WO2017155366A1 - V2x 통신 환경에서 자원 충돌을 해소하기 위한 방법 및 이를 위한 이동 기기 - Google Patents

V2x 통신 환경에서 자원 충돌을 해소하기 위한 방법 및 이를 위한 이동 기기 Download PDF

Info

Publication number
WO2017155366A1
WO2017155366A1 PCT/KR2017/002678 KR2017002678W WO2017155366A1 WO 2017155366 A1 WO2017155366 A1 WO 2017155366A1 KR 2017002678 W KR2017002678 W KR 2017002678W WO 2017155366 A1 WO2017155366 A1 WO 2017155366A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
mobile devices
information
specific resource
collision
Prior art date
Application number
PCT/KR2017/002678
Other languages
English (en)
French (fr)
Inventor
홍종우
김명섭
이승민
김영태
채혁진
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/083,814 priority Critical patent/US10736152B2/en
Publication of WO2017155366A1 publication Critical patent/WO2017155366A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/0858Random access procedures, e.g. with 4-step access with collision treatment collision detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the present invention relates to wireless communications, and more particularly, to a method for resolving resource conflicts in a V2X communication environment and a mobile device therefor.
  • ITS intelligent transportation systems
  • vehicle communication technology technologies for providing various services, such as warnings to enhance vehicle safety, smooth traffic flow messages, and cooperative driving using vehicle communication are progressing as well as real-time traffic information in vehicles.
  • HMI human-machine interface
  • Driver Assistance Systems advanced Driver Assistance Systems technology to reduce driver's driving fatigue and safe driving.
  • Vehicles with intelligent systems are emerging.
  • V2X Vehicle-to-everything
  • V2X networking is largely divided into three categories: vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), and vehicles and individuals, pedestrians or motorcycle occupants. It is divided into vehicle-to-pedestrian (V2P) communication. In the near future, vehicle-to-grid charging is expected to add another form of vehicle-to-vehicle (V2G).
  • An object of the present invention is to provide a method for resolving resource conflicts by a mobile device in a V2X communication environment.
  • Another object of the present invention is to provide a mobile device for resolving resource conflicts in a V2X communication environment.
  • a method for resolving a resource conflict by a mobile device in a V2X communication environment includes: determining whether a resource conflict has occurred in a specific resource selected by a plurality of adjacent mobile devices; And if it is determined that a resource collision has occurred, transmitting information on the result of the determination to the plurality of neighboring mobile devices.
  • the determining may include a reference signal received power (RSRP) value of the specific resource is higher than a first threshold defined, but a signal to interference plus noise ratio (SINR) value is greater than a second predefined threshold.
  • RSRP reference signal received power
  • SINR signal to interference plus noise ratio
  • the method may further include determining that a resource conflict has occurred.
  • the method may further include estimating the RSRP value and the SINR value in the specific resource.
  • the information on the result of the determination may include at least one of information indicating the specific resource and identifier information of the plurality of mobile devices.
  • the selected specific resource is randomly selected by the plurality of neighboring mobile devices.
  • the mobile device and the plurality of adjacent mobile devices may belong to the same group based on geographic information.
  • the method may further include transmitting a scheduling assignment (or SA) or data for control information in a resource corresponding to a different time on the specific resource and time domain.
  • SA scheduling assignment
  • a mobile device for resolving a resource conflict in a V2X communication environment includes a processor configured to determine whether a resource conflict has occurred in a specific resource selected by a plurality of adjacent mobile devices; And a transmitter configured to transmit information on a result of the determination to the plurality of neighboring mobile devices when it is determined that a resource collision has occurred.
  • the processor may cause a resource conflict when a Reference Signals Received Power (RSRP) value in the particular resource is higher than a predefined first threshold but a Signal to Interference plus Noise Ratio (SINR) value is lower than a predefined second threshold. Can be configured to determine that this has occurred.
  • the processor may be configured to estimate the RSRP value and the SINR value in the specific resource.
  • the information on the result of the determination may include at least one of information indicating the specific resource and identifier information of the plurality of mobile devices.
  • the selected specific resource is randomly selected by the plurality of neighboring mobile devices.
  • the mobile device and the plurality of adjacent mobile devices may belong to the same group based on geographic information.
  • the mobile device may further include a transmitter configured to transmit SA or data in a resource corresponding to a different time on the specific resource and time domain.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • FIG. 2 is a diagram illustrating an example of resource pool allocation in V2V communication.
  • 3 is a diagram illustrating an example of resource collision between vehicles in a group.
  • 4 is a diagram illustrating subgroup allocation for resource collision detection.
  • FIG. 5 is an exemplary diagram for describing a resource conflict resolution technique through an infrastructure (eg, a base station).
  • an infrastructure eg, a base station.
  • FIG. 6 is an exemplary diagram for describing a resource collision resolution technique using a neighbor base station.
  • a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like.
  • the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
  • UE user equipment
  • MS mobile station
  • AMS advanced mobile station
  • AP Access Point
  • a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink.
  • the information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • the wireless communication system 100 may include one or more base stations and / or It may include one or more terminals.
  • the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197.
  • the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
  • the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • MIMO multiple input multiple output
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • the transmitter and the receiver in the terminal and the base station may be configured as one radio frequency (RF) unit.
  • RF radio frequency
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively.
  • the following description does not specifically refer to the processors 155 and 180.
  • the processors 155 and 180 it may be said that a series of operations such as data processing is performed rather than a function of receiving or transmitting a signal.
  • the present invention contemplates a scenario or mode in which mobile devices (hereinafter, described as vehicles by way of example) in V2X communication select resources distributedly for transmission. That is, a mode in which a vehicle selects resources for SA and data transmission is considered in V2X communication.
  • the resources selected in the V2V communication during the V2X communication are operated in the SPS method.
  • vehicles are allocated resources from an infrastructure (eg, base station) or randomly select resources.
  • an infrastructure eg, base station
  • there is no resource collision because the infrastructure allocates different resources for each vehicle, but signaling for this is necessary because all resources of the vehicles must be allocated.
  • vehicles select the same resource at the same time, resource collisions occur.
  • vehicles that select collision resources cannot detect collisions of transmission resources. Interference occurs between vehicles using the same resources. In this case, when vehicles transmit data using a resource in which collision occurs, a problem occurs that degrades data reception performance of surrounding vehicles due to mutual interference.
  • the surrounding vehicle (s) detects a resource collision occurrence, and piggybacks the occurrence of a resource collision on a specific resource to the data transmitted periodically by the surrounding vehicle (s). Suggest a method of notification.
  • the message notifying the occurrence of the resource collision utilizes a message periodically transmitted from the existing V2X, so no additional resource for the collision occurs. It also proposes a way to resolve collisions through infrastructure (for example, base stations), not just vehicles.
  • FIG. 2 is a diagram illustrating an example of resource pool allocation in V2V communication.
  • vehicles can be formed into multiple groups based on proximity over distance (or time). As shown in FIG. 2, vehicles adjacent in distance may be grouped into a plurality of groups such as UE group A and UE group B.
  • FIG. A base station (eNB) or a road side unit (RSU) can group vehicles within a resource pool adaptation range set by itself.
  • the base station eNB or the RSU (Road Side Unit) may be configured by partitioning transmission resources for each group.
  • a base station (eNB) or a road side unit (RSU) may allocate a resource pool by dividing a UE group A from a UE group B in a time domain.
  • 3 is a diagram illustrating an example of resource collision between vehicles in a group.
  • FIG. 3 illustrates an example in which resource collision occurs because a plurality of vehicles select the same resource in a resource allocated for each group.
  • resource collisions when vehicle 2 (v2) and vehicle 3 (v3) in a group select randomly and randomly the same resource (for example, SA resources and resources for data transmission). This happens.
  • resource densities may occur as the density of vehicles in a group increases.
  • no technique has been proposed to solve the resource collision problem of vehicles in V2V communication.
  • the minimum unit of resources for SA and data transmission is RB (Resource Block).
  • the vehicle that selected the conflicting resource may not know the resource conflict, and thus the vehicle (s) nearby in the same group may inform that the resource conflict has occurred.
  • vehicle 1 (v1) which is a vehicle adjacent to vehicle 2 (v2) and vehicle 3 (v3) Vehicle 2 (v2) and vehicle 3 (v3) can be notified.
  • the adjacent vehicle 1 (v1) should be a vehicle that selects a resource of a different time on the time domain from the specific resource where the resource collision occurs.
  • 4 is a diagram illustrating subgroup allocation for resource collision detection.
  • vehicles in a group may be divided into four subgroups, and vehicles of the subgroup may detect resource collisions in a resource interval allocated to the resource collision detection interval in the subgroup. Can be done.
  • the infrastructure eg, base station
  • the infrastructure may preconfigure the subgroup based on the vehicle ID (eg, UE ID).
  • vehicle 1 (v1) and vehicle 2 (v2) are resource periods corresponding to sub group # 1 (for example, an area indicated by the highest frequency band in the time-frequency domain in FIG. 4). Only resource conflicts can be detected. Limiting the collision detection resource area by group is to reduce the overhead of the vehicle for collision detection. However, vehicle 1 (v1) and vehicle 2 (v2) means only the resource collision is detected only in the region marked with the highest frequency band in the time-frequency domain in FIG. And transmission and reception on data resources.
  • all groups of vehicles receive all SA or data messages in an SA or data pool (eg, the control channel of the vehicles link).
  • a collision of a specific resource interval may be detected.
  • the vehicle receives a reference signal of SA or data from a specific resource, if the RSRP (dBm unit) value of the specific resource is very high, the vehicle transmits a message using the SA or data resource from the specific resource. You can assume that you are in this proximity.
  • RSSI reception energy
  • the sum of the interferences may be high and the energy signal level may be high. From these energy level values, interference signals remain except the RSRP signal.
  • the vehicle can estimate the SINR value (in dB) from a specific resource through the interference signal and the signal strength of the RSRP.
  • the adjacent vehicle may estimate the RSRP value of a specific resource and estimate the SINR value of the specific resource by using the estimated RSRP and RSSI values. That is, the signal strength is obtained based on the RSRP value, and the strength of the interference signal is obtained based on the received signal strength indicator (RSSI) in the specific resource.
  • the adjacent vehicle can determine the strength of the signal based on the RSRP value of a specific resource, and can know the sum of the signal and the interference through the RSSI (Received Signal Strength Indicator) value of the specific resource. By excluding RSRP-based signal strength from the RSSI value, interference signal strength of a specific resource can be determined. Eventually, the signal strength and interference strength can be known and SINR can be estimated to determine resource collision. If the estimated RSRP is higher than the predefined threshold but the estimated SINR value is lower than the predefined threshold, the adjacent vehicle may determine and determine that a resource collision between vehicles has occurred in the particular resource.
  • RSSI received signal strength indicator
  • the vehicle may estimate the distance from the adjacent vehicle and the transmission power of the adjacent vehicle. If a vehicle receives continuous SA and data transmissions from a specific resource, and the energy level is higher than a predefined threshold based on RSRP, it may be determined that the energy level has increased due to interference caused by the transmission of several vehicles. have.
  • the information of vehicles transmitting such a resource may be determined as a source ID or SA resource index transmitted in an SA message in case of a transmitted SA, and a data resource index in case of data.
  • the vehicle piggybacks the information indicating the colliding resource (for example, SA or data resource index or source ID information) periodically to the data to be transmitted.
  • Vehicles receiving such resource collision information can resolve the resource conflict by determining that the resource selected by the user has collided based on the index or source ID information of the resource transmitted and piggybacked, and reselecting the resource.
  • the vehicle transmits a reservation message in a resource to be selected, and may transmit the above collision resource information in the reservation message.
  • a method of allocating dedicated resources for collision notification may be considered.
  • a resource for notification is pre-configured by mapping to a hash function based on a source ID or a resource pool, a collision notification may be transmitted through a mapped resource when a collision occurs.
  • a method of sequentially notifying resource collision information among various resources may be considered in consideration of the interference level.
  • a method of sequentially changing resources by subgroups to which the vehicle belongs may be considered instead of simultaneously changing resources.
  • a method for avoiding resource collision has been described in terms of a method for solving vehicles when a resource collision occurs.
  • a method in which an infrastructure (for example, a base station) efficiently solves a collision can be considered in a V2X environment.
  • FIG. 5 is an exemplary diagram for describing a resource conflict resolution technique through an infrastructure (eg, a base station).
  • an infrastructure eg, a base station.
  • FIG. 5 shows a technique for resolving through a base station when a collision occurs.
  • information e.g., resource index, etc.
  • resource collision indicating the resource where the collision occurred to the base station (indicated by eNB # 1 in FIG. 5) is generated. ID can be transmitted.
  • the base station may resolve the resource conflict through the collision notification.
  • the base station knows the location and moving direction of the vehicles and based on the information such as the location and the moving direction of the vehicles, resource reassignment information by reselecting a resource having a low energy level, that is, far from the resource of the crashed vehicle. Can be sent to vehicles in resource conflicts.
  • the base station may broadcast available resources to vehicles of resource collision, and vehicles of resource collision may avoid resource collision by reselecting resources from the available resources.
  • vehicles of resource collision may avoid resource collision by reselecting resources from the available resources.
  • information on available resources or resource reassignment information is transmitted to many vehicles, thereby solving a resource collision problem of many vehicles.
  • FIG. 6 is an exemplary diagram for describing a resource collision resolution technique using a neighbor base station.
  • FIG. 6 is a diagram for describing a technique of solving a collision problem through neighbor base stations instead of one base station when resource collision occurs.
  • the high mobility environment is also taken into consideration.
  • the vehicle may transmit the selected resource in SP mode and then move to an adjacent cell to cause a collision.
  • base station 1 eNB # 1 in FIG. 6
  • receives collision notification information from a specific vehicle eg, v1
  • vehicles using collision resources or vehicles of collision resources
  • available collision available collision
  • the base station 1 transmits information on the received available resources to vehicles using the collision resource, or transmits information on the reselected resources (ie, resource reselection information) based on the received available resources. It can be sent to vehicles using collision resources.
  • vehicles using collision resources may transmit data through reselected resources received from base station 1. Doing so can resolve the crash.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • a method for resolving resource conflicts in a V2X communication environment and a mobile device therefor can be applied industrially in various wireless communication systems such as 3GPP LTE-A, 5G system, and IoT technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

V2X 통신 환경에서 이동 기기가 자원 충돌을 해소하기 위한 방법은, 복수의 인접 이동 기기들에 의해 선택된 특정 자원에서 자원 충돌이 발생하였는지 여부를 판단하는 단계; 및 자원 충돌이 발생하였다고 판단되는 경우, 상기 복수의 인접 이동 기기들에게 상기 판단의 결과에 대한 정보를 전송하는 단계를 포함할 수 있다.

Description

V2X 통신 환경에서 자원 충돌을 해소하기 위한 방법 및 이를 위한 이동 기기
본 발명은 무선통신에 관한 것으로, 보다 상세하게는, V2X 통신 환경에서 자원 충돌을 해소하기 위한 방법 및 이를 위한 이동 기기에 관한 것이다.
지능형교통시스템(ITS, intelligent Transportation Systems)의 발전 방향은 차량통신기술 발전과 지능형자동차기술의 발전으로 크게 나누어 볼 수 있다. 차량통신의 발전으로 차량에서 실시간 교통정보뿐만 아니라 차량안전을 증진시키는 경고, 교통흐름을 원활하게 하는 메시지, 그리고 차량통신을 이용한 협력주행까지 다양한 서비스 제공을 위한 기술들이 진일보하고 있다. 지능형자동차의 발전은 인간-기계 인터페이스(Human-Machine Interface, HMI)의 편리성 증가와 함께 첨단 운전자 보조 시스템(Advanced Driver Assistance Systems) 기술의 발전으로 운전자의 운전 피로 감소 및 안전한 운전에 도움을 주는 다양한 지능형 시스템을 장착한 차량이 등장하고 있다.
V2X(Vehicle-to-everything) 는 도로차량에 적용 가능한 모든 형태의 통신방식을 지칭하는 일반용어로서 ‘Connected Vehicle’ 또는 ‘Networked Vehicle’을 구현하기 위한 구체적인 통신기술을 의미한다. V2X 네트워킹은 크게 세 가지 범주, 즉, 차량과 인프라 간(Vehicle-to-Infrastructure, 이하 V2I), 차량 간(Vehicle-to-Vehicle, 이하 V2V), 그리고 차량과 개인 즉 보행자나 자전차 탑승자가 소지한 기기 간(Vehicle-to-Pedestrian, 이하 V2P) 통신 등으로 나누어진다. 최근에 대두되고 있는 전기자동차의 충전과 관련해 조만간 또 다른 형태의 통신 범주로 V2G (Vehicle-to-Grid) 가 추가될 것으로 전망된다.
본 발명에서 이루고자 하는 기술적 과제는 V2X 통신 환경에서 이동 기기가 자원 충돌을 해소하기 위한 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 다른 기술적 과제는 V2X 통신 환경에서 자원 충돌을 해소하기 위한 이동 기기를 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위한, V2X 통신 환경에서 이동 기기가 자원 충돌을 해소하기 위한 방법은, 복수의 인접 이동 기기들에 의해 선택된 특정 자원에서 자원 충돌이 발생하였는지 여부를 판단하는 단계; 및 자원 충돌이 발생하였다고 판단되는 경우, 상기 복수의 인접 이동 기기들에게 상기 판단의 결과에 대한 정보를 전송하는 단계를 포함할 수 있다.
상기 판단하는 단계는 상기 특정 자원에서의 RSRP(Reference Signals Received Power) 값이 사전에 정의된 제 1 임계치 (threshold) 보다 높지만 SINR(Signal to Interference plus Noise Ratio) 값은 사전에 정의된 제 2 임계치 보다 낮은 경우에 자원 충돌이 발생한 것으로 판단하는 단계를 더 포함할 수 있다.
상기 방법은 상기 특정 자원에서의 상기 RSRP 값 및 상기 SINR 값은 추정하는 단계를 더 포함할 수 있다. 상기 판단의 결과에 대한 정보는 상기 특정 자원을 지시하는 정보 및 상기 복수의 이동 기기들의 식별자 정보 중 적어도 어느 하나의 정보를 포함할 수 있다. 상기 선택된 특정 자원은 상기 복수의 인접 이동 기기들에 의해 랜덤하게 선택된 것이다. 상기 이동 기기와 상기 복수의 인접 이동 기기들은 지리 정보에 기초하여 동일한 그룹에 속할 수 있다.
상기 방법은 상기 특정 자원과 시간 도메인 상에서 다른 시간에 해당하는 자원에서 제어 정보를 위한 SA(Scheduling Assignment (또는, Sidleink Control), 이하 SA)또는 데이터를 전송하는 단계를 더 포함할 수 있다
상기의 다른 기술적 과제를 달성하기 위한, V2X 통신 환경에서 자원 충돌을 해소하기 위한 이동 기기는, 복수의 인접 이동 기기들에 의해 선택된 특정 자원에서 자원 충돌이 발생하였는지 여부를 판단하도록 구성된 프로세서; 및 자원 충돌이 발생하였다고 판단되는 경우, 상기 복수의 인접 이동 기기들에게 상기 판단의 결과에 대한 정보를 전송하도록 구성된 송신기를 포함할 수 있다. 상기 프로세서는 상기 특정 자원에서의 RSRP(Reference Signals Received Power) 값이 사전에 정의된 제 1 임계치 보다 높지만 SINR(Signal to Interference plus Noise Ratio) 값은 사전에 정의된 제 2 임계치 보다 낮은 경우에 자원 충돌이 발생한 것으로 판단하도록 구성될 수 있다. 상기 프로세서는 상기 특정 자원에서의 상기 RSRP 값 및 상기 SINR 값은 추정하도록 구성될 수 있다. 상기 판단의 결과에 대한 정보는 상기 특정 자원을 지시하는 정보 및 상기 복수의 이동 기기들의 식별자 정보 중 적어도 어느 하나의 정보를 포함할 수 있다. 상기 선택된 특정 자원은 상기 복수의 인접 이동 기기들에 의해 랜덤하게 선택된 것이다. 상기 이동 기기와 상기 복수의 인접 이동 기기들은 지리 정보에 기초하여 동일한 그룹에 속할 수 있다.
상기 이동 기기는 상기 특정 자원과 시간 도메인 상에서 다른 시간에 해당하는 자원에서 SA또는 데이터를 전송하도록 구성된 송신기를 더 포함할 수 있다.
본 발명의 일 실시예에 따라, V2V 통신에서 선택된 자원이 SPS (Semi-Persistent scheduling , 이하 SPS) 방식으로 수행되는 경우 자원 충돌을 효과적으로 해결할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
도 2는 V2V 통신에서 전송자원 (resource pool) 할당의 예를 예시한 도면이다.
도 3은 그룹 내 vehicle들 간의 자원 충돌 발생 예를 도시한 도면이다.
도 4는 자원 충돌 검출을 위한 서브그룹 할당을 예시한 도면이다.
도 5는 인프라 (예를 들어, 기지국)을 통한 자원 충돌 해결 기법을 설명하기 위한 예시적 도면이다.
도 6은 인접 기지국을 활용한 자원 충돌 해결 기법을 설명하기 위한 예시적인 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다. 본 명세서에서는 IEEE 802.16 시스템에 근거하여 설명하지만, 본 발명의 내용들은 각종 다른 통신 시스템에도 적용 가능하다.
이동 통신 시스템에서 단말(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access), 5G 통신 시스템 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced 데이터 Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)(D2D 단말/vehicle을 포함)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
도 1을 참조하면, 기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서(150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다. 단말 및 기지국에서의 송신기 및 수신기는 하나의 RF(Radio Frequency) 유닛으로 구성될 수도 있다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
본 명세서에서 단말의 프로세서(155)와 기지국의 프로세서(180)는 각각 단말(110) 및 기지국(105)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(155, 180)를 언급하지 않는다. 특별히 프로세서(155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
본 발명에서는 V2X 통신에서 이동 기기(이하, 예로서 vehicle로 설명한다)들이 전송을 위해서 자원을 분산적으로 선택하는 시나리오 혹은 모드를 고려하고 있다. 즉, V2X 통신에서 vehicle이 SA 및 데이터 전송을 위한 자원을 선택하는 모드를 고려하고 있다.
V2X 통신 중 V2V 통신에서 선택된 자원은 SPS 방식으로 동작된다. 이를 위해서 vehicle들은 인프라(예를 들어, 기지국) 으로부터 자원을 할당 받거나 또는 랜덤하게 자원을 선택한다. 인프라로부터 할당받는 방법의 경우에는, 인프라가 vehicle 별로 각각 다른 자원을 할당하여 자원 충돌은 없으나, 모든 vehicle들의 자원을 할당해야 하므로 이를 위한 시그널링이 추가적으로 필요하다. 반면에, vehicle들이 분산적으로 랜덤하게 자원을 선택하는 방법을 고려한다면, 자원 선택을 위한 별도의 시그널링이 필요 없어서 바람직하다. 그러나 만약 vehicle들이 같은 자원을 동시에 선택하는 경우에는 자원 충돌이 발생하며 이러한 전송자원 충돌(collision)이 발생한 경우에 충돌 자원을 선택한 vehicle들은 전송 자원의 충돌을 검출할 수가 없으며, 자원을 재선택하기 전까지 같은 자원을 사용하는 vehicle들 간에 상호간 간섭을 발생시킨다. 이렇게 충돌이 발생한 자원으로 vehicle들이 데이터를 전송하는 경우에는 상호간의 간섭으로 인해서 주변의 vehicle들의 데이터 수신 성능을 저하시키는 문제가 발생한다.
이러한 문제점들을 극복하기 위하여, 본 발명에서는 자원 충돌 발생을 주변 vehicle(s)이 검출하고, 주변 vehicle(s)들이 주기적으로 전송되는 데이터에 특정 자원에서의 자원 충돌 발생을 피기배킹(piggybacking) 하여 통지(notification) 하는 방법을 제안한다. 이러한 자원 충돌 발생을 알리는 메시지는 기존에 V2X에서 주기적으로 전송되는 메시지를 활용하므로 충돌 발생을 위한 추가적인 자원이 필요 없다. 또한 충돌 해결을 위해서 vehicle 만이 아닌 인프라(예를 들어, 기지국)를 통해서 해결하는 방식도 제안한다.
도 2는 V2V 통신에서 전송자원 (resource pool) 할당의 예를 예시한 도면이다.
V2V 환경에서, vehicle 들은 거리(혹은 시간)상으로 인접성(proximity)를 기반으로 다수의 그룹으로 형성될 수 있다. 도 2에 도시된 바와 같이, 거리상으로 인접한 vehicles들을 UE group A, UE group B와 같이 다수의 그룹으로 그룹핑할 수 있다. 기지국(eNB) 또는 RSU(Road Side Unit)은 자신에 의해 설정된 자원 풀 적응 범위(resource pool adaptation range) 내의 vehicles을 그룹핑 할 수 있다. 기지국(eNB) 또는 RSU(Road Side Unit)은 그룹 별로 전송 자원 분할(partitioning) 해서 설정(configuration) 할 수 있다. 도 2를 참조하면, 일 예로서, 기지국(eNB) 또는 RSU(Road Side Unit)이 UE group A와 UE group B를 시간 도메인에서 구분하여 자원 풀(resource pool)을 할당할 수 있다.
도 3은 그룹 내 vehicle들 간의 자원 충돌 발생 예를 도시한 도면이다.
도 3은 그룹 별로 할당된 자원 내에서 다수의 vehicle들이 동일한 자원을 선택해서 자원 충돌이 발생하는 예를 나타내고 있다. 도 3에 도시한 바와 같이, 그룹 내의 vehicle 2(v2)와 vehicle 3(v3)가 동시에 같은 자원 (예를 들어, SA 자원, 데이터 전송을 위한 자원)을 분산적으로 랜덤하게 선택하였을 때에 자원 충돌이 발생한다. 또한, urban 환경에서 그룹 내의 vehicle들의 밀도(density)가 높아질수록 자원 충돌은 더욱 많이 발생할 수 있다. 그러나 현재 V2V 통신에서 vehicle들의 자원 충돌 문제를 해결을 위한 기법이 제시된 적이 없다. 도 3에 도시한 바와 같이 vehicle 2(v2)와 vehicle 3(v3)가 동일한 특정 자원을 선택한 후, 선택된 특정 자원에서 SA 및 데이터를 전송하더라도 상기 특정 자원에서 자원 충돌이 발생하였는지 여부를 알 수 없다. 이때, SA 및 데이터 전송을 위한 자원의 최소 단위는 RB(Resource Block) 이다.
상술한 바와 같이, 자원 충돌이 발생 하였을 경우에, 충돌되는 자원을 선택한 vehicle 들은 자원 충돌 사실을 알 수가 없으므로 같은 그룹 내에서 근처에 있는 vehicle(들)이 자원 충돌이 발생한 것을 알려줄 수 있다. 도 3에 도시한 바와 같이, vehicle 2(v2) 및 vehicle 3(v3)에 인접한 vehicle인 vehicle 1(v1)이 vehicle 2(v2)와 vehicle 3(v3)가 선택한 특정 자원에서 자원 충돌이 발생한 사실을 vehicle 2(v2) 및 vehicle 3(v3)에게 통지해 줄 수 있다. 이때, 인접 vehicle 1(v1)은 자원 충돌이 발생한 상기 특정 자원과 시간 도메인 상에서 다른 시간의 자원을 선택한 vehicle이어야 한다.
도 4는 자원 충돌 검출을 위한 서브그룹 할당을 예시한 도면이다.
도 4에 도시한 바와 같이, 그룹 내의 vehicle들을 4개의 서브 그룹(sub group)으로 나누어질 수 있고, 서브 그룹의 vehicle들은 해당 서브 그룹에 자원 충돌 검출 구간으로 할당된 자원 구간에서 자원 충돌의 검출을 수행할 수 있다. 인프라(예를 들어, 기지국)은 서브 그룹을 vehicle ID (예를 들면 UE ID)를 기반으로 사전에 configuration 할 수 있다.
도 4에 도시한 바와 같이, vehicle 1(v1)와 vehicle 2(v2)는 sub group #1에 대응하는 자원 구간(일 예로 도 4에서 시간-주파수 도메인에서 가장 주파수 대역이 높은 구간으로 표시된 영역)에서만 자원 충돌을 검출할 수 있다. 충돌 검출 자원 영역을 group 별로 제한하는 것은 충돌 검출을 위한 vehicle의 overhead를 줄이기 위함이다. 다만, vehicle 1(v1)와 vehicle 2(v2)는 상기 도 4에서 시간-주파수 도메인에서 가장 주파수 대역이 높은 구간으로 표시된 영역에서만 자원 충돌을 검출한다는 것을 의미하는 것일 뿐, 기존 방식과 같이 모든 SA 및 데이터 자원에서 전송 및 수신이 가능하다.
자원 충돌 검출을 위해서, 모든 그룹의 vehicle들은 SA 또는 data pool (예를 들어, vehicle들 링크의 제어 채널) 내의 모든 SA 또는 data 메시지를 수신한다. 이러한 SA 또는 data 메시지를 수신하는 절차에서 특정 자원 구간의 충돌을 검출할 수가 있다. Vehicle이 특정 자원에서 SA 또는 데이터 의 참조신호(reference signal)를 수신하였을 경우, 특정 자원에서의 RSRP(dBm 단위) 값이 매우 높으면, 상기 특정 자원에서 SA 또는 data 자원을 사용하여 메시지를 전송하는 vehicle이 가까운 곳(proximity)에 있다고 가정 할 수 있다. 그리고, vehicle는 상기 특정 자원에서 수신된 SA 또는 data 메시지의 수신 에너지(RSSI) 신호 역시 높은 경우에는 가까운 곳(proximity)에 간섭을 발생시키는 vehicle이 존재하거나 혹은 여러 vehicle들의 동일 자원 선택으로 인하여 자원 충돌이 발생한 경우임을 알 수 있다. 충돌이 발생한 경우에는 간섭의 합이 높아져 에너지 신호 레벨이 높아질 수 있다. 이러한 에너지 레벨 값에서, RSRP 신호를 제외하면 간섭 신호가 남게 되는데, vehicle는 이러한 간섭신호와 RSRP의 신호세기를 통하여 특정 자원에서의 SINR값(dB 단위)을 추정할 수 있다.
결론적으로, 인접 vehicle는 특정 자원에서의 RSRP 값을 추정하고, 추정된 RSRP 와 RSSI 값을 이용하여 상기 특정 자원에서의 SINR 값을 추정할 수 있다. 즉, RSRP 값을 기반으로 신호 세기를 구하고, 상기 특정 자원에서의 RSSI (Received Signal Strength Indicator) 를 기반으로 간섭 신호의 세기를 구한다. 인접 vehicle는 특정 자원에서의 RSRP 값을 기반으로 신호의 세기를 판단 할 수 있으며, 그 특정 자원에서의 RSSI (Received Signal Strength Indicator) 값을 통하여 신호와 간섭의 합을 알 수 있다. RSSI의 값에서 RSRP 기반의 신호 세기를 제외하면 특정 자원의 간섭 신호 세기를 판단할 수 있다. 결국 이를 통하여 신호 세기와 간섭의 세기를 알 수 있으며 자원 충돌을 판단 할 수 있는 SINR을 추정 할 수 있다. 만약, 추정된 RSRP이 사전의 정의된 임계치 보다 높지만 추정된 SINR 값이 사전에 정의된 임계치 보다 낮다면, 인접 vehicle는 상기 특정 자원에서 vehicle들 간의 자원 충돌이 발생하였다고 판단하고 결정할 수 있다.
또한, vehicle들의 지리 정보(geo information) 기반하여 근처 vehicle들을 서브 그룹으로 할당된 경우, vehicle는 인접 vehicle과의 거리와 인접 vehicle의 전송파워는 추정할 수 있다. 만약 vehicle가 특정 자원에서 연속된 SA 및 데이터 등의 전송을 수신할 경우에 RSRP 기준으로 에너지 레벨이 사전에 정의된 임계치 보다 높은 경우에는, 여러 vehicle들의 전송으로 인한 간섭으로 에너지 레벨이 높아졌다고 판단 할 수 있다. 이러한 자원을 전송하는 vehicle 들의 정보는 전송되는 SA의 경우에는 SA 메시지에 포함되어 전송되는 source ID 또는 SA 자원 인덱스로 판단 할 수 있으며 데이터의 경우에는 데이터 자원 인덱스로 가능하다.
이러한 충돌 발생 판단에 기초하여, vehicle은 충돌이 발생 하였을 경우에 충돌하는 자원을 지시하는 정보(예를 들어, SA 또는 데이터 자원 인덱스 또는 source ID 정보)를 주기적으로 전송할 데이터에 피기배킹 하여 전송한다. 이러한 자원 충돌 정보를 수시한 vehicle들은 피기배킹 되어 전송된 자원의 인덱스 또는 source ID 정보를 기반으로 자신이 선택한 자원이 충돌 하였음을 판단하고 이를 기반으로 자원을 재 선택함으로써 자원 충돌을 해결할 수 있다.
또한 현재 SPS 전송을 위해서는 다른 vehicle들의 충돌을 피하기 위해서 vehicle는 선택할 자원에서 예약 메시지(reservation message)를 전송하는데, 이러한 예약 메시지(reservation message)에 위와 같은 충돌 자원 정보를 보낼 수 있다.
한편 충돌 통지(notification)을 위해서 전용 자원(dedicated resource)을 할당하는 방법도 고려해 볼 수 있다. 일 예로서, source ID 또는 resource pool을 기준으로 hash function으로 mapping 하여 통지(notification)를 위한 자원을 미리 설정(pre-configuration) 한다면 충돌 발생시 맵핑되어 있는 자원을 통해서 충돌 통지를 전송해 줄 수 있다.
또한, 도 4에 도시한 바와 같이, 충돌 검출 구간 혹은 범위(range)에서 여러 자원이 동시에 충돌이 발생한 경우에 간섭 레벨을 고려하여 여러 자원 중에서 순차적으로 자원 충돌 정보를 알리는 방법도 고려할 수 있다. 다수의 vehicle 들이 자원 충돌 통지 정보를 수신한 경우에는 충돌하는 vehicle 들이 동시에 자원을 바꾸는 것이 아니라 vehicle이 속해진 서브 그룹 별로 순차적으로 자원을 바꾸는 방법을 고려할 수 있다.
이상에서 설명한 자원 충돌을 회피하기 위한 방식은 자원 충돌이 발생하였을 경우 vehicle들이 해결하는 방식에 대해서 설명하였다. 상기 해결 방식과 다른 방식으로서, 충돌 발생 시에 인프라 (예를 들어, 기지국)가 효율적으로 해결해 주는 방식도 V2X 환경에서 고려할 수 있다.
도 5는 인프라 (예를 들어, 기지국)을 통한 자원 충돌 해결 기법을 설명하기 위한 예시적 도면이다.
도 5는 충돌 발생시 기지국을 통해서 해결하는 기법을 나타내고 있다. 주변의 vehicle이 (도 5에서는 v1)이 자원 충돌을 검출하면 기지국(도 5에서는 eNB #1로 표시)으로 충돌이 발생한 자원을 지시하는 정보(예를 들어, 자원 인덱스 등)이나 자원 충돌이 vehicle ID를 전송할 수 있다. 기지국은 충돌 통지를 통해서 자원 충돌을 해결할 수 있다. 기지국은 vehicle들의 위치와 움직이는 방향들을 알고 있으며 이러한 vehicle들의 위치 및 움직이는 방향 등의 정보에 기초하여 자원 중에서 에너지 레벨이 낮은, 즉 충돌이 발생한 vehicle의 자원으로부터 멀리 있는 자원을 재선택하여 자원 재할당 정보를 자원 충돌의 vehicles에게 전송해 줄 수 있다. 또는, 기지국은 사용 가능한 자원(available resource)를 자원 충돌의 vehicle 들에게 방송해 줄 수 있고, 자원 충돌의 vehicles은 사용 가능한 자원에서 자원을 재 선택하여 자원 충돌을 회피할 수 있다. 기지국의 경우에는 동시에 많은 자원들에서 충돌이 발생하였을 경우에 사용 가능한 자원에 대한 정보 혹은 자원 재할당 정보를 많은 vehicle들에게 전송해 주어, 많은 vehicle의 자원 충돌 문제를 해결할 수 있다.
도 6은 인접 기지국을 활용한 자원 충돌 해결 기법을 설명하기 위한 예시적인 도면이다.
구체적으로, 도 6은 자원 충돌 발생 시에 한 개의 기지국이 아닌 인접 기지국을 통해서 충돌 문제를 해결하는 기법을 설명하기 위한 도면이다. 현재 V2V 시나리오에서는 high mobility 환경도 고려하므로 이러한 경우에는 vehicle가 선택한 자원에서 SP 방식으로 전송하다가 인접 셀로 이동해서 충돌을 발생시킬 수도 있다. 이 경우의 문제를 해결하기 위해, 기지국 1(도 6에서 eNB #1)은 특정 vehicle (예를 들어, v1)로부터 충돌 통지 정보를 수신하면 충돌 자원을 사용한 vehicle들(혹은 충돌 자원의 vehicle들)의 방향성을 고려하여 이동하려는 방향의 기지국 2(도 6에서는 eNB#2)과 X2 인터페이스를 통해서 사용 가능한(available) 자원 (즉, 충돌 free)의 정보를 수신할 수 있다. 기지국 1은 수신한 사용 가능한 자원에 대해 정보를 충돌 자원을 사용한 vehicle들에게 전송해 주거나, 또는 수신한 사용 가능한 자원에 대해 정보에 기초하여 재선택한 자원에 대한 정보(즉, 자원 재선택 정보)를 충돌 자원을 사용한 vehicle들에게 전송해 줄 수 있다.
도 6에 설명한 방법을 이용한다면, 충돌 자원을 사용한 vehicle들이 인접 셀(도 6에서는 eNB #2가 속한 셀)로 이동하더라도, 충돌 자원을 사용한 vehicle들이 기지국 1로부터 수신한 재 선택된 자원을 통해 전송을 수행하면 충돌 발생을 해결할 수 있다.
이상에서 설명된 실시예 들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
V2X 통신 환경에서 자원 충돌을 해소하기 위한 방법 및 이를 위한 이동 기기는 3GPP LTE-A, 5G 시스템 및 IoT 기술 등 다양한 무선통신 시스템에서 산업상으로 적용이 가능하다.

Claims (14)

  1. V2X 통신 환경에서 이동 기기가 자원 충돌을 해소하기 위한 방법에 있어서,
    복수의 인접 이동 기기들에 의해 선택된 특정 자원에서 자원 충돌이 발생하였는지 여부를 판단하는 단계; 및
    자원 충돌이 발생하였다고 판단되는 경우, 상기 복수의 인접 이동 기기들에게 상기 판단의 결과에 대한 정보를 전송하는 단계를 포함하는, 자원 충돌 해소 방법.
  2. 제 1항에 있어서,
    상기 판단하는 단계는 상기 특정 자원에서의 RSRP(Reference Signals Received Power) 값이사전에 정의된 제 1 임계치 보다 높지만 SINR(Signal to Interference plus Noise Ratio) 값은 사전에 정의된 제 2 임계치 보다 낮은 경우에 자원 충돌이 발생한 것으로 판단하는 단계를 더 포함하는, 자원 충돌 해소 방법.
  3. 제 2항에 있어서,
    상기 특정 자원에서의 상기 RSRP 값 및 RSSI (Received Signal Strength Indicator) 값에 기초하여 상기 SINR 값은 추정하는 단계를 더 포함하는, 자원 충돌 해소 방법.
  4. 제 1항에 있어서,
    상기 판단의 결과에 대한 정보는 상기 특정 자원을 지시하는 정보 및 상기 복수의 이동 기기들의 식별자 정보 중 적어도 어느 하나의 정보를 포함하는, 자원 충돌 해소 방법.
  5. 제 1항에 있어서,
    상기 선택된 특정 자원은 상기 복수의 인접 이동 기기들에 의해 랜덤하게 선택된 것인, 자원 충돌 해소 방법.
  6. 제 1항에 있어서,
    상기 이동 기기와 상기 복수의 인접 이동 기기들은 지리 정보에 기초하여 동일한 그룹에 속하는, 자원 충돌 해소 방법.
  7. 제 1항에 있어서,
    상기 특정 자원과 시간 도메인 상에서 다른 시간에 해당하는 자원에서 SA(Scheduling Assignment) 또는 데이터를 전송하는 단계를 더 포함하는, 자원 충돌 해소 방법.
  8. V2X 통신 환경에서 자원 충돌을 해소하기 위한 이동 기기에 있어서,
    복수의 인접 이동 기기들에 의해 선택된 특정 자원에서 자원 충돌이 발생하였는지 여부를 판단하도록 구성된 프로세서; 및
    자원 충돌이 발생하였다고 판단되는 경우, 상기 복수의 인접 이동 기기들에게 상기 판단의 결과에 대한 정보를 전송하도록 구성된 송신기를 포함하는, 이동 기기.
  9. 제 8항에 있어서,
    상기 프로세서는 상기 특정 자원에서의 RSRP(Reference Signals Received Power) 값이 사전에 정의된 제 1 임계치 보다 높지만 SINR(Signal to Interference plus Noise Ratio) 값은 사전에 정의된 제 2 임계치 보다 낮은 경우에 자원 충돌이 발생한 것으로 판단하도록 구성된, 이동 기기.
  10. 제 9항에 있어서,
    상기 프로세서는 상기 특정 자원에서의 상기 RSRP 및 RSSI (Received Signal Strength Indicator) 값에 기초하여 상기 SINR 값은 추정하도록 구성되는, 이동 기기.
  11. 제 8항에 있어서,
    상기 판단의 결과에 대한 정보는 상기 특정 자원을 지시하는 정보 및 상기 복수의 이동 기기들의 식별자 정보 중 적어도 어느 하나의 정보를 포함하는, 이동 기기.
  12. 제 8항에 있어서,
    상기 선택된 특정 자원은 상기 복수의 인접 이동 기기들에 의해 랜덤하게 선택된 것인, 이동 기기.
  13. 제 8항에 있어서,
    상기 이동 기기와 상기 복수의 인접 이동 기기들은 지리 정보에 기초하여 동일한 그룹에 속하는, 이동 기기.
  14. 제 8항에 있어서,
    상기 특정 자원과 시간 도메인 상에서 다른 시간에 해당하는 자원에서 SA(Scheduling Assignment) 또는 데이터를 전송하도록 구성된 송신기를 더 포함하는, 이동 기기.
PCT/KR2017/002678 2016-03-11 2017-03-13 V2x 통신 환경에서 자원 충돌을 해소하기 위한 방법 및 이를 위한 이동 기기 WO2017155366A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/083,814 US10736152B2 (en) 2016-03-11 2017-03-13 Method for resolving resource collision in V2X communication environment and mobile device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662306648P 2016-03-11 2016-03-11
US62/306,648 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017155366A1 true WO2017155366A1 (ko) 2017-09-14

Family

ID=59789652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002678 WO2017155366A1 (ko) 2016-03-11 2017-03-13 V2x 통신 환경에서 자원 충돌을 해소하기 위한 방법 및 이를 위한 이동 기기

Country Status (2)

Country Link
US (1) US10736152B2 (ko)
WO (1) WO2017155366A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109195094A (zh) * 2018-08-30 2019-01-11 北京邮电大学 基于地理位置的动态资源选择方法、装置和***
KR20220082556A (ko) * 2020-12-10 2022-06-17 고려대학교 산학협력단 차량 통신 네트워크에서 패킷 통신 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017190276A1 (zh) * 2016-05-03 2017-11-09 华为技术有限公司 一种资源调度方法以及终端设备
US11277836B2 (en) * 2017-08-30 2022-03-15 Lg Electronics Inc. Method for selecting resource for V2X communication by terminal in wireless communication system, and terminal using same method
CN114208091A (zh) * 2020-03-23 2022-03-18 Oppo广东移动通信有限公司 资源选择方法、装置、电子设备和存储介质
US20230345309A1 (en) * 2020-08-26 2023-10-26 Beijing Xiaomi Mobile Software Co., Ltd. Sidelink communication methods, sidelink communication apparatus, and storage medium
US20220167351A1 (en) * 2020-11-24 2022-05-26 Qualcomm Incorporated Coordinated and distributed collision reporting in cellular vehicle-to-everything (cv2x) networks
KR102433577B1 (ko) * 2020-12-18 2022-08-18 연세대학교 산학협력단 차량 네트워크의 자원 재할당 제어 방법 및 장치
CN115915055A (zh) * 2021-08-05 2023-04-04 大唐移动通信设备有限公司 一种资源冲突指示方法、终端、装置及存储介质
US20230057077A1 (en) * 2021-08-17 2023-02-23 Autotalks Ltd. Method and apparatus for resolving v2x resource collisions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140324974A1 (en) * 2013-04-29 2014-10-30 Samsung Electronics Co., Ltd. Method and apparatus for performing distributed resource scheduling in device-to-device communication system
US20150195827A1 (en) * 2012-07-20 2015-07-09 Broadcom Corporation Fast access in v2v communication services by dynamic resources allocation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015061983A1 (en) * 2013-10-30 2015-05-07 Qualcomm Incorporated Service continuity for group communications over evolved multimedia broadcast multicast service
US10264525B2 (en) * 2014-11-17 2019-04-16 University Of Notre Dame Du Lac Energy efficient communications
US10382979B2 (en) * 2014-12-09 2019-08-13 Futurewei Technologies, Inc. Self-learning, adaptive approach for intelligent analytics-assisted self-organizing-networks (SONs)
US10327159B2 (en) * 2014-12-09 2019-06-18 Futurewei Technologies, Inc. Autonomous, closed-loop and adaptive simulated annealing based machine learning approach for intelligent analytics-assisted self-organizing-networks (SONs)
US20160165472A1 (en) * 2014-12-09 2016-06-09 Futurewei Technologies, Inc. Analytics assisted self-organizing-network (SON) for coverage capacity optimization (CCO)
US9578530B2 (en) * 2014-12-09 2017-02-21 Futurewei Technologies, Inc. Method and apparatus for determining cell states to adjust antenna configuration parameters
CN105992246B (zh) * 2015-01-30 2021-01-08 索尼公司 通信设备和通信方法
WO2016162760A1 (en) * 2015-04-08 2016-10-13 Nokia Technologies Oy Enb controlled ue based conditional carrier selection
WO2017052683A1 (en) * 2015-09-23 2017-03-30 Intel Corporation Dynamic hosting of v2x services in cellular networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150195827A1 (en) * 2012-07-20 2015-07-09 Broadcom Corporation Fast access in v2v communication services by dynamic resources allocation
US20140324974A1 (en) * 2013-04-29 2014-10-30 Samsung Electronics Co., Ltd. Method and apparatus for performing distributed resource scheduling in device-to-device communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Collision Avoidance for Mode 2", 3GPP TSG RAN WG1 MEETING #83 R1-156932, 7 November 2015 (2015-11-07), A naheim, USA, XP051003275 *
NEC: "Resource Collision Detection and Handling", 3GPP TSG RAN WG1 MEETING #84 R1-160393, 5 February 2016 (2016-02-05), St. Julian's , Malta, XP051053731 *
SAMSUNG: "Scan-based Collision Avoidance in V2V Communication", 3GPP TSG RAN WG1 #84 R1-160573, 5 February 2016 (2016-02-05), St. Julian's, Malta, XP051053905 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109195094A (zh) * 2018-08-30 2019-01-11 北京邮电大学 基于地理位置的动态资源选择方法、装置和***
KR20220082556A (ko) * 2020-12-10 2022-06-17 고려대학교 산학협력단 차량 통신 네트워크에서 패킷 통신 방법
KR102522735B1 (ko) * 2020-12-10 2023-04-18 고려대학교 산학협력단 차량 통신 네트워크에서 패킷 통신 방법

Also Published As

Publication number Publication date
US10736152B2 (en) 2020-08-04
US20190075603A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
WO2017155366A1 (ko) V2x 통신 환경에서 자원 충돌을 해소하기 위한 방법 및 이를 위한 이동 기기
US10917890B2 (en) Communication device and processor
WO2013062351A1 (ko) 무선통신 시스템에서 셀 간 d2d 통신을 수행하는 방법 및 이를 위한 장치
WO2016163809A1 (ko) 단말간 직접 통신 방법 및 장치
WO2013062310A1 (ko) 무선통신 시스템에서 기지국이 d2d(device-to-device) 통신을 지원하는 방법과 d2d 단말이 효율적으로 d2d 통신 요청 신호를 전송하는 방법
EP3518498A1 (en) Vehicle-to-everything operation processing method, device and vehicle-to-everything system
WO2013032251A2 (ko) 셀룰러 네트워크에서 단말 간 직접 통신을 지원하는 방법 및 이를 위한 장치
US11039458B2 (en) Methods and apparatuses for transmission scheduling on multiple frequencies
WO2016108555A1 (en) Method and apparatus for transmitting paging for v2x communication in wireless communication system
KR20180115326A (ko) 무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말
WO2013028044A2 (ko) 단말 간 직접 통신을 수행하는 방법과 이를 지원하는 방법 및 이를 위한 장치
WO2018190604A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 송신 자원 할당 방법 및 이를 위한 장치
WO2018084331A1 (ko) Rrc 연결 요청을 전송하는 방법 및 이를 위한 단말
WO2013081370A1 (ko) 무선통신 시스템에서 d2d 통신을 수행하거나 d2d 통신을 지원하는 방법과 이를 위한 장치
WO2013154328A1 (ko) 단말 간 직접 통신을 지원하는 무선 통신 시스템에서 d2d 단말이 데이터를 전송 및 수신하는 방법
US20230319850A1 (en) NR Sidelink Multi-Control/Data Multiplexing
CN109155986B (zh) 通信方法及终端
US11956675B2 (en) Communication apparatus, control apparatus, and communication system
WO2017183865A2 (ko) FeD2D 환경에서 간섭을 고려하여 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2017188486A1 (ko) 2d 채널 기반의 전송 방식을 이용한 데이터 수신 방법 및 이를 위한 장치
EP4089433A1 (en) Method for transmitting, by apparatus, cpm in wireless communication system supporting sidelink, and apparatus therefor
WO2012036492A2 (ko) 다중 셀 시스템에서 셀 간 간섭을 완화하는 방법 및 이를 위한 장치
EP4173423B1 (en) Channel occupancy time sharing based on received signal strength
WO2016209022A1 (ko) V2x 통신에서의 알람 메시지 송신 방법 및 이를 위한 장치
WO2016182141A1 (ko) Full duplex radio (fdr) 방식을 지원하는 무선통신 시스템에서 자원을 할당하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763626

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763626

Country of ref document: EP

Kind code of ref document: A1