WO2017156859A1 - 一种v型风轮结构的海上风力发电机 - Google Patents

一种v型风轮结构的海上风力发电机 Download PDF

Info

Publication number
WO2017156859A1
WO2017156859A1 PCT/CN2016/082230 CN2016082230W WO2017156859A1 WO 2017156859 A1 WO2017156859 A1 WO 2017156859A1 CN 2016082230 W CN2016082230 W CN 2016082230W WO 2017156859 A1 WO2017156859 A1 WO 2017156859A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
wind wheel
rotating arm
rotating
arm
Prior art date
Application number
PCT/CN2016/082230
Other languages
English (en)
French (fr)
Inventor
张远林
Original Assignee
福建通尼斯新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建通尼斯新能源科技有限公司 filed Critical 福建通尼斯新能源科技有限公司
Publication of WO2017156859A1 publication Critical patent/WO2017156859A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/064Fixing wind engaging parts to rest of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0236Adjusting aerodynamic properties of the blades by changing the active surface of the wind engaging parts, e.g. reefing or furling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the invention relates to a wind power generator, in particular to an offshore wind power generator with a V-type wind wheel structure, belonging to the technical field of wind power generation.
  • the principle of wind power generation is to use wind power to drive the rotation of the windmill blades, and then increase the speed of rotation by the speed increaser to promote the generator to generate electricity. Since wind power does not involve fuel problems and does not generate radiation or air pollution, it is a clean and environmentally friendly way of generating electricity. Especially with the continuous development and utilization of marine resources, the construction of offshore wind farms is forming a boom in the world. Many large wind farms stand on the innocent ocean. However, due to the difficulty in the construction of offshore wind farms, not only the scale of investment in labor and cost is unexpected, but also the unpredictable weather conditions will cause different degrees of damage to large-scale wind power equipment. Therefore, people are constantly searching for easy installation and maintenance, and reducing construction. Cost of wind turbine structure.
  • the wind turbine can be divided into two categories: horizontal axis wind turbine and vertical axis wind turbine.
  • the wind turbine rotating shaft of the vertical axis wind turbine is perpendicular to the ground or the airflow direction in the wind direction.
  • the wind does not need to be changed, so the vertical axis wind turbine not only simplifies the structural design, but also reduces the gyroscopic force when the wind wheel is against the wind.
  • the existing vertical axis wind turbine rotors are mostly located at the upper part of the rotating shaft of the wind wheel, and have a ⁇ -type or ⁇ -type structure, and the center of gravity is relatively high, which affects the stability of the wind turbine operation;
  • the wind turbine blades are installed in a fixed assembly manner. For wind farms standing on the innocent ocean, because the blade angle cannot be adjusted, the blade damage is easily caused in the case of heavy wind and waves, which affects the offshore wind turbine. Service life.
  • the object of the present invention is to provide an offshore wind turbine with a V-type wind wheel structure with low construction cost and convenient installation and maintenance, in order to adjust the wind turbine working condition in accordance with the sea wind and wave conditions. State, to avoid damage to the blade and extend the service life of offshore wind turbines.
  • An offshore wind turbine with a V-shaped wind wheel structure comprising a V-shaped wind wheel, a gear transmission mechanism, a coupling, a generator set and a base platform;
  • the V-shaped wind wheel is provided with three inclined rotating arms, the rotation The lower end of the arm is assembled with the wind wheel turntable, and the rotating arm is radially distributed around the rotating shaft of the wind wheel, and the blade is disposed at the upper end of each rotating arm; the lower end of the rotating shaft of the wind wheel passes through the gear transmission mechanism, the coupling and the generator set Connecting;
  • the generator set is mounted on the base platform;
  • the base platform is fixed to the sea bottom by sea piles or anchor chains.
  • the offshore wind turbine of the V-shaped wind wheel structure the lower end of the rotating arm is hingedly mounted on the wind wheel turntable, and the first pulling arm is disposed at the hinge end of the rotating arm, the lower end of the first pulling arm
  • the upper end is fixedly coupled to the rotating arm, and the upper end is hingedly assembled by the second arm pulling arm and the rotating arm retracting drive mechanism disposed on the rotating shaft of the wind wheel.
  • the rotating arm retracting drive mechanism comprises a first motor, a transmission assembly, a first lead screw and a lifting plate; the first motor is fixedly mounted on the rotating shaft of the wind wheel, The first motor output shaft is fixedly assembled with the driving wheel in the transmission assembly; the driven wheel of the transmission assembly is fixed at the lower end of the first screw; the lifting plate is fitted with the first lead screw, and is hingedly assembled on the outer edge of the lifting plate Two pulling arms.
  • the transmission assembly of the rotating arm retracting drive mechanism is preferably a gear transmission assembly.
  • the blade is a split structure, comprising an upper half blade and a lower half blade, wherein the upper half blade and the lower half blade are respectively connected to the rotating arm through an articulated structure
  • the rotating arm is a cavity structure, and a sliding slot hole is disposed on the upper and lower side walls thereof, and a blade retracting driving mechanism is disposed in the rotating arm cavity structure.
  • the blade retracting drive mechanism comprises a second motor, a second lead screw, a moving seat and a sealing plate for blocking the sliding holes of the upper and lower side walls of the rotating arm;
  • the second motor is fixedly mounted in the cavity of the rotating arm, and the second motor output shaft is fixedly assembled with the second lead screw;
  • the second lead screw and the moving seat are matched to form a moving part of the screw nut;
  • the moving seat and the sealing plate Fixed assembly
  • the plate comprises an upper sealing plate and a lower sealing plate, and a pulling rod is arranged on an outer side surface of the upper sealing plate and the lower sealing plate, the drawing rod passes through the sliding slot holes of the upper and lower side walls of the rotating arm, respectively, and the upper half blade and the lower half
  • the blade is hingedly assembled.
  • an offshore wind turbine is provided with a cable between each of the rotating arms and the rotating shaft of the wind wheel.
  • the gear transmission mechanism comprising a driving gear and a driven gear that mesh with each other, the driving gear is fixed on a rotating shaft of the wind wheel, and the driven gear passes through the coupling Generator set connection.
  • the offshore wind turbine of the above-mentioned V-type wind wheel structure, the driving gear and the driven gear of the gear transmission mechanism are bevel gear structures, and the generator set is horizontally arranged.
  • the number of the driven gears and the number of the couplings and the generator sets in the gear transmission mechanism are not less than four groups.
  • the invention adopts a V-shaped wind wheel structure. Since the rotating arm of the V-shaped wind wheel is arranged obliquely, the lower end is hingedly assembled with the wind wheel turntable, thereby effectively reducing the height of the center of gravity of the wind turbine wind wheel and ensuring the working of the offshore wind power generator.
  • the stability of the present invention provides a rotating arm retracting drive mechanism on the rotating shaft of the wind wheel, so that the rotation of the first motor, the transmission assembly, the first lead screw and the lifting plate in the rotating arm retracting drive mechanism can achieve the rotation
  • the control of the arm retracting state the invention also designs the blade as a split structure that is hingedly assembled with the upper end of the rotating arm, and at the same time, a blade retracting driving mechanism is arranged in the rotating arm cavity, so that the blade can be retracted by the driving mechanism
  • the combination of the two motor, the screw nut movement pair and the moving seat realizes the control of the state of the blade retracting; the invention can drive several groups of generator sets to operate by the rotating shaft of the wind wheel, thereby reducing the requirement for the installed capacity of the single group generator , thereby reducing the purchase cost of the power generation equipment;
  • the offshore wind turbine with the V-type wind wheel structure according to the present invention has a rotating arm and a wind wheel Disc, rotating arm assembly structure of the blade to facilitate disas
  • the invention has the characteristics of low construction cost, convenient installation and maintenance, and can adjust the angle of the rotating arm and the blade according to the sea wind and wave condition, avoiding the damage of the blade in the case of large wind and waves, and prolonging the service life of the offshore wind power generator. .
  • FIG. 1 is a schematic view of the structure of the present invention (the blade is in an open state);
  • Figure 2 is a schematic view of the structure of the wind wheel
  • Figure 3 is a schematic view of the rotating arm retracting drive mechanism
  • FIG. 4 is a schematic view showing the working principle of the transmission component in the rotating arm retracting drive mechanism
  • Figure 5 is a schematic view showing the assembly relationship of the rotating arm, the blade, and the blade retracting drive mechanism
  • Figure 6 is a schematic view of the blade retracting drive mechanism
  • Figure 7 is a schematic view showing the closed state of the blade
  • Figure 8 is a schematic view showing the rotating arm of the present invention in an open state and the blade in a closed state.
  • the list of labels in the figure is: 1, V-shaped wind wheel, 1-1, rotating arm, 1-1-1, chute hole, 1-2, first pulling arm, 1-3, wind wheel rotating shaft, 1-4, second pulling arm, 1-5, rotating arm retracting drive mechanism, 1-5-1, first motor, 1-5-2, transmission component, 1-5-2-1, driving wheel ,1-5-2-2, driven wheel, 1-5-3, first lead screw, 1-2-4, lifting plate, 1-6, blade, 1-6-1, upper half blade, 1 -6-2, lower half blade, 1-7, blade retracting drive mechanism, 1-7-1, second motor, 1-7-2, second lead screw, 1-7-3, moving seat, 1-7-4, sealing plate, 1-7-5, drawbar, 1-8, cable, 1-9, wind wheel turntable, 2, gear transmission mechanism, 3, coupling, 4, generator set, 5 , the base platform.
  • the present invention is an offshore wind turbine of a V-type wind wheel structure, which comprises a V-shaped wind wheel 1, a gear transmission mechanism 2, a coupling 3, a generator set 4 and a base platform 5;
  • the V-shaped wind wheel 1 is provided with three inclined arms 1-1, the lower end of which is assembled with the wind wheel 1-9, and the rotating arm 1-1 is centered on the rotating shaft 1-3 of the wind wheel.
  • the rotating arm 1-1 of the wind wheel adopts an inclined arrangement, and the lower end thereof is directly assembled with the wind wheel turntable 1-9, thereby effectively reducing
  • the height of the center of gravity of the wind turbine wind turbine ensures the operation of the offshore wind turbine stability
  • the rotating arm 1-1 is designed as a retractable structure, and the lower end of the rotating arm 1-1 is hingedly mounted.
  • a first pulling arm 1-2 is provided, and the lower end of the first pulling arm 1-2 is fixedly connected with the rotating arm 1-1, and the upper end
  • the second pulling arm 1-4 is hingedly assembled with the rotating arm retracting drive mechanism 1-5 disposed on the rotating shaft 1-3 of the wind wheel;
  • the rotating arm retracting drive mechanism 1-5 includes the first motor 1 - 5-1, the transmission assembly 1-5-2, the first lead screw 1-5-3, and the lifting plate 1-5-4;
  • the first motor 1-5-1 is fixedly mounted on the rotating shaft 1-3 of the wind wheel
  • the output shaft of the first motor 1-5-1 is fixedly assembled with the driving wheel 1-5-2-1 of the transmission assembly 1-5-2; the driven wheel 1-5- of the transmission assembly 1-5-2 2-2 is fixed
  • the first motor 1-5-1 can be driven to drive the gear transmission assembly 1-5-2 to drive the first lead screw 1-5-3 to rotate, thereby making the first lead screw 1-5 -3 cooperate with the lifting plate 1-5-4 to move up and down, and then drive the second pulling arm 1-4 and the first pulling arm 1-2 through the lifting plate 1-5-4 to complete the angle adjustment of the rotating arm 1-1
  • the action realizes the control of the retracting state of the rotating arm 1-1; especially in the case of extremely bad weather conditions, the rotating arm 1-1 can be adjusted to the fully open state as shown in FIG. 8 for a huge sea storm.
  • the triangular area formed by the rotating arm 1-1 can also block the wind and waves for the fishing boat at sea, when the storm is coming, The boat can be docked in a triangular area to minimize damage to small fishing boats.
  • the blades 1-6 are designed as a split structure, the blades 1-6 including the upper half blade 1-6-1 and the lower half blade 1-6-2, the upper half blade 1-6-1 and the lower half blade 1-6-2 are respectively connected to the rotating arm 1-1 through an articulated structure; the rotating arm 1-1 is a cavity structure A sliding slot hole 1-1-1 is provided on the upper and lower side walls thereof, and a blade retracting drive mechanism 1-7 is disposed in the rotating arm cavity structure.
  • the blade retracting drive mechanism 1-7 includes a second motor 1-7-1, a second lead screw 1-7-2, a moving seat 1-7-3, and a sliding slot for blocking upper and lower side walls of the rotating arm 1-1-1 sealing plate 1-7-4;
  • the second motor 1-7-1 is fixedly mounted in the inner cavity of the rotating arm, and the second motor 1-7-1 output shaft and the second screw 1- 7-2 fixed assembly;
  • the second lead screw 1-7-2 and the movable seat 1-7-3 are assembled to form a screw snail a female exercise pair;
  • the movable seat 1-7-3 is fixedly assembled with the sealing plate 1-7-4;
  • the sealing plate 1-7-4 includes an upper sealing plate and a lower sealing plate, and the upper sealing plate and the lower sealing plate
  • Pull rods 1-7-5 are installed on the outer side surfaces, and the pull rods 1-7-5 pass through the sliding slot holes 1-1-1 of the upper and lower side walls of the rotating arm, respectively, and the upper half blades 1-6-1,
  • the lower half of the blade 1-6-2 is hingedly
  • the second motor 1-7-1 in the blade retracting drive mechanism 1-7 can drive the movement of the screw nut, so that the moving seat of the blade retracting drive mechanism 1-7 7-3 moves up and down along the second year of the screw 1-7-2, and the upper half blade 1-6-1 and the lower half blade 1-6-2 are respectively rotated around the hinge axis to realize the state of retracting the blade.
  • the assembly structure of the rotating arm 1-1 and the wind wheel turntable 1-9, the rotating arm 1-1 and the blade 1-6 of the offshore wind turbine of the V-type wind wheel structure according to the present invention is convenient. On-site disassembly and assembly, the installation and maintenance of the overall structure of the generator does not require the use of large hoisting equipment, thus greatly reducing the cost of installation and maintenance operations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

一种V型风轮结构的海上风力发电机,它包括V型风轮(1)、齿轮传动机构(2)、联轴器(3)、发电机组(4)和底座平台(5);所述V型风轮(1)设置三根倾斜布置的旋转臂(1-1),所述旋转臂(1-1)下端与风轮转盘(1-9)装配,旋转臂(1-1)以风轮旋转轴(1-3)为中心呈放射状分布,在每一根旋转臂(1-1)的上端设置叶片(1-6);所述风轮旋转轴(1-3)下端通过齿轮传动机构(2)、联轴器(3)与发电机组(4)连接;所述发电机组(4)安装在底座平台(5)上;所述底座平台(5)采用海桩或者锚链固定于海底。所述的V型风轮结构的海上风力发电机中,风轮的旋转臂(1-1)采用开了倾斜布置形式,其下端直接与风轮转盘(1-9)装配,因此有效地降低了风力发电机风轮的重心高度,保证了海上风力发电机工作的稳定性。

Description

一种V型风轮结构的海上风力发电机 技术领域
本发明涉及一种风力发电机,尤其是一种V型风轮结构的海上风力发电机,属于风力发电技术领域。
背景技术
风力发电原理是利用风力带动风车叶片旋转,再通过增速机将旋转的速度提升,以促使发电机发电。由于风力发电不涉及燃料问题,也不会产生辐射或空气污染,因此是一种清洁环保的发电方式,特别是随着海洋资源的不断开发利用,目前海上风电场建设正在世界上形成一股热潮,很多大型风电场屹立于无垠的海洋之上。但是,由于海上风电场建设难度很大,不仅劳动力与成本的投入规模出人意料,并且难以预测的天气条件也会对大型风力发电设备造成不同程度的损坏,因此人们不断探索寻找便于安装维护、降低施工成本的风力发电机结构。
风力发电机按照风轮旋转轴的布置形式,可分为水平轴风力发电机和垂直轴风力发电机两大类,其中垂直轴风力发电机的风轮旋转轴垂直于地面或者气流方向,在风向改变的时候无需对风,因此垂直轴风力发电机不仅使结构设计简化,而且也减少了风轮对风时的陀螺力。但是现有的垂直轴风力发电机风轮大多位于风轮旋转轴的上部,呈Φ型或Η型结构,其重心位置较高,影响了风力发电机工作的稳定性;另外现有的垂直轴风力发电机叶片采用固定式装配方式安装,针对屹立于无垠海洋上的风力发电场而言,由于不能对叶片角度进行调整,在大风浪情况下极易造成叶片损坏,影响了海上风力发电机的使用寿命。
发明内容
本发明的目的在于针对现有技术之弊端,提供一种施工成本低、安装维护方便的V型风轮结构的海上风力发电机,以适应海上风浪情况调整风轮工作状 态,避免叶片的损坏,延长海上风力发电机的使用寿命。
本发明上述目的是通过以下技术方案实现的:
一种V型风轮结构的海上风力发电机,包括V型风轮、齿轮传动机构、联轴器、发电机组和底座平台;所述V型风轮设置三根倾斜布置的旋转臂,所述旋转臂下端与风轮转盘装配,旋转臂以风轮旋转轴为中心呈放射状分布,在每一根旋转臂的上端设置叶片;所述风轮旋转轴下端通过齿轮传动机构、联轴器与发电机组连接;所述发电机组安装在底座平台上;所述底座平台采用海桩或者锚链固定于海底。
上述V型风轮结构的海上风力发电机,所述旋转臂下端以铰接方式安装在风轮转盘上,并在旋转臂的铰接端设有第一牵拉臂,所述第一牵拉臂下端与旋转臂固定连接,上端通过第二牵拉臂与设置在风轮旋转轴上的旋转臂收放驱动机构铰接装配。
上述V型风轮结构的海上风力发电机,所述旋转臂收放驱动机构包括第一电机、传动组件、第一丝杠和升降盘;所述第一电机固定安装在风轮旋转轴上,第一电机输出轴与传动组件中主动轮固定装配;所述传动组件中从动轮固定在第一丝杠下端;所述升降盘与第一丝杠配装,在升降盘的外侧边缘铰接装配第二牵拉臂。
上述V型风轮结构的海上风力发电机,所述旋转臂收放驱动机构的传动组件优选齿轮传动组件。
上述V型风轮结构的海上风力发电机,所述叶片为分体式结构,包括上半部叶片和下半部叶片,所述上半部叶片和下半部叶片分别通过铰接结构与旋转臂连接;所述旋转臂为空腔结构,在其上下侧壁上均设有滑槽孔,在旋转臂空腔结构中设置叶片收放驱动机构。
上述V型风轮结构的海上风力发电机,所述叶片收放驱动机构包括第二电机、第二丝杠、移动座和用于封堵旋转臂上下侧壁滑槽孔的封板;所述第二电机固定安装在旋转臂空腔中,第二电机输出轴与第二丝杠固定装配;所述第二丝杠与移动座配装组成丝杠螺母运动副;所述移动座与封板固定装配;所述封 板包括上封板和下封板,在上封板和下封板的外侧面上均安装拉杆,所述拉杆穿过旋转臂上下侧壁的滑槽孔后分别与上半部叶片、下半部叶片铰接装配。
上述V型风轮结构的海上风力发电机,在每一根旋转臂与风轮旋转轴之间均设置拉索。
上述V型风轮结构的海上风力发电机,所述齿轮传动机构包括相互啮合的主动齿轮和从动齿轮,所述主动齿轮固定在风轮旋转轴上,所述从动齿轮通过联轴器与发电机组连接。
上述V型风轮结构的海上风力发电机,所述齿轮传动机构的主动齿轮和从动齿轮为锥齿轮结构,发电机组水平布置。
上述V型风轮结构的海上风力发电机,所述齿轮传动机构中从动齿轮数量及联轴器、发电机组的数量不少于四组。
本发明采用V型风轮结构,由于V型风轮的旋转臂倾斜布置,其下端与风轮转盘铰接装配,因此有效地降低了风力发电机风轮的重心高度,保证了海上风力发电机工作的稳定性;本发明在风轮旋转轴上设置了旋转臂收放驱动机构,因此可通过旋转臂收放驱动机构中第一电机、传动组件、第一丝杠和升降盘的配合实现对旋转臂收放状态的控制;本发明还将叶片设计为与旋转臂上端铰接装配的分体结构,同时在旋转臂空腔中设置叶片收放驱动机构,因此可通过叶片收放驱动机构中的第二电机、丝杠螺母运动副和移动座的配合,实现对叶片收放状态的控制;本发明可通过风轮旋转轴带动若干组发电机组运转,因此降低了对单组发电机装机容量的要求,从而降低了发电设备的购置成本;另外,采用本发明所述的V型风轮结构的海上风力发电机,其旋转臂与风轮转盘、旋转臂与叶片的装配结构便于现场拆装,发电机整体结构的安装及维修不需借助大型吊装设备,因此大大降低了安装及维护作业成本。综上所述,本发明具有施工成本低、安装维护方便的特点,可根据海上风浪情况调整旋转臂及叶片角度,避免了在大风浪情况下叶片的损坏,延长了海上风力发电机的使用寿命。
附图说明
图1是本发明结构示意图(叶片处于打开状态);
图2是风轮结构示意图;
图3是旋转臂收放驱动机构示意图;
图4是旋转臂收放驱动机构中传动组件工作原理示意图;
图5是旋转臂、叶片、叶片收放驱动机构装配关系示意图;
图6是叶片收放驱动机构示意图;
图7是叶片闭合状态示意图;
图8是本发明旋转臂处于打开状态、叶片处于闭合状态示意图。
图中各标号清单为:1、V型风轮,1-1、旋转臂,1-1-1、滑槽孔,1-2、第一牵拉臂,1-3、风轮旋转轴,1-4、第二牵拉臂,1-5、旋转臂收放驱动机构,1-5-1、第一电机,1-5-2、传动组件,1-5-2-1、主动轮,1-5-2-2、从动轮,1-5-3、第一丝杠,1-5-4、升降盘,1-6、叶片,1-6-1、上半部叶片,1-6-2、下半部叶片,1-7、叶片收放驱动机构,1-7-1、第二电机,1-7-2、第二丝杠,1-7-3、移动座,1-7-4、封板,1-7-5、拉杆,1-8、拉索,1-9、风轮转盘,2、齿轮传动机构,3、联轴器,4、发电机组,5、底座平台。
需要特别指出的是:为清楚地表达各部件间位置及装配关系,在图1、图8中将安装在风轮旋转轴前面的一组旋转臂、叶片及叶片收放驱动机构省略。
具体实施方式
下面结合附图及具体实施例对本发明作进一步说明。
参看图1、图2,本发明为一种V型风轮结构的海上风力发电机,它包括V型风轮1、齿轮传动机构2、联轴器3、发电机组4和底座平台5;所述V型风轮1设置三根倾斜布置的旋转臂1-1,所述旋转臂1-1下端与风轮转盘1-9装配,旋转臂1-1以风轮旋转轴1-3为中心呈放射状分布,在每一根旋转臂1-1的上端设置叶片1-6;所述风轮旋转轴1-3下端通过齿轮传动机构2、联轴器3与发电机组4连接;所述发电机组4安装在底座平台5上;所述底座平台5采用海桩或者锚链固定于海底。由于在本发明所述的V型风轮结构的海上风力发电机中,风轮的旋转臂1-1采用开了倾斜布置形式,其下端直接与风轮转盘1-9装配,因此有效地降低了风力发电机风轮的重心高度,保证了海上风力发电机工作的 稳定性
参看图1、图2、图3、图4、图8,作为本发明的优选实施例,将所述旋转臂1-1设计为可收放结构,旋转臂1-1下端以铰接方式安装在风轮转盘1-9上,并在旋转臂1-1的铰接端设有第一牵拉臂1-2,所述第一牵拉臂1-2下端与旋转臂1-1固定连接,上端通过第二牵拉臂1-4与设置在风轮旋转轴1-3上的旋转臂收放驱动机构1-5铰接装配;所述旋转臂收放驱动机构1-5包括第一电机1-5-1、传动组件1-5-2、第一丝杠1-5-3和升降盘1-5-4;所述第一电机1-5-1固定安装在风轮旋转轴1-3上,第一电机1-5-1的输出轴与传动组件1-5-2中主动轮1-5-2-1固定装配;所述传动组件1-5-2中从动轮1-5-2-2固定在第一丝杠1-5-3下端;所述升降盘1-5-4与第一丝杠1-5-3配装,在升降盘1-5-4的外侧边缘铰接装配第二牵拉臂1-4。当海上风浪变化时,可通过第一电机1-5-1驱动齿轮传动组件1-5-2运转,以带动第一丝杠1-5-3旋转,从而使与第一丝杠1-5-3配合的升降盘1-5-4上下运动,再通过升降盘1-5-4带动第二牵拉臂1-4及第一牵拉臂1-2完成旋转臂1-1的角度调节动作,实现对旋转臂1-1收放状态的控制;特别是在天气条件极其恶劣的情况下,针对巨大的海上风浪,可将旋转臂1-1调整至如图8所示的完全打开状态,从而最大限度地降低发电机风轮的重心高度,提高风力发电机工作的稳定性,与此同时旋转臂1-1形成的类似三角形区域还可以为海上渔船遮挡风浪,在暴风雨将要来临时,可以将船停靠在三角形区域内,使小型渔船的损害降到最低。
参看图5、图6、图7,作为本发明的优选实施例,将叶片1-6设计为分体式结构,所述叶片1-6包括上半部叶片1-6-1和下半部叶片1-6-2,所述上半部叶片1-6-1和下半部叶片1-6-2分别通过铰接结构与旋转臂1-1连接;所述旋转臂1-1为空腔结构,在其上下侧壁上均设有滑槽孔1-1-1,在旋转臂空腔结构中设置叶片收放驱动机构1-7。所述叶片收放驱动机构1-7包括第二电机1-7-1、第二丝杠1-7-2、移动座1-7-3和用于封堵旋转臂上下侧壁滑槽孔1-1-1的封板1-7-4;所述第二电机1-7-1固定安装在旋转臂内腔中,第二电机1-7-1输出轴与第二丝杠1-7-2固定装配;所述第二丝杠1-7-2与移动座1-7-3配装组成丝杠螺 母运动副;所述移动座1-7-3与封板1-7-4固定装配;所述封板1-7-4包括上封板和下封板,在上封板和下封板的外侧面上均安装拉杆1-7-5,所述拉杆1-7-5穿过旋转臂上下侧壁的滑槽孔1-1-1后分别与上半部叶片1-6-1、下半部叶片1-6-2铰接装配。当海上风浪变化时,可通过叶片收放驱动机构1-7中的第二电机1-7-1带动丝杠螺母运动副运转,从而使叶片收放驱动机构1-7中的移动座1-7-3沿第二年丝杠1-7-2上下移动,牵拉上半部叶片1-6-1和下半部叶片1-6-2分别绕铰接轴转动,实现对叶片收放状态的控制;针对海上风浪较大的天气情况,可将叶片1-6调整至如图7所示的完全闭合状态,以避免在大风浪对叶片1-6造成损坏。
参看图1至图8,本发明所述的V型风轮结构的海上风力发电机的旋转臂1-1与风轮转盘1-9、旋转臂1-1与叶片1-6的装配结构便于现场拆装,发电机整体结构的安装及维修不需借助大型吊装设备,因此大大降低了安装及维护作业成本。

Claims (10)

  1. 一种V型风轮结构的海上风力发电机,其特征是,所述V型风轮结构的海上风力发电机包括V型风轮(1)、齿轮传动机构(2)、联轴器(3)、发电机组(4)和底座平台(5);所述V型风轮(1)设置三根倾斜布置的旋转臂(1-1),所述旋转臂(1-1)下端与风轮转盘(1-9)装配,旋转臂(1-1)以风轮旋转轴(1-3)为中心呈放射状分布,在每一根旋转臂(1-1)的上端设置叶片(1-6);所述风轮旋转轴(1-3)下端通过齿轮传动机构(2)、联轴器(3)与发电机组(4)连接;所述发电机组(4)安装在底座平台(5)上;所述底座平台(5)采用海桩或者锚链固定于海底。
  2. 根据权利要求1所述的V型风轮结构的海上风力发电机,其特征是,所述旋转臂(1-1)下端以铰接方式安装在风轮转盘(1-9)上,并在旋转臂(1-1)的铰接端设有第一牵拉臂(1-2),所述第一牵拉臂(1-2)下端与旋转臂(1-1)固定连接,上端通过第二牵拉臂(1-4)与设置在风轮旋转轴(1-3)上的旋转臂收放驱动机构(1-5)铰接装配。
  3. 根据权利要求2所述的V型风轮结构的海上风力发电机,其特征是,所述旋转臂收放驱动机构(1-5)包括第一电机(1-5-1)、传动组件(1-5-2)、第一丝杠(1-5-3)和升降盘(1-5-4);所述第一电机(1-5-1)固定安装在风轮旋转轴(1-3)上,第一电机(1-5-1)的输出轴与传动组件(1-5-2)中主动轮(1-5-2-1)固定装配;所述传动组件(1-5-2)中从动轮(1-5-2-2)固定在第一丝杠(1-5-3)下端;所述升降盘(1-5-4)与第一丝杠(1-5-3)配装,在升降盘(1-5-4)的外侧边缘铰接装配第二牵拉臂(1-4)。
  4. 根据权利要求3所述的V型风轮结构的海上风力发电机,其特征是,所述旋转臂收放驱动机构(1-5)的传动组件(1-5-2)为齿轮传动组件。
  5. 根据权利要求1至4中任一项所述的V型风轮结构的海上风力发电机,其特征是,所述叶片(1-6)为分体式结构,包括上半部叶片(1-6-1)和下半部 叶片(1-6-2),所述上半部叶片(1-6-1)和下半部叶片(1-6-2)分别通过铰接结构与旋转臂(1-1)连接;所述旋转臂(1-1)为空腔结构,在其上下侧壁上均设有滑槽孔(1-1-1),在旋转臂空腔结构中设置叶片收放驱动机构(1-7)。
  6. 根据权利要求5所述的V型风轮结构的海上风力发电机,其特征是,所述叶片收放驱动机构(1-7)包括第二电机(1-7-1)、第二丝杠(1-7-2)、移动座(1-7-3)和用于封堵旋转臂上下侧壁滑槽孔(1-1-1)的封板(1-7-4);所述第二电机(1-7-1)固定安装在旋转臂内腔中,第二电机(1-7-1)输出轴与第二丝杠(1-7-2)固定装配;所述第二丝杠(1-7-2)与移动座(1-7-3)配装组成丝杠螺母运动副;所述移动座(1-7-3)与封板(1-7-4)固定装配;所述封板(1-7-4)包括上封板和下封板,在上封板和下封板的外侧面上均安装拉杆(1-7-5),所述拉杆(1-7-5)穿过旋转臂上下侧壁的滑槽孔(1-1-1)后分别与上半部叶片(1-6-1)、下半部叶片(1-6-2)铰接装配。
  7. 根据权利要求6所述的V型风轮结构的海上风力发电机,其特征是,在每一根旋转臂(1-1)与风轮旋转轴(1-3)之间均设置拉索(1-8)。
  8. 根据权利要求7所述的V型风轮结构的海上风力发电机,其特征是,所述齿轮传动机构(2)包括相互啮合的主动齿轮和从动齿轮,所述主动齿轮固定在风轮旋转轴(1-3)下端,所述从动齿轮通过联轴器(3)与发电机组(4)连接。
  9. 根据权利要求8所述的V型风轮结构的海上风力发电机,其特征是,所述齿轮传动机构(2)的主动齿轮和从动齿轮为锥齿轮结构,发电机组(4)水平布置。
  10. 根据权利要求9所述的V型风轮结构的海上风力发电机,其特征是,所述齿轮传动机构(2)中从动齿轮数量及联轴器(3)、发电机组(4)的数量不少于四组。
PCT/CN2016/082230 2016-03-18 2016-05-16 一种v型风轮结构的海上风力发电机 WO2017156859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610157133.9 2016-03-18
CN201610157133.9A CN105781891B (zh) 2016-03-18 2016-03-18 一种v型风轮结构的海上风力发电机

Publications (1)

Publication Number Publication Date
WO2017156859A1 true WO2017156859A1 (zh) 2017-09-21

Family

ID=56393954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082230 WO2017156859A1 (zh) 2016-03-18 2016-05-16 一种v型风轮结构的海上风力发电机

Country Status (2)

Country Link
CN (1) CN105781891B (zh)
WO (1) WO2017156859A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186701A (zh) * 2020-10-26 2021-01-05 大连华锐重工集团股份有限公司 一种用于接闪器与测风仪升降的联动装置
CN114000980A (zh) * 2021-11-01 2022-02-01 江苏相邦科技有限公司 一种废气排放风力发电装置
CN114348191A (zh) * 2021-12-30 2022-04-15 中船风电工程技术(天津)有限公司 一种浮式风电机组码头安装专用工装

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106286144A (zh) * 2016-10-26 2017-01-04 吴秀华 自动调整风叶式真空风力发电机及其建造方法
CN106812671B (zh) * 2016-12-02 2020-01-17 纳路易爱姆斯株式会社 一种利用影像分析的升降式海上风力发电用桩保护装置及其运用方法
CN108454807A (zh) * 2018-05-31 2018-08-28 中国船舶科学研究中心上海分部 一种水下伸展机构
CN117028157B (zh) * 2023-10-09 2023-12-15 中国电力工程顾问集团有限公司 泥浮式海上风机***的安装方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101302993A (zh) * 2008-06-21 2008-11-12 谢晓山 后置式倾斜旋转桨叶风轮机
CN102121453A (zh) * 2011-04-02 2011-07-13 李永平 V型立式风车
CN102953928A (zh) * 2012-10-17 2013-03-06 李洪泽 调桨长的万向风车
CN104153944A (zh) * 2014-08-06 2014-11-19 华北电力大学 一种大型海上垂直轴风力发电机组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1529051A (zh) * 2003-10-08 2004-09-15 陈晓通 聚风式风力发电法及其大功率发电机组
RU2364748C1 (ru) * 2008-03-14 2009-08-20 Сергей Федорович Бокарев Способ управления частотой вращения ротора ветродвигателя с вертикальной осью и ветродвигатель для его осуществления
CN103256186A (zh) * 2012-02-19 2013-08-21 李永平 磁悬浮v型立式风车
CN205936963U (zh) * 2016-03-18 2017-02-08 福建通尼斯新能源科技有限公司 一种海上v型风力发电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101302993A (zh) * 2008-06-21 2008-11-12 谢晓山 后置式倾斜旋转桨叶风轮机
CN102121453A (zh) * 2011-04-02 2011-07-13 李永平 V型立式风车
CN102953928A (zh) * 2012-10-17 2013-03-06 李洪泽 调桨长的万向风车
CN104153944A (zh) * 2014-08-06 2014-11-19 华北电力大学 一种大型海上垂直轴风力发电机组

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186701A (zh) * 2020-10-26 2021-01-05 大连华锐重工集团股份有限公司 一种用于接闪器与测风仪升降的联动装置
CN112186701B (zh) * 2020-10-26 2023-08-01 大连华锐重工集团股份有限公司 一种用于接闪器与测风仪升降的联动装置
CN114000980A (zh) * 2021-11-01 2022-02-01 江苏相邦科技有限公司 一种废气排放风力发电装置
CN114348191A (zh) * 2021-12-30 2022-04-15 中船风电工程技术(天津)有限公司 一种浮式风电机组码头安装专用工装

Also Published As

Publication number Publication date
CN105781891B (zh) 2018-10-09
CN105781891A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
WO2017156859A1 (zh) 一种v型风轮结构的海上风力发电机
US10190566B2 (en) Modularized ocean energy generating device and built-in module thereof
CN101705904B (zh) 大功率垂直轴潮流发电装置
CN101988463B (zh) 一种垂直轴潮流发电装置
US8439641B2 (en) Flow driven engine
CN201874731U (zh) 一种垂直轴潮流发电装置
CN203822533U (zh) 阵列化海洋能发电装置
CN105840410A (zh) 摆翼式海流能发电装置
WO2010037335A1 (zh) 帆船式水上风力发电机
CN104533699A (zh) 一种垂直轴潮流能发电装置及其应用
CN115750200A (zh) 大型抗台风垂直轴风力发电装置及其台风防御方法
US20140322012A1 (en) Flow Driven Engine
US10837425B2 (en) Hub mating mechanism applicable to single blade installation of offshore wind turbines
CN106640504B (zh) 浪向自适应浮力摆式波能发电装置
CN205936963U (zh) 一种海上v型风力发电机
CN202073704U (zh) 收放式水平风叶风能发电机
WO2016086328A1 (zh) 门形潮流能发电装置载体及座底式潮流能发电装置
CN204327392U (zh) 一种垂直轴潮流能发电装置
TWI744633B (zh) 具舉升功能之往復式水力發電機構
CN100400857C (zh) 水平轴滚筒挡板式水流发电装置
CN203890983U (zh) 一种结合漂浮式防波堤和港口栈桥的波浪发电装置
KR101261367B1 (ko) 수력, 자력 및 풍력을 이용한 발전장치
CN206144712U (zh) 一种叶帆可开合的立轴风力发电站
CN107304745B (zh) 潮流能发电装置及其导流罩
TWI722445B (zh) 風力發電系統

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16894021

Country of ref document: EP

Kind code of ref document: A1