WO2017155260A1 - Charging/discharging current estimation device - Google Patents

Charging/discharging current estimation device Download PDF

Info

Publication number
WO2017155260A1
WO2017155260A1 PCT/KR2017/002399 KR2017002399W WO2017155260A1 WO 2017155260 A1 WO2017155260 A1 WO 2017155260A1 KR 2017002399 W KR2017002399 W KR 2017002399W WO 2017155260 A1 WO2017155260 A1 WO 2017155260A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
node
capacitor
switch
resistor
Prior art date
Application number
PCT/KR2017/002399
Other languages
French (fr)
Korean (ko)
Inventor
박연도
길유섭
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170027932A external-priority patent/KR102014468B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17763521.6A priority Critical patent/EP3351952B1/en
Priority to JP2018529130A priority patent/JP6610912B2/en
Priority to CN201780003644.8A priority patent/CN108139448B/en
Priority to US15/765,655 priority patent/US10539623B2/en
Priority to PL17763521T priority patent/PL3351952T3/en
Publication of WO2017155260A1 publication Critical patent/WO2017155260A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/11End pieces or tapping pieces for wires, supported by the wire and for facilitating electrical connection to some other wire, terminal or conductive member
    • H01R11/28End pieces consisting of a ferrule or sleeve
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a technique for estimating charge / discharge current of a battery pack, and more particularly, to a current estimating apparatus having immunity to noise.
  • the present invention claims priority to Korean Patent Application No. 10-2016-0027243, filed March 7, 2016 and Korean Patent Application No. 10-2017-0027932, filed March 3, 2017 The contents are incorporated in this application by reference.
  • водородн ⁇ е ⁇ е ⁇ ество Commercially available secondary batteries include nickel cadmium batteries, nickel hydride batteries, nickel zinc batteries, and lithium secondary batteries. Among them, lithium secondary batteries have almost no memory effect compared to nickel-based secondary batteries, and thus are free of charge and discharge. The self-discharge rate is very low and the energy density is high.
  • the secondary battery is mainly used in the form of a battery pack, and the battery pack includes various electronic devices such as BMS.
  • the battery pack includes various electronic devices such as BMS.
  • electronic devices may be exposed to external broadcast signals or various wireless communication signals, and may cause malfunctions by external broadcast signals or various wireless communication signals. Therefore, such electronic devices are required to withstand electromagnetic waves.
  • FIG. 1 is a view schematically showing a charge / discharge current measuring circuit of a battery pack according to the prior art.
  • the charge / discharge current of a battery pack is measured by measuring a voltage applied to a shunt resistor R s and amplifying it. That is, when the charge and discharge current and a potential difference in the shunt resistor (R s) for flowing the shunt resistor (R s) through them resulting from the amplification in the amplification section 50, and outputs it to ADC (Analog to Digital Converter, 60).
  • ADC 60 converts the amplified potential difference into a digital signal.
  • the calculating means 70 receives the changed digital signal and calculates the current flowing through the shunt resistor R s . At this time, the calculating means 70, the resistance value and the amplification gain of the shunt resistor (R s) may calculate the current flowing through the shunt resistor (R s) in consideration.
  • the skin effect affects the impedance of the shunt portion 40 to generate a potential difference in the shunt resistance R s .
  • the shunt resistor (R s) even if the large potential difference, even if a minute electric potential difference in the shunt resistor (R s) due to amplify it in the amplifier section 50, the charging and discharging current measuring circuit for generating the real to the shunt resistor (R s) It can be mistaken that a charge / discharge current different from that flows.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a current estimation device which prevents an error from occurring due to an unexpected high frequency signal.
  • An apparatus for estimating charge / discharge current of a battery pack includes: a shunt resistor connected between a first node and a second node on a charge / discharge path of a battery pack; A shunt capacitor connected between the first node and the second node; A voltage measurer connected between the first node and the second node to measure a voltage applied to the shunt resistor; And a current estimating unit estimating the charge / discharge current of the battery pack using the voltage measured by the voltage measuring unit.
  • the voltage measuring unit may further include a filter module; And an amplification module.
  • the filter module may include a first series arm having a first resistor and a first capacitor connected in series with the first resistor and connected to the first node; And a second series arm having a second resistor and a second capacitor connected in series with the second resistor and connected to the second node.
  • the amplifier module includes: an amplifier having an input terminal connected to a third node formed between the first resistor and the first capacitor and an input terminal connected to a fourth node formed between the second resistor and the second capacitor; It may include.
  • the bus bar may further include two bus bars.
  • One of the two busbars may connect one end of each of the shunt resistor and the shunt capacitor to the first node.
  • the other one of the two busbars may connect the other end of each of the shunt resistor and the shunt capacitor to the second node.
  • a first switch connected between the first capacitor and the third node;
  • a second switch connected between the second capacitor and the fourth node;
  • a switching controller configured to individually control an operation of the first switch and an operation of the second switch.
  • the current estimator may output a notification signal corresponding to the estimated magnitude of the charge / discharge current to the switching controller.
  • the switching controller may individually control operations of the first switch and the second switch based on the notification signal.
  • the current estimator may calculate a current average value of charge / discharge currents estimated a predetermined number of times for a predetermined time, and output a first notification signal when the current average value is smaller than a predetermined current threshold value.
  • the switching controller may turn on both the first switch and the second switch according to the first notification signal.
  • the current estimator may output a second notification signal when the current average value is greater than the current threshold value.
  • the switching controller may turn off both the first switch and the second switch according to the second notification signal.
  • a battery pack is provided.
  • the battery pack includes the current estimating device.
  • a motor vehicle is provided.
  • the automobile includes the current estimation device.
  • the present invention even when a high frequency signal is applied to the battery pack, it is possible to prevent a phenomenon in which the potential difference across the shunt resistor changes rapidly due to the high frequency signal. Therefore, according to the present invention, it is possible to prevent an error from occurring in the current estimate due to an unexpected high frequency signal.
  • FIG. 1 is a view schematically showing a charge / discharge current measuring circuit of a battery pack according to the prior art.
  • FIG. 2 is a diagram functionally showing the configuration of a current estimating apparatus according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing the configuration of the current estimation device of FIG. 2 in more detail.
  • FIG. 4 is a view schematically showing the configuration of a shunt portion according to an embodiment of the present invention.
  • FIG. 5 is a view schematically showing the configuration of a shunt portion according to another embodiment of the present invention.
  • FIG. 6 is a diagram functionally showing the configuration of a current estimating apparatus according to another embodiment of the present invention.
  • FIG. 7 to 10 are diagrams referred to for explaining operations performed by the current estimating apparatus of FIG. 6.
  • 11A and 11B are graphs comparing the results of a radiation test (RI test) for the current estimating apparatus of FIG. 1 and the current estimating apparatus of FIG. 3, respectively.
  • RI test radiation test
  • control unit> means a unit for processing at least one function or operation, which may be implemented in hardware or software, or a combination of hardware and software.
  • FIG. 2 is a diagram functionally showing the configuration of a current estimating apparatus according to an embodiment of the present invention.
  • the current estimating apparatus 2 is an apparatus for estimating the charge / discharge current of the battery pack 1 mounted on an automobile or the like, and includes a shunt unit 100, a voltage measuring unit 200, and a current estimating unit ( 300).
  • the battery pack 1 includes at least one battery 10.
  • the battery pack 1 and the load 20 are selectively connected by a relay 30.
  • the relay 30 When the relay 30 is turned on, the charge / discharge current flows, and when the relay 30 is turned off, the charge / discharge current is cut off.
  • the relay 30 When the relay 30 is turned on, current flows through the shunt resistor R s through the battery 10 and the load 20.
  • the shunt unit 100 includes a shunt resistor R s and a shunt capacitor C s .
  • the shunt capacitor C s is electrically connected in parallel with the shunt resistor R s .
  • the shunt resistor R s is connected between the first node N 1 and the second node N 2 formed on the charge / discharge path of the battery pack 1 and has a predetermined resistance value.
  • a current flows through the shunt resistor R s , a potential difference occurs.
  • the potential difference generated in the shunt resistor R s is measured by the voltage measuring unit 200 described later, and the current estimating unit 300 is used to estimate the charge / discharge current.
  • the shunt capacitor C s is connected between the first node N 1 and the second node N 2 and has a predetermined capacitance.
  • the shunt capacitor C s serves to prevent the potential difference from occurring in the shunt resistor R s by a high frequency component applied from the outside.
  • the capacitance of the shunt capacitor C s may be substantially the same as 15 pF.
  • the capacitance of the shunt capacitor C s may be optimized to block noise above a predetermined frequency (eg, 1.4 GHz).
  • the voltage measuring unit 200 is connected between the first node N 1 and the second node N 2 .
  • the voltage measuring unit 200 is connected between the first node N 1 and the second node N 2 to measure the voltage applied to the shunt resistor R s .
  • the voltage measuring unit 200 outputs the measured voltage to the current estimating unit 300 to be described later.
  • the current estimator 300 estimates the charge / discharge current of the battery pack 1 using the voltage measured by the voltage measurer 200.
  • the current estimator 300 may estimate the charge / discharge current for each predetermined time period based on the magnitude and the sign of the voltage measured by the voltage measurer 200.
  • the current estimator 300 may estimate the charge / discharge current by dividing the voltage measured by the voltage measurer 200 by the resistance value of the shunt resistor R s .
  • the current estimator 300 may include a calculation unit and may be implemented as part of an IC or a microprocessor.
  • FIG. 3 is a diagram showing the configuration of the current estimation device of FIG. 2 in more detail.
  • the same components as those shown in FIG. 2 are given the same reference numerals, and repeated description thereof will be omitted.
  • the voltage measuring unit 200 includes a filter module 210 and an amplification module 220.
  • the filter module 210 and the amplification module 220 are cascaded in the order of the shunt unit 100, the filter module 210, and the amplification module 220.
  • the third node N 3 is a node positioned between the first resistor R 1 and the input terminal I 1
  • the fourth node N 4 is a second resistor R 2 and the input terminal I 2. Nodes located between).
  • the filter module 210 includes a first serial arm S 1 and a second serial arm S 2 .
  • the first series arm S 1 includes a first resistor R 1 and a first capacitor C 1 .
  • the first resistor R 1 and the first capacitor C 1 may be connected in series with each other.
  • one end and the other end of the first resistor R 1 are connected to the first node N 1 and the input terminal I 1 , respectively.
  • One end and the other end of the first capacitor C 1 are connected to the third node N 3 and the ground, respectively.
  • the first resistor R 1 and the first capacitor C 1 operate as a first low pass filter.
  • the second series arm S 2 includes a second resistor R 2 and a second capacitor C 2 .
  • the second resistor R 2 and the second capacitor C 2 may be connected in series with each other.
  • one end and the other end of the second resistor R 2 are connected to the second node N 2 and the input terminal I 2 , respectively.
  • One end and the other end of the second capacitor C 2 are connected to the fourth node N 4 and the ground, respectively.
  • the second resistor R 2 and the second capacitor C 2 operate as a second low pass filter.
  • the amplification module 220 may include an amplifier A having two input terminals I 1 and I 2 and one output terminal O. Two input terminals I 1 and I 2 of the amplification module 220 are connected to a third node N 3 and a fourth node N 4 , respectively.
  • the output terminal O is connected to the current estimator 300.
  • the amplifier A has a predetermined amplification ratio G.
  • the current estimator 300 to be described later may estimate the charge / discharge current in consideration of the amplification ratio G.
  • the shunt portion 100 including the shunt resistor R s and the shunt capacitor C s will be described with respect to the shunt portion 100 viewed from a mechanical point of view.
  • the shunt portion 100 is configured to be connected to the first node N 1 and the second node N 2 described above, respectively.
  • the first node N 1 and the second node N 2 may be implemented in the form of a connector.
  • the shunt resistor R s and the shunt capacitor C s are electrically connected in parallel to form the shunt portion 100.
  • FIG. 4 is a view schematically showing the configuration of a shunt portion according to an embodiment of the present invention.
  • the shunt unit 100 includes two bus bars B 1 and B 2 , a resistance element R s , and a capacitor element C s .
  • the resistance element R s and the capacitor element C s are stacked in a plate shape, and two bus bars B 1 and B 2 are formed at both ends of the resistance element R s and the capacitor element C s . Is provided.
  • the two bus bars B 1 and B 2 may be electrically connected to the first node N 1 and the second node N 2, respectively, by soldering or welding.
  • the resistance element serves as a shunt resistor R s of the shunt portion 100, and the capacitor element shunts the shunt portion 100. It acts as a capacitor (C s ).
  • FIG 5 is a view schematically showing the configuration of the shunt portion 100 according to another embodiment of the present invention.
  • the shunt unit 100 includes a PCB plate 110, a resistance element R s , and two bus bars B 1 and B 2 .
  • the PCB plate 110 is plate-shaped, it is composed of an insulating material.
  • Metal foils 110a and 110b are coated on at least a portion of both surfaces of the PCB plate 110. As shown in FIG. 5, the metal foil 110b may be coated on the entire lower surface of the PCB plate 110, and the metal foil 110a may be coated on a portion of the upper surface of the PCB plate 110.
  • the resistance element R s is seated on a portion of the upper surface where the metal foil is not coated.
  • the two bus bars B 1 and B 2 contact the resistance element R s while being spaced apart from each other.
  • the two bus bars B 1 and B 2 may be electrically connected to the first node N 1 and the second node N 2, respectively, by soldering or welding.
  • the resistance element serves as a shunt resistor R s of the shunt portion 100
  • the PCB plate 110 is a shunt portion 100. It acts as a shunt capacitor (C s ).
  • the PCB plate 110 has a thickness d and an area s. The capacitance by the PCB plate 110 is determined by the following equation.
  • Cs is the capacitance of the shunt capacitor
  • is the permittivity of the PCB plate
  • s is the area of the PCB plate
  • d is the thickness of the PCB plate.
  • FIG. 6 is a diagram functionally showing a configuration of a current estimating apparatus according to another embodiment of the present invention
  • FIGS. 7 to 10 are views referred to for explaining operations performed by the current estimating apparatus of FIG. .
  • the current estimating apparatus 2 of FIG. 6 includes a first switch SW1, a second switch SW2, a third capacitor C 3 , a fourth capacitor C 4 , and a switching controller 400. Is different in that it further includes).
  • the third capacitor C 3 and the fourth capacitor C 4 may be omitted from the current estimating apparatus 2 of FIG. 6.
  • the same reference numerals are assigned to the previously described components, and repeated description thereof will be omitted.
  • the capacitances of each of the first capacitor C 1 and the third capacitor C 3 are the same, and the capacitance of each of the second capacitor C 2 and the fourth capacitor C 4 is the same. Assume that
  • the first switch SW1 is connected in series with the first capacitor C 1 between the third node N 3 and the ground.
  • the third capacitor C 3 may be connected between the third node N 3 and the ground. While the first switch SW1 is turned on, the first capacitor C 1 is electrically connected to the third node N 3 . On the other hand, while the first switch SW1 is turned off, the first capacitor C 1 is electrically disconnected from the third node N 3 . While the first switch SW1 is turned on, the first capacitor C 1 and the third capacitor C 3 are electrically connected in parallel.
  • the second switch SW2 is connected in series with the second capacitor C 2 between the fourth node N 4 and the ground.
  • the fourth capacitor C 4 may be connected between the fourth node N 4 and the ground. While the second switch SW2 is turned on, the second capacitor C 2 is electrically connected to the fourth node N 4 . On the other hand, while the second switch SW2 is turned off, the second capacitor C 2 is electrically disconnected from the fourth node N 4 . While the second switch SW2 is turned on, the second capacitor C 2 and the fourth capacitor C 4 are electrically connected in parallel.
  • the second switch (SW2) is turned off while in the second switch (SW2) is turned on It can be twice the capacitance of. It is assumed that the resistance value of the second switch SW2 is so small that it can be ignored.
  • the switching controller 400 outputs control signals for individually controlling the operations of the first switch SW1 and the second switch SW2. In addition, the switching controller 400 may output a control signal for controlling the operation of the relay 30.
  • the switching controller 400 is communicatively connected to the current estimator 300.
  • the current estimator 300 outputs notification signals related to the estimated charge / discharge current to the switching controller 400.
  • the switching controller 400 may selectively output at least one of the following first control signal, second control signal, and third control signal based on the notification signal transmitted by the current estimator 300.
  • the switching controller 400 selectively stops the output of at least one of the following first control signal, second control signal, and third control signal based on the notification signal transmitted by the current estimator 300. can do.
  • the switching controller 400 is connected to the first switch SW1 through a first electric line, and the first control signal from the switching controller 400 is transmitted to the first switch SW1 through the first electric line.
  • the switching controller 400 When the switching controller 400 outputs the first control signal, the first switch SW1 is turned on in response to the first control signal. On the other hand, when the switching controller 400 stops outputting the first control signal, the first switch SW1 is turned off.
  • the switching controller 400 is connected to the second switch SW2 through a second electrical line, and the second control signal from the switching controller 400 is transmitted to the second switch SW2 through the second electrical line.
  • the switching controller 400 When the switching controller 400 outputs the second control signal, the second switch SW2 is turned on in response to the second control signal. On the other hand, when the switching controller 400 stops outputting the second control signal, the second switch SW2 is turned off.
  • the switching controller 400 is connected to the relay 30 through a third electric line, and the third control signal from the switching controller 400 is transmitted to the relay 30 through the third electric line.
  • the relay 30 When the switching controller 400 outputs the third control signal, the relay 30 is turned on in response to the third control signal. On the other hand, when the switching controller 400 stops outputting the third control signal, the relay 30 is turned off.
  • the current threshold value is a criterion for determining whether overcurrent occurs. That is, the current estimator 300 may determine that an overcurrent has not occurred when the average current value is less than the current threshold value, and may determine that an overcurrent has occurred in other cases.
  • the first capacitor C 1 and the second capacitor C 2 are electrically connected to the third node N 3 and the fourth node N 4 , respectively. Let's assume that it stays at. In this case, when the voltage corresponding to the charge / discharge current flowing through the load 20 is measured by the voltage measuring unit 200 due to the capacitance of each of the first capacitor C 1 and the second capacitor C 2 . There is no choice but to delay time. As a result, rapid estimation of charge and discharge current is difficult.
  • the current estimating apparatus of FIG. 6 selectively connects the first capacitor C 1 to the third node N 3 using the first switch SW1, and the second capacitor using the second switch SW2.
  • the current estimator 300 may compare the current average value with the current threshold value.
  • the notification signal output by the current estimator 300 may correspond to a comparison result between the current average value and the current threshold value.
  • the current estimator 300 may transmit the first notification signal to the switching controller 400.
  • the current estimator 300 may transmit the second notification signal to the switching controller 400.
  • the current estimator 300 may transmit the third notification signal to the switching controller 400.
  • the current estimator 300 may transmit the fourth notification signal to the switching controller 400.
  • FIG. 7 illustrates an operation when the switching controller 400 receives the first notification signal from the current estimator 300.
  • the switching controller 400 outputs a first control signal and a second control signal in response to the first notification signal.
  • both the first switch SW1 and the second switch SW2 are turned on so that the first capacitor C 1 and the second capacitor C 2 are respectively the third node N 3 and the fourth node. Is electrically connected to (N 4 ).
  • the first capacitor C 1 and the third capacitor C 3 are electrically connected in parallel
  • the second capacitor C 2 and the fourth capacitor C 4 are electrically connected in parallel.
  • the switching controller 400 receives the second notification signal from the current estimator 300.
  • the switching controller 400 in response to the second notification signal, the switching controller 400 outputs only one of the first control signal and the second control signal and stops the other output.
  • the switching controller 400 stops outputting the second control signal while outputting the first control signal, only the first switch SW1 of the first switch SW1 and the second switch SW2 is turned on. Accordingly, the first capacitor C 1 is electrically connected to the third node N 3 together with the third capacitor C 3 , while the second capacitor C 2 is electrically connected from the fourth node N 4 . Electrically isolated.
  • FIG. 9 illustrates an operation when the switching controller 400 receives the third notification signal from the current estimator 300.
  • the switching controller 400 stops output of the first control signal and the second control signal in response to the third notification signal.
  • both the first switch SW1 and the second switch SW2 are turned off so that the first capacitor C 1 and the second capacitor C 2 are respectively the third node N 3 and the fourth node.
  • the capacitance between the third node N 3 and the ground and the capacitance between the fourth node N 4 and the ground are reduced by one half, thereby enabling faster estimation of charge and discharge current.
  • the switching controller 400 may output a third control signal.
  • FIG. 10 illustrates an operation when the switching controller 400 receives the fourth notification signal from the current estimator 300.
  • the switching controller 400 stops outputting a third control signal for inducing turn-on of the relay 30.
  • the relay 30 is turned off, and the charge / discharge current is completely blocked.
  • the switching controller 400 may stop the output of the first control signal and the second control signal.
  • the current estimating apparatus 2 has a current value and a first estimated number of times (for example, three times) during a first period in which both the first and second switches SW1 and SW2 are turned on every predetermined period. And a current value estimated for a predetermined number of times (eg, three times) during the second period in which the second switches SW1 and SW2 are both turned off, to determine the magnitude of the noise flowing into the charge / discharge path.
  • a predetermined number of times eg, three times
  • the time difference between the time of estimating the electric current value in a 1st period, and the time of estimating electric current value in a 2nd period is less than a threshold value.
  • the switching controller 400 may output a signal for commanding the turn-off of the relay 30 when the determined noise level is greater than or equal to a predetermined level.
  • FIG. 11A and 11B are graphs comparing the results of a radiation test (RI test) for the conventional current estimating apparatus of FIG. 1 and the current estimating apparatus of FIG. 2, respectively.
  • the RI test means a test for observing the degree of radiated interference among tests related to electromagnetic susceptibility (EMS).
  • EMS electromagnetic susceptibility
  • Figure 11a is a shunt capacitor, and a graph showing a result of the radiation interference tests in the state (C s) is not present, and Fig. 11b is performing the radiation interference test in a state in which the shunt capacitor (C s) present
  • 11A and 11B show the results of estimating the charge / discharge current when the charge / discharge current does not flow.
  • a shunt current flows at approximately 1.39 GHz to 1.42 GHz.
  • the current estimator 300 incorrectly judges that the shunt current flows.
  • the present invention provides an effect of preventing the potential difference from occurring in the shunt portion 100 in a specific high frequency region of the electromagnetic wave.

Abstract

A current estimation device according to an embodiment of the present invention relates to a device for estimating a charging/discharging current of a battery pack, the device comprising: a shunt resistor connected between a first node and a second node, which are formed on a charging/discharging path of a battery pack; a shunt capacitor connected between the first node and the second node; a voltage measurement unit connected between the first node and the second node to measure a voltage applied to the shunt resistor; and a current estimation unit for estimating a charging/discharging current of the battery pack by using a voltage measured by the voltage measurement unit.

Description

충방전 전류 추정 장치Charge / discharge current estimation device
본 발명은 배터리 팩의 충방전 전류를 추정하는 기술에 관한 것으로서, 보다 상세하게는, 노이즈에 대한 내성을 갖는 전류 추정 장치에 관한 것이다. 본 발명은 2016년 3월 7일자로 출원된 대한민국 특허출원 제10-2016-0027243호 및 2017년 3월 3일자로 출원된 대한민국 특허출원 제10-2017-0027932호를 우선권 주장하며, 그에 대한 모든 내용은 인용에 의해 본 출원에 원용된다.The present invention relates to a technique for estimating charge / discharge current of a battery pack, and more particularly, to a current estimating apparatus having immunity to noise. The present invention claims priority to Korean Patent Application No. 10-2016-0027243, filed March 7, 2016 and Korean Patent Application No. 10-2017-0027932, filed March 3, 2017 The contents are incorporated in this application by reference.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차 전지에 대한 연구가 활발히 진행되고 있다.Recently, as the demand for portable electronic products such as notebooks, video cameras, portable telephones, etc. is rapidly increased, and development of electric vehicles, energy storage batteries, robots, satellites, and the like is in earnest, high-performance secondary batteries capable of repeatedly charging and discharging are possible. There is an active research on.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.Commercially available secondary batteries include nickel cadmium batteries, nickel hydride batteries, nickel zinc batteries, and lithium secondary batteries. Among them, lithium secondary batteries have almost no memory effect compared to nickel-based secondary batteries, and thus are free of charge and discharge. The self-discharge rate is very low and the energy density is high.
이차 전지는 주로 배터리 팩의 형태로 사용되며, 배터리 팩에는 BMS 와 같은 각종 전자기기가 내장된다. 그런데, 이러한 전자기기는 외부의 방송신호나 각종 무선통신 신호에 노출될 수 있으며, 외부의 방송신호나 각종 무선통신 신호에 의해 오동작을 일으킬 수 있다. 따라서, 이러한 전자기기는 전자파에 대한 내성이 요구된다. The secondary battery is mainly used in the form of a battery pack, and the battery pack includes various electronic devices such as BMS. However, such electronic devices may be exposed to external broadcast signals or various wireless communication signals, and may cause malfunctions by external broadcast signals or various wireless communication signals. Therefore, such electronic devices are required to withstand electromagnetic waves.
도 1은, 종래기술에 따른 배터리 팩의 충방전 전류 측정회로를 개략적으로 나타낸 도면이다.1 is a view schematically showing a charge / discharge current measuring circuit of a battery pack according to the prior art.
도 1을 참조하면, 종래기술에 따른 배터리 팩의 충방전 전류는 션트 저항(Rs)에 인가되는 전압을 측정하고, 이를 증폭하는 방식에 의해 측정된다. 즉, 충방전 전류가 션트 저항(Rs)을 통해 흘러 션트 저항(Rs)에 전위차가 발생하면 이를 증폭부(50)에서 증폭하여 ADC(Analog to Digital Converter, 60)로 출력한다. ADC(60)는 증폭된 전위차를 디지털 신호로 변경한다. 연산수단(70)은, 변경된 디지털 신호를 입력받고 이를 연산하여 션트 저항(Rs)을 통해 흐르는 전류를 추정한다. 이때, 연산수단(70)은, 션트 저항(Rs)의 저항값과 증폭이득을 고려하여 션트 저항(Rs)을 통해 흐르는 전류를 연산할 수 있다. Referring to FIG. 1, the charge / discharge current of a battery pack according to the related art is measured by measuring a voltage applied to a shunt resistor R s and amplifying it. That is, when the charge and discharge current and a potential difference in the shunt resistor (R s) for flowing the shunt resistor (R s) through them resulting from the amplification in the amplification section 50, and outputs it to ADC (Analog to Digital Converter, 60). ADC 60 converts the amplified potential difference into a digital signal. The calculating means 70 receives the changed digital signal and calculates the current flowing through the shunt resistor R s . At this time, the calculating means 70, the resistance value and the amplification gain of the shunt resistor (R s) may calculate the current flowing through the shunt resistor (R s) in consideration.
그런데, 외부로부터 전자파, 특히 고주파가 인가될 경우, 표피 효과(skin effect)로 인해 션트부(40)의 임피던스(impedance)에 영향을 주어 션트 저항(Rs)에 전위차를 발생시킨다. 션트 저항(Rs)에 발생하는 전위차는 크지 않더라도, 증폭부(50)에서 이를 증폭하기 때문에 션트 저항(Rs)에 미세한 전위차가 발생하더라도 충방전 전류 측정회로는 션트 저항(Rs)에 실제와는 다른 충방전 전류가 흐르는 것으로 오판할 수 있다. However, when electromagnetic waves, especially high frequencies, are applied from the outside, the skin effect affects the impedance of the shunt portion 40 to generate a potential difference in the shunt resistance R s . The shunt resistor (R s), even if the large potential difference, even if a minute electric potential difference in the shunt resistor (R s) due to amplify it in the amplifier section 50, the charging and discharging current measuring circuit for generating the real to the shunt resistor (R s) It can be mistaken that a charge / discharge current different from that flows.
본 출원인은, 배터리 팩에 고주파 신호가 인가되면, 표피 효과에 의해 션트 저항에 순간적으로 전위차가 발생한다는 것을 알게 되었다. Applicants have found that when a high frequency signal is applied to a battery pack, a potential difference occurs instantaneously in the shunt resistor due to the skin effect.
본 발명은, 상기 문제점을 해결하기 위해 창안된 것으로서, 예상하지 못한 고주파 신호에 의해서 오류가 발생하는 것을 방지하는 전류 추정 장치를 제공하는 것을 목적으로 한다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a current estimation device which prevents an error from occurring due to an unexpected high frequency signal.
또한, 충방전 전류의 추정치에 따라 스위치들을 제어함으로써, 충방전 전류를 추정하는 데에 소요되는 시간을 일정 범위 내에서 조절할 수 있는 전류 추정 장치를 제공하고자 한다.In addition, by controlling the switches in accordance with the estimate of the charge-discharge current, to provide a current estimation device that can adjust the time required to estimate the charge-discharge current within a certain range.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.Other objects and advantages of the present invention can be understood by the following description, and will be more clearly understood by the embodiments of the present invention. It will also be readily apparent that the objects and advantages of the invention may be realized by the means and combinations thereof indicated in the claims.
상기 목적을 달성하기 위한 본 발명의 다양한 실시예는 다음과 같다. 본 발명의 일 측면에 따른 배터리 팩의 충방전 전류를 추정하는 장치가 제공된다. 상기 전류 추정 장치는, 배터리 팩의 충방전 경로 상의 제1 노드와 제2 노드 사이에 연결된 션트 저항; 상기 제1 노드와 상기 제2 노드 사이에 연결된 션트 커패시터; 상기 제1 노드와 상기 제2 노드 사이에 연결되어 상기 션트 저항에 인가된 전압을 측정하는 전압 측정부; 및 상기 전압 측정부가 측정한 전압을 이용하여 상기 배터리 팩의 충방전 전류를 추정하는 전류 추정부;를 포함한다.Various embodiments of the present invention for achieving the above object are as follows. An apparatus for estimating charge / discharge current of a battery pack according to an aspect of the present invention is provided. The current estimating apparatus includes: a shunt resistor connected between a first node and a second node on a charge / discharge path of a battery pack; A shunt capacitor connected between the first node and the second node; A voltage measurer connected between the first node and the second node to measure a voltage applied to the shunt resistor; And a current estimating unit estimating the charge / discharge current of the battery pack using the voltage measured by the voltage measuring unit.
또한, 상기 전압 측정부는, 필터 모듈; 및 증폭 모듈을 포함할 수 있다. 상기 필터 모듈은, 제1 저항 및 상기 제1 저항과 직렬 연결된 제1 커패시터를 구비하고, 상기 제1 노드에 연결된 제1직렬암; 및 제2 저항 및 상기 제2 저항과 직렬 연결된 제2 커패시터를 구비하고, 상기 제2 노드에 연결된 제2직렬암;을 포함할 수 있다. 상기 증폭 모듈은, 상기 제1 저항과 상기 제1 커패시터 사이에 형성된 제3 노드와 연결된 입력단자 및 상기 제2 저항과 상기 제2 커패시터 사이에 형성된 제4 노드와 연결된 입력단자를 구비한 앰플리파이어;를 포함할 수 있다.The voltage measuring unit may further include a filter module; And an amplification module. The filter module may include a first series arm having a first resistor and a first capacitor connected in series with the first resistor and connected to the first node; And a second series arm having a second resistor and a second capacitor connected in series with the second resistor and connected to the second node. The amplifier module includes: an amplifier having an input terminal connected to a third node formed between the first resistor and the first capacitor and an input terminal connected to a fourth node formed between the second resistor and the second capacitor; It may include.
또한, 2개의 버스바를 더 포함할 수 있다. 상기 2개의 버스바 중 어느 하나는, 상기 션트 저항 및 상기 션트 커패시터 각각의 일단을 상기 제1 노드에 연결할 수 있다. 상기 2개의 버스바 중 다른 하나는, 상기 션트 저항 및 상기 션트 커패시터 각각의 타단을 상기 제2 노드에 연결할 수 있다.In addition, the bus bar may further include two bus bars. One of the two busbars may connect one end of each of the shunt resistor and the shunt capacitor to the first node. The other one of the two busbars may connect the other end of each of the shunt resistor and the shunt capacitor to the second node.
또한, 상기 제1 커패시터와 상기 제3 노드 사이에 연결되는 제1 스위치; 상기 제2 커패시터와 상기 제4 노드 사이에 연결되는 제2 스위치; 및 상기 제1 스위치의 동작과 상기 제2 스위치의 동작을 개별적으로 제어하도록 구성된 스위칭 제어부;를 더 포함할 수 있다.In addition, a first switch connected between the first capacitor and the third node; A second switch connected between the second capacitor and the fourth node; And a switching controller configured to individually control an operation of the first switch and an operation of the second switch.
또한, 상기 전류 추정부는, 상기 추정된 충방전 전류의 크기에 대응하는 통지 신호를 상기 스위칭 제어부에게 출력할 수 있다. 상기 스위칭 제어부는, 상기 통지 신호를 기초로, 상기 제1 스위치 및 상기 제2 스위치의 동작을 개별적으로 제어할 수 있다.The current estimator may output a notification signal corresponding to the estimated magnitude of the charge / discharge current to the switching controller. The switching controller may individually control operations of the first switch and the second switch based on the notification signal.
또한, 상기 전류 추정부는, 소정 시간 동안 소정 횟수 추정된 충방전 전류의 전류 평균값을 산출하고, 상기 전류 평균값이 미리 정해진 전류 임계값보다 작은 경우, 제1 통지 신호를 출력할 수 있다. 상기 스위칭 제어부는, 상기 제1 통지 신호에 따라, 상기 제1 스위치 및 상기 제2 스위치를 모두 턴온시킬 수 있다.The current estimator may calculate a current average value of charge / discharge currents estimated a predetermined number of times for a predetermined time, and output a first notification signal when the current average value is smaller than a predetermined current threshold value. The switching controller may turn on both the first switch and the second switch according to the first notification signal.
또한, 상기 전류 추정부는, 상기 전류 평균값이 상기 전류 임계값보다 큰 경우, 제2 통지 신호를 출력할 수 있다. 상기 스위칭 제어부는, 상기 제2 통지 신호에 따라, 상기 제1 스위치 및 상기 제2 스위치를 모두 턴 오프시킬 수 있다.The current estimator may output a second notification signal when the current average value is greater than the current threshold value. The switching controller may turn off both the first switch and the second switch according to the second notification signal.
본 발명의 다른 측면에 따른 배터리 팩이 제공된다. 상기 배터리 팩은, 상기 전류 추정 장치;를 포함한다.According to another aspect of the present invention, a battery pack is provided. The battery pack includes the current estimating device.
본 발명의 또 다른 측면에 따른 자동차가 제공된다. 상기 자동차는, 상기 전류 추정 장치;를 포함한다.According to another aspect of the present invention, a motor vehicle is provided. The automobile includes the current estimation device.
본 발명의 실시예들 중 적어도 하나에 의하면, 배터리 팩에 고주파 신호가 인가되더라도, 고주파 신호로 인해 션트 저항 양단의 전위차가 급격히 변화하는 현상을 방지할 수 있다. 따라서, 본 발명에 의하면, 예상하지 못한 고주파 신호에 의해서 전류 추정치에 오류가 발생하는 것을 방지할 수 있다. According to at least one of the embodiments of the present invention, even when a high frequency signal is applied to the battery pack, it is possible to prevent a phenomenon in which the potential difference across the shunt resistor changes rapidly due to the high frequency signal. Therefore, according to the present invention, it is possible to prevent an error from occurring in the current estimate due to an unexpected high frequency signal.
또한, 본 발명의 실시예들 중 적어도 하나에 의하면, 전류의 추정치에 따라 스위치들을 제어함으로써, 충방전 전류를 추정하는 데에 소요되는 시간을 일정 범위 내에서 조절할 수 있다.In addition, according to at least one of the embodiments of the present invention, by controlling the switches in accordance with the estimate of the current, it is possible to adjust the time required to estimate the charge-discharge current within a certain range.
또한, 스위치들(도 6에 도시된 SW1, SW2)을 턴 오프한 동안에 추정되는 전류 값과 턴 온한 동안에 추정되는 전류값을 비교함으로써, 자동차 등에 탑재되는 배터리 팩에 흐르는 충방전 전류에 영향을 미치는 노이즈가 얼마나 발생하는지를 파악할 수 있다.Also, by comparing the current value estimated during the turn-off of the switches (SW1 and SW2 shown in FIG. 6) and the current value estimated during the turn-on, the charging and discharging currents flowing in the battery pack mounted on the vehicle, etc. are affected. You can see how much noise is generated.
이외에도 본 발명은 다른 다양한 효과를 가질 수 있으며, 이러한 본 발명의 다른 효과들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 알 수 있다. In addition to the present invention may have a variety of other effects, these other effects of the present invention can be understood by the following description, it will be more clearly understood by the embodiments of the present invention.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings attached to this specification are illustrative of the preferred embodiments of the present invention, and together with the detailed description of the invention to serve to further understand the technical spirit of the present invention, the present invention is a matter described in such drawings It should not be construed as limited to.
도 1은, 종래기술에 따른 배터리 팩의 충방전 전류 측정회로를 개략적으로 나타낸 도면이다.1 is a view schematically showing a charge / discharge current measuring circuit of a battery pack according to the prior art.
도 2는, 본 발명의 일 실시예에 따른 전류 추정 장치의 구성을 기능적으로 나타낸 도면이다.2 is a diagram functionally showing the configuration of a current estimating apparatus according to an embodiment of the present invention.
도 3은, 도 2의 전류 추정 장치의 구성을 보다 상세히 나타낸 도면이다.3 is a diagram showing the configuration of the current estimation device of FIG. 2 in more detail.
도 4는, 본 발명의 일 실시예에 따른 션트부의 구성을 개략적으로 나타낸 도면이다. 4 is a view schematically showing the configuration of a shunt portion according to an embodiment of the present invention.
도 5는, 본 발명의 다른 실시예에 따른 션트부의 구성을 개략적으로 나타낸 도면이다.5 is a view schematically showing the configuration of a shunt portion according to another embodiment of the present invention.
도 6은 본 발명의 다른 실시예에 따른 전류 추정 장치의 구성을 기능적으로 나타낸 도면이다.6 is a diagram functionally showing the configuration of a current estimating apparatus according to another embodiment of the present invention.
도 7 내지 도 10은 도 6의 전류 추정 장치에 의해 실행되는 동작들을 설명하는 데에 참조되는 도면이다.7 to 10 are diagrams referred to for explaining operations performed by the current estimating apparatus of FIG. 6.
도 11a 및 도 11b는, 각각 도 1의 전류 추정 장치와 도 3의 전류 추정 장치에 대한 방사 방해 테스트(RI test)의 결과를 비교한 그래프이다.11A and 11B are graphs comparing the results of a radiation test (RI test) for the current estimating apparatus of FIG. 1 and the current estimating apparatus of FIG. 3, respectively.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.Terms including ordinal numbers such as first and second are used for the purpose of distinguishing any one of the various components from the others, and are not used to limit the components by such terms.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 <포함>한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. 또한, 명세서에 기재된 <제어 유닛>과 같은 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.Throughout the specification, when any part <includes> a certain component, it means that it may further include other components, without excluding the other components unless otherwise stated. In addition, the term <control unit> described in the specification means a unit for processing at least one function or operation, which may be implemented in hardware or software, or a combination of hardware and software.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 <연결>되어 있다고 할 때, 이는 <직접적으로 연결>되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 <간접적으로 연결>되어 있는 경우도 포함한다.In addition, in the entire specification, when a part is <connected> to another part, it is not only when <directly connected> but also when <indirectly connected> with another element in between. Include.
도 2는, 본 발명의 일 실시예에 따른 전류 추정 장치의 구성을 기능적으로 나타낸 도면이다.2 is a diagram functionally showing the configuration of a current estimating apparatus according to an embodiment of the present invention.
도 2를 참조하면, 전류 추정 장치(2)는, 자동차 등에 탑재되는 배터리 팩(1)의 충방전 전류를 추정하는 장치로서, 션트부(100), 전압 측정부(200) 및 전류 추정부(300)를 포함한다. 배터리 팩(1)은, 적어도 하나의 배터리(10)를 포함한다.Referring to FIG. 2, the current estimating apparatus 2 is an apparatus for estimating the charge / discharge current of the battery pack 1 mounted on an automobile or the like, and includes a shunt unit 100, a voltage measuring unit 200, and a current estimating unit ( 300). The battery pack 1 includes at least one battery 10.
도 2에 도시된 바와 같이, 배터리 팩(1)과 부하(20)는 릴레이(30)에 의해 선택적으로 연결된다. 릴레이(30)가 턴 온되면, 충방전 전류가 흐르게 되고, 릴레이(30)가 턴 오프되면 충방전 전류를 차단된다. 릴레이(30)가 턴 온될 경우, 배터리(10)와 부하(20)를 거쳐 션트 저항(Rs)을 통해 전류가 흐르게 된다. As shown in FIG. 2, the battery pack 1 and the load 20 are selectively connected by a relay 30. When the relay 30 is turned on, the charge / discharge current flows, and when the relay 30 is turned off, the charge / discharge current is cut off. When the relay 30 is turned on, current flows through the shunt resistor R s through the battery 10 and the load 20.
상기 션트부(100)는, 션트 저항(Rs) 및 션트 커패시터(Cs)를 포함한다. 상기 션트 커패시터(Cs)는 상기 션트 저항(Rs)과 전기적으로 병렬연결된다. The shunt unit 100 includes a shunt resistor R s and a shunt capacitor C s . The shunt capacitor C s is electrically connected in parallel with the shunt resistor R s .
상기 션트 저항(Rs)은 배터리 팩(1)의 충방전 경로 상에 형성된 제1 노드(N1)와 제2 노드(N2) 사이에 연결되며 소정 저항값을 갖는다. 상기 션트 저항(Rs)에 전류가 흐르면 전위차가 발생한다. 션트 저항(Rs)에 발생한 전위차는 후술할 전압 측정부(200)에 의해 측정되어, 전류 추정부(300)가 충방전 전류를 추정하는데 이용된다.The shunt resistor R s is connected between the first node N 1 and the second node N 2 formed on the charge / discharge path of the battery pack 1 and has a predetermined resistance value. When a current flows through the shunt resistor R s , a potential difference occurs. The potential difference generated in the shunt resistor R s is measured by the voltage measuring unit 200 described later, and the current estimating unit 300 is used to estimate the charge / discharge current.
상기 션트 커패시터(Cs)는 상기 제1 노드(N1) 및 상기 제2 노드(N2) 사이에 연결되며 소정 커패시턴스를 갖는다. 상기 션트 커패시터(Cs)는 외부로부터 인가되는 고주파성분에 의해 션트 저항(Rs)에 전위차가 발생하는 것을 방지하는 역할을 한다. 예컨대, 상기 션트 커패시터(Cs)의 커패시턴스는, 15pF과 실질적으로 동일한 것이 좋다. 상기 션트 커패시터(Cs)의 커패시턴스는, 미리 정해진 주파수((예, 1.4GHz) 이상의 노이즈를 차단하도록 최적화될 수 있다. The shunt capacitor C s is connected between the first node N 1 and the second node N 2 and has a predetermined capacitance. The shunt capacitor C s serves to prevent the potential difference from occurring in the shunt resistor R s by a high frequency component applied from the outside. For example, the capacitance of the shunt capacitor C s may be substantially the same as 15 pF. The capacitance of the shunt capacitor C s may be optimized to block noise above a predetermined frequency (eg, 1.4 GHz).
상기 전압 측정부(200)는, 상기 제1 노드(N1)와 상기 제2 노드(N2) 사이에 연결된다. 상기 전압 측정부(200)는 상기 제1 노드(N1)와 상기 제2 노드(N2) 사이에 연결되어 상기 션트 저항(Rs)에 인가된 전압을 측정한다. 상기 전압 측정부(200)는 측정한 전압을 후술할 전류 추정부(300)로 출력한다.The voltage measuring unit 200 is connected between the first node N 1 and the second node N 2 . The voltage measuring unit 200 is connected between the first node N 1 and the second node N 2 to measure the voltage applied to the shunt resistor R s . The voltage measuring unit 200 outputs the measured voltage to the current estimating unit 300 to be described later.
상기 전류 추정부(300)는, 상기 전압 측정부(200)가 측정한 전압을 이용하여 배터리 팩(1)의 충방전 전류를 추정한다. 상기 전류 추정부(300)는, 전압 측정부(200)가 측정한 전압의 크기와 부호에 기초해, 미리 정해진 시간 주기마다 충방전 전류를 추정할 수 있다. 일 실시예에 따르면, 상기 전류 추정부(300)는 전압 측정부(200)가 측정한 전압을 션트 저항(Rs)의 저항값으로 나누어 충방전 전류를 추정할 수 있다. 상기 전류 추정부(300)는, 연산수단을 구비할 수 있으며, IC 또는 마이크로프로세서의 일부로 구현될 수 있다.The current estimator 300 estimates the charge / discharge current of the battery pack 1 using the voltage measured by the voltage measurer 200. The current estimator 300 may estimate the charge / discharge current for each predetermined time period based on the magnitude and the sign of the voltage measured by the voltage measurer 200. According to an embodiment, the current estimator 300 may estimate the charge / discharge current by dividing the voltage measured by the voltage measurer 200 by the resistance value of the shunt resistor R s . The current estimator 300 may include a calculation unit and may be implemented as part of an IC or a microprocessor.
도 3은, 도 2의 전류 추정 장치의 구성을 보다 상세히 나타낸 도면이다. 도 2에 도시된 구성과 동일한 구성에 대해서는 동일한 참조 부호를 부여하고, 그에 대한 반복적인 설명은 생략하기로 한다.3 is a diagram showing the configuration of the current estimation device of FIG. 2 in more detail. The same components as those shown in FIG. 2 are given the same reference numerals, and repeated description thereof will be omitted.
도 3을 참조하면, 상기 전압 측정부(200)는, 필터 모듈(210)과 증폭 모듈(220)을 포함한다. 상기 필터 모듈(210)과 증폭 모듈(220)은, 션트부(100), 필터 모듈(210), 증폭모듈(220)의 순서로 캐스케이드(cascade) 연결된다. 제3 노드(N3)는 제1 저항(R1)과 입력단자(I1) 사이에 위치하는 노드이고, 제4 노드(N4)는 제2 저항(R2)과 입력단자(I2) 사이에 위치하는 노드다.Referring to FIG. 3, the voltage measuring unit 200 includes a filter module 210 and an amplification module 220. The filter module 210 and the amplification module 220 are cascaded in the order of the shunt unit 100, the filter module 210, and the amplification module 220. The third node N 3 is a node positioned between the first resistor R 1 and the input terminal I 1 , and the fourth node N 4 is a second resistor R 2 and the input terminal I 2. Nodes located between).
상기 필터 모듈(210)은, 제1직렬암(S1)과 제2직렬암(S2)을 포함한다. The filter module 210 includes a first serial arm S 1 and a second serial arm S 2 .
상기 제1직렬암(S1)은, 제1 저항(R1) 및 제1 커패시터(C1)를 구비한다. 상기 제1 저항(R1)과 제1 커패시터(C1)는 서로 직렬 연결될 수 있다. 상세히는, 제1 저항(R1)의 일단과 타단은 각각 제1 노드(N1)와 입력단자(I1)에 연결된다. 제1 커패시터(C1)의 일단과 타단은 각각 제3 노드(N3)와 접지에 연결된다. 제1 저항(R1) 및 제1 커패시터(C1)는 제1 로우 패스 필터로서 동작한다.The first series arm S 1 includes a first resistor R 1 and a first capacitor C 1 . The first resistor R 1 and the first capacitor C 1 may be connected in series with each other. In detail, one end and the other end of the first resistor R 1 are connected to the first node N 1 and the input terminal I 1 , respectively. One end and the other end of the first capacitor C 1 are connected to the third node N 3 and the ground, respectively. The first resistor R 1 and the first capacitor C 1 operate as a first low pass filter.
상기 제2직렬암(S2)은, 제2 저항(R2) 및 제2 커패시터(C2)를 구비한다. 상기 제2 저항(R2)과 제2 커패시터(C2)는 서로 직렬 연결될 수 있다. 상세히는, 제2 저항(R2)의 일단과 타단은 각각 제2 노드(N2)와 입력단자(I2)에 연결된다. 제2 커패시터(C2)의 일단과 타단은 각각 제4 노드(N4)와 접지에 연결된다. 제2 저항(R2) 및 제2 커패시터(C2)은 제2 로우 패스 필터로서 동작한다. The second series arm S 2 includes a second resistor R 2 and a second capacitor C 2 . The second resistor R 2 and the second capacitor C 2 may be connected in series with each other. In detail, one end and the other end of the second resistor R 2 are connected to the second node N 2 and the input terminal I 2 , respectively. One end and the other end of the second capacitor C 2 are connected to the fourth node N 4 and the ground, respectively. The second resistor R 2 and the second capacitor C 2 operate as a second low pass filter.
상기 증폭 모듈(220)은, 2개의 입력단자(I1, I2)와 1개의 출력단자(O)를 가지는 앰플리파이어(A)를 포함할 수 있다. 상기 증폭 모듈(220)의 두 입력단자(I1, I2)는 각각 제3 노드(N3)와 제4 노드(N4)에 연결된다. 상기 출력단자(O)는 전류 추정부(300)와 연결된다. 상기 앰플리파이어(A)는 소정 증폭비(G)를 가진다. 후술할 전류 추정부(300)는, 상기 증폭비(G)를 고려하여 충방전 전류를 추정할 수 있다.The amplification module 220 may include an amplifier A having two input terminals I 1 and I 2 and one output terminal O. Two input terminals I 1 and I 2 of the amplification module 220 are connected to a third node N 3 and a fourth node N 4 , respectively. The output terminal O is connected to the current estimator 300. The amplifier A has a predetermined amplification ratio G. The current estimator 300 to be described later may estimate the charge / discharge current in consideration of the amplification ratio G.
이하, 션트 저항(Rs)과 션트 커패시터(Cs)를 포함하는 션트부(100)를 기계적 측면에서 바라본 션트부(100)에 대해 설명하도록 한다. 상기 션트부(100)는, 전술한 제1 노드(N1)와 제2 노드(N2)에 각각 접속하도록 구성된다. 이때, 상기 제1 노드(N1) 및 제2 노드(N2)는 커넥터 형태로 구현될 수 있다. 한편, 션트 저항(Rs) 및 션트 커패시터(Cs)가 전기적으로 병렬연결되어 션트부(100)를 구성한다는 점은 전술한 바와 같다. Hereinafter, the shunt portion 100 including the shunt resistor R s and the shunt capacitor C s will be described with respect to the shunt portion 100 viewed from a mechanical point of view. The shunt portion 100 is configured to be connected to the first node N 1 and the second node N 2 described above, respectively. In this case, the first node N 1 and the second node N 2 may be implemented in the form of a connector. On the other hand, as described above, the shunt resistor R s and the shunt capacitor C s are electrically connected in parallel to form the shunt portion 100.
도 4는, 본 발명의 일 실시예에 따른 션트부의 구성을 개략적으로 나타낸 도면이다. 4 is a view schematically showing the configuration of a shunt portion according to an embodiment of the present invention.
도 4를 참조하면, 본 발명의 일 실시예에 따른 션트부(100)는, 2개의 버스바(B1, B2)와 저항소자(Rs) 및 커패시터소자(Cs)를 포함한다. 상기 저항소자(Rs) 및 커패시터소자(Cs)는 판상으로 적층되며, 저항소자(Rs)와 커패시터소자(Cs)가 적층된 양측단부에 2개의 버스바(B1, B2)가 제공된다. 상기 2개의 버스바(B1, B2)는 각각 제1 노드(N1) 및 제2 노드(N2)와 납땜, 용접 등에 의해 전기적으로 연결될 수 있다. 한편, 도 4의 실시예에 도시된 션트부(100)에 있어서, 상기 저항소자는 션트부(100)의 션트 저항(Rs)의 역할을 하며, 상기 커패시터소자는 션트부(100)의 션트 커패시터(Cs)의 역할을 한다.Referring to FIG. 4, the shunt unit 100 according to an embodiment of the present invention includes two bus bars B 1 and B 2 , a resistance element R s , and a capacitor element C s . The resistance element R s and the capacitor element C s are stacked in a plate shape, and two bus bars B 1 and B 2 are formed at both ends of the resistance element R s and the capacitor element C s . Is provided. The two bus bars B 1 and B 2 may be electrically connected to the first node N 1 and the second node N 2, respectively, by soldering or welding. Meanwhile, in the shunt portion 100 shown in the embodiment of FIG. 4, the resistance element serves as a shunt resistor R s of the shunt portion 100, and the capacitor element shunts the shunt portion 100. It acts as a capacitor (C s ).
도 5는, 본 발명의 다른 실시예에 따른 션트부(100)의 구성을 개략적으로 나타낸 도면이다.5 is a view schematically showing the configuration of the shunt portion 100 according to another embodiment of the present invention.
도 5를 참조하면, 본 발명의 다른 실시예에 따른 션트부(100)는, PCB플레이트(110), 저항소자(Rs) 및 2개의 버스바(B1, B2)를 포함한다. 상기 PCB플레이트(110)는 판형이며, 절연재질로 구성된다. 상기 PCB플레이트(110)의 양면의 적어도 일부에는 금속 포일(110a, 110b)이 코팅된다. 도 5에 도시된 바와 같이, PCB플레이트(110)의 하면 전체에 금속 포일(110b)이 코팅되며, PCB플레이트(110)의 상면 일부에 금속 포일(110a)이 코팅될 수 있다. 그리고, 상면 일부 중 금속포일이 코팅되지 않은 부분에는 저항소자(Rs)가 안착된다. 상기 2개의 버스바(B1, B2)는 서로 이격된 상태로 상기 저항소자(Rs)와 접촉한다. 상기 2개의 버스바(B1, B2)는 각각 제1 노드(N1) 및 제2 노드(N2)와 납땜, 용접 등에 의해 전기적으로 연결될 수 있다. 한편, 도 5의 실시예에 도시된 션트부(100)에 있어서, 상기 저항소자는 션트부(100)의 션트 저항(Rs)의 역할을 하며, 상기 PCB플레이트(110)는 션트부(100)의 션트 커패시터(Cs)의 역할을 한다. 구체적으로 PCB플레이트(110)는 두께(d)와 면적(s)을 가진다. 상기 PCB플레이트(110)에 의한 커패시턴스는, 다음의 수학식에 의해 결정된다. Referring to FIG. 5, the shunt unit 100 according to another embodiment of the present invention includes a PCB plate 110, a resistance element R s , and two bus bars B 1 and B 2 . The PCB plate 110 is plate-shaped, it is composed of an insulating material. Metal foils 110a and 110b are coated on at least a portion of both surfaces of the PCB plate 110. As shown in FIG. 5, the metal foil 110b may be coated on the entire lower surface of the PCB plate 110, and the metal foil 110a may be coated on a portion of the upper surface of the PCB plate 110. In addition, the resistance element R s is seated on a portion of the upper surface where the metal foil is not coated. The two bus bars B 1 and B 2 contact the resistance element R s while being spaced apart from each other. The two bus bars B 1 and B 2 may be electrically connected to the first node N 1 and the second node N 2, respectively, by soldering or welding. Meanwhile, in the shunt portion 100 shown in the embodiment of FIG. 5, the resistance element serves as a shunt resistor R s of the shunt portion 100, and the PCB plate 110 is a shunt portion 100. It acts as a shunt capacitor (C s ). In detail, the PCB plate 110 has a thickness d and an area s. The capacitance by the PCB plate 110 is determined by the following equation.
[수학식1][Equation 1]
Cs =ε*s/dCs = ε * s / d
여기서, Cs는 션트 커패시터의 커패시턴스, ε은 PCB플레이트의 유전율, s는 PCB플레이트의 면적, d는 PCB플레이트의 두께이다.Where Cs is the capacitance of the shunt capacitor, ε is the permittivity of the PCB plate, s is the area of the PCB plate, and d is the thickness of the PCB plate.
도 6은 본 발명의 또 다른 실시예에 따른 전류 추정 장치의 구성을 기능적으로 나타낸 도면이고, 도 7 내지 도 10은 도 6의 전류 추정 장치에 의해 실행되는 동작들을 설명하는 데에 참조되는 도면이다.FIG. 6 is a diagram functionally showing a configuration of a current estimating apparatus according to another embodiment of the present invention, and FIGS. 7 to 10 are views referred to for explaining operations performed by the current estimating apparatus of FIG. .
도 3과 비교할 때, 도 6의 전류 추정 장치(2)는 제1 스위치(SW1), 제2 스위치(SW2), 제3 커패시터(C3), 제4 커패시터(C4) 및 스위칭 제어부(400)를 더 포함한다는 점에서 상이하다. 경우에 따라, 제3 커패시터(C3) 및 제4 커패시터(C4)는 도 6의 전류 추정 장치(2)로부터 생략될 수 있다. 이하에서는, 기 설명된 구성 요소들에 대해서는 동일한 참조 부호를 부여하고, 그에 대한 반복적인 설명은 생략한다. 또한, 설명의 편의를 위해, 제1 커패시터(C1)와 제3 커패시터(C3) 각각의 커패시턴스를 동일하고, 제2 커패시터(C2)와 제4 커패시터(C4) 각각의 커패시턴스를 동일한 것으로 가정한다.In comparison with FIG. 3, the current estimating apparatus 2 of FIG. 6 includes a first switch SW1, a second switch SW2, a third capacitor C 3 , a fourth capacitor C 4 , and a switching controller 400. Is different in that it further includes). In some cases, the third capacitor C 3 and the fourth capacitor C 4 may be omitted from the current estimating apparatus 2 of FIG. 6. Hereinafter, the same reference numerals are assigned to the previously described components, and repeated description thereof will be omitted. In addition, for convenience of description, the capacitances of each of the first capacitor C 1 and the third capacitor C 3 are the same, and the capacitance of each of the second capacitor C 2 and the fourth capacitor C 4 is the same. Assume that
도 6을 참조하면, 제1 스위치(SW1)는, 제3 노드(N3)와 접지 사이에서, 제1 커패시터(C1)와 직렬로 연결된다. 제3 커패시터(C3)는, 제3 노드(N3)와 접지 사이에 연결될 수 있다. 제1 스위치(SW1)가 턴 온되어 있는 동안, 제1 커패시터(C1)는 제3 노드(N3)에 전기적으로 연결된다. 반면, 제1 스위치(SW1)가 턴 오프되어 있는 동안, 제1 커패시터(C1)는 제3 노드(N3)로부터 전기적으로 분리된다. 제1 스위치(SW1)가 턴 온되어 있는 동안, 제1 커패시터(C1)와 제3 커패시터(C3)는 전기적으로 병렬 연결된다. 제1 스위치(SW1)가 턴 온되어 있는 동안의 제3 노드(N3)와 접지 사이의 커패시턴스는, 제1 스위치(SW1)가 턴 오프되어 있는 동안의 제3 노드(N3)와 접지 사이의 커패시턴스의 2배일 수 있다. 제1 스위치(SW1)의 저항값은 무시할 수 있을 정도로 매우 작은 것으로 가정한다.Referring to FIG. 6, the first switch SW1 is connected in series with the first capacitor C 1 between the third node N 3 and the ground. The third capacitor C 3 may be connected between the third node N 3 and the ground. While the first switch SW1 is turned on, the first capacitor C 1 is electrically connected to the third node N 3 . On the other hand, while the first switch SW1 is turned off, the first capacitor C 1 is electrically disconnected from the third node N 3 . While the first switch SW1 is turned on, the first capacitor C 1 and the third capacitor C 3 are electrically connected in parallel. A first switch (SW1) between the turns a third node for which is on (N 3) and the capacitance between the ground, the first switch (SW1) is turned on, the third node (N 3) and the ground in while they are off It can be twice the capacitance of. It is assumed that the resistance value of the first switch SW1 is so small that it can be ignored.
제2 스위치(SW2)는, 제4 노드(N4)와 접지 사이에서, 제2 커패시터(C2)와 직렬로 연결된다. 제4 커패시터(C4)는, 제4 노드(N4)와 접지 사이에 연결될 수 있다. 제2 스위치(SW2)가 턴 온되어 있는 동안, 제2 커패시터(C2)는 제4 노드(N4)에 전기적으로 연결된다. 반면, 제2 스위치(SW2)가 턴 오프되어 있는 동안, 제2 커패시터(C2)는 제4 노드(N4)로부터 전기적으로 분리된다. 제2 스위치(SW2)가 턴 온되어 있는 동안, 제2 커패시터(C2)와 제4 커패시터(C4)는 전기적으로 병렬 연결된다. 제2 스위치(SW2)가 턴 온되어 있는 동안의 제4 노드(N4)와 접지 사이의 커패시턴스는, 제2 스위치(SW2)가 턴 오프되어 있는 동안의 제4 노드(N4)와 접지 사이의 커패시턴스의 2배일 수 있다. 제2 스위치(SW2)의 저항값은 무시할 수 있을 정도로 매우 작은 것으로 가정한다.The second switch SW2 is connected in series with the second capacitor C 2 between the fourth node N 4 and the ground. The fourth capacitor C 4 may be connected between the fourth node N 4 and the ground. While the second switch SW2 is turned on, the second capacitor C 2 is electrically connected to the fourth node N 4 . On the other hand, while the second switch SW2 is turned off, the second capacitor C 2 is electrically disconnected from the fourth node N 4 . While the second switch SW2 is turned on, the second capacitor C 2 and the fourth capacitor C 4 are electrically connected in parallel. First between the fourth node (N 4) and ground, while the capacitance between the fourth node (N 4) and ground, the second switch (SW2) is turned off while in the second switch (SW2) is turned on It can be twice the capacitance of. It is assumed that the resistance value of the second switch SW2 is so small that it can be ignored.
스위칭 제어부(400)는, 제1 스위치(SW1) 및 제2 스위치(SW2)의 동작을 개별적으로 제어하기 위한 제어 신호들을 출력한다. 또한, 스위칭 제어부(400)는, 릴레이(30)의 동작을 제어하기 위한 제어 신호를 출력할 수도 있다. 스위칭 제어부(400)는, 전류 추정부(300)와 통신 가능하게 연결된다. 전류 추정부(300)는, 추정된 충방전 전류와 관련된 통지 신호들을 스위칭 제어부(400)에게 출력한다. 스위칭 제어부(400)는, 전류 추정부(300)에 의해 전송된 통지 신호에 기초하여, 아래의 제1 제어 신호, 제2 제어 신호 및 제3 제어 신호 중 적어도 하나를 선택적으로 출력할 수 있다. 물론, 스위칭 제어부(400)는, 전류 추정부(300)에 의해 전송된 통지 신호에 기초하여, 아래의 제1 제어 신호, 제2 제어 신호 및 제3 제어 신호 중 적어도 하나의 출력을 선택적으로 중단할 수 있다.The switching controller 400 outputs control signals for individually controlling the operations of the first switch SW1 and the second switch SW2. In addition, the switching controller 400 may output a control signal for controlling the operation of the relay 30. The switching controller 400 is communicatively connected to the current estimator 300. The current estimator 300 outputs notification signals related to the estimated charge / discharge current to the switching controller 400. The switching controller 400 may selectively output at least one of the following first control signal, second control signal, and third control signal based on the notification signal transmitted by the current estimator 300. Of course, the switching controller 400 selectively stops the output of at least one of the following first control signal, second control signal, and third control signal based on the notification signal transmitted by the current estimator 300. can do.
스위칭 제어부(400)는 제1 스위치(SW1)와 제1 전기 라인을 통해 연결되며, 스위칭 제어부(400)로부터의 제1 제어 신호는 제1 전기 라인을 통해 제1 스위치(SW1)로 전달된다. The switching controller 400 is connected to the first switch SW1 through a first electric line, and the first control signal from the switching controller 400 is transmitted to the first switch SW1 through the first electric line.
스위칭 제어부(400)가 제1 제어 신호를 출력하는 경우, 제1 스위치(SW1)는 제1 제어 신호에 응답하여, 턴 온된다. 반면, 스위칭 제어부(400)가 제1 제어 신호의 출력을 중단하는 경우, 제1 스위치(SW1)는 턴 오프된다.When the switching controller 400 outputs the first control signal, the first switch SW1 is turned on in response to the first control signal. On the other hand, when the switching controller 400 stops outputting the first control signal, the first switch SW1 is turned off.
스위칭 제어부(400)는 제2 스위치(SW2)와 제2 전기 라인을 통해 연결되며, 스위칭 제어부(400)로부터의 제2 제어 신호는 제2 전기 라인을 통해 제2 스위치(SW2)로 전달된다. The switching controller 400 is connected to the second switch SW2 through a second electrical line, and the second control signal from the switching controller 400 is transmitted to the second switch SW2 through the second electrical line.
스위칭 제어부(400)가 제2 제어 신호를 출력하는 경우, 제2 스위치(SW2)는 제2 제어 신호에 응답하여, 턴 온된다. 반면, 스위칭 제어부(400)가 제2 제어 신호의 출력을 중단하는 경우, 제2 스위치(SW2)는 턴 오프된다.When the switching controller 400 outputs the second control signal, the second switch SW2 is turned on in response to the second control signal. On the other hand, when the switching controller 400 stops outputting the second control signal, the second switch SW2 is turned off.
스위칭 제어부(400)는 릴레이(30)와 제3 전기 라인을 통해 연결되며, 스위칭 제어부(400)로부터의 제3 제어 신호는 제3 전기 라인을 통해 릴레이(30)로 전달된다. The switching controller 400 is connected to the relay 30 through a third electric line, and the third control signal from the switching controller 400 is transmitted to the relay 30 through the third electric line.
스위칭 제어부(400)가 제3 제어 신호를 출력하는 경우, 릴레이(30)는 제3 제어 신호에 응답하여, 턴 온된다. 반면, 스위칭 제어부(400)가 제3 제어 신호의 출력을 중단하는 경우, 릴레이(30)는 턴 오프된다.When the switching controller 400 outputs the third control signal, the relay 30 is turned on in response to the third control signal. On the other hand, when the switching controller 400 stops outputting the third control signal, the relay 30 is turned off.
한편, 배터리팩(1)이 운용되는 상황에 따라, 션트 커패시터(Cs), 제1 로우 패스 필터 및 제2 로우 패스 필터를 이용한 노이즈 제거 동작보다 충방전 전류를 보다 신속히 추정하는 것이 우선시되어야 할 수 있다. 예를 들어, 전류 추정부(300)에 의해 소정 시간 동안에 소정 횟수 추정된 충방전 전류의 전류 평균값의 크기가 미리 정해진 전류 임계값보다 큰 경우는 그렇지 않은 경우보다 과전류가 흐르게 될 가능성이 높으므로, 노이즈를 제거할 필요성보다 충방전 전류를 빠르게 모니터링할 필요성이 높다. 여기서, 전류 임계값은, 과전류의 발생 여부를 판정하기 위한 기준이 된다. 즉, 전류 추정부(300)는, 전류 평균값이 전류 임계값 미만이면 과전류가 발생하지 않은 것으로 판정하고, 그 외의 경우에는 과전류가 발생한 것으로 판정할 수 있다.Meanwhile, according to a situation in which the battery pack 1 is operated, it is necessary to prioritize the charge / discharge current more quickly than the noise removing operation using the shunt capacitor C s , the first low pass filter, and the second low pass filter. Can be. For example, when the magnitude of the current average value of the charge / discharge current estimated by the current estimator 300 a predetermined number of times for a predetermined time is greater than the predetermined current threshold value, there is a high possibility that an overcurrent flows than otherwise. There is a need to monitor charge and discharge current faster than the need to remove noise. Here, the current threshold value is a criterion for determining whether overcurrent occurs. That is, the current estimator 300 may determine that an overcurrent has not occurred when the average current value is less than the current threshold value, and may determine that an overcurrent has occurred in other cases.
배터리팩(1)이 운용되는 상황에 상관없이, 제1 커패시터(C1)와 제2 커패시터(C2)가 각각 제3 노드(N3)와 제4 노드(N4)에 전기적으로 연결된 상태로 유지된다고 가정해보자. 이 경우, 제1 커패시터(C1)와 제2 커패시터(C2) 각각의 커패시턴스로 인해, 부하(20)를 거쳐 흐르는 충방전 전류에 대응하는 전압이 전압 측정부(200)에 의해 측정될 때까지는 시간적인 딜레이가 발생할 수밖에 없다. 결과적으로, 충방전 전류의 신속한 추정이 어렵다.Regardless of the situation in which the battery pack 1 is operated, the first capacitor C 1 and the second capacitor C 2 are electrically connected to the third node N 3 and the fourth node N 4 , respectively. Let's assume that it stays at. In this case, when the voltage corresponding to the charge / discharge current flowing through the load 20 is measured by the voltage measuring unit 200 due to the capacitance of each of the first capacitor C 1 and the second capacitor C 2 . There is no choice but to delay time. As a result, rapid estimation of charge and discharge current is difficult.
도 6의 전류 추정 장치는, 제1 스위치(SW1)를 이용하여 제1 커패시터(C1)를 제3 노드(N3)에 선택적으로 연결하고, 제2 스위치(SW2)를 이용하여 제2 커패시터(C2)를 제4 노드(N4)에 선택적으로 연결하도록 동작함으로써, 위와 같은 문제를 저감할 수 있다.The current estimating apparatus of FIG. 6 selectively connects the first capacitor C 1 to the third node N 3 using the first switch SW1, and the second capacitor using the second switch SW2. By operating (C 2 ) to selectively connect to the fourth node (N 4 ), the above problems can be reduced.
구체적으로, 전류 추정부(300)는, 전류 평균값을 전류 임계값과 비교할 수 있다. 전류 추정부(300)가 출력하는 통지 신호는, 전류 평균값과 전류 임계값 간의 비교 결과에 대응하는 것일 수 있다.In detail, the current estimator 300 may compare the current average value with the current threshold value. The notification signal output by the current estimator 300 may correspond to a comparison result between the current average value and the current threshold value.
가령, 전류 임계값 = 100A, 제1 비교 기준값 = 0.9, 제2 비교 기준값 = 1.1으로 각각 미리 정해져 있다고 가정해보자. 이때, 아래의 대소 관계를 만족할 수 있다.For example, assume that the current threshold value = 100A, the first comparison reference value = 0.9, and the second comparison reference value = 1.1, respectively. At this time, the following magnitude relationship can be satisfied.
대소 관계: 0 < 제1 비교 기준값 < 1 < 제2 비교 기준값Case relation: 0 <first comparison reference value <1 <second comparison reference value
만약, 전류 평균값이 전류 임계값에 제1 비교 기준값을 곱한 제1 비교 전류값보다 작다면, 과전류가 발생하지 않은 상황에 해당한다. 예컨대, 전류 평균값 = 80A이면, '전류 평균값 < (전류 임계값 × 제1 비교 기준값) = 제1 비교 전류값'이다. 이 경우, 전류 추정부(300)는 제1 통지 신호를 스위칭 제어부(400)에게 전송할 수 있다.If the current average value is smaller than the first comparison current value obtained by multiplying the current threshold value by the first comparison reference value, it corresponds to a situation where no overcurrent occurs. For example, when the current average value = 80A, the current average value <(current threshold value × first comparison reference value) = first comparison current value '. In this case, the current estimator 300 may transmit the first notification signal to the switching controller 400.
만약, 전류 평균값이 제1 비교 전류값 이상이면서 전류 임계값보다는 작다면, 과전류가 아직 발생하지는 않았으나 과전류가 발생할 가능성이 상대적으로 높아진 상황에 해당한다. 예컨대, 전류 평균값 = 90A이면, '(전류 임계값 × 제1 비교 기준값) = 제1 비교 전류값 < 전류 평균값 < 전류 임계값'이다. 이 경우, 전류 추정부(300)는 제2 통지 신호를 스위칭 제어부(400)에게 전송할 수 있다.If the current average value is greater than or equal to the first comparison current value and smaller than the current threshold value, it corresponds to a situation in which the overcurrent has not yet occurred but the likelihood of overcurrent is relatively high. For example, when the current average value = 90A, '(current threshold value x first comparison reference value) = first comparison current value <current average value <current threshold value'. In this case, the current estimator 300 may transmit the second notification signal to the switching controller 400.
만약, 전류 평균값이 전류 임계값와 같거나 더 크면서 전류 임계값에 제2 비교 기준값을 곱한 제2 비교 전류값보다는 작다면, 과전류가 흐르고 있는 상황에 해당한다. 예컨대, 전류 평균값 = 102A이면, '전류 임계값 < 전류 평균값 < 제2 비교 전류값 = (전류 임계값 × 제2 비교 기준값)'이다. 이 경우, 전류 추정부(300)는 제3 통지 신호를 스위칭 제어부(400)에게 전송할 수 있다.If the current average value is equal to or greater than the current threshold value and smaller than the second comparison current value obtained by multiplying the current threshold value by the second comparison reference value, it corresponds to a situation in which overcurrent flows. For example, if the current average value = 102A, it is 'current threshold value <current average value <second comparative current value = (current threshold value x second comparison reference value)'. In this case, the current estimator 300 may transmit the third notification signal to the switching controller 400.
만약, 전류 평균값이 제2 비교 전류값 이상인 경우, 과전류가 흐르고 있으면서 그로 인한 위험성이 상대적으로 큰 상황에 해당한다. 예컨대, 전류 평균값 = 115A이면, '(전류 임계값 × 제2 비교 기준값) = 제2 비교 전류값 < 전류 평균값'이다. 이 경우, 전류 추정부(300)는 제4 통지 신호를 스위칭 제어부(400)에게 전송할 수 있다.If the current average value is greater than or equal to the second comparison current value, it corresponds to a situation in which overcurrent flows and the risk thereof is relatively high. For example, when the current average value is 115A, it is '(current threshold value × second comparison reference value) = second comparison current value <current average value'. In this case, the current estimator 300 may transmit the fourth notification signal to the switching controller 400.
도 7은 스위칭 제어부(400)가 전류 추정부(300)로부터 제1 통지 신호를 수신한 경우의 동작을 예시한다. 도 7을 참조하면, 스위칭 제어부(400)는, 제1 통지 신호에 응답하여, 제1 제어 신호 및 제2 제어 신호를 출력한다. 이에 따라, 제1 스위치(SW1)와 제2 스위치(SW2)가 모두 턴 온되어, 제1 커패시터(C1)와 제2 커패시터(C2)가 각각 제3 노드(N3)와 제4 노드(N4)에 전기적으로 연결된다. 이에 따라, 제1 커패시터(C1)와 제3 커패시터(C3)는 전기적으로 병렬 연결되고, 제2 커패시터(C2)와 제4 커패시터(C4)는 전기적으로 병렬 연결된다.7 illustrates an operation when the switching controller 400 receives the first notification signal from the current estimator 300. Referring to FIG. 7, the switching controller 400 outputs a first control signal and a second control signal in response to the first notification signal. Accordingly, both the first switch SW1 and the second switch SW2 are turned on so that the first capacitor C 1 and the second capacitor C 2 are respectively the third node N 3 and the fourth node. Is electrically connected to (N 4 ). Accordingly, the first capacitor C 1 and the third capacitor C 3 are electrically connected in parallel, and the second capacitor C 2 and the fourth capacitor C 4 are electrically connected in parallel.
도 8은 스위칭 제어부(400)가 전류 추정부(300)로부터 제2 통지 신호를 수신한 경우의 동작을 예시한다. 도 8을 참조하면, 스위칭 제어부(400)는, 제2 통지 신호에 응답하여, 제1 제어 신호 및 제2 제어 신호 중 어느 하나만을 출력하면서 다른 하나의 출력은 중단한다. 예컨대, 스위칭 제어부(400)가 제1 제어 신호를 출력하면서 제2 제어 신호의 출력을 중단하면, 제1 스위치(SW1)와 제2 스위치(SW2) 중 제1 스위치(SW1)만이 턴 온된다. 이에 따라, 제1 커패시터(C1)는 제3 커패시터(C3)와 함께 제3 노드(N3)에 전기적으로 연결되는 반면, 제2 커패시터(C2)는 제4 노드(N4)로부터 전기적으로 분리된다.8 illustrates an operation when the switching controller 400 receives the second notification signal from the current estimator 300. Referring to FIG. 8, in response to the second notification signal, the switching controller 400 outputs only one of the first control signal and the second control signal and stops the other output. For example, when the switching controller 400 stops outputting the second control signal while outputting the first control signal, only the first switch SW1 of the first switch SW1 and the second switch SW2 is turned on. Accordingly, the first capacitor C 1 is electrically connected to the third node N 3 together with the third capacitor C 3 , while the second capacitor C 2 is electrically connected from the fourth node N 4 . Electrically isolated.
도 9는 스위칭 제어부(400)가 전류 추정부(300)로부터 제3 통지 신호를 수신한 경우의 동작을 예시한다. 도 9를 참조하면, 스위칭 제어부(400)는, 제3 통지 신호에 응답하여, 제1 제어 신호 및 제2 제어 신호의 출력을 중단한다. 이에 따라, 제1 스위치(SW1)와 제2 스위치(SW2)가 모두 턴 오프되어, 제1 커패시터(C1)와 제2 커패시터(C2)가 각각 제3 노드(N3)와 제4 노드(N4)로부터 전기적으로 분리된다. 즉, 제1 커패시터(C1)와 제3 커패시터(C3) 중 제3 커패시터(C3)만이 제3 노드(N3)와 접지 사이에 전기적으로 연결되고, 제2 커패시터(C2)와 제4 커패시터(C4) 중 제4 커패시터(C4)만이 제4 노드(N4)와 접지 사이에 전기적으로 연결된다. 결과적으로, 도 7에 비하여, 제3 노드(N3)와 접지 사이의 커패시턴스 및 제4 노드(N4)와 접지 사이의 커패시턴스 각각이 1/2로 줄어들어, 보다 신속한 충방전 전류의 추정이 가능하다.9 illustrates an operation when the switching controller 400 receives the third notification signal from the current estimator 300. 9, the switching controller 400 stops output of the first control signal and the second control signal in response to the third notification signal. Accordingly, both the first switch SW1 and the second switch SW2 are turned off so that the first capacitor C 1 and the second capacitor C 2 are respectively the third node N 3 and the fourth node. Is electrically isolated from (N 4 ). That is, the first capacitor (C 1) and a third capacitor (C 3) of the third capacitor (C 3) only being electrically coupled between the third node (N 3) and the ground, a second capacitor (C 2) and Only the fourth capacitor C 4 of the fourth capacitor C 4 is electrically connected between the fourth node N 4 and the ground. As a result, in comparison with FIG. 7, the capacitance between the third node N 3 and the ground and the capacitance between the fourth node N 4 and the ground are reduced by one half, thereby enabling faster estimation of charge and discharge current. Do.
도 7 내지 도 9에서, 스위칭 제어부(400)는 제3 제어 신호를 출력할 수 있다. 이와 비교할 때, 도 10은 스위칭 제어부(400)가 전류 추정부(300)로부터 제4 통지 신호를 수신한 경우의 동작을 예시한다. 도 10을 참조하면, 스위칭 제어부(400)는, 제4 통지 신호에 응답하여, 릴레이(30)의 턴 온을 유도하는 제3 제어 신호의 출력을 중단한다. 이에 따라, 릴레이(30)가 턴 오프되어, 충방전 전류가 완전히 차단된다. 이와 함께, 스위칭 제어부(400)는 제1 제어 신호 및 제2 제어 신호의 출력을 중단할 수도 있다.7 to 9, the switching controller 400 may output a third control signal. In comparison, FIG. 10 illustrates an operation when the switching controller 400 receives the fourth notification signal from the current estimator 300. Referring to FIG. 10, in response to the fourth notification signal, the switching controller 400 stops outputting a third control signal for inducing turn-on of the relay 30. As a result, the relay 30 is turned off, and the charge / discharge current is completely blocked. In addition, the switching controller 400 may stop the output of the first control signal and the second control signal.
또한, 전류 추정 장치(2)는, 소정 주기마다, 제1 및 제2 스위치(SW1, SW2)가 모두 턴 온되어 있는 제1 기간 동안에 소정 횟수(예, 3번)추정되는 전류값과 제1 및 제2 스위치(SW1, SW2)가 모두 턴 오프되어 있는 제2 기간 동안에 소정 횟수(예, 3번) 추정되는 전류값을 상호 비교하여, 충방전 경로에 유입되는 노이즈의 크기를 결정할 수 있다. 이때, 제1 기간 내에서의 전류값을 추정하는 시점과 제2 기간 내에서의 전류값을 추정하는 시점 간의 시간 차이는, 임계값 미만인 것이 바람직하다. 스위칭 제어부(400)는, 결정된 노이즈의 크기가 소정 레벨 이상인 경우, 릴레이(30)의 턴 오프를 명령하는 신호를 출력할 수 있다.In addition, the current estimating apparatus 2 has a current value and a first estimated number of times (for example, three times) during a first period in which both the first and second switches SW1 and SW2 are turned on every predetermined period. And a current value estimated for a predetermined number of times (eg, three times) during the second period in which the second switches SW1 and SW2 are both turned off, to determine the magnitude of the noise flowing into the charge / discharge path. At this time, it is preferable that the time difference between the time of estimating the electric current value in a 1st period, and the time of estimating electric current value in a 2nd period is less than a threshold value. The switching controller 400 may output a signal for commanding the turn-off of the relay 30 when the determined noise level is greater than or equal to a predetermined level.
도 11a 및 도 11b는, 각각 도 1의 종래 전류 추정 장치와 도 2의 전류 추정 장치에 대한 방사 방해 테스트(RI test)의 결과를 비교한 그래프이다. 여기서, RI test란, EMS(Electromagnetic Susceptibility)와 관련된 테스트들 중에서 방사 방해(Radiated Interference)의 정도를 관찰하기 위한 시험을 의미한다.11A and 11B are graphs comparing the results of a radiation test (RI test) for the conventional current estimating apparatus of FIG. 1 and the current estimating apparatus of FIG. 2, respectively. Here, the RI test means a test for observing the degree of radiated interference among tests related to electromagnetic susceptibility (EMS).
구체적으로, 도 11a는 션트 커패시터(Cs)가 존재하지 않은 상태에서 방사 방해 테스트를 수행한 결과를 나타낸 그래프이고, 도 11b는 션트 커패시터(Cs)가 존재하는 상태에서 방사 방해 테스트를 수행한 결과를 나타낸 그래프이다. 도 11a 및 도 11b은 충방전 전류가 흐르지 않는 경우에서 충방전 전류를 추정한 결과를 나타낸다. Specifically, Figure 11a is a shunt capacitor, and a graph showing a result of the radiation interference tests in the state (C s) is not present, and Fig. 11b is performing the radiation interference test in a state in which the shunt capacitor (C s) present A graph showing the results. 11A and 11B show the results of estimating the charge / discharge current when the charge / discharge current does not flow.
도 11a를 참조하면, 대략 1.39GHz 내지 1.42GHz에서 션트 전류가 흐르는 것으로 도시되어 있다. 도 11a의 비교예의 경우, 1.39GHz ~ 1.42GHz의 고주파 영역에서 표피 효과로 인하여 션트부(100)에 전위차가 발생하는 경우, 전류 추정부(300)는, 션트 전류가 흐르는 것으로 오판하였다. Referring to FIG. 11A, a shunt current flows at approximately 1.39 GHz to 1.42 GHz. In the comparative example of FIG. 11A, when the potential difference occurs in the shunt portion 100 due to the skin effect in the high frequency region of 1.39 GHz to 1.42 GHz, the current estimator 300 incorrectly judges that the shunt current flows.
도 11b를 참조하면, 도 11a와 비교할 때, 상기 고주파 영역에서도 션트 전류가 흐르지 않는 것을 확인할 수 있다. Referring to FIG. 11B, it can be seen that the shunt current does not flow even in the high frequency region when compared with FIG. 11A.
이와 같이 본 발명은 전자파의 특정 고주파영역에서 션트부(100)에 전위차가 발생하는 것을 방지하는 효과를 제공한다.As such, the present invention provides an effect of preventing the potential difference from occurring in the shunt portion 100 in a specific high frequency region of the electromagnetic wave.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.Although the present invention has been described above by means of limited embodiments and drawings, the present invention is not limited thereto and will be described below by the person skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of the claims.
본 명세서의 개별적인 실시예에서 설명된 특징들은 단일 실시예에서 결합되어 구현될 수 있다. 반대로, 본 명세서에서 단일 실시예에서 설명된 다양한 특징들은 개별적으로 다양한 실시예에서 구현되거나, 적절한 부결합(subcombination)에서 구현될 수 있다.The features described in the individual embodiments herein can be implemented in combination in a single embodiment. Conversely, various features described in a single embodiment herein can be implemented in various embodiments individually or in appropriate subcombination.

Claims (9)

  1. 배터리 팩의 충방전 전류를 추정하는 장치에 있어서,In the device for estimating the charge and discharge current of the battery pack,
    배터리 팩의 충방전 경로 상의 제1 노드와 제2 노드 사이에 연결된 션트 저항;A shunt resistor connected between the first node and the second node on the charge / discharge path of the battery pack;
    상기 제1 노드와 상기 제2 노드 사이에 연결된 션트 커패시터;A shunt capacitor connected between the first node and the second node;
    상기 제1 노드와 상기 제2 노드 사이에 연결되어 상기 션트 저항에 인가된 전압을 측정하는 전압 측정부; 및A voltage measurer connected between the first node and the second node to measure a voltage applied to the shunt resistor; And
    상기 전압 측정부가 측정한 전압을 이용하여 상기 배터리 팩의 충방전 전류를 추정하는 전류 추정부;A current estimator estimating the charge / discharge current of the battery pack using the voltage measured by the voltage measurer;
    를 포함하는 전류 추정 장치. Current estimation device comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 전압 측정부는, 필터 모듈; 및 증폭 모듈을 포함하되,The voltage measuring unit includes a filter module; And an amplification module,
    상기 필터 모듈은, The filter module,
    제1 저항 및 상기 제1 저항과 직렬 연결된 제1 커패시터를 구비하고, 상기 제1 노드에 연결된 제1직렬암; 및 A first series arm having a first resistor and a first capacitor connected in series with the first resistor and connected to the first node; And
    제2 저항 및 상기 제2 저항과 직렬 연결된 제2 커패시터를 구비하고, 상기 제2 노드에 연결된 제2직렬암;을 포함하고,And a second series arm connected to the second node, the second resistor having a second resistor and a second capacitor connected in series with the second resistor.
    상기 증폭 모듈은, The amplification module,
    상기 제1 저항과 상기 제1 커패시터 사이에 형성된 제3 노드와 연결된 입력단자 및 상기 제2 저항과 상기 제2 커패시터 사이에 형성된 제4 노드와 연결된 입력단자를 구비한 앰플리파이어;를 포함하는, 전류 추정 장치.And an amplifier having an input terminal connected to the third node formed between the first resistor and the first capacitor and an input terminal connected to the fourth node formed between the second resistor and the second capacitor. Device.
  3. 제1항에 있어서,The method of claim 1,
    2개의 버스바를 더 포함하되,Include two more busbars,
    상기 2개의 버스바 중 어느 하나는, 상기 션트 저항 및 상기 션트 커패시터 각각의 일단을 상기 제1 노드에 연결하고,One of the two busbars connects one end of each of the shunt resistor and the shunt capacitor to the first node,
    상기 2개의 버스바 중 다른 하나는, 상기 션트 저항 및 상기 션트 커패시터 각각의 타단을 상기 제2 노드에 연결하도록 구성된, 전류 추정 장치.The other of the two busbars is configured to connect the other end of each of the shunt resistor and the shunt capacitor to the second node.
  4. 제2항에 있어서,The method of claim 2,
    상기 제1 커패시터와 상기 제3 노드 사이에 연결되는 제1 스위치;A first switch connected between the first capacitor and the third node;
    상기 제2 커패시터와 상기 제4 노드 사이에 연결되는 제2 스위치; 및A second switch connected between the second capacitor and the fourth node; And
    상기 제1 스위치의 동작과 상기 제2 스위치의 동작을 개별적으로 제어하도록 구성된 스위칭 제어부;를 더 포함하는, 전류 추정 장치And a switching controller configured to individually control the operation of the first switch and the operation of the second switch.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 전류 추정부는,The current estimator,
    상기 추정된 충방전 전류의 크기에 대응하는 통지 신호를 상기 스위칭 제어부에게 출력하고,Outputting a notification signal corresponding to the estimated magnitude of the charge / discharge current to the switching controller,
    상기 스위칭 제어부는,The switching control unit,
    상기 통지 신호를 기초로, 상기 제1 스위치 및 상기 제2 스위치의 동작을 개별적으로 제어하는, 전류 추정 장치.Based on the notification signal, individually controlling the operation of the first switch and the second switch.
  6. 제5항에 있어서,The method of claim 5,
    상기 전류 추정부는,The current estimator,
    소정 시간 동안 소정 횟수 추정된 충방전 전류의 전류 평균값을 산출하고,Calculating a current average value of charge / discharge currents estimated a predetermined number of times for a predetermined time;
    상기 전류 평균값이 미리 정해진 전류 임계값보다 작은 경우, 제1 통지 신호를 출력하며,Outputting a first notification signal when the average current value is smaller than a predetermined current threshold value,
    상기 스위칭 제어부는,The switching control unit,
    상기 제1 통지 신호에 따라, 상기 제1 스위치 및 상기 제2 스위치를 모두 턴온시키는, 전류 추정 장치.And all of the first switch and the second switch are turned on in accordance with the first notification signal.
  7. 제5항에 있어서,The method of claim 5,
    상기 전류 추정부는,The current estimator,
    소정 시간 동안 소정 횟수 추정된 충방전 전류의 전류 평균값을 산출하고,Calculating a current average value of charge / discharge currents estimated a predetermined number of times for a predetermined time;
    상기 전류 평균값이 미리 정해진 전류 임계값보다 큰 경우, 제2 통지 신호를 출력하며,Outputting a second notification signal when the current average value is greater than a predetermined current threshold value;
    상기 스위칭 제어부는,The switching control unit,
    상기 제2 통지 신호에 따라, 상기 제1 스위치 및 상기 제2 스위치를 모두 턴 오프시키는, 전류 추정 장치.And all of the first switch and the second switch are turned off according to the second notification signal.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 전류 추정 장치;A current estimating apparatus according to any one of claims 1 to 7;
    를 포함하는 배터리 팩.Battery pack comprising a.
  9. 제1항 내지 제7항 중 어느 한 항에 따른 전류 추정 장치;A current estimating apparatus according to any one of claims 1 to 7;
    를 포함하는 자동차.Car including.
PCT/KR2017/002399 2016-03-07 2017-03-06 Charging/discharging current estimation device WO2017155260A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17763521.6A EP3351952B1 (en) 2016-03-07 2017-03-06 Charging/discharging current estimation device
JP2018529130A JP6610912B2 (en) 2016-03-07 2017-03-06 Charge / discharge current estimation device, battery pack, and automobile
CN201780003644.8A CN108139448B (en) 2016-03-07 2017-03-06 Charge/discharge current estimating apparatus
US15/765,655 US10539623B2 (en) 2016-03-07 2017-03-06 Charging/discharging current estimation device
PL17763521T PL3351952T3 (en) 2016-03-07 2017-03-06 Charging/discharging current estimation device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0027243 2016-03-07
KR20160027243 2016-03-07
KR1020170027932A KR102014468B1 (en) 2016-03-07 2017-03-03 Apparatus for estimating charging and discharging current
KR10-2017-0027932 2017-03-03

Publications (1)

Publication Number Publication Date
WO2017155260A1 true WO2017155260A1 (en) 2017-09-14

Family

ID=59789644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002399 WO2017155260A1 (en) 2016-03-07 2017-03-06 Charging/discharging current estimation device

Country Status (1)

Country Link
WO (1) WO2017155260A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110040035A (en) * 2019-03-26 2019-07-23 陈林龙 The detection maintaining method of power battery pack
TWI678543B (en) * 2018-11-08 2019-12-01 宏碁股份有限公司 Battery power estimating method and electronic device
CN110754028A (en) * 2018-03-12 2020-02-04 株式会社Lg化学 Device for preventing over-discharge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040067459A (en) * 2003-01-23 2004-07-30 주식회사 로템 Circuit of measuring voltage of electric car line having test circuit
KR100709258B1 (en) * 2005-10-20 2007-04-19 삼성에스디아이 주식회사 Battery management system
KR100784887B1 (en) * 2005-07-13 2007-12-14 씨멘스브이디오한라 주식회사 Over current detection apparatus of motor for car
JP2015184142A (en) * 2014-03-25 2015-10-22 株式会社富士通ゼネラル Current detection device
KR20150120037A (en) * 2014-04-16 2015-10-27 현대자동차주식회사 Structure for Sensing Current of Battery of Vehicle Using a Shunt Resistence Type Current Sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040067459A (en) * 2003-01-23 2004-07-30 주식회사 로템 Circuit of measuring voltage of electric car line having test circuit
KR100784887B1 (en) * 2005-07-13 2007-12-14 씨멘스브이디오한라 주식회사 Over current detection apparatus of motor for car
KR100709258B1 (en) * 2005-10-20 2007-04-19 삼성에스디아이 주식회사 Battery management system
JP2015184142A (en) * 2014-03-25 2015-10-22 株式会社富士通ゼネラル Current detection device
KR20150120037A (en) * 2014-04-16 2015-10-27 현대자동차주식회사 Structure for Sensing Current of Battery of Vehicle Using a Shunt Resistence Type Current Sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3351952A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110754028A (en) * 2018-03-12 2020-02-04 株式会社Lg化学 Device for preventing over-discharge
CN110754028B (en) * 2018-03-12 2023-09-26 株式会社Lg新能源 Device for preventing overdischarge
TWI678543B (en) * 2018-11-08 2019-12-01 宏碁股份有限公司 Battery power estimating method and electronic device
US10908221B2 (en) 2018-11-08 2021-02-02 Acer Incorporated Battery power estimating method and electronic device
CN110040035A (en) * 2019-03-26 2019-07-23 陈林龙 The detection maintaining method of power battery pack

Similar Documents

Publication Publication Date Title
WO2018070684A2 (en) Diagnostic device and power supply system comprising same
KR102014468B1 (en) Apparatus for estimating charging and discharging current
WO2017142385A1 (en) Apparatus and method for diagnosing failure of switch component
WO2019117607A1 (en) Device and method for diagnosing negative electrode contactor of battery pack
WO2019117606A1 (en) Device and method for diagnosing positive electrode contactor of battery pack
WO2017086687A1 (en) Insulation resistance measuring system and device
WO2016053055A1 (en) Insulation resistance measuring device and method capable of rapidly measuring insulation resistance
WO2017155260A1 (en) Charging/discharging current estimation device
WO2018048082A1 (en) Battery pack
WO2019221368A1 (en) Device, battery system, and method for controlling main battery and sub battery
US11506718B2 (en) Battery monitoring device
WO2018021661A1 (en) Current measurement apparatus using shunt resistor
CN111051901B (en) Monitoring device for monitoring a source voltage and an insulation resistance of a power supply, high-voltage system and method for operating a monitoring device
WO2018066839A1 (en) Fuse diagnosis device and method using voltage distribution
WO2016056740A1 (en) Switch deterioration detection device and method
WO2020190009A1 (en) Apparatus and method for testing safety of battery
WO2021002658A1 (en) Battery management system and management method
WO2021085893A1 (en) Short circuit detecting apparatus, short circuit detecting method, and electric vehicle
WO2020111896A1 (en) Device and method for measuring battery cell resistance
WO2019107976A1 (en) Battery pack
WO2019107982A1 (en) Battery pack
WO2019093667A1 (en) Relay diagnosis circuit
WO2020145768A1 (en) Battery pack diagnosis apparatus
WO2019117490A1 (en) System and method for diagnosing relay fault
WO2020055162A1 (en) Switch diagnosis device and method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15765655

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2017763521

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2018529130

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE