WO2017156770A1 - 信道状态信息参考信号的传输装置、方法以及通信*** - Google Patents

信道状态信息参考信号的传输装置、方法以及通信*** Download PDF

Info

Publication number
WO2017156770A1
WO2017156770A1 PCT/CN2016/076725 CN2016076725W WO2017156770A1 WO 2017156770 A1 WO2017156770 A1 WO 2017156770A1 CN 2016076725 W CN2016076725 W CN 2016076725W WO 2017156770 A1 WO2017156770 A1 WO 2017156770A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
pattern
port
port csi
subframes
Prior art date
Application number
PCT/CN2016/076725
Other languages
English (en)
French (fr)
Inventor
周华
郤伟
Original Assignee
富士通株式会社
周华
郤伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 周华, 郤伟 filed Critical 富士通株式会社
Priority to PCT/CN2016/076725 priority Critical patent/WO2017156770A1/zh
Publication of WO2017156770A1 publication Critical patent/WO2017156770A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a 32-port or 64-port channel state information reference signal (CSI-RS, Channel State Information Reference Signal) transmission apparatus, method, and communication system.
  • CSI-RS channel state information reference signal
  • Channel State Information Reference Signal Channel State Information Reference Signal
  • LTE-A Enhanced Long Term Evolution
  • the vertical sectorization technology and the user three-dimensional beamforming technology are two technologies that are relatively easy to industrialize.
  • the vertical sectorization technology spatially multiplexes user equipments by beamforming at the base station side, thereby increasing system capacity.
  • the user three-dimensional beamforming technology achieves higher beamforming gain by the user equipment through beam alignment at the base station, thereby reducing interference between user equipments.
  • the system can support multi-user multi-antenna technology with more data streams, spatially multiplex user equipment, and further increase system capacity.
  • the LTE-A R13 system can support a maximum of 16 antenna ports. Considering that wireless communication will be extended to high frequencies in the future, such as the frequency range of 30 to 100 GHz, this will provide conditions for continuing to expand the deployment of multiple antennas, so it is necessary to start considering the transmission technology using a higher number of antennas. Among them, an important issue is the design of pilot signals (such as CSI-RS). How to configure 32 antenna ports or even 64 antenna ports on limited radio resources will become a key factor in the success of deploying multiple antennas.
  • pilot signals such as CSI-RS
  • Embodiments of the present invention provide a transmission apparatus, method, and communication system for channel state information reference signals.
  • the CSI-RS is transmitted using a 32-port CSI-RS pattern or a 64-port CSI-RS pattern.
  • a method for transmitting a channel state information reference signal includes:
  • the 32-port CSI-RS pattern or the 64-port CSI-RS pattern is formed by one or more of the following methods: aggregating a low port number CSI-RS on two or more subframes, at 2 The low port number CSI-RS is aggregated on one or more resource blocks, and the number of resource elements transmitting CSI-RS is added in the subframe.
  • a device for transmitting a channel state information reference signal includes:
  • An information transmission unit that transmits a CSI-RS using a 32-port CSI-RS pattern or a 64-port CSI-RS pattern;
  • the 32-port CSI-RS pattern or the 64-port CSI-RS pattern is formed by one or more of the following methods: aggregating a low port number CSI-RS on two or more subframes, at 2 The low port number CSI-RS is aggregated on one or more resource blocks, and the number of resource elements for transmitting CSI-RS is increased in the subframe.
  • a communication system comprising:
  • a base station that transmits a CSI-RS using a 32-port CSI-RS pattern or a 64-port CSI-RS pattern;
  • a user equipment which receives the CSI-RS transmitted by the base station
  • the 32-port CSI-RS pattern or the 64-port CSI-RS pattern is formed by one or more of the following methods: aggregating a low port number CSI-RS on two or more subframes, at 2 The low port number CSI-RS is aggregated on one or more resource blocks, and the number of resource elements for transmitting CSI-RS is increased in the subframe.
  • a 32-port CSI-RS pattern or a 64-port CSI-RS pattern is formed by one or more of the following methods: aggregating a low port number CSI-RS on two or more subframes (Aggregation in the time domain), a low port number CSI-RS (aggregated in the frequency domain) is aggregated on two or more resource blocks, and the number of resource elements transmitting CSI-RS is added in the subframe.
  • a 32-port CSI-RS pattern or a 64-port CSI-RS pattern is formed by one or more of the following methods: aggregating a low port number CSI-RS on two or more subframes (Aggregation in the time domain), a low port number CSI-RS (aggregated in the frequency domain) is aggregated on two or more resource blocks, and the number of resource elements transmitting CSI-RS is added in the subframe.
  • FIG. 1 is a schematic diagram of a 2-port CSI-RS pattern in an LTE Rel. 13 system
  • FIG. 2 is a schematic diagram of a 4-port CSI-RS pattern in an LTE Rel. 13 system
  • FIG. 3 is a schematic diagram of an 8-port CSI-RS pattern in an LTE Rel. 13 system
  • FIG. 4 is a schematic diagram of a 16-port CSI-RS pattern in an LTE Rel. 13 system
  • FIG. 5 is a schematic diagram of a method for transmitting a CSI-RS according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of a 32-port CSI-RS pattern according to Embodiment 1 of the present invention.
  • FIG. 7 is another schematic diagram of a 32-port CSI-RS pattern according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram of a resource that can be used by a 32-port CSI-RS pattern according to Embodiment 1 of the present invention.
  • FIG. 9 is another schematic diagram of a 32-port CSI-RS pattern according to Embodiment 1 of the present invention.
  • FIG. 10 is a schematic diagram of a 64-port CSI-RS pattern according to Embodiment 1 of the present invention.
  • FIG. 11 is another schematic diagram of a 64-port CSI-RS pattern according to Embodiment 1 of the present invention.
  • FIG. 12 is another schematic diagram of a method for transmitting a CSI-RS according to Embodiment 1 of the present invention.
  • FIG. 13 is a schematic diagram of a CSI-RS transmission apparatus according to Embodiment 2 of the present invention.
  • Figure 14 is a schematic diagram of a communication system according to Embodiment 3 of the present invention.
  • FIG. 15 is a schematic diagram of a base station according to Embodiment 3 of the present invention.
  • FIG. 16 is a schematic diagram of a user equipment according to Embodiment 3 of the present invention.
  • a base station may be referred to as an access point, a broadcast transmitter, a Node B, an evolved Node B (eNB), etc., and may include some or all of their functions.
  • the term “base station” will be used herein. Each base station provides communication coverage for a particular geographic area.
  • the term “cell” can refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • a mobile station or device may be referred to as a "User Equipment” (UE).
  • UE User Equipment
  • a UE may be fixed or mobile and may also be referred to as a mobile station, terminal, access terminal, subscriber unit, station, and the like.
  • the UE may be a cellular telephone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless telephone, and the like.
  • PDA personal digital assistant
  • the CSI-RS and CSI-RS patterns are schematically illustrated below.
  • the CSI-RS is introduced in the LTE R10 system, and the CSI-RS transmits according to the periodic information configured by the system and the fixed offset information.
  • the definition of the period and subframe offset of the CSI-RS can be as shown in Table 1.
  • the subframe in which the CSI-RS is transmitted satisfies the following relationship:
  • FIG. 1 is a schematic diagram of a 2-port CSI-RS pattern in an LTE Rel. 13 system, showing the design of a 2-port CSI-RS in a resource block (RB, Resource Block) under a normal cyclic prefix (Normal CP) subframe. pattern.
  • RB resource block
  • Normal CP normal cyclic prefix
  • FIG. 2 is a schematic diagram of a 4-port CSI-RS pattern in an LTE Rel. 13 system, showing a design of a 4-port CSI-RS in a resource block under a regular cyclic prefix subframe.
  • FIG. 3 is a schematic diagram of an 8-port CSI-RS pattern in an LTE Rel. 13 system, showing a design of an 8-port CSI-RS in a resource block under a regular cyclic prefix subframe.
  • FIG. 4 is a schematic diagram of a 16-port CSI-RS pattern in an LTE Rel. 13 system, showing before a regular cycle The design of the 16-port CSI-RS in a resource block under the sub-frame.
  • the signals transmitted in the subframe include: Common Reference Signal (CRS), Demodulation Reference Signal (DMRS), and Physical Downlink Control Channel (PDCCH, Physical). Downlink Control Channel), Physical Downlink Shared Channel (PDSCH) and CSI-RS (portions marked with numbers in Figures 1 to 4).
  • CRS Common Reference Signal
  • DMRS Demodulation Reference Signal
  • PDCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • CSI-RS portions marked with numbers in Figures 1 to 4).
  • the CSI-RS density is determined to be 1 resource element average per resource block average per port.
  • the CSI-RSs of port 0 and port 1 are transmitted by time-division code division multiplexing; the CSI-RSs of other even-numbered ports and odd-numbered ports are also transmitted by time-division code division multiplexing;
  • the CSI-RS resource element of the 2/4/8/16 port has a nested structure
  • Design principles can include:
  • a good compromise between the reference signal load and the channel estimation quality is obtained by using the density of the previous CSI-RS in a time-frequency resource block;
  • the number of REs used to transmit the reference signal can be reduced, for example, by a plurality of subframes and/or a plurality of RBs; or added for transmission in a subframe.
  • the number of REs of the reference signal is not limited to, by a plurality of subframes and/or a plurality of RBs; or added for transmission in a subframe.
  • Embodiments of the present invention provide a method for transmitting a channel state information reference signal (CSI-RS).
  • FIG. 5 is a schematic diagram of a CSI-RS transmission method according to an embodiment of the present invention. As shown in FIG. 5, the transmission method includes:
  • Step 501 The base station transmits a CSI-RS to the user equipment by using a 32-port CSI-RS pattern or a 64-port CSI-RS pattern.
  • the 32-port CSI-RS pattern or the 64-port CSI-RS pattern is formed by one or more of the following methods: aggregating a low port number CSI-RS (instant domain aggregation) on two or more subframes; A low port number CSI-RS (ie, frequency domain aggregation) is aggregated on two or more resource blocks; the number of resource elements transmitting CSI-RS is added in the subframe.
  • the low port number may be 2/4/8/16, that is, the low port number CSI-RS may include any one of the following: 2-port CSI-RS, 4-port CSI-RS, 8-port CSI- RS, 16-port CSI-RS.
  • the following is an example of the aggregation of the 16-port CSI-RS into a 32-port CSI-RS or a 64-port CSI-RS.
  • the number of other ports can be similarly processed, and details are not described herein.
  • a 32-port CSI-RS pattern is aggregated in a time domain by two or more subframes; for example, a 32-port CSI-RS may be formed by using two subframes adjacent in the time domain. The pattern, whereby better channel estimation quality can be obtained.
  • two subframes can be implicitly specified.
  • the relationship between two subframes can be clearly specified in the standard, for example, two consecutive subframes, and the first subframe adopts the same definition method as the 16-port CSI-RS in LTE-A R13, that is, the combination of period and offset is used.
  • the method of definition is not limited to the 16-port CSI-RS in LTE-A R13.
  • 2 subframes may also be explicitly indicated, and period information and offset information for indicating a 32-port CSI-RS are transmitted through one or more signaling.
  • the 32-port CSI-RS can be divided into two groups of 16-port CSI-RS, and the first group of 16-port CSI-RS can adopt the same definition method as the 16-port CSI-RS in LTE-A R13.
  • the first group of 16-port CSI-RSs may also be indicated in the time domain by one signaling. Period information and offset information; and indicating, by another signaling, an offset in the time domain between the first set of 16-port CSI-RSs and the second set of 16-port CSI-RSs.
  • 16 antenna ports CSI-RS in the same position of two subframes may be directly combined into one 32 antenna port CSI-RS, or 16 antenna ports CSI-RS in different positions of two subframes may be combined into one 32.
  • the CSI-RSs of the four groups of 8 antenna ports on the two subframes may be directly combined into one 32-antenna port CSI-RS, and the four groups of 8 antenna ports may be the same location or different. Location, and signaling to the user equipment: which four sets of 8 antenna port CSI-RS are mapped to 32 antenna port CSI-RS.
  • FIG. 6 is a schematic diagram of a 32-port CSI-RS pattern according to an embodiment of the present invention, showing a 32-port CSI-RS pattern formed by aggregation of 2 subframes in the time domain. As shown in FIG. 6, at least two sets of 32-port CSI-RSs can be selected by the base station, which can be applied to a multi-cell environment without causing serious inter-cell interference.
  • the 32-port CSI-RS pattern is aggregated in the frequency domain by two or more resource blocks; for example, two resource blocks adjacent to each other in the frequency domain may be used to form a 32-port CSI. -RS pattern, whereby better channel estimation quality can be obtained.
  • a 32-port CSI-RS pattern can be constructed using two physical resource blocks (PRBs) adjacent to each other in the frequency domain.
  • PRBs physical resource blocks
  • the CSI-RS of this embodiment can be transmitted only in a part of the frequency band.
  • two resource blocks can be implicitly specified.
  • the standard can clearly specify the correspondence between ports and frequency bands, for example, two consecutive PRBs, the first PRB transmits the CSI-RS of the first 16 ports, and the next PRB transmits the CSI-RS of the 16 ports.
  • two resource blocks may also be explicitly indicated, and period information and offset information for indicating a 32-port CSI-RS are transmitted by one or more signaling.
  • a 32-port CSI-RS can be divided into two groups of 16-port CSI-RS, and a first group of 16-port CSI-RS.
  • the same definition method as the 16-port CSI-RS in LTE-A R13 may be adopted, and a further signaling is needed in the standard to indicate the second group of 16-port CSI-RS (ie, the last 16 antenna ports) in the frequency domain. Cycle information and offset information.
  • a PRB with an offset of m in the M PRBs transmits the CSI-RS of the previous group
  • a PRB with an offset of n among the N PRBs transmits the CSI-RS of the latter group.
  • the first group of 16-port CSI-RSs may be indicated in the frequency domain by one signaling. Period information and offset information; and indicating, by another signaling, an offset in the frequency domain between the first set of 16-port CSI-RSs and the second set of 16-port CSI-RSs.
  • 16 antenna ports CSI-RS of the same position of two RBs may be directly combined into one 32 antenna port CSI-RS, or 16 antenna ports CSI-RS of different positions may be combined into one 32 antenna port.
  • CSI-RS For example, 16 antenna ports CSI-RS of the same position of two RBs may be directly combined into one 32 antenna port CSI-RS, or 16 antenna ports CSI-RS of different positions may be combined into one 32 antenna port.
  • the CSI-RSs of the four groups of 8 antenna ports on the two RBs may be directly combined into one 32-antenna port CSI-RS, and the four groups of 8 antenna ports may be the same position or different.
  • FIG. 7 is another schematic diagram of a 32-port CSI-RS pattern according to an embodiment of the present invention, showing a 32-port CSI-RS pattern formed by aggregating two RBs in a frequency domain. As shown in FIG. 7, at least two sets of 32-port CSI-RSs can be selected by the base station, and can be applied to a multi-cell environment without causing serious inter-cell interference.
  • a 32-port CSI-RS pattern may be formed by increasing the number of resource elements transmitting CSI-RS in one subframe; for example, multiple resource elements of transmission control information may be used as The resource element of the CSI-RS is transmitted.
  • the resource element originally used for the PDCCH may be used to transmit the CSI-RS.
  • the second Orthogonal Frequency Division Multiplexing (OFDM) symbol and the third OFDM symbol resource element in the Normal CP subframe are used as resource elements for transmitting the CSI-RS.
  • OFDM Orthogonal Frequency Division Multiplexing
  • E-PDCCH enhanced control channel
  • Enhanced PDCCH Enhanced PDCCH
  • FIG. 8 is a schematic diagram of a resource that can be used by a 32-port CSI-RS pattern according to an embodiment of the present invention. As shown in FIG. 8, resources on a second OFDM symbol and a third OFDM symbol in a Normal CP subframe may be transmitted. Resource element of CSI-RS.
  • FIG. 9 is another schematic diagram of a 32-port CSI-RS pattern according to an embodiment of the present invention, showing a 32-port CSI-RS pattern formed by increasing the number of REs.
  • the resource for transmitting the CSI-RS includes not only the RE of the 16-port CSI-RS in the LTE-A R13 but also all the REs in the 2nd and 3rd OFDM symbols.
  • the 32-port CSI-RS pattern is schematically illustrated.
  • the present invention is not limited thereto.
  • various combinations of the foregoing methods may be combined.
  • the above description has been made only by taking the Normal CP subframe as an example, and the extended CP (Extended CP) subframe can be similarly performed.
  • a 64-port CSI-RS pattern can be formed using 4 subframes that are adjacent in the time domain.
  • the CSI-RS of a multi-subframe is continuously extended, extending from 2 subframes to 4 subframes.
  • a 16-port CSI-RS pattern of the same position of 4 subframes may be aggregated into a 64-port CSI-RS pattern on the basis of FIG. 6, or a 16-port CSI-RS pattern of different positions may be aggregated into one 64.
  • the CSI-RS pattern of the port may be aggregated into a 16-port CSI-RS pattern of the port.
  • a 64-port CSI-RS pattern can be formed using four adjacent RBs in the frequency domain.
  • the CSI-RS of multiple RBs continues to be extended, extending from 2 RBs to 4 RBs.
  • a 16-port CSI-RS pattern of the same position of 4 RBs can be aggregated into a 64-port CSI-RS pattern on the basis of FIG. 7, or a 16-port CSI-RS pattern of different positions can be aggregated into one 64.
  • the CSI-RS pattern of the port can be aggregated into a 16-port CSI-RS pattern of the port.
  • a 64-port CSI-RS pattern may be formed using 2 subframes that increase the number of resource elements transmitting the CSI-RS and are adjacent in the time domain.
  • a 32-port CSI-RS pattern of the same position of two subframes can be aggregated into a 64-port CSI-RS pattern based on the 32-port CSI-RS pattern of FIG.
  • a 64-port CSI-RS pattern may be formed using two resource blocks that increase the number of resource elements transmitting the CSI-RS and are adjacent in the frequency domain.
  • the 32-port CSI-RS pattern aggregates the 32-port CSI-RS patterns of the same location of the two RBs into a 64-port CSI-RS pattern.
  • a 64-port CSI-RS pattern may also be formed using 1 subframe that increases the number of resource elements transmitting the CSI-RS.
  • the two 32-port CSI-RSs of the same subframe can be aggregated into one 64-port CSI-RS pattern based on the 32-port CSI-RS pattern of FIG.
  • FIG. 10 is a schematic diagram of a 64-port CSI-RS pattern according to an embodiment of the present invention, showing a case where two 32-port CSI-RSs of the same subframe are aggregated into one 64-port CSI-RS pattern. As shown in FIG. 10, although only one 64-port CSI-RS is selected by the base station in the same subframe, it can still be used if the inter-cell interference is not serious.
  • a 64-port CSI-RS pattern may also be formed by using two subframes adjacent in the time domain and two resource blocks adjacent in the frequency domain.
  • a 16-port CSI-RS pattern of the same position of 2 subframes and 2 RBs can be aggregated into a 64-port CSI-RS pattern by considering the joint aggregation in the time domain and the frequency domain.
  • FIG. 11 is another schematic diagram of a 64-port CSI-RS pattern according to an embodiment of the present invention, showing a 64-port CSI-RS pattern formed by joint aggregation in time domain and frequency domain. As shown in FIG. 11, the 16-port CSI-RSs of the same position of 2 subframes and 2 RBs can be aggregated into one 64-port CSI-RS pattern.
  • the base station may further indicate, by using signaling, a 32-port CSI-RS pattern or a 64-port CSI-RS pattern generation manner to the user equipment. For example, the base station may notify the user equipment of the CSI-RS aggregation method by using the high layer signaling; the user equipment may perform channel estimation by using the CSI-RS according to the signaling.
  • FIG. 12 is another schematic diagram of a method for transmitting a CSI-RS according to an embodiment of the present invention. As shown in FIG. 12, the transmission method includes:
  • Step 1201 The base station transmits a CSI-RS to the user equipment by using a 32-port CSI-RS pattern or a 64-port CSI-RS pattern.
  • the 32-port CSI-RS pattern or the 64-port CSI-RS pattern is formed by one or more of the following methods: aggregating a low port number CSI-RS on two or more subframes (aggregated in the time domain) A low port number CSI-RS (aggregated in the frequency domain) is aggregated on two or more resource blocks, and the number of resource elements transmitting CSI-RS is added in the subframe.
  • the transmission method may further include:
  • step 1200' the base station sends signaling to the user equipment to indicate the manner in which the 32-port CSI-RS pattern or the 64-port CSI-RS pattern is generated.
  • the signaling indicates that the 32-port CSI-RS adopts the foregoing Embodiment 1, or indicates that the 32-port CSI-RS adopts the foregoing Embodiment 2, or indicates that the 32-port CSI-RS adopts Embodiment 3 above, and the like.
  • the transmission method may further include:
  • Step 1200 the base station sends period information and offset information for indicating a 32-port CSI-RS or a 64-port CSI-RS to the user equipment by using one or more signaling.
  • the base station can dynamically or semi-dynamically change the generation mode of the CSI-RS pattern, and increase the system. Flexibility.
  • the base station may notify the user equipment of the CSI-RS pattern by using high layer signaling ( As described in step 1200' above).
  • a time domain aggregation manner can be employed. That is, a 32-port CSI-RS pattern or a 64-port CSI-RS pattern may be formed by aggregating a low port number CSI-RS on two or more subframes;
  • frequency domain aggregation can be used. That is, a 32-port CSI-RS pattern or a 64-port CSI-RS pattern can be formed by aggregating a low port number CSI-RS on two or more resource blocks.
  • a combination of time domain and frequency domain aggregation may be employed. That is, a 32-port CSI-RS pattern or a 64-port CSI-RS pattern can be formed by aggregating a low port number CSI-RS on two or more subframes and on two or more resource blocks.
  • the 32-port CSI-RS pattern or the 64-port CSI-RS pattern is formed by one or more of the following methods: aggregating a low port number CSI-RS on two or more subframes (at the time) The intra-domain aggregation) aggregates low-port number CSI-RS (aggregated in the frequency domain) on two or more resource blocks, and increases the number of resource elements transmitting CSI-RS in the subframe.
  • this CSI-RS pattern 32 antenna ports or even 64 antenna ports can be configured on limited radio resources, which can improve the spatial resolution of the system.
  • the embodiment of the present invention provides a channel state information reference signal (CSI-RS) transmission device, which may be configured, for example, at a base station.
  • CSI-RS channel state information reference signal
  • FIG. 13 is a schematic diagram of a CSI-RS transmission apparatus according to an embodiment of the present invention. As shown in FIG. 13, the CSI-RS transmission apparatus 1300 includes:
  • the information transmission unit 1301 transmits the CSI-RS using a 32-port CSI-RS pattern or a 64-port CSI-RS pattern; wherein the 32-port CSI-RS pattern or the 64-port CSI-RS pattern adopts one or more of the following manners. Forming: a low port number CSI-RS (aggregated in the time domain) is aggregated on two or more subframes, and a low port number CSI-RS (aggregated in the frequency domain) is aggregated on two or more resource blocks, The number of resource elements transmitting the CSI-RS is increased in the subframe.
  • the low port number CSI-RS may include: a 2-port CSI-RS, a 4-port CSI-RS, an 8-port CSI-RS, or a 16-port CSI-RS.
  • the 32-port CSI-RS pattern may be formed by 2 subframes adjacent in the time domain; or the 32-port CSI-RS pattern may be formed by two resource blocks adjacent in the frequency domain; or 32-port CSI-RS The pattern can be formed by increasing the number of resource elements transmitting CSI-RS in one subframe.
  • the 64-port CSI-RS pattern may be formed by 4 subframes adjacent in the time domain; or the 64-port CSI-RS pattern may be formed by 4 resource blocks adjacent in the frequency domain; or 64-port CSI- The RS pattern may be formed by adding 2 subframes in the time domain and increasing the number of resource elements transmitting the CSI-RS; or the 64-port CSI-RS pattern may be increased by the number of resource elements transmitting the CSI-RS.
  • the 64-port CSI-RS pattern may be formed by one subframe that increases the number of resource elements transmitting the CSI-RS; or the 64-port CSI-RS pattern may be adjacent to the time domain 2
  • the sub-frames and the two adjacent resource blocks in the frequency domain are jointly formed.
  • the transmission device 1300 of the CSI-RS may further include:
  • the signaling transmitting unit 1302 transmits period information and offset information for indicating a 32-port CSI-RS or a 64-port CSI-RS by one or more signaling.
  • the signaling sending unit 1302 is further configured to: indicate, by using signaling, a manner of generating a 32-port CSI-RS pattern or a 64-port CSI-RS pattern.
  • the 32-port CSI-RS pattern or the 64-port CSI-RS pattern is formed by one or more of the following methods: aggregating a low port number CSI-RS on two or more subframes (at the time) Aggregation on the domain, aggregating low-port number CSI-RS on two or more resource blocks (aggregating in the frequency domain), adding transmission in the subframe The number of resource elements of the CSI-RS.
  • this CSI-RS pattern 32 antenna ports or even 64 antenna ports can be configured on limited radio resources, which can improve the spatial resolution of the system.
  • the embodiment of the present invention further provides a communication system, and the same content as Embodiment 1 or 2 is not described herein.
  • the communication system 1400 may include a base station 1401 and a user equipment 1402.
  • the base station 1401 transmits the CSI-RS using a 32-port CSI-RS pattern or a 64-port CSI-RS pattern;
  • the user equipment 1402 receives the CSI-RS transmitted by the base station 1401;
  • the 32-port CSI-RS pattern or the 64-port CSI-RS pattern is formed by one or more of the following methods: aggregating a low port number CSI-RS on two or more subframes (aggregated in the time domain) A low port number CSI-RS (aggregated in the frequency domain) is aggregated on two or more resource blocks, and the number of resource elements for transmitting CSI-RS is added in the subframe.
  • the low port number CSI-RS may include: a 2-port CSI-RS, a 4-port CSI-RS, an 8-port CSI-RS, or a 16-port CSI-RS.
  • the embodiment further provides a base station, which is configured with the CSI-RS transmission device 1300 as described in Embodiment 2.
  • the transmission device 1300 of the CSI-RS may implement the CSI-RS transmission method as described in Embodiment 1.
  • the central processing unit 200 can be configured to implement the functions of the transmission device 1300 of the CSI-RS.
  • the central processing unit 200 can be configured to perform control of transmitting a CSI-RS using a 32-port CSI-RS pattern or a 64-port CSI-RS pattern; wherein the 32-port CSI-RS pattern or the 64-port CSI-RS pattern is as follows Formed in one or more ways: aggregating low port number CSI-RS (aggregated in time domain) on 2 or more subframes, and aggregating low port number CSI-RS on 2 or more resource blocks (Aggregation in the frequency domain), the number of resource elements transmitting CSI-RS is increased in the subframe.
  • the base station 1500 may further include: a transceiver 220, an antenna 230, and the like; wherein the functions of the foregoing components are similar to the prior art, and details are not described herein again. It is worth noting that the base station 1500 is not It is necessary to include all of the components shown in Fig. 15; in addition, the base station 1500 may further include components not shown in Fig. 15, and reference may be made to the prior art.
  • This embodiment also provides a user equipment.
  • FIG. 16 is a schematic diagram of a user equipment according to an embodiment of the present invention.
  • the user device 1600 can include a central processing unit 100 and a memory 140; the memory 140 is coupled to the central processing unit 100.
  • the figure is exemplary; other types of structures may be used in addition to or in place of the structure to implement telecommunications functions or other functions.
  • the central processing unit 100 can be configured to perform control of receiving a CSI-RS transmitted by a base station using a 32-port CSI-RS pattern or a 64-port CSI-RS pattern; wherein, a 32-port CSI-RS pattern or a 64-port CSI-
  • the RS pattern is formed by one or more of the following methods: aggregating a low port number CSI-RS (aggregating in the time domain) on two or more subframes, and aggregating the low end on two or more resource blocks
  • the number of ports CSI-RS increases the number of resource elements transmitting CSI-RS in the subframe.
  • the user equipment 1600 may further include: a communication module 110, an input unit 120, an audio processor 130, a display 160, and a power source 170.
  • the functions of the above components are similar to those of the prior art, and are not described herein again. It should be noted that the user equipment 1600 does not have to include all the components shown in FIG. 16, and the above components are not required; in addition, the user equipment 1600 may further include components not shown in FIG. There are technologies.
  • the embodiment of the present invention further provides a computer readable program, wherein the program causes the base station to perform the CSI-RS transmission method described in Embodiment 1 when the program is executed in a base station.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a base station to perform the CSI-RS transmission method described in Embodiment 1.
  • the embodiment of the present invention further provides a computer readable program, wherein the program causes the user equipment to perform the CSI-RS transmission method described in Embodiment 1 when the program is executed in a user equipment.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a user equipment to perform the CSI-RS transmission method described in Embodiment 1.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • the apparatus and/or method described in connection with the embodiments of the invention may be embodied directly in hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams shown in FIG. 13 and/or one or more combinations of functional block diagrams may correspond to various software modules of a computer program flow, or Corresponds to each hardware module.
  • These software modules may correspond to the respective steps shown in FIG. 5 or 12, respectively.
  • These hardware modules can be implemented, for example, by curing these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • the software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor to enable the processor to read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信道状态信息参考信号的传输装置、方法以及通信***。所述传输方法包括:使用32端口CSI-RS图样或者64端口CSI-RS图样传输CSI-RS;其中,32端口CSI-RS图样或者64端口CSI-RS图样采用如下的一种或多种方式而形成:在2个或以上的子帧上聚合低端口数CSI-RS,在2个或以上的资源块上聚合低端口数CSI-RS,在子帧中增加传输CSI-RS的资源元素的数目。由此,可以在有限的无线资源上配置32天线端口甚至64天线端口,能够提高***的空间分辨率。

Description

信道状态信息参考信号的传输装置、方法以及通信*** 技术领域
本发明涉及通信技术领域,特别涉及一种32端口或64端口的信道状态信息参考信号(CSI-RS,Channel State Information Reference Signal)的传输装置、方法以及通信***。
背景技术
大规模的天线被用来增强***的覆盖,消除用户设备间的干扰,减少站址数目,降低操作维护的费用,大规模的天线技术是增强的长期演进(LTE-A,Advanced Long Term Evolution)***中的热门候选技术之一。
其中,垂直扇区化技术和用户三维波束成型技术是两项较容易产业化的技术。垂直扇区化技术通过基站端的波束成型,在空间上复用用户设备,提高了***容量。用户三维波束成型技术通过基站端的波束对准,使得用户设备能够获得更高的波束成型增益,减少了用户设备间的干扰。而且,***能够支持更多数据流的多用户多天线技术,在空间上复用用户设备,进一步提高***容量。
但是,这些技术都需要提高***的空间分辨率,也就是***使用更多的天线端口。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现:LTE-A R13***可以支持最大16天线端口。考虑到未来无线通信将会扩展到高频,例如30~100GHz的频率范围,这样为继续扩展部署多天线提供了条件,因此需要开始考虑使用更高天线数的传输技术。其中,一个重要的问题是导频信号(例如CSI-RS)的设计,如何在有限的无线资源上配置32天线端口甚至64天线端口,将成为部署多天线成功与否的关键因素。
本发明实施例提供一种信道状态信息参考信号的传输装置、方法以及通信***。使用32端口CSI-RS图样或者64端口CSI-RS图样来传输CSI-RS。
根据本发明实施例的第一个方面,提供一种信道状态信息参考信号的传输方法,包括:
使用32端口CSI-RS图样或者64端口CSI-RS图样传输CSI-RS;
其中,所述32端口CSI-RS图样或者所述64端口CSI-RS图样采用如下的一种或多种方式而形成:在2个或以上的子帧上聚合低端口数CSI-RS,在2个或以上的资源块上聚合低端口数CSI-RS,在子帧中增加传输CSI-RS的资源元素的数目。
根据本发明实施例的第二个方面,提供一种信道状态信息参考信号的传输装置,包括:
信息传输单元,其使用32端口CSI-RS图样或者64端口CSI-RS图样传输CSI-RS;
其中,所述32端口CSI-RS图样或者所述64端口CSI-RS图样采用如下的一种或多种方式而形成:在2个或以上的子帧上聚合低端口数CSI-RS,在2个或以上的资源块上聚合低端口数CSI-RS,在子帧中增加传输CSI-RS的资源元素数目。
根据本发明实施例的第三个方面,提供一种通信***,所述通信***包括:
基站,其使用32端口CSI-RS图样或者64端口CSI-RS图样传输CSI-RS;
用户设备,其接收所述基站传输的所述CSI-RS;
其中,所述32端口CSI-RS图样或者所述64端口CSI-RS图样采用如下的一种或多种方式而形成:在2个或以上的子帧上聚合低端口数CSI-RS,在2个或以上的资源块上聚合低端口数CSI-RS,在子帧中增加传输CSI-RS的资源元素数目。
本发明实施例的有益效果在于:32端口CSI-RS图样或者64端口CSI-RS图样采用如下的一种或多种方式而形成:在2个或以上的子帧上聚合低端口数CSI-RS(在时域上聚合),在2个或以上的资源块上聚合低端口数CSI-RS(在频域上聚合),在子帧中增加传输CSI-RS的资源元素的数目。通过这种CSI-RS图样的设计,可以在有限的无线资源上配置32天线端口甚至64天线端口,能够提高***的空间分辨率。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是LTE Rel.13***中2端口CSI-RS图样的一示意图;
图2是LTE Rel.13***中4端口CSI-RS图样的一示意图;
图3是LTE Rel.13***中8端口CSI-RS图样的一示意图;
图4是LTE Rel.13***中16端口CSI-RS图样的一示意图;
图5是本发明实施例1的CSI-RS的传输方法的一示意图;
图6是本发明实施例1的32端口CSI-RS图样的一示意图;
图7是本发明实施例1的32端口CSI-RS图样的另一示意图;
图8是本发明实施例1的32端口CSI-RS图样能够使用资源的一示意图;
图9是本发明实施例1的32端口CSI-RS图样的另一示意图;
图10是本发明实施例1的64端口CSI-RS图样的一示意图;
图11是本发明实施例1的64端口CSI-RS图样的另一示意图;
图12是本发明实施例1的CSI-RS的传输方法的另一示意图;
图13是本发明实施例2的CSI-RS的传输装置的一示意图;
图14是本发明实施例3的通信***的一示意图;
图15是本发明实施例3的基站的一示意图;
图16是本发明实施例3的用户设备的一示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请中,基站可以被称为接入点、广播发射机、节点B、演进节点B(eNB)等,并且可以包括它们的一些或所有功能。在文中将使用术语“基站”。每个基站对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请中,移动站或设备可以被称为“用户设备”(UE,User Equipment)。UE可以是固定的或移动的,并且也可以称为移动台、终端、接入终端、用户单元、站等。UE可以是蜂窝电话、个人数字助理(PDA)、无线调制解调器、无线通信设备、手持设备、膝上型计算机、无绳电话等。
以下对于CSI-RS以及CSI-RS图样进行示意性说明。
CSI-RS在LTE R10***中被引入,CSI-RS按照***配置的周期信息和固定的偏移信息进行传输。其中CSI-RS的周期和子帧偏移的定义可以如表1所示。传输CSI-RS的子帧满足如下关系:
Figure PCTCN2016076725-appb-000001
表1CSI-RS子帧配置
Figure PCTCN2016076725-appb-000002
图1是LTE Rel.13***中2端口CSI-RS图样的示意图,示出了在常规循环前缀(Normal CP)子帧下在一个资源块(RB,Resource Block)中2端口CSI-RS的设计图样。
图2是LTE Rel.13***中4端口CSI-RS图样的示意图,示出了在常规循环前缀子帧下在一个资源块中4端口CSI-RS的设计图样。
图3是LTE Rel.13***中8端口CSI-RS图样的示意图,示出了在常规循环前缀子帧下在一个资源块中8端口CSI-RS的设计图样。
图4是LTE Rel.13***中16端口CSI-RS图样的示意图,示出了在常规循环前 缀子帧下在一个资源块中16端口CSI-RS的设计图样。
如附图1至4所示,在该子帧中传输的信号包括:公共参考信号(CRS,Common Reference Signal),解调参考信号(DMRS,Demodulation Reference Signal),物理下行控制信道(PDCCH,Physical Downlink Control Channel),物理下行共享信道(PDSCH,Physical Downlink Shared Channel)以及CSI-RS(图1至4中标有数字的部分)等。
如图1至4所示,为了获得参考信号负载和信道估计性能的较好折中,CSI-RS密度被确定为1资源元素平均每个资源块平均每个端口。
在设计CSI-RS图样的过程中,参考如下原则:
(1)端口0和端口1的CSI-RS采用时间维码分复用的方法进行传输;同理其它偶数端口和奇数端口的CSI-RS也采用时间维码分复用的方法进行传输;
(2)2/4/8/16端口的CSI-RS资源元素具有嵌套结构;
(3)避免与其它下行参考信号冲突;
(4)对以前版本的用户有较小的影响;
(5)较好地支持合作多点传输(CoMP,Coordinate Multipoint)信道状态信息的测量。
在本实施例中,根据LTE R13***中已有的CSI-RS图样(例如16端口CSI-RS图样)和设计原则,提出32端口CSI-RS图样和64端口CSI-RS图样的设计方法和设计原则。设计原则可以包括:
(1)沿用以前CSI-RS在一个时频资源块的密度,取得参考信号负载和信道估计质量的良好折中;
(2)避免与其它参考信号的冲突,包括已有的或可能出现的新的下行参考信号;
(3)尽量重用已有的CSI-RS资源,这样可以减少对以前版本用户的影响;
(4)尽量保持对2/4/8/16端口的嵌套结构,降低***实现复杂度;
(5)重用时域码分复用的设计方法;
(6)在确定的负载密度的前提下,尽量提高信道估计的质量。
但是,关于第一个设计原则,如果依然不增加用于传输参考信号的资源元素(RE,Resource Element)数目的话,则无法设计出32端口(port)CSI-RS图样。因为一个子帧中用于CSI-RS的RE数目为40,只能设计出一个32端口CSI-RS,无法应用于 多小区环境,会造成严重的小区间干扰。
因此,在不增加用于传输参考信号的RE数目的情况下,或者只能减少CSI-RS的密度,例如通过多个子帧和/或多个RB进行聚合;或者在子帧中增加用于传输参考信号的RE数目。
实施例1
本发明实施例提供一种信道状态信息参考信号(CSI-RS)的传输方法。图5是本发明实施例的CSI-RS的传输方法的示意图,如图5所示,该传输方法包括:
步骤501,基站使用32端口CSI-RS图样或者64端口CSI-RS图样,向用户设备传输CSI-RS;
其中,32端口CSI-RS图样或者64端口CSI-RS图样采用如下的一种或多种方式而形成:在2个或以上的子帧上聚合低端口数CSI-RS(即时域聚合);在2个或以上的资源块上聚合低端口数CSI-RS(即频域聚合);在子帧中增加传输CSI-RS的资源元素的数目。
在本实施例中,低端口数可以是2/4/8/16,即低端口数CSI-RS可以包括如下的任意一种:2端口CSI-RS、4端口CSI-RS、8端口CSI-RS、16端口CSI-RS。以下以由16端口CSI-RS聚合成32端口CSI-RS或者64端口CSI-RS为例进行说明,对于其他端口数可以类似地进行处理,在此不再赘述。
在一个实施方式(实施方式1)中,32端口CSI-RS图样由2个或以上的子帧在时域上聚合而成;例如可以使用时域上临近的2个子帧形成32端口CSI-RS图样,由此可以获得较好的信道估计质量。
在本实施方式中,2个子帧可以被隐式地规定。例如标准中可以明确规定两个子帧的关系,例如是连续的两个子帧,第1个子帧采用与LTE-A R13中的16端口CSI-RS相同的定义方法,即利用周期和偏移相结合的定义方法。
在本实施方式中,2个子帧也可以被显式地指示,通过一个或多个信令发送用于指示32端口CSI-RS的周期信息和偏移信息。
例如,32端口CSI-RS可以被分为两组16端口CSI-RS,第1组16端口CSI-RS可以采用与LTE-A R13中的16端口CSI-RS相同的定义方法,标准中需要再增加一条信令来指示第2组16端口CSI-RS(即后16个天线端口)在时域上的周期信息和 偏移信息。
此外,如果32端口CSI-RS被分为两组16端口CSI-RS并且两组16端口CSI-RS的周期信息相同,还可以通过一个信令指示第一组16端口CSI-RS在时域上的周期信息和偏移信息;以及通过另一个信令指示所述第一组16端口CSI-RS和第二组16端口CSI-RS之间在时域上的偏移量。
即,如果两组16天线端口的周期相同时,考虑到两组天线端口的子帧偏移量较小,仅需增加一条信令对子帧偏移量进行指示,比如固定的5比特高层信令。
在本实施方式中,例如可以直接将两个子帧相同位置的16天线端口CSI-RS组合成一个32天线端口CSI-RS,或者将两个子帧不同位置的16天线端口CSI-RS组合成一个32天线端口CSI-RS。
在本实施方式中,例如还可以直接将两个子帧上的四组8天线端口的CSI-RS组合成一个32天线端口CSI-RS,这四组8天线端口可以是相同位置的也可以是不同位置的,并且通过信令指示用户设备:哪四组8天线端口的CSI-RS映射成32天线端口的CSI-RS。
图6是本发明实施例的32端口CSI-RS图样的示意图,示出了由2个子帧在时域上聚合而形成的32端口CSI-RS图样。如图6所示,可以至少有两套32端口CSI-RS供基站选择,可以应用于多小区环境,不会造成严重的小区间干扰。
在另一个实施方式(实施方式2)中,32端口CSI-RS图样由2个或以上的资源块在频域上聚合而成;例如可以使用频域上临近的2个资源块形成32端口CSI-RS图样,由此可以获得较好的信道估计质量。
在本实施方式中,例如可以使用频域相邻的2个物理资源块(PRB,Physical Resource Block)来构造32端口的CSI-RS图样。与LTE R10/11***采用全频带传送参考信号不同,本实施例的CSI-RS可以仅在部分频带进行传送。
在本实施方式中,2个资源块可以被隐式地规定。标准中可以明确规定端口和频带的对应关系,例如是连续的两个PRB,第一个PRB传送前16个端口的CSI-RS,后一个PRB传送后16个端口的CSI-RS。
在本实施方式中,2个资源块也可以被显式地指示,通过一个或多个信令发送用于指示32端口CSI-RS的周期信息和偏移信息。
例如,32端口CSI-RS可以被分为两组16端口CSI-RS,第1组16端口CSI-RS 可以采用与LTE-A R13中的16端口CSI-RS相同的定义方法,标准中需要再增加一条信令来指示第2组16端口CSI-RS(即后16个天线端口)在频域上的周期信息和偏移信息。
例如,M个PRB中偏移为m的PRB传送前一组的CSI-RS,N个PRB中偏移为n的PRB传送后一组的CSI-RS。
此外,如果32端口CSI-RS被分为两组16端口CSI-RS并且两组16端口CSI-RS的周期信息相同,可以通过一个信令指示第一组16端口CSI-RS在频域上的周期信息和偏移信息;以及通过另一个信令指示第一组16端口CSI-RS和第二组16端口CSI-RS之间在频域上的偏移量。
在本实施方式中,例如可以直接将两个RB相同位置的16天线端口CSI-RS组合成一个32天线端口CSI-RS,也可以将不同位置的16天线端口CSI-RS组合成一个32天线端口的CSI-RS。
在本实施方式中,例如还可以直接将两个RB上的四组8天线端口的CSI-RS组合成一个32天线端口CSI-RS,这四组8天线端口可以是相同位置的也可以是不同位置的,并且通过信令指示用户设备:哪四组8天线端口的CSI-RS映射成32天线端口的CSI-RS。
图7是本发明实施例的32端口CSI-RS图样的另一示意图,示出了由2个RB在频域上聚合而形成的32端口CSI-RS图样。如图7所示,可以至少有两套32端口CSI-RS供基站选择,可以应用于多小区环境,不会造成严重的小区间干扰。
在另一个实施方式(实施方式3)中,32端口CSI-RS图样可以通过在1个子帧中增加传输CSI-RS的资源元素的数目而形成;例如可以将传输控制信息的多个资源元素作为传输CSI-RS的资源元素。
具体地,可以将原本用于PDCCH的资源元素用来传输CSI-RS。例如将Normal CP子帧中的第2个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号和第3个OFDM符号上的资源元素作为传输CSI-RS的资源元素。
即,如果在设计32端口CSI-RS图样时,能够放松对以前版本的用户设备的影响,可以适当增加一些资源位置。考虑到随着增强的控制信道(E-PDCCH,Enhanced PDCCH)的引入,某些子帧的PDCCH能控制在两个OFDM符号,因此能够作为增加CSI-RS的资源。
图8是本发明实施例的32端口CSI-RS图样能够使用资源的一示意图,如图8所示,Normal CP子帧中的第2个OFDM符号和第3个OFDM符号上的资源可以作为传输CSI-RS的资源元素。
图9是本发明实施例的32端口CSI-RS图样的另一示意图,示出了通过增加RE数目而形成的32端口CSI-RS图样。如图9所示,传输CSI-RS的资源不但包括LTE-A R13中的16端口CSI-RS的RE,还包括第2和第3个OFDM符号中所有的RE。
值得注意的是,以上以实施方式1至3为例,对如何生成32端口CSI-RS图样进行了示意性说明,但本发明不限于此,例如还可以将上述方式的多种结合起来进行构造。此外,以上仅以Normal CP子帧为例进行了说明,对于扩展CP(Extended CP)子帧可以类似地进行。
以下对于64端口CSI-RS图样进行说明。
在一个实施方式中,可以使用时域上临近的4个子帧形成64端口CSI-RS图样。
例如,继续扩展多子帧的CSI-RS,从2个子帧扩展到4个子帧。例如可以在图6的基础上将4个子帧的相同位置的16端口CSI-RS图样聚合成一个64端口的CSI-RS图样,或者也可以将不同位置的16端口CSI-RS图样聚合成一个64端口的CSI-RS图样。
在另一个实施方式中,可以使用频域上临近的4个RB形成64端口CSI-RS图样。
例如,继续扩展多RB的CSI-RS,从2个RB扩展到4个RB。例如可以在图7的基础上将4个RB的相同位置的16端口CSI-RS图样聚合成一个64端口的CSI-RS图样,或者也可以将不同位置的16端口CSI-RS图样聚合成一个64端口的CSI-RS图样。
在另一个实施方式中,可以使用增加了传输CSI-RS的资源元素数目的、且时域上临近的2个子帧形成64端口CSI-RS图样。
例如,扩展使用新增资源的32端口CSI-RS图样。例如可以基于图9的32端口CSI-RS图样,将两个子帧的相同位置的32端口CSI-RS图样聚合成一个64端口CSI-RS图样。
在另一个实施方式中,可以使用增加了传输CSI-RS的资源元素数目的、且频域上临近的2个资源块形成64端口CSI-RS图样。
例如,扩展使用新增资源的32端口CSI-RS图样。例如可以基于图9的32端口 CSI-RS图样,将两个RB的相同位置的32端口CSI-RS图样聚合成一个64端口CSI-RS图样。
在另一个实施方式中,还可以使用增加了传输CSI-RS的资源元素数目的1个子帧形成64端口CSI-RS图样。
例如,如果考虑到小区间干扰不严重的话,可以基于图9的32端口CSI-RS图样,将同一个子帧的两个32端口CSI-RS聚合成一个64端口CSI-RS图样。
图10是本发明实施例的64端口CSI-RS图样的示意图,示出了将同一个子帧的两个32端口CSI-RS聚合成一个64端口CSI-RS图样的情况。如图10所示,虽然在同一子帧中只有一套64端口CSI-RS供基站选择,但是在小区间干扰不严重的情况下仍然可以使用。
在另一个实施方式中,还可以使用时域上临近的2个子帧以及频域上临近的2个资源块联合形成64端口CSI-RS图样。
例如,可以考虑时域和频域联合聚合的方式,将2个子帧和2个RB的相同位置的16端口CSI-RS图样聚合成一个64端口CSI-RS图样。
图11是本发明实施例的64端口CSI-RS图样的另一示意图,示出了通过时域和频域联合聚合而形成的64端口CSI-RS图样。如图11所示,2个子帧和2个RB的相同位置的16端口CSI-RS可以聚合成一个64端口CSI-RS图样。
在本实施例中,基站还可以通过信令向用户设备指示32端口CSI-RS图样或者64端口CSI-RS图样的生成方式。例如,基站可以通过高层信令通知用户设备所采用的CSI-RS聚合的方法;用户设备可以根据该信令相应地利用CSI-RS进行信道估计。
图12是本发明实施例的CSI-RS的传输方法的另一示意图,如图12所示,该传输方法包括:
步骤1201,基站使用32端口CSI-RS图样或者64端口CSI-RS图样,向用户设备传输CSI-RS;
其中,32端口CSI-RS图样或者64端口CSI-RS图样采用如下的一种或多种方式而形成:在2个或以上的子帧上聚合低端口数CSI-RS(在时域上聚合),在2个或以上的资源块上聚合低端口数CSI-RS(在频域上聚合),在子帧中增加传输CSI-RS的资源元素的数目。
如图12所示,所述传输方法还可以包括:
步骤1200’,基站向用户设备发送信令来指示32端口CSI-RS图样或者64端口CSI-RS图样的生成方式。
例如,该信令指示32端口CSI-RS采用上述实施方式1,或者指示32端口CSI-RS采用上述实施方式2,或者指示32端口CSI-RS采用上述实施方式3,等等。
如图12所示,所述传输方法还可以包括:
步骤1200”,基站通过一个或多个信令向用户设备发送用于指示32端口CSI-RS或者64端口CSI-RS的周期信息和偏移信息。
通过上述步骤1200’和1200”,不仅用户设备能够准确地利用32端口CSI-RS或者64端口CSI-RS进行信道估计,而且基站能够动态或者半动态地改变CSI-RS图样的生成方式,增加***的灵活性。
在本实施例中,在使用CSI-RS图样的构造方式时,可以按照***的不同特点来采用不同的构造方法;然后基站可以通过高层信令通知用户设备CSI-RS图样所采用的聚合方式(如上述步骤1200’所述)。
例如,在信道处于时域相对静止的情况下,可以采用时域聚合的方式。即,32端口CSI-RS图样或者64端口CSI-RS图样可以通过在2个或以上的子帧上聚合低端口数CSI-RS而形成;
在信道处于频域相对平坦的情况下,可以采用频域聚合的方式。即,32端口CSI-RS图样或者64端口CSI-RS图样可以通过在2个或以上的资源块上聚合低端口数CSI-RS而形成。
在信道既不处于时域相对静止也不处于频域相对平坦的情况下,可以采用时域和频域联合聚合的方式。即,32端口CSI-RS图样或者64端口CSI-RS图样可以通过在2个或以上的子帧上以及在2个或以上的资源块上聚合低端口数CSI-RS而形成。
由上述实施例可知,32端口CSI-RS图样或者64端口CSI-RS图样采用如下的一种或多种方式而形成:在2个或以上的子帧上聚合低端口数CSI-RS(在时域上聚合),在2个或以上的资源块上聚合低端口数CSI-RS(在频域上聚合),在子帧中增加传输CSI-RS的资源元素的数目。通过这种CSI-RS图样的设计,可以在有限的无线资源上配置32天线端口甚至64天线端口,能够提高***的空间分辨率。
实施例2
本发明实施例提供一种信道状态信息参考信号(CSI-RS)的传输装置,例如可以配置在基站。本发明实施例与实施例1相同的内容不再赘述。
图13是本发明实施例的CSI-RS的传输装置的示意图,如图13所示,该CSI-RS的传输装置1300包括:
信息传输单元1301,其使用32端口CSI-RS图样或者64端口CSI-RS图样传输CSI-RS;其中,32端口CSI-RS图样或者64端口CSI-RS图样采用如下的一种或多种方式而形成:在2个或以上的子帧上聚合低端口数CSI-RS(在时域上聚合),在2个或以上的资源块上聚合低端口数CSI-RS(在频域上聚合),在子帧中增加传输CSI-RS的资源元素数目。
在本实施例中,低端口数CSI-RS可以包括:2端口CSI-RS、4端口CSI-RS、8端口CSI-RS或者16端口CSI-RS。
在一个实施方式中,32端口CSI-RS图样可以由时域上临近的2个子帧形成;或者32端口CSI-RS图样可以由频域上临近的2个资源块形成;或者32端口CSI-RS图样可以通过在1个子帧中增加传输CSI-RS的资源元素数目而形成。
在另一个实施方式中,64端口CSI-RS图样可以由时域上临近的4个子帧形成;或者64端口CSI-RS图样可以由频域上临近的4个资源块形成;或者64端口CSI-RS图样可以由增加了传输CSI-RS的资源元素数目的、且时域上临近的2个子帧形成;或者64端口CSI-RS图样可以由增加了传输CSI-RS的资源元素数目的、且频域上临近的2个资源块形成;或者64端口CSI-RS图样可以由增加了传输CSI-RS的资源元素数目的1个子帧形成;或者64端口CSI-RS图样可以由时域上临近的2个子帧以及频域上临近的2个资源块联合形成。
如图13所示,该CSI-RS的传输装置1300还可以包括:
信令发送单元1302,其通过一个或多个信令发送用于指示32端口CSI-RS或64端口CSI-RS的周期信息和偏移信息。
信令发送单元1302还可以用于:通过信令来指示32端口CSI-RS图样或者64端口CSI-RS图样的生成方式。
由上述实施例可知,32端口CSI-RS图样或者64端口CSI-RS图样采用如下的一种或多种方式而形成:在2个或以上的子帧上聚合低端口数CSI-RS(在时域上聚合),在2个或以上的资源块上聚合低端口数CSI-RS(在频域上聚合),在子帧中增加传输 CSI-RS的资源元素的数目。通过这种CSI-RS图样的设计,可以在有限的无线资源上配置32天线端口甚至64天线端口,能够提高***的空间分辨率。
实施例3
本发明实施例还提供一种通信***,与实施例1或2相同的内容不再赘述。
图14是本发明实施例的通信***的一示意图,如图14所示,通信***1400可以包括基站1401和用户设备1402。
基站1401使用32端口CSI-RS图样或者64端口CSI-RS图样传输CSI-RS;
用户设备1402接收基站1401传输的所述CSI-RS;
其中,32端口CSI-RS图样或者64端口CSI-RS图样采用如下的一种或多种方式而形成:在2个或以上的子帧上聚合低端口数CSI-RS(在时域上聚合),在2个或以上的资源块上聚合低端口数CSI-RS(在频域上聚合),在子帧中增加传输CSI-RS的资源元素数目。
在本实施例中,低端口数CSI-RS可以包括:2端口CSI-RS、4端口CSI-RS、8端口CSI-RS或者16端口CSI-RS。
本实施例还提供一种基站,配置有如实施例2所述的CSI-RS的传输装置1300。
图15是本发明实施例的基站的一构成示意图。如图15所示,基站1500可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序。
其中,CSI-RS的传输装置1300可以实现如实施例1所述的CSI-RS的传输方法。中央处理器200可以被配置为实现CSI-RS的传输装置1300的功能。
例如,中央处理器200可以被配置为进行如下控制:使用32端口CSI-RS图样或者64端口CSI-RS图样传输CSI-RS;其中,32端口CSI-RS图样或者64端口CSI-RS图样采用如下的一种或多种方式而形成:在2个或以上的子帧上聚合低端口数CSI-RS(在时域上聚合),在2个或以上的资源块上聚合低端口数CSI-RS(在频域上聚合),在子帧中增加传输CSI-RS的资源元素数目。
此外,如图15所示,基站1500还可以包括:收发机220和天线230等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,基站1500也并不 是必须要包括图15中所示的所有部件;此外,基站1500还可以包括图15中没有示出的部件,可以参考现有技术。
本实施例还提供一种用户设备。
图16是本发明实施例的用户设备的一示意图。如图16所示,该用户设备1600可以包括中央处理器100和存储器140;存储器140耦合到中央处理器100。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
例如,中央处理器100可以被配置为进行如下的控制:接收基站使用32端口CSI-RS图样或者64端口CSI-RS图样传输的CSI-RS;其中,32端口CSI-RS图样或者64端口CSI-RS图样采用如下的一种或多种方式而形成:在2个或以上的子帧上聚合低端口数CSI-RS(在时域上聚合),在2个或以上的资源块上聚合低端口数CSI-RS(在频域上聚合),在子帧中增加传输CSI-RS的资源元素数目。
如图16所示,该用户设备1600还可以包括:通信模块110、输入单元120、音频处理器130、显示器160、电源170。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,用户设备1600也并不是必须要包括图16中所示的所有部件,上述部件并不是必需的;此外,用户设备1600还可以包括图16中没有示出的部件,可以参考现有技术。
本发明实施例还提供一种计算机可读程序,其中当在基站中执行所述程序时,所述程序使得所述基站执行实施例1所述的CSI-RS的传输方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得基站执行实施例1所述的CSI-RS的传输方法。
本发明实施例还提供一种计算机可读程序,其中当在用户设备中执行所述程序时,所述程序使得所述用户设备执行实施例1所述的CSI-RS的传输方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得用户设备执行实施例1所述的CSI-RS的传输方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的装置和/或方法可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图13中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合(例如,信息传输单元等),既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图5或12所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可***移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (20)

  1. 一种信道状态信息参考信号(CSI-RS)的传输方法,包括:
    使用32端口CSI-RS图样或者64端口CSI-RS图样传输CSI-RS;
    其中,所述32端口CSI-RS图样或者所述64端口CSI-RS图样采用如下的一种或多种方式而形成:在2个或以上的子帧上聚合低端口数CSI-RS,在2个或以上的资源块上聚合低端口数CSI-RS,在子帧中增加传输CSI-RS的资源元素的数目。
  2. 根据权利要求1所述的传输方法,其中,所述低端口数CSI-RS包括:2端口CSI-RS、4端口CSI-RS、8端口CSI-RS或者16端口CSI-RS。
  3. 根据权利要求1所述的传输方法,其中,所述方法还包括:
    通过一个或多个信令发送用于指示32端口CSI-RS或者64端口CSI-RS的周期信息和偏移信息。
  4. 根据权利要求1所述的传输方法,其中,所述32端口CSI-RS图样由2个或以上的子帧在时域上聚合而成,包括:
    使用时域上临近的2个子帧形成所述32端口CSI-RS图样。
  5. 根据权利要求4所述的传输方法,其中,所述2个子帧被隐式地规定或者被显式地指示。
  6. 根据权利要求4所述的传输方法,其中,32端口CSI-RS被分为两组16端口CSI-RS并且所述两组16端口CSI-RS的周期信息相同,所述方法还包括:
    通过一个信令发送第一组16端口CSI-RS在时域上的周期信息和偏移信息;以及
    通过另一个信令发送所述第一组16端口CSI-RS和第二组16端口CSI-RS之间在时域上的偏移量。
  7. 根据权利要求1所述的传输方法,其中,所述32端口CSI-RS图样由2个或以上的资源块在频域上聚合而成,包括:
    使用频域上临近的2个资源块形成所述32端口CSI-RS图样。
  8. 根据权利要求7所述的传输方法,其中,所述2个资源块被隐式地规定或者被显式地指示。
  9. 根据权利要求7所述的传输方法,其中,32端口CSI-RS被分为两组16端口CSI-RS并且所述两组16端口CSI-RS的周期信息相同,所述方法还包括:
    通过一个信令发送第一组16端口CSI-RS在频域上的周期信息和偏移信息;以及
    通过另一个信令发送所述第一组16端口CSI-RS和第二组16端口CSI-RS之间在频域上的偏移量。
  10. 根据权利要求1所述的传输方法,其中,所述32端口CSI-RS图样通过在1个子帧中增加传输CSI-RS的资源元素的数目而形成,包括:
    将所述子帧中用于传输控制信息的资源元素作为传输所述CSI-RS的资源元素。
  11. 根据权利要求10所述的传输方法,其中,所述子帧中用于传输控制信息的资源元素包括所述子帧中的第2和第3个符号上的资源元素。
  12. 根据权利要求1所述的传输方法,其中,所述64端口CSI-RS图样由2个或以上的子帧在时域上和/或频域上聚合而成,包括:
    使用时域上临近的4个子帧形成所述64端口CSI-RS图样;或者
    使用频域上临近的4个资源块形成所述64端口CSI-RS图样;或者
    使用增加了传输CSI-RS的资源元素数目的、且时域上临近的2个子帧形成所述64端口CSI-RS图样;或者
    使用增加了传输CSI-RS的资源元素数目的、且频域上临近的2个资源块形成所述64端口CSI-RS图样;或者
    使用增加了传输CSI-RS的资源元素数目的1个子帧形成所述64端口CSI-RS图样;或者
    使用时域上临近的2个子帧以及频域上临近的2个资源块联合形成所述64端口CSI-RS图样。
  13. 根据权利要求1所述的传输方法,其中,所述方法还包括:
    通过信令来指示所述32端口CSI-RS图样或者所述64端口CSI-RS图样的生成方式。
  14. 根据权利要求1所述的传输方法,其中,在信道处于时域相对静止的情况下,所述32端口CSI-RS图样或者所述64端口CSI-RS图样通过在2个或以上的子帧上聚合低端口数CSI-RS而形成;
    在信道处于频域相对平坦的情况下,所述32端口CSI-RS图样或者所述64端口CSI-RS图样通过在2个或以上的资源块上聚合低端口数CSI-RS而形成;
    在信道既不处于时域相对静止也不处于频域相对平坦的情况下,所述32端口 CSI-RS图样或者所述64端口CSI-RS图样通过在2个或以上的子帧以及2个或以上的资源块上聚合低端口数CSI-RS而形成。
  15. 一种信道状态信息参考信号(CSI-RS)的传输装置,包括:
    信息传输单元,其使用32端口CSI-RS图样或者64端口CSI-RS图样传输CSI-RS;
    其中,所述32端口CSI-RS图样或者所述64端口CSI-RS图样采用如下的一种或多种方式而形成:在2个或以上的子帧上聚合低端口数CSI-RS,在2个或以上的资源块上聚合低端口数CSI-RS,在子帧中增加传输CSI-RS的资源元素数目。
  16. 根据权利要求15所述的传输装置,其中,所述32端口CSI-RS图样由时域上临近的2个子帧形成;
    或者所述32端口CSI-RS图样由频域上临近的2个资源块形成;
    或者所述32端口CSI-RS图样通过在1个子帧中增加传输CSI-RS的资源元素数目而形成。
  17. 根据权利要求14所述的传输装置,其中,所述64端口CSI-RS图样由时域上临近的4个子帧形成;
    或者所述64端口CSI-RS图样由频域上临近的4个资源块形成;
    或者所述64端口CSI-RS图样由增加了传输CSI-RS的资源元素数目的、且时域上临近的2个子帧形成;
    或者所述64端口CSI-RS图样由增加了传输CSI-RS的资源元素数目的、且频域上临近的2个资源块形成;
    或者所述64端口CSI-RS图样由增加了传输CSI-RS的资源元素数目的1个子帧形成;
    或者所述64端口CSI-RS图样由时域上临近的2个子帧以及频域上临近的2个资源块联合形成。
  18. 根据权利要求15所述的传输装置,其中,所述装置还包括:
    信令发送单元,其通过一个或多个信令发送用于指示32端口CSI-RS或64端口CSI-RS的周期信息和偏移信息。
  19. 根据权利要求18所述的传输装置,其中,所述信令发送单元还用于通过信令来指示所述32端口CSI-RS图样或者所述64端口CSI-RS图样的生成方式。
  20. 一种通信***,所述通信***包括:
    基站,其使用32端口CSI-RS图样或者64端口CSI-RS图样传输CSI-RS;
    用户设备,其接收所述基站传输的所述CSI-RS;
    其中,所述32端口CSI-RS图样或者所述64端口CSI-RS图样采用如下的一种或多种方式而形成:在2个或以上的子帧上聚合低端口数CSI-RS,在2个或以上的资源块上聚合低端口数CSI-RS,在子帧中增加传输CSI-RS的资源元素数目。
PCT/CN2016/076725 2016-03-18 2016-03-18 信道状态信息参考信号的传输装置、方法以及通信*** WO2017156770A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/076725 WO2017156770A1 (zh) 2016-03-18 2016-03-18 信道状态信息参考信号的传输装置、方法以及通信***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/076725 WO2017156770A1 (zh) 2016-03-18 2016-03-18 信道状态信息参考信号的传输装置、方法以及通信***

Publications (1)

Publication Number Publication Date
WO2017156770A1 true WO2017156770A1 (zh) 2017-09-21

Family

ID=59850915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076725 WO2017156770A1 (zh) 2016-03-18 2016-03-18 信道状态信息参考信号的传输装置、方法以及通信***

Country Status (1)

Country Link
WO (1) WO2017156770A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600855A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 时频资源配置方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090161781A1 (en) * 2007-12-21 2009-06-25 Broadcom Corporation Characterizing channel response using data tone decision feedback
WO2011050643A1 (zh) * 2009-11-02 2011-05-05 富士通株式会社 导频发送方法及相应信道估计方法
CN102763391A (zh) * 2010-03-31 2012-10-31 富士通株式会社 导频图案生成方法和装置、信号发送及接收方法和装置
CN104767592A (zh) * 2014-01-02 2015-07-08 ***通信集团公司 一种csi-rs的端口配置、csi-rs传输的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090161781A1 (en) * 2007-12-21 2009-06-25 Broadcom Corporation Characterizing channel response using data tone decision feedback
WO2011050643A1 (zh) * 2009-11-02 2011-05-05 富士通株式会社 导频发送方法及相应信道估计方法
CN102763391A (zh) * 2010-03-31 2012-10-31 富士通株式会社 导频图案生成方法和装置、信号发送及接收方法和装置
CN104767592A (zh) * 2014-01-02 2015-07-08 ***通信集团公司 一种csi-rs的端口配置、csi-rs传输的方法和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600855A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 时频资源配置方法及设备
CN109600855B (zh) * 2017-09-30 2021-05-18 华为技术有限公司 时频资源配置方法及设备

Similar Documents

Publication Publication Date Title
US11128510B2 (en) Data transmission method, user equipment, and network side device
US11206177B2 (en) Scheme for configuring reference signal and communicating channel state information in a wireless communication system using multiple antenna ports
WO2020220330A1 (zh) 无线通信的方法、终端设备和网络设备
US10680773B2 (en) Method and apparatus for transmitting pilot signal
CN106559162B (zh) 用于无线通信的基站侧和用户设备侧的装置及方法
WO2019137058A1 (zh) 资源指示方法、终端设备和网络设备
WO2016095110A1 (zh) 基于探测参考信号的下行信道估计方法、装置以及通信***
US20120176977A1 (en) Method for Aperiodic SRS Subframe Configuration and Signaling
US11101948B2 (en) Data transmission method, terminal, and network device
JP2020516128A (ja) Dmrs送信方法及び通信デバイス
US9883491B2 (en) Aperiodic channel state information (CSI) reporting for carrier aggregation
CN108667492B (zh) 一种预编码颗粒度的确定方法和装置
CN108632003A (zh) 一种信息传输方法和装置
EP3573274A1 (en) Communication method and network device
US10177938B2 (en) Device and method for adaptive channel estimation
CN108632841A (zh) 一种信息传输方法和装置
US20220224481A1 (en) Method for obtaining configuration information of demodulation reference signal, configuration method, and apparatus
US10972236B2 (en) Signal transmission method, signal reception method, apparatus, and system in wireless communication
WO2018121123A1 (zh) 发送/接收参考信号的方法及终端设备、网络设备
WO2018202103A1 (zh) 一种参考信号图样的传输方法及其装置
US10771133B2 (en) Signal transmission method and apparatus
WO2019015468A1 (zh) 数据传输方法、网络设备和终端设备
WO2017181996A1 (zh) 一种参考信号的发送方法、接收方法及相关设备
WO2017156770A1 (zh) 信道状态信息参考信号的传输装置、方法以及通信***
WO2018127158A1 (zh) 一种数据传输的方法、网络侧设备及终端设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893935

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893935

Country of ref document: EP

Kind code of ref document: A1