WO2017156600A1 - Hierarchically nanostructured nanoparticles for white light emission and use - Google Patents

Hierarchically nanostructured nanoparticles for white light emission and use Download PDF

Info

Publication number
WO2017156600A1
WO2017156600A1 PCT/BR2016/000140 BR2016000140W WO2017156600A1 WO 2017156600 A1 WO2017156600 A1 WO 2017156600A1 BR 2016000140 W BR2016000140 W BR 2016000140W WO 2017156600 A1 WO2017156600 A1 WO 2017156600A1
Authority
WO
WIPO (PCT)
Prior art keywords
iii
doped
mol
layer
pure
Prior art date
Application number
PCT/BR2016/000140
Other languages
French (fr)
Portuguese (pt)
Inventor
Italo Odone MAZALI
Cristine Santos DE OLIVEIRA
Fernando Aparecido SIGOLI
Original Assignee
Universidade Estadual De Campinas - Unicamp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Estadual De Campinas - Unicamp filed Critical Universidade Estadual De Campinas - Unicamp
Publication of WO2017156600A1 publication Critical patent/WO2017156600A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention is applicable in the chemical field of coatings more specific in the field of illumination and refers to a nanostructured nanoparticle doped with iar.tanid ions for emission of white light.
  • Solid state lighting is a field of research focusing on the development of new devices for general room lighting, such as lamps and luminaires, focusing on the production and development of white LEDs.
  • the great advantage of this type of lighting over mercury or filament lamps is its efficiency, due to the reduction of energy consumption of around 80% in case of the total replacement of these sources by LEDs.
  • the optimization of white-emitting LEDs is necessary to improve the efficiency of the devices, reducing the. manufacturing cost, as well as the optimization of the obtained white light, which means that the purer or similar to sunlight, the more comfortable for humans.
  • the most commonly used white LEDs in the industry are based on Ce (III) or Ce: YAG-doped aluminum yttrium grenade and have a bluish or "cool" white tint.
  • Zirconium oxide has interesting properties for application in the area of illumination, and for this reason is widely studied in related research.
  • This oxide can have three structures: the monoclinic, more stable at temperature tetragonal from 1170 ° C which can be stabilized at low temperatures by the addition of dopants such as Er (III) and Y (III) and finally the cubic structure generated from 2370 ° C at which can be stabilized at. low temperatures by the addition of substitutable cathons such as Ca (II) and Mg (II).
  • the tetragonal structure is the one that stands out, being easily stabilized with the addition of Y2O3, besides presenting properties such as high hardness, high thermal and chemical resistance, high ionic conductivity, low electron conductivity, low phonon energy and transparency in the visible region.
  • Zr0 is widely used in ceramic synthesis for technical applications in. fields such as insulation for high temperature production using its cubic structure, which has low thermal conductivity and high coefficient of thermal expansion, and in electronics and microelectronics, due to its low electronic conductivity and high ionic conductivity mainly in its form. tetragonal.
  • When ⁇ is stabilized with rare earth oxides such as HfOs and CeOs, it can be used as a solid electrolyte for fuel cells and electrochemical oxygen sensors. Due to its high degree of transparency in the region of 300 to 8000 nm, high refractive index, forbidden wide band (5.2-5, 8 eV and low phonon energy (470 cm '' 1 ), considerably lower than In other matrices such as SiO; (1100 cm- 1 ) and ⁇ ⁇ (870 cm- 1 ), Zr0 2 has excellent properties for the insertion of lanthanide ions with luminescence properties.
  • rare earth oxides such as HfOs and CeOs
  • Some of the possible doping combinations are those with Eu (IH) and Tb (III), which aims at combining ZrO? with those of lanthanide ions to obtain white light, and also doping with Er (III) and Yb (III), providing the phenomenon of upconversA on,
  • O ' 2 03 in turn has similar properties, such as high thermal conductivity, high coefficient of. thermal expansion, transparency in the region of 230 to 8000 nm, considerably better than the matrix commonly used for low phonor energy lasers (max. 600 cm '"1 ), and low toxicity, allowing its application also in biological media.
  • This oxide may have the monoclinic or cubic structures, having a cationic site C s in the monoclinic structure and two cationic sites with C? and C ' 3i in the cubic structure.
  • This oxide also has high chemical stability and durability, low volatility in the and does not emit corrosive gases under electron bombardment, as in the case of sulphide-based luminophores.
  • Y2O3 is an ideal matrix for the construction of luminophores, being currently studied to obtain light emission not only in the red region, but also in other regions of the spectrum. televisions and displays. Research in this field is diverse, but in general there are two fronts; The first is to obtain light emission. by high energy excitation (Ultraviolet) by directly exciting the luminescent ions, such as Eu (IIi) and Tb (IH), targeting applications in LEDs and lasers. The second front focuses on infrared radiation excitation using Yb! III) as a sensitizer for improving ion emissions that can participate in the upconversion process, or upconvention, such as E (III) and T (III), for applications in lasers, light emission, biological markers and thermal sensing.
  • US20140302253A1 relates to a method for generating a metal ion doped zinc sulfide nanoparticle, and a method for generating warm white light through the use thereof. It also relates to a method for generating warm white light by a doped zinc sulfide nanoparticle. through the construction of an organic-inorganic hybrid thin film, combining the red emission of the ZnS: M particles in the blue of the organic compound, and green by ZnO / organic interface defects.
  • the present invention relates to nanoparticles generated by hierarchical nanostructuring in conjunction with the use of a mesoporous silica support, ensuring more delicate control over nanoparticles.
  • particle size control is accomplished by grinding followed by filtering using a determined pore size filter, efficient method only for macroscale.
  • the lack of close control over the size and shape of nanoparticles can lead to decreased emission performance. material light due to energy loss from scattering of irregularly shaped light or irregular particle agglomerates of varying sizes.
  • the method used allows control over nanoparticle size and growth, in addition to maintaining spherical shape and reduced sizes up to 5n.
  • the ZrOa defects attributed to this emission are oxygen vacancies, generated by the insertion of the anthanides into its structure.
  • this type of defect is sensitive to the atmosphere, as observed for this. for. most oxides in general, since the presence of Qx in the atmosphere may lead to the incorporation of oxygen by the oxide to suppress these vacancies and generate other types of defects, or the loss of O 2 in the case of a poor atmosphere in this gas, generating still other types of structure defects.
  • These changes lead to changes in the device's emission behavior over the long term, impairing its useful life.
  • Another aspect is the use of Eu (III) ions in a crystalline site with an inversion center (cubic ZrOa), one of which.
  • the use of two colors to obtain white light leads to a lower color resolution than when a combination of three colors is used, as in the present invention using the combination of blue emissions by the support silica itself, green by the Tb (III) ions and red by the I (III) ions, in addition to the defect emission used is not sensitive to the atmosphere.
  • nanoparticles of the present invention are small in size (4-5 nm) and are hierarchically spun nanostructures that prevent energy transfer between emitting ions, which in turn can interfere with emitter performance. Additionally, by the use of high temperature heat treatments, nanoparticles will present high stability, remaining intact, since they do not present an interface between the growth layers, interfaces which, most of the time, present defects as a path of decay. -radiative, reducing the emission efficiency of the material.
  • the present invention comprises a zirconium oxide (ZrOs) or yttrium oxide (Y2O3) nanoparticle, doped with ions Eu (III) at a concentration between 0.5 mol% and 2.0 mol%, and ions Tb ( III) at a concentration of 1.0 mol%, size 4-5 nm, nanostructured nanostructured in order to isolate said ions from contact with each other by means of the structure of doped and pure alternating layers. Additionally, nanoparticles are synthesized in situ supported within the pores of mesoporous silica coated with ZnO.
  • FIG. 1 represents a general illustration of the impregnation-decomposition (ICD) cycle method -
  • Figure 2 is an illustrative scheme of the 3ZnZr2EuTb2Eu system samples following the hierarchical growth of nanoparticles.
  • Figure 3 represents the results of the evaluation of the accumulated mass gain percentage as a function of the number of impregnation - decoration cycles (CIDs).
  • Figure 4 represents the X-ray diffractograms obtained for the samples analyzed.
  • Figure 5 represents a high resolution transmission microscopy (HR-TEM) image obtained from a representative sample.
  • Figure 6 represents the absorption spectra in the OV-Vis region converted by the Kubelka-Munk F (R) - (1-R) 2 / 2R function for the analyzed samples.
  • Figure 3 represents the excitation spectra obtained for the 3ZnZr2EuTb2Eu system. (a) ⁇ max ⁇ 433 nm, (b) ⁇ m-543 nm and (c) mr , ⁇ 613 nm and assignments.
  • Figure 9 represents the spectra of. issuance obtained for the 5ZnZr2EuTb2Eu system with (a) ' > : c ' 260 nm, fb) S KC - 350 nm and (c) 393 nm and their corresponding CIE diagrams.
  • Figure 10 represents the excitation spectra obtained for the 52nZ 2EuTb2Eu system with (a) 438 nm, (b) ⁇ ⁇ , ⁇ 543 nm and (c) 613 nm
  • Figure 13 represents the decay curves in natural logarithm, obtained as a function of time for the emissions $ ⁇ > ⁇ Eu2 of Eu (III) and Tb (III) in each system.
  • the present invention relates to ZxOz or Y2O3 nanoparticles, varying in size from 4 to 5 nm, doped with Eu (III) ions at a concentration between 0.5% ol and. 2.0% milli, and Tb (III) ions at a concentration of 1.0 mol%, nanostructured nanostructures in order to isolate said contact ions from each other by the structure of doped and pure alternating layers, these nanoparticles being anchored inside the pores of the mesoporous silica (PVG> coated with ZnO.
  • the nanoparticle of the present invention comprises a layered structure in the following order of compounds: It starts with a Z xOZ PULL core, followed by a 1.0 mol% doped (III) doped layer. followed by a layer of pure ZrOa followed by a 1.0 mol Tb (III) doped layer overlaid with a new layer of ZrO? followed by another 1.0 mol% E (III) doped layer, which is covered by a final layer of pure Z Oa.
  • An illustrative scheme of nanoparticle growth is shown in Figure 2.
  • the crystalline structure of nanoparticles is continuous, showing no interfaces between the growth layers after heat treatment, maintaining the integrity of the nanoparticles avoiding interface defects that serve as a non-radiative decay route, reducing the emission efficiency of the nanoparticles. material.
  • nanoparticles of ⁇ 2 and Y2Q3 are supported inside the pores of porous silica PVG, which silica prevents the coalescence of nanoparticles, composes the blue emission band and also functions as a form of. protection of the particles against the external environment.
  • the preparation of the porous silica, the porous glass Vycor 7930 (PVG), was as follows: the stick-shaped PVG was cut into 0.5 cm diameter and 0.1 cm thick discs. , which were treated with 1.0 M HCl Lr 1 for 30 min and then in acetone for 30 min. Thereafter, the discs were heat treated in a two-stage oven at 120 ° C for 2 h followed by 550 ° C for 72 h and finally transferred to a desiccator where stored.
  • the impregnation-deco position (CIDs) cycle method was used to obtain the nanoparticles, shown in Figure 1.
  • the impregnation of the syngie-source precursors was by immersion of the PVG discs in solutions.
  • One of the individual methanol compounds was dichloromethane (hexane to ZnO) for 18 hours.
  • the slides were washed with pure oraethane dielane (hexane-pure for ZnO) to ensure that the metallurgical compound was only within the porous matrix, preventing film formation on the surface of the slides.
  • This procedure consisted of an impregnation step.
  • the next step is thermal decomposition, which consists of subjecting the PVG discs to thermal decomposition at .600 ° C for 4 h with a heating rate of 10 ° C / min in a muffle furnace with ambient atmosphere, and after cooling to 200-250 ° C, it was transferred to a desiccator to terminate cooling avoiding moisture contact, and weighed on an analytical balance.
  • the completion of this step completes an impregnation-decomposition cycle. Successive cycles of impregnation-decomposition were performed, alternating the nature of the precursor in order to obtain lump-shell structures.
  • ZnO coating layers of different thicknesses were synthesized, followed by ZrO core stone nanoparticles? alternating the precursors used, in order from top to bottom, as outlined below.
  • ICD ZrO- I (III) 2 ICD ZrO;.,: I (III) 2. ICD ZrO- I (III)
  • Table 1 Synthesizing scheme of ZnO coating layers with different thicknesses, followed by ZrO? alternating the precursors used
  • Cycle-by-cycle samples were taken from the sample after recoiling with 2n0 (EVG / xZnO, x ::: 3, 5 : or 10), defining the numbering of cycles according to each layer / composition.
  • Synthesized reagents Ln (action) 3 were used for doping with Eu (III) and Tb (III).
  • Figure 2 shows the hierarchical growth of nanoparticles from the 3ZnZr2EuTb2Eu system sample.
  • nanoparticle growth tests X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), UV-absorption spectroscopy were performed. Diffuse Reflectance Vis (DRS) and f ⁇ tolumin.escence spectroscopy and CIE chro- graphicity diagrams.
  • Ma Figure 3b shows the effect of saturation., Observing the relative decrease of incorporation of ZrCs co. the highest number of ZnO ICDs prior to incorporation of 2r0 2 / 1.33% / ICD with 3 ICD, 1.14% / ICD with 5 ICD and finally 0.98% / ICD with 10 ICD ZnO ,, maintaining linearity with R ⁇ 0.98.
  • the overall profile of the diffractograms is very similar, observing the characteristic non-crystalline halo of PVG in the region of 20-25 ° and the main tetragonal Z rGbr peak slightly shifted at -30 ° 20, observing the appearance and development of this peak with increasing CID number as samples advance xZnZr2EuIb2Eu.
  • Photoluminescence measurements were obtained for the 3ZnZr2EuTb2Eu, 5ZnZr2EuTb2Eu and 10ZnZr2EuTb2E systems.
  • Tb (III) emissions The relative intensity of Tb (III) emissions is in agreement with its position in the intermediate dopagera layer in the. nanoparticle compared to the results obtained in the first report on the system without ZnO.
  • the relative intensity of the Eu (III) emissions in turn proved to be considerably higher than in the previously synthesized systems, indicating the successful use of the ZnO layer for group mitigation (-OH). silica and the consequent decrease in decay by this non-radiative route, contributing significantly to the improvement of the emission of the Eu (111).
  • the white emission sought by the work was obtained by using a 3 or 5 CID ZnO coating over the pores of the silica PVC, in the form of pure white (0.35, 0.33), close to the ideai (0.33 , 0.33) stipulated by the CIE standard, and teal, or warm, similar to sunlight,
  • Table 2 Values in milliseconds (ms). and behavior of the obtained lifetime for the analyzed systems. All measurements were performed in triplicate.
  • Eu (III) doped layers where a "protected" ions, 2.06 + 0.03 ms ⁇ Sample 3322122 ⁇ and 2.0410.02 ms (Sample (10) 322121) lifetime decrease, attributed to increased concentration of Eu (III) in the particle due to concentration suppression (or concentration quenching), and eventually a new lifetime increase to 2.13 + 0.05 ms / 0.88 + 0.03 ms (Sample 33221221) and 2.0810.G3 ms / 0.82 + 0.03 ms (Sample (10) 3221221) by coating the second doped layer.
  • the lifespan of "exposed" sites is longer (.0.74-0.88 ⁇ 0.02 s compared to 0.6- Q.8 + Q.1 ms from previous systems), which is attributed to overcoating. of the inner surface of PVG with. ZnO, leading to a decrease in the number of. -OH groups. silica and consequently the decrease in non-radiative loss due to interaction with them.

Abstract

The present invention has applications in the field of chemistry, more specifically in the field of illumination, and relates to a nanostructured nanoparticle for emitting white light. The nanoparticles according to the present invention have a small size and are nanostructured to prevent the transfer of energy between the emitting ions, thus preventing interference with the performance of the emitter. In addition, the nanoparticles are protected from the outside environment, exhibit high stability and crystal integrity. Unlike most commercially available LEDs and white lamps, which produce blueish or "cold" white, the nanoparticles according to the present invention emit pure white light, situated in the centre of the CIE diagram, or yellowish white light similar to sun light.

Description

NANOP RTICULA HIERARQUICAMENTE NANQES RtJTDRM)A PARA EMISSÃO  NANOP RICULATES HIERARCHICALLY NANQES RtJTDRM) FOR ISSUE
DE LOS BRANCA E USO DE LOS WHITE AND USE
CAMPO DA INVENÇÃO: FIELD OF THE INVENTION:
[001] A presente invenção se aplica no campo cia química, de forras mais específica na área de iluminação e faz referência a uma nanopartícula nanoestruturada dopada com íons iar.tanídeos para emissão de luz .branca.  [001] The present invention is applicable in the chemical field of coatings more specific in the field of illumination and refers to a nanostructured nanoparticle doped with iar.tanid ions for emission of white light.
FUNDAMENTOS A INVENÇÃO: BACKGROUND OF THE INVENTION:
[002] A iluminação de estado sólido, ou solidstate líghting é um campo da pesquisa com foco no desenvolvimento de novos dispositivos para iluminação de ambientes em geral, como na forma de lâmpadas e luminárias, focando na produção e desenvolvimento de LEDs brancos. A grande vantagem deste tipo de iluminação sobre ss lâmpadas de mercúrio ou de filamento é a sua eficiência, devido a redução do consumo de energia era torno de 80% para o caso da total substituição destas fontes por LEDs. Deste modo, a otimizaçâo dos LEDs com emissão branca faz.—se necessária para melhoria da eficiência dos dispositivos, diminuição do. custo de fabricação, bem como a otimizaçâo da luz branca obtida, a qual se entende que quanto mais pura ou similar à luz solar, mais confortável para o ser humano. Os LEDs brancos mais utilizados na atua.1 idade são baseados na granada de itrio e alumínio dopada com Ce (III), ou Ce : YAG, e apresentam uma tonalidade azulada, ou branco "frio".  Solid state lighting is a field of research focusing on the development of new devices for general room lighting, such as lamps and luminaires, focusing on the production and development of white LEDs. The great advantage of this type of lighting over mercury or filament lamps is its efficiency, due to the reduction of energy consumption of around 80% in case of the total replacement of these sources by LEDs. Thus, the optimization of white-emitting LEDs is necessary to improve the efficiency of the devices, reducing the. manufacturing cost, as well as the optimization of the obtained white light, which means that the purer or similar to sunlight, the more comfortable for humans. The most commonly used white LEDs in the industry are based on Ce (III) or Ce: YAG-doped aluminum yttrium grenade and have a bluish or "cool" white tint.
[003] O óxido de Zircônio (ZrCc) apresenta propriedades interessantes para aplicação na área de iluminação, e por esse motivo é amplamente estudado em pesquisas relacionadas à área. Este óxido pode apresentar três estruturas: a monoclínica, mais estável à temperatura ambiente, tetragonal a partir de 1170°C, a qual pode ser estabilizada era baixas temperaturas pela adição de dopantes como Er (III) e Y(III) e, por fim, a estrutura cúbica, gerada a partir de 2370 °C, a qual pode ser estabilizada em. baixas temperaturas pela adição de cátlons substitucionaí s co o Ca (II) e Mg (II). Considerando as estruturas acima citadas, a estrutura tetragonal é aquela que apresenta maior destaque, sendo facilmente estabilizada com a adição de Y2O3, além de apresentar propriedades como dureza elevada, alta resistência térmica e .química, alta condutividade iónica, baixa condutividade letr.ônica, baixa energia de fônon e transparência na região do visível. Zirconium oxide (ZrCc) has interesting properties for application in the area of illumination, and for this reason is widely studied in related research. This oxide can have three structures: the monoclinic, more stable at temperature tetragonal from 1170 ° C which can be stabilized at low temperatures by the addition of dopants such as Er (III) and Y (III) and finally the cubic structure generated from 2370 ° C at which can be stabilized at. low temperatures by the addition of substitutable cathons such as Ca (II) and Mg (II). Considering the above mentioned structures, the tetragonal structure is the one that stands out, being easily stabilized with the addition of Y2O3, besides presenting properties such as high hardness, high thermal and chemical resistance, high ionic conductivity, low electron conductivity, low phonon energy and transparency in the visible region.
[004] Ainda, o Zr0 é amplamente utilizado na síntese de cerâmicas, para aplicações técnicas em. diversos campos como em isolamentos para produção sob alta temperatura, utilizando-se sua estrutura cúbica, que apresenta baixa condutividade térmica e alto coeficiente de expansão térmica, e em eletrônica e microeletrônica, devido à sua baixa condutividade eletrônica e alta condutividade íônica principalmente na sua forma tetragonal.  Also, Zr0 is widely used in ceramic synthesis for technical applications in. fields such as insulation for high temperature production using its cubic structure, which has low thermal conductivity and high coefficient of thermal expansion, and in electronics and microelectronics, due to its low electronic conductivity and high ionic conductivity mainly in its form. tetragonal.
[005] Quando o Ζτθζ é estabilizado com óxidos cie terras raras como HfOs e CeOs, pode ser utilizado para aplicação como eletrólito sólido em células de combustível e em sensores de oxigénio eletroquímicos . Devido ao seu alto grau de transparência na região de 300 a 8000 nm, alto índice cie refração, larga banda proibida- (5,2-5, 8 eV e baixa energia de fônon (470 cm'"1) , consideravelmente menor do que outras matrizes como SiO; (1100 cm"1) e ΆΙ Ο (870 cm-1), o Zr02 apresenta excelentes propriedades para a inserção de íons lantanideos com propriedades de luminescência. [006] íons de lantanídeos como Eu (III), Tb (III), Er (III) e Yb (III) apresentam emissões estreitas na região do visível, e do infravermelho para Y (III), as quais possuem longos tempos de vida, proporcionando-lhes importantes aplicações em dispositivos ópticos. O ZrO? apresenta larga banda proibida, que reduz a probabilidade de decaimento por rotas não radiativas por part dos íons lantanídeos, além de baixa energia de fôrion que. reduz a probabilidade de relaxação não-radiatíva assistida por fonons, promovendo um aumento significativo do número e a probabilidade de ocorrência das emissões dos íons lantanídeos em ZzQz, representando aplicabilidade na área de fotônica. When Ζτθζ is stabilized with rare earth oxides such as HfOs and CeOs, it can be used as a solid electrolyte for fuel cells and electrochemical oxygen sensors. Due to its high degree of transparency in the region of 300 to 8000 nm, high refractive index, forbidden wide band (5.2-5, 8 eV and low phonon energy (470 cm '' 1 ), considerably lower than In other matrices such as SiO; (1100 cm- 1 ) and ΆΙ Ο (870 cm- 1 ), Zr0 2 has excellent properties for the insertion of lanthanide ions with luminescence properties. Lanthanide ions such as Eu (III), Tb ( III), Er (III) and Yb (III) have narrow visible and infrared emissions to Y (III), which have long lifetimes. , providing them with important applications in optical devices. The ZrO? It has a large forbidden band, which reduces the likelihood of decay by non - radioactive pathways by lanthanide ions, as well as a low forion energy. reduces the probability of phonon-assisted non-radiatory relaxation, promoting a significant increase in the number and probability of occurrence of lanthanide ions in ZzQz, representing applicability in the photonic area.
[007] Dentre algumas das possíveis combinações para dopagem encontram-se aquela com Eu (IH) e Tb (III), a qual visa a combinação das emissões de defeitos do ZrO?. com as dos íons lantanídeos para obtenção de luz branca, e também a dopagem com Er (III) e Yb (III), proporcionando o fenómeno de upconversA on ,  Some of the possible doping combinations are those with Eu (IH) and Tb (III), which aims at combining ZrO? with those of lanthanide ions to obtain white light, and also doping with Er (III) and Yb (III), providing the phenomenon of upconversA on,
[008] O Y' 203 por sua vez apresenta propriedades similares, como alta condutividade térmica, alto coeficiente de. expansão térmica, transparência na região de 230 a 8000 nm, consideravelmente melhor do que da matriz co umente usada para lasers baixa energia de fônori (máx. 600 cm'"1) , além de baixa toxicidade, permitindo sua aplicação também em meios biológicos. O ' 2 03 in turn has similar properties, such as high thermal conductivity, high coefficient of. thermal expansion, transparency in the region of 230 to 8000 nm, considerably better than the matrix commonly used for low phonor energy lasers (max. 600 cm '"1 ), and low toxicity, allowing its application also in biological media.
[009] Este óxido pode apresentar as estruturas monoclínica ou cubica, apresentando um sitio catiônico Cs na estrutura monoclínica e dois sítios catiônicos co simetrias C? e C'3i na estrutura cúbica. Este óxido apresenta também alta estabilidade química e durabilidade, baixa volatilidade no vácuo, e não emite gases corrosivos sob bombardeamento de elétrons, como no caso de luminóforos à base de sul fetos. [009] This oxide may have the monoclinic or cubic structures, having a cationic site C s in the monoclinic structure and two cationic sites with C? and C ' 3i in the cubic structure. This oxide also has high chemical stability and durability, low volatility in the and does not emit corrosive gases under electron bombardment, as in the case of sulphide-based luminophores.
[010] A ver por suas propriedades, o Y2O3 consiste numa matriz ideal para construção de luminóforos, sendo atualmente estudado para obtenção de emissão de luz não só na região do vermelho, mas também em outras regiões do espectro, além de já se utilizado em televisores e displays . As pesquisas neste ramo são diversas, mas em geral segue-se duas frentes; a primeira consiste na obtenção de emissão de luz. por excitação de alta energia (Ultravioleta) excit.ando-se diretamente os ions luminescentes, como Eu(IIi) e Tb (IH) , visando aplicações em LEDs e lasers. A segunda frente foca na excitação com radiação no infravermelho utilizando-se Yb! III) como senslbilizador para melhoria das emissões de ions que possam participar do processo de conversão ascendente, ou upconv rsion, como E (III) e T (III), para aplicações em lasers, emissão de luz, marcadores biológicos e sensorlamento térmico .  [010] Seeing for its properties, Y2O3 is an ideal matrix for the construction of luminophores, being currently studied to obtain light emission not only in the red region, but also in other regions of the spectrum. televisions and displays. Research in this field is diverse, but in general there are two fronts; The first is to obtain light emission. by high energy excitation (Ultraviolet) by directly exciting the luminescent ions, such as Eu (IIi) and Tb (IH), targeting applications in LEDs and lasers. The second front focuses on infrared radiation excitation using Yb! III) as a sensitizer for improving ion emissions that can participate in the upconversion process, or upconvention, such as E (III) and T (III), for applications in lasers, light emission, biological markers and thermal sensing.
[011] Alguns documentos do estado da técnica descrevem a obtenção de nanopartícuias compostas pelos elementos Zn (II), Zr (IV ou Y(III), dopadas com ions metálicos para emissão de luz.  Some prior art documents describe the obtaining of nanoparticles composed of the elements Zn (II), Zr (IV or Y (III), doped with metal ions for light emission.
[012] O documento US20140302253A1 refere-se a um método para geração de uma nanoparticula de sulfeto de zinco dopado com ion metálico, e um método para geração de luz branca quente através do uso do mesmo. Refere-se também a um método para geração de luz branca quente por uraa nanoparticula de sulfeto de zinco dopado com. io metálico através da construção de um filme fino híbrido orgânico-inorgãnico, combinando a emissão no vermelho das partículas ZnS:M, no azul do composto orgânico, e no verde por defeitos de interface ZnO/orgânico - Diferentemente, a presente invenção refere-se à nanoparticulas geradas por meio da nanoestruturação hierárquica em conjunto com a utilização de um suporte de sílica mesoporosa, garantindo um controle mais delicado sobre a dopagera com os íons emissores e sobre o tamanho e crescimento das nanoparticulas. Adicionalmente, no referido documento, o controle de tamanho de partícula é realizado através de moagem seguida de filtragem utilizando- se uru filtro com tamanho de poro determinado, método eficiente somente para macroescala . A ausência de ura controle minucioso sobre o tamanho e forma das nanoparticulas pode levar à diminuição do desempenho de emissão de. luz do material devido à perda de energia pelo espalhamento de luz por formatos irregulares ou aglomerados irregulares das partículas pelos tamanhos variados. Ra presente invenção o método utilizado permite controle sobre tamanho e crescimento das nanoparticulas, além da manutenção de se formato esférico e tamanhos reduzidos de até 5 n . US20140302253A1 relates to a method for generating a metal ion doped zinc sulfide nanoparticle, and a method for generating warm white light through the use thereof. It also relates to a method for generating warm white light by a doped zinc sulfide nanoparticle. through the construction of an organic-inorganic hybrid thin film, combining the red emission of the ZnS: M particles in the blue of the organic compound, and green by ZnO / organic interface defects. In contrast, the present invention relates to nanoparticles generated by hierarchical nanostructuring in conjunction with the use of a mesoporous silica support, ensuring more delicate control over nanoparticles. dopagera with the emitting ions and on the size and growth of nanoparticles. Additionally, in said document, particle size control is accomplished by grinding followed by filtering using a determined pore size filter, efficient method only for macroscale. The lack of close control over the size and shape of nanoparticles can lead to decreased emission performance. material light due to energy loss from scattering of irregularly shaped light or irregular particle agglomerates of varying sizes. With the present invention the method used allows control over nanoparticle size and growth, in addition to maintaining spherical shape and reduced sizes up to 5n.
[013] 0 documento de Sano jam Dhiren Meetei et ai., intitulado Hydrothermal synthesís and whíte light emission of cubic ZrC>2:Eu3* nano-crystals, refere-se à sintetização de nanocristaís de zircônia cúbica, dopados com Eu (III) por meio da técnica hidrotérmica, para emissão de luz branca. Contudo, zircônia com estrutura cristalina cúbica apresenta sítio catíônico (onde se localizarão os íons emissores) com centro de inversão, o qual diminui consideravelmente a intensidade de emissão do Ion Eu (III). Adicionalmente, a emissão obtida no referido documento consiste na combinação de emissões de defeitos do Ζχθζ, consistindo de uma banda larga com máximo na região cio verde, e das emissões no vermelho pelos íons Eu(III) . Os defeitos do ZrOa aos quais se atribui esta emissão são vacâncias de oxigénio, geradas pela própria inserção dos iantanideos em sua estrutura. No entanto, este tipo de defeito é sensível á atmosfera, como observado para este e. para. a maioria dos óxidos em geral, já que a presença de Qx na atmosfera pode levar à incorporação de oxigénio pelo óxido para supressão destas vacâncias e gerar outros tipos de defeitos, ou pela perda de O2 no caso de uma atmosfera pobre neste gás, gerando ainda outros tipos de defeitos na estrutura. Estas alterações levam a mudanças no comportamento de emissão do dispositivo a longo prazo, prejudicando sua vida útil. Outro aspecto é a utilização de íons Eu (III) num sítio cristalino com centro de inversão (ZrOa cúbico), sendo que um. dos fatores especiais das emissões destes íons se encontra justamente no fato de uma de suas emissões (sDo~>?F-) ser consideravelmente melhorada quando o Eu (III) se encontra em sítios sem centro de inversão. Na presente invenção, embora o sítio catiôníco tradicional da ZrO? tetragonal apresente centro de inversão, as distorções na estrutura cristalina resultantes do tamanho pequeno das nanoparticulas leva à quebra" deste centro de inversão. Adicionalmente, a utilização de duas cores para a obtenção da luz branca leva a uma. menor resolução de cor do que quando se utiliza uma combinação de três cores, como na presente invenção utilí zando-se a combinação de emissões no azul pela própria sílica suporte, verde pelos íons Tb (III) e vermelho pelos íons Eu (III), além do que a emissão de defeito utilizada não é sensível à atmosfera. [013] The document by Sano jam Dhiren Meetei et al., Entitled Hydrothermal Synthesis and Whiter Light Emission of Cubic ZrC> 2: Eu 3 * nano-crystals, refers to the synthesis of Eu-doped cubic zirconia nanocrists ) by hydrothermal technique for the emission of white light. However, cubic crystalline zirconia have a cationic site (where emitting ions will be located) with an inversion center, which considerably decreases the emission intensity of Ion Eu (III). Additionally, the emission obtained in this document consists of the combination of defect emissions of Ζχθζ, consisting of a broadband with maximum in the green heat region, and emissions in red by the Eu (III) ions. The ZrOa defects attributed to this emission are oxygen vacancies, generated by the insertion of the anthanides into its structure. However, this type of defect is sensitive to the atmosphere, as observed for this. for. most oxides in general, since the presence of Qx in the atmosphere may lead to the incorporation of oxygen by the oxide to suppress these vacancies and generate other types of defects, or the loss of O 2 in the case of a poor atmosphere in this gas, generating still other types of structure defects. These changes lead to changes in the device's emission behavior over the long term, impairing its useful life. Another aspect is the use of Eu (III) ions in a crystalline site with an inversion center (cubic ZrOa), one of which. One of the special factors of the emissions of these ions lies precisely in the fact that one of their emissions ( s Do ~> ? F-) is considerably improved when the I (III) is in places with no inversion center. In the present invention, although the traditional cationic site of ZrO? tetragonal center presents an inversion center, the distortions in the crystal structure resulting from the small size of the nanoparticles lead to the breakdown of this inversion center. In addition, the use of two colors to obtain white light leads to a lower color resolution than when a combination of three colors is used, as in the present invention using the combination of blue emissions by the support silica itself, green by the Tb (III) ions and red by the I (III) ions, in addition to the defect emission used is not sensitive to the atmosphere.
[014] As nanoparticulas da presente invenção apresentam- tamanho pequeno (4-5 nm) e são nanoestruturadas hierarquicamente de raodo que evitam a transferência de energia entre os ions emissores que, por sua vez, pode interferir no desempenho do emissor. Adicionalmente, pela utilização de tratamentos térmicos a alta temperatura as nanopa tículas apresentara alta estabilidade, se mantendo íntegras, já que não apresentam, interface entre as camadas de crescimento, interfaces as quais, na maioria das vezes, apresentam defeitos como uma rota de decaimento nâo-radiatívo, diminuindo a eficiência de emissão do material. The nanoparticles of the present invention They are small in size (4-5 nm) and are hierarchically spun nanostructures that prevent energy transfer between emitting ions, which in turn can interfere with emitter performance. Additionally, by the use of high temperature heat treatments, nanoparticles will present high stability, remaining intact, since they do not present an interface between the growth layers, interfaces which, most of the time, present defects as a path of decay. -radiative, reducing the emission efficiency of the material.
[015] O ajuste das concentrações utilizadas dos ions Tb (III} e Eu (III) permite obter uma emissão branca pura, localizada no centro do diagrama CIE, ou branco amarelado, similar à luz do sol, diferentemente da maioria dos lED e lâmpadas brancas comerciais que consistem de um branco azulado cu "frio".  [015] Adjusting the concentrations used of the Tb (III} and Eu (III) ions gives a pure white emission, located in the center of the CIE diagram, or yellowish white, similar to sunlight, unlike most LEDs and lamps. Commercial whites consisting of a bluish white "cold" cu.
BREVE DESCRIÇÃO DA INVENÇÃO:  BRIEF DESCRIPTION OF THE INVENTION:
[016] A presente invenção compreende uma nanoparticula de óxido de zircônio (ZrOs) ou óxido de ítrio (Y2O3) , dopada com ions Eu (III) na concentração entre 0,5 %mol e 2,0 %mol, e ions Tb (III) na concentração de 1,0 %mol, de tamanho de 4-5 nm, nanoestruturada hierarquicamente de: modo a isolar os referidos ions do contato entre si por meio da estrutura d camadas alternadas puras e dopadas. Adicionalmente, as nanopart ículas são sintetizadas ín si tu suportadas no interior dos poros de sílica mesoporosa recobertos cora ZnO.  [016] The present invention comprises a zirconium oxide (ZrOs) or yttrium oxide (Y2O3) nanoparticle, doped with ions Eu (III) at a concentration between 0.5 mol% and 2.0 mol%, and ions Tb ( III) at a concentration of 1.0 mol%, size 4-5 nm, nanostructured nanostructured in order to isolate said ions from contact with each other by means of the structure of doped and pure alternating layers. Additionally, nanoparticles are synthesized in situ supported within the pores of mesoporous silica coated with ZnO.
[017] As concentrações utilizadas dos ions Tb (III) - 1.0 %mol e Eu (III) - 1.0 %mol permitem, a combinação das emissões nas bandas verde e vermelha destes respectivos ions com a emissão no azul. da -sílica, de modo a obter uma emissão branca pura, localizada no centro do diagrama CIE, e ainda, com o aumento da dopagem de Eu (III) para 1.5 %mol promove o branco amarelado, similar à luz do sol, bastante buscado nas pesquisas de emissores de luz branca. [017] The concentrations used for ions Tb (III) - 1.0 mol% and Eu (III) - 1.0 mol% allow the combination of emissions in the green and red bands of these respective ions. with emission in blue. of silica, in order to obtain a pure white emission, located in the center of the CIE diagram, and, with the increase of doping of Eu (III) to 1.5 mol%, it promotes the much sought after yellowish white, similar to sunlight. in the research of white light emitters.
BREVE DESCRIÇÃO DAS FIGURAS: BRIEF DESCRIPTION OF THE FIGURES:
[018] Ά Figura 1 representa uma ilustração geral do método de ciclos de impregnação-decomposição (CID) - [018] Ά Figure 1 represents a general illustration of the impregnation-decomposition (ICD) cycle method -
[019] A Figura 2 representa um esquema ilustrativo das amostras do sistema 3ZnZr2EuTb2Eu, acompanhando o crescimento hierárquico das nanopartícuias . Figure 2 is an illustrative scheme of the 3ZnZr2EuTb2Eu system samples following the hierarchical growth of nanoparticles.
[020] A Figura 3 representa os resultados da avaliação do percentual de ganho de massa acumulado em função do número de ciclos de impregnaçSo--decorapcsic;ão (CIDs) .  [020] Figure 3 represents the results of the evaluation of the accumulated mass gain percentage as a function of the number of impregnation - decoration cycles (CIDs).
[021] A Figura 4 representa os difratogramas de: raios X obtidos para as amostras analisadas.  Figure 4 represents the X-ray diffractograms obtained for the samples analyzed.
[022] A Figura 5 representa uma imagem de microscopia de transmissão de alta resolução (HR-TEM) obtida de u a amostra representativa .  Figure 5 represents a high resolution transmission microscopy (HR-TEM) image obtained from a representative sample.
[023] Â Figura 6 representa os espectros de absorção na região do OV-Vis convertidos pela função Kubelka-Munk F(R) - (1-R)2/2R para as amostras analisadas. [023] Figure 6 represents the absorption spectra in the OV-Vis region converted by the Kubelka-Munk F (R) - (1-R) 2 / 2R function for the analyzed samples.
[024] A Figura 7 representa os espectros de emissão obtidos para o sistema 3ZnZr2£uTb2Eu com (a) βχο = 260 r,m, (b) X¾xc - 350 nm e (c) Ae:ic = 393 nm e seus diagramas CIE correspondentes . [024] Figure 7 represents the emission spectra obtained for the 3ZnZr2 £ uTb2Eu system with (a) βχο = 260 r, m, (b) X ¾xc - 350 nm and (c) A e: i c = 393 nm and their corresponding CIE diagrams.
[025] A Figura 3 representa os espectros de excitação obtidos para o sistema 3ZnZr2EuTb2Eu com. (a) Xbin~ 433 nm, (b) ÂSm- 543 nm e (c) mr,~ 613 nm e atrib ições. Figure 3 represents the excitation spectra obtained for the 3ZnZr2EuTb2Eu system. (a) λ max ≤ 433 nm, (b) δ m-543 nm and (c) mr , ~ 613 nm and assignments.
[026] A Figura 9 representa os espectros de. emissão obtidos para o sistema 5ZnZr2EuTb2Eu com (a) «>:c« 260 nm, fb) SKC- 350 nm e (c) 393 nm e seus diagramas CIE correspondentes . [026] Figure 9 represents the spectra of. issuance obtained for the 5ZnZr2EuTb2Eu system with (a) '> : c ' 260 nm, fb) S KC - 350 nm and (c) 393 nm and their corresponding CIE diagrams.
[027] A Figura 10 representa os espectros de excitação obtidos para o sistema 52nZ 2EuTb2Eu com (a) 438 nm, (b) λ^,~ 543 nm e (c) 613 nm  [027] Figure 10 represents the excitation spectra obtained for the 52nZ 2EuTb2Eu system with (a) 438 nm, (b) λ ^, ~ 543 nm and (c) 613 nm
[028] A Figura 11 representa os espectros de emissão obtidos para o sistema i0ZnZr2EuTb2£u com (a) λ^ο^ 260 nm, (b) λόί;ο= 350 nm e (c) .xc~ 393 nm e seus diagramas CIE correspondentes . [028] Figure 11 represents the emission spectra obtained for the i0ZnZr2EuTb2 £ u system with (a) λ ^ ο ^ 260 nm, (b) λ όί ; ο = 350 nm and (c). xc ~ 393 nm and their corresponding CIE diagrams.
[029] A Figura 12 representa os espectros de excitação obtidos para o sistema 10ZnZr2EuTb2Eu com (a) = 430 nm, (.b) 543 nm e (c) 613 nm. [029] Figure 12 represents the excitation spectra obtained for the 10ZnZr2EuTb2Eu system with (a) = 430 nm, (.b) 543 nm and (c) 613 nm.
[030] A Figura 13 representa as curvas de decaimento em logaritmo natural, obtidas em função do tempo para as emissões $Ώο>→Τ2 do Eu (III) e do Tb (III) em cada sistema.[030] Figure 13 represents the decay curves in natural logarithm, obtained as a function of time for the emissions $ Ώο> → Eu2 of Eu (III) and Tb (III) in each system.
DESCRIÇÃO DETALHADA DA INVENÇÃO: DETAILED DESCRIPTION OF THE INVENTION:
[031] A presente invenção refere-se a nanoparticuias de ZxOz ou Y2O3, com tamanho variável entre 4 e 5 nm, dopadas com ions Eu (III) na concentração entre 0,5 % ol e. 2,0 %moi, e ions Tb (III) na concentração de 1,0 %mol, nanoestruturadas hierarquicamente de modo a isolar os referidos ions do çontato entre si por meio da estrutura de camadas alternadas puras e dopadas, sendo que estas nanoparticuias estão ancorada no interior dos poros da sílica mesoporosa (PVG> recobertos com ZnO .  [031] The present invention relates to ZxOz or Y2O3 nanoparticles, varying in size from 4 to 5 nm, doped with Eu (III) ions at a concentration between 0.5% ol and. 2.0% milli, and Tb (III) ions at a concentration of 1.0 mol%, nanostructured nanostructures in order to isolate said contact ions from each other by the structure of doped and pure alternating layers, these nanoparticles being anchored inside the pores of the mesoporous silica (PVG> coated with ZnO.
[032] A nanopartícula da presente invenção compreende uma estrutura em camadas respeitando a seguinte ordem, de compostos: Inicia~se com um caroço de Z xOz PUXO, seguido de uma camada dopada com 1,0 %mol Eu (III), esta seguida de uma camada de ZrOa puro» seguida de uma camada dopada com 1,0 mol Tb (III), recoberta por nova camada de ZrO? puro, seguida de outra camada dopada com 1,0 %mol E (III), a qual é recoberta por uma camada final de Z Oa puro. Um esquema ilustrativo do crescimento das nanopârtículas se encontra na Figurai 2. The nanoparticle of the present invention comprises a layered structure in the following order of compounds: It starts with a Z xOZ PULL core, followed by a 1.0 mol% doped (III) doped layer. followed by a layer of pure ZrOa followed by a 1.0 mol Tb (III) doped layer overlaid with a new layer of ZrO? followed by another 1.0 mol% E (III) doped layer, which is covered by a final layer of pure Z Oa. An illustrative scheme of nanoparticle growth is shown in Figure 2.
[033] As concentrações utilizadas dos íons Tb(ili) - 1.0 %mol e Eu (III) - LO %mol, permitem a combinação das emissões nas bandas verde e vermelha destes respectivos ions cora emissão no azul da sílica PVG, de modo a obter uma emissão branca pura, localizada no centro do diagrama CIE. Com o aumento da dopagem de E (III) para 1.5 % ol obteve-se o branco amarelado, similar à luz do sol, também., bastante buscado nas pesquisas de emissores de luz branca.  [033] The concentrations used for Tb (ili) - 1.0 mol% and Eu (III) - LO% mol ions allow the combination of emissions in the green and red bands of these respective ions with emission in blue of PVG silica in order to obtain a pure white emission, located in the center of the CIE diagram. Increasing the doping of E (III) to 1.5% ol gave yellowish white, similar to sunlight, as well, much sought in the research of white light emitters.
[034] A estrutura cristalina das nanoparticulas é continua, não apresentando interfaces entre as camadas de crescimento após o tratamento térmico, mantendo a integridade das nanoparticulas evitando defeitos de interface que servem, como rota de decaimento não-radíativo, diminuindo a eficiência de emissão do material .  [034] The crystalline structure of nanoparticles is continuous, showing no interfaces between the growth layers after heat treatment, maintaining the integrity of the nanoparticles avoiding interface defects that serve as a non-radiative decay route, reducing the emission efficiency of the nanoparticles. material.
[035] As nanoparticulas de Ζχθ2 e Y2Q3 se encontram suportadas no interior dos poros da sílica porosa PVG, sílica esta que evita a coalescência das nanoparticulas, compõe a banda azul da emissão e também funciona como uma forma de. proteção das partículas contra o meio externo.  The nanoparticles of Ζχθ2 and Y2Q3 are supported inside the pores of porous silica PVG, which silica prevents the coalescence of nanoparticles, composes the blue emission band and also functions as a form of. protection of the particles against the external environment.
[036] Embora o ancoramento de nanoparticulas no interior de poros de sílica porosa não seja uma novidade, o recobrimento dos poros com ZnO com a finalidade de reduzir a perda de energia através de mecanismo não-radiativo pelos grupos hidroxila {-OH)' da sílica é inovador e apresentou resultados significativos na melhoria da emissão do Ion Eu (III), mais sensível ao mecanismo citado. Although anchoring nanoparticles within porous silica pores is not new, pore coating with ZnO to reduce energy loss through non-radiative mechanism by the hydroxyl groups (-OH) ' of silica is innovative and presented significant results in improving the emission of Ion Eu (III), more sensitive to the mechanism mentioned.
[037] o preparo da sílica porosa, o vidro poroso Vycor 7930 (PVG), deu-se da seguinte forma: cortou-se o PVG com formato de bastão em discos de 0,5 cm de diâmetro e 0,1 cm de espessura, os quais foram tratados em H.Cl 1,0 mói Lr1 por 30 min e a seguir em acetona por 30 min. Em seguida os discos foram tratados termicamente em estufa em dois patamares, a 120 °C por 2 h seguido de 550 °C por 72 h, sendo por fim transferidos para dessecadór onde forara armazenados. The preparation of the porous silica, the porous glass Vycor 7930 (PVG), was as follows: the stick-shaped PVG was cut into 0.5 cm diameter and 0.1 cm thick discs. , which were treated with 1.0 M HCl Lr 1 for 30 min and then in acetone for 30 min. Thereafter, the discs were heat treated in a two-stage oven at 120 ° C for 2 h followed by 550 ° C for 72 h and finally transferred to a desiccator where stored.
[038] Em seguida, utílizou-se o método de ciclos de impregnação-deco posição (CIDs) para a obtenção das nanoparticulas, representado na Figura 1. A impregnação dos precursores síngie-source se deu pela imersão: dos discos de PVG em soluções dos compostos metalorganicos individuais era diclorometano (hexano para ZnO) por 18 horas.  Next, the impregnation-deco position (CIDs) cycle method was used to obtain the nanoparticles, shown in Figure 1. The impregnation of the syngie-source precursors was by immersion of the PVG discs in solutions. One of the individual methanol compounds was dichloromethane (hexane to ZnO) for 18 hours.
[039] Após a impregnação lâvou-se as lâminas com dielo oraetano puro (hexano- puro para ZnO) de modo a garantir que o composto metalorgânico estivesse apenas no interior da matriz porosa, evitando a formação de filme na superfície das lâminas. Este procedimento consistiu numa etapa de impregnação .  After impregnation, the slides were washed with pure oraethane dielane (hexane-pure for ZnO) to ensure that the metallurgical compound was only within the porous matrix, preventing film formation on the surface of the slides. This procedure consisted of an impregnation step.
[040] A etapa seguinte é a de decomposição térmica, consistindo em submeter-se os discos de PVG à decomposição térmica a .600 °C por 4 h comi velocidade de aquecimento de 10 °C/min era forno mufla com atmosfera ambiente, e após resfriarem a 200-250 °C transferiu-se para um dessecadór para término do resfriamento evitando-se- contato com umidade, e por fira pesou-se em balança analítica. O término desta etapa completa um ciclo de impregnação-decomposição . [041] Realizou-se sucessivos ciclos de impregnação- decomposição, alternando a natureza do precursor a fim de se obter as estruturas tipo caroçoêcasca. Utilizou-se os seguintes precursores: soluções em diclorometano de acetilacetonato Zr IV) (ZrOs) , deste dopado com acetila.cetonatos Eu (III) ou Tb(III) (ZrO:::Ln(III) ) , e solução em hexano de 2-etilhexanoato Ζ,ηίΙΙ) (ZnO) , [040] The next step is thermal decomposition, which consists of subjecting the PVG discs to thermal decomposition at .600 ° C for 4 h with a heating rate of 10 ° C / min in a muffle furnace with ambient atmosphere, and after cooling to 200-250 ° C, it was transferred to a desiccator to terminate cooling avoiding moisture contact, and weighed on an analytical balance. The completion of this step completes an impregnation-decomposition cycle. Successive cycles of impregnation-decomposition were performed, alternating the nature of the precursor in order to obtain lump-shell structures. The following precursors were used: acetylacetonate Zr IV) dichloromethane solutions (ZrOs) doped with acetyl.cetonates Eu (III) or Tb (III) (ZrO ::: Ln (III)), and hexane solution of 2-ethylhexanoate Ζ, ηίΙΙ) (ZnO),
[042] Para o recobrimento do PVG com ZnO sintetizou- s camadas de recobrimento de ZnO com diferentes espessuras, seguido de nanoparticulas caroçoÊcasca de ZrO? alternando-se os precursores utilizados, na ordem de cima para baixo, como esquematizado a seguir.  [042] For the coating of PVG with ZnO, ZnO coating layers of different thicknesses were synthesized, followed by ZrO core stone nanoparticles? alternating the precursors used, in order from top to bottom, as outlined below.
3ZnZr2I2uíEb2Eu 5Zn2r2Et-0¾>2Eu 10ZnZr2EuTb2E  3ZnZr2I2uiEb2Eu 5Zn2r2Et-0¾> 2Iu 10ZnZr2EuTb2E
3 CID ZnO 5 CID ZnO 10 CID ZnO 3 ICD ZnO 5 ICD ZnO 10 ICD ZnO
3 CID Z O; 3 CID Z O.? 3 CID ZrO;.  3 CID Z O; 3 CID Z O.? 3 CID ZrO;
CID ZrO; Eu (III) 2 CID ZrO?.: Eu (III.) 2 CID ZrO; : Eu (III) CID ZrO; I (III) 2 ICD ZrO?: I (III) 2 ICD ZrO; : Me (III)
2 CID Z.rQ.? 2 CID Zr03 2 CID ZrO; 2 CID Z.rQ. ? 2 CID Zr0 3 2 CID ZrO;
1 CID ZrO; T (III) I C D ZrO.?: Tb (III) 1 CID ZrO;: Tb (III) 1 CID ZrO; Tb (III) I C D ZrO?: Tb (III) 1 CID ZrO ?: Tb (III)
2 CID 2rO.; 2 CID ZrO;; 2 CID ZrO? 2 CID 2rO ; 2 CID ZrO ;; 2 CID ZrO ?
2 CID ZrO- Eu (III) 2 CID ZrO;.,: Eu (III) 2. CID Z O- : Eu (III) 2 ICD ZrO- I (III) 2 ICD ZrO;.,: I (III) 2. ICD ZrO- I (III)
3 CID ZrO;; 3 CID ZrOv 3 CID ZrO> 3 CID ZrO ;; 3 ICD ZrOv 3 ICD ZrO>
Tabela 1: Esquema de sintetização de camadas de recobrimento de ZnO com diferentes espessuras, seguido de nanoparticulas caroçogcasca de ZrO? alternando-se os precursores utilizados  Table 1: Synthesizing scheme of ZnO coating layers with different thicknesses, followed by ZrO? alternating the precursors used
[043] A partir do referido esquema de sintetização, formou-se as seguintes estruturas, nas quais "//'" indica recobrimento, V" indica suportado na superfície, e "@" recobrimento com nova camada: From said synthesis scheme, the following structures were formed, in which "// ' indicates overlay, V" indicates supported on the surface, and "@" overlay with new layer:
PVG//3ZnO/3Zr02 @2Zr02:Eu (III) @2ZrO?(?lZr02:Tb (III) @2ZrO?.@2ZrO.? : Eu (III) @3Zr02, P¥G//5ZnO/3Zr02g2ZrOE:Eu (III) @2ΖΓ02@1ΖΓΟ2 : Tb ( III ) @2Zr02@22rC¾ : Eu (III) g32r02, e PVG//lQZnO/3Zr02@2Zr02:Eu (III) @2ZrG2@ !Zr02 : Tb ( III ) @2Zr02i32ZrO≤ : Eu ( III ) @3Zr02, abreviados para, respectivamente,PVG // 3ZnO / 3Zr0 2 @ 2Zr0 2 : Me (III) @ 2ZrO ? ("IZr02: Tb (III)" 2ZrO "." 2ZrO. ": I (III) @ 3Zr0 2 , P ¥ G // 5ZnO / 3Zr02g2ZrO E : I (III) @ 2ΖΓ0 2 @ 1ΖΓΟ2: Tb (III) @ 2Zr0 2 @ 22rC¾: I (III) g32r0 2 , and PVG // 1QZnO / 3Zr0 2 @ 2Zr0 2 : I (III) @ 2ZrG 2 @! Zr0 2 : Tb (III) @ 2Zr0 2 i 3 2ZrO≤: I (III) @ 3Zr0 2 , abbreviated to, respectively,
3Zn2EuTb2Eu, 5Zn2EuTb2Eu e 10Zn2EuTb2Eu; utiiizando-se dopagem de 0,5 %ιο! para Eu (III) e 1,0 %mol para Tb (III) . 3Zn2EuTb2Eu, 5Zn2EuTb2Eu and 10Zn2EuTb2Eu ; using 0.5% doping ιο! for Eu (III) and 1.0 mol% for Tb (III).
[044] Retirou-se amostras ciclo a ciclo a partir da amostra após recoforimento cora 2n0 (EVG/xZnO, x ::: 3, 5: ou 10), definindo-se a numeração dos ciclos de acordo com cada camada /composição. Utilizou-se os reagentes sintetizados Ln (acao) 3 para a dopagem com Eu (III) e Tb (III). A Figura 2 demonstra o crescimento hierárquico das nanoparticulas, a partir da amostra do sistema 3ZnZr2EuTb2Eu. Cycle-by-cycle samples were taken from the sample after recoiling with 2n0 (EVG / xZnO, x ::: 3, 5 : or 10), defining the numbering of cycles according to each layer / composition. Synthesized reagents Ln (action) 3 were used for doping with Eu (III) and Tb (III). Figure 2 shows the hierarchical growth of nanoparticles from the 3ZnZr2EuTb2Eu system sample.
Testes relacionados com as aplicações/uso das nanopartic-ulas da presente invenção :  Tests related to the applications / use of nanoparticles of the present invention:
[045] Para avaliar o desempenho das nanoparticulas da presente invenção, realizou-se testes de crescimento de nanoparticulas, difratometria de raios X (XRD) , microscopia •eletrônica de transmissão de alta resolução (HR-TEM) , espectroscopia de absorção no UV-Vis por Refletância Difusa (DRS) e espectroscopia de fΌtolumin.escência e diagramas de cro aticidade CIE.  To evaluate the performance of the nanoparticles of the present invention, nanoparticle growth tests, X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), UV-absorption spectroscopy were performed. Diffuse Reflectance Vis (DRS) and fΌtolumin.escence spectroscopy and CIE chro- graphicity diagrams.
Crescimento das Nanoparticulas - Ganho de Massa  Nanoparticle Growth - Mass Gain
{046} Para estudo do ganho de massa pelo material, construiu-se gráficos do ganho de massa percentual acumulado em função do número de CIDs. Realizou-se: a regressão linear para todos os casos desconsiderando-se o ponto 0 (0 CID - Início} .  {046} To study the mass gain by material, graphs of the accumulated percentage mass gain as a function of the number of ICDs were constructed. We performed: linear regression for all cases disregarding point 0 (0 ICD - Beginning}.
[047] Para os sistemas 3ZnZr2EuTb2Eu; 5ZnZr2EuTb2Eu e 10ZnZr2EuTb2Eu observou~se um ganho de massa linear de .2,2 %/CID e R ≥ 0,99 nos primeiros CID, o qual diminuiu após 10 CID para 1,0 %/CID, ainda com R ≥ 0,99, devido à saturação do PVG (F gura 3a} . For systems 3ZnZr2EuTb2Eu ; 5ZnZr2EuTb2Eu and 10ZnZr2EuTb2E a linear mass gain of .2.2 was observed. % / ICD and R ≥ 0.99 in the first ICD, which decreased after 10 ICD to 1.0% / ICD, still with R ≥ 0.99, due to PVG saturation (Figure 3a}.
[048] Ma Figura 3b é evidenciado o efeito de saturação., observando-se a diminuição relativa da incorporação de ZrCs co . o maior número de CID de ZnO prévios à incorporação de 2r02/ de 1,33 %/CID com 3 CID, a 1,14 %/CID com 5 CID e por fim 0,98 % /CID com 10 CID ZnO,, mantendo a linearidade com R ≥ 0,98. [048] Ma Figure 3b shows the effect of saturation., Observing the relative decrease of incorporation of ZrCs co. the highest number of ZnO ICDs prior to incorporation of 2r0 2 / 1.33% / ICD with 3 ICD, 1.14% / ICD with 5 ICD and finally 0.98% / ICD with 10 ICD ZnO ,, maintaining linearity with R ≥ 0.98.
Dif atome ria de Raios X - XRD X-ray Difficulty - XRD
[049] Obteve-se dif atogramas de raios X de 5° a 80° 29 para as amostras 3ZnZr2EuTb2Eu 3, 33, 33221 e 33221223 (Figura 4a), 5ZnZr2EuTb2Eu 5, 53, 53221 e 53221223 (Figura 4b), e 10ZnZr2EuTb2Eu (10), (10)3, (10)3221 e (10)3221223 (Figura 4c). 0 perfil geral dos difratogramas é bastante similar, observando-se o halo não cristalino característico do PVG na região de 20-25° e o pico principal do Z rGbr tetragonal levemente deslocado em -30° 20, observando-se o surgimento e desenvolvimento deste pico com o aumento do número de CID com o avanço das amostras xZnZr2EuIb2Eu .  X-ray diffrograms of 5 ° to 80 ° 29 were obtained for samples 3ZnZr2EuTb2Eu 3, 33, 33221 and 33221223 (Figure 4a), 5ZnZr2EuTb2Eu 5, 53, 53221 and 53221223 (Figure 4b), and 10ZnZr2Eu 10), (10) 3, (10) 3221 and (10) 3221223 (Figure 4c). The overall profile of the diffractograms is very similar, observing the characteristic non-crystalline halo of PVG in the region of 20-25 ° and the main tetragonal Z rGbr peak slightly shifted at -30 ° 20, observing the appearance and development of this peak with increasing CID number as samples advance xZnZr2EuIb2Eu.
[050} Embora não se tenha observado picos evidentes do ZnO wurtzita ou outras estruturas cristalinas, observou- se uma ligeira variação na região de 30-40° - região dos picos principais do ZnO vmrtzita - para 10ZnZr2EuTb2Eu, o que poderia indicar o início da formação de nanopartículas de ZnO. O alargamento dos picos, bem como o deslocamento do pico principal do ZxOz se deve ao tamanho das nanopartículas (entre 4 e 5 nm) , enquanto o não aparecimento dos: picos do ZnO se deve á pouca ou nenhuma formação de nanopartículas .  Although no evident peaks of ZnO wurtzite or other crystalline structures were observed, a slight variation was observed in the region of 30-40 ° - region of the main peaks of ZnO vmrtzita - to 10ZnZr2EuTb2Eu, which could indicate the onset of ZnO nanoparticle formation. The widening of the peaks as well as the displacement of the main peak of ZxOz is due to the size of the nanoparticles (between 4 and 5 nm), while the non-appearance of the ZnO peaks is due to little or no nanoparticle formation.
Microscopia Elefcrôniea de Transmissão de Alta R solação - HR- TEM High Solation Transmission Electron Microscopy - HR- HAVE
[051] Por meio da microscopia eletrôrica de transmissão de alta resolução (HR- EM.) obteve-se imagens da amostra representativa 3ZnZr2Eu b2Eu 33221223, as quais sugerem que o ZnO não formou partículas, condizente com os resultados de XRD, enquanto o ZrO se encontra na forma de nanoparticulas de tamanho 4-5 nm altamente dispersas peia matriz (Figura 5), com estrutura cristalina tetragonai devido aos planos de díf ação observados (2,6 K e 3,0 Ã) . O número de nanoparticulas observadas para a amostra foi muito pequeno para a construção de um histograma.  [051] High resolution transmission electron microscopy (HR-MS.) Yielded images from the representative sample 3ZnZr2Eu b2Eu 33221223, which suggest that ZnO did not form particles, consistent with the XRD results, while ZrO It is in the form of nanoparticles of size 4-5 nm highly dispersed by the matrix (Figure 5), with tetragonal crystalline structure due to the observed diffraction plans (2.6 K and 3.0 Ã). The number of nanoparticles observed for the sample was too small to construct a histogram.
Espectroscopia de absorção no UV-Vis - Refletânoia Difusa (DBS)  UV-Vis Absorption Spectroscopy - Diffuse Reflectance (DBS)
[052]: Analisou-S as amostras dos sistemas 3ZnZr2EuTb2Eu, 52n2r2EuTb2Eu e 10ZnZr2EuTb2Eu e os resultados ericontram~se nas Figuras 6 (send (a) 32nZr2EuTb2Eu, (b) 5ZnZr2EuTb2Eu (c) 10ZnZr2EuTb2Eu) . Os espectros obtidos apresentara uma banda intensa em torno de 200 n atribuída maj oritariamente à transferência de carga Si-0:?~—>Zr+-0 e a uma contribuição menor da transferência de carga Si-Q2~~>Zri2t- O, sendo deslocada para menores energias com o aumento do número de CID.s (Figura 6) . [052]: The samples from the 3ZnZr2EuTb2Eu, 52n2r2EuTb2Eu and 10ZnZr2EuTb2Eu systems were analyzed and the results are shown in Figures 6 (send (a) 32nZr2EuTb2Eu, (b) 5ZnZr2u2E2T2E2T2E2T2E2T2E2T2E2Tu2E2Tu2E2Tu2EuTb2Eu. The spectra obtained had an intense band around 200 n attributed mainly to the Si-0 charge transfer :? ~ -> Zr + -0 and to a smaller contribution of the Si-Q 2 ~ ~> Zri 2t - charge transfer. O being shifted to lower energies with increasing number of ICDs (Figure 6).
[053] Uma segunda absorção de menor i ensidad ê observada na região de 290 nm, a qual pode ser atribuída a oxigénios rion-briolging formados após os tratamentos térmicos, de acordo com a reação:  [053] A second lower absorption is observed in the 290 nm region, which can be attributed to rion-briolging oxygen formed after heat treatments according to the reaction:
2{=≡Si-OH) lh("(sSi~0,} + (≡$V) + H2G† 2 {= ≡Si-OH) lh(" (sSi ~ 0 , } + (≡ $ V) + H 2 G †
[054] Observou—se. também uma banda em 245 nra a qual é deslocada para maiores comprimentos de onda com o crescimento das partículas de ZrOa. Esta banda é atribuída à absorção de espécies Si-O- n na superfície da sílica, e atribuiu~se seu deslocamento à interação das espécies Si-0- Zn cora o ZrOz, servindo como indício da formação efetiva de uma "camada" de ZnO protetora sobre a superfície da sílica. [054] It has been observed. also a band at 245 nm which is shifted to longer wavelengths with the ZrOa particle growth. This band is attributed to the absorption of Si-O- n species on the silica surface, and its displacement was attributed to the interaction of Si-O-Zn species with ZrOz, serving as an indication of the effective formation of a ZnO "layer". protective coating on the silica surface.
[055] O fato de este deslocame o ser menos evidente da borda da banda em 200 nm ser mais proeminente cora o aumento do número de CIDs de ZnO, pode indicar o crescimento deste para nanopartícuias com o aumento do número de CIDs, além das espécies Si-O-Zn predominantes.  [055] The fact that this shift is less evident from the band edge at 200 nm is more prominent with the increasing number of ZnO CIDs, may indicate its growth to nanoparticles with increasing number of CIDs, in addition to species. Si-O-Zn predominant.
Espectroscopia de Fotoluminescência β Diagramas de Cromaticidaie CIE  Photoluminescence Spectroscopy β CIE Chromaticity Diagrams
[056] Obteve-se medidas de fotoluminescência para os sistemas 3ZnZr2EuTb2Eu, 5ZnZr2EuTb2Eu e 10ZnZr2EuTb2E . Utílisou-se para espectros de emissão: X6>-c ~ 260 nm (alta energia, transf rência de carga Q2~→Ln3i') , Xexc. - 350 nm (¾--->¾ Tb(III). ), Xe c, - 393 nm (¾->¾ Eu(III)); e para os espectros de excitação os comprimentos de onda obtidos a partir das emissões mais intensas nos espectros de emissão: era - 438 nmPhotoluminescence measurements were obtained for the 3ZnZr2EuTb2Eu, 5ZnZr2EuTb2Eu and 10ZnZr2EuTb2E systems. Applied for emission spectra: X 6> - c ~ 260 nm (high energy, charge transfer Q 2 ~ → Ln 3 ' ), X exc . - 350 nm (¾ ---> ¾ Tb (III).), Xe c, - 393 nm (¾-> ¾ Eu (III)); and for excitation spectra the wavelengths obtained from the most intense emissions in the emission spectra: era - 438 nm
(emissão do PVG) , %m - 543 nm (5u4!:Fi Tb (III) ) , 2*» - 613 nm(issuing PVG), m% - 543 nm (5 u → 4: Fi Tb (III)) 2 * "- 613 nm
(5Do-÷7F2 Eu (III) í . ( 5 Do- ÷ 7 F2 Eu (III) í.
[057] Os espectros obtidos estão organizados nas Figuras 7 e 8 (3ZnZr2EuTb2Eu) , 9 e 10 (5ZnZr2ÈuTb2Eu) , II e 12 (lQZnZr2EuTb2Eu5. Os espectros de emissão encontram-se acompanhados de suas coordenadas de cor no diagrama de cromar. icídade CIE .  [057] The spectra obtained are organized in Figures 7 and 8 (3ZnZr2EuTb2Eu), 9 and 10 (5ZnZr2ÈuTb2Eu), II and 12 (lQZnZr2EuTb2Eu5) .The emission spectra are accompanied by their color coordinates in the chroma diagram. .
[058] Analisando-se inicialmente os espectros cie emissão para excitação em maior energia (Jte¾c :::: 260 nm) , observou-se emissões largas características da sílica PVG: uma reabsorção era 350 nm, e emissões com máximos era 414 e 438 nm e um ombro em 456 nm; emissões 5D4~÷7Fj do Tb (III) em 489 nm (J - 6), 543 nm (J - 5); e emissões 5Do->'Fj do Eu (III) em 578 nm (J - 0), 592 nm (J = 1), 613 nm (J = 2), 653 nm (J - 3) e 704 nm (J ~ 4) , 0 perfil alargado dos níveis Stark foi atribuído ao pequeno tamanho das nanoparticulas, resultando em distorções dos sítios cristalinos e que se encontram os íons Ln (III) . Initially analyzing the emission spectra for higher energy excitation (Jte¾ c :::: 260 nm), characteristic broad emissions of PVG silica were observed: a resorption was 350 nm, and maximum emissions 414 and 438 nm and one shoulder at 456 nm; emissions 5 D 4 ~ 7 Fj of Tb (III) at 489 nm (J - 6), 543 nm (J - 5); and emissions 5 Do ->'Fj of Eu (III) at 578 nm (J - 0), 592 nm (J = 1), 613 nm (J = 2), 653 nm (J - 3) and 704 nm (J ~ 4), the extended profile of Stark levels was attributed to the small size of the nanoparticles, resulting in distortions of the crystalline sites and the Ln (III) ions.
[059] 0 perfil das emissões sDo- Fi,2 do Eu (III) condiz com sua presença num sítio catíônico de ZxO tettagonal, cuja simetria por centro de inversão é relaxada pelas distorções geradas pela tensão superficial nas nanopartícuias, tornando a emissão sDo~* 7F2 do Eu (III) mais intensa do que a 5D0->7Fi. [059] 0 s profile Do- Fi emission, 2 I (III) consistent with its presence in the cationic site of tettagonal ZxO whose inversion symmetry center is relaxed by the distortions generated by the surface tension of nanoparticles, making the emission s From the I * 7 F2 (III) more intense than the 5 D 0 -> 7 Fi.
[060] A intensidade relativa das emissões do íon Tb (III) estão em acordo com sua posição na camada de dopagera intermediária na. nanopartícula, comparado aos resultados obtidos no primeiro relatório no sistema sem ZnO. & intensidade relativa das emissões do ion Eu (III) por sua vez mostrou- se- consideraveIm.en.te mais elevada do que nos sistemas previamente sintetizados, indicando a bem sucedida utilização da camada de ZnO para mitigação de grupamentos (-OH) da sílica e consequente diminuição de decaimentos por esta rota não- rad.ia.tiva, contribuindo significativamente para a melhoria da emi ssão dos io s Eu ( 111 ) .  [060] The relative intensity of Tb (III) emissions is in agreement with its position in the intermediate dopagera layer in the. nanoparticle compared to the results obtained in the first report on the system without ZnO. The relative intensity of the Eu (III) emissions in turn proved to be considerably higher than in the previously synthesized systems, indicating the successful use of the ZnO layer for group mitigation (-OH). silica and the consequent decrease in decay by this non-radiative route, contributing significantly to the improvement of the emission of the Eu (111).
[061] Atribuiu-se. a diminuição da intensidade de emissão do Eu (III) para 10Zr2EuTb2Eu à irregularidade da superfície de ZnO sobre SiO? com o aumento do número de CID de ZnO, levando a maior quantidade de defeitos que servem como rota de decaimento não-radiat iva para o Eu (III) excitado:, o que confirma-se também pela diminuição do tempo de vida de sua emissão. [062] Com λβ,0 - 350 nm (7Fe-* 5Ls Tb (III) ) , observou-se as emissões do PVG intensas e dos lons Tb (III) com baixa intensidade., enquanto com lesc - 393 nm (7FQ --- LS Eu (III) observou-se também as emissões do PVG e dos íons Eu (III) com relativa alta intensidade comparado a resultados anteriores, de modo que possivelmente com um aumento da concentração de Tb (III) e excitação numa região comum a ambos íons seria possível a obtenção de emissão branca com λβ:-;α>350 nm, próximo ao emitido por LEDs OV atuais. [061] Has been assigned. the decrease of the emission intensity of the Eu (III) to 10Zr2EuTb2Eu to the surface irregularity of ZnO over SiO? As the number of ZnO ICDs increases, leading to a greater number of defects that serve as a non-radiative decay route to the excited Eu (III), which is also confirmed by the reduced lifetime of its emission. . [062] At λ β , 0 - 350 nm ( 7 Fe- * 5 Ls Tb (III)), intense PVG emissions and low intensity Tb (III) lions were observed, while at l esc - 393 nm ( 7 FQ --- LS Eu (III)) PVG and Eu (III) ions were also observed with relatively high intensity compared to previous results, so possibly with an increase in Tb (III) concentration. and excitation in a region common to both ions would be possible to obtain white emission with λ β : -; α> 350 nm, close to that emitted by current OV LEDs.
[063] Quanto aos espectros de excitação, para a emissão principal do PVG [ sm = 438 nm) observou-se suas bandas largas características em 370 nm e 400 nm, as quais nâo sofreram variações significativas em nenhum dos sistemas, e uma banda em 240 nm atribuída a espécies Si-O-Zn a qual é pouco deslocada â menor energia e sofre um alargamento com o aumento do número de CIDs. Nota-se que embora a banda característica destes sítios sofra deslocamento considerável com o número de CIDs nas medidas de absorção no UV-Vis, os espectros de. excitação indicam que as bandas que transferem energia ao PVG man ém-se na mesma posição, sofrendo apenas um. alargamento conforme o aumento do n° de CIDs. As for the excitation spectra, for the main emission of PVG [ sm = 438 nm) their characteristic broad bands were observed at 370 nm and 400 nm, which did not change significantly in any of the systems, and a band in 240 nm is assigned to Si-O-Zn species which is poorly displaced at lower energy and widens with increasing number of CIDs. It is noted that although the characteristic band of these sites shifts considerably with the number of CIDs in the UV-Vis absorption measurements, the. Excitation indicates that the bands that transfer energy to the PVG man are in the same position, suffering only one. enlargement as the number of ICDs increases.
[064] Quanto à emissão 5D-*7 F5 do íon Tb (III) (¾*m = 543 nm) , observou-se a transferência de carga 0:--÷Tb3 a qual é deslocada pará menores energias com o aumento do numero de CIDs devido ao crescimento gradual das nanopartícuias , bem como transições f-f pertinentes ao íon Tb (III) . Para a emissão 5Do-→7 F.¾ do Eu (III) em - 613 nm) observa-se a transferência de carga Q2~-→E 3+ com comportamento similar ao Tb (III), além de transições f-f pertinentes ao íon E (III). For the emission 5 D- * 7 F 5 of the ion Tb (III) (¾ * m = 543 nm), the charge transfer was observed 0 : - ÷ Tb 3 which is shifted to lower energies with the increase in the number of ICDs due to the gradual growth of nanoparticles, as well as ff transitions relevant to the Tb (III) ion. For the emission 5 Do- → 7 F.¾ of the Eu (III) and m - 613 nm), the charge transfer Q 2 ~ - → E 3+ with behavior similar to Tb (III) is observed, besides transitions ff pertinent to ion E (III).
(065] Nâo são observadas transferências de energia entre Eu (III) e Tb (III) nos espectros de emissão ou de excitação, e para todos observa-se. uma banda larga na região de 360-380 nm atribuída à excitação do PVG, tendo em vista a presença de sua emissão nos comprimentos de onda estudados. (065] No energy transfers observed between Eu (III) and Tb (III) in emission or excitation spectra, and for all it is observed. a broadband in the region of 360-380 nm attributed to the PVG excitation, considering the presence of its emission at the studied wavelengths.
[066] Para os resultados obtidos pelos diagramas d cromaticidade CIE para o sistema de ZrO? contendo 3 CID de ZnO, com Ãsxc = 260 n observa-se o deslocamento da emissão do azul para o magenta com a inserção de Eu ( III) ( 3ZnZr2SuTb2Eu 331 e 332), e a seguir ao branco puro com a inserção de Tb (III.) (32nZr2EuTb2Eu 33221}, e por fim ao branco-amarelado (3ZnZr2EuTb2Eu 3322121 a 33221221) com a inserção seguinte de Eu (III) e ao amarelo com a finalização da nariopartícuia (3ZnZr2EuTb2Eu 33221223) .  [066] For the results obtained by the CIE chromaticity diagrams for the ZrO system? containing 3 CID of ZnO, with Ãxx = 260 n, the emission shift from blue to magenta with the insertion of Eu (III) is observed (3ZnZr2SuTb2Eu 331 and 332), and after pure white with the insertion of Tb ( III.) (32nZr2EuTb2Eu 33221}, and finally the yellowish-white (3ZnZr2EuTb2Eu 3322121 to 33221221) with the next insertion of Eu (III) and yellow with the termination of the narioparticles (3ZnZr2EuTb2Eu 33221223).
[067] Com e¾c = 350 nm, a emissão resultante permanece no azul escuro, enquanto com ¾,sxc = 393 nm esta é gradualmente deslocada para a região do magenta com a inserção de Eu ( 111 ) no sistema . [067] At e¾c = 350 nm, the resulting emission remains dark blue, while at ¾, sxc = 393 nm it is gradually shifted to the magenta region with the insertion of Eu (111) into the system.
[068] O sistema de ZrOs contendo 5 CID de ZnO apresentou resultados similares para ¾¾xc - 260 nm, com a emissão sendo deslocada do azul escuro para o magenta com a inserção de Eu (III) no sistema, em seguida ao branco puro com a Inserção de Tb (III) e depois ao branco amarelado com nova inserção de Eu (III) , e: ao amarelo após o recobrimento final (5ZnZr2EuTb2Eu 53221221 e 53221223) .  [068] The ZrOs system containing 5 CID of ZnO showed similar results for ¾¾xc - 260 nm, with the emission shifting from dark blue to magenta with the insertion of Eu (III) in the system, followed by pure white with the Insertion of Tb (III) and then to yellowish white with new insertion of Eu (III), and: to yellow after final overcoating (5ZnZr2EuTb2Eu 53221221 and 53221223).
[069] Com Â.e-,:o = 350 nm e λ¾χς- =·- 393 nm a emissão permanece no azul escuro . No caso do sistema de ZxOs contendo 10 CID de ZnO para sxc = 260 nm e λβχο = 393 nm obteve-se uma emissão no azul escuro a qual foi deslocada para ciano após a inserção de todo Eu (III) e Tb (III) , enquanto a emissão manteve-se em azul escuro para Xszc - 350 nrn. Atribuiu-se esta deterioração das emissões dos ions Eu (III) e Tb (III) a espessura e irregularidade da camada de recobrimento de ZnO com o inicio do crescimento de clusters. Era suma, obteve-se a emissão branca buscada no trabalho, utilizando-se uma camada de recobrimento de ZnO de 3 ou 5 CID sobre os poros da silica PVC, na forma de branco puro (0.35, 0.33), próximo do ideai (0.33, 0.33) estipulado pelo padrão CIE, e branco-arnarelado , ou quente, similar à luz solar, [069] With Â. and -,: o = 350 nm and λ ¾χς - = · - 393 nm the emission remains in dark blue. In the case of the ZxOs system containing 10 ZnO ICD for sxc = 260 nm and λ βχο = 393 nm a dark blue emission was obtained which was shifted to cyan after the insertion of all Eu (III) and Tb (III) while the emission remained dark blue for X szc - 350 nrn. Assigned this deterioration of ions Eu (III) and Tb (III) ions the thickness and irregularity of the ZnO coating layer with the onset of cluster growth. In short, the white emission sought by the work was obtained by using a 3 or 5 CID ZnO coating over the pores of the silica PVC, in the form of pure white (0.35, 0.33), close to the ideai (0.33 , 0.33) stipulated by the CIE standard, and teal, or warm, similar to sunlight,
[070] As curvas de decaimento para os sistemas 3ZnZr2£uTb2Eu e 5ZnZr2EuTb2Eu encontram-se na Figura 13, enquanto os valores de tempo de vida obtidos encontram-se na Tabela 2 abaixo, ressaltando-se que estas medidas foram realizadas em triplicara. Todos os decaimentos obtidos são bi-exponenciais,: resultando e dois- tempos de vida para cada emissão.  The decay curves for the 3ZnZr2 £ uTb2Eu and 5ZnZr2EuTb2Eu systems are shown in Figure 13, while the obtained lifetime values are shown in Table 2 below, noting that these measurements were performed in triplicate. All decays obtained are bi-exponential, resulting and two-life for each emission.
3ZnZr2EuTb2Eu 5ZnZr2EuTb2Eu 10ZnZr2E«Tb2Eu 3ZnZr2EuTb2Eu 5ZnZr2EuTb2Eu 10ZnZr2E «Tb2Eu
Bi-exponençial Bi-exponencia1 Bi-ex onencial t com recobrlmento i t "protegido" após 2 a í com r cobrimento Bi-exponential Bi-exponential1 Bi-exponential t with cover it "protected" after 2 a t with r cover
CID dopado  Doped ICD
2.07+0.03-2.12±0.03 2.03+0.02-2.10+0.02  2.07 + 0.03-2.12 ± 0.03 2.03 + 0.02-2.10 + 0.02
2.1310.04-2.09+0.03  2.1310.04-2.09 + 0.03
0.7410.02-0, 82±0.02 0.6410.01-0.76+0, 02  0.7410.02-0, 82 ± 0.02 0.6410.01-0.76 + 0.02
† t "exposto" após  † t "exposed" after
l t "protegido" pela i pela mitiga_ção do l t "protected" by i by mitigating the
recobrimento  coating
mitigação do aumento aumento oonoenoração increase mitigation increase
0.7 β±0, 03-0.81+0.03  0.7 β ± 0.03-0.81 + 0.03
concentr ção  concentration
2.10+0.02-2.0410.02 l ú.11imas: 3 camadas de  2.10 + 0.02-2.0410.02 l last: 3 layers of
2.12+0, 03-2.06.+.0.03  2.12 + 0.03-2.06 + 0.03
recobriraento ΐ com recobrimento Coating ΐ Coated
! com recobrimento ! with cover
2.1010.03-2.04+0.03 2.04+0.02->2.08+0.03 2.1010.03-2.04 + 0.03 2.04 + 0.02-> 2.08 + 0.03
2.0610.03-2.13±0.05 2.0610.03-2.13 ± 0.05
*532211: 2.17+0.04 0..75+0.02-0.82±0.03 * 532211: 2.17 + 0.04 0..75 + 0.02-0.82 ± 0.03
0.80±õ.03-0 ,88±0.03 0.80 ± δ.03-0, 88 ± 0.03
0, 87±0.03 Bi-exponen ia1 Bi-exponencíal B i-exponenci a 10.87 ± 0.03 Bi-exponent ia1 Bi-exponential Bi-exponent 1
! com recobrimento t "protegido" Cte n° i após ecobrimento de CID ! with "t" protected cover Cte n ° i after ICD cover
2. +0.1-2.6+0.1 2.31+0.09-2.33±0.02  2. + 0.1-2.6 + 0.1 2.31 + 0.09-2.33 ± 0.02
2.4±0,l-2.6±0.2  2.4 ± 0.1 ± 2.6 ± 0.2
0.9+0.1-1.1±011 0.77+G.02-0.51±0.04 0.9 + 0.1-1.1 ± 011 0.77 + G.02-0.51 ± 0.04
† t "exposto" n° de † t "exposed" no.
i últimas 3 camadas t "protegido" Cte n°  i last 3 layers t "protected" Cte n °
CID  CID
de re.cobxlmen.to de CID  re.cobxlmen.to of CID
C.9±0.1~I.3±Q.l  C.9 ± 0.1 ~ I.3 ± Q.l
2.6+0.1-2. ±0.1 2.33±0.2-2.36+0.3 2.6 + 0.1-2. ± 0.1 2.33 ± 0.2-2.36 + 0.3
1.1+0.1-0.8+0.1 † t "exposto" n° de. 1.1 + 0.1-0.8 + 0.1 † t "exposed" no.
CID  CID
0.51.10.04-0, 6910.7 0.51 . Apr 10, 6910.7
Tabela 2: Valores em milissegundos- (ms). e comportamento dos tempos de vida obtidos para os sistemas analisados. Todas as medidas foram realizadas em triplicata. Table 2: Values in milliseconds (ms). and behavior of the obtained lifetime for the analyzed systems. All measurements were performed in triplicate.
[071] Os tempos de vida mais longos são atribuídos a ions em ambientes protegidos, enquanto os tempos de vida mais curtos são atribuídos a ions em ambientes expostos a grupos í~OH) na superfície da nanoparticula ou do PVG, ou a defeitos na estrutura cristalina da nanoparticula/ os quais facilitam o decaimento da luminescência por rotas não radiativas, diminuindo o tempo de vida, [071] Longer life times are attributed to ions in protected environments, while shorter life times are attributed to ions in environments exposed to (OH) groups on the surface of the nanoparticle or PVG, or to defects in structure. crystalline nanoparticle particles / which facilitate luminescence decay by non-radioactive pathways, decreasing lifetime,
[072] Para os sistemas 3ZnZr2EuTb2Eu e 10ZnZr2Eu?b2.Eu observou-se um comportamento similar para o tempo de vida da emissão 5Do--7F2 do Eu (III), o qual aumenta com o reco-btíme.r.to das primeiras camadas dopadas com as camadas puras pela supressão de defeitos de superfície, de 2.07+0.03 ms/' 0.74±Q.02 ms (Amostra 332) para 2.12±0.03 ms/ 0.82+0.02 ms (Amostra 3321) e de 2.03+0.02 ms/ 0.64+0.01 ms (Amostra (10)32) para 2.10+0.02 ms/ 0.7β±0.02 ms (Amostra (10)321) , mantendo- e- estável até as. novas camadas dopadas com Eu (III) onde ocorre urna -diminuição do tempo de vida dos ions "protegidos", 2.06+0.03 ms {Amostra 3322122} e 2.0410.02 ms (Amostra (10)322121), atribuído ao aumento da concentração de Eu (III) na partícula devido à supressão pela concentração (ou quench ing de concentração), e po fim ocorre novo aumento do tempo de vida para 2.13+0.05 ms/ 0.88+0.03 ms (Amostra 33221221) e 2.0810.G3 ms/ 0.82+0.03 ms (Amostra (10)3221221), pelo recobrímento da segunda camada dopada. [072] For the 3ZnZr2EuTb2Eu and 10ZnZr2Eu? B2.I systems a similar behavior was observed for the lifetime of the 5 Do-- 7 F2 emission of the I (III), which increases with reco-btíme.r.to from the first layers doped to the pure surface defect suppression layers, from 2.07 + 0.03 ms / ' 0.74 ± Q.02 ms (Sample 332) to 2.12 ± 0.03 ms / 0.82 + 0.02 ms (Sample 3321) and 2.03+ 0.02 ms / 0.64 + 0.01 ms (Sample (10) 32) to 2.10 + 0.02 ms / 0.7β ± 0.02 ms (Sample (10) 321), remaining stable until. Eu (III) doped layers where a "protected" ions, 2.06 + 0.03 ms {Sample 3322122} and 2.0410.02 ms (Sample (10) 322121) lifetime decrease, attributed to increased concentration of Eu (III) in the particle due to concentration suppression (or concentration quenching), and eventually a new lifetime increase to 2.13 + 0.05 ms / 0.88 + 0.03 ms (Sample 33221221) and 2.0810.G3 ms / 0.82 + 0.03 ms (Sample (10) 3221221) by coating the second doped layer.
[073] No caso do sistema 52nZr2EuTb2Eu observou-se: uma diminuição do tempo de vida dos íons "protegidos" após a segunda camada dopada, de 2.13+0.04 ms (Amostra 531) para 2.0910.03 ms (Amostra 532), apontando para um início precoce da supressão pela concentração (ou quen ch ing de concentração) ; um aumento do tempo de vida dos íons "expostos" com o recobrímento da camada dopada, de 0.76+0.03 ms para 0.81+0.03 s; e por fim nova diminuição de ambos tempos de vida com. o recobrímento da segunda camada dopada, de 2.1010-03 ms para 2.04±0.03 ms, de maneira similar à emissão 5'D*-»7Fg do íon T (III) estudada a seguir. [073] In the case of the 52nZr2EuTb2E system it was observed: a decrease in the life of "protected" ions after the second doped layer, from 2.13 + 0.04 ms (Sample 531) to 2.0910.03 ms (Sample 532), pointing to an early onset of concentration suppression (or concentration quenching); an increase in the life of the "exposed" ions with the doped layer coated from 0.76 + 0.03 ms to 0.81 + 0.03 s; and finally a further decrease in both life with. the coating of the second doped layer from 2.1010-03 ms to 2.04 ± 0.03 ms, similar to the 5 ' D * - 7 Fg emission of the T (III) ion studied below.
[074] O tempo de vida da emissão 5D Fs do ion Tb (III) por sua vez, no sistema 3ZnZr2EuTb2Eu aumenta de 2.4+0.1 ms/0.9±G.l ms (Amostra 33221) para 2.610.1 ms/ 1.110.1 ms (Amostra 332211) com o recobrímento da camada dopada com uma camada pura, e depois passa por uma diminuição até 2.4±0.1 ms/ 0.8+0.1 ms com o decorrer do recobrímento final (Amostras 33221221 e 33221223) . [074] The lifetime of the 5 D Fs emission of ion Tb (III) in turn in the 3ZnZr2EuTb2Eu system increases from 2.4 + 0.1 ms / 0.9 ± Gl ms (Sample 33221) to 2.610.1 ms / 1,110.1 ms (Sample 332211) by covering the doped layer with a pure layer, then decreasing to 2.4 ± 0.1 ms / 0.8 + 0.1 ms with the final coating (Samples 33221221 and 33221223).
[075] No sistema 5ZnZr2EuTb2Eu observa-se um aumento dos tempos de vida com o aumento do n° de CIDs, de 2.4+0.1 ms/ 0.9+0.1 ms a 2.6+0.02 tas / 1.3 +0.1 ms,  [075] In the 5ZnZr2EuTb2E system an increase in the lifetime is observed with increasing number of CIDs from 2.4 + 0.1 ms / 0.9 + 0.1 ms to 2.6 + 0.02 tas / 1.3 +0.1 ms,
[076] Comparado aos sistem s de nanoparticulas de Z rOz sintetizados anteriormente no projeto, os tempos de vida obtidos nos sistemas contendo a camada de Z.nO para sítios "protegidos" são um ouco menores (2.03-2.13+0.03 ms comparado a 2.2-2.6+0.1 ms dos sistemas anteriores) , diminuição a qual atribuiu-se a distorções e defeitos na interface ZnO-ZrGa comparado a SiÔs-ZrO-, a ver inclusive pela diminuição do. tempo de vida com o aumento cio número de camadas de ZnQ. [076] Compared to Z rOz nanoparticle systems synthesized earlier in the project, the lifetime obtained in Z.nO layer containing systems for "protected" sites is a little shorter (2.03-2.13 + 0.03 ms compared to 2.2-2.6 + 0.1 ms from previous systems), a decrease which was attributed to distortions and defects in the ZnO-ZrGa interface compared to SiÔs-ZrO-, including the decrease in the. lifetime with increasing number of ZnQ layers.
[077] Por sua vez, os tempos de vida de sítios "expostos" são maiores (.0.74-0.88±0.02 s comparado a 0.6- Q.8+Q.1 ms dos sistemas anteriores), o que atribuiu-se ao recobrimento da superfície interna do PVG com. ZnO, levando à diminuição do número de. grupos -OH. da sílica e consequentemente da diminuição da perda não-radiativa decorrente da inte ração com eles.  [077] In turn, the lifespan of "exposed" sites is longer (.0.74-0.88 ± 0.02 s compared to 0.6- Q.8 + Q.1 ms from previous systems), which is attributed to overcoating. of the inner surface of PVG with. ZnO, leading to a decrease in the number of. -OH groups. silica and consequently the decrease in non-radiative loss due to interaction with them.
[078] Ja para a emissão %4→7Fs do Tb (III) observou- se uma diminuição acentuada de seu tempo de vida para os sistemas contendo urna camada de recobrimento de ZnO comparado aos sistemas anteriores: de 4.8-5.3+0.2 ms / 2.3-2.5x0.1 ms a 2.4-2.6+0.1 ms / 0.9-l.liO.l ms, o que atribuiu-se em parte também ás distorções devido à presença da camada de ZnO sobre a sílica, mas que devera ser melhor investigado. For the% 4 → 7 Fs emission of Tb (III) there was a marked decrease in its lifetime for systems containing a ZnO coating layer compared to previous systems: from 4.8-5.3 + 0.2 ms / 2.3-2.5x0.1 ms to 2.4-2.6 + 0.1 ms / 0.9-l.liO.l ms, which was partly attributed to the distortions due to the presence of the ZnO layer on the silica, but which should be better investigated.
[079] Quanto aos valores de tempo de vida obt dos, os de Eu (III) se mostraram menores do que os obtidos em diversos trabalhos da literatura, por exemplo para nanocristais de 4-5 nm dopados com 3% de Eu (III), onde tef - 3,7 ms para tratamento a 600 °C (t6f consiste de uma integração dos dois tempos de vida) . Na literatura também foi encontrado valor de t*f = 2,7 ms para nanocristais de ZrOs de 30-40 nm dopados com 1% Eu (III) , bem. como o valor de tèf = 3,5 ms para 0,3 % Eu (III) em nanofios (400 nm espessura) de ZrOjf. Para Tb (III)· . Adicionalmente, os tempos de vida são maiores do que os obtidos na literatura, por exemplo, de 1,11 ms para cerâmicas de ZrQz coro grãos de 100 nm e 1,5% Tb (III) em sua composição [079] As for the obtained lifetime values, those of Eu (III) were smaller than those obtained in several literature works, for example for 4-5 nm nanocrystals doped with 3% Eu (III). where t and f - 3.7 ms for treatment at 600 ° C (t 6 f consists of an integration of the two lifetime). In the literature it was also found t * f value = 2.7 ms for nanocrystals of 30-40 nm ZrOs doped with 1% Eu (III) as well. as the value of T and F = 3.5 ms to 0.3% Eu (III) nanowires (400 nm thick) ZrOjf. For Tb (III) ·. Additionally, the lifespan is longer than those obtained in the literature, for example from 1.11 ms to ZrQz ceramics with 100 nm and 1.5% Tb (III) grains in their composition

Claims

REIVINDICAÇÕES
1. Nanopartícula de óxido de zircônío .(ZrGs) ou óxido de itrio {Y2O3} caracterizada por ser dopada com ions Eu (III) na concentraçâ-o entre 0,5 %mol e 5,0 %mol por camada dopada, e ions Tb (III) na conce ração de 1,0 %mol em sua camada dopada, compreender tamanho variável entre 1 e 10 nm, ser nanoestruturada hierarquicamente de modo a isolar os referidos ions do contato entre si por meio da estrutura de camadas alternadas puras e dopadas, ser suportada no interior dos poros de sílica mesoporcsa recobertos com ZnO é ainda, emiti luz branca pura, localizada no centro do diagrama CIE ou luz branca amarelada, similar à luz solar. 1. Zirconium oxide nanoparticle (ZrGs) or yttrium oxide {Y2O3} characterized in that it is doped with ions Eu (III) at a concentration between 0.5 mol% and 5.0 mol% per doped layer, and ions Tb (III) in the design of 1.0 mol% in its doped layer, comprising a size varying from 1 to 10 nm, be hierarchically nanostructured in order to isolate said ions from contact with each other by means of the pure alternating layer structure. doped, to be supported inside the ZnO-coated mesoporous silica pores is further emitting pure white light located in the center of the CIE diagram or yellowish white light, similar to sunlight.
2. Nanopartícula de acordo com a reivindicação 1 caracterizada por compreender u a nanoestrutura hierárquica com a seguinte ordem de compostos: caroço de ZtO o Y2O3 puros, seguido de uma camada dopada com Eu (III) de concentração entre 0,5 %mol e 5,0 Imol, esta seguida de uma camada de ZrOa ou Y2O3 puros, seguida de uma camada dopada com 1,0 %moI Tb (III), recoberta por uma nova camada de ZrCa ou YO'3 puros, seguida de outra camada dopada com Eu (III) de concentração entre 0,5 %moí e 5,0 %mol, a qual é recoberta por uma camada final de ZrO? ou Y2.O3 puros . Nanoparticle according to Claim 1, characterized in that it comprises a hierarchical nanostructure with the following order of compounds: pure ZtO or Y2O3 core, followed by an Eu (III) doped layer of concentration between 0.5 mol% and 5 µM; 0 .mu.mol, this followed by a layer of pure Y2O3 or ZrOa, followed by a layer doped with 1.0% moI Tb (III), covered with a new layer or ZrCa YO 'pure 3, followed by another layer doped with Eu (III) of a concentration between 0.5% milli and 5.0 mol%, which is covered by a final layer of ZrO? or pure Y2.O3.
3. Nanopartícula de acordo com a reivindicação 1 caracterizada pelo fato da faixa de concentração de Eu (III 5 ser variável entre 0,5 Imol e 1,5 %moi para promover a emissão de luz branca pura, localizada no centro do diagrama CIE, e da faixa de concentração de Eu (III) ser variável entre 1,5 %mol e 5,0 %moI para promover o branco amarelado, similar à Nanoparticle according to Claim 1, characterized in that the concentration range of Eu (III 5 varies between 0,5 Imol and 1,5% moi to promote the emission of pure white light located in the center of the CIE diagram; and the Eu (III) concentration range being between 1.5 mol% and 5.0% moI to promote yellowish white, similar to
4. Nanopartícula de acordo cora a reivindicação 1 caracterizada pelo fato da estrutura cristalina das nanopartículas ser contínua e não apresentar interfaces entre as camadas de crescimento após o tratamento térmico. Nanoparticle according to Claim 1, characterized in that the crystalline structure of the nanoparticles is continuous and has no interfaces between the growth layers after heat treatment.
5. Uso das nanopartículas, conforme definido em qualquer uma das reivindicações 1 a 4, caracterizado pelo fato de ser para a aplicação na área de iluminação.  Use of nanoparticles as defined in any one of claims 1 to 4, characterized in that they are for application in the area of illumination.
PCT/BR2016/000140 2016-03-18 2016-12-01 Hierarchically nanostructured nanoparticles for white light emission and use WO2017156600A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020160060052 2016-03-18
BR102016006005-2A BR102016006005B1 (en) 2016-03-18 2016-03-18 HIERARCHICALLY NANOSTRUCTURED NANOPARTICLE FOR WHITE LIGHT EMISSION AND USE

Publications (1)

Publication Number Publication Date
WO2017156600A1 true WO2017156600A1 (en) 2017-09-21

Family

ID=59849996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2016/000140 WO2017156600A1 (en) 2016-03-18 2016-12-01 Hierarchically nanostructured nanoparticles for white light emission and use

Country Status (2)

Country Link
BR (1) BR102016006005B1 (en)
WO (1) WO2017156600A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231271A (en) * 2021-12-13 2022-03-25 巢湖学院 Preparation method of europium (III) complex-ordered mesoporous carbon nitride optical oxygen sensing material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070212542A1 (en) * 2003-10-22 2007-09-13 The Regents Of The University Of California Methods for Preparing and Functionalizing Nanoparticles
US20140302253A1 (en) * 2013-04-03 2014-10-09 National Taiwan University Method for fabricating metal-ion-doped zinc sulfide nanoparticle and method for generating a warm white light by using the metal-ion-doped zinc sulfide nanoparticle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070212542A1 (en) * 2003-10-22 2007-09-13 The Regents Of The University Of California Methods for Preparing and Functionalizing Nanoparticles
US20140302253A1 (en) * 2013-04-03 2014-10-09 National Taiwan University Method for fabricating metal-ion-doped zinc sulfide nanoparticle and method for generating a warm white light by using the metal-ion-doped zinc sulfide nanoparticle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEETEI, S.D. ET AL.: "Hydrothermal synthesis and white light emission of cubic Zr02:Eu3+ nanocrystals", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 587, 2014, pages 143 - 147, XP055421541, ISSN: 0925-8388 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231271A (en) * 2021-12-13 2022-03-25 巢湖学院 Preparation method of europium (III) complex-ordered mesoporous carbon nitride optical oxygen sensing material

Also Published As

Publication number Publication date
BR102016006005A2 (en) 2017-09-26
BR102016006005B1 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
Singh et al. Efficient dual emission mode of green emitting perovskite BaTiO3: Er3+ phosphors for display and temperature sensing applications
CN108822835B (en) Luminescent material, method for producing a luminescent material and use of a luminescent material
US9117981B2 (en) Silicate phosphor exhibiting high light emission characteristics and moisture resistance, and light emitting device
EP3176839B1 (en) White light source
Li et al. A novel dazzling Eu3+‐doped whitlockite‐type phosphate red‐emitting phosphor for white light‐emitting diodes
Kumar et al. Crystal structure, energy transfer mechanism and tunable luminescence in Ce3+/Dy3+ co-activated Ca20Mg3Al26Si3O68 nanophosphors
Dwivedi et al. Ho3+ activated Ca0. 5Y1. 90-xO3 green-emitting nanophosphors for solid state lightening: Synthesis, characterization and photoluminescence properties
Gupta et al. Color tuning in CaZrO3: RE3+ perovskite by choice of rare earth ion
CN108998025A (en) A kind of LED silicate-base red fluorescence powder and preparation method thereof
Dahiya et al. Cool white light emitting Ba 5 Zn 4 Y 8 O 21: Dy 3+ nanophosphors for single-phased WLEDs
Xie et al. Tunable photoluminescence and energy transfer of novel phosphor Sr 9 La 2 W 4 O 24: Sm 3+, Eu 3+ for near-UV white LEDs
Singh et al. Optical properties of Sr2La8 (SiO4) 6O2 doped with Ho3+ phosphor
Singh et al. Optical spectroscopic and thermal quenching behaviour of perovskite SrTiO 3: Sm 3+ orange emitting phosphors for lighting applications
Khan et al. Bifunctional samarium activated red-emitting and thermal resistant phosphor for simultaneous field emission displays and white light-emitting diodes
Verma et al. Photoluminescence characteristics of Sm 3+ and Eu 3+ doped yttrium oxide phosphors
WO2017156600A1 (en) Hierarchically nanostructured nanoparticles for white light emission and use
CN114774125B (en) Long-afterglow luminescent material and preparation method thereof
CN106929016A (en) A kind of blueness arrives adjustable silicate fluorescent powder of green color and preparation method thereof
Golja et al. Synthesis and photoluminescence properties of τ–Ba1. 31Ca0. 69SiO4: 0.02 Dy3+ silicate based ceramic phosphor for white light emitting diode prepared by solution combustion method
US8153024B2 (en) Warm-white light-emitting diode and its orange phosphor powder
CN107619662A (en) A kind of wolframic acid zinc-manganese strontium crimson fluorescent material and preparation method thereof
CN108441215B (en) A kind of solid-state lighting LED red fluorescence material and synthetic method
Shu et al. High moisture resistant and thermal stable NaYSiO4: Eu3+ red phosphor with activator protected by cyclic silicon-oxygen tetrahedra
CN109810700B (en) Ultra-wide visible near-infrared long-afterglow fluorescent powder and preparation method thereof
CN113528131B (en) Rare earth element doped zinc aluminosilicate complex phase light excitation luminescent material and preparation method thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893806

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893806

Country of ref document: EP

Kind code of ref document: A1