WO2017154582A1 - Catalyst-carrying hydrogen permeable membrane, method for producing same, catalyst-carrying hydrogen permeable membrane module, device for adding hydrogen and device for regenerating lubricating oil - Google Patents

Catalyst-carrying hydrogen permeable membrane, method for producing same, catalyst-carrying hydrogen permeable membrane module, device for adding hydrogen and device for regenerating lubricating oil Download PDF

Info

Publication number
WO2017154582A1
WO2017154582A1 PCT/JP2017/006679 JP2017006679W WO2017154582A1 WO 2017154582 A1 WO2017154582 A1 WO 2017154582A1 JP 2017006679 W JP2017006679 W JP 2017006679W WO 2017154582 A1 WO2017154582 A1 WO 2017154582A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
catalyst
metal layer
permeable membrane
layer
Prior art date
Application number
PCT/JP2017/006679
Other languages
French (fr)
Japanese (ja)
Inventor
広樹 川瀬
昌弘 梶谷
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP2017553195A priority Critical patent/JPWO2017154582A1/en
Publication of WO2017154582A1 publication Critical patent/WO2017154582A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/05Cermet materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium

Definitions

  • the present invention relates to a catalyst-carrying hydrogen permeable membrane and a method for producing the same, a catalyst-carrying hydrogen permeable membrane module, a hydrogenation device, and a lubricating oil regeneration device.
  • This apparatus includes a reactor, a liquid tank, a storage tank, a hydrogen gas supply device, and a lubricating oil supply device.
  • the reactor has a bottomed cylindrical shape, and includes an inner wall surface and an outer wall surface made of palladium / silver alloy, and hydrogen gas is supplied to the inner wall surface.
  • the liquid tank is a bottomed cylindrical member into which the reactor is inserted, and allows the inflow and outflow of lubricating oil.
  • the hydrogen gas supply device is provided outside the reactor and supplies hydrogen gas to the inner wall surface of the reactor.
  • the lubricating oil supply device supplies lubricating oil from the storage tank to the liquid tank. Then, by continuously supplying hydrogen gas to the reactor, the organic oil is continuously reduced on the outer wall surface of the reactor, whereby the lubricating oil is regenerated.
  • Patent Document 2 a technique related to a supported palladium catalyst used in an apparatus for performing a hydrogenation reaction has been proposed (see, for example, Patent Document 2).
  • a structure in which a layer made of palladium or a palladium alloy is formed on the surface of a gas permeable membrane as a support, and palladium black as a catalyst is supported on the surface.
  • Patent Document 1 describes that by adding hydrogen to a lubricating oil during operation of the equipment using the lubricating oil, the lubricating oil oxidized by the operation of the equipment is reduced and regenerated, and the life of the lubricating oil is extended. is there.
  • foreign materials such as metal wear powder are mixed in the lubricating oil circulating in the equipment, and as a result of damaging the surface of the layer containing palladium, the layer containing palladium may be damaged. Therefore, this type of conventional device has a problem in durability. Further, even before the layer breakage, the palladium black carried on the surface by the damage caused by the foreign matter occurs, and the processing efficiency may gradually decrease.
  • the present invention has been made in view of the above problems, and its object is to provide a catalyst-supporting hydrogen-permeable membrane that is excellent in the durability of the hydrogen separation metal layer and the catalyst metal layer and is less likely to cause a decrease in processing efficiency.
  • An object of the present invention is to provide a production method, a catalyst-supporting hydrogen permeable membrane module, a hydrogenation device, and a lubricating oil regeneration device.
  • a porous body having a front surface and a back surface, and a large number of pores communicating with the front surface and the back surface, and a predetermined inside of the porous body.
  • a hydrogen separation metal layer that is formed in a state where the pores are filled at a depth position, and selectively transmits hydrogen in the hydrogen-containing gas flowing from the back surface to the surface, and the surface and the hydrogen separation metal.
  • a catalyst-supporting hydrogen permeable membrane comprising a catalyst metal layer made of a catalyst metal supported on a surface layer portion which is a region between the layers.
  • the surface layer portion in which the hydrogen separation metal layer is formed at a predetermined depth in the porous body and the catalyst metal layer is a region between the surface and the hydrogen separation metal layer.
  • the hydrogen separation metal layer and the catalyst metal layer are not exposed on the surface of the hydrogen permeable membrane. Therefore, even if foreign matter is contained in the object to be treated, the hydrogen separation metal layer and the catalyst metal layer are not damaged by the foreign matter and are prevented from being damaged, so that the durability is improved. Further, since the amount of the catalyst metal supported in the catalyst metal layer is maintained, it is possible to prevent a reduction in processing efficiency.
  • the catalyst metal layer is formed by supporting the catalyst metal not on the surface of the porous body but on the surface layer portion having a large specific surface area. Therefore, a catalyst metal layer having a large amount of metal catalyst supported can be obtained.
  • the porous body constituting the catalyst-supporting hydrogen permeable membrane of the present invention has a front surface and a back surface, and has a large number of pores communicating with the front surface and the back surface. A structure that allows gas or liquid to pass between the front and back surfaces.
  • a ceramic can be mentioned as the suitable example, Specifically, a zirconia, an alumina, a magnesia, a ceria, a doped ceria, a mixture thereof, etc. can be mentioned. Among these, it is preferable to select zirconia. The reason is that zirconia has good compatibility with a palladium alloy (particularly palladium silver alloy) and is advantageous when a palladium alloy is selected as a material for forming a hydrogen separation metal layer. Specifically, zirconia has a low thermal expansion coefficient and a low reactivity with the palladium alloy.
  • the material for forming the porous body in addition to the ceramic as described above, for example, glass, metal (stainless steel, etc.) may be used, and in this case, the material can be selected regardless of conductivity. it can. Further, not only inorganic materials such as these, but also organic materials such as synthetic resins can be used.
  • the porosity of the porous body is not particularly limited, but is preferably 10% or more and 90% or less, and more preferably 30% or more and 50% or less.
  • the specific surface area of the porous body is not particularly limited, but is preferably, for example, from 50 cm 2 / g to 400 cm 2 / g.
  • the porosity and the specific surface area are too small, the proportion of pores in the porous body is reduced due to the progress of densification, and the gas or liquid permeability between the front surface and the back surface may be lowered.
  • the porosity and the specific surface area are too large, the mechanical strength of the porous body is lowered, and there is a possibility that the porous body is easily broken.
  • the porous body needs to have a thickness that allows a hydrogen separation metal layer and a catalyst metal layer to be formed inside itself.
  • the preferred thickness is, for example, 10 ⁇ m or more, and the more preferred thickness is 15 ⁇ m or more.
  • Particularly suitable thickness is 20 ⁇ m or more. This is because if the thickness is less than 20 ⁇ m, the hydrogen separation metal layer and the catalyst metal layer must be thinned, and there is a possibility that a sufficient function cannot be imparted to the hydrogen permeable membrane.
  • the hydrogen separation metal layer is located at a predetermined depth in the porous body and is formed in a state in which the pores are filled (that is, in a state where there are no communicating pores).
  • the hydrogen separation metal layer is capable of separating hydrogen from the hydrogen-containing gas supplied to the back surface of the porous body and allowing the hydrogen to selectively permeate from the back surface to the surface in an atomic state.
  • an advantage of the structure in which the hydrogen separation metal layer is formed in the porous state in a state where the pores are filled is that the hydrogen separation metal layer is not exposed on the surface of the hydrogen permeable membrane as described above.
  • the porous body plays a role as an aggregate that supports and reinforces the hydrogen separation metal layer, the hydrogen separation metal layer is hardly affected by a thermal load or a load load. Therefore, unlike the case where the hydrogen separation metal layer is formed on the surface of the porous body, the hydrogen separation metal layer does not peel off due to heat load or load load, etc., which contributes to the improvement of durability. .
  • the thickness of the hydrogen separation metal layer is arbitrary within a thickness range of about 1/2 or less of the porous body as long as the basic property of allowing only hydrogen to permeate and not allowing other gases to permeate can be secured.
  • the thickness can be set.
  • the thickness of the hydrogen separation metal layer is preferably set to, for example, 1 ⁇ m to 30 ⁇ m, particularly 3 ⁇ m to 15 ⁇ m. This is because if the hydrogen separation metal layer is thinner than the above value, the basic property of permeating only hydrogen and not allowing other gases to permeate may not be secured. Conversely, if the hydrogen separation metal layer is thicker than the above value, the hydrogen permeability may deteriorate, and the cost increases as the amount of metal material used to form the hydrogen separation metal layer increases. Because it becomes.
  • the hydrogen separation metal layer is formed using a metal having activity for hydrogen adsorption / dissociation as a material to separate hydrogen, specifically, a palladium layer containing palladium (Pd) alone as a main component, or palladium and another 1 A palladium alloy layer made of an alloy with a metal other than the seed is preferable.
  • the palladium layer and the palladium alloy layer have a higher activity for hydrogen adsorption / dissociation than other metals and alloys, so that it is easy to realize a hydrogen separation metal layer that efficiently transmits hydrogen. From the viewpoint of suppressing hydrogen embrittlement, it is desirable to employ a palladium alloy layer rather than a palladium layer.
  • the palladium alloy layer include, for example, palladium silver alloy (PdAg alloy), palladium copper alloy (PdCu alloy), palladium gold alloy (PdAu alloy) and the like.
  • the palladium alloy layer may be an alloy of palladium and copper, silver, palladium and gold, an alloy of silver, an alloy of palladium and copper, an alloy of gold, an alloy of palladium and gold, copper, or silver.
  • these alloys it is particularly desirable to select a palladium silver alloy. The reason is that the palladium silver alloy has the property of transmitting hydrogen most efficiently among the above alloys.
  • the palladium alloy layer only needs to contain palladium and at least one metal selected from gold, silver, and copper as main components, and contains a small amount of other metals.
  • metals other than these include, for example, platinum group metals (platinum (Pt), rhodium (Rh), ruthenium (Ru), iridium (Ir), osmium (Os)) other than palladium. , Indium (In), gallium (Ga), tin (Sn), zinc (Zn), and the like.
  • the catalyst metal layer is a layer made of a catalyst metal supported on a surface layer portion that is a region between the surface of the porous body and the hydrogen separation metal layer.
  • the catalyst metal can be arbitrarily selected according to the purpose.
  • the catalyst metal constituting the catalyst metal layer may be palladium.
  • the hydrogenation reaction is promoted by the catalytic metal layer, so that a hydrogen permeable membrane suitable for applications such as regeneration of lubricating oil can be obtained.
  • the catalyst metal layer does not necessarily need to be composed of palladium alone, and may be composed of palladium as a main component (that is, a material that contains a little metal other than palladium).
  • the catalyst metal constituting the catalyst metal layer may be iron (Fe). Since the catalytic metal layer using iron as a catalytic metal promotes a chemical reaction for producing ammonia from hydrogen and nitrogen, it can be a hydrogen permeable membrane suitable for applications such as ammonia production. At this time, the catalyst metal layer does not necessarily need to be composed of iron alone, and may be composed of iron as a main component (that is, a material that contains some metal other than iron).
  • the catalyst metal constituting the catalyst metal layer may be at least one metal selected from ruthenium (Ru) and nickel (Ni). Since the catalytic metal layer using ruthenium or nickel as a catalytic metal promotes a chemical reaction that generates hydrogen from hydrocarbons and water, it can be a hydrogen permeable membrane suitable for applications such as hydrogen production. At this time, the catalyst metal layer does not necessarily need to be composed of at least one of ruthenium and nickel, and is composed of ruthenium or nickel as a main component (that is, some of metals other than ruthenium or nickel are included). Thing).
  • the catalytic metal constituting the catalytic metal layer may be platinum (Pt). Since the catalytic metal layer using platinum as the catalytic metal promotes a chemical reaction in which hydrogen is added to NOx for reduction, a hydrogen permeable membrane suitable for applications such as NOx purification can be obtained. At this time, the catalytic metal layer does not necessarily need to be composed of platinum alone, and may be composed of platinum as a main component (that is, a material containing a little metal other than platinum).
  • the separation distance between the hydrogen separation metal layer and the catalyst metal layer is not particularly limited and is arbitrarily set. For example, it is preferably 100 ⁇ m or less, more preferably 30 ⁇ m or less, and particularly preferably 5 ⁇ m or less. .
  • the reason for this is that the smaller the separation distance between the hydrogen separation metal layer and the catalyst metal layer, the greater the chance that the catalyst metal will encounter atomic hydrogen and the higher the reactivity between the hydrogen and the object to be treated. This is because a hydrogen permeable membrane with high processing efficiency can be obtained.
  • the thickness of the surface layer portion (in other words, the depth from the surface to the position where the hydrogen separation metal layer is located), which is a portion where the catalytic metal layer is formed, is not particularly limited and is arbitrarily set, for example, 3 ⁇ m Is preferably from 100 ⁇ m to 100 ⁇ m, more preferably from 5 ⁇ m to 50 ⁇ m, and most preferably from 10 ⁇ m to 30 ⁇ m. That is, when the thickness of the surface layer portion is less than the above value, the catalyst metal layer becomes closer to the surface of the porous body, and the possibility that the catalyst metal layer is damaged by foreign matters in the object to be processed increases. In this case, the amount of catalyst metal supported is reduced.
  • the thickness of the catalyst metal layer can be set to any thickness within the range of the thickness of the surface layer portion, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and particularly preferably 10 ⁇ m or more. .
  • the catalyst metal constituting the catalyst metal layer is basically supported on the inner wall surface of the pore in the surface layer portion in a state where the pore is not filled (that is, a state where the pore is not blocked). However, at least a part of the catalyst metal may be supported in contact with the hydrogen separation metal layer. That is, the separation distance between the hydrogen separation metal layer and the catalyst metal layer may be 0 ⁇ m. With such a structure, for some of the catalytic metals, the chance of encountering atomic hydrogen that has passed through the hydrogen separation metal layer is greatly increased, and the reactivity between hydrogen and the object to be treated is even higher. Become.
  • the catalyst metal layer may have a uniform concentration of the catalyst metal.
  • the catalyst metal layer may have a concentration gradient in which the concentration of the catalyst metal increases from the front surface to the back surface. With such a concentration gradient, even when the supported amount is equal, the ratio of catalytic metal that encounters atomic hydrogen that has permeated through the hydrogen separation metal layer increases, and hydrogen and the treatment target. The reactivity with things becomes even higher.
  • the catalyst metal layer is less likely to be damaged by foreign matter in the object to be processed.
  • the hydrogen permeable membrane is supported by the porous support while the module is provided with the necessary strength. It is sufficient to provide the necessary minimum strength, and the hydrogen permeable membrane can be made thin.
  • the shape, size, material, etc. can be arbitrarily selected according to the application.
  • the material for the porous body support are the same materials as the material used as the porous body of the hydrogen permeable membrane in means 1 (that is, ceramic, glass, metal, synthetic resin having a large number of pores Among them, ceramic is particularly preferable.
  • the ceramic in this case include zirconia, stabilized zirconia, alumina, magnesia, ceria, doped ceria, and mixtures thereof.
  • the ceramic forming the porous body and the ceramic forming the porous body support may be different, but the same kind is preferable. If they are of the same type, there is no difference in thermal expansion coefficient, and almost no thermal stress is applied, so that they can be suitable for use at high temperatures, for example. Therefore, for example, when the porous body is formed of yttria-stabilized zirconia, it is desirable that the porous support is also formed of yttria-stabilized zirconia.
  • the porous support is preferably in a shape having an internal space, in other words, a shape having an inner surface as a back surface and an outer surface as a surface. With such a shape, it becomes easy to supply the hydrogen-containing gas which is a raw material of hydrogen and the object to be processed while being separated from each other inside and outside the module.
  • the porous support is preferably a cylindrical body having openings at both ends, and more preferably a cylindrical body with one opening closed.
  • a processing tank to which an object to be processed by hydrogenation is supplied a processing tank disposed in the processing tank, and an open end and a closed end are provided.
  • a catalyst-supporting hydrogen permeable membrane module in which the hydrogen permeable membrane described in the means 1 is supported on the outer surface of a porous support made of a cylindrical body, and connected to the opening end side of the module;
  • There is a hydrogenation apparatus provided with a gas introduction pipe for introducing a hydrogen-containing gas to the inner surface side of the porous support through the open end.
  • the object to be treated is supplied to the treatment tank so that the object to be treated is brought into contact with the outer surface side of the module, and the porous body is supported from the gas introduction pipe through the open end of the module.
  • hydrogen-containing gas is introduced into the inner surface of the body, only hydrogen in the hydrogen-containing gas becomes atomic and permeates the hydrogen separation metal layer.
  • the hydrogen atoms that permeate the hydrogen separation metal layer encounter the catalyst metal in the catalyst metal layer in the surface layer portion of the porous body, where the hydrogen addition reaction of the object to be treated is promoted, and the object to be treated is efficiently reduced.
  • both the hydrogen separation metal layer and the catalyst metal layer are not exposed on the surface of the hydrogen permeable membrane, even if foreign matter is contained in the object to be treated, the hydrogen separation metal layer and the catalyst metal layer are caused by the foreign matter. Is prevented from being damaged, and the durability is improved. Further, since the amount of the catalyst metal supported in the catalyst metal layer is maintained, it is possible to prevent a reduction in processing efficiency. In addition, since the catalyst metal layer is supported not on the surface of the porous body but on the surface layer portion having a large specific surface area, a catalyst metal having a large amount of metal catalyst supported can be obtained.
  • the distance between the catalyst metal layer and the hydrogen separation metal layer is shorter than that in which the catalyst metal layer is formed on the surface of the porous body. Therefore, there is an advantage that the probability that the catalytic metal encounters a highly reactive hydrogen atom is increased.
  • a module may be configured by joining a dense portion having no gas permeability to, for example, an axial end of the porous support.
  • “having no gas permeability” is only required to prevent permeation of a hydrogen-containing gas (raw material gas) from which hydrogen is separated, and can be defined as having a denseness of, for example, a relative density of 70% or more.
  • ceramic is mentioned as a suitable material which comprises a precise
  • the ceramic constituting the dense part may be the same or different from the ceramic constituting the porous body and the porous body support, but is preferably the same kind from the viewpoint of eliminating the difference in thermal expansion coefficient. It is.
  • a reduction treatment tank to which a lubricating oil subjected to a reduction regeneration process by hydrogenation is supplied, and the oxidized lubricating oil is supplied to the reduction treatment tank.
  • a catalyst-carrying hydrogen permeable membrane module in which the hydrogen permeable membrane according to means 1 is supported on the outer surface of the body-made support, and is connected to the opening end side of the module, and the porous
  • a lubricating oil regenerator provided with a gas introduction pipe for introducing a hydrogen-containing gas on the inner surface side of a solid support.
  • the oxidized lubricating oil is supplied to the reduction treatment tank by the oxidized oil recovery pipe, and the oxidized lubricating oil comes into contact with the outer surface side of the module.
  • the hydrogen-containing gas is introduced from the gas introduction pipe to the inner surface of the porous support through the open end of the module, only hydrogen in the hydrogen-containing gas becomes atomic and permeates the hydrogen separation metal layer.
  • the hydrogen atoms that permeate the hydrogen separation metal layer encounter the catalyst metal in the catalyst metal layer on the surface layer portion of the porous body, promote the hydrogen addition reaction to the substance contained in the oxidized lubricating oil there, and Reduce efficiently.
  • the oxidized lubricating oil is regenerated, and the regenerated lubricating oil is sent out from the reduction treatment tank through the regenerated oil recovery pipe.
  • both the hydrogen separation metal layer and the catalyst metal layer are not exposed on the surface of the hydrogen permeable membrane, even if foreign matter such as metal wear powder is contained in the lubricating oil, the foreign matter is separated by the foreign matter.
  • the layer and the catalytic metal layer are not damaged, damage is prevented, and durability is improved. Further, since the amount of the catalyst metal supported in the catalyst metal layer is maintained, it is possible to prevent a reduction in processing efficiency.
  • the catalyst metal layer is supported not on the surface of the porous body but on the surface layer portion having a large specific surface area, the catalyst metal layer having a large amount of metal catalyst supported can be obtained.
  • the distance between the catalyst metal layer and the hydrogen separation metal layer is shorter than that in which the catalyst metal layer is formed on the surface of the porous body. Therefore, there is an advantage that the probability that the catalytic metal encounters a highly reactive hydrogen atom is increased.
  • hydrogen gas is supplied from the back side of the porous body, and by reducing the catalyst metal ions in the catalyst solution, the surface layer portion is
  • a method for producing a catalyst-supporting hydrogen permeable membrane comprising a catalyst metal layer forming step of depositing a catalyst metal.
  • the atomic hydrogen that has passed through the hydrogen separation metal layer from the back surface side and reached the front surface side reduces the metal ions in the catalyst solution.
  • the metal is deposited on the hydrogen separation metal layer and on the inner wall surfaces of the pores, and a catalytic metal layer is formed on the surface layer portion. Therefore, according to such a catalyst metal layer forming step, the catalyst metal can be relatively easily and reliably deposited on the surface layer portion.
  • FIGS. 4A to 4D are schematic views for explaining a procedure for forming a ceramic substrate in the manufacturing process of the module.
  • (a) is a partially broken schematic view showing a state before the porous body is formed on the porous body support, and (b) is porous on the porous body support.
  • rupture schematic which shows the state after forming a body.
  • the principal part expansion schematic which shows the mode before and behind when forming a catalyst metal layer in the manufacturing process of the module.
  • the schematic which shows the lubricating oil reproduction
  • the SEM photograph which shows the porous body of the state in the same module after formation of a hydrogen separation metal layer and before formation of a catalyst metal layer.
  • the catalyst-carrying hydrogen permeable membrane module 11 of the present embodiment shown in FIG. 1 (a) is a device for separating hydrogen from a hydrogen-containing gas G1, which is a raw material gas, and is basically a porous body support.
  • the body 12, the dense portion 21, and the catalyst-supporting hydrogen permeable membrane 31 are configured.
  • the porous support 12 constituting the hydrogen permeable membrane module 11 is a cylindrical member having an end 14 (open end) having an opening 13 and an end 15 (closed end) having no opening 13. .
  • the porous support 12 is composed of a porous ceramic having a property (gas permeability) that allows the hydrogen-containing gas G1 to pass between the inner surface 16 and the outer surface 17.
  • the porous support 12 is made of porous yttria-stabilized zirconia (YSZ) having a thickness of about 1 mm to 2 mm and a porosity of about 30% to 50%.
  • the hydrogen-containing gas G1 includes, for example, a reformed gas generated by bringing natural gas and water vapor into contact with the catalyst, and pure hydrogen gas is also included.
  • the end 14 on the opening side of the porous support 12 is integrally formed with a cylindrical dense portion 21 made of a dense ceramic that is not gas permeable and has higher strength than the porous support 12.
  • the dense portion 21 of the present embodiment is configured using dense YSZ having a porosity of approximately 0%.
  • the porous substrate 12 and the dense portion 21 constitute a module base, and an internal space 22 is formed inside thereof.
  • a metal joint 51 made of a mounting bracket, a pressing bracket, a sealing material, a fixing bracket and the like is screwed into the dense portion 21 located on the proximal end side of the hydrogen permeable membrane module 11.
  • the pipe for introducing the hydrogen-containing gas G1 (that is, the gas introduction pipe 52) is connected through the metal joint 51.
  • a catalyst-supporting hydrogen permeable membrane 31 is integrally formed so as to cover the entire outer surface 17 across the porous body support 12 and a part of the dense portion 21. That is, it can be understood that the hydrogen permeable membrane 31 is supported by the porous support 12 and the dense portion 21.
  • the hydrogen permeable membrane 31 has a front surface 32 and a back surface 33 and is mainly composed of a porous body 35 having a film shape.
  • the porous body 35 in the present embodiment is configured using porous YSZ having a thickness of about 20 ⁇ m to 40 ⁇ m and a porosity of about 40% to 60%. Since the porous body 35 has a large number of pores 34 communicating with the front surface 32 and the back surface 33, the porous body 35 has suitable gas and liquid permeability like the porous body support 12.
  • the porous body 35 of the present embodiment has a structure in which a second porous layer 38 is integrally formed on a first porous layer 37.
  • the hydrogen separation metal layer 41 is formed so as to fill the pores. . Therefore, the hydrogen separation metal layer 41 is completely embedded in the porous body 35 and is not exposed from the surface 32 of the porous body 35. Further, the hydrogen separation metal layer 41 separates hydrogen from the hydrogen-containing gas G1 supplied to the back surface 33 of the porous body 35 and selectively permeates the hydrogen from the back surface 33 side to the front surface 32 side in an atomic state. It has the property of being able to.
  • the hydrogen separation metal layer 41 of this embodiment is a PdAg alloy layer whose thickness is set to about 5 ⁇ m to 15 ⁇ m. As will be described later, this PdAg alloy layer is formed by alloying an inner Pd layer formed by electroless plating and an outer Ag layer formed by electrolytic plating.
  • a catalyst metal layer 43 is formed on the surface layer portion.
  • a catalytic metal layer 43 is not formed on the surface 32 of the porous body 35. Therefore, like the hydrogen separation metal layer 41, the catalyst metal layer 43 is completely embedded in the porous body 35 and is not exposed from the surface 32 of the porous body 35.
  • the catalytic metal 42 constituting the catalytic metal layer 43 of the present embodiment Pd alone is used.
  • the catalyst metal 42 is basically supported on the inner wall surface of the pore 34 in the surface layer portion in a state where the pore 34 is not filled (that is, the pore 34 is not blocked).
  • the catalyst metal layer 43 in the present embodiment has a concentration gradient in which the concentration of the catalyst metal 42 increases as the distance from the front surface 32 to the back surface 33, that is, the closer to the hydrogen separation metal layer 41 in the inner layer. At least a part of the catalyst metal 42 is supported in contact with the hydrogen separation metal layer 41 (see FIGS. 2 and 5).
  • a procedure for manufacturing the hydrogen permeable membrane module 11 will be described.
  • a module base constituting the hydrogen permeable membrane module 11 is produced by press molding.
  • the press molding is performed using a mold 61 as shown in FIG.
  • a cylindrical inner hole 63 corresponding to the outer shape of the module base is formed at the axial center of the cylindrical rubber mold 62 of the mold 61.
  • a columnar (test tube shape) center pin 64 corresponding to the shape of the internal space 22 is erected at the axial center of the inner hole 63, thereby forming a substantially cylindrical mold hole 65.
  • the mold hole 65 of the rubber mold 62 is first filled with YSZ granulated powder, which is a material for forming the dense portion, to form the dense portion forming portion 66 (see FIG. 3A).
  • YSZ granulated powder which is a material for forming the porous body support body 12
  • a forming portion 67 is formed (see FIG. 3B).
  • Organic beads as a pore former are added to this YSZ granulated powder.
  • the upper mold 68 is fixed to the upper part of the rubber mold 62.
  • a recess 69 having a shape corresponding to the tip of the porous support 12 is formed on the molding surface of the upper mold 68 (see FIG. 3C).
  • a porous body support forming portion 67 having the same shape as the porous body support 12 is formed.
  • the molded body 71 corresponding to the shape of the module base that is, the shape of the test tube
  • the molded body 71 taken out from the rubber mold 62 is degreased and fired to obtain a ceramic sintered body 72 in which the dense portion 21 and the porous body support 12 are integrated (FIG. 4A). )reference).
  • a slurry in which YSZ powder is dispersed in an organic solvent is prepared, and the slurry is adhered to the entire outer surface 17 of the porous support 12 in the ceramic fired body by a dip coating method. And it heats and bakes and forms the 1st porous layer 37 which covers the outer surface 17 of the support body 12 made from a porous body.
  • the porous body support 12 after the formation of the first porous layer 37 is immersed in the Sn ion solution, and Sn ions are adsorbed on the first porous layer 37.
  • the porous support 12 is immersed in a Pd ion solution, and Pd ions are adsorbed by an exchange reaction between Sn ions and Pd ions.
  • the porous support 12 is immersed in a reducing agent solution such as a hydrazine solution to reduce Pd ions to form Pd metal nuclei. That is, Pd metal nuclei are attached to the surfaces of the pores 34 of the first porous layer 37.
  • the second porous layer 38 is formed on the first porous layer 37 by dip-coating and baking again the slurry in which the YSZ powder is dispersed.
  • the porous body 35 having a structure in which the first porous layer 37 and the second porous layer 38 are integrated is formed.
  • Pd nuclei inside the porous body 35 are grown by electroless plating to form an electroless plating layer made of Pd.
  • the electroless Pd plating solution is supplied from the outer surface 17 side of the porous body 35 in the porous body support 12.
  • an electrolytic solution is introduced into the internal space 22 of the porous support 12 and a feeding electrode is inserted into the electrolytic solution.
  • the porous support 12 in this state is set in an electrolytic Ag plating solution having a bath temperature of 30 ° C. on which a counter electrode is disposed, and is subjected to constant current electrolytic plating, whereby electrolysis made of Ag on the electroless plating layer.
  • a plating layer is formed.
  • heat treatment is performed in nitrogen to alloy Pd and Ag to form a PdAg layer as the hydrogen separation metal layer 41 (see FIG. 4B).
  • FIG. 7 is an SEM photograph showing the state at this time.
  • the catalyst metal layer 43 is formed by the following procedure. First, what prepared the catalyst liquid 82 containing Pd ion (ion of the catalyst metal 42) in the container 81 is prepared, and the said support body 12 made from the porous body after forming the hydrogen separation metal layer 41 is immersed in this. Then, hydrogen is supplied to the internal space 22 of the porous support 12. In this case, the hydrogen supplied to the internal space 22 becomes an atomic state, passes through the hydrogen separation metal layer 41, and is supplied to the catalyst liquid 82 (see FIG. 5). Then, Pd ions in the catalyst solution 82 are reduced, Pd is deposited on the hydrogen separation metal layer 41 and on the inner wall surfaces of the pores 34, and the catalyst metal layer 43 is formed on the surface layer portion. Through the above procedure, the catalyst-supporting hydrogen permeable membrane module 11 of the present embodiment is completed. Hereinafter, examples in which the present embodiment is more specific will be described.
  • the hydrogen permeable membrane module 11 of Example was produced in the following procedures.
  • the mold 61 described above is prepared, and the rubber mold 62 is filled with YSZ granulated powder, and then filled with YSZ granulated powder with 48% by volume organic beads added as a pore former, followed by press molding.
  • a formed body 71 having a test tube shape was formed by the method.
  • the molded body 71 to be a module base later is degreased and fired at 1400 ° C. in an air atmosphere, whereby the dense portion 21 and the porous body support 12 are integrated into an outer diameter of 10 mm ⁇ length.
  • a 300 mm ceramic sintered body 72 was obtained.
  • a slurry in which YSZ powder was dispersed in an organic solvent was prepared, and the slurry was adhered to the entire outer surface 17 of the porous support 12 in the ceramic sintered body 72 by a dip coating method. And it heated at 1200 degreeC and baked and formed the 1st porous layer 37 which covers the outer surface 17 of the support body 12 made from a porous body.
  • the porous body support 12 after the formation of the first porous layer 37 was immersed in an Sn ion solution, and Sn ions were adsorbed on the surface of the first porous layer 37. After washing with water, the porous support 12 was immersed in a Pd ion solution, and Pd ions were adsorbed by an exchange reaction between Sn ions and Pd ions.
  • the porous support 12 was immersed in a hydrazine solution to reduce Pd ions to form Pd metal nuclei.
  • the second porous layer 38 was formed on the first porous layer 37 by dip-coating and baking the slurry in which the YSZ powder was dispersed again. Thereby, the porous body 35 having a structure in which the first porous layer 37 and the second porous layer 38 were integrated was obtained.
  • Pd nuclei inside the porous body 35 were grown by an electroless plating method to form an electroless plating layer made of Pd and having a thickness of 3.0 ⁇ m. At this time, the electroless Pd plating solution was supplied from the surface 32 side of the porous body 35 in the porous body support 12.
  • a 6.0 mol / L NaCl aqueous solution was introduced as an electrolytic solution into the internal space 22 of the porous support 12.
  • the feeding electrode was inserted into the electrolytic solution, and the porous support 12 in this state was set in an electrolytic Ag plating solution (silver nitrate concentration 37 g / L) at a bath temperature of 30 ° C. where the counter electrode was disposed.
  • an electrolytic Ag plating solution silver nitrate concentration 37 g / L
  • a 1.0 ⁇ m electrolytic plating layer made of Ag was formed on the electroless plating layer.
  • heat treatment was performed in nitrogen at 750 ° C. to alloy Pd and Ag, and a 4.0 ⁇ m PdAg layer as the hydrogen separation metal layer 41 was formed.
  • a catalyst solution 82 in which palladium chloride powder was dissolved in a 1 N aqueous hydrochloric acid solution so that the Pd concentration was 0.1 mol / L to 10 mol / L was prepared, and a solution in which this was put in a container 81 was prepared.
  • the catalyst solution 82 was heated to 40 ° C. to 95 ° C., and the porous support 12 after the formation of the hydrogen separation metal layer 41 was immersed therein.
  • the porous support 12 was connected to a hydrogen cylinder, and hydrogen was supplied to the internal space 22 at a pressure of 0.0 MPaG to 0.2 MPaG for 1 second to 60 seconds.
  • the atomic hydrogen that has passed through the hydrogen separation metal layer 41 reduces Pd ions in the catalyst liquid 82, and deposits Pd on the hydrogen separation metal layer 41 and on the inner wall surfaces of the pores 34.
  • a catalytic metal layer 43 was formed. Thereafter, the supply of hydrogen was stopped, and the surface 32 of the porous body 35 was washed to complete the hydrogen permeable membrane module 11 of the example.
  • the lubricating oil regeneration test apparatus 101 includes an oxidation tank 103 that promotes oxidation of the lubricating oil 102 and a reduction processing tank 104 that performs a reduction regeneration process by adding hydrogen to the lubricating oil 102.
  • a paraffinic mineral oil blended with an antioxidant is used as the lubricating oil 102.
  • “regeneration of lubricating oil” means that the deteriorated (oxidized) antioxidant in the mineral oil is reduced and regenerated.
  • the oxidation tank 103 is a round-bottomed container having an opening at the top, and the lower part of the container is set in a heater 105 with a magnetic stirrer.
  • a stirrer 106 for stirring the lubricating oil 102 to make it uniform is introduced.
  • an air introduction tube 107 and a glass rod 108 wound with a stainless mesh are inserted in the oxidation tank 103.
  • the air introduction pipe 107 is for introducing air into the lubricating oil 102 (that is, performing bubbling).
  • the glass rod 108 serves as a catalyst for promoting the oxidation of the lubricating oil 102.
  • the reduction treatment tank 104 is also a round-bottomed container having an opening in the upper part, and the lower part of this container is set in a heater 112 with a magnetic stirrer.
  • a stirring bar 113 for stirring the lubricating oil 102 to make it uniform is introduced.
  • the hydrogen permeable membrane module 11 of the embodiment in which the gas introduction pipe 52 is connected via the metal joint 51 is inserted into the reduction treatment tank 104.
  • the gas introduction pipe 52 is for introducing the hydrogen-containing gas G1 into the inner space 22 side of the porous support 12 through the open end.
  • an oxidation oil recovery pipe 114 for supplying the lubricating oil 102 oxidized in the oxidation tank 103 to the reduction treatment tank 104 is provided.
  • a pump 115 is provided for pressure-feeding the gas to the reduction treatment tank 104 side.
  • a reclaimed oil recovery pipe 116 for sending the lubricating oil 102 regenerated in the reduction treatment tank 104 from the reduction treatment tank 104 is provided between the oxidation tank 103 and the reduction treatment tank 104.
  • a pump 117 that pumps the lubricating oil 102 toward the oxidation tank 103 is provided.
  • the structure belonging to the oxidation tank 103 is a “lubricating oil regeneration apparatus 101A” according to the present invention which is an embodiment of the hydrogenation apparatus. Can be grasped.
  • a lubricating oil regeneration test was carried out under the following conditions.
  • the temperature in the tank was set to 150 ° C. by the heater 105 with a magnetic stirrer, and air was introduced into the lubricating oil 102 at a flow rate of 1 L / min.
  • hydrogen was supplied with the pressure of 20 kPaG to the hydrogen permeable membrane module 11 for 25 hours. An investigation was conducted after 25 hours, and it was confirmed that the lubricating oil 102 was reliably reduced and regenerated.
  • a metal wear powder deterioration test was performed after the above-mentioned lubricant regeneration test.
  • a lubricating oil 102 into which metal wear powder was introduced was prepared, and the hydrogen permeable membrane module 11 of the example was immersed in the lubricating oil 102 and stirred for 24 hours.
  • a well-known helium leak test was conducted.
  • the hydrogen permeable membrane module 11 was connected to a helium cylinder, and helium was introduced to the inner space 22 side of the porous support 12 through the open end. At that time, the amount of helium leaked to the outside of the module was evaluated with a soap film flow meter.
  • the mold 61 described above is prepared, and the rubber mold 62 is filled with YSZ granulated powder, and then filled with YSZ granulated powder with 48% by volume organic beads added as a pore former, followed by press molding.
  • a formed body 71 having a test tube shape was formed by the method.
  • the molded body 71 to be a module base later is degreased and fired at 1400 ° C. in an air atmosphere, whereby the dense portion 21 and the porous body support 12 are integrated into an outer diameter of 10 mm ⁇ length.
  • a 300 mm ceramic sintered body 72 was obtained.
  • a slurry in which YSZ powder was dispersed in an organic solvent was prepared, and the slurry was adhered to the entire outer surface 17 of the porous support 12 in the ceramic sintered body 72 by a dip coating method. And it heated at 1200 degreeC and baked and formed the 1st porous layer 37 which covers the outer surface 17 of the support body 12 made from a porous body.
  • the porous body support 12 after the formation of the first porous layer 37 was immersed in an Sn ion solution, and Sn ions were adsorbed on the surface of the first porous layer 37. After washing with water, the porous support 12 was immersed in a Pd ion solution, and Pd ions were adsorbed by an exchange reaction between Sn ions and Pd ions.
  • the porous support 12 was immersed in a hydrazine solution to reduce Pd ions to form Pd metal nuclei.
  • the second porous layer 38 is not formed by dip coating again, and the first porous layer 37 is used as the porous body 35.
  • Pd nuclei on the surface of the porous body 35 were grown by an electroless plating method to form an electroless plating layer made of Pd and having a thickness of 8.0 ⁇ m.
  • the electroless Pd plating solution was supplied from the surface 32 side of the porous body 35 in the porous body support 12.
  • a 6.0 mol / L NaCl aqueous solution was introduced as an electrolytic solution into the internal space 22 of the porous support 12.
  • the feeding electrode was inserted into the electrolytic solution, and the porous support 12 in this state was set in an electrolytic Ag plating solution (silver nitrate concentration 37 g / L) at a bath temperature of 30 ° C. where the counter electrode was disposed.
  • an electrolytic Ag plating solution silver nitrate concentration 37 g / L
  • a constant current electrolytic plating was performed for 2 minutes at a current value of 1.3 A / dm 2 to form a 2.0 ⁇ m electrolytic plating layer made of Ag on the electroless plating layer.
  • heat treatment was performed at 750 ° C. in nitrogen to alloy Pd and Ag, and a 10.0 ⁇ m PdAg layer as the hydrogen separation metal layer 41 was formed.
  • a catalyst solution 82 in which palladium chloride powder was dissolved in a 1N aqueous hydrochloric acid solution so that the Pd concentration was 0.5 mol / L was prepared, and a catalyst solution 82 was prepared in a container 81.
  • the catalyst solution 82 was heated to 80 ° C., and the porous support 12 after the formation of the hydrogen separation metal layer 41 was immersed therein.
  • the porous body support 12 was connected to a hydrogen cylinder, and hydrogen was supplied to the internal space 22 at a pressure of 0.05 MPaG for 5 seconds.
  • the lubricating oil regeneration test apparatus 101 of the above example was used, and a lubricating oil regeneration test was performed in accordance with the method of the example. As a result, the lubricating oil 102 was reliably reduced even for the hydrogen permeable membrane module of the comparative example. It was confirmed that it was playing.
  • a metal wear powder deterioration test (helium leak test) was also conducted in accordance with the method of the example. As a result, the amount of helium leak increased to 150 cc / min and deterioration occurred. Was confirmed. Therefore, it was concluded that the hydrogen permeable membrane module of the comparative example in which the hydrogen separation metal layer 41 and the catalyst metal layer 43 are both exposed at the surface 32 is inferior in durability to the metal wear powder.
  • the hydrogen separation metal layer 41 is formed at a predetermined depth in the porous body 35, and the catalyst metal layer 43 is formed on the surface 32 and the hydrogen separation metal layer 41. It is carried by the surface layer part which is the area between the two. For this reason, the hydrogen separation metal layer 41 and the catalyst metal layer 43 are not exposed to the surface 32 of the hydrogen permeable membrane 31. Therefore, even if foreign matter such as metal wear powder is contained in the lubricating oil 102 to be processed, the hydrogen separation metal layer 41 and the catalytic metal layer 43 are not damaged by the foreign matter, and the damage is not caused. Is prevented. Therefore, the durability of the hydrogen permeable membrane module 11 can be improved.
  • the catalyst metal layer 43 is formed by supporting the catalyst metal 42 not on the surface 32 of the porous body 35 but on the surface layer portion having a large specific surface area. Therefore, the catalyst metal layer 43 having a large amount of the catalyst metal 42 supported can be obtained.
  • the separation distance between the hydrogen separation metal layer 41 and the catalyst metal layer 43 is 0 ⁇ m. Therefore, with respect to the part of the catalyst metal 42, the chance of encountering atomic hydrogen that has passed through the hydrogen separation metal layer 41 is greatly increased. As a result, the reactivity between hydrogen and the object to be processed is further increased, and the hydrogenation reaction can be performed more efficiently.
  • the catalyst metal layer 43 has a concentration gradient in which the concentration of the catalyst metal 42 increases from the front surface 32 to the back surface 33. Therefore, even when the loadings are made equal, the proportion of the catalytic metal 42 that encounters atomic hydrogen that has permeated through the hydrogen separation metal layer 41 increases, and the reactivity between hydrogen and the object to be treated is further increased. . Further, since the catalytic metal 42 in the vicinity of the surface 32 of the porous body 35 is reduced, there is an advantage that the catalytic metal layer 43 is hardly damaged by the metal wear powder in the lubricating oil 102.
  • the hydrogen permeable membrane module 11 of this example is formed on the outer surface 17 which is the main surface of the porous support 12 with the hydrogen permeable membrane 31 supported. Therefore, the hydrogen permeable membrane 31 is supported by the porous support 12 while the necessary strength is given to the entire module 11. For this reason, it is only necessary to give the hydrogen permeable membrane 31 the necessary minimum strength, and the hydrogen permeable membrane 31 can be made thin.
  • the hydrogen separation metal layer 41 is formed by alloying different metals.
  • the present invention is not limited to this.
  • an electrolytic plating layer made of the same Pd may be formed by electroplating to form a hydrogen separation metal layer.
  • the hydrogen separation metal layer 41 made of a PdAg alloy is formed.
  • the present invention is not limited to this.
  • the hydrogen separation metal layer 41 made of a PdCu alloy, a PdAu alloy, or the like may be formed.
  • the catalyst metal layer 43 having a uniform Pd concentration may be formed.
  • the porous body is made of stabilized zirconia.
  • the hydrogen separation metal layer is a palladium layer or a palladium alloy layer, and the catalyst metal constituting the catalyst metal layer is palladium.
  • the hydrogen separation metal layer is a palladium layer or a palladium alloy layer, and the catalyst metal constituting the catalyst metal layer does not contain a metal other than palladium or palladium. Be alloy.
  • the hydrogen separation metal layer is a palladium layer or a palladium alloy layer, and the catalyst metal constituting the catalyst metal layer is selected from iron, nickel, platinum, and ruthenium.
  • a porous body having a front surface and a back surface, and a large number of pores communicating with the front surface and the back surface, and the pores filled at a predetermined depth position in the porous body
  • a hydrogen separation metal layer that is formed in a state and selectively transmits hydrogen in the hydrogen-containing gas flowing from the back surface to the surface, and is supported on a surface layer portion that is a region between the surface and the hydrogen separation metal layer.
  • a catalyst-supporting hydrogen permeable membrane comprising a catalyst metal layer made of a catalyst metal, wherein after the formation of the hydrogen separation metal layer, ions of the catalyst metal are formed on the surface side of the hydrogen separation metal layer.
  • a catalyst-supporting hydrogen comprising a step of forming the catalyst metal layer by causing the hydrogen-containing gas to flow from the back surface to the surface of the hydrogen separation metal layer.
  • Catalyst-supporting hydrogen permeable membrane module 12 ... Porous support 17 ... Outer surface as main surface 31 . Catalyst-supporting hydrogen permeable membrane 32 ... surface 33 ... Back side 34 ... pores 35 ... Porous material 41 ... Hydrogen separation metal layer 42.
  • Catalytic metal 43 ... catalytic metal layer 52 ... Gas introduction pipe 101A . Lubricating oil regeneration device as a hydrogenation device 102 ... Lubricating oil as an object to be treated 104 ... Reduction treatment tank as a treatment tank 114 ... Oxidized oil recovery pipe 116 ... Recycled oil recovery pipe

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Catalysts (AREA)
  • Lubricants (AREA)

Abstract

Provided is a catalyst-carrying hydrogen permeable membrane which has excellent durability of a hydrogen separation metal layer and a catalyst metal layer, and which is not susceptible to deterioration in the processing efficiency. A catalyst-carrying hydrogen permeable membrane 31 according to the present invention is provided with a porous body 35, a hydrogen separation metal layer 41 and a catalyst metal layer 43. The porous body 35 internally has a plurality of fine pores 34 through which a front surface 32 and a back surface 33 thereof are in communication with each other. The hydrogen separation metal layer 41 is formed such that the fine pores 34 are filled therewith at a predetermined depth in the porous body 35. The hydrogen separation metal layer 41 selectively has hydrogen in a hydrogen-containing gas that flows from the back surface 33 to the front surface 32 permeate therethrough. The catalyst metal layer 43 is composed of a catalyst metal 42 that is supported by a surface layer part which is a region positioned between the front surface 32 and the hydrogen separation metal layer 41.

Description

触媒担持型水素透過膜及びその製造方法、触媒担持型水素透過膜モジュール、水素添加装置、潤滑油再生装置Catalyst-supporting hydrogen permeable membrane and method for producing the same, catalyst-supporting hydrogen permeable membrane module, hydrogenation device, lubricating oil regeneration device

 本発明は、触媒担持型水素透過膜及びその製造方法、触媒担持型水素透過膜モジュール、水素添加装置、潤滑油再生装置に関するものである。

The present invention relates to a catalyst-carrying hydrogen permeable membrane and a method for producing the same, a catalyst-carrying hydrogen permeable membrane module, a hydrogenation device, and a lubricating oil regeneration device.

 従来、水素を含むガス(含水素ガス)を原料とし、その含水素ガスから分離した水素を添加することで被処理物を処理する装置が種々開発されている。その具体例として、例えば潤滑油等の有機化合物の還元処理を連続的に行う還元処理装置が知られている(例えば、特許文献1を参照)。

2. Description of the Related Art Conventionally, various apparatuses for processing an object to be processed by using a gas containing hydrogen (hydrogen-containing gas) as a raw material and adding hydrogen separated from the hydrogen-containing gas have been developed. As a specific example thereof, there is known a reduction processing apparatus that continuously performs reduction processing of an organic compound such as a lubricating oil (see, for example, Patent Document 1).

 この装置は、反応器、液体槽、貯蔵槽、水素ガス供給装置及び潤滑油供給装置を備えている。反応器は有底の円筒状であり、パラジウム・銀合金からなる内壁面及び外壁面を備えていて、内壁面に水素ガスが供給されるようになっている。液体槽は、反応器が内部に挿入される有底の円筒状部材であり、潤滑油の流入及び流出が可能となっている。水素ガス供給装置は、反応器の外部に設けられ、反応器の内壁面に水素ガスを供給するようになっている。潤滑油供給装置は、貯蔵槽から液体槽へ潤滑油を供給するようになっている。そして、反応器に連続的に水素ガスを供給することにより、反応器の外壁面で連続的に有機化合物の還元反応を行うことで、潤滑油が再生されるようになっている。

This apparatus includes a reactor, a liquid tank, a storage tank, a hydrogen gas supply device, and a lubricating oil supply device. The reactor has a bottomed cylindrical shape, and includes an inner wall surface and an outer wall surface made of palladium / silver alloy, and hydrogen gas is supplied to the inner wall surface. The liquid tank is a bottomed cylindrical member into which the reactor is inserted, and allows the inflow and outflow of lubricating oil. The hydrogen gas supply device is provided outside the reactor and supplies hydrogen gas to the inner wall surface of the reactor. The lubricating oil supply device supplies lubricating oil from the storage tank to the liquid tank. Then, by continuously supplying hydrogen gas to the reactor, the organic oil is continuously reduced on the outer wall surface of the reactor, whereby the lubricating oil is regenerated.

 また、水素添加反応を行う装置に用いられる担持型パラジウム触媒に関する技術が従来提案されている(例えば、特許文献2を参照)。ここでは、支持体であるガス透過性膜の表面にパラジウムまたはパラジウム合金からなる層を形成し、さらにその表面に触媒であるパラジウムブラックを担持させた構造が開示されている。

In addition, a technique related to a supported palladium catalyst used in an apparatus for performing a hydrogenation reaction has been proposed (see, for example, Patent Document 2). Here, there is disclosed a structure in which a layer made of palladium or a palladium alloy is formed on the surface of a gas permeable membrane as a support, and palladium black as a catalyst is supported on the surface.

特許第5260128号公報Japanese Patent No. 5260128 特開2003-275585号公報JP 2003-275585 A

 特許文献1においては、潤滑油を用いた設備の稼働中に潤滑油に水素添加をすることで、設備の稼働により酸化した潤滑油が還元再生し、潤滑油の寿命が延長されるといった記載がある。しかしながら、設備を循環する潤滑油には金属の摩耗粉などの異物が混入しており、それがパラジウムを含む層の表面を傷付ける結果、パラジウムを含む層が破損してしまうおそれがあった。ゆえに、従来のこの種の装置は耐久性に問題があった。また、層の破損に到る前であっても、異物による傷付けによって表面に担持されたパラジウムブラックの脱粒が起こり、次第に処理効率が低下するおそれがあった。

Patent Document 1 describes that by adding hydrogen to a lubricating oil during operation of the equipment using the lubricating oil, the lubricating oil oxidized by the operation of the equipment is reduced and regenerated, and the life of the lubricating oil is extended. is there. However, foreign materials such as metal wear powder are mixed in the lubricating oil circulating in the equipment, and as a result of damaging the surface of the layer containing palladium, the layer containing palladium may be damaged. Therefore, this type of conventional device has a problem in durability. Further, even before the layer breakage, the palladium black carried on the surface by the damage caused by the foreign matter occurs, and the processing efficiency may gradually decrease.

 本発明は上記の課題に鑑みてなされたものであり、その目的は、水素分離金属層及び触媒金属層の耐久性に優れるとともに、処理効率の低下を来しにくい触媒担持型水素透過膜及びその製造方法、触媒担持型水素透過膜モジュール、水素添加装置、潤滑油再生装置を提供することにある。

The present invention has been made in view of the above problems, and its object is to provide a catalyst-supporting hydrogen-permeable membrane that is excellent in the durability of the hydrogen separation metal layer and the catalyst metal layer and is less likely to cause a decrease in processing efficiency. An object of the present invention is to provide a production method, a catalyst-supporting hydrogen permeable membrane module, a hydrogenation device, and a lubricating oil regeneration device.

 そして上記課題を解決するための手段(手段1)としては、表面及び裏面を有し、前記表面及び前記裏面を連通する多数の細孔を内部に有する多孔質体と、前記多孔質体内の所定の深さ位置にて前記細孔が充填された状態で形成され、前記裏面から前記表面へ流れる含水素ガス中の水素を選択的に透過させる水素分離金属層と、前記表面と前記水素分離金属層との間の領域である表層部に担持された触媒金属からなる触媒金属層とを備えたことを特徴とする触媒担持型水素透過膜がある。

As means for solving the above problems (means 1), there are a porous body having a front surface and a back surface, and a large number of pores communicating with the front surface and the back surface, and a predetermined inside of the porous body. A hydrogen separation metal layer that is formed in a state where the pores are filled at a depth position, and selectively transmits hydrogen in the hydrogen-containing gas flowing from the back surface to the surface, and the surface and the hydrogen separation metal. There is a catalyst-supporting hydrogen permeable membrane comprising a catalyst metal layer made of a catalyst metal supported on a surface layer portion which is a region between the layers.

 従って、手段1に記載の発明によると、水素分離金属層が多孔質体内の所定の深さ位置にて形成され、かつ触媒金属層が表面と水素分離金属層との間の領域である表層部に担持されているため、水素分離金属層及び触媒金属層が水素透過膜の表面に露出しなくなる。ゆえに、被処理物中に異物が含まれていたとしても、その異物によって水素分離金属層及び触媒金属層が傷付けられることはなく破損が防止されるため、耐久性が向上する。また、触媒金属層における触媒金属の担持量が維持されるため、処理効率の低下も防止することができる。なお、多孔質体の表面ではなく、比表面積の大きな表層部に触媒金属を担持することで、触媒金属層が形成されている。それゆえ、金属触媒の担持量が多い触媒金属層とすることができる。

Therefore, according to the invention described in the means 1, the surface layer portion in which the hydrogen separation metal layer is formed at a predetermined depth in the porous body and the catalyst metal layer is a region between the surface and the hydrogen separation metal layer. Thus, the hydrogen separation metal layer and the catalyst metal layer are not exposed on the surface of the hydrogen permeable membrane. Therefore, even if foreign matter is contained in the object to be treated, the hydrogen separation metal layer and the catalyst metal layer are not damaged by the foreign matter and are prevented from being damaged, so that the durability is improved. Further, since the amount of the catalyst metal supported in the catalyst metal layer is maintained, it is possible to prevent a reduction in processing efficiency. The catalyst metal layer is formed by supporting the catalyst metal not on the surface of the porous body but on the surface layer portion having a large specific surface area. Therefore, a catalyst metal layer having a large amount of metal catalyst supported can be obtained.

 本発明の触媒担持型水素透過膜を構成する多孔質体は、表面及び裏面を有し、表面及び裏面を連通する多数の細孔を内部に有するものであって、その多数の細孔を介して表面及び裏面間でガス若しくは液体が透過できる構造体をいう。

The porous body constituting the catalyst-supporting hydrogen permeable membrane of the present invention has a front surface and a back surface, and has a large number of pores communicating with the front surface and the back surface. A structure that allows gas or liquid to pass between the front and back surfaces.

 多孔質体を形成する材料は特に限定されないが、その好適な例としてセラミックを挙げることができ、具体的には、ジルコニア、アルミナ、マグネシア、セリア、ドープドセリア及びこれらの混合物などを挙げることができる。これらのなかでも、ジルコニアを選択することが好ましい。その理由は、ジルコニアはパラジウム合金(特にパラジウム銀合金)との相性が良く、水素分離金属層を形成する材料としてパラジウム合金を選択した場合に好都合だからである。具体的にいうと、ジルコニアは、パラジウム合金と熱膨張係数が近似していることに加え、パラジウム合金との反応性が低いからである。

Although the material which forms a porous body is not specifically limited, A ceramic can be mentioned as the suitable example, Specifically, a zirconia, an alumina, a magnesia, a ceria, a doped ceria, a mixture thereof, etc. can be mentioned. Among these, it is preferable to select zirconia. The reason is that zirconia has good compatibility with a palladium alloy (particularly palladium silver alloy) and is advantageous when a palladium alloy is selected as a material for forming a hydrogen separation metal layer. Specifically, zirconia has a low thermal expansion coefficient and a low reactivity with the palladium alloy.

 多孔質体を形成する材料としては、上記のようなセラミックのほか、例えばガラスや金属(ステンレス等)などを用いてもよく、この場合においては導電性の有無を問わず材料を選択することができる。また、これらのような無機材料ばかりでなく、例えば合成樹脂のような有機材料を用いることもできる。

As a material for forming the porous body, in addition to the ceramic as described above, for example, glass, metal (stainless steel, etc.) may be used, and in this case, the material can be selected regardless of conductivity. it can. Further, not only inorganic materials such as these, but also organic materials such as synthetic resins can be used.

 ここで、多孔質体の気孔率は特に限定されないが、例えば10%以上90%以下であることが好ましく、さらには30%以上50%以下であることがより好ましい。また、多孔質体の比表面積は特に限定されないが、例えば50cm/g以上400cm/g以下であることが好ましい。気孔率、比表面積が小さすぎると、緻密化が進むことで多孔質体における細孔の割合が少なくなってしまい、表面及び裏面間のガスまたは液体透過率が低下するおそれがある。一方、気孔率、比表面積が大きすぎると、多孔質体の機械的強度が低下してしまい、破壊しやすくなるおそれがある。

Here, the porosity of the porous body is not particularly limited, but is preferably 10% or more and 90% or less, and more preferably 30% or more and 50% or less. Moreover, the specific surface area of the porous body is not particularly limited, but is preferably, for example, from 50 cm 2 / g to 400 cm 2 / g. When the porosity and the specific surface area are too small, the proportion of pores in the porous body is reduced due to the progress of densification, and the gas or liquid permeability between the front surface and the back surface may be lowered. On the other hand, when the porosity and the specific surface area are too large, the mechanical strength of the porous body is lowered, and there is a possibility that the porous body is easily broken.

 多孔質体は自身の内部に水素分離金属層及び触媒金属層が形成可能な程度の厚さを備えている必要があり、その好適な厚さは例えば10μm以上、より好適な厚さは15μm以上であり、特に好適な厚さは20μm以上である。この厚さが20μm未満であると、水素分離金属層及び触媒金属層を薄くせざるを得なくなり、水素透過膜に十分な機能を付与できなくなるおそれがあるからである。

The porous body needs to have a thickness that allows a hydrogen separation metal layer and a catalyst metal layer to be formed inside itself. The preferred thickness is, for example, 10 μm or more, and the more preferred thickness is 15 μm or more. Particularly suitable thickness is 20 μm or more. This is because if the thickness is less than 20 μm, the hydrogen separation metal layer and the catalyst metal layer must be thinned, and there is a possibility that a sufficient function cannot be imparted to the hydrogen permeable membrane.

 水素分離金属層は、多孔質体内の所定の深さ位置にあり、細孔を充填するような状態(即ち、連通する細孔がない状態)で形成される。水素分離金属層は、多孔質体の裏面に供給した含水素ガスから水素を分離し、その水素を原子の状態で裏面から表面へ選択的に透過させることができるものである。ここで、細孔を充填する状態で多孔質内に水素分離金属層を形成した構造の利点は、上記のように水素分離金属層が水素透過膜の表面にて露出しなくなることである。また、多孔質体がいわば水素分離金属層を支持、補強する骨材としての役割を果たすため、水素分離金属層が熱負荷や荷重負荷等による影響を受けにくくなる。よって、多孔質体の表面上に水素分離金属層を形成したものとは異なり、熱負荷や荷重負荷等に起因して水素分離金属層が剥離等することがなくなり、耐久性の向上に貢献する。

The hydrogen separation metal layer is located at a predetermined depth in the porous body and is formed in a state in which the pores are filled (that is, in a state where there are no communicating pores). The hydrogen separation metal layer is capable of separating hydrogen from the hydrogen-containing gas supplied to the back surface of the porous body and allowing the hydrogen to selectively permeate from the back surface to the surface in an atomic state. Here, an advantage of the structure in which the hydrogen separation metal layer is formed in the porous state in a state where the pores are filled is that the hydrogen separation metal layer is not exposed on the surface of the hydrogen permeable membrane as described above. In addition, since the porous body plays a role as an aggregate that supports and reinforces the hydrogen separation metal layer, the hydrogen separation metal layer is hardly affected by a thermal load or a load load. Therefore, unlike the case where the hydrogen separation metal layer is formed on the surface of the porous body, the hydrogen separation metal layer does not peel off due to heat load or load load, etc., which contributes to the improvement of durability. .

 水素分離金属層の厚さとしては、水素のみを透過して他のガスを透過させないという基本的性質を担保できるのであれば、多孔質体の1/2以下程度の厚さの範囲内で任意の厚さに設定することができる。この場合、水素分離金属層の厚さは、例えば1μm以上30μm以下、特には3μm以上15μm以下に設定されることがよい。水素分離金属層が上記値よりも薄いと、水素のみを透過して他のガスを透過させないという基本的性質が担保できなくなるおそれがあるからである。逆に、水素分離金属層が上記値よりも厚いと、水素の透過性が悪くなる可能性があることに加え、水素分離金属層を形成する金属材料の使用量の増加に伴ってコスト高になるからである。

The thickness of the hydrogen separation metal layer is arbitrary within a thickness range of about 1/2 or less of the porous body as long as the basic property of allowing only hydrogen to permeate and not allowing other gases to permeate can be secured. The thickness can be set. In this case, the thickness of the hydrogen separation metal layer is preferably set to, for example, 1 μm to 30 μm, particularly 3 μm to 15 μm. This is because if the hydrogen separation metal layer is thinner than the above value, the basic property of permeating only hydrogen and not allowing other gases to permeate may not be secured. Conversely, if the hydrogen separation metal layer is thicker than the above value, the hydrogen permeability may deteriorate, and the cost increases as the amount of metal material used to form the hydrogen separation metal layer increases. Because it becomes.

 水素分離金属層は、水素を分離するべく水素の吸着・解離に対する活性を有する金属を材料として形成され、具体的にはパラジウム(Pd)単体を主成分とするパラジウム層、またはパラジウムと他の1種以外の金属との合金からなるパラジウム合金層であることが好ましい。その理由は、パラジウム層やパラジウム合金層は水素の吸着・解離に対する活性が他の金属や合金に比べて高いため、水素を効率よく透過する水素分離金属層を実現しやすいからである。なお、水素脆化の抑制という観点からすると、パラジウム層よりもパラジウム合金層を採用することが望ましい。

The hydrogen separation metal layer is formed using a metal having activity for hydrogen adsorption / dissociation as a material to separate hydrogen, specifically, a palladium layer containing palladium (Pd) alone as a main component, or palladium and another 1 A palladium alloy layer made of an alloy with a metal other than the seed is preferable. The reason is that the palladium layer and the palladium alloy layer have a higher activity for hydrogen adsorption / dissociation than other metals and alloys, so that it is easy to realize a hydrogen separation metal layer that efficiently transmits hydrogen. From the viewpoint of suppressing hydrogen embrittlement, it is desirable to employ a palladium alloy layer rather than a palladium layer.

 パラジウム合金層の好適例としては、例えば、パラジウム銀合金(PdAg合金)、パラジウム銅合金(PdCu合金)、パラジウム金合金(PdAu合金)等が挙げられる。なお、パラジウム合金層は、パラジウムと銅、銀との合金、パラジウムと金、銀との合金、パラジウムと銅、金との合金、パラジウムと金、銅、銀との合金であってもよい。これらの合金のなかでも、とりわけパラジウム銀合金を選択することが望ましい。その理由は、パラジウム銀合金は上記合金のなかで最も効率よく水素を透過する性質を有するからである。

Preferable examples of the palladium alloy layer include, for example, palladium silver alloy (PdAg alloy), palladium copper alloy (PdCu alloy), palladium gold alloy (PdAu alloy) and the like. The palladium alloy layer may be an alloy of palladium and copper, silver, palladium and gold, an alloy of silver, an alloy of palladium and copper, an alloy of gold, an alloy of palladium and gold, copper, or silver. Among these alloys, it is particularly desirable to select a palladium silver alloy. The reason is that the palladium silver alloy has the property of transmitting hydrogen most efficiently among the above alloys.

 ここで、パラジウム合金層は、パラジウムと、金、銀及び銅から選択される少なくとも1種の金属とを主成分として含んでいるものであればよく、これら以外の金属を少量含んでいるものであっても勿論構わない。なお、「これら以外の金属」の例としては、例えば、パラジウム以外の白金族金属(白金(Pt)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)、オスミウム(Os))があるほか、インジウム(In)、ガリウム(Ga)、スズ(Sn)、亜鉛(Zn)などが挙げられる。

Here, the palladium alloy layer only needs to contain palladium and at least one metal selected from gold, silver, and copper as main components, and contains a small amount of other metals. Of course it does not matter. Examples of “metals other than these” include, for example, platinum group metals (platinum (Pt), rhodium (Rh), ruthenium (Ru), iridium (Ir), osmium (Os)) other than palladium. , Indium (In), gallium (Ga), tin (Sn), zinc (Zn), and the like.

 触媒金属層は、多孔質体の表面と水素分離金属層との間の領域である表層部に担持された触媒金属からなる層である。触媒金属としては目的に応じて任意に選択することができる。例えば、触媒金属層を構成する触媒金属はパラジウムであってもよい。この場合には、触媒金属層によって水素付加反応が促進されるため、例えば潤滑油の再生等の用途に適した水素透過膜とすることができる。このとき、触媒金属層は必ずしもパラジウム単体によって構成されていなくてもよく、パラジウムを主成分として含んで構成されるもの(即ちパラジウム以外の金属を若干含むもの)であってもよい。

The catalyst metal layer is a layer made of a catalyst metal supported on a surface layer portion that is a region between the surface of the porous body and the hydrogen separation metal layer. The catalyst metal can be arbitrarily selected according to the purpose. For example, the catalyst metal constituting the catalyst metal layer may be palladium. In this case, the hydrogenation reaction is promoted by the catalytic metal layer, so that a hydrogen permeable membrane suitable for applications such as regeneration of lubricating oil can be obtained. At this time, the catalyst metal layer does not necessarily need to be composed of palladium alone, and may be composed of palladium as a main component (that is, a material that contains a little metal other than palladium).

 触媒金属層を構成する触媒金属は鉄(Fe)であってもよい。鉄を触媒金属とする触媒金属層は水素と窒素とからアンモニアを生成する化学反応を促進するため、例えばアンモニアの製造等の用途に適した水素透過膜とすることができる。このとき、触媒金属層は必ずしも鉄単体によって構成されていなくてもよく、鉄を主成分として含んで構成されるもの(即ち鉄以外の金属を若干含むもの)であってもよい。

The catalyst metal constituting the catalyst metal layer may be iron (Fe). Since the catalytic metal layer using iron as a catalytic metal promotes a chemical reaction for producing ammonia from hydrogen and nitrogen, it can be a hydrogen permeable membrane suitable for applications such as ammonia production. At this time, the catalyst metal layer does not necessarily need to be composed of iron alone, and may be composed of iron as a main component (that is, a material that contains some metal other than iron).

 また、触媒金属層を構成する触媒金属はルテニウム(Ru)及びニッケル(Ni)から選択される少なくとも1種の金属であってもよい。ルテニウムやニッケルを触媒金属とする触媒金属層は炭化水素及び水から水素を発生させる化学反応を促進するため、例えば水素の製造等の用途に適した水素透過膜とすることができる。このとき、触媒金属層は必ずしもルテニウム単体及びニッケル単体の少なくともいずれかによって構成されていなくてもよく、ルテニウムやニッケルを主成分として含んで構成されるもの(即ちルテニウムやニッケル以外の金属を若干含むもの)であってもよい。

Further, the catalyst metal constituting the catalyst metal layer may be at least one metal selected from ruthenium (Ru) and nickel (Ni). Since the catalytic metal layer using ruthenium or nickel as a catalytic metal promotes a chemical reaction that generates hydrogen from hydrocarbons and water, it can be a hydrogen permeable membrane suitable for applications such as hydrogen production. At this time, the catalyst metal layer does not necessarily need to be composed of at least one of ruthenium and nickel, and is composed of ruthenium or nickel as a main component (that is, some of metals other than ruthenium or nickel are included). Thing).

 また、触媒金属層を構成する触媒金属は白金(Pt)であってもよい。白金を触媒金属とする触媒金属層はNOxに水素を付加して還元する化学反応を促進するため、例えばNOxの浄化等の用途に適した水素透過膜とすることができる。このとき、触媒金属層は必ずしも白金単体によって構成されていなくてもよく、白金を主成分として含んで構成されるもの(即ち白金以外の金属を若干含むもの)であってもよい。

Further, the catalytic metal constituting the catalytic metal layer may be platinum (Pt). Since the catalytic metal layer using platinum as the catalytic metal promotes a chemical reaction in which hydrogen is added to NOx for reduction, a hydrogen permeable membrane suitable for applications such as NOx purification can be obtained. At this time, the catalytic metal layer does not necessarily need to be composed of platinum alone, and may be composed of platinum as a main component (that is, a material containing a little metal other than platinum).

 水素分離金属層と触媒金属層との離間距離は特に限定されず任意に設定されるが、例えば100μm以下であることが好ましく、30μm以下であることがさらに好ましく、5μm以下であることが特に好ましい。その理由は、水素分離金属層と触媒金属層との離間距離が小さければ小さいほど、触媒金属が原子状態の水素と遭遇する機会が多くなり、水素と被処理物との反応性が高くなる結果、処理効率が高い水素透過膜とすることができるからである。

The separation distance between the hydrogen separation metal layer and the catalyst metal layer is not particularly limited and is arbitrarily set. For example, it is preferably 100 μm or less, more preferably 30 μm or less, and particularly preferably 5 μm or less. . The reason for this is that the smaller the separation distance between the hydrogen separation metal layer and the catalyst metal layer, the greater the chance that the catalyst metal will encounter atomic hydrogen and the higher the reactivity between the hydrogen and the object to be treated. This is because a hydrogen permeable membrane with high processing efficiency can be obtained.

 ここで、触媒金属層が形成される部位である表層部の厚さ(換言すると、表面から水素分離金属層がある位置までの深さ)は特に限定されず任意に設定されるが、例えば3μm~100μmであることが好ましく、5μm~50μmであることがより好ましく、10μm~30μmであることが最も好ましい。即ち、表層部の厚さが上記値未満であると、触媒金属層が多孔質体の表面から近くなってしまい、被処理物中の異物によって触媒金属層が傷付けられる可能性が高くなる。また、この場合には触媒金属の担持量が少なくなってしまう。逆に表層部の厚さが上記値を超えるものであると、多孔質層内における被処理物の拡散性が悪くなり、処理効率が低下してしまう。なお、触媒金属層の厚さは上記表層部の厚さの範囲内で任意の厚さに設定することができ、好ましくは3μm以上、より好ましくは5μm以上、特に好ましくは10μm以上に設定される。

Here, the thickness of the surface layer portion (in other words, the depth from the surface to the position where the hydrogen separation metal layer is located), which is a portion where the catalytic metal layer is formed, is not particularly limited and is arbitrarily set, for example, 3 μm Is preferably from 100 μm to 100 μm, more preferably from 5 μm to 50 μm, and most preferably from 10 μm to 30 μm. That is, when the thickness of the surface layer portion is less than the above value, the catalyst metal layer becomes closer to the surface of the porous body, and the possibility that the catalyst metal layer is damaged by foreign matters in the object to be processed increases. In this case, the amount of catalyst metal supported is reduced. Conversely, when the thickness of the surface layer portion exceeds the above value, the diffusibility of the object to be processed in the porous layer is deteriorated, and the processing efficiency is lowered. The thickness of the catalyst metal layer can be set to any thickness within the range of the thickness of the surface layer portion, preferably 3 μm or more, more preferably 5 μm or more, and particularly preferably 10 μm or more. .

 触媒金属層を構成する触媒金属は、基本的には表層部における細孔の内壁面上にて、細孔を充填しない状態(即ち、細孔を閉塞しない状態)で担持される。ただし、触媒金属における少なくとも一部のものは、水素分離金属層に接触した状態で担持されていてもよい。つまり、水素分離金属層と触媒金属層との離間距離は0μmであってもよい。このような構造であると、当該一部の触媒金属については、水素分離金属層を透過した原子状態の水素と遭遇する機会が非常に多くなり、水素と被処理物との反応性がいっそう高くなる。

The catalyst metal constituting the catalyst metal layer is basically supported on the inner wall surface of the pore in the surface layer portion in a state where the pore is not filled (that is, a state where the pore is not blocked). However, at least a part of the catalyst metal may be supported in contact with the hydrogen separation metal layer. That is, the separation distance between the hydrogen separation metal layer and the catalyst metal layer may be 0 μm. With such a structure, for some of the catalytic metals, the chance of encountering atomic hydrogen that has passed through the hydrogen separation metal layer is greatly increased, and the reactivity between hydrogen and the object to be treated is even higher. Become.

 触媒金属層は触媒金属の濃度が均一であってもよいが、例えば、表面から裏面へ行くほど触媒金属の濃度が高くなる濃度勾配を有していてもよい。このような濃度勾配を有したものであると、担持量を等しくしたときであっても、水素分離金属層を透過した原子状態の水素と遭遇する触媒金属の割合が多くなり、水素と被処理物との反応性がいっそう高くなる。また、多孔質体の表面付近における触媒金属が少なくなる結果、被処理物中の異物によって触媒金属層が傷付けられにくくなる。

The catalyst metal layer may have a uniform concentration of the catalyst metal. For example, the catalyst metal layer may have a concentration gradient in which the concentration of the catalyst metal increases from the front surface to the back surface. With such a concentration gradient, even when the supported amount is equal, the ratio of catalytic metal that encounters atomic hydrogen that has permeated through the hydrogen separation metal layer increases, and hydrogen and the treatment target. The reactivity with things becomes even higher. In addition, as a result of the reduction of the catalyst metal in the vicinity of the surface of the porous body, the catalyst metal layer is less likely to be damaged by foreign matter in the object to be processed.

 また、上記課題を解決するための別の手段(手段2)としては、多孔質体製支持体の主面上に、手段1に記載の水素透過膜が支持された状態で形成されている触媒担持型水素透過膜モジュールがある。

Further, as another means (means 2) for solving the above problems, a catalyst formed in a state where the hydrogen permeable membrane described in the means 1 is supported on the main surface of the porous support. There is a supported hydrogen permeable membrane module.

 従って、手段2に記載の発明によると、手段1の作用効果を奏することに加え、多孔質体製支持体によってモジュールに必要な強度が付与されつつ水素透過膜が支持されるため、水素透過膜には必要最小限の強度を付与すればよくなり、水素透過膜を薄いものとすることができる。

Therefore, according to the invention described in the means 2, in addition to the effects of the means 1, the hydrogen permeable membrane is supported by the porous support while the module is provided with the necessary strength. It is sufficient to provide the necessary minimum strength, and the hydrogen permeable membrane can be made thin.

 多孔質体製支持体は、支持体表面及び支持体裏面間で通気性を有するものであれば、用途に応じてその形状、大きさ、材料等を任意に選択することが可能である。

As long as the support made of a porous material has air permeability between the support surface and the back surface of the support, the shape, size, material, etc. can be arbitrarily selected according to the application.

 多孔質体製支持体の材料の好適例としては、手段1にて水素透過膜の多孔質体として用いた材料と同様の材料(即ち、多数の細孔を有するセラミック、ガラス、金属、合成樹脂など)が挙げられるが、なかでもセラミックが特に好ましい。この場合のセラミックとしては、具体的には、ジルコニア、安定化ジルコニア、アルミナ、マグネシア、セリア、ドープドセリア及びこれらの混合物などを挙げることができる。なお、多孔質体を形成するセラミックと多孔質体製支持体を形成するセラミックとは異種のものでもよいが、同種のものであることが好ましい。同種のもの同士であると熱膨張係数差がなく、熱応力が殆ど付加しないので、例えば高温での使用に適したものとすることができる。従って、例えば多孔質体をイットリア安定化ジルコニアで形成した場合には、多孔質体製支持体についてもイットリア安定化ジルコニアで形成することが望ましい。

Preferable examples of the material for the porous body support are the same materials as the material used as the porous body of the hydrogen permeable membrane in means 1 (that is, ceramic, glass, metal, synthetic resin having a large number of pores Among them, ceramic is particularly preferable. Specific examples of the ceramic in this case include zirconia, stabilized zirconia, alumina, magnesia, ceria, doped ceria, and mixtures thereof. The ceramic forming the porous body and the ceramic forming the porous body support may be different, but the same kind is preferable. If they are of the same type, there is no difference in thermal expansion coefficient, and almost no thermal stress is applied, so that they can be suitable for use at high temperatures, for example. Therefore, for example, when the porous body is formed of yttria-stabilized zirconia, it is desirable that the porous support is also formed of yttria-stabilized zirconia.

 多孔質体製支持体は、内部空間を有する形状、別の言い方をすると裏面としての内面と、表面としての外面を有する形状であることが好ましい。このような形状であると、水素の原料である含水素ガス及び被処理物を、モジュール内外にて互いに隔てた状態で供給しやすくなる。なお、多孔質体製支持体は例えば両端に開口を有する筒状体が好適であり、さらには一方の開口が閉塞された筒状体がより好適である。

The porous support is preferably in a shape having an internal space, in other words, a shape having an inner surface as a back surface and an outer surface as a surface. With such a shape, it becomes easy to supply the hydrogen-containing gas which is a raw material of hydrogen and the object to be processed while being separated from each other inside and outside the module. The porous support is preferably a cylindrical body having openings at both ends, and more preferably a cylindrical body with one opening closed.

 また、上記課題を解決するための別の手段(手段3)としては、水素添加による処理を受ける被処理物が供給される処理槽と、前記処理槽内に配置され、開口端及び閉塞端を有する筒状体からなる多孔質体製支持体の外面上に、手段1に記載の水素透過膜が支持されてなる触媒担持型水素透過膜モジュールと、前記モジュールの前記開口端側に接続され、前記開口端を介して前記多孔質体製支持体の内面側に含水素ガスを導入するガス導入管とを備えた水素添加装置がある。

Further, as another means (means 3) for solving the above-mentioned problems, a processing tank to which an object to be processed by hydrogenation is supplied, a processing tank disposed in the processing tank, and an open end and a closed end are provided. A catalyst-supporting hydrogen permeable membrane module in which the hydrogen permeable membrane described in the means 1 is supported on the outer surface of a porous support made of a cylindrical body, and connected to the opening end side of the module; There is a hydrogenation apparatus provided with a gas introduction pipe for introducing a hydrogen-containing gas to the inner surface side of the porous support through the open end.

 従って、手段3に記載の発明によると、処理槽に被処理物を供給してモジュールの外面側に被処理物を接触させるとともに、ガス導入管からモジュールの開口端を介して多孔質体製支持体の内面側に含水素ガスを導入した場合、含水素ガス中の水素のみが原子状になって水素分離金属層を透過する。水素分離金属層を透過した水素原子は、多孔質体の表層部にある触媒金属層の触媒金属に遭遇し、そこで被処理物の水素付加反応を促進し、被処理物を効率よく還元する。ここで、水素分離金属層及び触媒金属層はともに水素透過膜の表面に露出していないので、被処理物中に異物が含まれていたとしても、その異物によって水素分離金属層及び触媒金属層が傷付けられることはなく破損が防止され、耐久性が向上する。また、触媒金属層における触媒金属の担持量が維持されるため、処理効率の低下も防止することができる。なお、多孔質体の表面ではなく、比表面積の大きな表層部に触媒金属層が担持されていることから、金属触媒の担持量が多い触媒金属とすることができる。しかも、触媒金属層を表層部に形成した本発明では、触媒金属層を多孔質体の表面に形成したものに比べて、触媒金属層と水素分離金属層との距離が近くなる。よって、触媒金属が反応性の高い水素原子と遭遇する確率が高くなるという利点がある。

Therefore, according to the invention described in the means 3, the object to be treated is supplied to the treatment tank so that the object to be treated is brought into contact with the outer surface side of the module, and the porous body is supported from the gas introduction pipe through the open end of the module. When hydrogen-containing gas is introduced into the inner surface of the body, only hydrogen in the hydrogen-containing gas becomes atomic and permeates the hydrogen separation metal layer. The hydrogen atoms that permeate the hydrogen separation metal layer encounter the catalyst metal in the catalyst metal layer in the surface layer portion of the porous body, where the hydrogen addition reaction of the object to be treated is promoted, and the object to be treated is efficiently reduced. Here, since both the hydrogen separation metal layer and the catalyst metal layer are not exposed on the surface of the hydrogen permeable membrane, even if foreign matter is contained in the object to be treated, the hydrogen separation metal layer and the catalyst metal layer are caused by the foreign matter. Is prevented from being damaged, and the durability is improved. Further, since the amount of the catalyst metal supported in the catalyst metal layer is maintained, it is possible to prevent a reduction in processing efficiency. In addition, since the catalyst metal layer is supported not on the surface of the porous body but on the surface layer portion having a large specific surface area, a catalyst metal having a large amount of metal catalyst supported can be obtained. Moreover, in the present invention in which the catalyst metal layer is formed on the surface layer portion, the distance between the catalyst metal layer and the hydrogen separation metal layer is shorter than that in which the catalyst metal layer is formed on the surface of the porous body. Therefore, there is an advantage that the probability that the catalytic metal encounters a highly reactive hydrogen atom is increased.

 ここで、多孔質体製支持体の例えば軸方向端部などにガス透過性を有しない緻密部を接合して、モジュールを構成してもよい。ここで、「ガス透過性を有しない」とは、水素が分離される含水素ガス(原料ガス)の透過を防止できればよく、例えば相対密度70%以上の緻密さを有することであると定義できる。なお、緻密部を構成する好適な材料としてはセラミックが挙げられ、例えば、手段1にて水素透過膜の多孔質体として用いた材料や、多孔質体製支持体として用いた材料と同様の材料を緻密化して使用することができる。この場合、緻密部を構成するセラミックは、多孔質体及び多孔質体製支持体を構成するセラミックと同種でも異種でもよいが、熱膨張係数差をなくすという観点から同種のものとすることが好適である。

Here, a module may be configured by joining a dense portion having no gas permeability to, for example, an axial end of the porous support. Here, “having no gas permeability” is only required to prevent permeation of a hydrogen-containing gas (raw material gas) from which hydrogen is separated, and can be defined as having a denseness of, for example, a relative density of 70% or more. . In addition, ceramic is mentioned as a suitable material which comprises a precise | minute part, For example, the material similar to the material used as the porous body of a hydrogen permeable film in the means 1, and the material used as a support body made from a porous body Can be used after densification. In this case, the ceramic constituting the dense part may be the same or different from the ceramic constituting the porous body and the porous body support, but is preferably the same kind from the viewpoint of eliminating the difference in thermal expansion coefficient. It is.

 また、上記課題を解決するための別の手段(手段4)としては、水素添加による還元再生処理を受ける潤滑油が供給される還元処理槽と、酸化した前記潤滑油を前記還元処理槽に供給する酸化油回収管と、再生された前記潤滑油を前記還元処理槽から送出する再生油回収管と、前記還元処理槽内に配置され、開口端及び閉塞端を有する筒状体からなる多孔質体製支持体の外面上に、手段1に記載の水素透過膜が支持されてなる触媒担持型水素透過膜モジュールと、前記モジュールの前記開口端側に接続され、前記開口端を介して前記多孔質体製支持体の内面側に含水素ガスを導入するガス導入管とを備えた潤滑油再生装置がある。

Further, as another means (means 4) for solving the above problems, a reduction treatment tank to which a lubricating oil subjected to a reduction regeneration process by hydrogenation is supplied, and the oxidized lubricating oil is supplied to the reduction treatment tank. An oxidized oil recovery pipe, a regenerated oil recovery pipe for delivering the regenerated lubricating oil from the reduction treatment tank, and a porous body that is disposed in the reduction treatment tank and has a cylindrical body having an open end and a closed end A catalyst-carrying hydrogen permeable membrane module in which the hydrogen permeable membrane according to means 1 is supported on the outer surface of the body-made support, and is connected to the opening end side of the module, and the porous There is a lubricating oil regenerator provided with a gas introduction pipe for introducing a hydrogen-containing gas on the inner surface side of a solid support.

 従って、手段4に記載の発明によると、酸化油回収管によって還元処理槽に酸化した潤滑油が供給され、モジュールの外面側に酸化した潤滑油が接触した状態となる。この状態でガス導入管からモジュールの開口端を介して多孔質体製支持体の内面側に含水素ガスを導入すると、含水素ガス中の水素のみが原子状になって水素分離金属層を透過する。水素分離金属層を透過した水素原子は、多孔質体の表層部にある触媒金属層の触媒金属に遭遇し、そこで酸化した潤滑油中に含まれる物質に対する水素付加反応を促進し、当該物質を効率よく還元する。その結果、酸化した潤滑油が再生され、その再生された潤滑油が再生油回収管によって還元処理槽から送出される。ここで、水素分離金属層及び触媒金属層はともに水素透過膜の表面に露出していないので、潤滑油中に金属の摩耗粉などの異物が含まれていたとしても、その異物によって水素分離金属層及び触媒金属層が傷付けられることはなく破損が防止され、耐久性が向上する。また、触媒金属層における触媒金属の担持量が維持されるため、処理効率の低下も防止することができる。なお、多孔質体の表面ではなく、比表面積の大きな表層部に触媒金属層が担持されていることから、金属触媒の担持量が多い触媒金属層とすることができる。しかも、触媒金属層を表層部に形成した本発明では、触媒金属層を多孔質体の表面に形成したものに比べて、触媒金属層と水素分離金属層との距離が近くなる。よって、触媒金属が反応性の高い水素原子と遭遇する確率が高くなるという利点がある。

 また、上記課題を解決するための別の手段(手段5)としては、上記手段1に記載の触媒担持型水素透過膜の製造方法であって、触媒金属を含有する触媒液に、前記水素分離金属層が形成された前記多孔質体を浸漬した状態で、前記多孔質体の前記裏面側から水素ガスを供給し、前記触媒液中の触媒金属イオンを還元することにより、前記表層部に前記触媒金属を析出させる触媒金属層形成工程を有することを特徴とする触媒担持型水素透過膜の製造方法がある。

 従って、手段5に記載の発明によると、裏面側から水素分離金属層を通過して表面側に到った原子状の水素が、触媒液中の金属イオンを還元する。その結果、水素分離金属層上及び細孔の内壁面に当該金属が析出し、表層部に触媒金属層が形成される。ゆえに、このような触媒金属層形成工程によれば、表層部に触媒金属を比較的簡単にかつ確実に析出させることができる。

Therefore, according to the invention described in the means 4, the oxidized lubricating oil is supplied to the reduction treatment tank by the oxidized oil recovery pipe, and the oxidized lubricating oil comes into contact with the outer surface side of the module. In this state, when hydrogen-containing gas is introduced from the gas introduction pipe to the inner surface of the porous support through the open end of the module, only hydrogen in the hydrogen-containing gas becomes atomic and permeates the hydrogen separation metal layer. To do. The hydrogen atoms that permeate the hydrogen separation metal layer encounter the catalyst metal in the catalyst metal layer on the surface layer portion of the porous body, promote the hydrogen addition reaction to the substance contained in the oxidized lubricating oil there, and Reduce efficiently. As a result, the oxidized lubricating oil is regenerated, and the regenerated lubricating oil is sent out from the reduction treatment tank through the regenerated oil recovery pipe. Here, since both the hydrogen separation metal layer and the catalyst metal layer are not exposed on the surface of the hydrogen permeable membrane, even if foreign matter such as metal wear powder is contained in the lubricating oil, the foreign matter is separated by the foreign matter. The layer and the catalytic metal layer are not damaged, damage is prevented, and durability is improved. Further, since the amount of the catalyst metal supported in the catalyst metal layer is maintained, it is possible to prevent a reduction in processing efficiency. In addition, since the catalyst metal layer is supported not on the surface of the porous body but on the surface layer portion having a large specific surface area, the catalyst metal layer having a large amount of metal catalyst supported can be obtained. Moreover, in the present invention in which the catalyst metal layer is formed on the surface layer portion, the distance between the catalyst metal layer and the hydrogen separation metal layer is shorter than that in which the catalyst metal layer is formed on the surface of the porous body. Therefore, there is an advantage that the probability that the catalytic metal encounters a highly reactive hydrogen atom is increased.

Further, as another means (means 5) for solving the above-mentioned problem, there is provided a method for producing a catalyst-supporting hydrogen permeable membrane according to the above means 1, wherein the hydrogen separation is performed on a catalyst liquid containing a catalyst metal. In the state where the porous body in which the metal layer is formed is immersed, hydrogen gas is supplied from the back side of the porous body, and by reducing the catalyst metal ions in the catalyst solution, the surface layer portion is There is a method for producing a catalyst-supporting hydrogen permeable membrane, comprising a catalyst metal layer forming step of depositing a catalyst metal.

Therefore, according to the invention described in the means 5, the atomic hydrogen that has passed through the hydrogen separation metal layer from the back surface side and reached the front surface side reduces the metal ions in the catalyst solution. As a result, the metal is deposited on the hydrogen separation metal layer and on the inner wall surfaces of the pores, and a catalytic metal layer is formed on the surface layer portion. Therefore, according to such a catalyst metal layer forming step, the catalyst metal can be relatively easily and reliably deposited on the surface layer portion.

(a)は本発明を具体化した一実施形態の触媒担持型水素透過膜モジュールを示す概略断面図、(b)は同モジュールに金属継手を介して管を接続した状態を示す概略正面図。(A) is a schematic sectional drawing which shows the catalyst carrying | support type hydrogen permeable membrane module of one Embodiment which actualized this invention, (b) is a schematic front view which shows the state which connected the pipe | tube to the same module via the metal coupling. 同モジュールにおける要部拡大断面図。The principal part expanded sectional view in the module. (a)~(d)は同モジュールの製造工程において、セラミック基体を成形する手順を説明するための概略図。FIGS. 4A to 4D are schematic views for explaining a procedure for forming a ceramic substrate in the manufacturing process of the module. 同モジュールの製造工程において、(a)は多孔質体製支持体上に多孔質体を形成する前の状態を示す一部破断概略図、(b)は多孔質体製支持体上に多孔質体を形成した後の状態を示す一部破断概略図。In the manufacturing process of the module, (a) is a partially broken schematic view showing a state before the porous body is formed on the porous body support, and (b) is porous on the porous body support. The partial fracture | rupture schematic which shows the state after forming a body. 同モジュールの製造工程において、触媒金属層を形成するときの前後の様子を示す要部拡大概略図。The principal part expansion schematic which shows the mode before and behind when forming a catalyst metal layer in the manufacturing process of the module. 実施例において、同モジュールを用いて構成された潤滑油再生試験装置を示す概略図。In the Example, the schematic which shows the lubricating oil reproduction | regeneration test apparatus comprised using the same module. 同モジュールにおいて、水素分離金属層の形成後かつ触媒金属層の形成前の状態の多孔質体を示すSEM写真。The SEM photograph which shows the porous body of the state in the same module after formation of a hydrogen separation metal layer and before formation of a catalyst metal layer.

 以下、本発明を触媒担持型水素透過膜モジュール及びそれを用いた潤滑油再生装置に具体化した一実施形態を図1~図7に基づき詳細に説明する。

Hereinafter, an embodiment in which the present invention is embodied in a catalyst-supporting hydrogen permeable membrane module and a lubricating oil regenerating apparatus using the same will be described in detail with reference to FIGS.

 図1(a)に示される本実施形態の触媒担持型水素透過膜モジュール11は、原料ガスである含水素ガスG1から水素を分離するための機器であって、基本的に多孔質体製支持体12、緻密部21及び触媒担持型水素透過膜31により構成されている。

The catalyst-carrying hydrogen permeable membrane module 11 of the present embodiment shown in FIG. 1 (a) is a device for separating hydrogen from a hydrogen-containing gas G1, which is a raw material gas, and is basically a porous body support. The body 12, the dense portion 21, and the catalyst-supporting hydrogen permeable membrane 31 are configured.

 水素透過膜モジュール11を構成する多孔質体製支持体12は、開口13を有する端部14(開口端)と開口13を有しない端部15(閉塞端)とを有する円筒状の部材である。この多孔質体製支持体12は、内面16及び外面17間で含水素ガスG1を透過しうる性質(ガス透過性)を有する多孔質セラミックにて構成されている。本実施形態において具体的には、厚さが1mm~2mm程度かつ気孔率が30%~50%程度の多孔質イットリア安定化ジルコニア(YSZ)を用いて、多孔質体製支持体12が構成されている。なお、含水素ガスG1としては、例えば、天然ガスと水蒸気とを触媒に接触させて生成した改質ガスなどが挙げられるが、純粋な水素ガスも含まれる。

The porous support 12 constituting the hydrogen permeable membrane module 11 is a cylindrical member having an end 14 (open end) having an opening 13 and an end 15 (closed end) having no opening 13. . The porous support 12 is composed of a porous ceramic having a property (gas permeability) that allows the hydrogen-containing gas G1 to pass between the inner surface 16 and the outer surface 17. Specifically, in this embodiment, the porous support 12 is made of porous yttria-stabilized zirconia (YSZ) having a thickness of about 1 mm to 2 mm and a porosity of about 30% to 50%. ing. The hydrogen-containing gas G1 includes, for example, a reformed gas generated by bringing natural gas and water vapor into contact with the catalyst, and pure hydrogen gas is also included.

 多孔質体製支持体12の開口側の端部14には、ガス透過性がなく、かつ多孔質体製支持体12よりも強度が高い緻密質セラミックからなる円筒状の緻密部21が一体的に設けられている。本実施形態の緻密部21は、具体的には、気孔率がほぼ0%の緻密質YSZを用いて構成されている。その結果、多孔質体製支持体12と緻密部21とによりモジュール基体が構成され、その内側には内部空間22が形成されている。

The end 14 on the opening side of the porous support 12 is integrally formed with a cylindrical dense portion 21 made of a dense ceramic that is not gas permeable and has higher strength than the porous support 12. Is provided. Specifically, the dense portion 21 of the present embodiment is configured using dense YSZ having a porosity of approximately 0%. As a result, the porous substrate 12 and the dense portion 21 constitute a module base, and an internal space 22 is formed inside thereof.

 また、図1(b)に示されるように、水素透過膜モジュール11の基端側に位置する緻密部21には、取付金具、押圧金具、シール材、固定金具等からなる金属継手51が螺着され、その金属継手51を介して含水素ガスG1を導入するための管(即ちガス導入管52)が接続されるようになっている。

Further, as shown in FIG. 1B, a metal joint 51 made of a mounting bracket, a pressing bracket, a sealing material, a fixing bracket and the like is screwed into the dense portion 21 located on the proximal end side of the hydrogen permeable membrane module 11. The pipe for introducing the hydrogen-containing gas G1 (that is, the gas introduction pipe 52) is connected through the metal joint 51.

 多孔質体製支持体12と緻密部21の一部にまたがって、外面17全体を被覆するように触媒担持型水素透過膜31が一体的に形成されている。つまり、この水素透過膜31は多孔質体製支持体12と緻密部21とによって支持されていると把握することができる。

A catalyst-supporting hydrogen permeable membrane 31 is integrally formed so as to cover the entire outer surface 17 across the porous body support 12 and a part of the dense portion 21. That is, it can be understood that the hydrogen permeable membrane 31 is supported by the porous support 12 and the dense portion 21.

 図2にて拡大して示されるように、この水素透過膜31は、表面32及び裏面33を有し、膜状をなす多孔質体35を主体として構成されている。本実施形態おける多孔質体35は、具体的には、厚さが20μm~40μm程度かつ気孔率が40%~60%程度の多孔質YSZを用いて構成されている。この多孔質体35は、表面32及び裏面33を連通する多数の細孔34を内部に有することから、多孔質体製支持体12と同様に好適なガス及び液体透過性を有している。なお、本実施形態の多孔質体35は、第1多孔質層37上に第2多孔質層38を一体的に形成してなる構造を有する。

As shown in an enlarged view in FIG. 2, the hydrogen permeable membrane 31 has a front surface 32 and a back surface 33 and is mainly composed of a porous body 35 having a film shape. Specifically, the porous body 35 in the present embodiment is configured using porous YSZ having a thickness of about 20 μm to 40 μm and a porosity of about 40% to 60%. Since the porous body 35 has a large number of pores 34 communicating with the front surface 32 and the back surface 33, the porous body 35 has suitable gas and liquid permeability like the porous body support 12. Note that the porous body 35 of the present embodiment has a structure in which a second porous layer 38 is integrally formed on a first porous layer 37.

 多孔質体35内における所定の深さ位置、具体的には表面32から10μm~15μm程度の深さ位置には、水素分離金属層41が細孔34を充填するような状態で形成されている。従って、水素分離金属層41は、多孔質体35内に完全に埋設されていて、多孔質体35の表面32から露出してない状態となっている。また、この水素分離金属層41は、多孔質体35の裏面33に供給した含水素ガスG1から水素を分離し、その水素を原子の状態で裏面33側から表面32側へ選択的に透過させることができる性質を備えている。本実施形態の水素分離金属層41は、厚さが5μm~15μm程度に設定されたPdAg合金層である。なお、このPdAg合金層は、後述するように、無電解めっきによって形成された内層側のPd層と、電解めっきによって形成された外層側のAg層とを合金化してなるものである。

At a predetermined depth position in the porous body 35, specifically, at a depth position of about 10 μm to 15 μm from the surface 32, the hydrogen separation metal layer 41 is formed so as to fill the pores. . Therefore, the hydrogen separation metal layer 41 is completely embedded in the porous body 35 and is not exposed from the surface 32 of the porous body 35. Further, the hydrogen separation metal layer 41 separates hydrogen from the hydrogen-containing gas G1 supplied to the back surface 33 of the porous body 35 and selectively permeates the hydrogen from the back surface 33 side to the front surface 32 side in an atomic state. It has the property of being able to. The hydrogen separation metal layer 41 of this embodiment is a PdAg alloy layer whose thickness is set to about 5 μm to 15 μm. As will be described later, this PdAg alloy layer is formed by alloying an inner Pd layer formed by electroless plating and an outer Ag layer formed by electrolytic plating.

 多孔質体35の表面32と水素分離金属層41との間の領域を「表層部」と定義した場合、その表層部には触媒金属層43が形成されている。その一方で、多孔質体35の表面32上にはこのような触媒金属層43が形成されていない。従って、触媒金属層43も水素分離金属層41と同様に、多孔質体35内に完全に埋設され、多孔質体35の表面32から露出してない状態となっている。本実施形態の触媒金属層43を構成する触媒金属42としては、Pd単体が使用されている。触媒金属42は、基本的には表層部における細孔34の内壁面上にて、細孔34を充填しない状態(即ち、細孔34を閉塞しない状態)で担持されている。

When a region between the surface 32 of the porous body 35 and the hydrogen separation metal layer 41 is defined as a “surface layer portion”, a catalyst metal layer 43 is formed on the surface layer portion. On the other hand, such a catalytic metal layer 43 is not formed on the surface 32 of the porous body 35. Therefore, like the hydrogen separation metal layer 41, the catalyst metal layer 43 is completely embedded in the porous body 35 and is not exposed from the surface 32 of the porous body 35. As the catalytic metal 42 constituting the catalytic metal layer 43 of the present embodiment, Pd alone is used. The catalyst metal 42 is basically supported on the inner wall surface of the pore 34 in the surface layer portion in a state where the pore 34 is not filled (that is, the pore 34 is not blocked).

 また、本実施形態における触媒金属層43は、表面32から裏面33へ行くほど、つまり内層にある水素分離金属層41に近づくほど触媒金属42の濃度が高くなる濃度勾配を有している。そして、触媒金属42における少なくとも一部のものは、水素分離金属層41に接触した状態で担持されている(図2、図5参照)。

Further, the catalyst metal layer 43 in the present embodiment has a concentration gradient in which the concentration of the catalyst metal 42 increases as the distance from the front surface 32 to the back surface 33, that is, the closer to the hydrogen separation metal layer 41 in the inner layer. At least a part of the catalyst metal 42 is supported in contact with the hydrogen separation metal layer 41 (see FIGS. 2 and 5).

 ここで、この水素透過膜モジュール11を製造する手順を説明する。まず、水素透過膜モジュール11を構成するモジュール基体をプレス成形により作製する。

Here, a procedure for manufacturing the hydrogen permeable membrane module 11 will be described. First, a module base constituting the hydrogen permeable membrane module 11 is produced by press molding.

 プレス成形は、図3(a)に示されるような型枠61を用いて行われる。この型枠61の筒状のゴム型62の軸中心には、モジュール基体の外形に対応した円柱形の内孔63が形成されている。この内孔63の軸中心には、内部空間22の形状に対応した円柱状(試験管形状)の中心ピン64が立設され、これにより略円筒形状の型枠孔65が形成されている。

The press molding is performed using a mold 61 as shown in FIG. A cylindrical inner hole 63 corresponding to the outer shape of the module base is formed at the axial center of the cylindrical rubber mold 62 of the mold 61. A columnar (test tube shape) center pin 64 corresponding to the shape of the internal space 22 is erected at the axial center of the inner hole 63, thereby forming a substantially cylindrical mold hole 65.

 そしてこのゴム型62の型枠孔65内に、まず、緻密部を形成する材料であるYSZ造粒粉を充填し、緻密部形成部66を形成する(図3(a)参照)。次に、同じくゴム型62の型枠孔65内における緻密部形成部66の上側に、多孔質体製支持体12を形成する材料であるYSZ造粒粉を充填し、多孔質体製支持体形成部67を形成する(図3(b)参照)。このYSZ造粒粉には、造孔材としての有機ビーズが添加されている。次に、ゴム型62の上部に上部金型68を固定する。上部金型68の成形面には、多孔質体製支持体12の先端に対応する形状の凹部69が形成されている(図3(c)参照)。この凹部69を嵌め込むことによって、多孔質体製支持体12と同じ形状の多孔質体製支持体形成部67が形成される。そして、この状態でゴム型62の外周側より加圧してプレス成形することにより、モジュール基体の形状(即ち試験管形状)に対応した成形体71を作製する(図3(d)参照)。次に、ゴム型62より取り出した成形体71を脱脂した後、焼成することにより、緻密部21と多孔質体製支持体12が一体となったセラミック焼結体72を得る(図4(a)参照)。

The mold hole 65 of the rubber mold 62 is first filled with YSZ granulated powder, which is a material for forming the dense portion, to form the dense portion forming portion 66 (see FIG. 3A). Next, YSZ granulated powder, which is a material for forming the porous body support body 12, is filled into the upper side of the dense portion forming portion 66 in the mold hole 65 of the rubber mold 62, and the porous body support body is filled. A forming portion 67 is formed (see FIG. 3B). Organic beads as a pore former are added to this YSZ granulated powder. Next, the upper mold 68 is fixed to the upper part of the rubber mold 62. A recess 69 having a shape corresponding to the tip of the porous support 12 is formed on the molding surface of the upper mold 68 (see FIG. 3C). By fitting the recess 69, a porous body support forming portion 67 having the same shape as the porous body support 12 is formed. In this state, the molded body 71 corresponding to the shape of the module base (that is, the shape of the test tube) is produced by pressurizing and pressing from the outer peripheral side of the rubber mold 62 (see FIG. 3D). Next, the molded body 71 taken out from the rubber mold 62 is degreased and fired to obtain a ceramic sintered body 72 in which the dense portion 21 and the porous body support 12 are integrated (FIG. 4A). )reference).

 次に、YSZ粉末を有機溶媒中に分散させたスラリーを作製し、ディップコーティング法によって、セラミック焼成体における多孔質体製支持体12の外面17の全体にスラリーを付着させる。そして、加熱して焼き付けを行い、多孔質体製支持体12の外面17を覆う第1多孔質層37を形成する。次に、第1多孔質層37の形成後の多孔質体製支持体12をSnイオン溶液に浸漬し、Snイオンを第1多孔質層37に吸着させる。そして水洗の後、上記多孔質体製支持体12をPdイオン溶液に浸漬させて、SnイオンとPdイオンとの交換反応によりPdイオンを吸着させる。

Next, a slurry in which YSZ powder is dispersed in an organic solvent is prepared, and the slurry is adhered to the entire outer surface 17 of the porous support 12 in the ceramic fired body by a dip coating method. And it heats and bakes and forms the 1st porous layer 37 which covers the outer surface 17 of the support body 12 made from a porous body. Next, the porous body support 12 after the formation of the first porous layer 37 is immersed in the Sn ion solution, and Sn ions are adsorbed on the first porous layer 37. Then, after washing with water, the porous support 12 is immersed in a Pd ion solution, and Pd ions are adsorbed by an exchange reaction between Sn ions and Pd ions.

 その後、上記多孔質体製支持体12をヒドラジン溶液等の還元剤溶液に浸漬させることにより、Pdイオンを還元し、Pd金属核とする。つまり、第1多孔質層37の細孔34の表面にPd金属核を付着させる。次に、YSZ粉末を分散させた上記スラリーを再度ディップコーティングして焼き付けることにより、第1多孔質層37上に第2多孔質層38を形成する。これにより、第1多孔質層37と第2多孔質層38とが一体となった構造の多孔質体35が形成される。その後、無電解めっき法により多孔質体35内部のPd核を成長させ、Pdからなる無電解めっき層を形成する。このとき、無電解Pdめっき液は、上記多孔質体製支持体12における多孔質体35の外面17の側より供給される。

Thereafter, the porous support 12 is immersed in a reducing agent solution such as a hydrazine solution to reduce Pd ions to form Pd metal nuclei. That is, Pd metal nuclei are attached to the surfaces of the pores 34 of the first porous layer 37. Next, the second porous layer 38 is formed on the first porous layer 37 by dip-coating and baking again the slurry in which the YSZ powder is dispersed. Thereby, the porous body 35 having a structure in which the first porous layer 37 and the second porous layer 38 are integrated is formed. Thereafter, Pd nuclei inside the porous body 35 are grown by electroless plating to form an electroless plating layer made of Pd. At this time, the electroless Pd plating solution is supplied from the outer surface 17 side of the porous body 35 in the porous body support 12.

 次に、上記多孔質体製支持体12の内部空間22に電解液を導入するとともに、その電解液中に給電電極を挿し込む。この状態の多孔質体製支持体12を対極が配置された浴温30℃の電解Agめっき液中にセットして、定電流電解めっきを施すことにより、無電解めっき層上にAgからなる電解めっき層を形成する。この後、窒素中で熱処理を行ってPdとAgとを合金化し、水素分離金属層41としてのPdAg層を形成する(図4(b)参照)。なお、図7はこのときの状態を示すSEM写真である。

Next, an electrolytic solution is introduced into the internal space 22 of the porous support 12 and a feeding electrode is inserted into the electrolytic solution. The porous support 12 in this state is set in an electrolytic Ag plating solution having a bath temperature of 30 ° C. on which a counter electrode is disposed, and is subjected to constant current electrolytic plating, whereby electrolysis made of Ag on the electroless plating layer. A plating layer is formed. Thereafter, heat treatment is performed in nitrogen to alloy Pd and Ag to form a PdAg layer as the hydrogen separation metal layer 41 (see FIG. 4B). FIG. 7 is an SEM photograph showing the state at this time.

 次に、以下の手順で触媒金属層43を形成する。まず、Pdイオン(触媒金属42のイオン)を含む触媒液82を容器81に入れたものを用意し、これに水素分離金属層41の形成後の上記多孔質体製支持体12を浸漬する。そして、上記多孔質体製支持体12の内部空間22に水素を供給する。この場合、内部空間22に供給された水素は、原子の状態となって水素分離金属層41を通過し、触媒液82に供給される(図5参照)。すると、触媒液82中のPdイオンが還元され、水素分離金属層41上及び細孔34の内壁面にPdが析出し、表層部に触媒金属層43が形成される。以上の手順を経ることで、本実施形態の触媒担持型水素透過膜モジュール11が完成する。

 以下、本実施形態をより具体化した実施例を示す。

Next, the catalyst metal layer 43 is formed by the following procedure. First, what prepared the catalyst liquid 82 containing Pd ion (ion of the catalyst metal 42) in the container 81 is prepared, and the said support body 12 made from the porous body after forming the hydrogen separation metal layer 41 is immersed in this. Then, hydrogen is supplied to the internal space 22 of the porous support 12. In this case, the hydrogen supplied to the internal space 22 becomes an atomic state, passes through the hydrogen separation metal layer 41, and is supplied to the catalyst liquid 82 (see FIG. 5). Then, Pd ions in the catalyst solution 82 are reduced, Pd is deposited on the hydrogen separation metal layer 41 and on the inner wall surfaces of the pores 34, and the catalyst metal layer 43 is formed on the surface layer portion. Through the above procedure, the catalyst-supporting hydrogen permeable membrane module 11 of the present embodiment is completed.

Hereinafter, examples in which the present embodiment is more specific will be described.

 ここでは、実施例の水素透過膜モジュール11を以下の手順で作製した。

Here, the hydrogen permeable membrane module 11 of Example was produced in the following procedures.

 まず、上述した型枠61を準備するとともに、そのゴム型62にYSZ造粒粉を充填し、次いで造孔材として48体積%の有機ビーズを添加したYSZ造粒粉を充填した後、プレス成形法により試験管形状をなす成形体71を成形した。後にモジュール基体となるこの成形体71を、脱脂後、大気雰囲気下にて1400℃で焼成することにより、緻密部21と多孔質体製支持体12とが一体となった外径10mm×長さ300mmのセラミック焼結体72を得た。

First, the mold 61 described above is prepared, and the rubber mold 62 is filled with YSZ granulated powder, and then filled with YSZ granulated powder with 48% by volume organic beads added as a pore former, followed by press molding. A formed body 71 having a test tube shape was formed by the method. The molded body 71 to be a module base later is degreased and fired at 1400 ° C. in an air atmosphere, whereby the dense portion 21 and the porous body support 12 are integrated into an outer diameter of 10 mm × length. A 300 mm ceramic sintered body 72 was obtained.

 次に、YSZ粉末を有機溶媒中に分散させたスラリーを作製し、ディップコーティング法によって、セラミック焼結体72における多孔質体製支持体12の外面17の全体にスラリーを付着させた。そして、1200℃に加熱して焼き付けを行い、多孔質体製支持体12の外面17を覆う第1多孔質層37を形成した。次に、第1多孔質層37の形成後の多孔質体製支持体12をSnイオン溶液に浸漬し、Snイオンを第1多孔質層37の表面に吸着させた。そして水洗の後、上記多孔質体製支持体12をPdイオン溶液に浸漬させて、SnイオンとPdイオンとの交換反応によりPdイオンを吸着させた。

Next, a slurry in which YSZ powder was dispersed in an organic solvent was prepared, and the slurry was adhered to the entire outer surface 17 of the porous support 12 in the ceramic sintered body 72 by a dip coating method. And it heated at 1200 degreeC and baked and formed the 1st porous layer 37 which covers the outer surface 17 of the support body 12 made from a porous body. Next, the porous body support 12 after the formation of the first porous layer 37 was immersed in an Sn ion solution, and Sn ions were adsorbed on the surface of the first porous layer 37. After washing with water, the porous support 12 was immersed in a Pd ion solution, and Pd ions were adsorbed by an exchange reaction between Sn ions and Pd ions.

 その後、上記多孔質体製支持体12をヒドラジン溶液に浸漬させることにより、Pdイオンを還元し、Pd金属核とした。次に、YSZ粉末を分散させた上記スラリーを再度ディップコーティングして焼き付けることにより、第1多孔質層37上に第2多孔質層38を形成した。これにより、第1多孔質層37と第2多孔質層38とが一体となった構造の多孔質体35を得た。その後、無電解めっき法により多孔質体35内部のPd核を成長させ、Pdからなる厚さ3.0μmの無電解めっき層を形成した。このとき、無電解Pdめっき液は、上記多孔質体製支持体12における多孔質体35の表面32の側より供給するようにした。

Thereafter, the porous support 12 was immersed in a hydrazine solution to reduce Pd ions to form Pd metal nuclei. Next, the second porous layer 38 was formed on the first porous layer 37 by dip-coating and baking the slurry in which the YSZ powder was dispersed again. Thereby, the porous body 35 having a structure in which the first porous layer 37 and the second porous layer 38 were integrated was obtained. Thereafter, Pd nuclei inside the porous body 35 were grown by an electroless plating method to form an electroless plating layer made of Pd and having a thickness of 3.0 μm. At this time, the electroless Pd plating solution was supplied from the surface 32 side of the porous body 35 in the porous body support 12.

 次に、上記多孔質体製支持体12の内部空間22に、濃度6.0mol/LのNaCl水溶液を電解液として導入した。次いで、電解液中に給電電極を挿し込み、この状態の多孔質体製支持体12を、対極が配置された浴温30℃の電解Agめっき液(硝酸銀濃度37g/L)中にセットした。そして、電流値0.3A/dmにて定電流電解めっきを2分間施すことにより、無電解めっき層上にAgからなる1.0μmの電解めっき層を形成した。この後、窒素中750℃で熱処理を行ってPdとAgとを合金化し、水素分離金属層41としての4.0μmのPdAg層を形成した。

Next, a 6.0 mol / L NaCl aqueous solution was introduced as an electrolytic solution into the internal space 22 of the porous support 12. Next, the feeding electrode was inserted into the electrolytic solution, and the porous support 12 in this state was set in an electrolytic Ag plating solution (silver nitrate concentration 37 g / L) at a bath temperature of 30 ° C. where the counter electrode was disposed. Then, by applying constant current electrolytic plating at a current value of 0.3 A / dm 2 for 2 minutes, a 1.0 μm electrolytic plating layer made of Ag was formed on the electroless plating layer. Thereafter, heat treatment was performed in nitrogen at 750 ° C. to alloy Pd and Ag, and a 4.0 μm PdAg layer as the hydrogen separation metal layer 41 was formed.

 さらに、Pd濃度が0.1mol/L~10mol/Lになるように塩化パラジウム粉末を1規定の塩酸水溶液に溶解した触媒液82を作製し、これを容器81に入れたものを用意した。この触媒液82を40℃~95℃に加温し、水素分離金属層41の形成後の上記多孔質体製支持体12を浸漬した。そして、上記多孔質体製支持体12を水素ボンベに接続するとともに、内部空間22に対し水素を0.0MPaG~0.2MPaGの圧力にて1秒間~60秒間供給した。その結果、水素分離金属層41を通過した原子状の水素により触媒液82中のPdイオンを還元し、水素分離金属層41上及び細孔34の内壁面にPdを析出させることで、表層部に触媒金属層43を形成した。この後、水素の供給を停止し、多孔質体35の表面32を洗浄することで、実施例の水素透過膜モジュール11を完成させた。

Further, a catalyst solution 82 in which palladium chloride powder was dissolved in a 1 N aqueous hydrochloric acid solution so that the Pd concentration was 0.1 mol / L to 10 mol / L was prepared, and a solution in which this was put in a container 81 was prepared. The catalyst solution 82 was heated to 40 ° C. to 95 ° C., and the porous support 12 after the formation of the hydrogen separation metal layer 41 was immersed therein. The porous support 12 was connected to a hydrogen cylinder, and hydrogen was supplied to the internal space 22 at a pressure of 0.0 MPaG to 0.2 MPaG for 1 second to 60 seconds. As a result, the atomic hydrogen that has passed through the hydrogen separation metal layer 41 reduces Pd ions in the catalyst liquid 82, and deposits Pd on the hydrogen separation metal layer 41 and on the inner wall surfaces of the pores 34. A catalytic metal layer 43 was formed. Thereafter, the supply of hydrogen was stopped, and the surface 32 of the porous body 35 was washed to complete the hydrogen permeable membrane module 11 of the example.

 次いで、実施例の水素透過膜モジュール11を用いて、図6に示されるような潤滑油再生試験装置101を作製した。この潤滑油再生試験装置101は、潤滑油102の酸化を促進する酸化槽103と、潤滑油102に対して水素添加による還元再生処理を行う還元処理槽104とを備えている。なお、潤滑油102としては酸化防止剤を配合したパラフィン系の鉱物油を用いている。本実施例において「潤滑油の再生」とは、鉱物油中における劣化(酸化)した酸化防止剤を還元処理して再生することを意味している。

Next, a lubricating oil regeneration test apparatus 101 as shown in FIG. 6 was produced using the hydrogen permeable membrane module 11 of the example. The lubricating oil regeneration test apparatus 101 includes an oxidation tank 103 that promotes oxidation of the lubricating oil 102 and a reduction processing tank 104 that performs a reduction regeneration process by adding hydrogen to the lubricating oil 102. As the lubricating oil 102, a paraffinic mineral oil blended with an antioxidant is used. In this embodiment, “regeneration of lubricating oil” means that the deteriorated (oxidized) antioxidant in the mineral oil is reduced and regenerated.

 酸化槽103は上部に開口を有する丸底の容器であって、この容器の下側部分はマグネットスターラ付きヒータ105にセットされている。酸化槽103内には、潤滑油102を撹拌して均一にするための撹拌子106が投入されている。また、この酸化槽103には、空気導入管107と、ステンレスメッシュを巻き付けたガラス棒108とが挿入されている。空気導入管107は、潤滑油102に空気を導入する(即ちバブリングを行う)ためのものである。ガラス棒108は、潤滑油102の酸化を促進する触媒としての役割を果たすものである。

The oxidation tank 103 is a round-bottomed container having an opening at the top, and the lower part of the container is set in a heater 105 with a magnetic stirrer. In the oxidation tank 103, a stirrer 106 for stirring the lubricating oil 102 to make it uniform is introduced. In addition, an air introduction tube 107 and a glass rod 108 wound with a stainless mesh are inserted in the oxidation tank 103. The air introduction pipe 107 is for introducing air into the lubricating oil 102 (that is, performing bubbling). The glass rod 108 serves as a catalyst for promoting the oxidation of the lubricating oil 102.

 還元処理槽104も上部に開口を有する丸底の容器であって、この容器の下側部分はマグネットスターラ付きヒータ112にセットされている。還元処理槽104内には、潤滑油102を撹拌して均一にするための撹拌子113が投入されている。この還元処理槽104には、金属継手51を介してガス導入管52を接続した実施例の水素透過膜モジュール11が挿入されている。ガス導入管52は、開口端を介して多孔質体製支持体12の内部空間22側に含水素ガスG1を導入するためのものである。

The reduction treatment tank 104 is also a round-bottomed container having an opening in the upper part, and the lower part of this container is set in a heater 112 with a magnetic stirrer. In the reduction treatment tank 104, a stirring bar 113 for stirring the lubricating oil 102 to make it uniform is introduced. The hydrogen permeable membrane module 11 of the embodiment in which the gas introduction pipe 52 is connected via the metal joint 51 is inserted into the reduction treatment tank 104. The gas introduction pipe 52 is for introducing the hydrogen-containing gas G1 into the inner space 22 side of the porous support 12 through the open end.

 酸化槽103と還元処理槽104との間には、酸化槽103にて酸化された潤滑油102を還元処理槽104に供給する酸化油回収管114が設けられ、その経路上には潤滑油102を還元処理槽104側に圧送するポンプ115が設けられている。また、酸化槽103と還元処理槽104との間には、還元処理槽104にて再生された潤滑油102を還元処理槽104から送出する再生油回収管116が設けられ、その経路上には潤滑油102を酸化槽103側に圧送するポンプ117が設けられている。

Between the oxidation tank 103 and the reduction treatment tank 104, an oxidation oil recovery pipe 114 for supplying the lubricating oil 102 oxidized in the oxidation tank 103 to the reduction treatment tank 104 is provided. A pump 115 is provided for pressure-feeding the gas to the reduction treatment tank 104 side. Further, a reclaimed oil recovery pipe 116 for sending the lubricating oil 102 regenerated in the reduction treatment tank 104 from the reduction treatment tank 104 is provided between the oxidation tank 103 and the reduction treatment tank 104. A pump 117 that pumps the lubricating oil 102 toward the oxidation tank 103 is provided.

 ちなみに、上記潤滑油再生試験装置101において酸化槽103に属する構成を除いたもの(即ち、図6の右側半分の構成)が、水素添加装置の一形態である本発明の「潤滑油再生装置101A」であると把握することが可能である。

Incidentally, in the above-described lubricating oil regeneration test apparatus 101, the structure belonging to the oxidation tank 103 (ie, the structure on the right half of FIG. 6) is a “lubricating oil regeneration apparatus 101A” according to the present invention which is an embodiment of the hydrogenation apparatus. Can be grasped.

 そして、この潤滑油再生試験装置101を利用して以下のような条件で潤滑油再生試験を実施した。本試験の場合、酸化槽103については、マグネットスターラ付きヒータ105により槽内の温度を150℃に設定するとともに、潤滑油102に対して1L/minの流量で空気を導入した。また、還元処理槽104については、マグネットスターラ付きヒータ112により槽内の温度を130℃に設定するとともに、水素透過膜モジュール11に対して水素を20kPaGの圧力で25時間供給した。そして、25時間経過後に調査を行ったところ、潤滑油102が確実に還元再生されていることが確認された。

And using this lubricating oil regeneration test apparatus 101, a lubricating oil regeneration test was carried out under the following conditions. In the case of this test, in the oxidation tank 103, the temperature in the tank was set to 150 ° C. by the heater 105 with a magnetic stirrer, and air was introduced into the lubricating oil 102 at a flow rate of 1 L / min. Moreover, about the reduction process tank 104, while setting the temperature in a tank to 130 degreeC with the heater 112 with a magnetic stirrer, hydrogen was supplied with the pressure of 20 kPaG to the hydrogen permeable membrane module 11 for 25 hours. An investigation was conducted after 25 hours, and it was confirmed that the lubricating oil 102 was reliably reduced and regenerated.

 また、金属摩耗粉との接触による劣化に対する耐久性を調査するべく、上記の潤滑油再生試験の後に金属摩耗粉劣化試験を実施した。本試験では、金属摩耗粉を導入した潤滑油102を作製し、これに実施例の水素透過膜モジュール11を浸漬して24時間撹拌した。その後、従来周知のヘリウムリーク試験を行った。この試験では、水素透過膜モジュール11をヘリウムボンベに接続し、開口端を介して多孔質体製支持体12の内部空間22側にヘリウムを導入した。そしてその際に、モジュール外側に漏れ出たヘリウム量を石鹸膜流量計にて評価した。

Moreover, in order to investigate the durability against deterioration due to contact with metal wear powder, a metal wear powder deterioration test was performed after the above-mentioned lubricant regeneration test. In this test, a lubricating oil 102 into which metal wear powder was introduced was prepared, and the hydrogen permeable membrane module 11 of the example was immersed in the lubricating oil 102 and stirred for 24 hours. Thereafter, a well-known helium leak test was conducted. In this test, the hydrogen permeable membrane module 11 was connected to a helium cylinder, and helium was introduced to the inner space 22 side of the porous support 12 through the open end. At that time, the amount of helium leaked to the outside of the module was evaluated with a soap film flow meter.

 その結果、金属摩耗粉劣化試験後においてもヘリウムの漏れは確認されず、金属摩耗粉に対して十分な耐久性があることが確認できた。

As a result, helium leakage was not confirmed even after the metal wear powder deterioration test, and it was confirmed that the metal wear powder had sufficient durability.
比較例Comparative example

 次に、上記実施例に対する比較例の水素透過膜モジュールを以下の手順で作製した。

Next, the hydrogen permeable membrane module of the comparative example with respect to the said Example was produced in the following procedures.

 まず、上述した型枠61を準備するとともに、そのゴム型62にYSZ造粒粉を充填し、次いで造孔材として48体積%の有機ビーズを添加したYSZ造粒粉を充填した後、プレス成形法により試験管形状をなす成形体71を成形した。後にモジュール基体となるこの成形体71を、脱脂後、大気雰囲気下にて1400℃で焼成することにより、緻密部21と多孔質体製支持体12とが一体となった外径10mm×長さ300mmのセラミック焼結体72を得た。

First, the mold 61 described above is prepared, and the rubber mold 62 is filled with YSZ granulated powder, and then filled with YSZ granulated powder with 48% by volume organic beads added as a pore former, followed by press molding. A formed body 71 having a test tube shape was formed by the method. The molded body 71 to be a module base later is degreased and fired at 1400 ° C. in an air atmosphere, whereby the dense portion 21 and the porous body support 12 are integrated into an outer diameter of 10 mm × length. A 300 mm ceramic sintered body 72 was obtained.

 次に、YSZ粉末を有機溶媒中に分散させたスラリーを作製し、ディップコーティング法によって、セラミック焼結体72における多孔質体製支持体12の外面17の全体にスラリーを付着させた。そして、1200℃に加熱して焼き付けを行い、多孔質体製支持体12の外面17を覆う第1多孔質層37を形成した。次に、第1多孔質層37の形成後の多孔質体製支持体12をSnイオン溶液に浸漬し、Snイオンを第1多孔質層37の表面に吸着させた。そして水洗の後、上記多孔質体製支持体12をPdイオン溶液に浸漬させて、SnイオンとPdイオンとの交換反応によりPdイオンを吸着させた。

Next, a slurry in which YSZ powder was dispersed in an organic solvent was prepared, and the slurry was adhered to the entire outer surface 17 of the porous support 12 in the ceramic sintered body 72 by a dip coating method. And it heated at 1200 degreeC and baked and formed the 1st porous layer 37 which covers the outer surface 17 of the support body 12 made from a porous body. Next, the porous body support 12 after the formation of the first porous layer 37 was immersed in an Sn ion solution, and Sn ions were adsorbed on the surface of the first porous layer 37. After washing with water, the porous support 12 was immersed in a Pd ion solution, and Pd ions were adsorbed by an exchange reaction between Sn ions and Pd ions.

 その後、上記多孔質体製支持体12をヒドラジン溶液に浸漬させることにより、Pdイオンを還元し、Pd金属核とした。なお、ここでは再度のディップコーティングによる第2多孔質層38の形成を行わず、第1多孔質層37をもって多孔質体35とした。その後、無電解めっき法により多孔質体35表面のPd核を成長させ、Pdからなる厚さ8.0μmの無電解めっき層を形成した。このとき、無電解Pdめっき液は、上記多孔質体製支持体12における多孔質体35の表面32の側より供給するようにした。

Thereafter, the porous support 12 was immersed in a hydrazine solution to reduce Pd ions to form Pd metal nuclei. Here, the second porous layer 38 is not formed by dip coating again, and the first porous layer 37 is used as the porous body 35. Thereafter, Pd nuclei on the surface of the porous body 35 were grown by an electroless plating method to form an electroless plating layer made of Pd and having a thickness of 8.0 μm. At this time, the electroless Pd plating solution was supplied from the surface 32 side of the porous body 35 in the porous body support 12.

 次に、上記多孔質体製支持体12の内部空間22に、濃度6.0mol/LのNaCl水溶液を電解液として導入した。次いで、電解液中に給電電極を挿し込み、この状態の多孔質体製支持体12を、対極が配置された浴温30℃の電解Agめっき液(硝酸銀濃度37g/L)中にセットした。この状態で電流値1.3A/dmにて定電流電解めっきを2分間施すことにより、無電解めっき層上にAgからなる2.0μmの電解めっき層を形成した。この後、窒素中750℃で熱処理を行ってPdとAgとを合金化し、水素分離金属層41としての10.0μmのPdAg層を形成した。

Next, a 6.0 mol / L NaCl aqueous solution was introduced as an electrolytic solution into the internal space 22 of the porous support 12. Next, the feeding electrode was inserted into the electrolytic solution, and the porous support 12 in this state was set in an electrolytic Ag plating solution (silver nitrate concentration 37 g / L) at a bath temperature of 30 ° C. where the counter electrode was disposed. In this state, a constant current electrolytic plating was performed for 2 minutes at a current value of 1.3 A / dm 2 to form a 2.0 μm electrolytic plating layer made of Ag on the electroless plating layer. Thereafter, heat treatment was performed at 750 ° C. in nitrogen to alloy Pd and Ag, and a 10.0 μm PdAg layer as the hydrogen separation metal layer 41 was formed.

 さらに、Pd濃度が0.5mol/Lになるように塩化パラジウム粉末を1規定の塩酸水溶液に溶解した触媒液82を作製し、これを容器81に入れたものを用意した。この触媒液82を80℃に加温し、水素分離金属層41の形成後の上記多孔質体製支持体12を浸漬した。そして、上記多孔質体製支持体12を水素ボンベに接続するとともに、内部空間22に対し水素を0.05MPaGの圧力にて5秒間供給した。その結果、水素分離金属層41を通過した原子状の水素により触媒液82中のPdイオンを還元し、水素分離金属層41上にPdを析出させることで、表面32にて露出するように触媒金属層43を形成した。この後、水素の供給を停止し、多孔質体35の表面32を洗浄することで、比較例の水素透過膜モジュールを完成させた。

Further, a catalyst solution 82 in which palladium chloride powder was dissolved in a 1N aqueous hydrochloric acid solution so that the Pd concentration was 0.5 mol / L was prepared, and a catalyst solution 82 was prepared in a container 81. The catalyst solution 82 was heated to 80 ° C., and the porous support 12 after the formation of the hydrogen separation metal layer 41 was immersed therein. The porous body support 12 was connected to a hydrogen cylinder, and hydrogen was supplied to the internal space 22 at a pressure of 0.05 MPaG for 5 seconds. As a result, Pd ions in the catalyst liquid 82 are reduced by atomic hydrogen that has passed through the hydrogen separation metal layer 41, and Pd is deposited on the hydrogen separation metal layer 41, so that the catalyst is exposed at the surface 32. A metal layer 43 was formed. Thereafter, the supply of hydrogen was stopped, and the surface 32 of the porous body 35 was washed to complete the hydrogen permeable membrane module of the comparative example.

 そして、上記実施例の潤滑油再生試験装置101を利用するとともに、実施例の手法に準拠して潤滑油再生試験を実施したところ、比較例の水素透過膜モジュールについても潤滑油102が確実に還元再生されていることが確認された。

The lubricating oil regeneration test apparatus 101 of the above example was used, and a lubricating oil regeneration test was performed in accordance with the method of the example. As a result, the lubricating oil 102 was reliably reduced even for the hydrogen permeable membrane module of the comparative example. It was confirmed that it was playing.

 潤滑油再生試験の後、同じく実施例の手法に準拠して金属摩耗粉劣化試験(ヘリウムリーク試験)を実施したところ、ヘリウムリーク量が150cc/minまで増大しており、劣化が起きていることが確認された。それゆえ、水素分離金属層41及び触媒金属層43がともに表面32にて露出している比較例の水素透過膜モジュールは、金属摩耗粉に対する耐久性が実施例よりも劣ると結論付けられた。

After the lubrication oil regeneration test, a metal wear powder deterioration test (helium leak test) was also conducted in accordance with the method of the example. As a result, the amount of helium leak increased to 150 cc / min and deterioration occurred. Was confirmed. Therefore, it was concluded that the hydrogen permeable membrane module of the comparative example in which the hydrogen separation metal layer 41 and the catalyst metal layer 43 are both exposed at the surface 32 is inferior in durability to the metal wear powder.

 従って、本実施形態の上記実施例によれば以下の効果を得ることができる。

Therefore, according to the above example of the present embodiment, the following effects can be obtained.

 (1)本実施例の水素透過膜モジュール11では、水素分離金属層41が多孔質体35内の所定の深さ位置にて形成され、かつ触媒金属層43が表面32と水素分離金属層41との間の領域である表層部に担持されている。このため、水素分離金属層41及び触媒金属層43が水素透過膜31の表面32に露出しなくなる。ゆえに、被処理物である潤滑油102中に金属摩耗粉などの異物が含まれていたとしても、その異物によって水素分離金属層41及び触媒金属層43が傷付けられることはなく、それらの破損が防止される。ゆえに、水素透過膜モジュール11の耐久性を向上させることができる。また、触媒金属層43における触媒金属42の担持量が維持されるため、処理効率の低下も防止することができる。なお、多孔質体35の表面32ではなく、比表面積の大きな表層部に触媒金属42が担持されることで、触媒金属層43が形成されている。それゆえ、触媒金属42の担持量が多い触媒金属層43とすることができる。

(1) In the hydrogen permeable membrane module 11 of this embodiment, the hydrogen separation metal layer 41 is formed at a predetermined depth in the porous body 35, and the catalyst metal layer 43 is formed on the surface 32 and the hydrogen separation metal layer 41. It is carried by the surface layer part which is the area between the two. For this reason, the hydrogen separation metal layer 41 and the catalyst metal layer 43 are not exposed to the surface 32 of the hydrogen permeable membrane 31. Therefore, even if foreign matter such as metal wear powder is contained in the lubricating oil 102 to be processed, the hydrogen separation metal layer 41 and the catalytic metal layer 43 are not damaged by the foreign matter, and the damage is not caused. Is prevented. Therefore, the durability of the hydrogen permeable membrane module 11 can be improved. In addition, since the supported amount of the catalyst metal 42 in the catalyst metal layer 43 is maintained, it is possible to prevent a reduction in processing efficiency. The catalyst metal layer 43 is formed by supporting the catalyst metal 42 not on the surface 32 of the porous body 35 but on the surface layer portion having a large specific surface area. Therefore, the catalyst metal layer 43 having a large amount of the catalyst metal 42 supported can be obtained.

 (2)本実施例の水素透過膜モジュール11では、触媒金属層43を構成する触媒金属42における少なくとも一部のものは、水素分離金属層41に接触した状態で担持されている。つまり、水素分離金属層41と触媒金属層43との離間距離は0μmとなっている。ゆえに、当該一部の触媒金属42については、水素分離金属層41を透過した原子状態の水素と遭遇する機会が非常に多くなる。その結果、水素と被処理物との反応性がいっそう高くなり、水素添加反応をより効率よく行わせることができる。

(2) In the hydrogen permeable membrane module 11 of the present embodiment, at least a part of the catalyst metal 42 constituting the catalyst metal layer 43 is supported in contact with the hydrogen separation metal layer 41. That is, the separation distance between the hydrogen separation metal layer 41 and the catalyst metal layer 43 is 0 μm. Therefore, with respect to the part of the catalyst metal 42, the chance of encountering atomic hydrogen that has passed through the hydrogen separation metal layer 41 is greatly increased. As a result, the reactivity between hydrogen and the object to be processed is further increased, and the hydrogenation reaction can be performed more efficiently.

 (3)本実施例の水素透過膜モジュール11では、触媒金属層43が、表面32から裏面33へ行くほど触媒金属42の濃度が高くなる濃度勾配を有している。従って、担持量を等しくしたときであっても、水素分離金属層41を透過した原子状態の水素と遭遇する触媒金属42の割合が多くなり、水素と被処理物との反応性がいっそう高くなる。また、多孔質体35の表面32付近における触媒金属42が少なくなる結果、潤滑油102中の金属摩耗粉によって触媒金属層43が傷付けられにくくなるという利点がある。

(3) In the hydrogen permeable membrane module 11 of the present embodiment, the catalyst metal layer 43 has a concentration gradient in which the concentration of the catalyst metal 42 increases from the front surface 32 to the back surface 33. Therefore, even when the loadings are made equal, the proportion of the catalytic metal 42 that encounters atomic hydrogen that has permeated through the hydrogen separation metal layer 41 increases, and the reactivity between hydrogen and the object to be treated is further increased. . Further, since the catalytic metal 42 in the vicinity of the surface 32 of the porous body 35 is reduced, there is an advantage that the catalytic metal layer 43 is hardly damaged by the metal wear powder in the lubricating oil 102.

 (4)本実施例の水素透過膜モジュール11は、多孔質体製支持体12の主面である外面17上に、水素透過膜31が支持された状態で形成されている。ゆえに、多孔質体製支持体12によってモジュール11全体に必要な強度が付与されつつ水素透過膜31が支持される。このため、水素透過膜31には必要最小限の強度を付与すればよくなり、水素透過膜31を薄いものとすることができる。

(4) The hydrogen permeable membrane module 11 of this example is formed on the outer surface 17 which is the main surface of the porous support 12 with the hydrogen permeable membrane 31 supported. Therefore, the hydrogen permeable membrane 31 is supported by the porous support 12 while the necessary strength is given to the entire module 11. For this reason, it is only necessary to give the hydrogen permeable membrane 31 the necessary minimum strength, and the hydrogen permeable membrane 31 can be made thin.

 なお、本発明の実施の形態は以下のように変更してもよい。

In addition, you may change embodiment of this invention as follows.

 ・本実施形態では、異なる金属で無電解めっき層と電解めっき層とを構成した後に、異なる金属の合金化を行って水素分離金属層41を形成したが、これに限定されない。例えば、無電解めっきによってPdからなる無電解めっき層を形成した後、電解めっきによって同じPdからなる電解めっき層を形成して水素分離金属層としてもよい。あるいは、無電解めっきによってPdからなる無電解めっき層を形成した後、電解めっきによってPdとAgとの合金めっき層を形成するという方法を採用してもよい。

In the present embodiment, after the electroless plating layer and the electrolytic plating layer are made of different metals, the hydrogen separation metal layer 41 is formed by alloying different metals. However, the present invention is not limited to this. For example, after forming an electroless plating layer made of Pd by electroless plating, an electrolytic plating layer made of the same Pd may be formed by electroplating to form a hydrogen separation metal layer. Or after forming the electroless-plating layer which consists of Pd by electroless plating, you may employ | adopt the method of forming the alloy plating layer of Pd and Ag by electroplating.

 ・本実施形態では、PdAg合金からなる水素分離金属層41を形成したが、これに限定されず、例えば、PdCu合金、PdAu合金等からなる水素分離金属層41を形成してもよい。

In the present embodiment, the hydrogen separation metal layer 41 made of a PdAg alloy is formed. However, the present invention is not limited to this. For example, the hydrogen separation metal layer 41 made of a PdCu alloy, a PdAu alloy, or the like may be formed.

 ・本実施形態では、表面32から裏面33へ行くほど触媒金属42であるPdの濃度が高くなる濃度勾配を有する触媒金属層43を形成したが、これに限定されず、濃度勾配を有さずPdの濃度が均一な触媒金属層43を形成しても勿論よい。

In the present embodiment, the catalyst metal layer 43 having a concentration gradient in which the concentration of Pd, which is the catalyst metal 42, increases from the front surface 32 to the back surface 33, but is not limited thereto, and does not have a concentration gradient. Of course, the catalyst metal layer 43 having a uniform Pd concentration may be formed.

 次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施の形態によって把握される技術的思想を以下に列挙する。

Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the embodiments described above are listed below.

 (1)上記手段1乃至5のいずれか1項において、前記多孔質体は、安定化ジルコニア製であること。

 (2)上記手段1乃至5のいずれか1項において、前記水素分離金属層はパラジウム層またはパラジウム合金層であり、前記触媒金属層を構成する前記触媒金属はパラジウムであること。

 (3)上記手段1乃至5のいずれか1項において、前記水素分離金属層はパラジウム層またはパラジウム合金層であり、前記触媒金属層を構成する前記触媒金属はパラジウム以外の金属またはパラジウムを含まない合金であること。

 (4)上記手段1乃至5のいずれか1項において、前記水素分離金属層はパラジウム層またはパラジウム合金層であり、前記触媒金属層を構成する前記触媒金属は鉄、ニッケル、白金及びルテニウムから選択される少なくとも1種の金属であること。

 (5)表面及び裏面を有し、前記表面及び前記裏面を連通する多数の細孔を内部に有する多孔質体と、前記多孔質体内の所定の深さ位置にて前記細孔が充填された状態で形成され、前記裏面から前記表面へ流れる含水素ガス中の水素を選択的に透過させる水素分離金属層と、前記表面と前記水素分離金属層との間の領域である表層部に担持された触媒金属からなる触媒金属層とを備えた触媒担持型水素透過膜の製造方法であって、前記水素分離金属層の形成後、前記水素分離金属層の前記表面側に前記触媒金属のイオンを含む触媒液を存在させ、かつ前記水素分離金属層の前記裏面から前記表面へ向けて前記含水素ガスを流すことにより、前記触媒金属層を形成する工程を含むことを特徴とする触媒担持型水素透過膜の製造方法。

(1) In any one of the above means 1 to 5, the porous body is made of stabilized zirconia.

(2) In any one of the above means 1 to 5, the hydrogen separation metal layer is a palladium layer or a palladium alloy layer, and the catalyst metal constituting the catalyst metal layer is palladium.

(3) In any one of the above means 1 to 5, the hydrogen separation metal layer is a palladium layer or a palladium alloy layer, and the catalyst metal constituting the catalyst metal layer does not contain a metal other than palladium or palladium. Be alloy.

(4) In any one of the above means 1 to 5, the hydrogen separation metal layer is a palladium layer or a palladium alloy layer, and the catalyst metal constituting the catalyst metal layer is selected from iron, nickel, platinum, and ruthenium. Be at least one metal selected.

(5) A porous body having a front surface and a back surface, and a large number of pores communicating with the front surface and the back surface, and the pores filled at a predetermined depth position in the porous body A hydrogen separation metal layer that is formed in a state and selectively transmits hydrogen in the hydrogen-containing gas flowing from the back surface to the surface, and is supported on a surface layer portion that is a region between the surface and the hydrogen separation metal layer. A catalyst-supporting hydrogen permeable membrane comprising a catalyst metal layer made of a catalyst metal, wherein after the formation of the hydrogen separation metal layer, ions of the catalyst metal are formed on the surface side of the hydrogen separation metal layer. A catalyst-supporting hydrogen comprising a step of forming the catalyst metal layer by causing the hydrogen-containing gas to flow from the back surface to the surface of the hydrogen separation metal layer. A method for manufacturing a permeable membrane.

 11…触媒担持型水素透過膜モジュール

 12…多孔質体製支持体

 17…主面としての外面

 31…触媒担持型水素透過膜

 32…表面

 33…裏面

 34…細孔

 35…多孔質体

 41…水素分離金属層

 42…触媒金属

 43…触媒金属層

 52…ガス導入管

 101A…水素添加装置としての潤滑油再生装置

 102…被処理物としての潤滑油

 104…処理槽としての還元処理槽

 114…酸化油回収管

 116…再生油回収管

11 ... Catalyst-supporting hydrogen permeable membrane module

12 ... Porous support

17 ... Outer surface as main surface

31 ... Catalyst-supporting hydrogen permeable membrane

32 ... surface

33 ... Back side

34 ... pores

35 ... Porous material

41 ... Hydrogen separation metal layer

42. Catalytic metal

43 ... catalytic metal layer

52 ... Gas introduction pipe

101A ... Lubricating oil regeneration device as a hydrogenation device

102 ... Lubricating oil as an object to be treated

104 ... Reduction treatment tank as a treatment tank

114 ... Oxidized oil recovery pipe

116 ... Recycled oil recovery pipe

Claims (11)


  1.  表面及び裏面を有し、前記表面及び前記裏面を連通する多数の細孔を内部に有する多孔質体と、

     前記多孔質体内の所定の深さ位置にて前記細孔が充填された状態で形成され、前記裏面から前記表面へ流れる含水素ガス中の水素を選択的に透過させる水素分離金属層と、

     前記表面と前記水素分離金属層との間の領域である表層部に担持された触媒金属からなる触媒金属層と

    を備えたことを特徴とする触媒担持型水素透過膜。

    A porous body having a front surface and a back surface, and having a plurality of pores communicating with the front surface and the back surface inside;

    A hydrogen separation metal layer which is formed in a state where the pores are filled at a predetermined depth position in the porous body, and selectively transmits hydrogen in the hydrogen-containing gas flowing from the back surface to the surface;

    A catalyst metal layer comprising a catalyst metal supported on a surface layer portion which is a region between the surface and the hydrogen separation metal layer;

    A catalyst-supporting hydrogen-permeable membrane comprising:

  2.  前記水素分離金属層と前記触媒金属層との離間距離が100μm以下であることを特徴とする請求項1に記載の触媒担持型水素透過膜。

    2. The catalyst-supporting hydrogen permeable membrane according to claim 1, wherein a separation distance between the hydrogen separation metal layer and the catalyst metal layer is 100 μm or less.

  3.  前記触媒金属層は、前記表面から前記裏面へ行くほど前記触媒金属の濃度が高くなる濃度勾配を有していることを特徴とする請求項1または2に記載の触媒担持型水素透過膜。

    3. The catalyst-supporting hydrogen permeable membrane according to claim 1, wherein the catalyst metal layer has a concentration gradient in which the concentration of the catalyst metal increases from the front surface to the back surface.

  4.  前記触媒金属層を構成する前記触媒金属における少なくとも一部のものは、前記水素分離金属層に接触した状態で担持されていることを特徴とする請求項1乃至3のいずれか1項に記載の触媒担持型水素透過膜。

    The at least part of the catalyst metal constituting the catalyst metal layer is supported in a state of being in contact with the hydrogen separation metal layer. Catalyst-supporting hydrogen permeable membrane.

  5.  前記水素分離金属層は、パラジウム層またはパラジウム合金層であることを特徴とする請求項1乃至4のいずれか1項に記載の触媒担持型水素透過膜。

    The catalyst-supporting hydrogen permeable membrane according to any one of claims 1 to 4, wherein the hydrogen separation metal layer is a palladium layer or a palladium alloy layer.

  6.  前記触媒金属層を構成する前記触媒金属は、パラジウムであることを特徴とする請求項1乃至5のいずれか1項に記載の触媒担持型水素透過膜。

    The catalyst-supporting hydrogen permeable membrane according to any one of claims 1 to 5, wherein the catalyst metal constituting the catalyst metal layer is palladium.

  7.  前記多孔質体は、セラミック製であることを特徴とする請求項1乃至6のいずれか1項に記載の触媒担持型水素透過膜。

    The catalyst-supporting hydrogen permeable membrane according to any one of claims 1 to 6, wherein the porous body is made of ceramic.

  8.  多孔質体製支持体の主面上に、請求項1乃至7のいずれか1項に記載の水素透過膜が支持された状態で形成されている触媒担持型水素透過膜モジュール。

    A catalyst-supporting hydrogen-permeable membrane module formed on a main surface of a porous support in a state where the hydrogen-permeable membrane according to any one of claims 1 to 7 is supported.

  9.  水素添加による処理を受ける被処理物が供給される処理槽と、

     前記処理槽内に配置され、開口端及び閉塞端を有する筒状体からなる多孔質体製支持体の外面上に、請求項1乃至7のいずれか1項に記載の水素透過膜が支持されてなる触媒担持型水素透過膜モジュールと、

     前記モジュールの前記開口端側に接続され、前記開口端を介して前記多孔質体製支持体の内面側に含水素ガスを導入するガス導入管と

    を備えた水素添加装置。

    A treatment tank to which a workpiece to be treated by hydrogenation is supplied;

    The hydrogen permeable membrane according to any one of claims 1 to 7 is supported on an outer surface of a porous support made of a cylindrical body that is disposed in the treatment tank and has an open end and a closed end. A catalyst-supporting hydrogen-permeable membrane module,

    A gas introduction pipe connected to the opening end side of the module and for introducing a hydrogen-containing gas into the inner surface side of the porous body support through the opening end;

    The hydrogenation apparatus provided with.

  10.  水素添加による還元再生処理を受ける潤滑油が供給される還元処理槽と、

     酸化した前記潤滑油を前記還元処理槽に供給する酸化油回収管と、

     再生された前記潤滑油を前記還元処理槽から送出する再生油回収管と、

     前記還元処理槽内に配置され、開口端及び閉塞端を有する筒状体からなる多孔質体製支持体の外面上に、請求項1乃至7のいずれか1項に記載の水素透過膜が支持されてなる触媒担持型水素透過膜モジュールと、

     前記モジュールの前記開口端側に接続され、前記開口端を介して前記多孔質体製支持体の内面側に含水素ガスを導入するガス導入管と

    を備えた潤滑油再生装置。

    A reduction treatment tank to which lubricating oil subjected to reduction regeneration treatment by hydrogenation is supplied;

    An oxidized oil recovery pipe for supplying the oxidized lubricating oil to the reduction treatment tank;

    A recycled oil recovery pipe for delivering the regenerated lubricating oil from the reduction treatment tank;

    The hydrogen permeable membrane according to any one of claims 1 to 7 is supported on an outer surface of a porous support made of a cylindrical body that is disposed in the reduction treatment tank and has an open end and a closed end. A catalyst-supported hydrogen permeable membrane module,

    A gas introduction pipe connected to the opening end side of the module and for introducing a hydrogen-containing gas into the inner surface side of the porous body support through the opening end;

    Lubricating oil regeneration device equipped with.

  11.  請求項1に記載の触媒担持型水素透過膜の製造方法であって、

     触媒金属を含有する触媒液に、前記水素分離金属層が形成された前記多孔質体を浸漬した状態で、前記多孔質体の前記裏面側から水素ガスを供給し、前記触媒液中の触媒金属イオンを還元することにより、前記表層部に前記触媒金属を析出させる触媒金属層形成工程を有する

    ことを特徴とする触媒担持型水素透過膜の製造方法。

    It is a manufacturing method of the catalyst carrying type hydrogen permeable membrane according to claim 1,

    Hydrogen gas is supplied from the back side of the porous body in a state in which the porous body on which the hydrogen separation metal layer is formed is immersed in a catalyst liquid containing a catalytic metal, and the catalytic metal in the catalyst liquid A catalyst metal layer forming step of depositing the catalyst metal on the surface layer portion by reducing ions;

    A method for producing a catalyst-supporting hydrogen-permeable membrane.
PCT/JP2017/006679 2016-03-09 2017-02-22 Catalyst-carrying hydrogen permeable membrane, method for producing same, catalyst-carrying hydrogen permeable membrane module, device for adding hydrogen and device for regenerating lubricating oil WO2017154582A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017553195A JPWO2017154582A1 (en) 2016-03-09 2017-02-22 Catalyst-supporting hydrogen permeable membrane and method for producing the same, catalyst-supporting hydrogen permeable membrane module, hydrogenation device, lubricating oil regeneration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-045506 2016-03-09
JP2016045506 2016-03-09

Publications (1)

Publication Number Publication Date
WO2017154582A1 true WO2017154582A1 (en) 2017-09-14

Family

ID=59790364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006679 WO2017154582A1 (en) 2016-03-09 2017-02-22 Catalyst-carrying hydrogen permeable membrane, method for producing same, catalyst-carrying hydrogen permeable membrane module, device for adding hydrogen and device for regenerating lubricating oil

Country Status (2)

Country Link
JP (1) JPWO2017154582A1 (en)
WO (1) WO2017154582A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002064241A1 (en) * 2001-02-16 2002-08-22 Sumitomo Electric Industries, Ltd. Hydrogen-permeable structure and method for manufacture thereof or repair thereof
JP2007253152A (en) * 2005-07-14 2007-10-04 Daikin Ind Ltd Hydrogen separator and hydrogen manufacturing apparatus
JP2007301514A (en) * 2006-05-12 2007-11-22 National Institute Of Advanced Industrial & Technology Hydrogen separation material and its manufacturing method
JP2009263263A (en) * 2008-04-23 2009-11-12 Idemitsu Kosan Co Ltd Method for reducing organic compound and reduction treatment apparatus
JP2011143335A (en) * 2010-01-13 2011-07-28 Ngk Spark Plug Co Ltd Hydrogen separation device and method for manufacturing hydrogen separation device
JP2012192349A (en) * 2011-03-16 2012-10-11 Sumitomo Electric Ind Ltd Gas treatment system
JP2015205788A (en) * 2014-04-18 2015-11-19 東京瓦斯株式会社 Hydrogen production apparatus, hydrogen formation catalyst, and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102213238B1 (en) * 2013-12-06 2021-02-05 동의대학교 산학협력단 Semipermeable membranes and production methods thereof
JP6208067B2 (en) * 2014-03-31 2017-10-04 公益財団法人地球環境産業技術研究機構 Method for producing composite having thin metal-filled layer inside porous substrate, and composite

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002064241A1 (en) * 2001-02-16 2002-08-22 Sumitomo Electric Industries, Ltd. Hydrogen-permeable structure and method for manufacture thereof or repair thereof
JP2007253152A (en) * 2005-07-14 2007-10-04 Daikin Ind Ltd Hydrogen separator and hydrogen manufacturing apparatus
JP2007301514A (en) * 2006-05-12 2007-11-22 National Institute Of Advanced Industrial & Technology Hydrogen separation material and its manufacturing method
JP2009263263A (en) * 2008-04-23 2009-11-12 Idemitsu Kosan Co Ltd Method for reducing organic compound and reduction treatment apparatus
JP2011143335A (en) * 2010-01-13 2011-07-28 Ngk Spark Plug Co Ltd Hydrogen separation device and method for manufacturing hydrogen separation device
JP2012192349A (en) * 2011-03-16 2012-10-11 Sumitomo Electric Ind Ltd Gas treatment system
JP2015205788A (en) * 2014-04-18 2015-11-19 東京瓦斯株式会社 Hydrogen production apparatus, hydrogen formation catalyst, and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2017154582A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
AU2004237778B2 (en) Composite gas separation modules having high tamman temperature intermediate layers
US8366805B2 (en) Composite structures with porous anodic oxide layers and methods of fabrication
JP4753180B2 (en) Hydrogen separation material and method for producing the same
JP2009195884A (en) Apparatus for generating electrolytic water
EP1042049A1 (en) Hydrogen gas-extraction module
JP2000234193A (en) Electrolytic cathode and electrolytic cell using the cathode
JP6219625B2 (en) Hydrogen separator and method for producing the same
JP5888188B2 (en) Hydrogen separator
DE102011079858A1 (en) Reactor useful for releasing hydrogen from hydrogen carrying liquid compound, comprises pressure and temperature-resistant reactor vessel having body containing metallic support structure, on which solid and highly porous coating is applied
JP4893992B2 (en) Hydrogen separation complex and method for producing the same
CN102441330B (en) Palladium-based dual functional film and its preparation method
JP5155343B2 (en) Hydrogen separator and method for manufacturing hydrogen separator
WO2017154582A1 (en) Catalyst-carrying hydrogen permeable membrane, method for producing same, catalyst-carrying hydrogen permeable membrane module, device for adding hydrogen and device for regenerating lubricating oil
JP2011125818A (en) Method for manufacturing composite
JP6668115B2 (en) Ammonia production equipment, NOx purification equipment
JP2002355537A (en) Hydrogen permeable film and producing method thereof
JP6208067B2 (en) Method for producing composite having thin metal-filled layer inside porous substrate, and composite
JP3897052B2 (en) Hydrogen separator, hydrogen production apparatus, method for producing hydrogen separator, and apparatus for producing hydrogen separator
JP6561334B2 (en) Method for producing hydrogen separation membrane
JP6358839B2 (en) Hydrogen production apparatus and production method thereof
JP2006314876A (en) Hydrogen separator
JP6199657B2 (en) Hydrogen separator and method for producing the same
US20140170328A1 (en) Electroless plating of ruthenium and ruthenium-plated products
JP2009189934A (en) Composite body and its manufacturing method
JP2007253152A (en) Hydrogen separator and hydrogen manufacturing apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017553195

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762923

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762923

Country of ref document: EP

Kind code of ref document: A1