WO2017154732A1 - Device for decomposing ammonia, and device for manufacturing hydrogen gas - Google Patents

Device for decomposing ammonia, and device for manufacturing hydrogen gas Download PDF

Info

Publication number
WO2017154732A1
WO2017154732A1 PCT/JP2017/008309 JP2017008309W WO2017154732A1 WO 2017154732 A1 WO2017154732 A1 WO 2017154732A1 JP 2017008309 W JP2017008309 W JP 2017008309W WO 2017154732 A1 WO2017154732 A1 WO 2017154732A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
casing
detector
hydrogen gas
decomposing
Prior art date
Application number
PCT/JP2017/008309
Other languages
French (fr)
Japanese (ja)
Inventor
隆典 青木
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2018504422A priority Critical patent/JP6943524B2/en
Publication of WO2017154732A1 publication Critical patent/WO2017154732A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an ammonia decomposition apparatus and a hydrogen gas production apparatus having the ammonia decomposition apparatus.
  • ammonia is a gas at normal temperature and normal pressure, and requires a very low temperature or a high pressure of several tens of MPa or more in order to transport it at a high density. Therefore, in recent years, the use of ammonia has attracted attention as a chemical substance (hydrogen carrier) that can easily store and transport hydrogen.
  • Ammonia is easily liquefied at 20 ° C and 0.857 MPa
  • liquid ammonia has a very high weight hydrogen density of 17.8% by weight
  • volume hydrogen density is 1.5 to 2.5 times that of liquid hydrogen.
  • a hydrogen carrier As described above, ammonia is excellent as a hydrogen carrier, but it has a bad odor, is a substance that is highly irritating to mucous membranes, and is lighter than air and easily dissolved in water. It is strictly limited by regulations. Therefore, strict measures to prevent leakage of ammonia are required when using ammonia.
  • Patent Document 1 discloses a forced exhaust means for sucking indoor gas containing ammonia leaked from equipment and exhausting it from the room in an indoor ventilation device provided with equipment such as a refrigerator using ammonia refrigerant. And a water spray chamber for collecting the gas discharged from the forced exhaust means, and a water spray means for spraying water onto the gas in the water spray chamber provided in the water spray chamber.
  • Patent Document 2 discloses an ammonia absorption refrigerator that includes a safety valve that opens at a predetermined pressure or more, an exhaust passage provided on the downstream side of the safety valve, and an ammonia treatment agent installed in the exhaust passage.
  • Patent Document 3 discloses a cold water heat exchanger, a hot water heat exchanger, an absorber, a refrigerant vapor generator, a switch, except for an indoor heat exchanger and an outdoor heat exchanger of an absorption refrigerator that uses ammonia as a refrigerant.
  • An ammonia absorption refrigerator comprising: a sealed container that hermetically encloses a valve, a rectifier, and the like; and an ammonia leakage detection unit installed in at least one of an ammonia refrigerant path and a heat medium path that exchanges heat with the ammonia refrigerant.
  • Patent Document 4 when ammonia is applied as a refrigerant of a refrigeration / air-conditioning facility, ammonia gas leaked from a refrigeration unit of the facility is subjected to a detoxification process before being released into the atmosphere. Ammonia gas leaked from the unit is guided to a closed space such as a scrubber or a cooling tower through a duct, where salt is generated by carbon dioxide gas and water, and detoxification treatment is performed. The harm system is described.
  • Patent Documents 1 to 4 all relate to equipment using ammonia as a refrigerant, and do not mention an ammonia decomposition apparatus and a hydrogen gas production apparatus.
  • ammonia decomposition apparatus when hydrogen gas is produced using ammonia as a hydrogen carrier, ammonia is decomposed under high temperature conditions.
  • ammonia when ammonia is used for hydrogen gas production, a larger amount of ammonia is required than when ammonia is used as a refrigerant, and even if ammonia leaks, the raw material for the ammonia decomposer There is a risk that ammonia will continue to be supplied. Therefore, safety improvements are required when ammonia decomposition is performed and when hydrogen gas is produced by decomposing ammonia.
  • the present invention has been made under such circumstances, an ammonia decomposing apparatus capable of suppressing hydrogen leakage into the atmosphere and safely decomposing raw material ammonia to obtain hydrogen gas, and the ammonia It aims at providing the hydrogen gas manufacturing apparatus which has a decomposition device.
  • the ammonia decomposition apparatus has an ammonia supply device that supplies ammonia to the ammonia decomposition device, an ammonia detector, and an interruption that interrupts the supply of ammonia. It has been found that the above-mentioned problem can be solved by having a casing in which a container is installed. The present invention has been completed based on such findings.
  • the present invention provides the following [1] to [17].
  • An ammonia decomposer an ammonia supplier communicated with the ammonia decomposer via a connecting pipe, an ammonia detector (a1), and a signal received from the ammonia detector (a1) to receive the ammonia decomposer
  • the ammonia decomposition apparatus wherein the casing (I) includes at least the ammonia supply device, the ammonia detector (a1), and the circuit breaker (b1).
  • the ammonia decomposing apparatus according to [1], further including a casing (II) in which the ammonia decomposing unit is installed.
  • the ammonia decomposing apparatus according to [1] or [2], further including a transmitter (c1) that transmits a signal from the ammonia detector (a1).
  • the casing (II) receives ammonia signals from the ammonia detector (a2) or the ammonia detector (a2) and the ammonia detector (a2), and supplies ammonia from the ammonia supplier to the ammonia decomposer.
  • the ammonia decomposing apparatus according to the above [2] or [3], wherein a circuit breaker (b2) for interrupting is installed.
  • the ammonia decomposing apparatus according to [4], further including a transmitter (c2) that transmits a signal from the ammonia detector (a2).
  • the ammonia decomposition apparatus according to any one of [2] to [11], wherein the casing (II) is a sealed container or a sealed chamber, or a container or a device chamber having a supply pipe and a delivery pipe.
  • the casing (II) includes a hydrogen gas detector (e1).
  • [15] Ammonia in the mixed gas supplied from the ammonia decomposer and the ammonia decomposer according to any one of [1] to [14] and the ammonia decomposer connected via a connecting pipe
  • a hydrogen gas production apparatus comprising an ammonia removal apparatus for removal and a hydrogen gas purification apparatus communicating with the ammonia removal apparatus via a connecting pipe.
  • [16] A fuel cell using hydrogen gas obtained from the hydrogen gas production apparatus according to [15].
  • [17] A transport aircraft equipped with the fuel cell according to [16].
  • an ammonia decomposing apparatus capable of suppressing hydrogen leakage into the atmosphere and safely decomposing ammonia to obtain hydrogen gas
  • a hydrogen gas producing apparatus having the ammonia decomposing apparatus. can do.
  • the ammonia decomposing apparatus of the present invention includes an ammonia decomposing unit 2, an ammonia supplying unit 1 communicated with the ammonia decomposing unit 2 through a connecting pipe p1, and an ammonia detector (a1). And a circuit breaker (b1) that receives a signal from the ammonia detector (a1) and shuts off the supply of ammonia to the ammonia decomposer 2, and a casing (I), and the casing (I) supplies at least ammonia.
  • a device 1, an ammonia detector (a1) and a circuit breaker (b1) are installed.
  • the ammonia decomposing apparatus in particular, when ammonia leaks in the stage until ammonia is introduced into the ammonia decomposing unit 2 from the ammonia supplier 1, the amount of ammonia leaking is larger than when ammonia leaks out in the stage after ammonia decomposing. Become. Therefore, as shown in FIG. 1, it is necessary to isolate at least the ammonia supplier 1, the ammonia detector (a1), and the circuit breaker (b1) from the outside by the casing (I). In the embodiment shown in FIG. 1, when ammonia leaks from the equipment or equipment installed in the casing (I), the ammonia detector (a1) detects the leakage of ammonia and sends a signal to the circuit breaker (b1). Send.
  • the breaker (b1) that has received the signal from the ammonia detector (a1) blocks the supply of ammonia to the ammonia decomposer 2. And since these each apparatus is installed in casing (I), it becomes possible to interrupt
  • the ammonia decomposer 2 is also installed in the casing (I), and therefore, when the raw ammonia leaks from the ammonia decomposer 2 or the mixed gas (hereinafter, referred to as the raw ammonia) is decomposed. Even if ammonia leaks as simply “mixed gas”), the ammonia detector (a1) detects the leakage of ammonia and immediately supplies ammonia to the ammonia decomposer 2 as described above. It can be interrupted by the circuit breaker (b1). The mixed gas obtained by decomposing the raw material ammonia is transported out of the ammonia decomposing apparatus, for example, by a mixed gas transport pipe p11 shown in FIGS. 1 and 2, and sent to the next process or collected in a storage container or the like.
  • a mixed gas transport pipe p11 shown in FIGS. 1 and 2
  • the ammonia decomposing apparatus of the present invention preferably further includes a casing (II) in which the ammonia decomposing unit 2 is installed in the above-described embodiment.
  • a casing (II) in which the ammonia decomposing unit 2 is installed in the above-described embodiment.
  • the reaction for decomposing the raw material ammonia to obtain hydrogen gas is usually carried out under high temperature conditions.
  • the casing (II) By separating the ammonia decomposer 2 from the space in which the ammonia supplier 1 is installed by the casing (II), even if the raw ammonia leaks in the casing (I), the leaked raw ammonia is at a high temperature. It is possible to suppress contact with the ammonia decomposing unit 2 operating in the above and exposure to a high temperature environment around the ammonia decomposing unit 2.
  • the portion related to the casing (I) is made into one unit, for example, when a problem occurs in the unit related to the casing (I).
  • Replacing the unit relating to the casing (I) with a new unit (hereinafter, the corresponding method is simply referred to as “unit replacement correspondence”.
  • the casing (I) When such a unit cannot be transported, units related to a plurality of casings (I) are installed, and when trouble occurs, raw ammonia is supplied from the unit related to another casing (I) to the casing (II). Including switching the line and continuing ammonia decomposition operation). Without long stop pneumoniae cracker, the more efficiently can perform the decomposition of ammonia. The same applies when a problem occurs in the casing (II).
  • the casing (I) and / or the casing (II) as a sealed container in order to replace the unit.
  • the ammonia trapped inside the casing can be processed using an appropriate method after being moved to a safe place. Therefore, for example, it is not necessary to perform dangerous processing in a place where the above-described hydrogen station is installed or where a fuel cell vehicle is used, and an ammonia decomposition apparatus and a hydrogen gas production apparatus having the ammonia decomposition apparatus are used. Safety can be further improved.
  • the ammonia decomposition apparatus capable of unit replacement can be suitably used in facilities that require continuous operation, such as a hydrogen station, in that the time required to stop the ammonia decomposition apparatus can be shortened by unit replacement.
  • the casing (I) and / or the casing (II) is used as an airtight container so that the leakage of ammonia to the outside can be completely prevented, for example, installation of an ammonia detoxifying device described later is unnecessary or temporary.
  • the ammonia decomposition apparatus and the entire hydrogen gas production apparatus having the apparatus can be made compact.
  • the casing (I) may be an embodiment in which the casing (II) is provided.
  • the casing (II) is provided.
  • the casing (I) and the casing (II) are in contact with each other via the isolation wall W. Further, from the viewpoint of performing the unit replacement described above, it is more preferable that at least two or more separation walls W be separable so that the casing (I) and the casing (II) can be separated.
  • Which mode of providing the casing (II) outside or inside the casing (I) is selected depending on the situation in which the ammonia decomposing apparatus is used, the size of each device, apparatus and equipment that can be used in the present invention. It can be appropriately selected according to the cost and the like.
  • the casing (II) has an ammonia detector (a2), or a signal from the ammonia detector (a2) and the ammonia detector (a2). It is preferable to provide a circuit breaker (b2) that cuts off the ammonia supply from the ammonia supply device 1 to the ammonia decomposition device 2, and for example, as shown in FIG. It is more preferable to provide a breaker (b2) that receives signals from the vessel (a2) and the ammonia detector (a2) and cuts off the supply of the raw material ammonia from the ammonia supplier 1 to the ammonia decomposer 2.
  • the ammonia detector (a2) may transmit a signal to the circuit breaker (b1) instead of transmitting a signal to the circuit breaker (b2). In that case, even if the ammonia decomposition apparatus does not have the circuit breaker (b2), it is possible to interrupt the supply of the raw material ammonia to the ammonia decomposition apparatus by the circuit breaker (b1). Furthermore, the ammonia detector (a2) may transmit a signal to the circuit breaker (b1) simultaneously with transmitting a signal to the circuit breaker (b2).
  • the circuit breaker (b2) does not operate, the supply of the raw material ammonia to the ammonia decomposer can be blocked by the circuit breaker (b1). Further, when the circuit breakers (b1) and (b2) are provided, the ammonia detectors (a1) and (a2) are independently connected to the circuit breakers (b1) and (b) in the casing (I) and the casing (II), respectively. It is possible to set a threshold value for the concentration of atmospheric ammonia when transmitting a signal to (b2) and / or blocking.
  • a signal from the ammonia detector (a1) is transmitted to the circuit breaker (b1) to cut off the supply of the raw material ammonia and also to the ammonia decomposer 2 to stop the operation of the ammonia decomposer 2. It is more preferable that it is an aspect.
  • a signal from the ammonia detector (a2) is transmitted to the circuit breaker (b1) and / or the circuit breaker (b2) to cut off the supply of ammonia and More preferably, it is also possible to transmit to the cracker 2 and stop the operation of the ammonia cracker 2.
  • the raw material ammonia gas to the ammonia decomposer 2 May be provided with a device capable of temporarily switching the supply to the supply of forced exhaust gas or the like.
  • a device capable of temporarily switching the supply to the supply of forced exhaust gas or the like it is possible to avoid a situation in which the cracker continues to operate at a high temperature in a state where the raw material ammonia is not supplied, and the safety as the ammonia decomposing apparatus can be further improved.
  • the ammonia decomposing apparatus is the above-described embodiment, and further includes a transmitter (c1) that transmits a signal from the ammonia detector (a1) and a signal from the ammonia detector (a2). It is preferable to have at least one selected from the group consisting of transmitters (c2) to transmit.
  • the transmitters (c1) and (c2) may be independently provided in the casing (I) or the casing (II), and may be provided outside the casing (I) or the casing (II). Also good.
  • the transmitters (c1) and (c2) for example, as shown in FIG.
  • the transmitter (c1) is installed inside the casing (I), while the transmitter Examples of (c2) include an aspect in which the high-temperature ammonia decomposer 2 is provided outside the casing (II) in which the ammonia decomposer 2 is provided.
  • the transmitter (c1) may also serve as the transmitter (c2).
  • the ammonia decomposing apparatus is regarded as having the transmitters (c1) and (c2).
  • the transmitters (c1) and (c2) are independently installed in devices that exist outside the ammonia decomposition apparatus, for example, in the operation monitoring center, on the signals received from the ammonia detectors (a1) and (a2). It plays a role of transmitting a signal to a receiver (hereinafter also simply referred to as “monitoring center”).
  • a receiver hereinafter also simply referred to as “monitoring center”.
  • disassembly apparatus and monitoring center of this invention can also be called an ammonia leak monitoring system. Transmission of the signal to the monitoring center as installed outside the ammonia decomposition apparatus may be wired or wireless and can be selected as appropriate.
  • a method of transmitting a signal by wire for example, an optical fiber
  • a monitoring center installed in a site where the hydrogen station or the like is installed or in a remote place
  • a transporter for example, a fuel cell vehicle
  • a fuel cell which will be described later
  • a signal from a transmitter wired and / or wirelessly to a monitoring center loaded on the airframe is loaded on the airframe.
  • the monitoring center installed on the safety management center that is independent from the monitoring center on which the aircraft is loaded, or a base station that is connected to the safety management center by wire.
  • each of the above-described ammonia detectors, transmitters, receivers installed in the operation monitoring center, etc. is not limited to the function of signal transmission or reception, but can receive and transmit signals in both directions. It may be a device. In this case, since each device becomes a communicable facility, not only the operation conditions of the internal device of the ammonia decomposition device are monitored from the outside of the ammonia decomposition device, but also the operation of each device is controlled according to the operation status. It is also possible to do.
  • the ammonia decomposing apparatus is the above-described embodiment, and further includes an ammonia detoxifying apparatus (d1) that operates by receiving a signal from the ammonia detector (a1), and an ammonia detector (a2). ) May receive at least one selected from the group consisting of an ammonia abatement device (d2) that operates in response to the signal from.
  • the ammonia abatement devices (d1) and (d2) may be independently installed in the casing (I) or the casing (II), respectively, and installed outside the casing (I) or the casing (II). It may be.
  • an ammonia detoxifying devices (d1) and (d2) for example, as shown in FIG.
  • the ammonia detoxifying device (d1) is installed inside the casing (I), and A mode in which the ammonia abatement device (d2) is installed inside the casing (II) can be mentioned.
  • the ammonia detoxifying device (d1) and (d2) for example, as shown in FIG. 9, the ammonia detoxifying device (d1) is installed inside the casing (I).
  • the ammonia detoxifying device (d2) may be provided outside the casing (II) in which the high-temperature decomposer 2 is installed.
  • the ammonia abatement device (d1) can also serve as the ammonia abatement device (d2).
  • the ammonia decomposition apparatus is regarded as having an ammonia abatement apparatus (d1) and (d2).
  • FIG. 9 which is an example in which an ammonia abatement device is installed outside the casing (II)
  • the harmful device (d2) is provided in a casing (III) different from the casing (II), and the casing (II) and the casing (III) are communicated with each other by a connecting pipe p2.
  • a facility for example, a facility having a pressure-sensitive safety valve, a blower, etc. for sending ammonia gas leaked automatically due to an increase in internal pressure into the casing (III) may be provided.
  • the casing (II) preferably includes a hydrogen gas detector (e1).
  • a hydrogen gas detector (e1) capable of transmitting a signal to the circuit breaker (b2).
  • the hydrogen gas detector (e1) may transmit a signal to the circuit breaker (b1) instead of transmitting a signal to the circuit breaker (b2).
  • the supply of the raw material ammonia to the ammonia decomposing unit can be interrupted by the circuit breaker (b1). Furthermore, the hydrogen gas detector (e1) may transmit a signal to the circuit breaker (b1) simultaneously with transmitting a signal to the circuit breaker (b2). In that case, if the circuit breaker (b2) does not operate, the supply of the raw material ammonia to the ammonia decomposer can be blocked by the circuit breaker (b1).
  • a signal from the hydrogen gas detector (e1) is transmitted to the circuit breaker (b1) and / or the circuit breaker (b2) to cut off the supply of the raw material ammonia, and also transmitted to the ammonia decomposing unit 2, It is more preferable that the operation of the ammonia decomposer 2 can be stopped.
  • the ammonia detector may have a function of detecting the hydrogen gas. For example, when the ammonia detector (a2) also has a hydrogen gas detection function, even if there is only one such detector, the ammonia decomposition device has an ammonia detector (a2) and a hydrogen gas detector ( It is considered to be an embodiment having e1).
  • the ammonia decomposition apparatus of this invention when it is an aspect which has the hydrogen gas detector (e1) mentioned above, it may have further the transmitter (f1) which transmits the signal from a hydrogen gas detector (e1). preferable.
  • the transmitter (f1) may be installed inside the casing (II), or may be installed outside the casing (II).
  • the transmitter (f1) for example, as shown in FIG. 11, the transmitter (f1) is provided outside the casing (II) in which the ammonia decomposer 2 having a high temperature is provided.
  • the method of transmitting a signal from the hydrogen gas detector (e1) to the transmitter (f1) may be wired or wireless.
  • the viewpoint of selecting wired or wireless is the same as the viewpoint described above with respect to the ammonia detector and the transmitter that transmits a signal from the ammonia detector.
  • the hydrogen gas detector and the transmitter that transmits the signal from the hydrogen gas detector including the receiver installed in the operation monitoring center and the like described above, can only transmit or receive signals. Not only the function but also a device capable of bidirectionally receiving and transmitting signals may be used. In this case, since each device becomes a communicable facility, not only the operation conditions of the internal device of the ammonia decomposition device are monitored from the outside of the ammonia decomposition device, but also the operation of each device is controlled according to the operation status. It is also possible to do.
  • a method of transmitting signals from the ammonia detectors (a1) and (a2) and the hydrogen gas detector (e1) to each device may be wired or wireless. From the viewpoint of reliably transmitting and receiving signals when there is a device or apparatus that is affected by radio wave interference when using wireless, and from the viewpoint of cost when the ammonia decomposition device is small, wired It is preferable that On the other hand, since it is difficult to be restricted by the internal wiring method, etc., it is wireless because it is not necessary to consider the problem of the wiring section when a communication trouble occurs due to equipment problems from the viewpoint of increasing the degree of freedom of each device or device installation location. It is preferable to use radio from the viewpoint of being able to cope with replacement of only the machine.
  • the transmitters (c1), (c2), and (f1) described above may be integrated into one transmitter. That is, a method may be used in which signals from a plurality of detectors are received by a single transmitter and individual data is transmitted to the monitoring center. In that case, for example, the transmitter (c1) may also serve as the transmitter (c2) and / or (f1). In this case, even if the number of the transmitters is one, it is considered that the ammonia decomposition apparatus has transmitters (c1), (c2), and (f1).
  • the casing (I) is not particularly limited, but is preferably a sealed container or a sealed chamber. By using a sealed container or a sealed chamber, it is possible to perform unit replacement and the like more safely when performing the unit replacement described above. In addition, in the case where the ammonia decomposer is not installed, it is possible to completely separate the environment that has become hot due to the operation of the ammonia decomposer and the environment in the casing (I). The safety of the ammonia decomposition apparatus can be further improved.
  • the casing material include iron; carbon steel; stainless steel; nickel; titanium; nickel alloys such as Inconel (registered trademark), Monel (registered trademark), and Hastelloy (registered trademark). On the other hand, it is preferable to use a relatively stable material.
  • connection pipe can be appropriately selected in consideration of the flow rate and pressure of ammonia to be handled, the installation environment of the connection pipe, and the like.
  • the material include iron, carbon steel, stainless steel, nickel, titanium, nickel alloys such as Inconel (registered trademark), Monel (registered trademark), and Hastelloy (registered trademark). It is preferable to use a stable material. Further, from the viewpoint of preventing leakage of ammonia gas from the connecting pipe, it is preferable to use a pipe having a multiple structure such as a double pipe or a triple pipe.
  • a pipe having a multiple structure for example, by passing ammonia into a space inside a space constituted by the outermost wall and one inner wall (hereinafter also simply referred to as “inner pipe”), Even if ammonia leaks from the pipe, it is possible to prevent the ammonia from leaking outside the connecting pipe.
  • a medium is sealed between the internal pipe and the outer wall (in some cases, the inner wall), and the pH of the medium (water as a medium in this case) or a change in pressure (as a medium in this case, Nitrogen gas, helium gas, inert gas such as argon gas, etc.) can be detected by the ammonia detector.
  • the mixed gas transport pipe is used for transporting the mixed gas obtained by decomposing the raw material ammonia with an ammonia decomposer, and is not particularly limited.
  • the same pipe as the connecting pipe can be used, The preferred embodiment is also the same.
  • the casing (II) is not particularly limited, but is preferably a sealed container or a sealed chamber, or a container or device chamber having a feed pipe p3 and a feed pipe p4 as shown in FIG. Moreover, as a material of casing (II), the thing similar to the said casing (I) can be used, for example, The suitable aspect is also the same.
  • the said supply piping is not specifically limited, For example, the thing similar to the said connection piping can be used, The suitable aspect is also the same.
  • the said supply piping can be used suitably as a supply piping at the time of sending out forced exhaust gas etc. in casing (II), for example.
  • the delivery pipe can be suitably used as a delivery pipe when, for example, forced exhaust gas fed from the feed pipe is sent out of the casing (II) into the casing (II).
  • forced exhaust gas can flow through the casing (II), and the safety when ammonia or hydrogen gas generated by ammonia decomposition leaks out is further improved. It is possible to make it. Further, by providing an ammonia detector and / or a hydrogen gas detector, which will be described later, on the delivery pipe side, the leakage of these gases may be detected.
  • the forced exhaust gas examples include inert gas such as nitrogen gas, helium gas or argon gas; air; water vapor; A forced exhaust gas containing at least one selected from these gases is preferred, a forced exhaust gas mainly comprising at least one selected from these gases is more preferred, and at least one selected from these gases It may be a forced exhaust gas consisting of only.
  • the forced exhaust gas may be brought into contact with the ammonia decomposer after being heated once.
  • the ammonia decomposing unit is used for decomposing raw material ammonia supplied from an ammonia supplying unit to be described later to obtain hydrogen.
  • the decomposition of ammonia can be expressed as the following formula (a). 2NH 3 ⁇ N 2 + 3H 2 (a) This reaction is a chemical equilibrium reaction, and the higher the temperature, the better the ammonia conversion rate. At 400 ° C., the ammonia conversion rate is about 99%.
  • ammonia decomposition catalyst In order to decompose the raw material ammonia to obtain hydrogen gas, it is preferable to use a catalyst for promoting the ammonia decomposition reaction of the formula (a) (hereinafter also referred to as “ammonia decomposition catalyst”).
  • the ammonia decomposition catalyst has catalytic activity for the ammonia decomposition reaction represented by the formula (a) and is not particularly limited.
  • a base metal transition metal iron, cobalt, nickel, molybdenum, etc.
  • catalysts containing rare earths such as lanthanum, cerium and neodymium
  • noble metals such as ruthenium, rhodium, iridium, palladium and platinum
  • the base metal transition metal can be used as a simple metal, alloy, nitride, carbide, oxide, composite oxide, the rare earth can be used as an oxide, both the base metal transition metal and the rare earth ,
  • Alumina, silica, magnesia, zirconia, titania and the like can be supported on a carrier having a high specific surface area.
  • the noble metal system can also be used by being supported on a carrier having a high specific surface area such as alumina, silica, magnesia, zirconia, titania and the like. Further, a small amount of the noble metal system may be contained in the base metal transition metal and / or the rare earth system.
  • These ammonia decomposition catalysts may be used alone or in combination of two or more.
  • the temperature condition of the ammonia decomposition reaction for decomposing the raw material ammonia to obtain hydrogen gas is preferably 300 ° C. or higher and 800 ° C. or lower. And even if it is a stainless steel (SUS) material having a heat-resistant temperature of 600 ° C. or less, the viewpoint that it can be used as a material for equipment (containers, pipes, etc.) used for the ammonia decomposition reaction and the ammonia conversion rate are improved.
  • the temperature condition for the decomposition reaction of the raw material ammonia is more preferably 450 ° C. or higher, further preferably 500 ° C. or higher, more preferably 600 ° C. or lower, and further preferably 550 ° C. or lower.
  • the pressure condition during the raw material ammonia decomposition reaction is preferably 0.005 MPa (abs) or more, preferably 50 MPa (abs) or less, more preferably 25 MPa (abs) or less, and even more preferably 10 MPa (abs). ) Or less, more preferably 5.0 MPa (abs) or less. Further, from the viewpoint of improving the ammonia conversion rate, it is preferably 1.0 MPa (abs) or less, more preferably 0.75 MPa (abs) or less, and further preferably 0.50 MPa (abs) or less. From the same viewpoint, the pressure condition is preferably 0.01 MPa (abs) or more, more preferably 0.05 MPa (abs) or more, and still more preferably 0.10 MPa (abs) or more.
  • the raw material ammonia is decomposed under the conditions of 450 ° C. or higher and 600 ° C. or lower to achieve a high ammonia conversion rate
  • the ammonia decomposition catalyst at least selected from the group consisting of nickel, ruthenium and rhodium. It is preferable to use a catalyst containing one kind, and it is more preferable to use a catalyst containing ruthenium (ruthenium-based catalyst).
  • the ammonia decomposing unit is preferably an ammonia decomposing unit capable of satisfying these ammonia decomposing conditions, and examples thereof include a decomposing unit such as a fixed bed type decomposing unit and a fluidized bed type decomposing unit.
  • the ammonia decomposer includes a container filled with the ammonia decomposition catalyst, a heating device for controlling the heating of the container, a thermometer for measuring the temperature of the container, a pressure gauge for measuring the inlet pressure of the container, ammonia It is preferable that a cooling device for cooling control of the mixed gas after decomposition is provided.
  • each device and each part used in the ammonia decomposer is relatively stable against ammonia and hydrogen.
  • stainless steel nickel; titanium; Inconel (registered trademark), Monel (registered) (Trademark), nickel alloys such as Hastelloy (registered trademark), etc. can be used.
  • the ammonia feeder is not particularly limited as long as it is a device that can supply raw ammonia to the ammonia decomposer.
  • a liquefied ammonia tank and / or a liquefied ammonia cylinder, and a vaporizer for vaporizing liquefied ammonia examples thereof include an ammonia feeder having an (evaporator).
  • facilities for managing the storage temperature of liquefied ammonia cylinders eg, temperature control device
  • equipment for temporarily storing ammonia vaporized by the vaporizer eg, accumulator or tank
  • a pressure regulating valve that controls the pressure of the vaporized ammonia gas
  • a pressure gauge that measures the outlet pressure of the pressure regulating valve
  • a mass flow controller that controls supply of ammonia gas in a predetermined amount.
  • the ammonia detectors (a1) and (a2) are not particularly limited.
  • an ammonia gas detector that automatically sucks the gas in the casing (I) or (II) and measures the ammonia concentration in the air
  • a pressure gauge that detects a pressure increase in the closed system due to ammonia leakage may be used as the ammonia detector.
  • the detection method of the ammonia gas detector include a semiconductor type, a catalytic combustion type, an electrochemical type, a constant potential electrolysis type, and a heat conduction type.
  • ammonia may be detected by a device such as a pH measurement device, a GC (Gas Chromatography) device, or an FT-IR (Fourier Transform Infrared Spectroscopy) measurement device.
  • a method of dissolving ammonia gas or liquid ammonia leaked into the liquid such as water introduced into the multiple pipe such as the double pipe or triple pipe described above, or leaked
  • the method include a method in which ammonia gas is used as an aqueous solution in which ammonia is dissolved using facilities such as a cleaning tower and a (wet) scrubber described later.
  • an aqueous solution in which the ammonia is dissolved is extracted from a drain tube, etc., and the leakage of ammonia can be visually confirmed using an acid-base indicator such as a litmus paper or a phenolphthalein solution.
  • the ammonia detector transmits a signal to the ammonia decomposer and operates the ammonia detector. It is preferable to use one that can be controlled and stopped. When trouble occurs, the ammonia decomposer is also stopped at the same time, so safety can be further improved.
  • the hydrogen gas detector (e1) is not particularly limited.
  • the hydrogen gas detector (e1) that automatically sucks the gas in the casing (II) and measures the concentration of the hydrogen gas in the air, as will be described later.
  • a pressure gauge that detects an increase in pressure in the closed system due to hydrogen gas leakage may be used as the hydrogen gas detector.
  • the detection method of the hydrogen gas detector (e1) include a semiconductor method, a catalytic combustion method, an electrochemical method, a constant potential electrolysis method, and a heat conduction method.
  • the hydrogen gas detector transmits a signal to the ammonia decomposing unit in addition to transmitting a signal to one or more selected from the group consisting of a circuit breaker, an ammonia abatement device, and a transmitter, which will be described later. It is preferable to use one that can control and stop operation. When trouble occurs, the ammonia decomposer is also stopped at the same time, so safety can be further improved.
  • the circuit breaker (b1) is not particularly limited as long as it is a device that can receive a signal from the ammonia detector (a1) and cut off the supply of ammonia to the ammonia decomposing device.
  • Examples include a shutoff valve that shuts off the supply of ammonia gas in a connecting pipe that connects the feeder and the ammonia decomposing unit, and a device that shuts off the supply of ammonia inside the ammonia supplier.
  • Examples of the shut-off valve include a pneumatic shut-off valve and an electric shut-off valve.
  • the material of the member used for the circuit breaker is preferably relatively stable against ammonia and hydrogen.
  • a device that shuts off or rapidly cools the liquefied ammonia for example, , A device that switches hot water to cold water, a device that cuts off the supply of steam, and a temperature regulator itself when heated and vaporized by an electric heater or the like.
  • shut off the main valve of the ammonia container for example, a liquefied ammonia storage tank or cylinder
  • the tank that temporarily stores vaporized ammonia, etc. shut off the introduction of ammonia into the connection pipe.
  • a device such as a shut-off valve provided in the connecting pipe introduction part
  • the raw material ammonia may be introduced into a tank or the like for storing ammonia that is temporarily excessively supplied, and further, an ammonia condenser or the like is provided at the tip thereof to liquefy the ammonia and supply the ammonia again. It may be returned to the vessel.
  • the circuit breaker (b2) is not particularly limited.
  • the circuit breaker (b2) is the same as the circuit breaker (b1) except that the circuit breaker (b1) can be operated regardless of whether or not a signal is received from the ammonia detector (a1).
  • a shutoff valve that shuts off the supply of the mixed gas in the transport pipe p11 that transports the mixed gas obtained by decomposing ammonia by the ammonia decomposer.
  • Transmitters (c1), (c2) and (f1) are independent of each other, reducing the influence of the environment (temperature, pressure, etc.) in the casing (I) and / or the casing (II), and more reliably to the outside. From the viewpoint of transmitting a signal, it is preferably provided outside the casing (I) and the casing (II). On the other hand, when the influence from the external environment is more concerned, the transmitters (c1), (c2) and (f1) are independently installed in the casing (I) and the casing (II), respectively.
  • the transmitter itself installed outside the casing (I) and the casing (II) is preferably further surrounded by a casing (for example, a waterproof casing).
  • the transmitters (c1), (c2) and (f1) have a function of receiving a signal from the ammonia detector and / or hydrogen gas detector and transmitting the signal to an external monitoring center or the like. If it is, it will not specifically limit.
  • ammonia detoxification devices (d1) and (d2) are not particularly limited as long as they are devices that operate by receiving a signal from the ammonia detector and are capable of detoxifying the leaked ammonia.
  • an apparatus that can receive a signal from an ammonia detector and remove the ammonia in the air by taking in the air in the casing is preferable only when the ammonia concentration in each casing exceeds a threshold value.
  • ammonia abatement apparatus examples include a metal salt that reacts with ammonia to form a complex such as calcium chloride or copper chloride, or an apparatus that treats ammonia with an acid such as sulfuric acid or hydrogen sulfate, a washing tower, Examples thereof include an apparatus for spraying water onto ammonia gas in the air using equipment such as a wet scrubber, recovering it as ammonia water, an apparatus for detoxifying by burning ammonia, and an apparatus for oxidizing and decomposing ammonia with a catalyst.
  • a device that adsorbs ammonia using an adsorbent that adsorbs ammonia such as zeolite, activated carbon, alumina, silica, and composite oxide, and ammonia as a salt such as ammonium hydrogen carbonate by contacting carbon dioxide and water with ammonia.
  • the ammonia abatement device include a device for fixing ammonia, a device for removing ammonia by adsorbing, fixing, isolating, etc., such as a bubble spraying device for covering the surface of liquefied ammonia with bubbles.
  • an apparatus that removes ammonia preferably using an adsorbent, a metal salt, an acid or the like can be mentioned.
  • the ammonia decomposing apparatus of the present invention is an ammonia abatement apparatus capable of detoxifying trace amounts of ammonia regardless of whether or not a signal can be received from an alarm device or an ammonia detector, in addition to the above-described facilities, devices, and apparatuses.
  • the alarm device include an alarm device that receives a signal from the ammonia detector and warns the outside.
  • each transmitter transmits a signal to, for example, an external monitoring center installed at a location distant from the ammonia decomposer to notify the abnormality
  • the alarm device is provided with an ammonia decomposer.
  • An alarm can be sounded at that location, and the danger can be immediately notified around the ammonia decomposing unit.
  • An ammonia detoxification device capable of detoxifying trace amounts of ammonia regardless of whether a signal is received from an ammonia detector is, for example, adsorption capable of adsorbing the above-mentioned ammonia in the casing (I) or (II) Examples thereof include a device that is always brought into contact with the agent.
  • a circuit breaker capable of shutting off the supply of raw material ammonia regardless of whether or not a signal is received from the ammonia detector for example, other than being able to shut off the supply of raw material ammonia regardless of whether or not the signal is received from the ammonia detector Is the same as that exemplified in the circuit breaker that receives the signal from the ammonia detector and cuts off the supply of ammonia, and the mechanical emergency cut-off that cuts off the supply of ammonia only by the operating force of the seismic sensor Examples include valves.
  • connection part of each equipment for example, the connection part of various pipings, such as a flange part, or the connection part of various piping and each apparatus or each apparatus, is enclosed with a casing different from casing (I) or (II). Further, an ammonia detector or a hydrogen gas detector may be provided in the vicinity of the sealed portion or the connecting portion. Moreover, it is more preferable that each of the above-described devices, devices, and facilities has an explosion-proof structure.
  • the ammonia decomposition apparatus of the present invention includes the above-described devices, specifically, Ammonia detectors, circuit breakers, transmitters that send signals from ammonia detectors, ammonia abatement devices that operate by receiving signals from ammonia detectors, hydrogen gas detectors, and signals from hydrogen gas detectors You may have each apparatus of the transmitter to perform, and other apparatuses, and each installation, such as the above-mentioned connection piping and a casing, individually or in combination.
  • the examples described with respect to each device, each device, and each facility described above, and preferable examples thereof are independently described with respect to other devices, devices, and facilities. Any of them can be combined arbitrarily.
  • one or more types selected from the group consisting of equipment, devices, and equipment arbitrarily selected from the examples, preferred examples, and the like described with respect to the above-described equipment, devices, and equipment are each independently other equipment, devices, and equipment. It can combine with the 1 type or more chosen from the group which consists of the apparatus, apparatus, and equipment arbitrarily selected from the illustration described regarding the 1 type or more chosen from the group which consists of, the preferable illustration, etc.
  • the ammonia feeder is A pressure gauge that measures the pressure of the liquefied ammonia cylinder and the cylinder, a pressure regulating valve that controls the pressure of the ammonia gas, a pressure gauge that measures the outlet pressure of the pressure regulating valve, and a mass flow controller for controlling supply of ammonia gas in a predetermined amount
  • the mixed gas obtained by decomposing ammonia with the ammonia decomposing apparatus of the present invention is a mixed gas containing hydrogen gas, nitrogen gas, and residual ammonia gas as described above.
  • the ammonia content in the mixed gas is preferably 2,000 mol ppm or less, more preferably 1,500 mol ppm or less, still more preferably 1,000 mol ppm or less with respect to the total amount of the mixed gas.
  • the hydrogen gas production apparatus includes ammonia in a mixed gas that communicates with the ammonia decomposing apparatus of the present invention and the ammonia decomposing unit through a connecting pipe and is supplied from the ammonia decomposing unit. And a hydrogen gas purifying device communicating with the ammonia removing device through a connecting pipe.
  • the ammonia decomposing unit 10 as shown in FIG. 13, the ammonia decomposing unit 10 according to the above-described embodiment of the ammonia decomposing unit 10 communicates with the ammonia decomposing unit 2 through the connecting pipe p12, and the ammonia decomposing unit.
  • the hydrogen gas production apparatus 100 having an ammonia removal apparatus 20 that removes ammonia in the mixed gas supplied from 2 and a hydrogen gas purification apparatus 30 that communicates with the ammonia removal apparatus 20 via a connecting pipe p23.
  • the connecting pipe p12 corresponds to the mixed gas transport pipe p11 described above, and the mixed gas transport pipe p11 is used as a pipe for connecting the ammonia decomposer 2 and the ammonia removing device 20.
  • the hydrogen gas purified by the hydrogen gas purification device 30 can be transported by, for example, a hydrogen gas transport pipe p31 shown in FIG. 13 and collected in a storage container or the like, or directly supplied to the fuel cell.
  • ammonia decomposing apparatus included in the hydrogen gas production apparatus is the same as the above-described ammonia decomposing apparatus of the present invention, and the preferred embodiment thereof is also the same.
  • the ammonia removal apparatus included in the hydrogen gas production apparatus according to one embodiment of the present invention is not particularly limited as long as it can remove ammonia in the mixed gas obtained by decomposing ammonia, but the ammonia concentration in the mixed gas is preferably It is an apparatus capable of removing ammonia so as to be 1.0 mol ppm or less, more preferably 0.1 mol ppm or less.
  • hydrogen gas for a transport machine for example, an automobile, a motorcycle, a forklift, etc.
  • a transport machine for example, an automobile, a motorcycle, a forklift, etc.
  • it is preferably 0.10 mol ppm or less, more preferably 0.08 mol ppm or less
  • it is an apparatus that can remove ammonia so that it becomes 0.075 mol ppm or less.
  • mol% or “mol ppm” is described as each component composition in a gas (gas), it is synonymous with “volume%” or “volume ppm”.
  • ammonia removing apparatus examples include a container filled with an ammonia removing material, a heating apparatus for controlling heating of the container, and a cooling apparatus for controlling cooling.
  • the ammonia removal material is not particularly limited as long as it can remove ammonia in the mixed gas.
  • an adsorbent such as zeolite, activated carbon, alumina, silica, composite oxide; by acid-base reaction with ammonia
  • acids for removing ammonia include acids for removing ammonia; metal salts that react with ammonia to form a complex such as calcium chloride or copper chloride; and the like.
  • an adsorbent is preferable from the viewpoint of recyclability.
  • zeolite is preferable from the viewpoint of adsorption ability.
  • zeolite for example, a structure code consisting of three alphabets defined by the International Zeolite Association is ANA, CHA, ERI, GIS, KFI, LTA, NAT, PAU, YUG, DDR, AFI, ATO, Examples thereof include zeolite having a crystal structure represented by BEA, CON, FAU, GME, LTL, MOR, MTW, OFF, CLO, VFI, AET, CFI, and DON.
  • the adsorption temperature when using an adsorbent such as zeolite, activated carbon, alumina, silica, and composite oxide as the ammonia removing material is preferably from ⁇ 10 ° C. to 50 ° C. from the viewpoint of efficiently adsorbing ammonia. More preferably, it is 0 degreeC or more and 30 degrees C or less.
  • the pressure during adsorption when using the adsorbent is preferably 0.005 MPa (abs) or more, preferably 50 MPa (abs) or less, more preferably 25 MPa (abs) or less, and even more preferably 10 MPa. (Abs) or less, more preferably 5.0 MPa (abs) or less.
  • the adsorption pressure is preferably 0. 0.01 MPa (abs) or more, more preferably 0.05 MPa (abs) or more, and still more preferably 0.08 MPa (abs) or more.
  • the acid for removing ammonia is not particularly limited as long as it can remove ammonia by an acid-base reaction with ammonia, and examples thereof include sulfuric acid and hydrogen sulfate.
  • an adsorbent regeneration gas for regenerating the adsorbent is further supplied. It is preferable to have a supply pipe and a supply pipe for sending the regeneration gas.
  • the adsorbent regeneration gas is preferably a gas containing at least one selected from the group consisting of an inert gas such as nitrogen gas, helium gas or argon gas, and air, and at least one selected from the group consisting of these gases. A gas mainly composed of seeds is more preferable, and a gas composed of at least one selected from the group consisting of these gases may be used. Further, the adsorbent regeneration gas may or may not contain a gas such as hydrogen gas, ammonia or water vapor.
  • a gas to be treated is introduced into a container filled with a substance that selectively adsorbs a specific component from a gas, such as zeolite (the type of the zeolite is not particularly limited), activated carbon, etc., and the pressure is increased or decreased for separation.
  • zeolite the type of the zeolite is not particularly limited
  • activated carbon etc.
  • Examples thereof include a pressure swing method (PSA method), a temperature swing method in which separation is performed by raising and lowering the temperature, and a pressure / temperature swing method in which pressure and temperature are respectively swung.
  • a container filled with zeolite As a hydrogen gas purification apparatus for performing these treatments, a container filled with zeolite, a pressure increasing apparatus for introducing a gas treated in the ammonia removing apparatus into the container and increasing the pressure, and a pressure reducing apparatus for reducing the pressure, It is preferable to have.
  • the pressure is increased by a compressor, etc.
  • the nitrogen in the gas is liquefied at a cryogenic temperature by a gas-liquid separator and separated from hydrogen and gas-liquid, and the separated hydrogen gas is passed through an adsorption purification tower to remove residual nitrogen. Examples thereof include a removal method and a membrane separation method using a palladium permeable membrane.
  • the ammonia content in the hydrogen gas for fuel cell vehicles is preferably 0.10 mol ppm or less, more preferably 0.08 mol ppm or less, and even more preferably 0.075. Molar ppm or less.
  • connection pipe used in the hydrogen gas production apparatus is not particularly limited.
  • the same connection pipe as the above-described ammonia decomposition apparatus of the present invention can be used, and a preferable aspect thereof. Is the same.
  • the hydrogen gas transport pipe is used for transporting the hydrogen gas produced by the hydrogen gas production apparatus, and is not particularly limited.
  • the same pipe as the connection pipe can be used, and a preferable aspect thereof is also used. It is the same.
  • the hydrogen gas production apparatus of the present invention removes impurities other than hydrogen gas such as nitrogen gas from the mixed gas, for example, before and after the ammonia removal apparatus or before the hydrogen gas purification apparatus, in addition to the above-described apparatuses.
  • the apparatus for example, an apparatus similar to that described in the hydrogen gas purification apparatus can be used. Further, for example, a hydrogen gas detector, an alarm device, a seismic device due to seismic motion, and a mechanical emergency shut-off valve that blocks leakage of hydrogen gas only by the operating force of the seismic device may be provided.
  • shutoff valve that shuts off the supply of the mixed gas obtained by decomposing the raw material ammonia in a connecting pipe that connects the ammonia decomposer and the ammonia removing device, the ammonia removing device, and the hydrogen gas purifying device And a shutoff valve that shuts off the supply of purified hydrogen gas in the connecting pipe connecting the two.
  • each of the aforementioned devices, apparatuses, and facilities used in the hydrogen gas production apparatus of the present invention has an explosion-proof structure.
  • the hydrogen gas production apparatus of the present invention may have each device, each device, and each facility described above alone or in combination of two or more.
  • the examples described for each device, each device, and each facility described above, and preferable examples thereof are independently described for other devices, devices, and equipment. Any of them can be combined arbitrarily.
  • one or more types selected from the group consisting of equipment, devices, and equipment arbitrarily selected from the examples, preferred examples, and the like described with respect to the above-described equipment, devices, and equipment are each independently other equipment, devices, and equipment.
  • the ammonia decomposing apparatus is the ammonia decomposing apparatus of the preferred aspect specifically described above
  • the ammonia removing apparatus is a container filled with an ammonia removing material, and for controlling the heating of the container.
  • a heating device and a cooling device for controlling cooling a container filled with zeolite by the hydrogen gas refining device; a pressure increasing device and a pressure reducing device for introducing the gas treated by the ammonia removing device into the container and increasing the pressure;
  • a decompression device is provided, the connecting pipe connecting them is a double pipe, and both the ammonia removing device and the hydrogen gas purifying device are installed in the casing.
  • ammonia decomposition equipment and hydrogen gas production equipment As described above, by using the ammonia decomposition apparatus of the present invention and the hydrogen gas production apparatus of the present invention, ammonia can be decomposed more safely, and hydrogen gas can be produced more safely. Furthermore, the hydrogen gas production apparatus having the ammonia decomposing apparatus of the present invention can automatically cut off the supply of ammonia and effectively reduce or prevent the leakage of ammonia outside the casing even when ammonia leaks. It becomes possible.
  • ammonia decomposition apparatus for example, a hydrogen station
  • a portable hydrogen gas fuel supply facility loaded with the fuel cell on a transport device equipped with a fuel cell
  • the fuel cell using the hydrogen gas obtained from the hydrogen gas production apparatus of the present invention can be mounted on various transport aircraft.
  • the mounting method the fuel cell can be mounted alone or can be mounted together with the hydrogen gas production apparatus of the present invention.
  • “transport aircraft” includes ships, air transports, and vehicles, and the vehicles include railway vehicles, automobiles, two-wheeled vehicles, and industrial vehicles.
  • the automobile includes a vehicle capable of traveling on a public road, such as a private vehicle; a business vehicle such as a bus or a taxi.
  • the industrial vehicle includes, for example, a forklift.
  • the ammonia decomposing apparatus is used for infrastructure equipment (for example, a hydrogen station) for supplying hydrogen gas for a transport aircraft equipped with a fuel cell; or for a transport device (for example, a ship, an air transport machine, and the vehicle) equipped with a fuel cell. It can be suitably used as an ammonia decomposing apparatus used for portable hydrogen gas fuel supply equipment to be loaded;
  • the hydrogen gas production apparatus includes the infrastructure equipment; or a portable hydrogen gas fuel supply equipment loaded on a portable hydrogen gas fuel supply equipment loaded on a transport machine equipped with a fuel cell; Can be suitably used.

Abstract

The present invention relates to: a device for decomposing ammonia, having an ammonia decomposer, an ammonia feeder communicated with the ammonia decomposer via a connecting duct, an ammonia sensor (a1), a shut-off switch (b1) for receiving a signal from the ammonia sensor (a1) and shutting off the supplying of ammonia to the ammonia decomposer, and a casing (I), at least the ammonia feeder, the ammonia sensor (a1), and the shut-off switch (b1) being provided inside the casing (I); and a device for manufacturing hydrogen gas which has the device for decomposing ammonia.

Description

アンモニア分解装置及び水素ガス製造装置Ammonia decomposition device and hydrogen gas production device
 本発明は、アンモニア分解装置及び当該アンモニア分解装置を有する水素ガス製造装置に関する。 The present invention relates to an ammonia decomposition apparatus and a hydrogen gas production apparatus having the ammonia decomposition apparatus.
 世界人口の増加による化石燃料に由来する原料の大量消費や電気エネルギーの大量消費等による化石燃料の枯渇リスク、二酸化炭素増加による地球温暖化に対する懸念等の問題を解決するために、二酸化炭素を発生しない再生可能エネルギー(太陽熱、太陽光、地熱、風力等)を高効率で利用する社会へと移行することが期待されている。再生可能エネルギーは電気エネルギーに変換して利用されているが、エネルギー密度が低く大量に貯蔵、輸送することは困難である。
 上記の再生可能エネルギーのクリーンな二次エネルギーとして水素エネルギーが提案されている。水素は、二酸化炭素を発生せず、貯蔵や輸送が可能な二次エネルギーであることから、水素エネルギーを利用した水素社会の構築が期待されている。しかしながら、水素は常温、常圧下で気体であり、高密度化して輸送するためには、極低温又は数10MPa以上の高圧を要する。そのため、水素の貯蔵及び輸送が容易な化学物質(水素キャリア)として、近年、アンモニアの利用が注目されている。
 アンモニアは20℃、0.857MPaで容易に液化し、液体アンモニアは重量水素密度が17.8重量%と極めて高く、また体積水素密度は液体水素の1.5~2.5倍という非常に優れた水素キャリアである。
 このように、アンモニアは水素キャリアとして優れているが、悪臭があり、粘膜に対する刺激性が強い物質であり、また空気より軽く水に溶けやすいため、大気中、水中への漏出については各種の法規制によって厳しく制限されている。したがって、アンモニアの利用に際し、アンモニアの漏出を防ぐ厳重な対策が要求される。
Generate carbon dioxide to solve problems such as the risk of exhaustion of fossil fuels due to mass consumption of fossil fuels due to the increase in the world population, mass consumption of electric energy, and concerns about global warming due to an increase in carbon dioxide. It is expected to shift to a society that uses renewable energy (solar heat, sunlight, geothermal, wind power, etc.) that does not use it with high efficiency. Renewable energy is used by converting it into electric energy, but it is difficult to store and transport large quantities of energy because of its low energy density.
Hydrogen energy has been proposed as a clean secondary energy of the above-mentioned renewable energy. Since hydrogen is a secondary energy that does not generate carbon dioxide and can be stored and transported, construction of a hydrogen society using hydrogen energy is expected. However, hydrogen is a gas at normal temperature and normal pressure, and requires a very low temperature or a high pressure of several tens of MPa or more in order to transport it at a high density. Therefore, in recent years, the use of ammonia has attracted attention as a chemical substance (hydrogen carrier) that can easily store and transport hydrogen.
Ammonia is easily liquefied at 20 ° C and 0.857 MPa, liquid ammonia has a very high weight hydrogen density of 17.8% by weight, and volume hydrogen density is 1.5 to 2.5 times that of liquid hydrogen. A hydrogen carrier.
As described above, ammonia is excellent as a hydrogen carrier, but it has a bad odor, is a substance that is highly irritating to mucous membranes, and is lighter than air and easily dissolved in water. It is strictly limited by regulations. Therefore, strict measures to prevent leakage of ammonia are required when using ammonia.
 例えば、特許文献1には、アンモニア冷媒を使用する冷凍機等の機器の設けられた室内の換気装置において、機器から漏出したアンモニアを含む室内の気体を吸引し、室内から排出する強制排気手段と、強制排気手段から排出された気体を捕集する水噴霧室と、水噴霧室に設けられた、水噴霧室内の気体に水を噴霧する水噴霧手段と、を備えることを特徴とする換気装置が記載されている。
 また、特許文献2には、所定圧力以上で開口する安全弁と、該安全弁の下流側に設けた排気通路と、該排気通路に設置したアンモニア処理剤とから構成する安全手段を、アンモニア吸収冷凍機の冷凍機を囲う密閉容器に、前記安全弁を介して連通可能に設置したことを特徴とするアンモニア吸収冷凍機の安全装置が記載されている。
 また、特許文献3には、アンモニアを冷媒として使用する吸収冷凍機の、室内熱交換器と室外熱交換器を除く、冷水熱交換器、温水熱交換器、吸収器、冷媒蒸気発生器、切換弁、精留器などを気密に囲う密閉容器と、アンモニア冷媒経路及びアンモニア冷媒と熱交換する熱媒体経路の少なくとも一方に設置するアンモニア漏洩検知手段とから構成することを特徴とするアンモニア吸収冷凍機の安全装置が記載されている。
 また、特許文献4には、冷凍・空調設備の冷媒としてアンモニアを適用した際、この設備の冷凍機ユニットから漏洩したアンモニアガスを、大気中に放出する前に無害化処理するにあたって、前記冷凍機ユニットから漏洩したアンモニアガスは、ダクトを介してスクラバやクーリングタワー等の閉鎖空間に導かれ、ここで炭酸ガス及び水とによって塩を生成し、除害処理されることを特徴とするアンモニアガスの除害システムが記載されている。
For example, Patent Document 1 discloses a forced exhaust means for sucking indoor gas containing ammonia leaked from equipment and exhausting it from the room in an indoor ventilation device provided with equipment such as a refrigerator using ammonia refrigerant. And a water spray chamber for collecting the gas discharged from the forced exhaust means, and a water spray means for spraying water onto the gas in the water spray chamber provided in the water spray chamber. Is described.
Patent Document 2 discloses an ammonia absorption refrigerator that includes a safety valve that opens at a predetermined pressure or more, an exhaust passage provided on the downstream side of the safety valve, and an ammonia treatment agent installed in the exhaust passage. A safety device for an ammonia absorption refrigerator is described in which a closed container surrounding the refrigerator is installed so as to be able to communicate via the safety valve.
Further, Patent Document 3 discloses a cold water heat exchanger, a hot water heat exchanger, an absorber, a refrigerant vapor generator, a switch, except for an indoor heat exchanger and an outdoor heat exchanger of an absorption refrigerator that uses ammonia as a refrigerant. An ammonia absorption refrigerator comprising: a sealed container that hermetically encloses a valve, a rectifier, and the like; and an ammonia leakage detection unit installed in at least one of an ammonia refrigerant path and a heat medium path that exchanges heat with the ammonia refrigerant. Safety devices are described.
Further, in Patent Document 4, when ammonia is applied as a refrigerant of a refrigeration / air-conditioning facility, ammonia gas leaked from a refrigeration unit of the facility is subjected to a detoxification process before being released into the atmosphere. Ammonia gas leaked from the unit is guided to a closed space such as a scrubber or a cooling tower through a duct, where salt is generated by carbon dioxide gas and water, and detoxification treatment is performed. The harm system is described.
特開平5-312370号公報JP-A-5-31370 特開平6-94336号公報JP-A-6-94336 特許平6-94338号公報Japanese Patent No. 6-94338 特開2001-347127号公報JP 2001-347127 A
 しかしながら、前記特許文献1~4は、いずれもアンモニアを冷媒として用いる設備に関するものであり、アンモニア分解装置及び水素ガス製造装置については言及されていない。
 前述のようにアンモニアを水素キャリアとして水素ガスを製造する場合等、アンモニアの分解は、高温条件下で行われる。また、水素ガス製造にアンモニアを用いる場合、アンモニアを冷媒として用いる場合に比べて、多量のアンモニアが必要になるとともに、万一、アンモニアが漏出した場合であっても、アンモニア分解器に対して原料アンモニアが供給され続ける虞がある。したがって、アンモニア分解を行う場合及びアンモニアを分解して水素ガスを製造する場合の安全性向上が要求されている。
 本発明は、このような状況下になされたもので、大気中へのアンモニアの漏出を抑制し、かつ安全に原料アンモニアを分解して水素ガスを得ることを可能とするアンモニア分解装置及び該アンモニア分解装置を有する水素ガス製造装置を提供することを目的とする。
However, Patent Documents 1 to 4 all relate to equipment using ammonia as a refrigerant, and do not mention an ammonia decomposition apparatus and a hydrogen gas production apparatus.
As described above, when hydrogen gas is produced using ammonia as a hydrogen carrier, ammonia is decomposed under high temperature conditions. Also, when ammonia is used for hydrogen gas production, a larger amount of ammonia is required than when ammonia is used as a refrigerant, and even if ammonia leaks, the raw material for the ammonia decomposer There is a risk that ammonia will continue to be supplied. Therefore, safety improvements are required when ammonia decomposition is performed and when hydrogen gas is produced by decomposing ammonia.
The present invention has been made under such circumstances, an ammonia decomposing apparatus capable of suppressing hydrogen leakage into the atmosphere and safely decomposing raw material ammonia to obtain hydrogen gas, and the ammonia It aims at providing the hydrogen gas manufacturing apparatus which has a decomposition device.
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、アンモニア分解装置が、アンモニア分解器にアンモニアを供給するアンモニア供給器と、アンモニア検知器と、アンモニアの供給を遮断する遮断器とを内設するケーシングを有することにより、前記課題を解決できることを見出した。
 本発明は、かかる知見に基づいて完成したものである。
As a result of intensive research to achieve the above object, the inventors of the present invention have confirmed that the ammonia decomposition apparatus has an ammonia supply device that supplies ammonia to the ammonia decomposition device, an ammonia detector, and an interruption that interrupts the supply of ammonia. It has been found that the above-mentioned problem can be solved by having a casing in which a container is installed.
The present invention has been completed based on such findings.
 すなわち、本発明は、下記[1]~[17]を提供するものである。
[1]アンモニア分解器と、該アンモニア分解器に連結配管を介して連通されたアンモニア供給器と、アンモニア検知器(a1)と、アンモニア検知器(a1)からの信号を受信し該アンモニア分解器へのアンモニア供給を遮断する遮断器(b1)と、ケーシング(I)とを有し、
 ケーシング(I)が、少なくとも該アンモニア供給器、アンモニア検知器(a1)及び遮断器(b1)を内設する、アンモニア分解装置。
[2]更に、前記アンモニア分解器が内設されるケーシング(II)を有する、前記[1]に記載のアンモニア分解装置。
[3]更に、アンモニア検知器(a1)からの信号を送信する送信器(c1)を有する、前記[1]又は[2]に記載のアンモニア分解装置。
[4]ケーシング(II)が、アンモニア検知器(a2)、又はアンモニア検知器(a2)及びアンモニア検知器(a2)からの信号を受信して前記アンモニア供給器から前記アンモニア分解器へのアンモニア供給を遮断する遮断器(b2)を内設する、前記[2]又は[3]に記載のアンモニア分解装置。
[5]更に、アンモニア検知器(a2)からの信号を送信する送信器(c2)を有する、前記[4]に記載のアンモニア分解装置。
[6]ケーシング(II)がケーシング(I)の外部に設けられ、かつ、ケーシング(II)がケーシング(I)を内設しない、前記[2]~[5]のいずれかに記載のアンモニア分解装置。
[7]ケーシング(I)がケーシング(II)を内設する、前記[2]~[5]のいずれかに記載のアンモニア分解装置。
[8]ケーシング(II)とケーシング(I)とが隔離壁を介して接する、前記[2]~[7]のいずれかに記載のアンモニア分解装置。
[9]ケーシング(I)が、アンモニア検知器(a1)からの信号を受信して作動するアンモニア除害装置(d1)を有する、前記[1]~[8]のいずれかに記載のアンモニア分解装置。
[10]ケーシング(II)が、更に、アンモニア検知器(a2)からの信号を受信して作動するアンモニア除害装置(d2)を有する、前記[4]~[9]のいずれかに記載のアンモニア分解装置。
[11]ケーシング(I)が密閉容器又は密閉室である、前記[1]~[10]のいずれかに記載のアンモニア分解装置。
[12]ケーシング(II)が、密閉容器若しくは密閉室、又は送給配管と送出配管とを有する容器若しくは装置室である、前記[2]~[11]のいずれかに記載のアンモニア分解装置。
[13]ケーシング(II)が、水素ガス検知器(e1)を内設する、前記[2]~[12]のいずれかに記載のアンモニア分解装置。
[14]更に、水素ガス検知器(e1)からの信号を送信する送信器(f1)を有する、前記[13]に記載のアンモニア分解装置。
[15]前記[1]~[14]のいずれかに記載のアンモニア分解装置、及び前記アンモニア分解器と連結配管を介して連通し、かつ該アンモニア分解器から供給される混合ガス中のアンモニアを除去するアンモニア除去装置、及び該アンモニア除去装置と連結配管を介して連通する水素ガス精製装置を有する、水素ガス製造装置。
[16]前記[15]に記載の水素ガス製造装置から得られる水素ガスを使用した燃料電池。
[17]前記[16]に記載の燃料電池を搭載した輸送機。
That is, the present invention provides the following [1] to [17].
[1] An ammonia decomposer, an ammonia supplier communicated with the ammonia decomposer via a connecting pipe, an ammonia detector (a1), and a signal received from the ammonia detector (a1) to receive the ammonia decomposer A circuit breaker (b1) for shutting off ammonia supply to the casing, and a casing (I),
The ammonia decomposition apparatus, wherein the casing (I) includes at least the ammonia supply device, the ammonia detector (a1), and the circuit breaker (b1).
[2] The ammonia decomposing apparatus according to [1], further including a casing (II) in which the ammonia decomposing unit is installed.
[3] The ammonia decomposing apparatus according to [1] or [2], further including a transmitter (c1) that transmits a signal from the ammonia detector (a1).
[4] The casing (II) receives ammonia signals from the ammonia detector (a2) or the ammonia detector (a2) and the ammonia detector (a2), and supplies ammonia from the ammonia supplier to the ammonia decomposer. The ammonia decomposing apparatus according to the above [2] or [3], wherein a circuit breaker (b2) for interrupting is installed.
[5] The ammonia decomposing apparatus according to [4], further including a transmitter (c2) that transmits a signal from the ammonia detector (a2).
[6] The ammonia decomposition according to any one of [2] to [5], wherein the casing (II) is provided outside the casing (I), and the casing (II) does not include the casing (I). apparatus.
[7] The ammonia decomposing apparatus according to any one of [2] to [5], wherein the casing (I) includes the casing (II).
[8] The ammonia decomposition apparatus according to any one of [2] to [7], wherein the casing (II) and the casing (I) are in contact with each other through an isolation wall.
[9] Ammonia decomposition according to any one of [1] to [8], wherein the casing (I) has an ammonia abatement device (d1) that operates by receiving a signal from the ammonia detector (a1). apparatus.
[10] The above (4) to [9], wherein the casing (II) further includes an ammonia abatement device (d2) that operates by receiving a signal from the ammonia detector (a2). Ammonia decomposition equipment.
[11] The ammonia decomposition apparatus according to any one of [1] to [10], wherein the casing (I) is a sealed container or a sealed chamber.
[12] The ammonia decomposition apparatus according to any one of [2] to [11], wherein the casing (II) is a sealed container or a sealed chamber, or a container or a device chamber having a supply pipe and a delivery pipe.
[13] The ammonia decomposition apparatus according to any one of [2] to [12], wherein the casing (II) includes a hydrogen gas detector (e1).
[14] The ammonia decomposition apparatus according to [13], further including a transmitter (f1) that transmits a signal from the hydrogen gas detector (e1).
[15] Ammonia in the mixed gas supplied from the ammonia decomposer and the ammonia decomposer according to any one of [1] to [14] and the ammonia decomposer connected via a connecting pipe A hydrogen gas production apparatus comprising an ammonia removal apparatus for removal and a hydrogen gas purification apparatus communicating with the ammonia removal apparatus via a connecting pipe.
[16] A fuel cell using hydrogen gas obtained from the hydrogen gas production apparatus according to [15].
[17] A transport aircraft equipped with the fuel cell according to [16].
 本発明によれば、大気中へのアンモニアの漏出を抑制し、かつ安全にアンモニアを分解して水素ガスを得ることを可能とするアンモニア分解装置及び該アンモニア分解装置を有する水素ガス製造装置を提供することができる。 According to the present invention, there is provided an ammonia decomposing apparatus capable of suppressing hydrogen leakage into the atmosphere and safely decomposing ammonia to obtain hydrogen gas, and a hydrogen gas producing apparatus having the ammonia decomposing apparatus. can do.
本発明のアンモニア分解装置の一例を示す概略図である。It is the schematic which shows an example of the ammonia decomposition apparatus of this invention. 本発明のアンモニア分解装置の一例を示す概略図である。It is the schematic which shows an example of the ammonia decomposition apparatus of this invention. 本発明のアンモニア分解装置の好適な一例を示す概略図である。It is the schematic which shows a suitable example of the ammonia decomposition apparatus of this invention. 本発明のアンモニア分解装置の好適な一例を示す概略図である。It is the schematic which shows a suitable example of the ammonia decomposition apparatus of this invention. 本発明のアンモニア分解装置の好適な一例を示す概略図である。It is the schematic which shows a suitable example of the ammonia decomposition apparatus of this invention. 本発明のアンモニア分解装置の好適な一例を示す概略図である。It is the schematic which shows a suitable example of the ammonia decomposition apparatus of this invention. 本発明のアンモニア分解装置の好適な一例を示す概略図である。It is the schematic which shows a suitable example of the ammonia decomposition apparatus of this invention. 本発明のアンモニア分解装置の好適な一例を示す概略図である。It is the schematic which shows a suitable example of the ammonia decomposition apparatus of this invention. 本発明のアンモニア分解装置の好適な一例を示す概略図である。It is the schematic which shows a suitable example of the ammonia decomposition apparatus of this invention. 本発明のアンモニア分解装置の好適な一例を示す概略図である。It is the schematic which shows a suitable example of the ammonia decomposition apparatus of this invention. 本発明のアンモニア分解装置の好適な一例を示す概略図である。It is the schematic which shows a suitable example of the ammonia decomposition apparatus of this invention. 本発明のアンモニア分解装置の好適な一例を示す概略図である。It is the schematic which shows a suitable example of the ammonia decomposition apparatus of this invention. 本発明の水素ガス製造装置の一例を示す概略図である。It is the schematic which shows an example of the hydrogen gas manufacturing apparatus of this invention.
 以下、本発明を詳細に説明するが、本発明は後述する実施形態に限定されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the embodiments described below.
[アンモニア分解装置]
 本発明のアンモニア分解装置は、図1又は図2に示すように、アンモニア分解器2と、アンモニア分解器2に連結配管p1を介して連通されたアンモニア供給器1と、アンモニア検知器(a1)と、アンモニア検知器(a1)からの信号を受信しアンモニア分解器2へのアンモニア供給を遮断する遮断器(b1)と、ケーシング(I)とを有し、ケーシング(I)が、少なくともアンモニア供給器1、アンモニア検知器(a1)及び遮断器(b1)を内設する。
 アンモニア分解装置では、特に、アンモニア供給器1からアンモニア分解器2にアンモニアが導入されるまでの段階でアンモニアが漏出した場合、アンモニア分解後の段階でアンモニアが漏出する場合よりもアンモニア漏出量が多くなる。そのため、図1に示すように、少なくともアンモニア供給器1、アンモニア検知器(a1)及び遮断器(b1)を、ケーシング(I)によって外部と隔離する必要がある。図1に示す態様では、ケーシング(I)内に内設されている機器又は設備からアンモニアが漏出した場合、アンモニア検知器(a1)がアンモニアの漏出を検知し、遮断器(b1)に信号を送信する。次いで、アンモニア検知器(a1)からの信号を受信した遮断器(b1)がアンモニア分解器2へのアンモニア供給を遮断する。そして、これら各機器はケーシング(I)内に設置されているため、ケーシング(I)外部へのアンモニアの漏出を遮断することが可能となる。
[Ammonia decomposition equipment]
As shown in FIG. 1 or 2, the ammonia decomposing apparatus of the present invention includes an ammonia decomposing unit 2, an ammonia supplying unit 1 communicated with the ammonia decomposing unit 2 through a connecting pipe p1, and an ammonia detector (a1). And a circuit breaker (b1) that receives a signal from the ammonia detector (a1) and shuts off the supply of ammonia to the ammonia decomposer 2, and a casing (I), and the casing (I) supplies at least ammonia. A device 1, an ammonia detector (a1) and a circuit breaker (b1) are installed.
In the ammonia decomposing apparatus, in particular, when ammonia leaks in the stage until ammonia is introduced into the ammonia decomposing unit 2 from the ammonia supplier 1, the amount of ammonia leaking is larger than when ammonia leaks out in the stage after ammonia decomposing. Become. Therefore, as shown in FIG. 1, it is necessary to isolate at least the ammonia supplier 1, the ammonia detector (a1), and the circuit breaker (b1) from the outside by the casing (I). In the embodiment shown in FIG. 1, when ammonia leaks from the equipment or equipment installed in the casing (I), the ammonia detector (a1) detects the leakage of ammonia and sends a signal to the circuit breaker (b1). Send. Next, the breaker (b1) that has received the signal from the ammonia detector (a1) blocks the supply of ammonia to the ammonia decomposer 2. And since these each apparatus is installed in casing (I), it becomes possible to interrupt | block the leakage of ammonia to the exterior of casing (I).
 また、図2に示す態様では、更に、アンモニア分解器2もケーシング(I)に内設しているため、アンモニア分解器2から原料アンモニアが漏出した場合又は原料アンモニアを分解した混合ガス(以下、単に「混合ガス」ともいう。)としてアンモニアが漏出した場合であっても、アンモニア検知器(a1)がアンモニアの漏出を検知して、前述のとおり、速やかにアンモニア分解器2へのアンモニア供給を遮断器(b1)によって遮断することができる。
 原料アンモニアを分解して得られた混合ガスは、例えば、図1及び2に示す混合ガス輸送配管p11によって、アンモニア分解装置外に輸送され、次工程に送出又は保管容器等に回収される。
Further, in the embodiment shown in FIG. 2, the ammonia decomposer 2 is also installed in the casing (I), and therefore, when the raw ammonia leaks from the ammonia decomposer 2 or the mixed gas (hereinafter, referred to as the raw ammonia) is decomposed. Even if ammonia leaks as simply “mixed gas”), the ammonia detector (a1) detects the leakage of ammonia and immediately supplies ammonia to the ammonia decomposer 2 as described above. It can be interrupted by the circuit breaker (b1).
The mixed gas obtained by decomposing the raw material ammonia is transported out of the ammonia decomposing apparatus, for example, by a mixed gas transport pipe p11 shown in FIGS. 1 and 2, and sent to the next process or collected in a storage container or the like.
 以下、本発明のアンモニア分解装置の好適な態様の例、並びに当該アンモニア分解装置が有する各機器、装置及び各設備の好適な態様の例について、順次、説明するが、本発明の好適な態様は後述する態様に限定されるものではない。 Hereinafter, examples of preferred embodiments of the ammonia decomposing apparatus of the present invention and examples of preferred embodiments of each device, apparatus, and each equipment included in the ammonia decomposing apparatus will be described in order. It is not limited to the aspect mentioned later.
 本発明のアンモニア分解装置は、前述した態様に、更に、アンモニア分解器2が内設されるケーシング(II)を有することが好ましい。当該好適な態様としては、例えば、図3又は図4に示す態様が挙げられる。
 原料アンモニアを分解して水素ガスを得る反応は、通常、高温条件下で行われる。アンモニア分解器2を、ケーシング(II)によってアンモニア供給器1が設置されている空間と隔離することで、ケーシング(I)内で原料アンモニアが漏出した場合であっても、漏出した原料アンモニアが高温で運転しているアンモニア分解器2に接触すること及びアンモニア分解器2周囲の高温環境下に曝されることを抑制できる。
The ammonia decomposing apparatus of the present invention preferably further includes a casing (II) in which the ammonia decomposing unit 2 is installed in the above-described embodiment. As the suitable mode, for example, the mode shown in FIG. 3 or FIG. 4 can be cited.
The reaction for decomposing the raw material ammonia to obtain hydrogen gas is usually carried out under high temperature conditions. By separating the ammonia decomposer 2 from the space in which the ammonia supplier 1 is installed by the casing (II), even if the raw ammonia leaks in the casing (I), the leaked raw ammonia is at a high temperature. It is possible to suppress contact with the ammonia decomposing unit 2 operating in the above and exposure to a high temperature environment around the ammonia decomposing unit 2.
 また、例えば、ケーシング(I)及びケーシング(II)を有する態様の場合、ケーシング毎にアンモニアの漏出や機器の不具合に対処できる観点からは、図3に示すように、ケーシング(II)がケーシング(I)の外部に設けられ、かつ、ケーシング(II)がケーシング(I)を内設しないことが好ましい。
 図3に示す態様である場合、例えば、ケーシング(I)で上述した不具合が発生した場合、ケーシング(I)のみをアンモニア分解装置から切り離し、漏出したアンモニアの処理や、不具合が発生した機器の修理を行うことができる。そのため、例えば、水素ステーションや燃料電池自動車に積載可能なアンモニア分解装置として用いる場合、ケーシング(I)に係る部分を一つのユニットとし、例えば、ケーシング(I)に係るユニットで不具合が発生した場合に、ケーシング(I)に係るユニットを新しいユニットに交換すること(以下、当該対応方法を、単に「ユニット交換対応」という。この場合、例えば、大型の水素ステーション等であって、ケーシング(I)に係るユニットが運搬できないような場合、複数のケーシング(I)に係るユニットを設置しておき、不具合発生時に、別のケーシング(I)に係るユニットからケーシング(II)に原料アンモニアを供給するようにラインを切り替え、アンモニア分解運転を継続するような場合も含む。)によって、アンモニア分解装置を長時間停止することなく、より効率的にアンモニアの分解を行うことが可能となる。ケーシング(II)で問題が発生した場合も同様である。
Further, for example, in the case of an embodiment having the casing (I) and the casing (II), from the viewpoint of dealing with ammonia leakage and equipment malfunction for each casing, as shown in FIG. It is preferable that it is provided outside of I) and the casing (II) does not include the casing (I).
In the case of the embodiment shown in FIG. 3, for example, when the above-described malfunction occurs in the casing (I), only the casing (I) is disconnected from the ammonia decomposition apparatus, and the leaked ammonia is treated or the malfunctioned equipment is repaired. It can be performed. Therefore, for example, when it is used as an ammonia decomposition apparatus that can be loaded on a hydrogen station or a fuel cell vehicle, the portion related to the casing (I) is made into one unit, for example, when a problem occurs in the unit related to the casing (I). , Replacing the unit relating to the casing (I) with a new unit (hereinafter, the corresponding method is simply referred to as “unit replacement correspondence”. In this case, for example, a large-sized hydrogen station or the like, the casing (I) When such a unit cannot be transported, units related to a plurality of casings (I) are installed, and when trouble occurs, raw ammonia is supplied from the unit related to another casing (I) to the casing (II). Including switching the line and continuing ammonia decomposition operation). Without long stop pneumoniae cracker, the more efficiently can perform the decomposition of ammonia. The same applies when a problem occurs in the casing (II).
 詳細は後述するが、ユニット交換対応では、ケーシング(I)及び/又はケーシング(II)を密閉容器とすることによって、完全に外部へのアンモニアの漏出を防止しておくことが好ましい。それによって、ケーシング内部に閉じ込めたアンモニアを、安全な場所に移動した後、適切な方法を用いて処理することも可能となる。したがって、例えば、前述した水素ステーションが設置される場所や燃料電池自動車が使用される場所で、危険な処理を行う必要がなくなり、アンモニア分解装置及び該アンモニア分解装置を有する水素ガス製造装置を使用する際の安全性をより向上できる。更には、ユニット交換対応によりアンモニア分解装置の停止時間を短縮できるといった点で、ユニット交換対応が可能なアンモニア分解装置は水素ステーション等の継続的な稼動が要求される設備で好適に使用できる。
 また、ケーシング(I)及び/又はケーシング(II)を密閉容器として、完全に外部へのアンモニアの漏出を防止できる態様とする場合、例えば、後述するアンモニア除害装置等の設置が不要又は一時的な対応ができる程度の簡易設備として、アンモニア分解装置及び該装置を有する水素ガス製造装置全体をコンパクトにすることもできる。
Although details will be described later, it is preferable to completely prevent leakage of ammonia to the outside by using the casing (I) and / or the casing (II) as a sealed container in order to replace the unit. As a result, the ammonia trapped inside the casing can be processed using an appropriate method after being moved to a safe place. Therefore, for example, it is not necessary to perform dangerous processing in a place where the above-described hydrogen station is installed or where a fuel cell vehicle is used, and an ammonia decomposition apparatus and a hydrogen gas production apparatus having the ammonia decomposition apparatus are used. Safety can be further improved. Furthermore, the ammonia decomposition apparatus capable of unit replacement can be suitably used in facilities that require continuous operation, such as a hydrogen station, in that the time required to stop the ammonia decomposition apparatus can be shortened by unit replacement.
Further, when the casing (I) and / or the casing (II) is used as an airtight container so that the leakage of ammonia to the outside can be completely prevented, for example, installation of an ammonia detoxifying device described later is unnecessary or temporary. As a simple facility that can cope with this situation, the ammonia decomposition apparatus and the entire hydrogen gas production apparatus having the apparatus can be made compact.
 アンモニア分解装置全体をよりコンパクトにするといった観点からは、図4に示すように、ケーシング(I)がケーシング(II)を内設する態様であってもよい。この場合、前述のユニット交換対応とは異なり、ケーシング(I)内又はケーシング(II)内のいずれかで不具合が発生した場合には、不具合が発生したケーシングごと交換して対応することもできる。 From the viewpoint of making the entire ammonia decomposing apparatus more compact, as shown in FIG. 4, the casing (I) may be an embodiment in which the casing (II) is provided. In this case, unlike the above-described unit replacement correspondence, when a failure occurs in either the casing (I) or the casing (II), it is possible to replace the casing in which the failure has occurred.
 同様に、アンモニア分解装置全体をよりコンパクトにするといった観点並びにケーシング(I)及びケーシング(II)間に存在する連結配管からのアンモニアの漏出を低減及び防止する観点からは、例えば、図5に示すように、ケーシング(I)とケーシング(II)とが隔離壁Wを介して接する態様であることが好ましい。また、前述したユニット交換対応を行う観点からは、隔離壁Wを少なくとも2枚以上の切り離し可能な隔離壁とし、ケーシング(I)とケーシング(II)とを切り分け可能にすることがより好ましい。
 ケーシング(II)をケーシング(I)の外部又は内部に設けるいずれの態様を選択するかは、アンモニア分解装置が使用される状況、又は本発明で用いることができる各機器、装置及び設備のサイズ若しくはコスト等に応じて、適宜、選択することができる。
Similarly, from the viewpoint of making the entire ammonia decomposing apparatus more compact, and from the viewpoint of reducing and preventing leakage of ammonia from the connecting pipe existing between the casing (I) and the casing (II), for example, as shown in FIG. Thus, it is preferable that the casing (I) and the casing (II) are in contact with each other via the isolation wall W. Further, from the viewpoint of performing the unit replacement described above, it is more preferable that at least two or more separation walls W be separable so that the casing (I) and the casing (II) can be separated.
Which mode of providing the casing (II) outside or inside the casing (I) is selected depending on the situation in which the ammonia decomposing apparatus is used, the size of each device, apparatus and equipment that can be used in the present invention. It can be appropriately selected according to the cost and the like.
 また、アンモニア分解装置がケーシング(II)を有する場合の好適な態様の一例として、ケーシング(II)がアンモニア検知器(a2)、又はアンモニア検知器(a2)及びアンモニア検知器(a2)からの信号を受信してアンモニア供給器1からアンモニア分解器2へのアンモニア供給を遮断する遮断器(b2)を内設することが好ましく、例えば、図6に示すように、ケーシング(II)が、アンモニア検知器(a2)及びアンモニア検知器(a2)からの信号を受信してアンモニア供給器1からアンモニア分解器2への原料アンモニアの供給を遮断する遮断器(b2)を内設することがより好ましい。
 当該態様とすることで、ケーシング(I)だけでなく、ケーシング(II)内でアンモニアが漏出した場合にもアンモニアの検出が可能である。
 また、アンモニア検知器(a2)は、遮断器(b2)に信号を送信する代わりに、遮断器(b1)に信号を送信するものであってもよい。その場合、アンモニア分解装置は、遮断器(b2)を有さなくとも、遮断器(b1)によってアンモニア分解器への原料アンモニアの供給を遮断することが可能である。
 更に、アンモニア検知器(a2)は、遮断器(b2)に信号を送信すると同時に、遮断器(b1)にも信号を送信するものであってもよい。その場合、万一、遮断器(b2)が作動しない場合に、遮断器(b1)によってアンモニア分解器への原料アンモニアの供給を遮断することも可能である。
 また、遮断器(b1)及び(b2)を設けた場合、ケーシング(I)とケーシング(II)とで、アンモニア検知器(a1)及び(a2)が、それぞれ独立に、遮断器(b1)及び/又は(b2)に信号を送信して遮断する際の気中アンモニア濃度の閾値を設定することが可能となる。例えば、ケーシング(I)内に設置するアンモニア検知器(a1)が遮断器(b1)を遮断する場合の気中アンモニア濃度の閾値に対して、ケーシング(II)内に設置するアンモニア検知器(a2)が遮断器(b1)及び/又は(b2)を遮断する場合のアンモニア濃度の閾値を低く設定すること等が考えられる。したがって、それぞれのケーシング内環境、並びに各機器及び各装置の運転状況に応じた対応が可能となり、アンモニア分解装置及び該アンモニア分解装置を有する水素ガス製造装置を使用する際の安全性をより向上できる。
Moreover, as an example of a suitable aspect when the ammonia decomposing apparatus has a casing (II), the casing (II) has an ammonia detector (a2), or a signal from the ammonia detector (a2) and the ammonia detector (a2). It is preferable to provide a circuit breaker (b2) that cuts off the ammonia supply from the ammonia supply device 1 to the ammonia decomposition device 2, and for example, as shown in FIG. It is more preferable to provide a breaker (b2) that receives signals from the vessel (a2) and the ammonia detector (a2) and cuts off the supply of the raw material ammonia from the ammonia supplier 1 to the ammonia decomposer 2.
By setting it as the said aspect, even when ammonia leaks not only in casing (I) but in casing (II), detection of ammonia is possible.
The ammonia detector (a2) may transmit a signal to the circuit breaker (b1) instead of transmitting a signal to the circuit breaker (b2). In that case, even if the ammonia decomposition apparatus does not have the circuit breaker (b2), it is possible to interrupt the supply of the raw material ammonia to the ammonia decomposition apparatus by the circuit breaker (b1).
Furthermore, the ammonia detector (a2) may transmit a signal to the circuit breaker (b1) simultaneously with transmitting a signal to the circuit breaker (b2). In that case, if the circuit breaker (b2) does not operate, the supply of the raw material ammonia to the ammonia decomposer can be blocked by the circuit breaker (b1).
Further, when the circuit breakers (b1) and (b2) are provided, the ammonia detectors (a1) and (a2) are independently connected to the circuit breakers (b1) and (b) in the casing (I) and the casing (II), respectively. It is possible to set a threshold value for the concentration of atmospheric ammonia when transmitting a signal to (b2) and / or blocking. For example, the ammonia detector (a2) installed in the casing (II) with respect to the threshold value of the atmospheric ammonia concentration when the ammonia detector (a1) installed in the casing (I) shuts off the circuit breaker (b1). ) May set the ammonia concentration threshold value low when the circuit breaker (b1) and / or (b2) is interrupted. Therefore, it becomes possible to cope with the environment in each casing and the operating conditions of each device and each device, and the safety when using the ammonia decomposing apparatus and the hydrogen gas production apparatus having the ammonia decomposing apparatus can be further improved. .
 また、アンモニア検知器(a1)からの信号を、遮断器(b1)に送信して原料アンモニアの供給を遮断するとともに、アンモニア分解器2にも送信して、アンモニア分解器2の運転を停止させる態様であることがより好ましい。同様に、アンモニア検知器(a2)を有する場合も、アンモニア検知器(a2)からの信号を、遮断器(b1)及び/又は遮断器(b2)に送信してアンモニア供給を遮断するとともに、アンモニア分解器2にも送信して、アンモニア分解器2の運転も停止できる態様であることがより好ましい。
 また、このような態様に加えて、又は、独立して、アンモニア検知器(a1)及び/又はアンモニア検知器(a2)が漏出したアンモニアを検知した場合に、アンモニア分解器2への原料アンモニアガスの供給を一時的に強制排出ガス等の供給に切り替えることを可能とできる機器を設けた態様であってもよい。
 これらの態様では、原料アンモニアが供給されない状態で分解器が高温で運転し続けるといったような状況を回避することが可能となり、アンモニア分解装置としての安全性をより向上させることができる。
Further, a signal from the ammonia detector (a1) is transmitted to the circuit breaker (b1) to cut off the supply of the raw material ammonia and also to the ammonia decomposer 2 to stop the operation of the ammonia decomposer 2. It is more preferable that it is an aspect. Similarly, in the case of having an ammonia detector (a2), a signal from the ammonia detector (a2) is transmitted to the circuit breaker (b1) and / or the circuit breaker (b2) to cut off the supply of ammonia and More preferably, it is also possible to transmit to the cracker 2 and stop the operation of the ammonia cracker 2.
In addition to such an embodiment, or independently, when the ammonia detector (a1) and / or the ammonia detector (a2) detects the leaked ammonia, the raw material ammonia gas to the ammonia decomposer 2 May be provided with a device capable of temporarily switching the supply to the supply of forced exhaust gas or the like.
In these aspects, it is possible to avoid a situation in which the cracker continues to operate at a high temperature in a state where the raw material ammonia is not supplied, and the safety as the ammonia decomposing apparatus can be further improved.
 また、本発明のアンモニア分解装置は、前述したそれぞれの態様であって、更に、アンモニア検知器(a1)からの信号を送信する送信器(c1)、及びアンモニア検知器(a2)からの信号を送信する送信器(c2)からなる群より選ばれる少なくとも1つを有することが好ましい。
 送信器(c1)及び(c2)は、それぞれ独立に、ケーシング(I)又はケーシング(II)内に内設されていてもよく、ケーシング(I)又はケーシング(II)の外に設置されていてもよい。
 送信器(c1)及び(c2)を有する態様の一例としては、例えば、図7に示すように、送信器(c1)は、ケーシング(I)内部に内設されており、一方で、送信器(c2)は、高温であるアンモニア分解器2を内設しているケーシング(II)の外に設けるといった態様が挙げられる。
 また、送信器(c1)及び(c2)の機能を一体化した一つの送信器を用いてもよい。すなわち、一つの送信器で、複数の検知器からの信号を受信し、個々のデータを後述する監視センタに送信するといった方法を用いてもよい。その場合、例えば、送信器(c1)が送信器(c2)を兼ねる場合が挙げられる。
 このような場合、当該送信器が一つであっても、アンモニア分解装置としては、送信器(c1)及び(c2)を、それぞれ有する態様であるものとみなす。
The ammonia decomposing apparatus according to the present invention is the above-described embodiment, and further includes a transmitter (c1) that transmits a signal from the ammonia detector (a1) and a signal from the ammonia detector (a2). It is preferable to have at least one selected from the group consisting of transmitters (c2) to transmit.
The transmitters (c1) and (c2) may be independently provided in the casing (I) or the casing (II), and may be provided outside the casing (I) or the casing (II). Also good.
As an example of the aspect having the transmitters (c1) and (c2), for example, as shown in FIG. 7, the transmitter (c1) is installed inside the casing (I), while the transmitter Examples of (c2) include an aspect in which the high-temperature ammonia decomposer 2 is provided outside the casing (II) in which the ammonia decomposer 2 is provided.
Moreover, you may use one transmitter which integrated the function of the transmitters (c1) and (c2). That is, a method of receiving signals from a plurality of detectors with a single transmitter and transmitting individual data to a monitoring center described later may be used. In that case, for example, the transmitter (c1) may also serve as the transmitter (c2).
In such a case, even if there is only one transmitter, the ammonia decomposing apparatus is regarded as having the transmitters (c1) and (c2).
 送信器(c1)及び(c2)は、それぞれ独立に、アンモニア検知器(a1)及び(a2)から受信した信号を、アンモニア分解装置の外部に存在する機器、例えば、運転監視センタに設置された受信器(以下、単に「監視センタ」ともいう。)に信号を送信する役割を果たす。
 なお、本発明のアンモニア分解装置と監視センタとを含めた場合の態様は、アンモニア漏出監視システムともいうことができる。
 アンモニア分解装置の外部に設置されるような、上記監視センタへの信号の送信は、有線でも無線でもよく、適宜選択することができる。例えば、アンモニア分解装置を水素ステーション等で用いる場合、水素ステーション等が設置されている敷地内又は遠隔地に設置された監視センタまで有線(例えば、光ファイバー)によって信号を送信する方法が挙げられる。また、アンモニア分解装置を、後述する燃料電池を搭載した輸送機(例えば、燃料電池自動車等)に積載する場合には、機体に積載された監視センタに有線及び/又は無線で送信器からの信号を送信するといった方法や、それに加え、更に無線を用いて当該機体が積載する監視センタから独立した安全管理センタ又は安全管理センタに有線で繋がれた基地局等に設置されている監視センタにも信号を送信するといった方法が挙げられる。
 また、前述のアンモニア検知器、送信器、運転監視センタ等に設置された受信器等は、それぞれが、信号の送信又は受信のみの機能に限らず、双方向に信号の受信及び送信が可能な機器であってもよい。その場合、各機器は、通信可能な設備となるため、アンモニア分解装置の外部から、アンモニア分解装置の内部機器の運転条件を監視するだけでなく、運転状況に応じて、各機器の運転をコントロールすることも可能である。
The transmitters (c1) and (c2) are independently installed in devices that exist outside the ammonia decomposition apparatus, for example, in the operation monitoring center, on the signals received from the ammonia detectors (a1) and (a2). It plays a role of transmitting a signal to a receiver (hereinafter also simply referred to as “monitoring center”).
In addition, the aspect at the time of including the ammonia decomposition | disassembly apparatus and monitoring center of this invention can also be called an ammonia leak monitoring system.
Transmission of the signal to the monitoring center as installed outside the ammonia decomposition apparatus may be wired or wireless and can be selected as appropriate. For example, when the ammonia decomposing apparatus is used at a hydrogen station or the like, a method of transmitting a signal by wire (for example, an optical fiber) to a monitoring center installed in a site where the hydrogen station or the like is installed or in a remote place can be mentioned. In addition, when the ammonia decomposing apparatus is loaded on a transporter (for example, a fuel cell vehicle) equipped with a fuel cell, which will be described later, a signal from a transmitter wired and / or wirelessly to a monitoring center loaded on the airframe. In addition to the monitoring center installed on the safety management center that is independent from the monitoring center on which the aircraft is loaded, or a base station that is connected to the safety management center by wire. There is a method of transmitting a signal.
In addition, each of the above-described ammonia detectors, transmitters, receivers installed in the operation monitoring center, etc. is not limited to the function of signal transmission or reception, but can receive and transmit signals in both directions. It may be a device. In this case, since each device becomes a communicable facility, not only the operation conditions of the internal device of the ammonia decomposition device are monitored from the outside of the ammonia decomposition device, but also the operation of each device is controlled according to the operation status. It is also possible to do.
 また、本発明のアンモニア分解装置は、前述したそれぞれの態様であって、更に、アンモニア検知器(a1)からの信号を受信して作動するアンモニア除害装置(d1)、及びアンモニア検知器(a2)からの信号を受信して作動するアンモニア除害装置(d2)からなる群より選ばれる少なくとも1つを有していてもよい。
 アンモニア除害装置(d1)及び(d2)は、それぞれ独立に、ケーシング(I)又はケーシング(II)内に内設されていてもよく、ケーシング(I)又はケーシング(II)の外に設置されていてもよい。
 アンモニア除害装置(d1)及び(d2)を有する態様の一例としては、例えば、図8に示すように、アンモニア除害装置(d1)が、ケーシング(I)内部に内設されており、そして、アンモニア除害装置(d2)が、ケーシング(II)内部に内設されているといった態様が挙げられる。
 また、アンモニア除害装置(d1)及び(d2)を有する態様の他の一例としては、例えば、図9に示すように、アンモニア除害装置(d1)は、ケーシング(I)内部に内設されており、一方で、アンモニア除害装置(d2)は、高温である分解器2を内設しているケーシング(II)の外に設けるといった態様が挙げられる。
 また、アンモニア除害装置(d1)及び(d2)の機能を一体化した一つのアンモニア除害装置を用いてもよい。すなわち、一つのアンモニア除害装置で、複数の検知器からの信号を受信し、アンモニア除害装置を作動するといった方法を用いてもよい。その場合、例えば、アンモニア除害装置(d1)がアンモニア除害装置(d2)を兼ねる場合が挙げられる。
 このような場合、当該アンモニア除害装置が一つであっても、アンモニア分解装置としては、アンモニア除害装置(d1)及び(d2)を、それぞれ有する態様であるものとみなす。
The ammonia decomposing apparatus according to the present invention is the above-described embodiment, and further includes an ammonia detoxifying apparatus (d1) that operates by receiving a signal from the ammonia detector (a1), and an ammonia detector (a2). ) May receive at least one selected from the group consisting of an ammonia abatement device (d2) that operates in response to the signal from.
The ammonia abatement devices (d1) and (d2) may be independently installed in the casing (I) or the casing (II), respectively, and installed outside the casing (I) or the casing (II). It may be.
As an example of the embodiment having the ammonia detoxifying devices (d1) and (d2), for example, as shown in FIG. 8, the ammonia detoxifying device (d1) is installed inside the casing (I), and A mode in which the ammonia abatement device (d2) is installed inside the casing (II) can be mentioned.
Moreover, as another example of the aspect having the ammonia detoxifying devices (d1) and (d2), for example, as shown in FIG. 9, the ammonia detoxifying device (d1) is installed inside the casing (I). On the other hand, the ammonia detoxifying device (d2) may be provided outside the casing (II) in which the high-temperature decomposer 2 is installed.
Moreover, you may use one ammonia abatement apparatus which integrated the function of the ammonia abatement apparatuses (d1) and (d2). That is, a method of receiving signals from a plurality of detectors and operating the ammonia abatement apparatus with a single ammonia abatement apparatus may be used. In this case, for example, the ammonia abatement device (d1) can also serve as the ammonia abatement device (d2).
In such a case, even if there is only one ammonia abatement apparatus, the ammonia decomposition apparatus is regarded as having an ammonia abatement apparatus (d1) and (d2).
 なお、ケーシング(I)又はケーシング(II)の外部にアンモニア除害装置を設ける場合、例えば、ケーシング(II)の外部にアンモニア除害装置を設置した一例である図9に示すように、アンモニア除害装置(d2)をケーシング(II)とは別のケーシング(III)内に設けて、ケーシング(II)とケーシング(III)とを連結配管p2等で連通させる態様が挙げられる。なお、図9の態様の場合を例として、連結配管p2内に、アンモニア検知器(a2)からの信号を受信して作動する安全弁又はケーシング(II)内を密閉する場合は、アンモニア漏出時の内部圧力の増加により自動的に漏出したアンモニアガスをケーシング(III)内へ送出するような設備(例えば、感圧式の安全弁、送風機等を有する設備)を設けてもよい。 When an ammonia abatement device is provided outside the casing (I) or the casing (II), for example, as shown in FIG. 9, which is an example in which an ammonia abatement device is installed outside the casing (II), There is an embodiment in which the harmful device (d2) is provided in a casing (III) different from the casing (II), and the casing (II) and the casing (III) are communicated with each other by a connecting pipe p2. In the case of the embodiment of FIG. 9, when sealing the inside of the safety valve or the casing (II) that operates by receiving a signal from the ammonia detector (a2) in the connecting pipe p2, it is necessary to prevent the leakage of ammonia. A facility (for example, a facility having a pressure-sensitive safety valve, a blower, etc.) for sending ammonia gas leaked automatically due to an increase in internal pressure into the casing (III) may be provided.
 また、ケーシング(II)を有する場合の好適な態様の一例として、ケーシング(II)が水素ガス検知器(e1)を内設することが好ましく、例えば、図10に示すように、ケーシング(II)が、遮断器(b2)への信号送信が可能な水素ガス検知器(e1)を内設することがより好ましい。
 当該態様とすることで、ケーシング(II)内で水素ガスが漏出した場合にも水素ガスの検出が可能となり、アンモニア分解装置及び該アンモニア分解装置を有する水素ガス製造装置を使用する際の安全性をより向上できる。
 また、水素ガス検知器(e1)は、遮断器(b2)に信号を送信する代わりに、遮断器(b1)に信号を送信するものであってもよい。その場合、アンモニア分解装置が、遮断器(b2)を有さなくとも、遮断器(b1)によってアンモニア分解器への原料アンモニアの供給を遮断することが可能である。
 更に、水素ガス検知器(e1)は、遮断器(b2)に信号を送信すると同時に、遮断器(b1)にも信号を送信するものであってもよい。その場合、万一、遮断器(b2)が作動しない場合に、遮断器(b1)によってアンモニア分解器への原料アンモニアの供給を遮断することも可能である。
 また、水素ガス検知器(e1)からの信号を、遮断器(b1)及び/又は遮断器(b2)に送信して原料アンモニアの供給を遮断するとともに、アンモニア分解器2にも送信して、アンモニア分解器2の運転も停止できる態様であることがより好ましい。
 また、当該水素ガスを検知する機能を前記アンモニア検知器が有していてもよい。例えば、アンモニア検知器(a2)が水素ガス検知機能も有する場合、当該検知器は1台であっても、アンモニア分解装置としては、アンモニア検知器(a2)を有し、かつ水素ガス検知器(e1)も有する態様であるものとみなす。
Moreover, as an example of a suitable aspect in the case of having the casing (II), the casing (II) preferably includes a hydrogen gas detector (e1). For example, as shown in FIG. 10, the casing (II) However, it is more preferable to provide a hydrogen gas detector (e1) capable of transmitting a signal to the circuit breaker (b2).
By adopting this mode, it becomes possible to detect hydrogen gas even when hydrogen gas leaks in the casing (II), and safety when using an ammonia decomposing apparatus and a hydrogen gas producing apparatus having the ammonia decomposing apparatus. Can be improved more.
The hydrogen gas detector (e1) may transmit a signal to the circuit breaker (b1) instead of transmitting a signal to the circuit breaker (b2). In that case, even if the ammonia decomposing apparatus does not have the circuit breaker (b2), the supply of the raw material ammonia to the ammonia decomposing unit can be interrupted by the circuit breaker (b1).
Furthermore, the hydrogen gas detector (e1) may transmit a signal to the circuit breaker (b1) simultaneously with transmitting a signal to the circuit breaker (b2). In that case, if the circuit breaker (b2) does not operate, the supply of the raw material ammonia to the ammonia decomposer can be blocked by the circuit breaker (b1).
Further, a signal from the hydrogen gas detector (e1) is transmitted to the circuit breaker (b1) and / or the circuit breaker (b2) to cut off the supply of the raw material ammonia, and also transmitted to the ammonia decomposing unit 2, It is more preferable that the operation of the ammonia decomposer 2 can be stopped.
The ammonia detector may have a function of detecting the hydrogen gas. For example, when the ammonia detector (a2) also has a hydrogen gas detection function, even if there is only one such detector, the ammonia decomposition device has an ammonia detector (a2) and a hydrogen gas detector ( It is considered to be an embodiment having e1).
 また、本発明のアンモニア分解装置は、前述した水素ガス検知器(e1)を有する態様である場合、更に、水素ガス検知器(e1)からの信号を送信する送信器(f1)を有することが好ましい。
 送信器(f1)は、ケーシング(II)内に内設されていてもよく、又はケーシング(II)の外に設置されていてもよい。
 送信器(f1)を有する態様の一例としては、例えば、図11に示すように、送信器(f1)が、高温であるアンモニア分解器2を内設しているケーシング(II)の外部に設けられた態様が挙げられる。
 また、水素ガス検知器(e1)から、送信器(f1)へ信号を送信する方法は、有線であってもよく無線であってもよい。有線又は無線を選択する観点は、前記アンモニア検知器及びアンモニア検知器からの信号を送信する送信器について前述した観点と同様である。
 また、当該水素ガス検知器及び当該水素ガス検知器からの信号を送信する送信器についても、前述した運転監視センタ等に設置された受信器等を含め、それぞれが、信号の送信又は受信のみの機能に限らず、双方向に信号の受信及び送信が可能な機器であってもよい。その場合、各機器は、通信可能な設備となるため、アンモニア分解装置の外部から、アンモニア分解装置の内部機器の運転条件を監視するだけでなく、運転状況に応じて、各機器の運転をコントロールすることも可能である。
Moreover, when the ammonia decomposition apparatus of this invention is an aspect which has the hydrogen gas detector (e1) mentioned above, it may have further the transmitter (f1) which transmits the signal from a hydrogen gas detector (e1). preferable.
The transmitter (f1) may be installed inside the casing (II), or may be installed outside the casing (II).
As an example of the aspect having the transmitter (f1), for example, as shown in FIG. 11, the transmitter (f1) is provided outside the casing (II) in which the ammonia decomposer 2 having a high temperature is provided. The embodiment mentioned is mentioned.
Moreover, the method of transmitting a signal from the hydrogen gas detector (e1) to the transmitter (f1) may be wired or wireless. The viewpoint of selecting wired or wireless is the same as the viewpoint described above with respect to the ammonia detector and the transmitter that transmits a signal from the ammonia detector.
In addition, the hydrogen gas detector and the transmitter that transmits the signal from the hydrogen gas detector, including the receiver installed in the operation monitoring center and the like described above, can only transmit or receive signals. Not only the function but also a device capable of bidirectionally receiving and transmitting signals may be used. In this case, since each device becomes a communicable facility, not only the operation conditions of the internal device of the ammonia decomposition device are monitored from the outside of the ammonia decomposition device, but also the operation of each device is controlled according to the operation status. It is also possible to do.
 アンモニア検知器(a1)及び(a2)、並びに水素ガス検知器(e1)から、各機器へ信号を送信する方法は、有線であってもよく無線であってもよい。無線を用いた場合に電波干渉の影響を受ける機器又は装置を併設している場合は確実に信号を送受信させる観点から、また、アンモニア分解装置の大きさが小さい場合はコスト面の観点から、有線であることが好ましい。
 一方で、内部の配線方法等の制約を受けにくいため、各機器又は装置設置箇所の自由度が高くなる観点、機器的問題による通信トラブル発生時に、配線部の問題を考慮しなくてよくなるため無線機のみの交換で対応できる観点からは無線を用いることが好ましい。
 なお、前述した送信器(c1)、(c2)及び(f1)の機能を一体化した1台の送信器であってもよい。すなわち、一つの送信器で、複数の検知器からの信号を受信し、個々のデータを監視センタに送信するといった方法を用いてもよい。その場合、例えば、送信器(c1)が送信器(c2)及び又は(f1)を兼ねる場合が挙げられる。
 この場合は、当該送信器が1台であっても、アンモニア分解装置としては、送信器(c1)、(c2)及び(f1)を、それぞれ有する態様であるものとみなす。
A method of transmitting signals from the ammonia detectors (a1) and (a2) and the hydrogen gas detector (e1) to each device may be wired or wireless. From the viewpoint of reliably transmitting and receiving signals when there is a device or apparatus that is affected by radio wave interference when using wireless, and from the viewpoint of cost when the ammonia decomposition device is small, wired It is preferable that
On the other hand, since it is difficult to be restricted by the internal wiring method, etc., it is wireless because it is not necessary to consider the problem of the wiring section when a communication trouble occurs due to equipment problems from the viewpoint of increasing the degree of freedom of each device or device installation location. It is preferable to use radio from the viewpoint of being able to cope with replacement of only the machine.
Note that the transmitters (c1), (c2), and (f1) described above may be integrated into one transmitter. That is, a method may be used in which signals from a plurality of detectors are received by a single transmitter and individual data is transmitted to the monitoring center. In that case, for example, the transmitter (c1) may also serve as the transmitter (c2) and / or (f1).
In this case, even if the number of the transmitters is one, it is considered that the ammonia decomposition apparatus has transmitters (c1), (c2), and (f1).
 以下、前述した各機器、各装置及び各設備の好適な態様の例について、順次、説明するが、本発明で用いる各機器、各装置及び各設備の好適な態様は後述する態様に限定されるものではない。 Hereinafter, examples of preferable modes of each device, each device, and each facility described above will be sequentially described. However, preferable modes of each device, each device, and each facility used in the present invention are limited to modes described later. It is not a thing.
<ケーシング(I)>
 ケーシング(I)は、特に限定されないが、好ましくは密閉容器又は密閉室である。密閉容器又は密閉室とすることで、前述したユニット交換対応を行う際に、より安全にユニット交換等を行うことが可能となる。また、アンモニア分解器を内設しない態様である場合に、アンモニア分解器が運転することによって高温になった環境と、ケーシング(I)内の環境とを完全に分離することが可能となるため、アンモニア分解装置の安全性をより向上させることができる。また、ケーシングの材質としては、例えば、鉄;炭素鋼;ステンレス;ニッケル;チタン;インコネル(登録商標)、モネル(登録商標)、ハステロイ(登録商標)等のニッケル合金;等が挙げられ、アンモニアに対して比較的安定な材質を用いることが好ましい。
<Case (I)>
The casing (I) is not particularly limited, but is preferably a sealed container or a sealed chamber. By using a sealed container or a sealed chamber, it is possible to perform unit replacement and the like more safely when performing the unit replacement described above. In addition, in the case where the ammonia decomposer is not installed, it is possible to completely separate the environment that has become hot due to the operation of the ammonia decomposer and the environment in the casing (I). The safety of the ammonia decomposition apparatus can be further improved. Examples of the casing material include iron; carbon steel; stainless steel; nickel; titanium; nickel alloys such as Inconel (registered trademark), Monel (registered trademark), and Hastelloy (registered trademark). On the other hand, it is preferable to use a relatively stable material.
<連結配管>
 前記連結配管の材質及び形態については、取り扱うアンモニアの流量及び圧力、並びに当該連結配管の設置環境等を考慮し、適宜選択することができる。当該材質としては、例えば、鉄;炭素鋼;ステンレス;ニッケル;チタン;インコネル(登録商標)、モネル(登録商標)、ハステロイ(登録商標)等のニッケル合金;等が挙げられ、アンモニアに対して比較的安定な材質を用いることが好ましい。
 また、連結配管からのアンモニアガスの漏出を防止する観点からは、二重配管や三重配管等の多重構造を有する配管を用いることが好ましい。多重構造を有する配管の場合、例えば、最外壁とその一つ内側の壁で構成される空間より内側の空間(以下、単に「内部配管」ともいう。)内にアンモニアを導通させることで、内部配管からアンモニアが漏出した場合であっても、連結配管の外部にアンモニアが漏出することを防止することができる。また、内部配管とその外側の壁(場合により内側の壁)との間に媒体を封入し、当該媒体のpH(この場合の媒体として、水等)や圧力の変化(この場合の媒体として、窒素ガス、ヘリウムガス、アルゴンガス等の不活性ガス等)を前記アンモニア検知器で検知することも可能になる。
<Connecting piping>
The material and form of the connection pipe can be appropriately selected in consideration of the flow rate and pressure of ammonia to be handled, the installation environment of the connection pipe, and the like. Examples of the material include iron, carbon steel, stainless steel, nickel, titanium, nickel alloys such as Inconel (registered trademark), Monel (registered trademark), and Hastelloy (registered trademark). It is preferable to use a stable material.
Further, from the viewpoint of preventing leakage of ammonia gas from the connecting pipe, it is preferable to use a pipe having a multiple structure such as a double pipe or a triple pipe. In the case of a pipe having a multiple structure, for example, by passing ammonia into a space inside a space constituted by the outermost wall and one inner wall (hereinafter also simply referred to as “inner pipe”), Even if ammonia leaks from the pipe, it is possible to prevent the ammonia from leaking outside the connecting pipe. In addition, a medium is sealed between the internal pipe and the outer wall (in some cases, the inner wall), and the pH of the medium (water as a medium in this case) or a change in pressure (as a medium in this case, Nitrogen gas, helium gas, inert gas such as argon gas, etc.) can be detected by the ammonia detector.
<混合ガス輸送配管>
 前記混合ガス輸送配管は、アンモニア分解器で原料アンモニアを分解して得られる混合ガスを輸送するために用いられ、特に限定されないが、例えば、前記連結配管と同様のものを用いることができ、その好適な態様も同様である。
<Mixed gas transport piping>
The mixed gas transport pipe is used for transporting the mixed gas obtained by decomposing the raw material ammonia with an ammonia decomposer, and is not particularly limited. For example, the same pipe as the connecting pipe can be used, The preferred embodiment is also the same.
<ケーシング(II)>
 前記ケーシング(II)は、特に限定されないが、好ましくは密閉容器若しくは密閉室、又は例えば図12に示すように送給配管p3と送出配管p4とを有する容器若しくは装置室である。また、ケーシング(II)の材質としては、例えば、前記ケーシング(I)と同様のものを用いることができ、その好適な態様も同様である。
<Case (II)>
The casing (II) is not particularly limited, but is preferably a sealed container or a sealed chamber, or a container or device chamber having a feed pipe p3 and a feed pipe p4 as shown in FIG. Moreover, as a material of casing (II), the thing similar to the said casing (I) can be used, for example, The suitable aspect is also the same.
(送給配管)
 前記送給配管は、特に限定されないが、例えば、前記連結配管と同様のものを用いることができ、その好適な態様も同様である。当該送給配管は、例えば、ケーシング(II)内に強制排出ガス等を送出する際の送給配管として好適に用いることができる。
(Feed piping)
Although the said supply piping is not specifically limited, For example, the thing similar to the said connection piping can be used, The suitable aspect is also the same. The said supply piping can be used suitably as a supply piping at the time of sending out forced exhaust gas etc. in casing (II), for example.
(送出配管)
 前記送出配管は、特に限定されないが、例えば、前記連結配管と同様のものを用いることができ、その好適な態様も同様である。当該送出配管は、例えば、ケーシング(II)内に、前記送給配管から送り込んだ強制排出ガスをケーシング(II)外に送出する際の送出配管として好適に用いることができる。
 ケーシング(II)が送給配管及び送出配管を備える場合、ケーシング(II)内に強制排出ガスを流すことが可能となり、アンモニアやアンモニア分解により生成した水素ガスが漏出した際の安全性をより向上させることが可能である。
 また、送出配管側に後述するアンモニア検知器及び/又は水素ガス検知器を設けることで、これらのガスの漏出を検知できるようにしてもよい。
 また、送出配管側に後述するアンモニア除害装置を設けることで、送出配管から強制的に排出されるガス中のアンモニアを除害装置できるようにしてもよい。
 当該強制排出ガスとしては、例えば、窒素ガス、ヘリウムガス若しくはアルゴンガス等の不活性ガス;空気;水蒸気;等が挙げられる。これらのガス中から選ばれる少なくとも1種を含む強制排出ガスが好ましく、これらのガス中から選ばれる少なくとも1種を主成分とする強制排出ガスがより好ましく、これらのガス中から選ばれる少なくとも1種のみからなる強制排出ガスであってもよい。また、当該強制排出ガスは、アンモニア分解器の分解温度への影響を低減するため、一度、昇温した後で、アンモニア分解器と接触するようにしてもよい。
(Sending pipe)
Although the said delivery piping is not specifically limited, For example, the thing similar to the said connection piping can be used, The suitable aspect is also the same. The delivery pipe can be suitably used as a delivery pipe when, for example, forced exhaust gas fed from the feed pipe is sent out of the casing (II) into the casing (II).
When the casing (II) is equipped with a supply pipe and a supply pipe, forced exhaust gas can flow through the casing (II), and the safety when ammonia or hydrogen gas generated by ammonia decomposition leaks out is further improved. It is possible to make it.
Further, by providing an ammonia detector and / or a hydrogen gas detector, which will be described later, on the delivery pipe side, the leakage of these gases may be detected.
Moreover, you may enable it to remove the ammonia in the gas forcibly discharged | emitted from a delivery pipe by providing the ammonia elimination apparatus mentioned later on the delivery pipe side.
Examples of the forced exhaust gas include inert gas such as nitrogen gas, helium gas or argon gas; air; water vapor; A forced exhaust gas containing at least one selected from these gases is preferred, a forced exhaust gas mainly comprising at least one selected from these gases is more preferred, and at least one selected from these gases It may be a forced exhaust gas consisting of only. Moreover, in order to reduce the influence on the decomposition temperature of the ammonia decomposer, the forced exhaust gas may be brought into contact with the ammonia decomposer after being heated once.
<アンモニア分解器>
 前記アンモニア分解器は、後述するアンモニア供給器から供給される原料アンモニアを分解して水素を得るために用いる。
 アンモニアの分解は、次の式(a)のように表すことができる。
 2NH→N+3H    (a)
 当該反応は、化学平衡反応であり、温度が高いほど、アンモニア転化率は向上し、400℃の条件で、アンモニア転化率は約99%となる。
<Ammonia decomposer>
The ammonia decomposing unit is used for decomposing raw material ammonia supplied from an ammonia supplying unit to be described later to obtain hydrogen.
The decomposition of ammonia can be expressed as the following formula (a).
2NH 3 → N 2 + 3H 2 (a)
This reaction is a chemical equilibrium reaction, and the higher the temperature, the better the ammonia conversion rate. At 400 ° C., the ammonia conversion rate is about 99%.
 原料アンモニアを分解して水素ガスを得るためには、前記式(a)のアンモニア分解反応を促進するための触媒(以下、「アンモニア分解触媒」ともいう。)を用いることが好ましい。当該アンモニア分解触媒としては、前記式(a)で表されるアンモニア分解反応に触媒活性を有するものであって、特に限定されないが、例えば、卑金属系遷移金属(鉄、コバルト、ニッケル、モリブデン等)、希土類系(ランタン、セリウム、ネオジム等)、貴金属系(ルテニウム、ロジウム、イリジウム、パラジウム、白金等)を組成として含む触媒が挙げられる。前記卑金属系遷移金属は金属単体、合金、窒化物、炭化物、酸化物、複合酸化物として用いることができ、前記希土類系は酸化物として用いることができ、当該卑金属系遷移金属及び当該希土類系ともに、アルミナ、シリカ、マグネシア、ジルコニア、チタニア等の高い比表面積を有する担体に担持して用いることができる。また、前記貴金属系も、アルミナ、シリカ、マグネシア、ジルコニア、チタニア等の高い比表面積を有する担体に担持して用いることができる。また、前記卑金属系遷移金属及び/又は上記希土類系に、少量の前記貴金属系を含有させて用いることもできる。これらのアンモニア分解触媒は単独で用いてもよく、2種以上を併用してもよい。 In order to decompose the raw material ammonia to obtain hydrogen gas, it is preferable to use a catalyst for promoting the ammonia decomposition reaction of the formula (a) (hereinafter also referred to as “ammonia decomposition catalyst”). The ammonia decomposition catalyst has catalytic activity for the ammonia decomposition reaction represented by the formula (a) and is not particularly limited. For example, a base metal transition metal (iron, cobalt, nickel, molybdenum, etc.) And catalysts containing rare earths (such as lanthanum, cerium and neodymium) and noble metals (such as ruthenium, rhodium, iridium, palladium and platinum) as compositions. The base metal transition metal can be used as a simple metal, alloy, nitride, carbide, oxide, composite oxide, the rare earth can be used as an oxide, both the base metal transition metal and the rare earth , Alumina, silica, magnesia, zirconia, titania and the like can be supported on a carrier having a high specific surface area. The noble metal system can also be used by being supported on a carrier having a high specific surface area such as alumina, silica, magnesia, zirconia, titania and the like. Further, a small amount of the noble metal system may be contained in the base metal transition metal and / or the rare earth system. These ammonia decomposition catalysts may be used alone or in combination of two or more.
 また、原料アンモニアを分解して水素ガスを得るためのアンモニア分解反応の温度条件は、好ましくは300℃以上800℃以下である。そして、耐熱温度が600℃以下であるステンレススチール(SUS)材料であっても、アンモニア分解反応に用いる設備(容器、配管等)の材料として用いることができるようになる観点及びアンモニア転化率を向上させる観点から、原料アンモニアの分解反応の温度条件としては、より好ましくは450℃以上、更に好ましくは500℃以上であり、そして、より好ましくは600℃以下、更に好ましくは550℃以下である。
 そして、原料アンモニア分解反応時の圧力条件としては、好ましくは0.005MPa(abs)以上であり、そして、好ましくは50MPa(abs)以下、より好ましくは25MPa(abs)以下、更に好ましくは10MPa(abs)以下、より更に好ましくは5.0MPa(abs)以下である。また、アンモニア転化率を向上させる観点からは、好ましくは1.0MPa(abs)以下、より好ましくは0.75MPa(abs)以下、更に好ましくは0.50MPa(abs)以下である。同様の観点から、当該圧力条件としては、好ましくは0.01MPa(abs)以上、より好ましくは0.05MPa(abs)以上、更に好ましくは0.10MPa(abs)以上である。
Further, the temperature condition of the ammonia decomposition reaction for decomposing the raw material ammonia to obtain hydrogen gas is preferably 300 ° C. or higher and 800 ° C. or lower. And even if it is a stainless steel (SUS) material having a heat-resistant temperature of 600 ° C. or less, the viewpoint that it can be used as a material for equipment (containers, pipes, etc.) used for the ammonia decomposition reaction and the ammonia conversion rate are improved. In view of the above, the temperature condition for the decomposition reaction of the raw material ammonia is more preferably 450 ° C. or higher, further preferably 500 ° C. or higher, more preferably 600 ° C. or lower, and further preferably 550 ° C. or lower.
The pressure condition during the raw material ammonia decomposition reaction is preferably 0.005 MPa (abs) or more, preferably 50 MPa (abs) or less, more preferably 25 MPa (abs) or less, and even more preferably 10 MPa (abs). ) Or less, more preferably 5.0 MPa (abs) or less. Further, from the viewpoint of improving the ammonia conversion rate, it is preferably 1.0 MPa (abs) or less, more preferably 0.75 MPa (abs) or less, and further preferably 0.50 MPa (abs) or less. From the same viewpoint, the pressure condition is preferably 0.01 MPa (abs) or more, more preferably 0.05 MPa (abs) or more, and still more preferably 0.10 MPa (abs) or more.
 また、450℃以上、600℃以下の条件で原料アンモニアを分解し、高いアンモニア転化率を達成する場合には、前記アンモニア分解触媒の例の中でも、ニッケル、ルテニウム及びロジウムからなる群より選ばれる少なくとも1種を含む触媒を用いることが好ましく、ルテニウムを含む触媒(ルテニウム系触媒)を用いることがより好ましい。 Further, when the raw material ammonia is decomposed under the conditions of 450 ° C. or higher and 600 ° C. or lower to achieve a high ammonia conversion rate, among the examples of the ammonia decomposition catalyst, at least selected from the group consisting of nickel, ruthenium and rhodium. It is preferable to use a catalyst containing one kind, and it is more preferable to use a catalyst containing ruthenium (ruthenium-based catalyst).
 前述した観点から、前記アンモニア分解器は、これらのアンモニア分解条件を満たすことが可能なアンモニア分解器であることが好ましく、例えば、固定床式分解器、流動床式分解器といった分解器が挙げられる。また、前記アンモニア分解器は、前記アンモニア分解触媒を充填した容器、当該容器を加熱制御するための加熱装置、当該容器の温度を計測する温度計、当該容器の入口圧力を計測する圧力計、アンモニア分解後の混合ガスを冷却制御するための冷却装置を備えていることが好ましい。更に、地震動による感震器、そして、当該感震器の動作力のみ又は感震器からの信号により運転を緊急停止することが可能な機能を有していてもよい。また、アンモニア分解器に用いる各機器及び各部品等の材質としては、アンモニアや水素に対して比較的安定であることが好ましく、例えば、ステンレス;ニッケル;チタン;インコネル(登録商標)、モネル(登録商標)、ハステロイ(登録商標)等のニッケル合金;等を使用することができる。 From the viewpoint described above, the ammonia decomposing unit is preferably an ammonia decomposing unit capable of satisfying these ammonia decomposing conditions, and examples thereof include a decomposing unit such as a fixed bed type decomposing unit and a fluidized bed type decomposing unit. . The ammonia decomposer includes a container filled with the ammonia decomposition catalyst, a heating device for controlling the heating of the container, a thermometer for measuring the temperature of the container, a pressure gauge for measuring the inlet pressure of the container, ammonia It is preferable that a cooling device for cooling control of the mixed gas after decomposition is provided. Furthermore, it may have a function capable of urgently stopping the operation based on a seismic device due to seismic motion and only the operating force of the seismic device or a signal from the seismic device. Moreover, it is preferable that the material of each device and each part used in the ammonia decomposer is relatively stable against ammonia and hydrogen. For example, stainless steel; nickel; titanium; Inconel (registered trademark), Monel (registered) (Trademark), nickel alloys such as Hastelloy (registered trademark), etc. can be used.
<アンモニア供給器>
 前記アンモニア供給器は、前記アンモニア分解器に、原料アンモニアを供給可能な機器であれば、特に限定されないが、例えば、液化アンモニアタンク及び/又は液化アンモニアボンベ、並びに液化アンモニアを気化させるための気化器(蒸発器)を有するアンモニア供給器等が挙げられる。更に、液化アンモニアボンベ等の保管温度を管理するための設備(例えば、温度制御装置)及び/又は当該気化器によって気化したアンモニアを一時的に貯蔵するための設備(例えば、アキュムレーター又はタンク)等を有していてもよい。また、例えば、気化したアンモニアガスの圧力を制御する調圧弁、当該調圧弁の出口圧力を計測する圧力計、アンモニアガスを所定量で供給制御するためのマスフローコントローラといった機器を有することが好ましい。また、ポンプ、地震動による感震器、そして、当該感震器の動作力のみでアンモニアの供給を遮断する機械式緊急遮断弁を有していてもよい。
<Ammonia feeder>
The ammonia feeder is not particularly limited as long as it is a device that can supply raw ammonia to the ammonia decomposer. For example, a liquefied ammonia tank and / or a liquefied ammonia cylinder, and a vaporizer for vaporizing liquefied ammonia Examples thereof include an ammonia feeder having an (evaporator). Furthermore, facilities for managing the storage temperature of liquefied ammonia cylinders (eg, temperature control device) and / or equipment for temporarily storing ammonia vaporized by the vaporizer (eg, accumulator or tank), etc. You may have. For example, it is preferable to have devices such as a pressure regulating valve that controls the pressure of the vaporized ammonia gas, a pressure gauge that measures the outlet pressure of the pressure regulating valve, and a mass flow controller that controls supply of ammonia gas in a predetermined amount. Moreover, you may have the mechanical emergency shut-off valve which interrupts | blocks supply of ammonia only with the operating force of the pump, the seismic device by earthquake motion, and the said seismic device.
<アンモニア検知器(a1)及び(a2)>
 前記アンモニア検知器(a1)及び(a2)は、特に限定されないが、例えば、前記ケーシング(I)又は(II)内の気体を自動吸引して気中アンモニア濃度を測定するアンモニアガス検知器や、後述するようにケーシング(I)又は(II)内を密閉する場合には、アンモニア漏出による密閉系内の圧力上昇を検知する圧力計をアンモニア検知器として用いてもよい。
 当該アンモニアガス検知器の検知方式としては、半導体式、接触燃焼式、電気化学式、定電位電解式、熱伝導式等が挙げられる。また、pH測定装置、GC(Gas Chromatography)装置、FT-IR(Fourier Transform Infrared Spectroscopy)測定装置といった装置でアンモニアを検知してもよい。
 アンモニアの相対蒸気密度は、0.59(空気=1)であるため、アンモニアガスとして漏出した際は、ケーシング(I)又は又は(II)内の空気中を上昇しやすい。そのため、アンモニアガス検知器は、各ケーシング内の空間上部に設けることが好ましい。
 また、仮に、液体アンモニアとしてアンモニアが漏洩する虞がある場合は、漏洩したアンモニアが水に溶解されるようにしておき、当該アンモニアが溶解した水溶液のpH上昇をpH計で確認してアンモニア漏洩を検知してもよい。
 同様に、アンモニアガスとして漏出したアンモニアについても水等に溶解されるようにしておき、当該アンモニアが溶解した水溶液について検査する場合も同様である。当該漏出したアンモニアを水等に溶解させる方法としては、前述した二重配管若しくは三重配管等の多重配管内に導入した水等の液体に漏出したアンモニアガス又は液体アンモニアを溶解させる方法や、漏洩したアンモニアガスを後述する洗浄塔や(湿式)スクラバー等の設備によりアンモニアが溶解した水溶液とする方法等が挙げられる。また、pH計で確認する方法の他、例えば、当該アンモニアが溶解した水溶液をドレン管等から抜き出し、リトマス試験紙やフェノールフタレイン溶液等の酸塩基指示薬を用いてアンモニアの漏洩を目視で確認できるようにしてもよい。
 また、アンモニア検知器(a1)及び(a2)として、それぞれ複数のアンモニア検知器を設ける場合には、漏出箇所を容易かつ迅速に特定できるといった観点から、例えば、アンモニアの漏出が懸念される箇所及びその近傍に設けることが好ましい。
 また、当該アンモニア検知器は、後述する遮断器、アンモニア除害装置、及び送信器からなる群より選ばれる1種以上に信号を送信する以外に、前記アンモニア分解器に信号を送信してその運転を制御、停止できることが可能であるものを用いることが好ましい。不具合発生時には、アンモニア分解器も同時に停止することで、より安全性を向上できる。
<Ammonia detectors (a1) and (a2)>
The ammonia detectors (a1) and (a2) are not particularly limited. For example, an ammonia gas detector that automatically sucks the gas in the casing (I) or (II) and measures the ammonia concentration in the air, As will be described later, when the inside of the casing (I) or (II) is sealed, a pressure gauge that detects a pressure increase in the closed system due to ammonia leakage may be used as the ammonia detector.
Examples of the detection method of the ammonia gas detector include a semiconductor type, a catalytic combustion type, an electrochemical type, a constant potential electrolysis type, and a heat conduction type. In addition, ammonia may be detected by a device such as a pH measurement device, a GC (Gas Chromatography) device, or an FT-IR (Fourier Transform Infrared Spectroscopy) measurement device.
Since the relative vapor density of ammonia is 0.59 (air = 1), it easily rises in the air in the casing (I) or (II) when leaked as ammonia gas. For this reason, the ammonia gas detector is preferably provided in the upper part of the space in each casing.
Also, if there is a risk of ammonia leaking as liquid ammonia, the leaked ammonia is dissolved in water, and the pH rise of the aqueous solution in which the ammonia is dissolved is checked with a pH meter to prevent ammonia leakage. It may be detected.
Similarly, the same applies to the case where ammonia leaked out as ammonia gas is dissolved in water or the like and the aqueous solution in which the ammonia is dissolved is inspected. As a method of dissolving the leaked ammonia in water or the like, a method of dissolving ammonia gas or liquid ammonia leaked into the liquid such as water introduced into the multiple pipe such as the double pipe or triple pipe described above, or leaked Examples of the method include a method in which ammonia gas is used as an aqueous solution in which ammonia is dissolved using facilities such as a cleaning tower and a (wet) scrubber described later. In addition to the method of confirming with a pH meter, for example, an aqueous solution in which the ammonia is dissolved is extracted from a drain tube, etc., and the leakage of ammonia can be visually confirmed using an acid-base indicator such as a litmus paper or a phenolphthalein solution. May be.
In addition, in the case where a plurality of ammonia detectors are provided as the ammonia detectors (a1) and (a2), for example, from the viewpoint that the leakage location can be identified easily and quickly, for example, a location where ammonia leakage is a concern and It is preferable to provide in the vicinity.
In addition to transmitting a signal to at least one selected from the group consisting of a circuit breaker, an ammonia abatement device, and a transmitter, which will be described later, the ammonia detector transmits a signal to the ammonia decomposer and operates the ammonia detector. It is preferable to use one that can be controlled and stopped. When trouble occurs, the ammonia decomposer is also stopped at the same time, so safety can be further improved.
<水素ガス検知器(e1)>
 水素ガス検知器(e1)は、特に限定されないが、例えば、前記ケーシング(II)内の気体を自動吸引して気中水素ガス濃度を測定する水素ガス検知器(e1)や、後述するようにケーシング(II)内を密閉する場合は、水素ガス漏出による密閉系内の圧力上昇を検知する圧力計を水素ガス検知器として用いてもよい。
 水素ガス検知器(e1)の検知方式としては、半導体式、接触燃焼式、電気化学式、定電位電解式、熱伝導式等が挙げられる。また、GC装置といった装置で水素ガスを検知してもよい。
 水素ガスの相対蒸気密度は、0.07(空気=1)であるため、水素ガスが漏出した際には、ケーシング(II)内の空気中を上昇しやすいため、これらの水素ガス検知器は、ケーシング(II)内の空間上部に設けることが好ましい。または、後述するように、ケーシング(II)が、例えば、強制排出ガス等を送出可能とする送出配管を有する場合は、その送出配管中又は送出配管の出口に、当該水素ガス検知器の設けてもよい。
 また、複数の水素ガス検知器を設ける場合には、漏出箇所を容易かつ迅速に特定できるといった観点から、例えば、漏出が懸念される箇所及びその近傍に設けることが好ましい。
 また、当該水素ガス検知器は、後述する遮断器、アンモニア除害装置、及び送信器からなる群より選ばれる1種以上に信号を送信する以外に、前記アンモニア分解器に信号を送信してその運転を制御、停止できることが可能であるものを用いることが好ましい。不具合発生時には、アンモニア分解器も同時に停止することで、より安全性を向上できる。
<Hydrogen gas detector (e1)>
The hydrogen gas detector (e1) is not particularly limited. For example, the hydrogen gas detector (e1) that automatically sucks the gas in the casing (II) and measures the concentration of the hydrogen gas in the air, as will be described later. When sealing the inside of the casing (II), a pressure gauge that detects an increase in pressure in the closed system due to hydrogen gas leakage may be used as the hydrogen gas detector.
Examples of the detection method of the hydrogen gas detector (e1) include a semiconductor method, a catalytic combustion method, an electrochemical method, a constant potential electrolysis method, and a heat conduction method. Moreover, you may detect hydrogen gas with apparatuses, such as GC apparatus.
Since the relative vapor density of hydrogen gas is 0.07 (air = 1), when hydrogen gas leaks out, it tends to rise in the air in the casing (II), so these hydrogen gas detectors are It is preferable to provide the upper part of the space in the casing (II). Or, as will be described later, when the casing (II) has a delivery pipe that can send out, for example, forced exhaust gas, the hydrogen gas detector is provided in the delivery pipe or at the outlet of the delivery pipe. Also good.
When providing a plurality of hydrogen gas detectors, it is preferable to provide, for example, at a location where leakage is a concern and in the vicinity thereof, from the viewpoint that the leakage location can be easily and quickly identified.
The hydrogen gas detector transmits a signal to the ammonia decomposing unit in addition to transmitting a signal to one or more selected from the group consisting of a circuit breaker, an ammonia abatement device, and a transmitter, which will be described later. It is preferable to use one that can control and stop operation. When trouble occurs, the ammonia decomposer is also stopped at the same time, so safety can be further improved.
<遮断器(b1)>
 遮断器(b1)は、アンモニア検知器(a1)からの信号を受信し前記アンモニア分解器へのアンモニアの供給を遮断することを可能とする機器であれば、特に限定されないが、例えば、前記アンモニア供給器と前記アンモニア分解器とを連結する連結配管内でアンモニアガスの供給を遮断する遮断弁、前記アンモニア供給器の内部でアンモニアの供給を遮断する機器が挙げられる。
 遮断弁の種類としては、空圧式遮断弁、電動式遮断弁等が挙げられる。また、遮断器に用いる部材の材質としては、アンモニアや水素に対して比較的安定であることが好ましく、例えば、ステンレス;ニッケル;チタン;インコネル(登録商標)、モネル(登録商標)、ハステロイ(登録商標)等のニッケル合金;等を使用することができる。
 当該アンモニア供給器の内部でアンモニアの供給を遮断する機器としては、例えば、前述した液化アンモニアタンクやボンベ等を有するアンモニア供給器を用いる場合、液化アンモニアへの加温を遮断又は急冷する機器(例えば、温水を冷水に切り替える機器、蒸気供給を遮断する機器、電気ヒーター等で加温して気化させる場合にはその温度調節器自体)が挙げられる。また、アンモニア容器(例えば、液化アンモニア貯蔵タンク又はボンベ)の元弁を遮断する機器、気化させたアンモニアを一時的に貯蔵するタンク等を密閉状態にして連結配管中へのアンモニアの導入を遮断する機器(連結配管導入部に設けられる遮断弁等)が挙げられる。
<Circuit breaker (b1)>
The circuit breaker (b1) is not particularly limited as long as it is a device that can receive a signal from the ammonia detector (a1) and cut off the supply of ammonia to the ammonia decomposing device. Examples include a shutoff valve that shuts off the supply of ammonia gas in a connecting pipe that connects the feeder and the ammonia decomposing unit, and a device that shuts off the supply of ammonia inside the ammonia supplier.
Examples of the shut-off valve include a pneumatic shut-off valve and an electric shut-off valve. The material of the member used for the circuit breaker is preferably relatively stable against ammonia and hydrogen. For example, stainless steel; nickel; titanium; Inconel (registered trademark), Monel (registered trademark), Hastelloy (registered) A nickel alloy such as a trademark);
As an apparatus for shutting off the supply of ammonia inside the ammonia feeder, for example, when using an ammonia feeder having the above-described liquefied ammonia tank, cylinder, etc., a device that shuts off or rapidly cools the liquefied ammonia (for example, , A device that switches hot water to cold water, a device that cuts off the supply of steam, and a temperature regulator itself when heated and vaporized by an electric heater or the like. In addition, shut off the main valve of the ammonia container (for example, a liquefied ammonia storage tank or cylinder), the tank that temporarily stores vaporized ammonia, etc., and shut off the introduction of ammonia into the connection pipe. A device (such as a shut-off valve provided in the connecting pipe introduction part) is included.
 また、例えば、アンモニアの漏出がケーシング(II)内で発生している場合等には、ケーシング(II)内に内設されているアンモニア分解器への原料アンモニアの供給を遮断する目的で、一時的に、アンモニア供給器からの原料アンモニアの流路を切り替えるための切り替え弁であってもよい。この場合、一時的に供給過多となるアンモニアを貯蔵するためのタンク等に原料アンモニアを導入してもよく、更に、その先にアンモニア凝縮器等を設けて、アンモニアを液化し、再度、アンモニア供給器に戻してもよい。
 アンモニア分解装置の安全性をより向上させる観点から、前記連結配管内で切り替え弁を用いて、一時的に原料アンモニアの供給を遮断した場合であっても、アンモニア供給器からの原料アンモニアの供給自体を停止させることが好ましい。したがって、アンモニア分解装置の安全性をより向上させる観点から、前記遮断弁とアンモニア供給器自体からのアンモニアガス供給を停止する機器とをともに有することが好ましい。これにより、漏出時には遮断弁を閉じるとともに、アンモニア供給器からのアンモニアガス供給自体も停止することができる。
In addition, for example, when ammonia leakage occurs in the casing (II), for the purpose of interrupting the supply of the raw material ammonia to the ammonia decomposer installed in the casing (II), Alternatively, it may be a switching valve for switching the flow path of the raw material ammonia from the ammonia feeder. In this case, the raw material ammonia may be introduced into a tank or the like for storing ammonia that is temporarily excessively supplied, and further, an ammonia condenser or the like is provided at the tip thereof to liquefy the ammonia and supply the ammonia again. It may be returned to the vessel.
From the viewpoint of further improving the safety of the ammonia decomposing apparatus, even if the supply of the raw ammonia is temporarily shut off using the switching valve in the connecting pipe, the supply of the raw ammonia from the ammonia feeder itself Is preferably stopped. Therefore, from the viewpoint of further improving the safety of the ammonia decomposing apparatus, it is preferable to have both the shut-off valve and a device that stops the supply of ammonia gas from the ammonia supplier itself. Thereby, at the time of leakage, the shutoff valve is closed and the ammonia gas supply itself from the ammonia supplier can be stopped.
<遮断器(b2)>
 遮断器(b2)は、特に限定されないが、例えば、アンモニア検知器(a1)からの信号の受信の有無に関わらず作動可能であること以外は遮断器(b1)と同様のものが挙げられ、更に、前記アンモニア分解器でアンモニアを分解して得られる混合ガスを輸送する輸送配管p11内で混合ガスの供給を遮断する遮断弁等が挙げられる。
<Circuit breaker (b2)>
The circuit breaker (b2) is not particularly limited. For example, the circuit breaker (b2) is the same as the circuit breaker (b1) except that the circuit breaker (b1) can be operated regardless of whether or not a signal is received from the ammonia detector (a1). Furthermore, there is a shutoff valve that shuts off the supply of the mixed gas in the transport pipe p11 that transports the mixed gas obtained by decomposing ammonia by the ammonia decomposer.
<送信器(c1)、(c2)及び(f1)>
 送信器(c1)、(c2)及び(f1)は、それぞれ独立に、ケーシング(I)及び/又はケーシング(II)内の環境(温度、圧力等)の影響を低減し、より確実に外部に信号を送信する観点から、ケーシング(I)及びケーシング(II)の外側に設けることが好ましい。一方で、外部環境からの影響の方が懸念される場合には、送信器(c1)、(c2)及び(f1)は、それぞれ独立に、ケーシング(I)及びケーシング(II)に内設するか、又はケーシング(I)及びケーシング(II)の外に設置した送信器自体を更にケーシング(例えば、防水可能なケーシング等)で囲うことが好ましい。
 送信器(c1)、(c2)及び(f1)としては、前記アンモニア検知器及び/又は水素ガス検知器からの信号を受信し、外部の監視センタ等にその信号を送信できる機能を有していれば特に限定されない。
<Transmitters (c1), (c2) and (f1)>
Transmitters (c1), (c2), and (f1) are independent of each other, reducing the influence of the environment (temperature, pressure, etc.) in the casing (I) and / or the casing (II), and more reliably to the outside. From the viewpoint of transmitting a signal, it is preferably provided outside the casing (I) and the casing (II). On the other hand, when the influence from the external environment is more concerned, the transmitters (c1), (c2) and (f1) are independently installed in the casing (I) and the casing (II), respectively. Alternatively, the transmitter itself installed outside the casing (I) and the casing (II) is preferably further surrounded by a casing (for example, a waterproof casing).
The transmitters (c1), (c2) and (f1) have a function of receiving a signal from the ammonia detector and / or hydrogen gas detector and transmitting the signal to an external monitoring center or the like. If it is, it will not specifically limit.
<アンモニア除害装置(d1)及び(d2)>
 アンモニア除害装置(d1)及び(d2)は、前記アンモニア検知器からの信号を受信して作動し、漏出したアンモニアを除害可能な装置であれば、特に限定されない。例えば、アンモニア検知器からの信号を受信し、各ケーシング内のアンモニア濃度が閾値を超えた際のみ、ケーシング内の空気を取り込んで気中のアンモニアを除害することが可能な装置が好ましい。
 当該アンモニア除害装置としては、例えば、塩化カルシウム若しくは塩化銅等のようにアンモニアと反応して錯体を形成する金属塩類又は硫酸、硫酸水素塩等の酸でアンモニアを処理する装置、洗浄塔や(湿式)スクラバー等の設備を用いて空気中のアンモニアガスに水を噴霧してアンモニア水として回収する装置、アンモニアを燃焼することにより除害する装置、触媒によりアンモニアを酸化分解する装置が挙げられる。
 また、例えば、ゼオライト、活性炭、アルミナ、シリカ、複合酸化物といったアンモニアを吸着する吸着剤を用いてアンモニアを吸着する装置、アンモニアに炭酸ガスと水とを接触させて炭酸水素アンモニウム等の塩としてアンモニアを固定する装置、液化アンモニアの表面を泡で覆う泡散布装置等のアンモニアを吸着、固定、隔離等して除去する装置等もアンモニア除害装置として挙げられる。
 これらの中でも、アンモニア分解装置をコンパクトにする観点からは、好ましくは吸着剤、金属塩類、又は酸等を用いてアンモニアを除害する装置が挙げられる。
<Ammonia detoxification devices (d1) and (d2)>
The ammonia detoxifying devices (d1) and (d2) are not particularly limited as long as they are devices that operate by receiving a signal from the ammonia detector and are capable of detoxifying the leaked ammonia. For example, an apparatus that can receive a signal from an ammonia detector and remove the ammonia in the air by taking in the air in the casing is preferable only when the ammonia concentration in each casing exceeds a threshold value.
Examples of the ammonia abatement apparatus include a metal salt that reacts with ammonia to form a complex such as calcium chloride or copper chloride, or an apparatus that treats ammonia with an acid such as sulfuric acid or hydrogen sulfate, a washing tower, Examples thereof include an apparatus for spraying water onto ammonia gas in the air using equipment such as a wet scrubber, recovering it as ammonia water, an apparatus for detoxifying by burning ammonia, and an apparatus for oxidizing and decomposing ammonia with a catalyst.
Also, for example, a device that adsorbs ammonia using an adsorbent that adsorbs ammonia, such as zeolite, activated carbon, alumina, silica, and composite oxide, and ammonia as a salt such as ammonium hydrogen carbonate by contacting carbon dioxide and water with ammonia. Examples of the ammonia abatement device include a device for fixing ammonia, a device for removing ammonia by adsorbing, fixing, isolating, etc., such as a bubble spraying device for covering the surface of liquefied ammonia with bubbles.
Among these, from the viewpoint of making the ammonia decomposing apparatus compact, an apparatus that removes ammonia preferably using an adsorbent, a metal salt, an acid or the like can be mentioned.
<その他の設備、機器及び装置>
 本発明のアンモニア分解装置は、前述した各設備、各機器、各装置以外に、警報器、アンモニア検知器からの信号の受信可否に関わらず微量アンモニアを除害可能なアンモニア除害装置、地震動による感震器、前記アンモニア検知器からの信号の受信有無に関わらず原料アンモニアの供給を遮断することが可能な遮断器を有していてもよい。
 警報器としては、前記アンモニア検知器からの信号を受信し、外部に警告する警報器が挙げられる。該警報器は、前記各送信器が、例えば、アンモニア分解器から離れた箇所に設置されている外部の監視センタ等に信号を送信して、異常を知らせる場合と異なり、アンモニア分解装置が設置されているその場所で警報を鳴らし、アンモニア分解装置周囲に即座に危険を知らせることができる。
 アンモニア検知器からの信号の受信有無に関わらず微量アンモニアを除害可能なアンモニア除害装置とは、例えば、ケーシング(I)又は(II)内の空気を、前述したアンモニアの吸着が可能な吸着剤に常時接触させる装置等が挙げられる。
 アンモニア検知器からの信号の受信有無に関わらず原料アンモニアの供給を遮断することが可能な遮断器としては、例えば、前記アンモニア検知器からの信号受信有無に関わらず原料アンモニアの供給を遮断できること以外は、前記アンモニア検知器からの信号を受信してアンモニア供給を遮断する遮断器で例示したものと同様のもの、また、前記感震器の動作力のみでアンモニアの供給を遮断する機械式緊急遮断弁等が挙げられる。前記アンモニア検知器からの信号を受信してアンモニア供給を遮断する遮断器の信号受信機能又は遮断器自体に不具合が発生してアンモニア供給の遮断が行えないような場合に、アンモニア検知器からの信号の受信有無に関わらず外部からの信号送信等他の手段によって原料アンモニアの供給を遮断することが可能な遮断器を作動させることができる。また、地震発生時等に電気系統のトラブルが発生した場合であっても即座に緊急遮断することができるため、安全性を向上することができる。
<Other facilities, equipment and devices>
The ammonia decomposing apparatus of the present invention is an ammonia abatement apparatus capable of detoxifying trace amounts of ammonia regardless of whether or not a signal can be received from an alarm device or an ammonia detector, in addition to the above-described facilities, devices, and apparatuses. You may have the circuit breaker which can interrupt | block supply of raw material ammonia irrespective of the presence or absence of the signal from a seismic sensor and the said ammonia detector.
Examples of the alarm device include an alarm device that receives a signal from the ammonia detector and warns the outside. Unlike the case where each transmitter transmits a signal to, for example, an external monitoring center installed at a location distant from the ammonia decomposer to notify the abnormality, the alarm device is provided with an ammonia decomposer. An alarm can be sounded at that location, and the danger can be immediately notified around the ammonia decomposing unit.
An ammonia detoxification device capable of detoxifying trace amounts of ammonia regardless of whether a signal is received from an ammonia detector is, for example, adsorption capable of adsorbing the above-mentioned ammonia in the casing (I) or (II) Examples thereof include a device that is always brought into contact with the agent.
As a circuit breaker capable of shutting off the supply of raw material ammonia regardless of whether or not a signal is received from the ammonia detector, for example, other than being able to shut off the supply of raw material ammonia regardless of whether or not the signal is received from the ammonia detector Is the same as that exemplified in the circuit breaker that receives the signal from the ammonia detector and cuts off the supply of ammonia, and the mechanical emergency cut-off that cuts off the supply of ammonia only by the operating force of the seismic sensor Examples include valves. A signal from the ammonia detector in the event that a failure occurs in the signal receiving function of the circuit breaker that receives the signal from the ammonia detector and shuts off the ammonia supply, or the circuit breaker itself cannot shut off the ammonia supply. Regardless of whether or not it is received, a circuit breaker capable of shutting off the supply of raw material ammonia by other means such as signal transmission from the outside can be operated. In addition, even when an electrical system trouble occurs in the event of an earthquake or the like, emergency shutdown can be performed immediately, so safety can be improved.
 また、各設備の接続部分、例えば、フランジ部等の各種配管同士の接続部又は各種配管と各機器若しくは各装置との接続部等を、ケーシング(I)又は(II)とは異なるケーシングで囲って密閉してもよく、更に、当該密閉部分又は接続部分近傍にアンモニア検知器又は水素ガス検知器を設けてもよい。
 また、前述の各機器、各装置及び各設備は防爆構造であることがより好ましい。
Moreover, the connection part of each equipment, for example, the connection part of various pipings, such as a flange part, or the connection part of various piping and each apparatus or each apparatus, is enclosed with a casing different from casing (I) or (II). Further, an ammonia detector or a hydrogen gas detector may be provided in the vicinity of the sealed portion or the connecting portion.
Moreover, it is more preferable that each of the above-described devices, devices, and facilities has an explosion-proof structure.
 また、前述のアンモニア分解装置に係る各態様及び好適な態様は、前述及び後述する態様に限定されるものではなく、例えば、本発明のアンモニア分解装置は、前述の各機器、具体的には、アンモニア検知器、遮断器、アンモニア検知器からの信号を送信する送信器、アンモニア検知器からの信号を受信して作動するアンモニア除害装置、水素ガス検知器、水素ガス検知器からの信号を送信する送信器、及びその他の機器の各機器、並びに前述の連結配管及びケーシング等の各設備を、それぞれ独立に、単独で又は2つ以上有していてもよい。
 また、本発明の一態様に係るアンモニア分解装置において、前述した各機器、各装置、及び各設備に関して記載した例示、その好ましい例示等は、それぞれ独立に、他の機器、装置及び設備に関して記載したそれらのいずれとも任意に組み合わせることができる。
 また、前述した機器、装置及び設備に関して記載した例示、その好ましい例示等から任意に選択した機器、装置及び設備からなる群より選ばれる1種以上は、それぞれ独立に、他の機器、装置及び設備からなる群より選ばれる1種以上に関して記載した例示、その好ましい例示等から任意に選択した機器、装置及び設備からなる群より選ばれる1種以上と組み合わせることができる。
 具体的な態様の一例としては、隔離壁を介して接するケーシング(I)及び(II)を有し、ケーシング(II)がケーシング(I)の外部に設けられており、前記アンモニア供給器が、液化アンモニアボンベとボンベの圧力を計測する圧力計、アンモニアガスの圧力を制御する調圧弁、当該調圧弁の出口圧力を計測する圧力計、更にアンモニアガスを所定量で供給制御するためのマスフローコントローラを有し、前記アンモニア分解器が、アンモニア分解触媒を充填した容器、当該容器を加熱制御するための加熱装置、当該容器の温度を計測する温度計、当該容器の入口圧力を計測する圧力計、更にはアンモニア分解後の混合ガスを冷却制御するための冷却装置を有し、これらを連結する連結配管が二重配管であって、アンモニア供給器、アンモニア検知器(a1)、遮断器(b1)、送信器(c1)及びアンモニア除害装置(d1)がケーシング(I)に、アンモニア分解器、アンモニア検知器(a2)、遮断器(b2)、水素ガス検知器(e1)、及びアンモニア除害装置(d2)がケーシング(II)に内設され、更にケーシング(II)が送給配管、送出配管及び送信器(c2)及び送信器(f1)を付帯している態様が挙げられる。
Further, each aspect and preferred aspect relating to the above-described ammonia decomposition apparatus are not limited to the above-mentioned and later-described aspects. For example, the ammonia decomposition apparatus of the present invention includes the above-described devices, specifically, Ammonia detectors, circuit breakers, transmitters that send signals from ammonia detectors, ammonia abatement devices that operate by receiving signals from ammonia detectors, hydrogen gas detectors, and signals from hydrogen gas detectors You may have each apparatus of the transmitter to perform, and other apparatuses, and each installation, such as the above-mentioned connection piping and a casing, individually or in combination.
Further, in the ammonia decomposition apparatus according to one aspect of the present invention, the examples described with respect to each device, each device, and each facility described above, and preferable examples thereof are independently described with respect to other devices, devices, and facilities. Any of them can be combined arbitrarily.
In addition, one or more types selected from the group consisting of equipment, devices, and equipment arbitrarily selected from the examples, preferred examples, and the like described with respect to the above-described equipment, devices, and equipment are each independently other equipment, devices, and equipment. It can combine with the 1 type or more chosen from the group which consists of the apparatus, apparatus, and equipment arbitrarily selected from the illustration described regarding the 1 type or more chosen from the group which consists of, the preferable illustration, etc.
As an example of a specific embodiment, it has casings (I) and (II) that are in contact with each other through an isolation wall, the casing (II) is provided outside the casing (I), and the ammonia feeder is A pressure gauge that measures the pressure of the liquefied ammonia cylinder and the cylinder, a pressure regulating valve that controls the pressure of the ammonia gas, a pressure gauge that measures the outlet pressure of the pressure regulating valve, and a mass flow controller for controlling supply of ammonia gas in a predetermined amount A container filled with an ammonia decomposition catalyst, a heating device for controlling the heating of the container, a thermometer for measuring the temperature of the container, a pressure gauge for measuring the inlet pressure of the container, Has a cooling device for cooling control of the mixed gas after ammonia decomposition, and the connecting pipe connecting these is a double pipe, which is an ammonia feeder, ammonia Detector (a1), circuit breaker (b1), transmitter (c1) and ammonia abatement device (d1) are in casing (I), ammonia decomposer, ammonia detector (a2), circuit breaker (b2), hydrogen A gas detector (e1) and an ammonia abatement device (d2) are installed in the casing (II), and the casing (II) further includes a supply pipe, a supply pipe, a transmitter (c2), and a transmitter (f1). Attached modes are listed.
 また、本発明のアンモニア分解装置でアンモニアを分解して得られる混合ガスは、前述のとおり、水素ガス、窒素ガス、残存アンモニアガスを含有する混合ガスとなる。
 当該混合ガス中のアンモニア含有量は、当該混合ガス全量に対して、好ましくは2,000モルppm以下、より好ましくは1,500モルppm以下、更に好ましくは1,000モルppm以下である。
Moreover, the mixed gas obtained by decomposing ammonia with the ammonia decomposing apparatus of the present invention is a mixed gas containing hydrogen gas, nitrogen gas, and residual ammonia gas as described above.
The ammonia content in the mixed gas is preferably 2,000 mol ppm or less, more preferably 1,500 mol ppm or less, still more preferably 1,000 mol ppm or less with respect to the total amount of the mixed gas.
[水素ガス製造装置]
 本発明の一態様である水素ガス製造装置は、前述の本発明のアンモニア分解装置、並びに前記アンモニア分解器と連結配管を介して連通し、かつ該アンモニア分解器から供給される混合ガス中のアンモニアを除去するアンモニア除去装置、並びに該アンモニア除去装置と連結配管を介して連通する水素ガス精製装置を有する。
 当該水素ガス製造装置の一例としては、図13に示すように、前述の本発明のアンモニア分解装置10の一態様が有するアンモニア分解器2と連結配管p12を介して連通し、かつ該アンモニア分解器2から供給される混合ガス中のアンモニアを除去するアンモニア除去装置20、並びに該アンモニア除去装置20と連結配管p23を介して連通する水素ガス精製装置30を有する水素ガス製造装置100が挙げられる。
 ここで連結配管p12は、前述した混合ガス輸送配管p11に相当し、混合ガス輸送配管p11がアンモニア分解器2とアンモニア除去装置20とを連結するための配管として用いられたものである。
 また、水素ガス精製装置30で精製された水素ガスは、例えば、図13に示す水素ガス輸送配管p31によって輸送され保管容器等に回収するか、又は、直接、燃料電池に供給することができる。
 以下、本発明の一態様である水素ガス製造装置の好適な態様例、並びに当該水素ガス製造装置が有する各装置、各機器及び各設備の好適な態様例について、順次、説明するが、本発明の一態様である水素ガス製造装置の好適な態様は後述する態様に限定されるものではない。
[Hydrogen gas production equipment]
The hydrogen gas production apparatus according to one aspect of the present invention includes ammonia in a mixed gas that communicates with the ammonia decomposing apparatus of the present invention and the ammonia decomposing unit through a connecting pipe and is supplied from the ammonia decomposing unit. And a hydrogen gas purifying device communicating with the ammonia removing device through a connecting pipe.
As an example of the hydrogen gas producing apparatus, as shown in FIG. 13, the ammonia decomposing unit 10 according to the above-described embodiment of the ammonia decomposing unit 10 communicates with the ammonia decomposing unit 2 through the connecting pipe p12, and the ammonia decomposing unit. 2 is a hydrogen gas production apparatus 100 having an ammonia removal apparatus 20 that removes ammonia in the mixed gas supplied from 2 and a hydrogen gas purification apparatus 30 that communicates with the ammonia removal apparatus 20 via a connecting pipe p23.
Here, the connecting pipe p12 corresponds to the mixed gas transport pipe p11 described above, and the mixed gas transport pipe p11 is used as a pipe for connecting the ammonia decomposer 2 and the ammonia removing device 20.
Further, the hydrogen gas purified by the hydrogen gas purification device 30 can be transported by, for example, a hydrogen gas transport pipe p31 shown in FIG. 13 and collected in a storage container or the like, or directly supplied to the fuel cell.
Hereinafter, preferred embodiments of the hydrogen gas production apparatus which is one embodiment of the present invention and preferred embodiments of each apparatus, each device, and each equipment included in the hydrogen gas production apparatus will be sequentially described. The suitable aspect of the hydrogen gas manufacturing apparatus which is one aspect | mode is not limited to the aspect mentioned later.
<アンモニア分解装置>
 本発明の一態様である水素ガス製造装置が有するアンモニア分解装置は、前述の本発明のアンモニア分解装置と同様であり、その好適な態様も同様である。
<Ammonia decomposition device>
The ammonia decomposing apparatus included in the hydrogen gas production apparatus according to one aspect of the present invention is the same as the above-described ammonia decomposing apparatus of the present invention, and the preferred embodiment thereof is also the same.
<アンモニア除去装置>
 本発明の一態様である水素ガス製造装置が有するアンモニア除去装置は、アンモニアを分解して得られる混合ガス中のアンモニアを除去できれば、特に限定されないが、当該混合ガス中のアンモニア濃度が、好ましくは1.0モルppm以下、より好ましくは0.1モルppm以下となるようにアンモニアを除去できる装置である。
 また、後述する燃料電池を搭載した輸送機(例えば、自動車、二輪車、フォークリフト等)用の水素ガスを製造する場合、好ましくは0.10モルppm以下、より好ましくは0.08モルppm以下、更に好ましくは0.075モルppm以下となるようにアンモニアを除去できる装置である。
 ここで、本明細書中で、ガス(気体)中の各成分組成として「モル%」又は「モルppm」と記載するとき、「体積%」又は「体積ppm」と同義である。
 本発明で用いることができるアンモニア除去装置としては、アンモニア除去材料を充填した容器と、当該容器を加熱制御するための加熱装置や冷却制御するための冷却装置を有しているものが挙げられる。当該アンモニア除去材料としては、前記混合ガス中のアンモニアを除去できるものであれば特に限定されないが、例えば、ゼオライト、活性炭、アルミナ、シリカ、複合酸化物等の吸着剤;アンモニアとの酸塩基反応によってアンモニアを除去するための酸;塩化カルシウム又は塩化銅等のようにアンモニアと反応して錯体を形成する金属塩類;等が挙げられる。
 これらアンモニア除去材料の中では、再生利用可能な観点から、吸着剤が好ましい。また、吸着剤の中では、吸着能の観点から、ゼオライトが好ましい。
<Ammonia removal device>
The ammonia removal apparatus included in the hydrogen gas production apparatus according to one embodiment of the present invention is not particularly limited as long as it can remove ammonia in the mixed gas obtained by decomposing ammonia, but the ammonia concentration in the mixed gas is preferably It is an apparatus capable of removing ammonia so as to be 1.0 mol ppm or less, more preferably 0.1 mol ppm or less.
Further, when producing hydrogen gas for a transport machine (for example, an automobile, a motorcycle, a forklift, etc.) equipped with a fuel cell described later, it is preferably 0.10 mol ppm or less, more preferably 0.08 mol ppm or less, Preferably, it is an apparatus that can remove ammonia so that it becomes 0.075 mol ppm or less.
Here, in the present specification, when “mol%” or “mol ppm” is described as each component composition in a gas (gas), it is synonymous with “volume%” or “volume ppm”.
Examples of the ammonia removing apparatus that can be used in the present invention include a container filled with an ammonia removing material, a heating apparatus for controlling heating of the container, and a cooling apparatus for controlling cooling. The ammonia removal material is not particularly limited as long as it can remove ammonia in the mixed gas. For example, an adsorbent such as zeolite, activated carbon, alumina, silica, composite oxide; by acid-base reaction with ammonia Examples include acids for removing ammonia; metal salts that react with ammonia to form a complex such as calcium chloride or copper chloride; and the like.
Among these ammonia removing materials, an adsorbent is preferable from the viewpoint of recyclability. Among the adsorbents, zeolite is preferable from the viewpoint of adsorption ability.
 当該ゼオライトとしては、例えば、国際ゼオライト学会(International Zeolite Association)が定めるアルファベット3文字からなる構造コードが、ANA、CHA、ERI、GIS、KFI、LTA、NAT、PAU、YUG、DDR、AFI、ATO、BEA、CON、FAU、GME、LTL、MOR、MTW、OFF、CLO、VFI、AET、CFI、DONで表される結晶構造を有するゼオライトが挙げられる。 As the zeolite, for example, a structure code consisting of three alphabets defined by the International Zeolite Association is ANA, CHA, ERI, GIS, KFI, LTA, NAT, PAU, YUG, DDR, AFI, ATO, Examples thereof include zeolite having a crystal structure represented by BEA, CON, FAU, GME, LTL, MOR, MTW, OFF, CLO, VFI, AET, CFI, and DON.
 前記アンモニア除去材料として、ゼオライト、活性炭、アルミナ、シリカ、複合酸化物等の吸着剤を使用する場合の吸着時温度は、効率よくアンモニアを吸着できる観点から、好ましくは-10℃以上50℃以下、より好ましくは0℃以上30℃以下である。また、前記吸着剤を使用する場合の吸着時圧力は、好ましくは0.005MPa(abs)以上であり、そして、好ましくは50MPa(abs)以下、より好ましくは25MPa(abs)以下、更に好ましくは10MPa(abs)以下、より更に好ましくは5.0MPa(abs)以下である。また、吸着に係るエネルギーコスト低減の観点からは、好ましくは1.00MPa(abs)以下であり、より好ましくは0.10MPa以(abs)以下であり、そして、当該吸着時圧力は、好ましくは0.01MPa(abs)以上、より好ましくは0.05MPa(abs)以上、更に好ましくは0.08MPa(abs)以上である。
 また、前記アンモニアを除去するための酸としては、アンモニアとの酸塩基反応によってアンモニアを除去できるものであれば特に限定は無いが、硫酸、硫酸水素塩等が挙げられる。
 また、当該アンモニア除去装置の一態様としては、前記アンモニア除去材料を再生ガスで再生することが可能となる観点から、更に、前記吸着剤を再生するための吸着剤再生ガスを送給するための送給配管及び再生ガスを送出するための送出配管を有していることが好ましい。
 当該吸着剤再生ガスとしては、窒素ガス、ヘリウムガス若しくはアルゴンガス等の不活性ガス、及び空気からなる群より選ばれる少なくとも1種を含むガスが好ましく、これらのガスからなる群より選ばれる少なくとも1種を主成分とするガスがより好ましく、これらのガスからなる群より選ばれる少なくとも1種のみからなるガスであってもよい。また、吸着剤再生ガスは、水素ガス、アンモニア、水蒸気等のガスを含んでもよく、含んでいなくてもよい。
The adsorption temperature when using an adsorbent such as zeolite, activated carbon, alumina, silica, and composite oxide as the ammonia removing material is preferably from −10 ° C. to 50 ° C. from the viewpoint of efficiently adsorbing ammonia. More preferably, it is 0 degreeC or more and 30 degrees C or less. The pressure during adsorption when using the adsorbent is preferably 0.005 MPa (abs) or more, preferably 50 MPa (abs) or less, more preferably 25 MPa (abs) or less, and even more preferably 10 MPa. (Abs) or less, more preferably 5.0 MPa (abs) or less. Further, from the viewpoint of energy cost reduction related to adsorption, it is preferably 1.00 MPa (abs) or less, more preferably 0.10 MPa (abs) or less, and the adsorption pressure is preferably 0. 0.01 MPa (abs) or more, more preferably 0.05 MPa (abs) or more, and still more preferably 0.08 MPa (abs) or more.
The acid for removing ammonia is not particularly limited as long as it can remove ammonia by an acid-base reaction with ammonia, and examples thereof include sulfuric acid and hydrogen sulfate.
Further, as one aspect of the ammonia removal apparatus, from the viewpoint that the ammonia removal material can be regenerated with a regeneration gas, an adsorbent regeneration gas for regenerating the adsorbent is further supplied. It is preferable to have a supply pipe and a supply pipe for sending the regeneration gas.
The adsorbent regeneration gas is preferably a gas containing at least one selected from the group consisting of an inert gas such as nitrogen gas, helium gas or argon gas, and air, and at least one selected from the group consisting of these gases. A gas mainly composed of seeds is more preferable, and a gas composed of at least one selected from the group consisting of these gases may be used. Further, the adsorbent regeneration gas may or may not contain a gas such as hydrogen gas, ammonia or water vapor.
<水素ガス精製装置>
 本発明の一態様である水素ガス製造装置が有する水素ガス精製装置は、特に限定されないが、例えば、次のいずれかの方法を用いる装置が挙げられる。
 例えば、ゼオライト(当該ゼオライトの種類は特に限定されない)、活性炭等、ガス中から特定の成分を選択的に吸着する物質を充填した容器等に処理する気体を導入し、圧力を上下させて分離を行う圧力スイング法(PSA法)、温度を上下させて分離を行う温度スイング法、又は圧力と温度とをそれぞれスイングさせる圧力・温度スイング法といった方法が挙げられる。これらの処理を行うための水素ガス精製装置としては、ゼオライトを充填した容器と、当該容器に前記アンモニア除去装置で処理したガスを導入して昇圧するための昇圧装置と減圧するための減圧装置とを有していることが好ましい。
 また、例えば、圧縮機等で昇圧し、気液分離器で極低温下でガス中の窒素を液化して水素と気液分離し、分離した水素ガスを吸着精製塔に通して、残留窒素を除去する方法やパラジウム透過膜等を用いる膜分離法といった方法が挙げられる。
 燃料電池自動車用水素ガスとして使用可能な水素を供給する場合であれば、例えば、国際標準規格ISO14687-2で定められるような組成を満たす燃料電池自動車用水素ガスを得られるものであることが好ましい。当該燃料電池自動車用水素ガスを製造する場合、燃料電池自動車用水素ガス中のアンモニア含有量が、好ましくは0.10モルppm以下、より好ましくは0.08モルppm以下、更に好ましくは0.075モルppm以下である。
<Hydrogen gas purification equipment>
Although the hydrogen gas refinement | purification apparatus which the hydrogen gas manufacturing apparatus which is 1 aspect of this invention has is not specifically limited, For example, the apparatus using one of the following methods is mentioned.
For example, a gas to be treated is introduced into a container filled with a substance that selectively adsorbs a specific component from a gas, such as zeolite (the type of the zeolite is not particularly limited), activated carbon, etc., and the pressure is increased or decreased for separation. Examples thereof include a pressure swing method (PSA method), a temperature swing method in which separation is performed by raising and lowering the temperature, and a pressure / temperature swing method in which pressure and temperature are respectively swung. As a hydrogen gas purification apparatus for performing these treatments, a container filled with zeolite, a pressure increasing apparatus for introducing a gas treated in the ammonia removing apparatus into the container and increasing the pressure, and a pressure reducing apparatus for reducing the pressure, It is preferable to have.
In addition, for example, the pressure is increased by a compressor, etc., the nitrogen in the gas is liquefied at a cryogenic temperature by a gas-liquid separator and separated from hydrogen and gas-liquid, and the separated hydrogen gas is passed through an adsorption purification tower to remove residual nitrogen. Examples thereof include a removal method and a membrane separation method using a palladium permeable membrane.
In the case of supplying hydrogen that can be used as a fuel cell vehicle hydrogen gas, it is preferable that hydrogen gas for a fuel cell vehicle satisfying the composition defined in the international standard ISO 14687-2 can be obtained. . When producing the hydrogen gas for fuel cell vehicles, the ammonia content in the hydrogen gas for fuel cell vehicles is preferably 0.10 mol ppm or less, more preferably 0.08 mol ppm or less, and even more preferably 0.075. Molar ppm or less.
<連結配管>
 本発明の一態様である水素ガス製造装置で用いる連結配管は、特に限定されないが、例えば、前述の本発明のアンモニア分解装置が有する連結配管と同様のものを用いることができ、その好適な態様も同様である。
<Connecting piping>
The connection pipe used in the hydrogen gas production apparatus according to one aspect of the present invention is not particularly limited. For example, the same connection pipe as the above-described ammonia decomposition apparatus of the present invention can be used, and a preferable aspect thereof. Is the same.
<水素ガス輸送配管>
 前記水素ガス輸送配管は、水素ガス製造装置で製造された水素ガスを輸送するために用いられ、特に限定されないが、例えば、前記連結配管と同様のものを用いることができ、その好適な態様も同様である。
<Hydrogen gas transportation piping>
The hydrogen gas transport pipe is used for transporting the hydrogen gas produced by the hydrogen gas production apparatus, and is not particularly limited. For example, the same pipe as the connection pipe can be used, and a preferable aspect thereof is also used. It is the same.
<その他の設備、機器及び装置>
 本発明の水素ガス製造装置は、前述した各装置の他、例えば、前記アンモニア除去装置の前後、又は水素ガス精製装置の前に、前記混合ガスから窒素ガス等の水素ガス以外の不純物を除去するための装置を有していてもよい。当該装置としては、例えば、前記水素ガス精製装置に記載のものと同様の装置を使用することができる。
 また、例えば、水素ガス検知器、警報機、地震動による感震器、そして、当該感震器の動作力のみで水素ガスの漏出を遮断する機械式緊急遮断弁等を有していてもよい。
 また、前記アンモニア分解器と、前記アンモニア除去装置とを連結する連結配管内で原料アンモニアを分解して得られる混合ガスの供給を遮断する遮断弁、並びに前記アンモニア除去装置と、前記水素ガス精製装置とを連結する連結配管内で精製した水素ガスの供給を遮断する遮断弁等が挙げられる。
<Other facilities, equipment and devices>
The hydrogen gas production apparatus of the present invention removes impurities other than hydrogen gas such as nitrogen gas from the mixed gas, for example, before and after the ammonia removal apparatus or before the hydrogen gas purification apparatus, in addition to the above-described apparatuses. You may have a device for. As the apparatus, for example, an apparatus similar to that described in the hydrogen gas purification apparatus can be used.
Further, for example, a hydrogen gas detector, an alarm device, a seismic device due to seismic motion, and a mechanical emergency shut-off valve that blocks leakage of hydrogen gas only by the operating force of the seismic device may be provided.
Also, a shutoff valve that shuts off the supply of the mixed gas obtained by decomposing the raw material ammonia in a connecting pipe that connects the ammonia decomposer and the ammonia removing device, the ammonia removing device, and the hydrogen gas purifying device And a shutoff valve that shuts off the supply of purified hydrogen gas in the connecting pipe connecting the two.
 本発明の水素ガス製造装置で用いる前述の各機器、各装置及び各設備は防爆構造であることがより好ましい。
 本発明の水素ガス製造装置は、前述した各機器、各装置及び各設備を単独で又は2つ以上有していてもよい。
 また、本発明の一態様に係る水素ガス製造装置において、前述した各機器、各装置、及び各設備に関して記載した例示、その好ましい例示等は、それぞれ独立に、他の機器、装置及び設備に関して記載したそれらのいずれとも任意に組み合わせることができる。
 また、前述した機器、装置及び設備に関して記載した例示、その好ましい例示等から任意に選択した機器、装置及び設備からなる群より選ばれる1種以上は、それぞれ独立に、他の機器、装置及び設備からなる群より選ばれる1種以上に関して記載した例示、その好ましい例示等から任意に選択した機器、装置及び設備からなる群より選ばれる1種以上と組み合わせることができる。
 具体的な態様の一例としては、アンモニア分解装置が具体的に前述した好適な態様のアンモニア分解装置であり、前記アンモニア除去装置がアンモニア除去材料を充填した容器と、当該容器を加熱制御するための加熱装置や冷却制御するための冷却装置を備えており、前記水素ガス精製装置がゼオライトを充填した容器と、当該容器へ前記アンモニア除去装置で処理したガスを導入し昇圧するための昇圧装置と減圧するための減圧装置とを備えており、これらを連結する連結配管が二重配管であり、アンモニア除去装置及び水素ガス精製装置がいずれもケーシングに内設されている態様が挙げられる。
It is more preferable that each of the aforementioned devices, apparatuses, and facilities used in the hydrogen gas production apparatus of the present invention has an explosion-proof structure.
The hydrogen gas production apparatus of the present invention may have each device, each device, and each facility described above alone or in combination of two or more.
In addition, in the hydrogen gas production apparatus according to one embodiment of the present invention, the examples described for each device, each device, and each facility described above, and preferable examples thereof are independently described for other devices, devices, and equipment. Any of them can be combined arbitrarily.
In addition, one or more types selected from the group consisting of equipment, devices, and equipment arbitrarily selected from the examples, preferred examples, and the like described with respect to the above-described equipment, devices, and equipment are each independently other equipment, devices, and equipment. It can combine with the 1 type or more chosen from the group which consists of the apparatus, apparatus, and equipment arbitrarily selected from the illustration described regarding the 1 type or more chosen from the group which consists of, the preferable illustration, etc.
As an example of a specific aspect, the ammonia decomposing apparatus is the ammonia decomposing apparatus of the preferred aspect specifically described above, and the ammonia removing apparatus is a container filled with an ammonia removing material, and for controlling the heating of the container. A heating device and a cooling device for controlling cooling; a container filled with zeolite by the hydrogen gas refining device; a pressure increasing device and a pressure reducing device for introducing the gas treated by the ammonia removing device into the container and increasing the pressure; There is a mode in which a decompression device is provided, the connecting pipe connecting them is a double pipe, and both the ammonia removing device and the hydrogen gas purifying device are installed in the casing.
[アンモニア分解装置及び水素ガス製造装置の用途]
 前述のとおり、本発明のアンモニア分解装置及び本発明の水素ガス製造装置を用いることで、より安全にアンモニアの分解を行うことができ、より安全に水素ガスを製造することができる。更に、本発明のアンモニア分解装置を有する水素ガス製造装置は、アンモニアが漏出した場合でも、自動でアンモニアの供給を遮断し、かつケーシング外へのアンモニアの漏出を効果的に低減又は防止することが可能になる。
 そのため、例えば、アンモニア漏出時に、人が現場で対応する迄に時間を要するような場所でのアンモニア分解装置又は水素ガス製造装置の使用、又は、アンモニア漏出時に、現場で対処することが好ましくない場合に専用施設にアンモニア分解装置又は水素ガス製造装置を移動して処理するといった対応が可能となる。
 例えば、燃料電池を搭載した輸送機用水素ガスを供給するためのインフラ設備(例えば、水素ステーション)や、燃料電池を搭載した輸送機に当該燃料電池とともに積載する携帯用水素ガス燃料供給設備が、本発明のアンモニア分解装置及び/又は本発明の水素ガス製造装置の好適な用途例として挙げられる。
 更に、本発明の水素ガス製造装置から得られる水素ガスを使用した燃料電池を、各種輸送機に搭載することもできる。当該搭載方法としては、当該燃料電池を単独で搭載することも可能であるし、また、本発明の水素ガス製造装置とともに搭載することもできる。
 ここで、「輸送機」とは、船舶、空輸機及び車両を含み、当該車両には、鉄道車両、自動車、二輪車、及び産業用車両を含む。前記自動車は公道を走行可能な車両、例えば、自家用車両;バス、タクシー等の業務用車両;を含み、前記産業用車両は、例えば、フォークリフト等を含む。
[Uses of ammonia decomposition equipment and hydrogen gas production equipment]
As described above, by using the ammonia decomposition apparatus of the present invention and the hydrogen gas production apparatus of the present invention, ammonia can be decomposed more safely, and hydrogen gas can be produced more safely. Furthermore, the hydrogen gas production apparatus having the ammonia decomposing apparatus of the present invention can automatically cut off the supply of ammonia and effectively reduce or prevent the leakage of ammonia outside the casing even when ammonia leaks. It becomes possible.
Therefore, for example, when ammonia leaks, it is not preferable to use an ammonia decomposing device or hydrogen gas production device in a place where it takes time for humans to respond on site, or to deal with ammonia leaking on site In addition, it is possible to move the ammonia decomposition apparatus or hydrogen gas production apparatus to a dedicated facility for processing.
For example, an infrastructure facility (for example, a hydrogen station) for supplying hydrogen gas for a transport aircraft equipped with a fuel cell, or a portable hydrogen gas fuel supply facility loaded with the fuel cell on a transport device equipped with a fuel cell, It is mentioned as a suitable use example of the ammonia decomposition apparatus of this invention and / or the hydrogen gas manufacturing apparatus of this invention.
Furthermore, the fuel cell using the hydrogen gas obtained from the hydrogen gas production apparatus of the present invention can be mounted on various transport aircraft. As the mounting method, the fuel cell can be mounted alone or can be mounted together with the hydrogen gas production apparatus of the present invention.
Here, “transport aircraft” includes ships, air transports, and vehicles, and the vehicles include railway vehicles, automobiles, two-wheeled vehicles, and industrial vehicles. The automobile includes a vehicle capable of traveling on a public road, such as a private vehicle; a business vehicle such as a bus or a taxi. The industrial vehicle includes, for example, a forklift.
 前記アンモニア分解装置は、燃料電池を搭載した輸送機用水素ガスを供給するためのインフラ設備(例えば、水素ステーション);又は燃料電池を搭載した輸送機(例えば、船舶、空輸機及び前記車両)に積載する携帯用水素ガス燃料供給設備;等に用いるアンモニア分解装として好適に用いることができる。
 同様に、前記水素ガス製造装置は、前記インフラ設備;又は燃料電池を搭載した輸送機に積載する携帯用水素ガス燃料供給設備に積載する携帯用水素ガス燃料供給設備;等に用いる水素ガス製造装置として好適に用いることができる。
The ammonia decomposing apparatus is used for infrastructure equipment (for example, a hydrogen station) for supplying hydrogen gas for a transport aircraft equipped with a fuel cell; or for a transport device (for example, a ship, an air transport machine, and the vehicle) equipped with a fuel cell. It can be suitably used as an ammonia decomposing apparatus used for portable hydrogen gas fuel supply equipment to be loaded;
Similarly, the hydrogen gas production apparatus includes the infrastructure equipment; or a portable hydrogen gas fuel supply equipment loaded on a portable hydrogen gas fuel supply equipment loaded on a transport machine equipped with a fuel cell; Can be suitably used.
 10      アンモニア分解装置
 1       アンモニア供給器
 2       アンモニア分解器
 p1、p2   連結配管
 p11     混合ガス輸送配管
 a1、a2   アンモニア検知器
 b1、b2   遮断器
 I       ケーシング(I)
 II      ケーシング(II)
 III     ケーシング(III)
 W       隔離壁
 c1、c2   アンモニア検知器からの信号を送信する送信器
 d1、d2   アンモニア除害装置
 e1      水素ガス検知器
 f1      水素ガス検知器からの信号を送信する送信器
 p3      送給配管
 p4      送出配管
 p12、p23 連結配管
 20      アンモニア除去装置
 30      水素ガス精製装置
 p31     水素ガス輸送配管
 100     水素ガス製造装置
DESCRIPTION OF SYMBOLS 10 Ammonia decomposition | disassembly apparatus 1 Ammonia supply device 2 Ammonia decomposition device p1, p2 Connection piping p11 Mixed gas transport piping a1, a2 Ammonia detector b1, b2 Circuit breaker I Casing (I)
II Casing (II)
III Casing (III)
W Separation wall c1, c2 Transmitter for transmitting signal from ammonia detector d1, d2 Ammonia detoxifying device e1 Hydrogen gas detector f1 Transmitter for transmitting signal from hydrogen gas detector p3 Feeding piping p4 Delivery piping p12 , P23 Connecting piping 20 Ammonia removal device 30 Hydrogen gas purification device p31 Hydrogen gas transport piping 100 Hydrogen gas production device

Claims (17)

  1.  アンモニア分解器と、該アンモニア分解器に連結配管を介して連通されたアンモニア供給器と、アンモニア検知器(a1)と、アンモニア検知器(a1)からの信号を受信し該アンモニア分解器へのアンモニア供給を遮断する遮断器(b1)と、ケーシング(I)とを有し、
     ケーシング(I)が、少なくとも該アンモニア供給器、アンモニア検知器(a1)及び遮断器(b1)を内設する、アンモニア分解装置。
    Ammonia decomposing unit, ammonia supplying unit communicated with the ammonia decomposing unit via a connecting pipe, ammonia detector (a1), and ammonia detector (a1) receiving signals from the ammonia decomposing unit A circuit breaker (b1) for cutting off the supply and a casing (I);
    The ammonia decomposition apparatus, wherein the casing (I) includes at least the ammonia supply device, the ammonia detector (a1), and the circuit breaker (b1).
  2.  更に、前記アンモニア分解器が内設されるケーシング(II)を有する、請求項1に記載のアンモニア分解装置。 Furthermore, the ammonia decomposing apparatus according to claim 1, further comprising a casing (II) in which the ammonia decomposing unit is installed.
  3.  更に、アンモニア検知器(a1)からの信号を送信する送信器(c1)を有する、請求項1又は2に記載のアンモニア分解装置。 The ammonia decomposing apparatus according to claim 1 or 2, further comprising a transmitter (c1) for transmitting a signal from the ammonia detector (a1).
  4.  ケーシング(II)が、アンモニア検知器(a2)、又はアンモニア検知器(a2)及びアンモニア検知器(a2)からの信号を受信して前記アンモニア供給器から前記アンモニア分解器へのアンモニア供給を遮断する遮断器(b2)を内設する、請求項2又は3に記載のアンモニア分解装置。 The casing (II) receives the signal from the ammonia detector (a2), or the ammonia detector (a2) and the ammonia detector (a2), and shuts off the ammonia supply from the ammonia supplier to the ammonia decomposer. The ammonia decomposition apparatus according to claim 2 or 3, wherein a circuit breaker (b2) is provided.
  5.  更に、アンモニア検知器(a2)からの信号を送信する送信器(c2)を有する、請求項4に記載のアンモニア分解装置。 The ammonia decomposing apparatus according to claim 4, further comprising a transmitter (c2) for transmitting a signal from the ammonia detector (a2).
  6.  ケーシング(II)がケーシング(I)の外部に設けられ、かつ、ケーシング(II)がケーシング(I)を内設しない、請求項2~5のいずれか1項に記載のアンモニア分解装置。 The ammonia decomposing apparatus according to any one of claims 2 to 5, wherein the casing (II) is provided outside the casing (I), and the casing (II) does not include the casing (I).
  7.  ケーシング(I)がケーシング(II)を内設する、請求項2~5のいずれか1項に記載のアンモニア分解装置。 The ammonia decomposing apparatus according to any one of claims 2 to 5, wherein the casing (I) includes the casing (II).
  8.  ケーシング(II)とケーシング(I)とが隔離壁を介して接する、請求項2~7のいずれか1項に記載のアンモニア分解装置。 The ammonia decomposing apparatus according to any one of claims 2 to 7, wherein the casing (II) and the casing (I) are in contact via an isolation wall.
  9.  ケーシング(I)が、アンモニア検知器(a1)からの信号を受信して作動するアンモニア除害装置(d1)を有する、請求項1~8のいずれか1項に記載のアンモニア分解装置。 The ammonia decomposing apparatus according to any one of claims 1 to 8, wherein the casing (I) has an ammonia detoxifying apparatus (d1) that operates by receiving a signal from the ammonia detector (a1).
  10.  ケーシング(II)が、更に、アンモニア検知器(a2)からの信号を受信して作動するアンモニア除害装置(d2)を有する、請求項4~9のいずれか1項に記載のアンモニア分解装置。 The ammonia decomposing apparatus according to any one of claims 4 to 9, wherein the casing (II) further includes an ammonia abatement apparatus (d2) that operates by receiving a signal from the ammonia detector (a2).
  11.  ケーシング(I)が密閉容器又は密閉室である、請求項1~10のいずれか1項に記載のアンモニア分解装置。 The ammonia decomposition apparatus according to any one of claims 1 to 10, wherein the casing (I) is a sealed container or a sealed chamber.
  12.  ケーシング(II)が、密閉容器若しくは密閉室、又は送給配管と送出配管とを有する容器若しくは装置室である、請求項2~11のいずれか1項に記載のアンモニア分解装置。 The ammonia decomposing apparatus according to any one of claims 2 to 11, wherein the casing (II) is an airtight container or an airtight chamber, or a container or an apparatus room having a supply pipe and an output pipe.
  13.  ケーシング(II)が、水素ガス検知器(e1)を内設する、請求項2~12のいずれか1項に記載のアンモニア分解装置。 The ammonia decomposition apparatus according to any one of claims 2 to 12, wherein the casing (II) includes a hydrogen gas detector (e1).
  14.  更に、水素ガス検知器(e1)からの信号を送信する送信器(f1)を有する、請求項13に記載のアンモニア分解装置。 The ammonia decomposing apparatus according to claim 13, further comprising a transmitter (f1) for transmitting a signal from the hydrogen gas detector (e1).
  15.  請求項1~14のいずれか1項に記載のアンモニア分解装置、及び前記アンモニア分解器と連結配管を介して連通し、かつ該アンモニア分解器から供給される混合ガス中のアンモニアを除去するアンモニア除去装置、及び該アンモニア除去装置と連結配管を介して連通する水素ガス精製装置を有する、水素ガス製造装置。 The ammonia decomposing apparatus according to any one of claims 1 to 14, and ammonia removal that communicates with the ammonia decomposing unit through a connecting pipe and removes ammonia in a mixed gas supplied from the ammonia decomposing unit. A hydrogen gas production apparatus comprising a device and a hydrogen gas purification device communicating with the ammonia removal device via a connecting pipe.
  16.  請求項15に記載の水素ガス製造装置から得られる水素ガスを使用した燃料電池。 A fuel cell using hydrogen gas obtained from the hydrogen gas production apparatus according to claim 15.
  17.  請求項16に記載の燃料電池を搭載した輸送機。 A transport aircraft equipped with the fuel cell according to claim 16.
PCT/JP2017/008309 2016-03-07 2017-03-02 Device for decomposing ammonia, and device for manufacturing hydrogen gas WO2017154732A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018504422A JP6943524B2 (en) 2016-03-07 2017-03-02 Ammonia decomposition equipment and hydrogen gas production equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-043840 2016-03-07
JP2016043840 2016-03-07

Publications (1)

Publication Number Publication Date
WO2017154732A1 true WO2017154732A1 (en) 2017-09-14

Family

ID=59789266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008309 WO2017154732A1 (en) 2016-03-07 2017-03-02 Device for decomposing ammonia, and device for manufacturing hydrogen gas

Country Status (3)

Country Link
JP (1) JP6943524B2 (en)
TW (1) TWI632110B (en)
WO (1) WO2017154732A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102256907B1 (en) * 2019-12-24 2021-05-27 (주)원익머트리얼즈 On-site Hydrogen filling station
KR20220057717A (en) * 2020-10-30 2022-05-09 (주)원익머트리얼즈 Ammonia based fuel cell system module
WO2022191390A1 (en) * 2021-03-12 2022-09-15 (주)원익머트리얼즈 Ammonia-based on-site hydrogen refueling station

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126689A (en) * 1978-03-27 1979-10-02 Daiyo Sanso High purity hydrogen gas generating method
JPH07325075A (en) * 1994-05-31 1995-12-12 Sanyo Electric Co Ltd Hydrogen detecting system
JPH10116790A (en) * 1996-10-14 1998-05-06 Sony Corp Semiconductor growth device, emergency gas processing system, and emergency gas processing method
JP2003149071A (en) * 2001-11-14 2003-05-21 Toyota Motor Corp Noxious gas leak detector for moving body
WO2008023729A1 (en) * 2006-08-22 2008-02-28 Panasonic Corporation Combustion apparatus, fuel treatment device, and fuel cell power generating system
JP2008536795A (en) * 2005-04-18 2008-09-11 インテリジェント エナジー インコーポレイテッド Hydrogen generator based on ammonia and method of use thereof
JP2010164376A (en) * 2009-01-14 2010-07-29 Toyota Motor Corp Remaining fuel quantity detection apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528657A (en) * 2003-09-26 2004-09-15 清华大学 Low-temperature ammonia decomposition hydrogen preparation catalyst and preparing method thereof
WO2005091418A2 (en) * 2004-03-23 2005-09-29 Amminex A/S Use of an ammonia storage device in production of energy
CN1712132A (en) * 2005-05-09 2005-12-28 湖南大学 High-efficient carrier nanometer catalyst for producing zero Cox hydrogen From ammonia decomposition and production thereof
GB0802100D0 (en) * 2008-02-05 2008-03-12 Diverse Energy Ltd Conversion of ammonia into nitrogen and hydrogen
JP5352323B2 (en) * 2009-04-07 2013-11-27 トヨタ自動車株式会社 Hydrogen generating apparatus and hydrogen generating method
EP2898946B1 (en) * 2012-09-20 2020-07-22 Tokyo Institute of Technology Methods for producing hydrogen
US8920993B2 (en) * 2012-12-14 2014-12-30 Delphi Technologies, Inc Anode protection system for shutdown of solid oxide fuel cell system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126689A (en) * 1978-03-27 1979-10-02 Daiyo Sanso High purity hydrogen gas generating method
JPH07325075A (en) * 1994-05-31 1995-12-12 Sanyo Electric Co Ltd Hydrogen detecting system
JPH10116790A (en) * 1996-10-14 1998-05-06 Sony Corp Semiconductor growth device, emergency gas processing system, and emergency gas processing method
JP2003149071A (en) * 2001-11-14 2003-05-21 Toyota Motor Corp Noxious gas leak detector for moving body
JP2008536795A (en) * 2005-04-18 2008-09-11 インテリジェント エナジー インコーポレイテッド Hydrogen generator based on ammonia and method of use thereof
WO2008023729A1 (en) * 2006-08-22 2008-02-28 Panasonic Corporation Combustion apparatus, fuel treatment device, and fuel cell power generating system
JP2010164376A (en) * 2009-01-14 2010-07-29 Toyota Motor Corp Remaining fuel quantity detection apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102256907B1 (en) * 2019-12-24 2021-05-27 (주)원익머트리얼즈 On-site Hydrogen filling station
KR20220057717A (en) * 2020-10-30 2022-05-09 (주)원익머트리얼즈 Ammonia based fuel cell system module
KR102437832B1 (en) * 2020-10-30 2022-08-30 (주)원익머트리얼즈 Ammonia based fuel cell system module
WO2022191390A1 (en) * 2021-03-12 2022-09-15 (주)원익머트리얼즈 Ammonia-based on-site hydrogen refueling station

Also Published As

Publication number Publication date
TWI632110B (en) 2018-08-11
JPWO2017154732A1 (en) 2019-01-10
JP6943524B2 (en) 2021-10-06
TW201803802A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
US9383064B2 (en) Ventilation gas management systems and processes
JP6810910B2 (en) Ammonia removal equipment, ammonia removal method, hydrogen gas production method
WO2017154732A1 (en) Device for decomposing ammonia, and device for manufacturing hydrogen gas
JP2017218678A (en) Plant for generating fluorine
GB2477322A (en) Inert gas recovery
US20040037768A1 (en) Method and system for on-site generation and distribution of a process gas
TW200306881A (en) Gas purification method and apparatus thereof
CN105776136B (en) The device and method of hydrogen preparation High Purity Hydrogen are recycled from chlorine industry emptying end gas
CN216501341U (en) LPG tank car belt cleaning device that wads based on pressure swing adsorption technique
WO2016135436A1 (en) Breathing air system
CN212549026U (en) Purification system of self-supplying regeneration gas
CN103180029A (en) Method for the removal of f2 and/or of2 from gas
CN209679804U (en) A kind of adsorption/desorption catalyzing burning waste gas purification device containing security system
CN114225629A (en) Be used for airtight indoor CO2Subtractive solid amine absorption system
TW201332886A (en) Purifying method and purifying apparatus for argon gas
RU2636381C1 (en) Method for normalisation of gas-air environment parameters in sealed rooms of habitable facilities after fire and fire-fighting and device for its implementation
US6214298B1 (en) Ozone producing apparatus responsive to an abnormal driving condition
JP6072999B2 (en) Ozone generation system and operation method thereof
WO2023021678A1 (en) Oxygen recovery system
CN219744367U (en) Be used for high-purity carbon dioxide purification equipment
CN217441374U (en) Safe intelligent liquid ammonia decomposition system
JP6084830B2 (en) Perfluorocompound exhaust gas detoxification treatment apparatus and method
CN111603932A (en) Purification system for self-supplied regenerated gas and control method
CN114590786B (en) Full-automatic efficient purification device and purification method
CN116943388A (en) Portable polluted gas treatment and recycling skid-mounted device and treatment method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018504422

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763072

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763072

Country of ref document: EP

Kind code of ref document: A1