtenir le composé hydroxyde simple lamellaire de Formule 1 , le précurseur inorganique étant de Formule 2: MXz.mH20 Formule 2 dans laquelle : - z est un nombre, entier ou décimal, entre 0 et 2, - m est un nombre, entier ou décimal, entre 0 et 2, - M est un cation de métal de transition divalent, de préférence choisi parmi Zn2+; Ni2+, Co2+, Cu2+ et Mg2+, plus préférentiellement encore M est Zn2+,- X est un anion choisi parmi l'acétate, le nitrate, le benzoate et leur mélange, de préférence X est l'acétate, et b) mélange d'un pigment organique luminescent avec le composé hydroxyde simple lamellaire de Formule 1 obtenue à l'étape a) pour obtenir le matériau composite luminescent selon l'invention. Procédé d'obtention d'une composition luminescente telle que définie dans l'une quelconques des revendications 5 à 7, caractérisé en ce qu'il comprend les étapes suivantes : a) hydrolyse d'une solution comprenant un polyol et un précurseur inorganique du composé hydroxyde simple lamellaire de Formule 1 dans une solution de polyol pour obtenir le composé hydroxyde simple lamellaire de Formule 1 , le précurseur inorganique étant de Formule 2: MXz.mH20 Formule 2 dans laquelle : - z est un nombre, entier ou décimal, entre 0 et 2, - m est un nombre, entier ou décimal, entre 0 et 2, - M est un cation de métal de transition divalent, de préférence choisi parmi Zn2+; Ni2+, Co2+, Cu2+ et Mg2+, plus préférentiellement encore M est Zn2+,- X est un anion choisi parmi l'acétate, le nitrate, le benzoate et leur mélange, de préférence X est l'acétate, et b) mélange d'un pigment organique luminescent avec le composé hydroxyde simple lamellaire de Formule 1 obtenue à l'étape a) pour obtenir un matériau composite luminescent. c) mélange de la matrice polymère avec le matériau composite luminescent obtenu à l'étape b) pour obtenir la composition luminescente selon l'invention. 0. Utilisation d'un matériau composite luminescent tel quel défini dans l'une quelconques des revendications 1 à 4 ou obtenu par le procédé selon la revendication 8, d'une composition luminescente telle que définie dans l'une quelconques des revendications 5 à 7 ou obtenue par le procédé selon la revendication 9 en tant que matériau luminescent. A luminescent composite material comprising a luminescent organic pigment and a single layered hydroxide compound of Formula 1: M (OH) 2-yXy.nH20 Formula 1 wherein: - y is an integer or decimal number between 0 and 2, - n is a number, integer or decimal, between 0 and 2, - M is a divalent transition metal cation, preferably selected from Zn2 +; Ni2 +, Co2 +, Cu2 + and Mg2 +, more preferably still M is Zn2 +, - X is an anion chosen from acetate, nitrate, benzoate and their mixture, preferably X is acetate, provided that if the pigment The luminescent organic compound is pyranine, and the lamellar single hydroxide compound is not Zn (OH) 1; 6 (NO 3) o, 4.0, 4H 2 O. A luminescent composite material according to claim 1, wherein the luminescent organic pigment is selected from acriflavines, aryl sulfonates, benzene and its derivatives, coumarins, cyanines, lactones, oxazines, porphyrins, pyramids, stilbenes, xanthenes and their mixture. The luminescent composite material according to claim 1 or claim 2, wherein the luminescent organic pigment comprises at least one acidic anchoring function. A luminescent composite material according to any one of claims 1 to 3, wherein the single layered hydroxide compound of Formula 1 is selected from Zn (OH) 2 - (CH 3 COO) y 2 H 2 O, Ni (OH) 2 - (CH 3 COO) y 2 H 2 O , Co (OH) 2 - (CH 3 COO) y 2 H 2 O, Cu (OH) 2 - (CH 3 COO) y 2 H 2 O, Mg (OH) 2 y (CH 3 COO-) y 2 H 2 O and their mixture, preferably Zn (OH) 2. y (CH 3 COO) y 2 H 2 O. A luminescent composition comprising a polymer matrix, a luminescent organic pigment and a single layered hydroxide compound of Formula I wherein Y is a number, an integer, or decimal, between 0 and 2, - n is a number, integer or decimal, between 0 and 2, - M is a divalent transition metal cation, preferably selected from Zn2 +, Ni2 +, Co2 +, Cu2 + and Mg2 +, more preferably M is Zn2 +, - X is an anion selected from acetate, nitrate, benzoate and their mixture, preferably X is acetate.Luminescent composition according to claim 5, wherein the The luminescent organic moiety comprises at least one acid anchoring function. A luminescent composition according to claim 5 or claim 6 wherein the polymeric matrix is selected from a silicone, epoxy, polymethyl methacrylate, polycarbonate, polystyrene polymer matrix, preferably a silicone matrix. Process for obtaining a luminescent composite material as defined in any one of Claims 1 to 4, characterized in that it comprises the following steps: a) hydrolysis of a solution comprising a polyol and an inorganic precursor of lamellar single hydroxide compound of Formula 1 in a polyol solution to obtain the single layered hydroxyl compound of Formula 1, the inorganic precursor being of Formula 2: MXz.mH20 Formula 2 wherein: - z is a number, integer or decimal, between 0 and 2, - m is a number, integer or decimal, between 0 and 2, - M is a divalent transition metal cation, preferably selected from Zn2 +; Ni2 +, Co2 +, Cu2 + and Mg2 +, more preferably still M is Zn2 +, - X is an anion chosen from acetate, nitrate, benzoate and their mixture, preferably X is acetate, and b) a mixture of luminescent organic pigment with the single-layered hydroxide compound of Formula I obtained in step a) to obtain the luminescent composite material according to the invention. Process for obtaining a luminescent composition as defined in any one of Claims 5 to 7, characterized in that it comprises the following steps: a) hydrolysis of a solution comprising a polyol and an inorganic precursor of the compound lamellar single hydroxide of Formula 1 in a polyol solution to obtain the lamellar single hydroxide compound of Formula 1, the inorganic precursor being of Formula 2: MXz.mH20 Formula 2 in which: - z is a number, integer or decimal, between 0 and 2, - m is a number, integer or decimal, between 0 and 2; M is a divalent transition metal cation, preferably selected from Zn 2+; Ni2 +, Co2 +, Cu2 + and Mg2 +, more preferably still M is Zn2 +, - X is an anion chosen from acetate, nitrate, benzoate and their mixture, preferably X is acetate, and b) a mixture of luminescent organic pigment with the single-layered lamellar hydroxide compound of Formula 1 obtained in step a) to obtain a luminescent composite material. c) mixing the polymer matrix with the luminescent composite material obtained in step b) to obtain the luminescent composition according to the invention. 0. Use of a luminescent composite material as defined in any one of claims 1 to 4 or obtained by the process according to claim 8 of a luminescent composition as defined in any one of claims 5 to 7. or obtained by the process according to claim 9 as a luminescent material.
1. Utilisation selon la revendication 10 en tant que matériau luminescent en association avec une LED bleue ou une LED UV. 1. Use according to claim 10 as a luminescent material in combination with a blue LED or a UV LED.
PCT/FR2017/050584 2016-03-14 2017-03-14 Rare-earth-free luminescent composite material WO2017158284A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1652133A FR3048702A1 (en) 2016-03-14 2016-03-14 MATERIAL COMPOSITE LUMINESCENT WITHOUT RARE EARTH
FR1652133 2016-03-14

Publications (1)

Publication Number Publication Date
WO2017158284A1 true WO2017158284A1 (en) 2017-09-21

Family

ID=56148436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/050584 WO2017158284A1 (en) 2016-03-14 2017-03-14 Rare-earth-free luminescent composite material

Country Status (2)

Country Link
FR (1) FR3048702A1 (en)
WO (1) WO2017158284A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100130750A1 (en) * 2008-11-25 2010-05-27 Dongpeng Yan Benzocarbazole-intercalated layered double hydroxides composite luminescent material and its preparation method
CN102796215A (en) * 2012-08-09 2012-11-28 福建师范大学 Preparation method of peeled-up yellow-light hydrotalcite like/polymer nanocomposite

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100130750A1 (en) * 2008-11-25 2010-05-27 Dongpeng Yan Benzocarbazole-intercalated layered double hydroxides composite luminescent material and its preparation method
CN102796215A (en) * 2012-08-09 2012-11-28 福建师范大学 Preparation method of peeled-up yellow-light hydrotalcite like/polymer nanocomposite

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ALOISI ET AL., JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, vol. 67, 2006, pages 909 - 914
CONSTANTINO ET AL., LANGMUIR, vol. 16, 2000, pages 10351 - 10358
CONSTANTINO ET AL., LANGMUIR, vol. 16, no. 26, 1 December 2000 (2000-12-01), pages 10351 - 10358
FERNANDO JÚNIOR QUITES ET AL: "Improvement in the emission properties of a luminescent anionic dye intercalated between the lamellae of zinc hydroxide-layered", COLLOIDS AND SURFACES A: PHYSIOCHEMICAL AND ENGINEERING ASPECTS, vol. 459, 1 October 2014 (2014-10-01), AMSTERDAM, NL, pages 194 - 201, XP055316673, ISSN: 0927-7757, DOI: 10.1016/j.colsurfa.2014.07.009 *
LAURENCE POUL ET AL: "Layered Hydroxide Metal Acetates (Metal = Zinc, Cobalt, and Nickel): Elaboration via Hydrolysis in Polyol Medium and Comparative Study", CHEMISTRY OF MATERIALS, vol. 12, no. 10, 1 October 2000 (2000-10-01), US, pages 3123 - 3132, XP055316930, ISSN: 0897-4756, DOI: 10.1021/cm991179j *
MARANGONI ET AL., JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 333, 2009, pages 120 - 127
NEWMAN S P ET AL: "Comparative Study of Some Layered Hydroxide Salts Containing Exchangeable Interlayer Anions", JOURNAL OF SOLID STATE CHEMISTRY, ORLANDO, FL, US, vol. 148, 1 January 1999 (1999-01-01), pages 26 - 40, XP002248953, ISSN: 0022-4596, DOI: 10.1006/JSSC.1999.8330 *
SUN ET AL., CHEMICAL ENGINEERING JOURNAL, vol. 161, 2010, pages 293 - 300
UMBERTO COSTANTINO ET AL: "Surface Uptake and Intercalation of Fluorescein Anions into Zn-Al-Hydrotalcite. Photophysical Characterization of Materials Obtained", LANGMUIR, vol. 16, no. 26, 1 December 2000 (2000-12-01), US, pages 10351 - 10358, XP055316368, ISSN: 0743-7463, DOI: 10.1021/la001096d *

Also Published As

Publication number Publication date
FR3048702A1 (en) 2017-09-15

Similar Documents

Publication Publication Date Title
EP2714842B1 (en) Color conversion films comprising polymer-substituted organic fluorescent dyes
Wang et al. In situ fabrication of flexible, thermally stable, large-area, strongly luminescent copper nanocluster/polymer composite films
EP2762547B1 (en) Luminescent particles of carbon, method for preparing same and use thereof
US20180006257A1 (en) Carbon dot multicolor phosphors
WO2007034877A1 (en) Semiconductor nanoparticles dispersed glass fine particles and process for preparing the same
CN105829494A (en) Composite nanoparticles including a phthalic acid derivative
CN105802614A (en) Preparation method of quantum dot and quantum dot prepared by same
CN106833631B (en) Carbon nano-dot compound and preparation method thereof, fluorescent powder and light source material
CN101962534B (en) Organic luminous material and preparation method thereof
Li et al. A facile method to prepare polymer functionalized carbon dots inspired by the mussel chemistry for LED application
FR2846647A1 (en) New europium-, praseodymium- and manganese-doped barium magnesium silicate, aluminosilicate, gallosilicate or borosilicate useful as a luminophore, e.g. in light-converting materials
WO2017158284A1 (en) Rare-earth-free luminescent composite material
Ghimire et al. Quantum dot–polymer conjugates for stable luminescent displays
TW201331338A (en) Wavelength conversion composition, wavelength conversion film, and solar cell
Zhang et al. Layer-by-layer assembly of stable aqueous quantum dots for luminescent planar plate
CN106167701B (en) The preparation method of Chitosan-based Polymer point fluorescent material
Xue et al. Synthesis of water-soluble spiropyran-modified poly (acrylic acid) micelles and their optical behaviors
WO2009034267A2 (en) Coating containing alkoxysiloxanes for optical identification and traceability
US11492547B2 (en) Low-PH nanoparticles and ligands
Barbosa et al. Optical and thermal stability of oligofluorene/rubber luminescent blend
KR102073580B1 (en) Photosensitive quantum dots and manufacturing method thereof
Yang et al. Recent advances in the luminescent polymers containing lanthanide complexes
WO2018197532A1 (en) A semiconducting light emitting nanoparticle
De et al. Emission enhancement of a carbazole-based fluorophore on a quantum dot surface
FR3025206A1 (en) COLORED AND LUMINESCENT INK, PROCESS FOR PRODUCING SUCH INK AND METHOD OF MARKING SUBSTRATE BY SUCH INK.

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17714860

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17714860

Country of ref document: EP

Kind code of ref document: A1