WO2017154253A1 - Imaging arrangement determination method for imaging device and imaging device - Google Patents

Imaging arrangement determination method for imaging device and imaging device Download PDF

Info

Publication number
WO2017154253A1
WO2017154253A1 PCT/JP2016/079755 JP2016079755W WO2017154253A1 WO 2017154253 A1 WO2017154253 A1 WO 2017154253A1 JP 2016079755 W JP2016079755 W JP 2016079755W WO 2017154253 A1 WO2017154253 A1 WO 2017154253A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
optical system
illumination optical
sample storage
storage unit
Prior art date
Application number
PCT/JP2016/079755
Other languages
French (fr)
Japanese (ja)
Inventor
拓矢 安田
小久保 正彦
健 猿渡
博 末木
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2017154253A1 publication Critical patent/WO2017154253A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components

Definitions

  • the present invention determines an imaging arrangement (arrangement of a plurality of imaging positions) when imaging is performed by an imaging apparatus that generates an entire image by combining a plurality of captured images obtained by imaging from a plurality of imaging positions. On how to do.
  • sample containers called “well plates”, “microplates”, and the like are used as samples.
  • a sample container a plurality of hollow sample storage portions called wells are formed.
  • a sample is injected into a well together with a liquid medium.
  • imaging device equipped with a CCD camera or the like, and the sample is observed using image data obtained by imaging.
  • cancer drug discovery research cancer cells are observed and analyzed by imaging cancer cells injected into a well together with a liquid (culture solution) as a medium using an imaging device.
  • the traveling direction is bent in a direction away from the optical axis due to refraction by configuring the imaging optical system to have a high-percent characteristic on the object side.
  • the collected light can be collected efficiently.
  • one well is imaged from a plurality of imaging positions.
  • an image of the entire well is generated by combining a plurality of captured images obtained by imaging from a plurality of imaging positions.
  • the imaging field of view (the imaging range when imaging is performed from one imaging position) is smaller than the area of the well. If the imaging field of view is smaller than the area of the well in this way, there are cases where the imaging field includes a region affected by the meniscus and cases where the imaging field of view does not include a region affected by the meniscus. .
  • a position (a plurality of imaging positions) for performing imaging using one illumination optical system and a position (a plurality of imaging positions) for performing imaging using the other illumination optical system are defined prior to imaging by the imaging device. It is necessary to decide. That is, it is necessary to determine the imaging arrangement (arrangement of a plurality of imaging positions). However, when a large number of positions are set as the imaging positions, imaging is inefficient and wasteful. On the contrary, when there are few positions set as an imaging position, the area
  • the present invention relates to imaging with an imaging apparatus having two illumination optical systems, and an object thereof is to provide a method for easily determining an imaging arrangement capable of efficiently obtaining a good quality image.
  • the first aspect of the present invention includes a first illumination optical system and a second illumination optical system, and the first illumination according to the type and imaging position of a sample container having one or more sample storage units.
  • An imaging arrangement determination method for determining an arrangement of a plurality of imaging positions in an imaging apparatus that performs imaging while switching an illumination optical system to be used between an optical system and the second illumination optical system, An effective visual field region determining step for determining an effective visual field region when imaging by the imaging device is performed;
  • a first imaging arrangement determining step for arranging a plurality of imaging positions to be imaged using the first illumination optical system along the wall surface of the sample storage unit; The plurality of imaging positions determined in the first imaging arrangement determination step so that an arbitrary position in the sample storage unit is included in an effective visual field region obtained by imaging at at least one of all imaging positions.
  • an effective visual field area when imaging using the first illumination optical system is performed and an effective visual field area when imaging using the second illumination optical system is performed.
  • the first imaging arrangement determination step the first illumination is performed so that a part of each effective visual field region obtained by imaging at two imaging positions adjacent to each other along the wall surface of the sample storage unit overlaps each other.
  • the arrangement of a plurality of imaging positions where imaging using an optical system is to be performed is determined,
  • the second imaging arrangement determination step by imaging at two imaging positions adjacent to each other in an area other than the effective visual field area obtained by imaging at a plurality of imaging positions determined in the first imaging arrangement determination step.
  • the arrangement of a plurality of imaging positions where imaging using the second illumination optical system is to be performed is determined so that a part of each of the obtained effective visual field regions overlaps each other.
  • the shape of the bottom surface of the sample storage part is circular
  • the first imaging arrangement determination step includes: A reference position determining step for determining a reference position which is an arbitrary one of a plurality of imaging positions where imaging using the first illumination optical system is to be performed; A line segment connecting the center of the sample storage unit and the reference position is rotated by a predetermined angle with the center of the sample storage unit as a rotation center, and the sample storage is performed between two end points of the rotated line segment each time the rotation is performed. And an imaging position sequential determination step that determines the position of the end point that is different from the end point at the center position of the part as the imaging position where the imaging using the first illumination optical system is to be performed.
  • imaging using the first illumination optical system is performed while moving the imaging position little by little, and the brightness at the position of the wall surface of the sample storage unit is the center of the sample storage unit.
  • An imaging position that is substantially the same as the brightness at the center of the sample storage unit when imaging using the second illumination optical system is performed is defined as the reference position.
  • the second imaging arrangement determination step a plurality of imagings that should be imaged using the second illumination optical system so that the number of scans required for imaging at all imaging positions by the imaging device is minimized.
  • the arrangement of the positions is determined.
  • the arrangement of a plurality of imaging positions where imaging using the second illumination optical system is to be performed is determined so that the number of times of imaging by the imaging device is minimized.
  • the first illumination optical system is used so that imaging intervals in a direction perpendicular to a main scanning direction when imaging by the imaging device is performed approach an equal interval. This is characterized in that fine adjustment of a plurality of image pickup positions where the image pickup should be performed is performed.
  • the effective visual field region determining step is determined in consideration of the type of the sample container and the culture condition of the imaging object to be injected into the sample storage unit.
  • the incident state of the chief ray on the bottom surface of the sample storage unit is different between the first illumination optical system and the second illumination optical system.
  • the first illumination optical system emits light toward the sample storage unit so that the principal ray is incident on the bottom surface of the sample storage unit in a parallel state
  • the second illumination optical system emits light toward the sample storage unit such that a principal ray incident on the bottom surface of the sample storage unit has a component in a direction away from the optical axis
  • the image pickup apparatus includes an image pickup optical system configured to receive light having a component in a direction in which a chief ray moves away from an optical axis.
  • An eleventh aspect of the present invention is an imaging device that images an imaging object held together with a liquid in a sample storage portion whose bottom surface has light permeability, A container holding part for holding a sample container having one or more sample storage parts; An illuminating unit that irradiates light to the imaging object held in the sample storage unit; An imaging unit for imaging an imaging object held in the sample storage unit; A driving unit that integrally moves the imaging unit and the illumination unit according to an imaging position; A controller that controls operations of the illumination unit, the imaging unit, and the drive unit; The illumination unit is composed of a first illumination optical system and a second illumination optical system in which the incident state of the chief ray on the bottom surface of the sample storage unit is different from each other, The controller is A first imaging position group that is a plurality of imaging positions arranged along the wall surface of the sample storage unit, and a plurality of areas arranged in areas other than the effective visual field area obtained by imaging at the first imaging position group.
  • a twelfth aspect of the present invention is the eleventh aspect of the present invention,
  • the control unit corrects the imaging position instructed from the outside according to the position and orientation of the sample container on the container holding unit, and obtains the imaging position when the imaging unit actually performs imaging.
  • An adjustment unit is included.
  • the first illumination optical system emits light toward the sample storage unit so that the principal ray is incident on the bottom surface of the sample storage unit in a parallel state
  • the second illumination optical system emits light toward the sample storage unit such that a principal ray incident on the bottom surface of the sample storage unit has a component in a direction away from the optical axis
  • the imaging unit includes an imaging optical system configured to receive light having a component in a direction in which a chief ray moves away from an optical axis.
  • an effective visual field region is determined.
  • imaging using a first illumination optical system for example, an illumination optical system suitable for imaging a region affected by a meniscus
  • a first illumination optical system for example, an illumination optical system suitable for imaging a region affected by a meniscus
  • the arrangement of a plurality of imaging positions to be performed is determined.
  • the distance between two imaging positions adjacent to each other may be determined in consideration of the effective visual field region. From the above, it is possible to determine the arrangement of a plurality of imaging positions where imaging using the first illumination optical system is to be performed relatively easily. Further, when considering the arrangement of imaging positions where imaging using the second illumination optical system (for example, an illumination optical system suitable for imaging an area not affected by the meniscus) is to be performed, the first illumination optical system is used. An effective visual field region based on a plurality of imaging positions where the used imaging should be performed has already been determined. For this reason, in consideration of the width of the remaining area and the width of the effective visual field area when the second illumination optical system is used, the arrangement of the imaging positions where the imaging using the second illumination optical system is to be performed is performed. It can be determined relatively easily. As described above, it is possible to easily determine an imaging arrangement (arrangement of a plurality of imaging positions) when imaging is performed by an imaging apparatus having two illumination optical systems.
  • the imaging arrangement is determined so that a part of each effective visual field area obtained by imaging at two imaging positions adjacent to each other overlaps each other, It is reliably prevented that a region with insufficient brightness is generated in the entire image obtained by the synthesis.
  • the remaining imaging positions can be determined relatively easily. .
  • the brightness of the captured image on the wall surface of the sample storage portion and the brightness of the captured image on the center portion of the sample storage portion are approximately the same, so that a good quality overall image is obtained. .
  • the time required to complete imaging at all imaging positions is shortened.
  • the number of captured images is reduced, so resources are effectively used.
  • a plurality of imaging positions are efficiently arranged in an area where imaging using the second illumination optical system is to be performed.
  • the effective visual field region is determined in consideration of the type of the sample container and the culture condition, it is possible to arrange a plurality of imaging positions more efficiently and Generation of a region with insufficient brightness in the whole image obtained by combining the captured images is suppressed.
  • the tenth aspect of the present invention for example, to easily determine an imaging arrangement when imaging is performed by an imaging device that switches an illumination optical system between a region affected by a meniscus and a region not affected by a meniscus Is possible.
  • the eleventh aspect of the present invention when imaging is performed, different illumination optical systems are used in the region near the wall surface of the sample storage unit and the other regions. For this reason, even if a meniscus is formed on the surface of the liquid injected into the sample storage unit, it is possible to suppress a region having insufficient brightness in the entire image obtained by combining a plurality of captured images. . Moreover, since imaging is performed at a plurality of imaging positions that are efficiently arranged, imaging processing is performed efficiently.
  • a desired captured image can be obtained regardless of the design error of the sample container and the positional deviation when setting the sample container. Further, since it is not necessary to set the sample container again when there is a positional shift, a desired captured image can be obtained without damaging the sample (cells or the like).
  • an entire image is generated by combining a plurality of captured images.
  • the imaging process is performed efficiently.
  • FIG. 1 is a diagram illustrating a schematic configuration of an imaging apparatus according to an embodiment of the present invention. It is a light ray diagram of the 1st illumination optical system in the above-mentioned embodiment, and the 2nd illumination optical system. In the said embodiment, it is a figure which shows the 1st illumination light radiate
  • the said embodiment it is a figure which shows the mode of an imaging when a 1st illumination optical system is used when a well peripheral region is contained in an imaging visual field.
  • it it is a figure which shows an example of imaging arrangement
  • it it is a figure for demonstrating the scanning for an imaging.
  • the said embodiment it is a flowchart which shows the flow of the whole process at the time of imaging with an imaging device.
  • region In the said embodiment, it is a figure which shows an example of the captured image obtained when the imaging using a 1st illumination optical system was performed in the well peripheral region.
  • the said embodiment it is a figure which shows the effective visual field area
  • it is a figure for demonstrating the difference in the effective visual field area
  • it is a figure for demonstrating determination of the reference position of the some imaging positions in a well peripheral region.
  • it is a figure for demonstrating determination of the reference position of the some imaging positions in a well peripheral region.
  • it is a figure for demonstrating the distance between a reference position and the edge part of a well.
  • the said embodiment it is a figure which shows the example of arrangement
  • FIG. 1 is a diagram illustrating a schematic configuration of an imaging apparatus 1 according to an embodiment of the present invention.
  • the imaging apparatus 1 includes cells, cell colonies, bacteria, and the like (hereinafter collectively referred to as “cells”) cultured in a liquid injected into a well W formed on the upper surface of a well plate WP.
  • An apparatus for imaging a sample is described below.
  • the well plate WP has a flat plate shape.
  • a plurality (for example, 6, 24, 96, 384, etc.) of wells W are arranged as sample storage portions having an opening on the upper surface side and a transparent bottom surface on the lower surface side. ing.
  • a well plate WP is used as a sample container.
  • the present invention is not limited to this, and a container called a dish (a container having only one sample storage portion) is used as a sample container. Can also be used.
  • the shape of the well W typically has a circular cross section and a flat bottom surface. However, the cross section and bottom shape of the well W are not limited to this.
  • the diameter and depth of the well W are generally several millimeters to several tens of millimeters.
  • Each well W is injected with a predetermined amount of a liquid (culture medium) as a medium M that provides a growth environment for cells and the like.
  • the amount of liquid injected into each well W is generally about 50 to 200 microliters.
  • a cell or the like cultured under a predetermined culture condition in the liquid is an imaging object.
  • the imaging apparatus 1 includes an illumination unit 10 that emits imaging light, a holder 12 that holds a well plate WP, and an imaging unit that captures an image of a sample (such as a cell) in the well W. 13, a control unit 14 that controls the operations of the illumination unit 10 and the imaging unit 13, and a drive mechanism 15 that moves the illumination unit 10 and the imaging unit 13 during imaging.
  • the illumination unit 10 is disposed on the upper part of the imaging device 1.
  • the holder 12 is disposed below the illumination unit 10, and the imaging unit 13 is disposed below the holder 12.
  • a region in the well W that is affected by the meniscus when included in the imaging field is referred to as a “well edge”.
  • the imaging position may be located outside the edge (wall surface) of the well W. Therefore, a region in the vicinity of the edge portion including both the region outside the edge portion and the region inside the edge portion is referred to as a “well peripheral region”.
  • the well edge portion is a region inside the edge portion of the well peripheral region.
  • a region in the well W that is not affected by the meniscus when included in the imaging field is referred to as a “well central region”.
  • the illumination unit 10 includes two light sources (a first light source 101 and a second light source 111) such as a white LED (Light Emitting Diode), two reflection mirrors 102 and 105, two collector lenses 103 and 112, A beam splitter 104 and a condenser lens 106 are provided.
  • the light emitted from the first light source 101 is incident on the beam splitter 104 via the collector lens 103 after its optical path is turned back by the reflection mirror 102.
  • the light emitted from the second light source 111 enters the beam splitter 104 via the collector lens 112.
  • the traveling direction of the light beam emitted from the beam splitter 104 is changed to the ( ⁇ Z) direction, that is, the vertical downward direction by the reflection mirror 105.
  • the light beam whose traveling direction is a vertically downward direction is emitted downward from the illumination unit 10 via the condenser lens 106.
  • the light emitted from the illumination unit 10 is incident on at least one well W from above the well plate WP supported by the holder 12 to illuminate the imaging target in the well W.
  • the illumination unit 10 uses the illumination light system 100 (hereinafter referred to as “first illumination optical system”) 100 and the second light source 111 as the light source.
  • an illumination optical system 110 (hereinafter referred to as “second illumination optical system”) 110.
  • the first illumination optical system 100 includes a first light source 101, a reflection mirror 102, a collector lens 103, a beam splitter 104, a reflection mirror 105, and a condenser lens 106.
  • the second illumination optical system 110 includes a second light source 111, a collector lens 112, a beam splitter 104, a reflection mirror 105, and a condenser lens 106.
  • the beam splitter 104, the reflection mirror 105, and the condenser lens 106 are shared by the first illumination optical system 100 and the second illumination optical system 110.
  • the first light source 101 and the second light source 111 are selectively turned on according to a control signal provided from the light source control unit 146 in the control unit 14. Therefore, the illuminating unit 10 emits light emitted from the first illumination optical system 100 (hereinafter referred to as “first illumination light”) and light emitted from the second illumination optical system 110 (hereinafter referred to as “first illumination light”). 2 ”) can be selectively made incident on the well W.
  • the first illumination light and the second illumination light are combined by the beam splitter 104 and can be emitted coaxially. That is, the central axes of the first illumination light and the second illumination light emitted from the condenser lens 106 coincide.
  • FIG. 2 is a ray diagram of the first illumination optical system 100 and the second illumination optical system 110.
  • the first illumination optical system 100 and the second illumination optical system 110 are illustrated separately to clearly show the optical path.
  • the optical axes that are actually bent by the reflecting mirrors 102 and 105 and the beam splitter 104 are shown by straight lines. For this reason, the reflection mirrors 102 and 105 and the beam splitter 104 having a function of bending the optical axis are not shown.
  • the light emitted from the first light source 101 is collected by the collector lens 103.
  • the condensed light is emitted through a condenser lens 106 toward a sample surface where cells or the like that are imaging objects are present.
  • the sample surface is the bottom surface of the well W.
  • the collector lens 103 forms an image of the first light source 101 between the collector lens 103 and the condenser lens 106. That is, the conjugate point C1 of the first light source 101 exists between the collector lens 103 and the condenser lens 106.
  • the collector lens 103 and the condenser lens 106 are configured such that the chief ray from the condenser lens 106 toward the sample surface is parallel to the optical axis.
  • the first illumination optical system 100 forms telecentric illumination.
  • An aperture stop 107 is provided on the light emitting surface of the first light source 101 as necessary in order to define the angle range of light incident on the collector lens 103.
  • the NA (numerical aperture) of illumination can be adjusted by the aperture stop 107.
  • a field stop 108 is provided as necessary at a position behind the collector lens 103 and ahead of the conjugate point C1. Thereby, only the range required for imaging can be illuminated and flare generation in the imaging optical system can be prevented.
  • the light emitted from the second light source 111 is collected by the collector lens 112.
  • the condensed light is emitted toward the sample surface through the condenser lens 106.
  • the collector lens 112 is given a refraction characteristic such that the position of the conjugate point C2 of the second light source 111 is behind the condenser lens 106 and ahead of the sample surface.
  • An aperture stop 113 is provided on the light emission surface of the second light source 111 as necessary in order to define the angle range of light incident on the collector lens 112.
  • the aperture diameter of the aperture stop 113 is set so that the NA of the illumination light emitted from the condenser lens 106 is equal to or greater than the NA of the objective lens 131.
  • a field stop 114 is provided between the collector lens 112 and the condenser lens 106 as necessary. Thereby, only the range necessary for imaging can be illuminated, and flare generation in the imaging optical system can be prevented.
  • the first illumination optical system 100 and the second illumination optical system 110 share the condenser lens 106.
  • the beam splitter 104 for enabling this is provided between the respective collector lenses 103 and 112 and the condenser lens 106. More specifically, in the first illumination optical system 100, the position is located behind the collector lens 103 (or the field stop 108 when the field stop 108 is provided) and in front of the condenser lens 106, and In the second illumination optical system 110, the beam splitter 104 is provided at a position behind the collector lens 112 (or the field stop 114 when the field stop 114 is provided) and in front of the condenser lens 106.
  • a well plate WP composed of a plurality of wells W holding a sample and a medium M is held in the holder 12.
  • the holder 12 is in contact with the peripheral edge of the lower surface of the well plate WP and holds the well plate WP in a substantially horizontal posture.
  • the imaging unit 13 includes an objective lens 131, a low-magnification afocal system 132, a high-magnification afocal system 133, a reflection mirror 134, an imaging lens 135, and an imaging element 136.
  • the objective lens 131 is disposed immediately below the well plate WP.
  • the optical axis of the objective lens 131 is oriented in the vertical direction, and is coaxial with the optical axes of the first illumination optical system 100 and the second illumination optical system 110. Light emitted from the illumination unit 10 and incident on the liquid (medium M) from above the well W illuminates the imaging target, and light transmitted downward from the bottom surface of the well W enters the objective lens 131.
  • a low-magnification afocal system 132 and a high-magnification afocal system 133 are provided so as to be switchable.
  • switching between the low-magnification afocal system 132 and the high-magnification afocal system 133 will be described.
  • the low-magnification afocal system 132 and the high-magnification afocal system 133 can be moved integrally in the horizontal direction by a driving mechanism (not shown), and one of the two is positioned immediately below the objective lens 131 during imaging. Arranged selectively.
  • a high-magnification imaging optical system including the objective lens 131 and the high-magnification afocal system 133 is configured. Is done. At this time, a relatively narrow range of the imaging object is imaged at a high magnification.
  • a low-magnification imaging optical system including the objective lens 131 and the low-magnification afocal system 132 is configured. At this time, a relatively wide range of the imaging target is imaged at a low magnification.
  • the light emitted from the afocal system (low-magnification afocal system 132 or high-magnification afocal system 133) is reflected by the reflecting mirror 134 and then enters the image sensor 136 through the imaging lens 135.
  • the imaging optical system including the objective lens 131, the low-magnification afocal system 132, the imaging lens 135, and the like has an object-side high percentic optical characteristic.
  • an imaging optical system including the objective lens 131, the high-magnification afocal system 133, the imaging lens 135, and the like has object-side telecentric optical characteristics.
  • the image sensor 136 is an area image sensor having a two-dimensional light receiving surface.
  • a CCD sensor, a CMOS sensor, or the like can be used as the imaging device 136.
  • An image of the imaging target imaged on the light receiving surface of the imaging device 136 by the imaging lens 135 is captured by the imaging device 136.
  • the image sensor 136 converts the received optical image into an electrical signal and outputs it as an image signal. According to such an imaging method, it is possible to perform non-contact, non-destructive and non-invasive imaging on a cell or the like that is an imaging target, and it is possible to suppress damage to the cell or the like due to imaging.
  • the operation of each unit of the imaging unit 13 is controlled by the imaging control unit 143 provided in the control unit 14.
  • the control unit 14 includes a CPU 141, an interface (IF) unit 142, an imaging control unit 143, an AD converter (A / D) 144, a mechanical control unit 145, a light source control unit 146, an image memory 147, and a memory 148.
  • the CPU 141 controls the operation of each component in the control unit 14 and performs various arithmetic processes.
  • the interface unit 142 has a function of accepting an operation input from the user, a function of displaying information such as a processing result to the user, a function of performing data communication with another device via a communication line, and the like. Yes.
  • the interface unit 142 is connected to an input receiving unit (such as a keyboard and a mouse) that receives operation inputs, a display unit that displays information, a communication line, and the like.
  • the imaging control unit 143 controls the operation of the imaging unit 13 so that an imaging target is imaged according to a scanning movement recipe described later.
  • the AD converter (A / D) 144 receives the image signal (analog data) output from the image sensor 136 and converts it into digital image data. Based on the digital image data, the CPU 141 executes appropriate image processing.
  • the mechanical control unit 145 operates the driving mechanism 15 to move the imaging unit 13 in the horizontal direction or the vertical direction. By moving the imaging unit 13 in the horizontal direction, the imaging unit 13 moves in the horizontal direction with respect to the well W. In addition, focus adjustment is performed by moving the imaging unit 13 in the vertical direction.
  • the mechanical control unit 145 also moves the illumination unit 10 in the horizontal direction by operating the drive mechanism 15.
  • the light source controller 146 selectively turns on the first light source 101 and the second light source 111 according to the imaging position.
  • the image memory 147 holds digital image data.
  • the memory 148 holds programs to be executed by the CPU 141 and data generated by the CPU 141.
  • the image memory 147 and the memory 148 may be integrated. Further, the image memory 147 and the memory 148 may be realized by an appropriate combination of a large-capacity storage and a semiconductor memory.
  • the drive mechanism 15 moves the illumination unit 10 in the horizontal direction.
  • the drive mechanism 15 moves the imaging unit 13 in the horizontal direction or the vertical direction.
  • the positional relationship between the illumination unit 10 and the imaging unit 13 is determined so that the center of the light emitted from the illumination unit 10 substantially coincides with the optical axis of the objective lens 131. Therefore, the drive mechanism 15 moves the illumination unit 10 integrally with the imaging unit 13 when moving the imaging unit 13 in the horizontal direction. Thereby, even when imaging is performed at any position of any well W, a good illumination state can be maintained.
  • the Z direction represents the vertical direction
  • the Y direction represents the main scanning direction
  • the X direction represents the sub scanning direction.
  • FIG. 3 is a diagram showing the first illumination light L1 emitted from the first illumination optical system 100.
  • the first illumination light L1 emitted from the condenser lens 106 in the first illumination optical system 100 has a principal ray parallel to the well bottom surface Wb that is the sample surface on which the imaging target is distributed. Incident in the state. That is, the first illumination optical system 100 forms telecentric illumination in which the exit pupil position is at infinity.
  • FIG. 4 is a diagram showing the second illumination light L2 emitted from the second illumination optical system 110.
  • the second illumination light L2 emitted from the condenser lens 106 in the second illumination optical system 110 proceeds so as to approach the optical axis of the second illumination optical system 110, and the well bottom surface Wb. It intersects the optical axis at a position higher than that (a position closer to the well bottom surface Wb as viewed from the illumination optical system).
  • the exit pupil position Pp at which the image of the second light source 111 (more precisely, the image of the aperture stop 113) is formed in the optical path of the second illumination light L2 is viewed from the second illumination optical system 110,
  • the position is closer to the well bottom surface Wb, which is the sample surface on which the imaging object is distributed.
  • the second light source 111 under illumination by the second illumination optical system 110, the second light source 111 is positioned at a position between the output end of the condenser lens 106 that emits the second illumination light L2 and the objective lens 131 of the imaging optical system.
  • the image is formed. That is, there is a conjugate point with respect to the second light source 111 at this position.
  • the holder 12 holds the well plate WP so that the well bottom surface Wb is positioned between the conjugate point and the objective lens 131. For this reason, the principal ray of the second illumination light L2 incident on the well bottom surface Wb has a directional component in a direction away from the optical axes of the second illumination optical system 110 and the objective lens 131.
  • the exit pupil position is different between the first illumination optical system 100 and the second illumination optical system 110.
  • the first illumination optical system 100 and the second illumination optical system 110 are switched and used as will be described later.
  • strobe illumination is used for imaging. That is, the illumination light is emitted only for a short time when the imaging unit 13 performs imaging. Therefore, the light source control unit 146 can realize switching of illumination light by selecting which of the two light sources (the first light source 101 and the second light source 111) is turned on.
  • the liquid as the medium M is injected into each well W. Accordingly, the illumination light incident from above the well W enters the well bottom surface Wb (sample surface) through the liquid surface of the medium M.
  • the liquid level in the well W forms a concave meniscus.
  • the path of the illumination light is bent outward from the center of the well W by refraction.
  • the refraction is small in the vicinity of the center of the well W and becomes larger as the edge portion (wall surface) of the well W is approached.
  • the imaging optical system including the objective lens 131 forms an object-side high-percentric optical system so that the light bent in this way is efficiently collected and guided to the imaging device 136. Yes. That is, light that is incident obliquely outward can be imaged on the image sensor 136 at a position away from the optical axis of the lens.
  • the proper use of the first illumination optical system 100 and the second illumination optical system 110 will be described.
  • the region to be imaged (the region of the entire well) is wider than the imaging field of view.
  • the area to be imaged is wider than the imaging field, the area is divided into a plurality of images.
  • an image representing the entire region to be imaged is generated by synthesizing a plurality of captured images obtained by imaging by image processing.
  • FIG. 5 is a diagram illustrating a state of imaging when the first illumination optical system 100 is temporarily used when the well edge WR is not included in the imaging field of view.
  • the imaging field of view V includes only the well central region far from the edge of the well W, the influence of the meniscus on the optical path is sufficiently small.
  • the imaging optical system including the objective lens 131 is an object-side high-percentric optical system. That is, the imaging optical system receives light whose principal ray is inclined outward on the premise of refraction by the meniscus at a position away from the optical axis (light indicated by a dotted line in FIG. 5 in the first illumination light L1). It has a configuration like this.
  • the first illumination optical system 100 when the well edge WR is included in the imaging field of view V, light refracted by the meniscus at the well edge WR as shown in FIG.
  • the inclination of the principal ray and the inclination of the principal ray on the light receiving side substantially coincide with each other so that light is collected efficiently.
  • imaging using the first illumination optical system 100 is performed.
  • FIG. 7 is a diagram showing a state of imaging when the second illumination optical system 110 is used when the well edge WR is not included in the imaging visual field V.
  • the second illumination light L2 emitted from the condenser lens 106 in the second illumination optical system 110 travels so as to approach the optical axis. For this reason, when there is no influence of the meniscus, the chief rays of the second illumination light L2 incident on the well bottom surface Wb are not parallel to each other.
  • the exit pupil position Pp of the second illumination optical system 110 is on the near side of the well bottom surface Wb (as viewed from the illumination optical system), the second illumination light L2 incident on the well bottom surface Wb is as follows.
  • the principal ray spreads outward from the optical axis of the objective lens 131.
  • the imaging optical system is configured such that the inclination of the principal ray of the incident light to the objective lens 131 matches the inclination of the principal ray on the objective lens 131 side, as shown in FIG.
  • the light transmitted through Wb is collected by the objective lens 131 and finally guided to the image sensor 136.
  • imaging using the second illumination optical system 110 is performed.
  • the first illumination optical system 100 suitable for imaging a region affected by a meniscus is used as an illumination optical system combined with an imaging optical system having a high percentic characteristic.
  • a second illumination optical system 110 suitable for imaging a region not affected by the meniscus is used properly when the affected area is not included in the imaging field of view.
  • a region for performing imaging using the first illumination optical system 100 and a region for performing imaging using the second illumination optical system 110 are set in advance for each type of sample container.
  • the first illumination optical system 100 is suitable for imaging an area affected by the meniscus
  • the second illumination optical system 110 is suitable for imaging an area not affected by the meniscus. Therefore, for example, when attention is paid to one well W of a certain type of sample container (well plate WP), an area denoted by reference numeral 51 in FIG. 8 is set as an area where imaging using the first illumination optical system 100 is performed.
  • the area indicated by reference numeral 52 in FIG. 8 is set as an area where imaging is performed using the second illumination optical system 110.
  • Such information regarding the region setting is written in advance in, for example, a setting file of a predetermined format in the imaging apparatus 1.
  • the region denoted by reference numeral 51 in FIG. 8 corresponds to the well peripheral region, and the region denoted by reference numeral 52 in FIG. 8 corresponds to the well central region.
  • the imaging device 1 is configured to perform imaging at a plurality of imaging positions according to a scanning movement recipe indicating a plurality of imaging positions and an imaging order thereof.
  • imaging position in the present specification means a position corresponding to the center of the imaging field when imaging is performed (this position coincides with the position of the optical axis of the objective lens 131).
  • FIG. 9 the positions indicated by reference numerals P1 to P23 represent the imaging positions
  • FIG. Scanning for imaging is performed as indicated by an arrow 53.
  • the well plate WP includes a plurality of wells W, in FIG. 9 and FIG. 10, attention is paid to one well W for convenience.
  • the imaging apparatus 1 performs imaging in accordance with the scanning movement recipe, based on the above-described information (see FIG. 8) regarding the setting of the region, the two illumination optical systems (the first illumination optical system 100 and the second illumination optical) One of the systems 110) is used depending on the imaging position.
  • FIG. 11 is a flowchart showing the overall processing flow when imaging is performed by the imaging apparatus 1.
  • information on the imaging conditions such as the type (for example, manufacturer name and model number) of the sample container to be imaged and the amount of liquid used as the culture medium M is obtained (step S10).
  • the imaging arrangement as shown in FIG. 9 is determined (step S20). A detailed description of the method for determining the imaging arrangement will be given later.
  • a scanning movement recipe is created based on the imaging arrangement (step S30). Thereafter, a scanning movement recipe is given to the imaging apparatus 1, and the operator designates (selects) the type of sample container to be imaged in the imaging apparatus 1 (step S40). Thereby, the imaging device 1 performs imaging based on the scanning movement recipe (step S50).
  • FIG. 12 is a flowchart illustrating a procedure for determining the imaging arrangement.
  • an effective visual field area which is an area where it can be recognized that a sufficient amount of light is irradiated and an image with sufficient image quality is obtained when imaging is performed is determined (step S210).
  • an image within the effective visual field area determined in step S210 constitutes an image that is finally presented to the user. That is, when imaging is performed on a single well W at a plurality of imaging positions, the whole of the single well W is represented by synthesizing only the images within the effective visual field of each of the plurality of captured images. An image is created.
  • the first illumination optical system 100 is used when imaging is performed in the well peripheral region, and the second illumination optical system 110 is performed when imaging is performed in the well central region. Is used. Therefore, in step S210, the effective visual field region when imaging using the first illumination optical system 100 is performed and the effective visual field region when imaging using the second illumination optical system 110 are performed are determined. Is done.
  • a specific example of each area will be described.
  • imaging using the first illumination optical system 100 is performed.
  • a captured image as shown in FIG. 14 is obtained.
  • an area where the luminance is 50% or more when the minimum luminance is 0% and the maximum luminance is 100% is effective when imaging using the first illumination optical system 100 is performed.
  • the effective visual field area is an area surrounded by a thick line 57 in FIG.
  • imaging using the second illumination optical system 110 is performed.
  • a captured image as shown in FIG. 16 is obtained.
  • the luminance is insufficient at the peripheral portion of the imaging field. Therefore, for example, a rectangular area of 70% of the entire imaging field (the center of the rectangular area coincides with the center of the imaging field) becomes an effective field area when imaging using the second illumination optical system 110 is performed. Determined.
  • the effective visual field region is a region surrounded by a bold line 58 in FIG.
  • the region where sufficient image quality can be obtained varies depending on the culture conditions.
  • the region where sufficient image quality is obtained varies depending on the amount of liquid used as the medium M.
  • the effective visual field region is determined (step S210) in consideration of the culture conditions.
  • step S220 After the effective visual field region is determined as described above, one of a plurality of imaging positions in the well peripheral region is determined (step S220).
  • the imaging position determined in step S220 is referred to as “reference position”.
  • the reference position BP is disposed above the well W as shown in FIG.
  • symbol 63 of FIG. 19 represents the effective visual field area
  • the imaging field of view V is moved little by little while observing the brightness at the edge (wall surface) WE of the well W as shown in FIG. More specifically, an area in the well W included in the imaging field V is gradually set such that the center of the imaging field V is positioned on a straight line 65 passing through the center WC of the well W and a certain edge WE of the well W. The imaging field of view V is moved little by little while observing the brightness at the edge portion WE. Then, the brightness obtained when the center WC of the well W is imaged using the second illumination optical system 110 (the brightness of the center WC of the well W) and the well using the first illumination optical system 100.
  • the range (area) in which sufficient brightness can be obtained may change greatly even if the imaging field of view V is moved a little. Therefore, if the brightness of the edge portion WE is approximately the same as the brightness of the center WC of the well W, the reference position BP is determined so that the range (area) in which sufficient brightness can be obtained is as large as possible. preferable.
  • the distance LE between the reference position BP and the edge portion WE of the well W is determined as can be understood from FIG. That is, the distance between the imaging position and the edge portion WE of the well W when the imaging using the first illumination optical system 100 is performed is determined.
  • step S230 the remaining imaging positions in the well peripheral area (imaging positions other than the reference position BP) are determined (step S230).
  • step S230 first, as shown in FIG. 22, a straight line 70 connecting the center WC of the well W and the reference position BP is rotated with the center WC of the well W as the rotation center, and the image pickup position 73 adjacent to the reference position BP is rotated.
  • the imaging position 73 adjacent to the reference position BP is determined so that the effective field area 72 and the effective field area 71 at the reference position BP partially overlap.
  • the distance from the edge portion WE of the well W to the imaging position 73 is made equal to the distance LE (see FIG.
  • the line segment connecting the center WC of the well W and the reference position BP is rotated with the center WC of the well W as the rotation center, and the center of the well W is positioned at the position of the center WC of the well W among the two end points of the rotated line segment.
  • the position of an end point that is different from a certain end point is determined as an imaging position 73 adjacent to the reference position BP. After the imaging position 73 adjacent to the reference position BP is determined in this way, the imaging position adjacent to the imaging position 73 (adjacent to the side opposite to the reference position BP) is similarly determined. The above process is repeated.
  • the size of the overlapping portion of the effective visual field region at two imaging positions adjacent to each other is constant (the angle formed by two line segments connecting the center WC of the well W and the two imaging positions adjacent to each other is constant).
  • the imaging position may be arranged outside the edge portion WE of the well W.
  • a well peripheral region (imaging using the first illumination optical system 100) is performed so that a plurality of imaging positions are arranged along the wall surface of the well W as the sample storage unit.
  • the arrangement of a plurality of imaging positions in the region where the image is to be performed is determined.
  • an imaging position (usually a plurality of imaging positions) in the well center region (region other than the well peripheral region) is determined (step S240).
  • the imaging position is determined so that an area other than the effective visual field area based on the imaging position in the well peripheral area is efficiently filled as an effective visual field area based on the imaging position in the well central area.
  • the imaging position is determined so that the number of scans required for imaging at all imaging positions by the imaging apparatus 1 is minimized. This will be described with reference to FIGS. 25 and 26.
  • FIG. 25 and FIG. 26 show examples of the imaging arrangement in a partial area.
  • the imaging positions of the well peripheral region are indicated by symbols P31 and P32, and the imaging positions of the well central region are indicated by symbols P41 to P44.
  • the imaging positions in the well peripheral area are indicated by symbols P51 and P52, and the imaging positions in the well central area are indicated by symbols P61 to P64.
  • the outer edge of the effective visual field area at each imaging position is indicated by a bold line. If the imaging arrangement in a partial area is as shown in FIG. 25, it is necessary to reciprocate the imaging unit 13 once in the main scanning direction in order to obtain a captured image of the area.
  • the scanning of the imaging position in the well peripheral region and the scanning of the imaging position in the well central region are different scans.
  • the imaging unit 13 is moved by one way in the main scanning direction (that is, in one scanning). A captured image can be obtained.
  • the imaging position in the well center region is determined so that the number of scans required for imaging at all imaging positions by the imaging apparatus 1 is minimized.
  • the imaging positions in each of the well peripheral region and the well central region are determined.
  • the imaging arrangement is determined.
  • the effective visual field region determination step is realized by the step S210
  • the first imaging arrangement determination step is realized by the steps S220 and S230
  • the second imaging arrangement determination step is executed by the step S240. It has been realized.
  • the reference position determining step is realized by the step S220
  • the imaging position sequential determining step is realized by the step S230 (see FIG. 12).
  • the first illumination optical system 100 suitable for imaging a region affected by a meniscus as the illumination optical system, and the second illumination optical system 110 suitable for imaging a region not affected by the meniscus When imaging is performed by the imaging apparatus 1 provided with a plurality of imaging positions are arranged along the edge portion (wall surface) WE of the well W after the effective visual field region is determined when each illumination optical system is used. As described above, the arrangement of a plurality of imaging positions at which imaging using the first illumination optical system 100 is to be performed is determined. When considering the arrangement of a plurality of imaging positions along the edge portion WE, once one imaging position in the vicinity of the edge portion (the reference position BP) is determined, all the imaging using the first illumination optical system 100 should be performed.
  • the distance from the edge portion WE is determined for the image pickup position.
  • the distance between two imaging positions adjacent to each other may be determined in consideration of the effective visual field region.
  • the effective visual field region based on the plurality of imaging positions where the imaging using the first illumination optical system 100 is to be performed is It has already been decided. For this reason, in consideration of the width of the remaining area and the area of the effective visual field when the second illumination optical system 110 is used, the imaging position where imaging using the second illumination optical system 110 should be performed is performed. The arrangement can be determined relatively easily.
  • the imaging position where imaging using the second illumination optical system 110 is to be performed is determined so that the number of scans required for imaging at all imaging positions by the imaging apparatus 1 is minimized. For this reason, efficient imaging is performed. Furthermore, since the effective visual field region when each illumination optical system is used is determined in consideration of the type and culture conditions of the sample container, it is possible to arrange a plurality of imaging positions more efficiently and Generation of a region with insufficient brightness in the whole image obtained by combining the captured images is suppressed.
  • the imaging position in the well center region is determined so that the number of scans required for imaging at all imaging positions by the imaging apparatus 1 is minimized.
  • the present invention is not limited to this, and the imaging position in the well center region may be determined so that the number of imaging is minimized (that is, the number of imaging positions is minimized). Thereby, resources are effectively utilized.
  • the size of the overlapping portion of the effective visual field region in two adjacent imaging positions is constant (two imaging positions adjacent to the center WC of the well W).
  • the angle formed by the two line segments connecting the two is constant).
  • the X coordinate of the imaging position in the well central region is matched with the X coordinate of the imaging position in the well peripheral region in order to reduce the number of scans for imaging, as shown in FIG. 27, in the main scanning direction.
  • the interval between the imaging positions becomes narrower from the center WC of the well W toward the edge portion WE. If there is a region where the intervals between the imaging positions are close, the imaging arrangement may be inefficient.
  • the type of sample container and the amount of liquid as the medium M are taken into account when determining the effective visual field area.
  • the present invention is not limited to this.
  • the effective visual field area for example, the surface processing state of the sample container, the material of the sample container (reflectance varies depending on the material), and the physical properties (eg, viscosity, transmittance) of the culture medium (medium) are considered. You may do it.
  • the sample container in the above embodiment, the well plate WP
  • the sample container is set at a predetermined position on the holder 12 by the operator.
  • a desired captured image may not be obtained due to a design error of the sample container or a positional shift when the sample container is set. Therefore, alignment processing may be performed during imaging so that a desired captured image can be obtained even if there is such a design error or positional deviation. Therefore, in this modification, an alignment processing unit (imaging position adjustment unit) is provided in the control unit 14 of the imaging device 1.
  • the well plate WP should originally be set in the holder 12 as shown in FIG. 29, the well plate WP is tilted in plan view as shown in FIG. Assume that it is set.
  • the difference between the current position and the original position can be obtained for each well W based on the center positions of several wells W in the well plate WP.
  • the alignment processing unit Based on the deviation obtained in this way, the alignment processing unit corrects the imaging position based on the scanning movement recipe and obtains the imaging position when the actual imaging is performed. By performing such processing, a desired captured image can be obtained regardless of the design error of the sample container and the positional deviation when setting the sample container.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)
  • Studio Devices (AREA)

Abstract

Provided is a method for simply determining an imaging arrangement that makes it possible to efficiently obtain an image with good quality in imaging using an imaging device having two illumination optical systems. First, an effective field of view for when imaging is carried out using the imaging device is determined (step S210). Then, a plurality of imaging positions at which imaging using the first illumination optical system is to be carried out are arranged along the wall surface of a sample accommodation part (steps S220 and S230). Subsequently, a plurality of imaging positions at which imaging using the second illumination optical system is to be carried out are arranged in an area outside of the effective fields of view obtained through the imaging at the plurality of imaging positions determined in steps S220 and S230 so that a given position in a sample container is included in the effective field of view obtained through imaging at one or more of the imaging positions (step S240).

Description

撮像装置における撮像配置決定方法および撮像装置Imaging arrangement determining method in imaging apparatus and imaging apparatus
 本発明は、複数の撮像位置からの撮像によって得られた複数の撮像画像を合成することによって全体画像を生成する撮像装置で撮像が行われる際の撮像配置(複数の撮像位置の配置)を決定する方法に関する。 The present invention determines an imaging arrangement (arrangement of a plurality of imaging positions) when imaging is performed by an imaging apparatus that generates an entire image by combining a plurality of captured images obtained by imaging from a plurality of imaging positions. On how to do.
 従来より、医療・創薬などの分野において、「ウェルプレート」,「マイクロプレート」などと呼ばれる試料容器で培養された細胞等を試料として観察することが行われている。そのような試料容器にはウェルと呼ばれるくぼみ状の複数の試料収納部が形成されており、一般に試料は液体状の培地とともにウェルに注入されている。近年、そのような試料をCCDカメラ等を搭載した撮像装置によって撮像し、撮像によって得られた画像データを用いて試料を観察することが行われている。例えば、がんの創薬研究において、培地としての液体(培養液)とともにウェルに注入されたがん細胞を撮像装置で撮像することによって、がん細胞の観察や分析がなされている。 Conventionally, in the fields of medicine and drug discovery, it has been observed that cells cultured in sample containers called “well plates”, “microplates”, and the like are used as samples. In such a sample container, a plurality of hollow sample storage portions called wells are formed. In general, a sample is injected into a well together with a liquid medium. In recent years, such a sample has been imaged by an imaging device equipped with a CCD camera or the like, and the sample is observed using image data obtained by imaging. For example, in cancer drug discovery research, cancer cells are observed and analyzed by imaging cancer cells injected into a well together with a liquid (culture solution) as a medium using an imaging device.
 このような撮像装置において、ウェルの上方からウェルに向けて照明光を出射させたときに、ウェル内の液体(培地としての液体)の表面に形成されるメニスカスによって照明光が屈折することによってウェルの周縁部で画像の明るさが不足することがある。そこで、日本の特開2015-118036号公報に開示された撮像装置では、撮像光学系を物体側ハイパーセントリックな特性を有する構成とすることによって、屈折により進行方向が光軸から離れる方向に曲げられた光を効率よく集光できるようにしている。 In such an imaging apparatus, when illumination light is emitted from above the well toward the well, the illumination light is refracted by the meniscus formed on the surface of the liquid in the well (liquid as a medium). The brightness of the image may be insufficient at the periphery of the image. Therefore, in the imaging apparatus disclosed in Japanese Unexamined Patent Publication No. 2015-1118036, the traveling direction is bent in a direction away from the optical axis due to refraction by configuring the imaging optical system to have a high-percent characteristic on the object side. The collected light can be collected efficiently.
日本の特開2015-118036号公報Japanese Unexamined Patent Publication No. 2015-118036
 ところで、試料を高倍率で観察したい場合、1つのウェルを複数の撮像位置から撮像することになる。この場合、複数の撮像位置からの撮像によって得られた複数の撮像画像を合成することによって、ウェル全体の画像が生成される。また、この場合、撮像視野(1つの撮像位置から撮像が行われた際の撮像範囲)はウェルの面積よりも小さくなる。このように撮像視野がウェルの面積よりも小さくなると、撮像視野内にメニスカスの影響を受ける領域が含まれる場合と撮像視野内にメニスカスの影響を受ける領域が含まれない場合とが生じることになる。日本の特開2015-118036号公報に開示された撮像装置によれば、メニスカスの影響を受ける領域では、上述したように光が効率的に集光されるので、撮像によって得られる画像は充分な明るさを有する。しかしながら、撮像視野内にメニスカスの影響を受ける領域が含まれていない場合、当該撮像視野の周縁部で明るさが不足する。 By the way, when it is desired to observe the sample at a high magnification, one well is imaged from a plurality of imaging positions. In this case, an image of the entire well is generated by combining a plurality of captured images obtained by imaging from a plurality of imaging positions. In this case, the imaging field of view (the imaging range when imaging is performed from one imaging position) is smaller than the area of the well. If the imaging field of view is smaller than the area of the well in this way, there are cases where the imaging field includes a region affected by the meniscus and cases where the imaging field of view does not include a region affected by the meniscus. . According to the imaging device disclosed in Japanese Patent Application Laid-Open No. 2015-118036, light is efficiently condensed as described above in a region affected by meniscus, so that an image obtained by imaging is sufficient. Has brightness. However, when a region affected by meniscus is not included in the imaging field, the brightness is insufficient at the peripheral portion of the imaging field.
 そこで、2つの照明光学系を用意して撮像位置に応じて当該2つの照明光学系を切り替えながら撮像を行うことが考えられる。この場合、撮像装置による撮像に先立って、一方の照明光学系を使用した撮像を行う位置(複数の撮像位置)と他方の照明光学系を使用した撮像を行う位置(複数の撮像位置)とを決める必要がある。すなわち、撮像配置(複数の撮像位置の配置)を決める必要がある。ところが、多数の位置が撮像位置に設定されると、撮像が非効率なものとなり無駄が生じる。逆に、撮像位置に設定される位置が少ない場合には、複数の撮像画像の合成によって得られる全体画像中に明るさが不充分な領域が生じ得る。このように、好適な撮像配置は容易には得られない。 Therefore, it is conceivable to prepare two illumination optical systems and perform imaging while switching between the two illumination optical systems according to the imaging position. In this case, prior to imaging by the imaging device, a position (a plurality of imaging positions) for performing imaging using one illumination optical system and a position (a plurality of imaging positions) for performing imaging using the other illumination optical system are defined. It is necessary to decide. That is, it is necessary to determine the imaging arrangement (arrangement of a plurality of imaging positions). However, when a large number of positions are set as the imaging positions, imaging is inefficient and wasteful. On the contrary, when there are few positions set as an imaging position, the area | region where brightness is insufficient may arise in the whole image obtained by the synthesis | combination of a some captured image. Thus, a suitable imaging arrangement cannot be easily obtained.
 そこで本発明は、2つの照明光学系を有する撮像装置での撮像に関し、好品質の画像を効率的に得ることのできる撮像配置を容易に決定する方法を提供することを目的とする。 Therefore, the present invention relates to imaging with an imaging apparatus having two illumination optical systems, and an object thereof is to provide a method for easily determining an imaging arrangement capable of efficiently obtaining a good quality image.
 本発明の第1の局面は、第1の照明光学系および第2の照明光学系を有し、1以上の試料収納部を有する試料容器の種類と撮像位置とに応じて前記第1の照明光学系と前記第2の照明光学系との間で使用する照明光学系を切り替えつつ撮像を行う撮像装置における複数の撮像位置の配置を決定する撮像配置決定方法であって、
 前記撮像装置による撮像が行われる際の有効視野領域を決定する有効視野領域決定ステップと、
 前記試料収納部の壁面に沿って、前記第1の照明光学系を使用した撮像が行われるべき複数の撮像位置を配置する第1の撮像配置決定ステップと、
 前記試料収納部内の任意の位置が全ての撮像位置のうちの少なくとも1つでの撮像によって得られる有効視野領域に含まれるよう、前記第1の撮像配置決定ステップで決定された複数の撮像位置での撮像によって得られる有効視野領域以外の領域に、前記第2の照明光学系を使用した撮像が行われるべき複数の撮像位置を配置する第2の撮像配置決定ステップと
を含むことを特徴とする。
The first aspect of the present invention includes a first illumination optical system and a second illumination optical system, and the first illumination according to the type and imaging position of a sample container having one or more sample storage units. An imaging arrangement determination method for determining an arrangement of a plurality of imaging positions in an imaging apparatus that performs imaging while switching an illumination optical system to be used between an optical system and the second illumination optical system,
An effective visual field region determining step for determining an effective visual field region when imaging by the imaging device is performed;
A first imaging arrangement determining step for arranging a plurality of imaging positions to be imaged using the first illumination optical system along the wall surface of the sample storage unit;
The plurality of imaging positions determined in the first imaging arrangement determination step so that an arbitrary position in the sample storage unit is included in an effective visual field region obtained by imaging at at least one of all imaging positions. And a second imaging arrangement determination step of arranging a plurality of imaging positions where imaging using the second illumination optical system is to be performed in an area other than the effective visual field area obtained by imaging .
 本発明の第2の局面は、本発明の第1の局面において、
 前記有効視野領域決定ステップでは、前記第1の照明光学系を使用した撮像が行われる際の有効視野領域と、前記第2の照明光学系を使用した撮像が行われる際の有効視野領域とが決定され、
 前記第1の撮像配置決定ステップでは、前記試料収納部の壁面に沿って互いに隣接する2つの撮像位置での撮像によって得られるそれぞれの有効視野領域の一部が互いに重なるよう、前記第1の照明光学系を使用した撮像が行われるべき複数の撮像位置の配置が決定され、
 前記第2の撮像配置決定ステップでは、前記第1の撮像配置決定ステップで決定された複数の撮像位置での撮像によって得られる有効視野領域以外の領域において互いに隣接する2つの撮像位置での撮像によって得られるそれぞれの有効視野領域の一部が互いに重なるよう、前記第2の照明光学系を使用した撮像が行われるべき複数の撮像位置の配置が決定されることを特徴とする。
According to a second aspect of the present invention, in the first aspect of the present invention,
In the effective visual field area determination step, an effective visual field area when imaging using the first illumination optical system is performed and an effective visual field area when imaging using the second illumination optical system is performed. Determined,
In the first imaging arrangement determination step, the first illumination is performed so that a part of each effective visual field region obtained by imaging at two imaging positions adjacent to each other along the wall surface of the sample storage unit overlaps each other. The arrangement of a plurality of imaging positions where imaging using an optical system is to be performed is determined,
In the second imaging arrangement determination step, by imaging at two imaging positions adjacent to each other in an area other than the effective visual field area obtained by imaging at a plurality of imaging positions determined in the first imaging arrangement determination step. The arrangement of a plurality of imaging positions where imaging using the second illumination optical system is to be performed is determined so that a part of each of the obtained effective visual field regions overlaps each other.
 本発明の第3の局面は、本発明の第2の局面において、
 前記試料収納部の底面の形状は円形であって、
 前記第1の撮像配置決定ステップは、
  前記第1の照明光学系を使用した撮像が行われるべき複数の撮像位置のうちの任意の1つである基準位置を決定する基準位置決定ステップと、
  前記試料収納部の中心と前記基準位置とを結ぶ線分を前記試料収納部の中心を回転中心として所定角度ずつ回転させ、回転の都度、回転後の線分の2つの端点のうち前記試料収納部の中心の位置にある端点とは異なる方の端点の位置を前記第1の照明光学系を使用した撮像が行われるべき撮像位置に定める撮像位置順次決定ステップと
を含むことを特徴とする。
According to a third aspect of the present invention, in the second aspect of the present invention,
The shape of the bottom surface of the sample storage part is circular,
The first imaging arrangement determination step includes:
A reference position determining step for determining a reference position which is an arbitrary one of a plurality of imaging positions where imaging using the first illumination optical system is to be performed;
A line segment connecting the center of the sample storage unit and the reference position is rotated by a predetermined angle with the center of the sample storage unit as a rotation center, and the sample storage is performed between two end points of the rotated line segment each time the rotation is performed. And an imaging position sequential determination step that determines the position of the end point that is different from the end point at the center position of the part as the imaging position where the imaging using the first illumination optical system is to be performed.
 本発明の第4の局面は、本発明の第3の局面において、
 前記基準位置決定ステップでは、撮像位置を少しずつ動かしながら前記第1の照明光学系を使用した撮像が行われ、前記試料収納部の壁面の位置での明るさが前記試料収納部の中心で前記第2の照明光学系を使用した撮像が行われたときの前記試料収納部の中心での明るさとほぼ同じになる撮像位置が前記基準位置に定められることを特徴とする。
According to a fourth aspect of the present invention, in the third aspect of the present invention,
In the reference position determination step, imaging using the first illumination optical system is performed while moving the imaging position little by little, and the brightness at the position of the wall surface of the sample storage unit is the center of the sample storage unit. An imaging position that is substantially the same as the brightness at the center of the sample storage unit when imaging using the second illumination optical system is performed is defined as the reference position.
 本発明の第5の局面は、本発明の第1から第4までのいずれかの局面において、
 前記第2の撮像配置決定ステップでは、前記撮像装置による全ての撮像位置での撮像に要する走査回数が最小となるように、前記第2の照明光学系を使用した撮像が行われるべき複数の撮像位置の配置が決定されることを特徴とする。
According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention,
In the second imaging arrangement determination step, a plurality of imagings that should be imaged using the second illumination optical system so that the number of scans required for imaging at all imaging positions by the imaging device is minimized. The arrangement of the positions is determined.
 本発明の第6の局面は、本発明の第1から第4までのいずれかの局面において、
 前記第2の撮像配置決定ステップでは、前記撮像装置による撮像回数が最小となるように、前記第2の照明光学系を使用した撮像が行われるべき複数の撮像位置の配置が決定されることを特徴とする。
According to a sixth aspect of the present invention, in any one of the first to fourth aspects of the present invention,
In the second imaging arrangement determination step, the arrangement of a plurality of imaging positions where imaging using the second illumination optical system is to be performed is determined so that the number of times of imaging by the imaging device is minimized. Features.
 本発明の第7の局面は、本発明の第1から第6までのいずれかの局面において、
 前記第1の撮像配置決定ステップでは、前記撮像装置による撮像が行われる際の主走査方向に対して垂直な方向についての撮像間隔が等間隔に近づくように、前記第1の照明光学系を使用した撮像が行われるべき複数の撮像位置の微調整が行われることを特徴とする。
According to a seventh aspect of the present invention, in any one of the first to sixth aspects of the present invention,
In the first imaging arrangement determination step, the first illumination optical system is used so that imaging intervals in a direction perpendicular to a main scanning direction when imaging by the imaging device is performed approach an equal interval. This is characterized in that fine adjustment of a plurality of image pickup positions where the image pickup should be performed is performed.
 本発明の第8の局面は、本発明の第1から第7までのいずれかの局面において、
 前記有効視野領域決定ステップでは、前記試料容器の種類および前記試料収納部に注入される撮像対象物の培養条件を考慮して有効視野領域が決定されることを特徴とする。
According to an eighth aspect of the present invention, in any one of the first to seventh aspects of the present invention,
In the effective visual field region determining step, the effective visual field region is determined in consideration of the type of the sample container and the culture condition of the imaging object to be injected into the sample storage unit.
 本発明の第9の局面は、本発明の第1から第8までのいずれかの局面において、
 前記試料収納部の底面への主光線の入射状態が、前記第1の照明光学系と前記第2の照明光学系とで異なることを特徴とする。
According to a ninth aspect of the present invention, in any one of the first to eighth aspects of the present invention,
The incident state of the chief ray on the bottom surface of the sample storage unit is different between the first illumination optical system and the second illumination optical system.
 本発明の第10の局面は、本発明の第9の局面において、
 前記第1の照明光学系は、主光線が平行な状態で前記試料収納部の底面に入射するよう、前記試料収納部に向けて光を出射し、
 前記第2の照明光学系は、前記試料収納部の底面に入射する主光線が光軸から遠ざかる方向の成分を有するよう、前記試料収納部に向けて光を出射し、
 前記撮像装置は、主光線が光軸から遠ざかる方向の成分を有する光を受光するように構成された撮像光学系を含むことを特徴とする。
According to a tenth aspect of the present invention, in a ninth aspect of the present invention,
The first illumination optical system emits light toward the sample storage unit so that the principal ray is incident on the bottom surface of the sample storage unit in a parallel state,
The second illumination optical system emits light toward the sample storage unit such that a principal ray incident on the bottom surface of the sample storage unit has a component in a direction away from the optical axis,
The image pickup apparatus includes an image pickup optical system configured to receive light having a component in a direction in which a chief ray moves away from an optical axis.
 本発明の第11の局面は、底面が光透過性を有する試料収納部に液体と共に保持された撮像対象物を撮像する撮像装置であって、
 1以上の前記試料収納部を有する試料容器を保持する容器保持部と、
 前記試料収納部に保持された撮像対象物に光を照射する照明部と、
 前記試料収納部に保持された撮像対象物の撮像を行う撮像部と、
 撮像位置に応じて前記撮像部と前記照明部とを一体的に移動させる駆動部と、
 前記照明部、前記撮像部、および前記駆動部の動作を制御する制御部と
を備え、
 前記照明部は、前記試料収納部の底面への主光線の入射状態が互いに異なる第1の照明光学系および第2の照明光学系からなり、
 前記制御部は、
  前記試料収納部の壁面に沿って配置された複数の撮像位置である第1の撮像位置群および当該第1の撮像位置群での撮像によって得られる有効視野領域以外の領域に配置された複数の撮像位置である第2の撮像位置群で撮像が行われるよう前記撮像部および前記駆動部を制御するとともに、
  前記第1の撮像位置群に含まれる撮像位置で撮像が行われる際には前記第1の照明光学系から光が出射されるよう、かつ、前記第2の撮像位置群に含まれる撮像位置で撮像が行われる際には前記第2の照明光学系から光が出射されるよう、前記照明部を制御することを特徴とする。
An eleventh aspect of the present invention is an imaging device that images an imaging object held together with a liquid in a sample storage portion whose bottom surface has light permeability,
A container holding part for holding a sample container having one or more sample storage parts;
An illuminating unit that irradiates light to the imaging object held in the sample storage unit;
An imaging unit for imaging an imaging object held in the sample storage unit;
A driving unit that integrally moves the imaging unit and the illumination unit according to an imaging position;
A controller that controls operations of the illumination unit, the imaging unit, and the drive unit;
The illumination unit is composed of a first illumination optical system and a second illumination optical system in which the incident state of the chief ray on the bottom surface of the sample storage unit is different from each other,
The controller is
A first imaging position group that is a plurality of imaging positions arranged along the wall surface of the sample storage unit, and a plurality of areas arranged in areas other than the effective visual field area obtained by imaging at the first imaging position group. While controlling the imaging unit and the driving unit so that imaging is performed at the second imaging position group that is the imaging position,
When imaging is performed at an imaging position included in the first imaging position group, light is emitted from the first illumination optical system, and at an imaging position included in the second imaging position group. When the imaging is performed, the illumination unit is controlled so that light is emitted from the second illumination optical system.
 本発明の第12の局面は、本発明の第11の局面において、
 前記制御部は、外部から指示された撮像位置を前記容器保持部上における前記試料容器の位置および向きに応じて補正して前記撮像部により実際に撮像が行われる際の撮像位置を求める撮像位置調整部を含むことを特徴とする。
A twelfth aspect of the present invention is the eleventh aspect of the present invention,
The control unit corrects the imaging position instructed from the outside according to the position and orientation of the sample container on the container holding unit, and obtains the imaging position when the imaging unit actually performs imaging. An adjustment unit is included.
 本発明の第13の局面は、本発明の第11または第12の局面において、
 前記第1の照明光学系は、主光線が平行な状態で前記試料収納部の底面に入射するよう、前記試料収納部に向けて光を出射し、
 前記第2の照明光学系は、前記試料収納部の底面に入射する主光線が光軸から遠ざかる方向の成分を有するよう、前記試料収納部に向けて光を出射し、
 前記撮像部は、主光線が光軸から遠ざかる方向の成分を有する光を受光するように構成された撮像光学系を含むことを特徴とする。
According to a thirteenth aspect of the present invention, in the eleventh or twelfth aspect of the present invention,
The first illumination optical system emits light toward the sample storage unit so that the principal ray is incident on the bottom surface of the sample storage unit in a parallel state,
The second illumination optical system emits light toward the sample storage unit such that a principal ray incident on the bottom surface of the sample storage unit has a component in a direction away from the optical axis,
The imaging unit includes an imaging optical system configured to receive light having a component in a direction in which a chief ray moves away from an optical axis.
 本発明の第1の局面によれば、2つの照明光学系(第1の照明光学系および第2の照明光学系)が設けられた撮像装置による撮像が行われる際、有効視野領域が定められた後、試料収納部の壁面に沿って複数の撮像位置が配置されるよう、第1の照明光学系(例えば、メニスカスの影響を受ける領域の撮像に適した照明光学系)を使用した撮像が行われるべき複数の撮像位置の配置が決定される。試料収納部の壁面に沿った複数の撮像位置の配置を考えるとき、壁面近傍の1つの撮像位置が定まると、第1の照明光学系を使用した撮像が行われるべき全ての撮像位置について、試料収納部の壁面からの距離が定まる。また、互いに隣接する2つの撮像位置の間の距離は有効視野領域を考慮して決定すれば良い。以上より、第1の照明光学系を使用した撮像が行われるべき複数の撮像位置の配置を比較的容易に決定することができる。また、第2の照明光学系(例えば、メニスカスの影響を受けない領域の撮像に適した照明光学系)を使用した撮像が行われるべき撮像位置の配置を考える時には、第1の照明光学系を使用した撮像が行われるべき複数の撮像位置に基づく有効視野領域が既に定まっている。このため、残りの領域の広さと第2の照明光学系を使用した場合の有効視野領域の広さとを考慮して、第2の照明光学系を使用した撮像が行われるべき撮像位置の配置を比較的容易に決定することができる。以上のように、2つの照明光学系を有する撮像装置で撮像が行われる際の撮像配置(複数の撮像位置の配置)を容易に決定することができる。 According to the first aspect of the present invention, when imaging is performed by an imaging apparatus provided with two illumination optical systems (a first illumination optical system and a second illumination optical system), an effective visual field region is determined. Then, imaging using a first illumination optical system (for example, an illumination optical system suitable for imaging a region affected by a meniscus) is performed so that a plurality of imaging positions are arranged along the wall surface of the sample storage unit. The arrangement of a plurality of imaging positions to be performed is determined. When considering the arrangement of a plurality of imaging positions along the wall surface of the sample storage section, once one imaging position in the vicinity of the wall surface is determined, all the imaging positions that should be imaged using the first illumination optical system are sampled. The distance from the wall of the storage unit is determined. In addition, the distance between two imaging positions adjacent to each other may be determined in consideration of the effective visual field region. From the above, it is possible to determine the arrangement of a plurality of imaging positions where imaging using the first illumination optical system is to be performed relatively easily. Further, when considering the arrangement of imaging positions where imaging using the second illumination optical system (for example, an illumination optical system suitable for imaging an area not affected by the meniscus) is to be performed, the first illumination optical system is used. An effective visual field region based on a plurality of imaging positions where the used imaging should be performed has already been determined. For this reason, in consideration of the width of the remaining area and the width of the effective visual field area when the second illumination optical system is used, the arrangement of the imaging positions where the imaging using the second illumination optical system is to be performed is performed. It can be determined relatively easily. As described above, it is possible to easily determine an imaging arrangement (arrangement of a plurality of imaging positions) when imaging is performed by an imaging apparatus having two illumination optical systems.
 本発明の第2の局面によれば、互いに隣接する2つの撮像位置での撮像によって得られるそれぞれの有効視野領域の一部が互いに重なるように撮像配置が決定されるので、複数の撮像画像の合成によって得られる全体画像中に明るさが不充分な領域が生じることが確実に防止される。 According to the second aspect of the present invention, since the imaging arrangement is determined so that a part of each effective visual field area obtained by imaging at two imaging positions adjacent to each other overlaps each other, It is reliably prevented that a region with insufficient brightness is generated in the entire image obtained by the synthesis.
 本発明の第3の局面によれば、第1の照明光学系を使用した撮像が行われるべき複数の撮像位置に関し、基準位置が決まれば比較的容易に残りの撮像位置を決定することができる。 According to the third aspect of the present invention, regarding a plurality of imaging positions where imaging using the first illumination optical system is to be performed, if the reference position is determined, the remaining imaging positions can be determined relatively easily. .
 本発明の第4の局面によれば、試料収納部の壁面部の撮像画像の明るさと試料収納部の中心部の撮像画像の明るさとが同程度になるので、好品質の全体画像が得られる。 According to the fourth aspect of the present invention, the brightness of the captured image on the wall surface of the sample storage portion and the brightness of the captured image on the center portion of the sample storage portion are approximately the same, so that a good quality overall image is obtained. .
 本発明の第5の局面によれば、走査回数が少なくなるので、全ての撮像位置での撮像が終了するまでに要する時間が短くなる。 According to the fifth aspect of the present invention, since the number of scans is reduced, the time required to complete imaging at all imaging positions is shortened.
 本発明の第6の局面によれば、撮像枚数が少なくなるので、資源が有効に活用される。 According to the sixth aspect of the present invention, the number of captured images is reduced, so resources are effectively used.
 本発明の第7の局面によれば、第2の照明光学系を使用した撮像が行われるべき領域において効率的に複数の撮像位置が配置される。 According to the seventh aspect of the present invention, a plurality of imaging positions are efficiently arranged in an area where imaging using the second illumination optical system is to be performed.
 本発明の第8の局面によれば、有効視野領域が試料容器の種類や培養条件を考慮して定められるので、より効率的に複数の撮像位置を配置させることが可能になるとともに、複数の撮像画像の合成によって得られる全体画像中に明るさが不充分な領域が生じることが抑制される。 According to the eighth aspect of the present invention, since the effective visual field region is determined in consideration of the type of the sample container and the culture condition, it is possible to arrange a plurality of imaging positions more efficiently and Generation of a region with insufficient brightness in the whole image obtained by combining the captured images is suppressed.
 本発明の第9の局面によれば、本発明の第1から第8までのいずれかの局面と同様の効果が得られる。 According to the ninth aspect of the present invention, the same effect as any one of the first to eighth aspects of the present invention can be obtained.
 本発明の第10の局面によれば、例えばメニスカスの影響を受ける領域とメニスカスの影響を受けない領域とで照明光学系を切り替える撮像装置で撮像が行われる際の撮像配置を容易に決定することが可能となる。 According to the tenth aspect of the present invention, for example, to easily determine an imaging arrangement when imaging is performed by an imaging device that switches an illumination optical system between a region affected by a meniscus and a region not affected by a meniscus Is possible.
 本発明の第11の局面によれば、撮像が行われる際、試料収納部の壁面近傍の領域とそれ以外の領域とで異なる照明光学系が使用される。このため、試料収納部に注入されている液体の表面にメニスカスが形成されていても、複数の撮像画像の合成によって得られる全体画像中に明るさが不充分な領域が生じることが抑制される。また、効率的に配置された複数の撮像位置で撮像が行われるので、撮像処理が効率的に行われる。 According to the eleventh aspect of the present invention, when imaging is performed, different illumination optical systems are used in the region near the wall surface of the sample storage unit and the other regions. For this reason, even if a meniscus is formed on the surface of the liquid injected into the sample storage unit, it is possible to suppress a region having insufficient brightness in the entire image obtained by combining a plurality of captured images. . Moreover, since imaging is performed at a plurality of imaging positions that are efficiently arranged, imaging processing is performed efficiently.
 本発明の第12の局面によれば、試料容器の設計誤差や試料容器をセットする際の位置ずれに関わらず所望の撮像画像が得られる。また、位置ずれがあったときに試料容器のセットのやり直しが不要となることから、試料(細胞等)にダメージを及ぼすことなく所望の撮像画像を得ることが可能となる。 According to the twelfth aspect of the present invention, a desired captured image can be obtained regardless of the design error of the sample container and the positional deviation when setting the sample container. Further, since it is not necessary to set the sample container again when there is a positional shift, a desired captured image can be obtained without damaging the sample (cells or the like).
 本発明の第13の局面によれば、例えばメニスカスの影響を受ける領域とメニスカスの影響を受けない領域とで照明光学系を切り替える撮像装置において、複数の撮像画像を合成することによって全体画像を生成する際に撮像処理が効率的に行われる。 According to the thirteenth aspect of the present invention, for example, in an imaging device that switches an illumination optical system between a region affected by a meniscus and a region not affected by a meniscus, an entire image is generated by combining a plurality of captured images. In this case, the imaging process is performed efficiently.
本発明の一実施形態に係る撮像装置の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an imaging apparatus according to an embodiment of the present invention. 上記実施形態における第1の照明光学系および第2の照明光学系の光線図である。It is a light ray diagram of the 1st illumination optical system in the above-mentioned embodiment, and the 2nd illumination optical system. 上記実施形態において、第1の照明光学系から出射される第1の照明光を示す図である。In the said embodiment, it is a figure which shows the 1st illumination light radiate | emitted from the 1st illumination optical system. 上記実施形態において、第2の照明光学系から出射される第2の照明光を示す図である。In the said embodiment, it is a figure which shows the 2nd illumination light radiate | emitted from the 2nd illumination optical system. 上記実施形態において、ウェル周縁領域が撮像視野に含まれないときに仮に第1の照明光学系が使用された場合の撮像の様子を示す図である。In the said embodiment, it is a figure which shows the mode of imaging when a 1st illumination optical system is temporarily used when a well peripheral region is not contained in an imaging visual field. 上記実施形態において、ウェル周縁領域が撮像視野に含まれるときに第1の照明光学系が使用された場合の撮像の様子を示す図である。In the said embodiment, it is a figure which shows the mode of an imaging when a 1st illumination optical system is used when a well peripheral region is contained in an imaging visual field. 上記実施形態において、ウェル周縁領域が撮像視野に含まれないときに第2の照明光学系が使用された場合の撮像の様子を示す図である。In the said embodiment, it is a figure which shows the mode of an imaging when a 2nd illumination optical system is used when a well peripheral region is not contained in an imaging visual field. 上記実施形態において、第1の照明光学系を使用した撮像を行う領域および第2の照明光学系を使用した撮像を行う領域の設定例を示す図である。In the said embodiment, it is a figure which shows the example of a setting of the area | region which performs imaging using a 1st illumination optical system, and the area | region which performs imaging using a 2nd illumination optical system. 上記実施形態において、撮像配置の一例を示す図である。In the said embodiment, it is a figure which shows an example of imaging arrangement | positioning. 上記実施形態において、撮像のための走査について説明するための図である。In the said embodiment, it is a figure for demonstrating the scanning for an imaging. 上記実施形態において、撮像装置で撮像が行われる際の全体の処理の流れを示すフローチャートである。In the said embodiment, it is a flowchart which shows the flow of the whole process at the time of imaging with an imaging device. 上記実施形態において、撮像配置を決定する手順を示すフローチャートである。In the said embodiment, it is a flowchart which shows the procedure which determines an imaging arrangement | positioning. 上記実施形態において、有効視野領域の決定の仕方について説明するための図である。In the said embodiment, it is a figure for demonstrating how to determine an effective visual field area | region. 上記実施形態において、ウェル周縁領域で第1の照明光学系を使用した撮像が行われた際に得られる撮像画像の一例を示す図である。In the said embodiment, it is a figure which shows an example of the captured image obtained when the imaging using a 1st illumination optical system was performed in the well peripheral region. 上記実施形態において、第1の照明光学系を使用した撮像が行われた場合の有効視野領域を示す図である。In the said embodiment, it is a figure which shows the effective visual field area | region at the time of imaging using the 1st illumination optical system. 上記実施形態において、ウェル中央領域で第2の照明光学系を使用した撮像が行われた際に得られる撮像画像の一例を示す図である。In the said embodiment, it is a figure which shows an example of the captured image obtained when the imaging using the 2nd illumination optical system was performed in the well center area | region. 上記実施形態において、第2の照明光学系を使用した撮像が行われた場合の有効視野領域を示す図である。In the said embodiment, it is a figure which shows the effective visual field area | region at the time of imaging using the 2nd illumination optical system. 上記実施形態において、培養条件の違いによる有効視野領域の違いについて説明するための図である。In the said embodiment, it is a figure for demonstrating the difference in the effective visual field area | region by the difference in culture conditions. 上記実施形態において、ウェル周縁領域における複数の撮像位置のうちの基準位置の決定について説明するための図である。In the said embodiment, it is a figure for demonstrating determination of the reference position of the some imaging positions in a well peripheral region. 上記実施形態において、ウェル周縁領域における複数の撮像位置のうちの基準位置の決定について説明するための図である。In the said embodiment, it is a figure for demonstrating determination of the reference position of the some imaging positions in a well peripheral region. 上記実施形態において、基準位置とウェルのエッジ部との間の距離について説明するための図である。In the said embodiment, it is a figure for demonstrating the distance between a reference position and the edge part of a well. 上記実施形態において、基準位置に隣接する撮像位置の決定について説明するための図である。In the said embodiment, it is a figure for demonstrating determination of the imaging position adjacent to a reference position. 上記実施形態において、ウェル周縁領域における複数の撮像位置の配置例を示す図である。In the said embodiment, it is a figure which shows the example of arrangement | positioning of several imaging position in a well peripheral region. 上記実施形態において、ウェル周縁領域における複数の撮像位置の配置例を示す図である。In the said embodiment, it is a figure which shows the example of arrangement | positioning of several imaging position in a well peripheral region. 上記実施形態において、ウェル中央領域における撮像位置の決定について説明するための図である。In the said embodiment, it is a figure for demonstrating determination of the imaging position in a well center area | region. 上記実施形態において、ウェル中央領域における撮像位置の決定について説明するための図である。In the said embodiment, it is a figure for demonstrating determination of the imaging position in a well center area | region. ウェル周縁領域での撮像位置の決定に関する変形例について説明するための図である。It is a figure for demonstrating the modification regarding the determination of the imaging position in a well peripheral region. ウェル周縁領域での撮像位置の決定に関する変形例について説明するための図である。It is a figure for demonstrating the modification regarding the determination of the imaging position in a well peripheral region. 上記実施形態の変形例において、アライメント処理について説明するための図である。It is a figure for demonstrating an alignment process in the modification of the said embodiment. 上記実施形態の変形例において、アライメント処理について説明するための図である。It is a figure for demonstrating an alignment process in the modification of the said embodiment.
 以下、添付図面を参照しつつ本発明の一実施形態について説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
<1.撮像装置の構成>
 図1は、本発明の一実施形態に係る撮像装置1の概略構成を示す図である。この撮像装置1は、ウェルプレートWPの上面に形成されたウェルWに注入された液体中で培養されている細胞、細胞コロニー、細菌等(以下、これらをまとめて「細胞等」という。)の試料を撮像するための装置である。
<1. Configuration of Imaging Device>
FIG. 1 is a diagram illustrating a schematic configuration of an imaging apparatus 1 according to an embodiment of the present invention. The imaging apparatus 1 includes cells, cell colonies, bacteria, and the like (hereinafter collectively referred to as “cells”) cultured in a liquid injected into a well W formed on the upper surface of a well plate WP. An apparatus for imaging a sample.
 ウェルプレートWPは、平板状の形状を有している。ウェルプレートWPには、上面側に開口を有し下面側に透明の底面を有する試料収納部としての複数個(例えば、6個、24個、96個、384個など)のウェルWが配列されている。なお、ここでは試料容器としてウェルプレートWPが用いられている例を挙げて説明するが、本発明はこれに限定されず、ディッシュと呼ばれる容器(試料収納部を1つだけ有する容器)を試料容器として用いることもできる。 The well plate WP has a flat plate shape. In the well plate WP, a plurality (for example, 6, 24, 96, 384, etc.) of wells W are arranged as sample storage portions having an opening on the upper surface side and a transparent bottom surface on the lower surface side. ing. Here, an example in which a well plate WP is used as a sample container will be described. However, the present invention is not limited to this, and a container called a dish (a container having only one sample storage portion) is used as a sample container. Can also be used.
 ウェルWの形状については、典型的には、断面は円形状であって、底面は平坦状になっている。但し、ウェルWの断面および底面の形状はこれには限定されない。ウェルWの直径および深さは、一般的には数mm~数10mm程度である。各ウェルWには、細胞等に生育環境を提供する培地Mとしての液体(培養液)が所定量注入される。各ウェルWに注入される液体の量は、一般的には50~200マイクロリットル程度である。本実施形態においては、その液体中で所定の培養条件で培養された細胞等が撮像対象物となる。 The shape of the well W typically has a circular cross section and a flat bottom surface. However, the cross section and bottom shape of the well W are not limited to this. The diameter and depth of the well W are generally several millimeters to several tens of millimeters. Each well W is injected with a predetermined amount of a liquid (culture medium) as a medium M that provides a growth environment for cells and the like. The amount of liquid injected into each well W is generally about 50 to 200 microliters. In the present embodiment, a cell or the like cultured under a predetermined culture condition in the liquid is an imaging object.
 図1に示すように、この撮像装置1は、撮像用の光を出射する照明部10と、ウェルプレートWPを保持するホルダ12と、ウェルW内の試料(細胞等)の撮像を行う撮像部13と、照明部10および撮像部13の動作を制御する制御部14と、撮像の際に照明部10および撮像部13を移動させる駆動機構15とを備えている。照明部10は、この撮像装置1の上部に配置されている。ホルダ12は照明部10の下方に配置され、撮像部13はホルダ12の下方に配置されている。 As shown in FIG. 1, the imaging apparatus 1 includes an illumination unit 10 that emits imaging light, a holder 12 that holds a well plate WP, and an imaging unit that captures an image of a sample (such as a cell) in the well W. 13, a control unit 14 that controls the operations of the illumination unit 10 and the imaging unit 13, and a drive mechanism 15 that moves the illumination unit 10 and the imaging unit 13 during imaging. The illumination unit 10 is disposed on the upper part of the imaging device 1. The holder 12 is disposed below the illumination unit 10, and the imaging unit 13 is disposed below the holder 12.
 なお、以下において、ウェルW内の領域のうち撮像視野に含まれたときにメニスカスの影響を受ける領域のことを「ウェル辺縁部」という。ところで、ウェル辺縁部の撮像が行われる際、撮像位置がウェルWのエッジ部(壁面)よりも外側に位置する場合がある。そこで、エッジ部よりも外側の領域およびエッジ部よりも内側の領域の双方を含むエッジ部近傍の領域のことを「ウェル周縁領域」という。ウェル辺縁部は、ウェル周縁領域のうちエッジ部よりも内側の領域のことである。また、ウェルW内の領域のうち撮像視野に含まれたときにメニスカスの影響を受けない領域(より厳密には、メニスカスの影響が十分に小さい領域)のことを「ウェル中央領域」という。 In the following, a region in the well W that is affected by the meniscus when included in the imaging field is referred to as a “well edge”. By the way, when imaging of the edge of the well is performed, the imaging position may be located outside the edge (wall surface) of the well W. Therefore, a region in the vicinity of the edge portion including both the region outside the edge portion and the region inside the edge portion is referred to as a “well peripheral region”. The well edge portion is a region inside the edge portion of the well peripheral region. In addition, a region in the well W that is not affected by the meniscus when included in the imaging field (more precisely, a region in which the influence of the meniscus is sufficiently small) is referred to as a “well central region”.
<1.1 照明部>
 照明部10は、白色LED(Light Emitting Diode)などの2つの光源(第1の光源101および第2の光源111)と、2つの反射ミラー102,105と、2つのコレクタレンズ103,112と、ビームスプリッター104と、コンデンサレンズ106とを備えている。第1の光源101から出射される光は、その光路が反射ミラー102によって折り返された後、コレクタレンズ103を介してビームスプリッター104に入射する。第2の光源111から出射される光は、コレクタレンズ112を介してビームスプリッター104に入射する。ビームスプリッター104から出射される光線は、その進行方向が反射ミラー105によって(-Z)方向すなわち鉛直下向き方向に変えられる。そして、進行方向が鉛直下向き方向になった光線は、コンデンサレンズ106を介して、この照明部10から下向きに出射される。照明部10から出射された光は、ホルダ12に支持されたウェルプレートWPの上方から少なくとも1つのウェルWに入射し、ウェルW内の撮像対象物を照明する。
<1.1 Illumination unit>
The illumination unit 10 includes two light sources (a first light source 101 and a second light source 111) such as a white LED (Light Emitting Diode), two reflection mirrors 102 and 105, two collector lenses 103 and 112, A beam splitter 104 and a condenser lens 106 are provided. The light emitted from the first light source 101 is incident on the beam splitter 104 via the collector lens 103 after its optical path is turned back by the reflection mirror 102. The light emitted from the second light source 111 enters the beam splitter 104 via the collector lens 112. The traveling direction of the light beam emitted from the beam splitter 104 is changed to the (−Z) direction, that is, the vertical downward direction by the reflection mirror 105. Then, the light beam whose traveling direction is a vertically downward direction is emitted downward from the illumination unit 10 via the condenser lens 106. The light emitted from the illumination unit 10 is incident on at least one well W from above the well plate WP supported by the holder 12 to illuminate the imaging target in the well W.
 以上のように、本実施形態における照明部10は、第1の光源101を光源とする照明光学系(以下、「第1の照明光学系」という。)100と第2の光源111を光源とする照明光学系(以下、「第2の照明光学系」という。)110とによって構成されている。第1の照明光学系100は、第1の光源101、反射ミラー102、コレクタレンズ103、ビームスプリッター104、反射ミラー105、およびコンデンサレンズ106からなる。第2の照明光学系110は、第2の光源111、コレクタレンズ112、ビームスプリッター104、反射ミラー105、およびコンデンサレンズ106からなる。なお、ビームスプリッター104、反射ミラー105、およびコンデンサレンズ106については、第1の照明光学系100および第2の照明光学系110によって共有されている。 As described above, the illumination unit 10 according to the present embodiment uses the illumination light system 100 (hereinafter referred to as “first illumination optical system”) 100 and the second light source 111 as the light source. And an illumination optical system 110 (hereinafter referred to as “second illumination optical system”) 110. The first illumination optical system 100 includes a first light source 101, a reflection mirror 102, a collector lens 103, a beam splitter 104, a reflection mirror 105, and a condenser lens 106. The second illumination optical system 110 includes a second light source 111, a collector lens 112, a beam splitter 104, a reflection mirror 105, and a condenser lens 106. The beam splitter 104, the reflection mirror 105, and the condenser lens 106 are shared by the first illumination optical system 100 and the second illumination optical system 110.
 第1の光源101および第2の光源111は、制御部14内の光源制御部146から与えられる制御信号に応じて選択的に点灯する。従って、照明部10は、第1の照明光学系100から出射される光(以下、「第1の照明光」という。)と第2の照明光学系110から出射される光(以下、「第2の照明光」という。)とを選択的にウェルWに入射させることができる。第1の照明光と第2の照明光とはビームスプリッター104によって合成され、これらは同軸に出射可能となっている。すなわち、コンデンサレンズ106から出射される第1の照明光および第2の照明光の中心軸は一致している。 The first light source 101 and the second light source 111 are selectively turned on according to a control signal provided from the light source control unit 146 in the control unit 14. Therefore, the illuminating unit 10 emits light emitted from the first illumination optical system 100 (hereinafter referred to as “first illumination light”) and light emitted from the second illumination optical system 110 (hereinafter referred to as “first illumination light”). 2 ”) can be selectively made incident on the well W. The first illumination light and the second illumination light are combined by the beam splitter 104 and can be emitted coaxially. That is, the central axes of the first illumination light and the second illumination light emitted from the condenser lens 106 coincide.
 図2は、第1の照明光学系100および第2の照明光学系110の光線図である。なお、図2では、光路を明瞭に示すため、第1の照明光学系100と第2の照明光学系110とを分離して記載している。また、説明の便宜上、実際には反射ミラー102,105およびビームスプリッター104で折り曲げられる光軸を直線で示している。このため、光軸を折り曲げる機能を有する反射ミラー102,105およびビームスプリッター104の図示が省略されている。 FIG. 2 is a ray diagram of the first illumination optical system 100 and the second illumination optical system 110. In FIG. 2, the first illumination optical system 100 and the second illumination optical system 110 are illustrated separately to clearly show the optical path. For convenience of explanation, the optical axes that are actually bent by the reflecting mirrors 102 and 105 and the beam splitter 104 are shown by straight lines. For this reason, the reflection mirrors 102 and 105 and the beam splitter 104 having a function of bending the optical axis are not shown.
 第1の照明光学系100では、第1の光源101から出射された光は、コレクタレンズ103によって集光される。その集光された光は、コンデンサレンズ106を介して、撮像対象物である細胞等が存在する試料面に向けて出射される。通常、試料面はウェルWの底面である。コレクタレンズ103は、当該コレクタレンズ103とコンデンサレンズ106との間に第1の光源101の像を結像させる。すなわち、コレクタレンズ103とコンデンサレンズ106との間に、第1の光源101の共役点C1が存在する。また、コレクタレンズ103およびコンデンサレンズ106は、コンデンサレンズ106から試料面へと向かう主光線が光軸と平行となるように構成されている。すなわち、第1の照明光学系100はテレセントリック照明をなしている。第1の光源101の光出射面には、コレクタレンズ103に入射する光の角度範囲を規定するために、必要に応じて開口絞り107が設けられる。開口絞り107により、照明のNA(開口数)を調整することができる。また、コレクタレンズ103よりも後側かつ共役点C1よりも前側の位置には、必要に応じて視野絞り108が設けられる。これにより、撮像に必要な範囲のみを照明して、撮像光学系でのフレア発生を防止することができる。 In the first illumination optical system 100, the light emitted from the first light source 101 is collected by the collector lens 103. The condensed light is emitted through a condenser lens 106 toward a sample surface where cells or the like that are imaging objects are present. Usually, the sample surface is the bottom surface of the well W. The collector lens 103 forms an image of the first light source 101 between the collector lens 103 and the condenser lens 106. That is, the conjugate point C1 of the first light source 101 exists between the collector lens 103 and the condenser lens 106. Further, the collector lens 103 and the condenser lens 106 are configured such that the chief ray from the condenser lens 106 toward the sample surface is parallel to the optical axis. That is, the first illumination optical system 100 forms telecentric illumination. An aperture stop 107 is provided on the light emitting surface of the first light source 101 as necessary in order to define the angle range of light incident on the collector lens 103. The NA (numerical aperture) of illumination can be adjusted by the aperture stop 107. A field stop 108 is provided as necessary at a position behind the collector lens 103 and ahead of the conjugate point C1. Thereby, only the range required for imaging can be illuminated and flare generation in the imaging optical system can be prevented.
 第2の照明光学系110では、第2の光源111から出射された光は、コレクタレンズ112によって集光される。その集光された光は、コンデンサレンズ106を介して試料面に向けて出射される。コレクタレンズ112には、第2の光源111の共役点C2の位置がコンデンサレンズ106よりも後側かつ試料面よりも前側となるような屈折特性が与えられる。第2の光源111の光出射面には、コレクタレンズ112に入射する光の角度範囲を規定するために、必要に応じて開口絞り113が設けられる。開口絞り113の開口径は、コンデンサレンズ106から出射される照明光のNAが対物レンズ131のNA以上となるように設定される。これにより、撮像光学系が有する分解能が照明に起因して制約されることが防止される。また、コレクタレンズ112とコンデンサレンズ106との間には、必要に応じて視野絞り114が設けられる。これにより、撮像に必要に範囲のみを照明して、撮像光学系でのフレア発生を防止することができる。 In the second illumination optical system 110, the light emitted from the second light source 111 is collected by the collector lens 112. The condensed light is emitted toward the sample surface through the condenser lens 106. The collector lens 112 is given a refraction characteristic such that the position of the conjugate point C2 of the second light source 111 is behind the condenser lens 106 and ahead of the sample surface. An aperture stop 113 is provided on the light emission surface of the second light source 111 as necessary in order to define the angle range of light incident on the collector lens 112. The aperture diameter of the aperture stop 113 is set so that the NA of the illumination light emitted from the condenser lens 106 is equal to or greater than the NA of the objective lens 131. This prevents the resolution of the imaging optical system from being restricted due to illumination. A field stop 114 is provided between the collector lens 112 and the condenser lens 106 as necessary. Thereby, only the range necessary for imaging can be illuminated, and flare generation in the imaging optical system can be prevented.
 第1の照明光学系100と第2の照明光学系110とは、コンデンサレンズ106を共用する。これを可能とするためのビームスプリッター104は、それぞれのコレクタレンズ103,112とコンデンサレンズ106との間に設けられる。より具体的には、第1の照明光学系100においてコレクタレンズ103(視野絞り108が設けられる場合には視野絞り108)よりも後側でコンデンサレンズ106よりも前側となる位置であって、かつ、第2の照明光学系110においてコレクタレンズ112(視野絞り114が設けられる場合には視野絞り114)よりも後側でコンデンサレンズ106よりも前側となる位置に、ビームスプリッター104が設けられる。 The first illumination optical system 100 and the second illumination optical system 110 share the condenser lens 106. The beam splitter 104 for enabling this is provided between the respective collector lenses 103 and 112 and the condenser lens 106. More specifically, in the first illumination optical system 100, the position is located behind the collector lens 103 (or the field stop 108 when the field stop 108 is provided) and in front of the condenser lens 106, and In the second illumination optical system 110, the beam splitter 104 is provided at a position behind the collector lens 112 (or the field stop 114 when the field stop 114 is provided) and in front of the condenser lens 106.
<1.2 ホルダ>
 撮像装置1による撮像が行われる際、試料および培地Mを保持する複数のウェルWからなるウェルプレートWPはホルダ12内に保持される。ホルダ12は、ウェルプレートWPの下面周縁部に当接してウェルプレートWPを略水平姿勢に保持する。
<1.2 Holder>
When imaging by the imaging apparatus 1 is performed, a well plate WP composed of a plurality of wells W holding a sample and a medium M is held in the holder 12. The holder 12 is in contact with the peripheral edge of the lower surface of the well plate WP and holds the well plate WP in a substantially horizontal posture.
<1.3 撮像部>
 撮像部13は、対物レンズ131、低倍率用アフォーカル系132、高倍率用アフォーカル系133、反射ミラー134、結像レンズ135、および撮像素子136を備えている。対物レンズ131は、ウェルプレートWPの直下位置に配置されている。対物レンズ131の光軸は、鉛直方向に向けられており、第1の照明光学系100および第2の照明光学系110の光軸と同軸となっている。照明部10から出射されウェルWの上方から液体(培地M)に入射した光が撮像対象物を照明し、ウェルWの底面から下方へ透過した光が対物レンズ131に入射する。
<1.3 Imaging unit>
The imaging unit 13 includes an objective lens 131, a low-magnification afocal system 132, a high-magnification afocal system 133, a reflection mirror 134, an imaging lens 135, and an imaging element 136. The objective lens 131 is disposed immediately below the well plate WP. The optical axis of the objective lens 131 is oriented in the vertical direction, and is coaxial with the optical axes of the first illumination optical system 100 and the second illumination optical system 110. Light emitted from the illumination unit 10 and incident on the liquid (medium M) from above the well W illuminates the imaging target, and light transmitted downward from the bottom surface of the well W enters the objective lens 131.
 対物レンズ131の下方には、低倍率用アフォーカル系132および高倍率用アフォーカル系133が切り替え可能に設けられている。ここで、低倍率用アフォーカル系132と高倍率用アフォーカル系133との切り替えについて説明する。低倍率用アフォーカル系132および高倍率用アフォーカル系133は図示しない駆動機構により水平方向に一体的に移動可能となっており、撮像の際には両者の一方が対物レンズ131の直下位置に選択的に配置される。図1において実線で示すように高倍率用アフォーカル系133が対物レンズ131の直下位置に配置された状態では、対物レンズ131および高倍率用アフォーカル系133を含む高倍率の撮像光学系が構成される。このとき、撮像対象物の比較的狭い範囲が高倍率で撮像される。一方、図1において点線で示すように低倍率用アフォーカル系132が対物レンズ131の直下位置に配置された状態では、対物レンズ131および低倍率用アフォーカル系132を含む低倍率の撮像光学系が構成される。このとき、撮像対象物の比較的広い範囲が低倍率で撮像される。 Below the objective lens 131, a low-magnification afocal system 132 and a high-magnification afocal system 133 are provided so as to be switchable. Here, switching between the low-magnification afocal system 132 and the high-magnification afocal system 133 will be described. The low-magnification afocal system 132 and the high-magnification afocal system 133 can be moved integrally in the horizontal direction by a driving mechanism (not shown), and one of the two is positioned immediately below the objective lens 131 during imaging. Arranged selectively. In the state where the high-magnification afocal system 133 is disposed immediately below the objective lens 131 as indicated by a solid line in FIG. 1, a high-magnification imaging optical system including the objective lens 131 and the high-magnification afocal system 133 is configured. Is done. At this time, a relatively narrow range of the imaging object is imaged at a high magnification. On the other hand, in a state where the low-magnification afocal system 132 is disposed immediately below the objective lens 131 as indicated by a dotted line in FIG. 1, a low-magnification imaging optical system including the objective lens 131 and the low-magnification afocal system 132. Is configured. At this time, a relatively wide range of the imaging target is imaged at a low magnification.
 アフォーカル系(低倍率用アフォーカル系132または高倍率用アフォーカル系133)から出射される光は、反射ミラー134によって折り返された後、結像レンズ135を介して撮像素子136に入射する。後述するように、対物レンズ131、低倍率用アフォーカル系132、および結像レンズ135等からなる撮像光学系は、物体側ハイパーセントリックな光学特性を有している。一方、対物レンズ131、高倍率用アフォーカル系133、および結像レンズ135等からなる撮像光学系は、物体側テレセントリックな光学特性を有している。 The light emitted from the afocal system (low-magnification afocal system 132 or high-magnification afocal system 133) is reflected by the reflecting mirror 134 and then enters the image sensor 136 through the imaging lens 135. As described later, the imaging optical system including the objective lens 131, the low-magnification afocal system 132, the imaging lens 135, and the like has an object-side high percentic optical characteristic. On the other hand, an imaging optical system including the objective lens 131, the high-magnification afocal system 133, the imaging lens 135, and the like has object-side telecentric optical characteristics.
 撮像素子136は、二次元の受光面を有するエリアイメージセンサである。撮像素子136としては、CCDセンサやCMOSセンサなどを用いることができる。結像レンズ135により撮像素子136の受光面に結像する撮像対象物の像が、撮像素子136によって撮像される。撮像素子136は、受光した光学像を電気信号に変換し、それを画像信号として出力する。このような撮像方法によれば、撮像対象物である細胞等に対して非接触、非破壊かつ非侵襲で撮像を行うことができ、撮像による細胞等へのダメージを抑えることができる。なお、撮像部13の各部の動作は、制御部14に設けられた撮像制御部143により制御される。 The image sensor 136 is an area image sensor having a two-dimensional light receiving surface. As the imaging device 136, a CCD sensor, a CMOS sensor, or the like can be used. An image of the imaging target imaged on the light receiving surface of the imaging device 136 by the imaging lens 135 is captured by the imaging device 136. The image sensor 136 converts the received optical image into an electrical signal and outputs it as an image signal. According to such an imaging method, it is possible to perform non-contact, non-destructive and non-invasive imaging on a cell or the like that is an imaging target, and it is possible to suppress damage to the cell or the like due to imaging. The operation of each unit of the imaging unit 13 is controlled by the imaging control unit 143 provided in the control unit 14.
<1.4 制御部>
 制御部14は、CPU141、インターフェース(IF)部142、撮像制御部143、ADコンバータ(A/D)144、メカ制御部145、光源制御部146、画像メモリ147、およびメモリ148を備えている。CPU141は、制御部14内の各構成要素の動作の制御や各種演算処理を行う。インターフェース部142は、ユーザからの操作入力を受け付ける機能、ユーザへの処理結果等の情報表示を行う機能、通信回線を介して他の装置との間でのデータ通信を行う機能などを有している。なお、インターフェース部142には、操作入力を受け付ける入力受付部(キーボードやマウスなど)、情報表示を行う表示部、通信回線などが接続されている。
<1.4 Control unit>
The control unit 14 includes a CPU 141, an interface (IF) unit 142, an imaging control unit 143, an AD converter (A / D) 144, a mechanical control unit 145, a light source control unit 146, an image memory 147, and a memory 148. The CPU 141 controls the operation of each component in the control unit 14 and performs various arithmetic processes. The interface unit 142 has a function of accepting an operation input from the user, a function of displaying information such as a processing result to the user, a function of performing data communication with another device via a communication line, and the like. Yes. The interface unit 142 is connected to an input receiving unit (such as a keyboard and a mouse) that receives operation inputs, a display unit that displays information, a communication line, and the like.
 撮像制御部143は、後述する走査移動レシピに従って撮像対象物の撮像が行われるよう、撮像部13の動作を制御する。ADコンバータ(A/D)144は、撮像素子136から出力された画像信号(アナログデータ)を受け取り、それをデジタル画像データに変換する。そのデジタル画像データに基づき、CPU141は適宜の画像処理を実行する。 The imaging control unit 143 controls the operation of the imaging unit 13 so that an imaging target is imaged according to a scanning movement recipe described later. The AD converter (A / D) 144 receives the image signal (analog data) output from the image sensor 136 and converts it into digital image data. Based on the digital image data, the CPU 141 executes appropriate image processing.
 メカ制御部145は、駆動機構15を作動させることにより、撮像部13を水平方向あるいは鉛直方向に移動させる。撮像部13を水平方向に移動させることにより、撮像部13がウェルWに対し水平方向に移動する。また、撮像部13を鉛直方向に移動させることにより、フォーカス調整が行われる。メカ制御部145は、また、駆動機構15を作動させることにより、照明部10を水平方向に移動させる。光源制御部146は、撮像位置に応じて、第1の光源101と第2の光源111とを選択的に点灯させる。 The mechanical control unit 145 operates the driving mechanism 15 to move the imaging unit 13 in the horizontal direction or the vertical direction. By moving the imaging unit 13 in the horizontal direction, the imaging unit 13 moves in the horizontal direction with respect to the well W. In addition, focus adjustment is performed by moving the imaging unit 13 in the vertical direction. The mechanical control unit 145 also moves the illumination unit 10 in the horizontal direction by operating the drive mechanism 15. The light source controller 146 selectively turns on the first light source 101 and the second light source 111 according to the imaging position.
 画像メモリ147は、デジタル画像データを保持する。メモリ148は、CPU141が実行すべきプログラムやCPU141により生成されるデータを保持する。なお、画像メモリ147とメモリ148とは一体化したものであっても良い。また、大容量ストレージと半導体メモリとの適宜の組み合わせにより、画像メモリ147およびメモリ148が実現されていても良い。 The image memory 147 holds digital image data. The memory 148 holds programs to be executed by the CPU 141 and data generated by the CPU 141. The image memory 147 and the memory 148 may be integrated. Further, the image memory 147 and the memory 148 may be realized by an appropriate combination of a large-capacity storage and a semiconductor memory.
<1.5 駆動機構>
 駆動機構15は、照明部10を水平方向に移動させる。また、駆動機構15は、撮像部13を水平方向あるいは鉛直方向に移動させる。この撮像装置1では、照明部10からの出射光の中心が対物レンズ131の光軸と略一致するように照明部10と撮像部13との位置関係が定められている。従って、駆動機構15は、撮像部13を水平方向に移動させる際、照明部10を撮像部13と一体的に移動させる。これにより、いずれのウェルWのいずれの位置で撮像が行われる場合でも良好な照明状態を維持することができる。なお、図1において、Z方向は鉛直方向を表し、Y方向は主走査方向を表し、X方向は副走査方向を表している。
<1.5 Drive mechanism>
The drive mechanism 15 moves the illumination unit 10 in the horizontal direction. The drive mechanism 15 moves the imaging unit 13 in the horizontal direction or the vertical direction. In the imaging apparatus 1, the positional relationship between the illumination unit 10 and the imaging unit 13 is determined so that the center of the light emitted from the illumination unit 10 substantially coincides with the optical axis of the objective lens 131. Therefore, the drive mechanism 15 moves the illumination unit 10 integrally with the imaging unit 13 when moving the imaging unit 13 in the horizontal direction. Thereby, even when imaging is performed at any position of any well W, a good illumination state can be maintained. In FIG. 1, the Z direction represents the vertical direction, the Y direction represents the main scanning direction, and the X direction represents the sub scanning direction.
<2.照明光学系>
 図3は、第1の照明光学系100から出射される第1の照明光L1を示す図である。第1の照明光学系100においてコンデンサレンズ106から出射される第1の照明光L1は、図3に示すように、撮像対象物が分布する試料面であるウェル底面Wbに対して主光線が平行な状態で入射する。すなわち、第1の照明光学系100は、射出瞳位置が無限遠にあるテレセントリック照明をなしている。
<2. Illumination optics>
FIG. 3 is a diagram showing the first illumination light L1 emitted from the first illumination optical system 100. As shown in FIG. As shown in FIG. 3, the first illumination light L1 emitted from the condenser lens 106 in the first illumination optical system 100 has a principal ray parallel to the well bottom surface Wb that is the sample surface on which the imaging target is distributed. Incident in the state. That is, the first illumination optical system 100 forms telecentric illumination in which the exit pupil position is at infinity.
 図4は、第2の照明光学系110から出射される第2の照明光L2を示す図である。第2の照明光学系110においてコンデンサレンズ106から出射される第2の照明光L2は、図4に示すように、第2の照明光学系110の光軸に近づくように進行し、ウェル底面Wbよりも上方の位置(照明光学系から見てウェル底面Wbよりも手前側の位置)で光軸と交差する。すなわち、第2の照明光L2の光路において第2の光源111の像(より厳密には開口絞り113の像)が結像する射出瞳位置Ppは、第2の照明光学系110から見て、撮像対象物が分布する試料面であるウェル底面Wbよりも近い位置にある。より詳しくは、第2の照明光学系110による照明下では、第2の照明光L2を出射するコンデンサレンズ106の出力端と撮像光学系の対物レンズ131との間の位置で第2の光源111の像が結像する。つまり、この位置に第2の光源111に対する共役点がある。そして、この共役点と対物レンズ131との間にウェル底面Wbが位置するように、ホルダ12はウェルプレートWPを保持する。このため、ウェル底面Wbに入射する第2の照明光L2の主光線は、第2の照明光学系110および対物レンズ131の光軸から遠ざかる方向の方向成分を有している。 FIG. 4 is a diagram showing the second illumination light L2 emitted from the second illumination optical system 110. As shown in FIG. As shown in FIG. 4, the second illumination light L2 emitted from the condenser lens 106 in the second illumination optical system 110 proceeds so as to approach the optical axis of the second illumination optical system 110, and the well bottom surface Wb. It intersects the optical axis at a position higher than that (a position closer to the well bottom surface Wb as viewed from the illumination optical system). That is, the exit pupil position Pp at which the image of the second light source 111 (more precisely, the image of the aperture stop 113) is formed in the optical path of the second illumination light L2 is viewed from the second illumination optical system 110, The position is closer to the well bottom surface Wb, which is the sample surface on which the imaging object is distributed. More specifically, under illumination by the second illumination optical system 110, the second light source 111 is positioned at a position between the output end of the condenser lens 106 that emits the second illumination light L2 and the objective lens 131 of the imaging optical system. The image is formed. That is, there is a conjugate point with respect to the second light source 111 at this position. The holder 12 holds the well plate WP so that the well bottom surface Wb is positioned between the conjugate point and the objective lens 131. For this reason, the principal ray of the second illumination light L2 incident on the well bottom surface Wb has a directional component in a direction away from the optical axes of the second illumination optical system 110 and the objective lens 131.
 以上のように、第1の照明光学系100と第2の照明光学系110とでは射出瞳位置が互いに異なっている。これら第1の照明光学系100と第2の照明光学系110とが、後述するように切り替えて使用される。なお、撮像の際にはストロボ照明が用いられる。つまり、照明光は撮像部13による撮像が行われる時に短時間のみ出射される。従って、光源制御部146は、2つの光源(第1の光源101および第2の光源111)のいずれを点灯させるかを選択することにより、照明光の切り替えを実現することができる。 As described above, the exit pupil position is different between the first illumination optical system 100 and the second illumination optical system 110. The first illumination optical system 100 and the second illumination optical system 110 are switched and used as will be described later. Note that strobe illumination is used for imaging. That is, the illumination light is emitted only for a short time when the imaging unit 13 performs imaging. Therefore, the light source control unit 146 can realize switching of illumination light by selecting which of the two light sources (the first light source 101 and the second light source 111) is turned on.
 ところで、上述したように、各ウェルWには培地Mとしての液体が注入されている。従って、ウェルWの上方から入射する照明光は培地Mの液面を介してウェル底面Wb(試料面)に入射する。ここで、ウェルW内の液面は凹型のメニスカスを形成している。このため、照明光の進路は屈折によってウェルWの中心から外向きに曲げられる。屈折は、ウェルWの中心付近では小さく、ウェルWのエッジ部(壁面)に近づくほど大きくなる。本実施形態においては、このように外向きに曲げられた光が効率よく集光されて撮像素子136に導かれるよう、対物レンズ131を含む撮像光学系は物体側ハイパーセントリック光学系をなしている。すなわち、レンズの光軸から離れた位置において、斜め外向きに入射する光を撮像素子136に結像させることができる。 By the way, as described above, the liquid as the medium M is injected into each well W. Accordingly, the illumination light incident from above the well W enters the well bottom surface Wb (sample surface) through the liquid surface of the medium M. Here, the liquid level in the well W forms a concave meniscus. For this reason, the path of the illumination light is bent outward from the center of the well W by refraction. The refraction is small in the vicinity of the center of the well W and becomes larger as the edge portion (wall surface) of the well W is approached. In the present embodiment, the imaging optical system including the objective lens 131 forms an object-side high-percentric optical system so that the light bent in this way is efficiently collected and guided to the imaging device 136. Yes. That is, light that is incident obliquely outward can be imaged on the image sensor 136 at a position away from the optical axis of the lens.
<3.照明光学系の使い分け>
 次に、第1の照明光学系100と第2の照明光学系110との使い分けについて説明する。ここでは、撮像すべき領域(ウェル全体の領域)が撮像視野よりも広い場合に着目する。撮像すべき領域が撮像視野よりも広いとき、当該領域を複数に分割して撮像が行われる。そして、撮像によって得られた複数の撮像画像を画像処理によって合成することで、撮像すべき領域の全体を表す画像が生成される。
<3. Proper use of illumination optics>
Next, the proper use of the first illumination optical system 100 and the second illumination optical system 110 will be described. Here, attention is focused on the case where the region to be imaged (the region of the entire well) is wider than the imaging field of view. When the area to be imaged is wider than the imaging field, the area is divided into a plurality of images. Then, an image representing the entire region to be imaged is generated by synthesizing a plurality of captured images obtained by imaging by image processing.
 図5は、ウェル辺縁部WRが撮像視野に含まれないときに仮に第1の照明光学系100が使用された場合の撮像の様子を示す図である。撮像視野VがウェルWのエッジ部から離れたウェル中央領域のみを含む場合、メニスカスが光路に及ぼす影響は十分に小さい。ところで、上述したように、対物レンズ131を含む撮像光学系は物体側ハイパーセントリック光学系をなしている。すなわち、撮像光学系は、光軸から離れた位置についてはメニスカスによる屈折を前提として主光線が外向きに傾いた光(第1の照明光L1のうち図5で点線で示す光)が受光されるような構成となっている。しかしながら、ウェルWを通過した光はメニスカスによる屈折を受けずに直進するため、入射光における主光線の傾きと受光側での主光線の傾きとが一致しない。このように、テレセントリック照明が用いられていると、対物レンズ131の光軸付近に入射する光は集光されて撮像素子136に入射するが、光軸から離れた位置では入射光と光学系との主光線の傾きの違いに起因するミスマッチが生じる。その結果、特に撮像視野Vの周縁部で画質の劣化が生じる。 FIG. 5 is a diagram illustrating a state of imaging when the first illumination optical system 100 is temporarily used when the well edge WR is not included in the imaging field of view. When the imaging field of view V includes only the well central region far from the edge of the well W, the influence of the meniscus on the optical path is sufficiently small. By the way, as described above, the imaging optical system including the objective lens 131 is an object-side high-percentric optical system. That is, the imaging optical system receives light whose principal ray is inclined outward on the premise of refraction by the meniscus at a position away from the optical axis (light indicated by a dotted line in FIG. 5 in the first illumination light L1). It has a configuration like this. However, since the light passing through the well W goes straight without being refracted by the meniscus, the inclination of the principal ray in the incident light and the inclination of the principal ray on the light receiving side do not match. As described above, when telecentric illumination is used, light incident near the optical axis of the objective lens 131 is collected and incident on the image sensor 136. However, at a position away from the optical axis, the incident light and the optical system Mismatch due to the difference in the tilt of the principal ray. As a result, the image quality deteriorates particularly at the peripheral edge of the imaging field of view V.
 これに対して、ウェル辺縁部WRが撮像視野Vに含まれるときに第1の照明光学系100が使用された場合、図6に示すように、ウェル辺縁部WRではメニスカスにより屈折した光の主光線の傾きと受光側の主光線との傾きがほぼ一致して効率よく集光が行われる。このように、ウェル辺縁部WRが撮像視野Vに含まれるときには、第1の照明光学系100を用いた撮像が行われる。 In contrast, when the first illumination optical system 100 is used when the well edge WR is included in the imaging field of view V, light refracted by the meniscus at the well edge WR as shown in FIG. The inclination of the principal ray and the inclination of the principal ray on the light receiving side substantially coincide with each other so that light is collected efficiently. As described above, when the well edge portion WR is included in the imaging field of view V, imaging using the first illumination optical system 100 is performed.
 図7は、ウェル辺縁部WRが撮像視野Vに含まれないときに第2の照明光学系110が使用された場合の撮像の様子を示す図である。上述したように、第2の照明光学系110においてコンデンサレンズ106から出射される第2の照明光L2は、光軸に近づくように進行する。このため、メニスカスの影響がないとき、ウェル底面Wbに入射する第2の照明光L2の主光線は互いに平行なものとはならない。本実施形態では第2の照明光学系110の射出瞳位置Ppが(照明光学系から見て)ウェル底面Wbよりも手前側にあるため、ウェル底面Wbに入射する第2の照明光L2については、主光線は対物レンズ131の光軸から外へ向かって広がるものとなる。ここで、対物レンズ131への入射光の主光線の傾きと対物レンズ131側の主光線の傾きとが一致するように撮像光学系が構成されていれば、図7に示すように、ウェル底面Wbを透過した光は対物レンズ131により集光されて、最終的に撮像素子136に導かれる。このように、ウェル辺縁部WRが撮像視野Vに含まれないときには、第2の照明光学系110を用いた撮像が行われる。 FIG. 7 is a diagram showing a state of imaging when the second illumination optical system 110 is used when the well edge WR is not included in the imaging visual field V. As described above, the second illumination light L2 emitted from the condenser lens 106 in the second illumination optical system 110 travels so as to approach the optical axis. For this reason, when there is no influence of the meniscus, the chief rays of the second illumination light L2 incident on the well bottom surface Wb are not parallel to each other. In the present embodiment, since the exit pupil position Pp of the second illumination optical system 110 is on the near side of the well bottom surface Wb (as viewed from the illumination optical system), the second illumination light L2 incident on the well bottom surface Wb is as follows. The principal ray spreads outward from the optical axis of the objective lens 131. Here, if the imaging optical system is configured such that the inclination of the principal ray of the incident light to the objective lens 131 matches the inclination of the principal ray on the objective lens 131 side, as shown in FIG. The light transmitted through Wb is collected by the objective lens 131 and finally guided to the image sensor 136. As described above, when the well edge portion WR is not included in the imaging visual field V, imaging using the second illumination optical system 110 is performed.
 以上のように、本実施形態に係る撮像装置1には、ハイパーセントリック特性を有する撮像光学系と組み合わせる照明光学系として、メニスカスの影響を受ける領域の撮像に適した第1の照明光学系100と、メニスカスの影響を受けない領域の撮像に適した第2の照明光学系110とが設けられている。そして、ウェル辺縁部WRが撮像視野に含まれるとき(すなわち、メニスカスの影響を受ける領域が撮像視野に含まれるとき)とウェル辺縁部WRが撮像視野に含まれないとき(すなわち、メニスカスの影響を受ける領域が撮像視野に含まれないとき)とでそれら2つの照明光学系が使い分けられる。これにより、撮像すべき領域の全体が良好な品質である画像が得られる。 As described above, in the imaging apparatus 1 according to this embodiment, the first illumination optical system 100 suitable for imaging a region affected by a meniscus is used as an illumination optical system combined with an imaging optical system having a high percentic characteristic. And a second illumination optical system 110 suitable for imaging a region not affected by the meniscus. Then, when the well edge WR is included in the imaging field (that is, when the area affected by the meniscus is included in the imaging field) and when the well edge WR is not included in the imaging field (that is, the meniscus of the meniscus) These two illumination optical systems are used properly when the affected area is not included in the imaging field of view. As a result, an image in which the entire area to be imaged is of good quality can be obtained.
<4.全体の処理の流れ>
 次に、撮像装置1で撮像が行われる際の全体の概略的な処理の流れを説明する。これに関連して、まず、撮像装置1の前提事項について説明する。撮像装置1では、予め、試料容器の種類毎に、第1の照明光学系100を使用した撮像を行う領域および第2の照明光学系110を使用した撮像を行う領域の設定が行われる。上述したように、第1の照明光学系100はメニスカスの影響を受ける領域の撮像に適しており、第2の照明光学系110はメニスカスの影響を受けない領域の撮像に適している。従って、例えば、或る種類の試料容器(ウェルプレートWP)の1つのウェルWに着目すると、図8で符号51で示す領域が第1の照明光学系100を使用した撮像を行う領域に設定され、図8で符号52で示す領域が第2の照明光学系110を使用した撮像を行う領域に設定されている。領域の設定に関するこのような情報は、撮像装置1において、例えば所定のフォーマットの設定ファイルに予め書き込まれている。図8で符号51で示す領域はウェル周縁領域に相当し、図8で符号52で示す領域はウェル中央領域に相当する。
<4. Overall processing flow>
Next, an overall schematic processing flow when imaging is performed by the imaging apparatus 1 will be described. In relation to this, first, the premise of the imaging apparatus 1 will be described. In the imaging apparatus 1, a region for performing imaging using the first illumination optical system 100 and a region for performing imaging using the second illumination optical system 110 are set in advance for each type of sample container. As described above, the first illumination optical system 100 is suitable for imaging an area affected by the meniscus, and the second illumination optical system 110 is suitable for imaging an area not affected by the meniscus. Therefore, for example, when attention is paid to one well W of a certain type of sample container (well plate WP), an area denoted by reference numeral 51 in FIG. 8 is set as an area where imaging using the first illumination optical system 100 is performed. The area indicated by reference numeral 52 in FIG. 8 is set as an area where imaging is performed using the second illumination optical system 110. Such information regarding the region setting is written in advance in, for example, a setting file of a predetermined format in the imaging apparatus 1. The region denoted by reference numeral 51 in FIG. 8 corresponds to the well peripheral region, and the region denoted by reference numeral 52 in FIG. 8 corresponds to the well central region.
 撮像装置1は、複数の撮像位置およびそれらの撮像順序を示す走査移動レシピに従って当該複数の撮像位置での撮像を行うように構成されている。なお、本明細書における「撮像位置」は、撮像が行われる際の撮像視野の中心に相当する位置(この位置は、対物レンズ131の光軸の位置と一致する。)を意味する。例えば、撮像配置(複数の撮像位置の配置)が図9に示すようなものであるときに(符号P1~P23で示す位置が撮像位置を表している)、走査移動レシピに従って、例えば図10で符号53で示す矢印のように撮像のための走査が行われる。なお、ウェルプレートWPには複数のウェルWが含まれているが、図9および図10では、便宜上、1つのウェルWに着目している。また、撮像装置1は、走査移動レシピに従って撮像を行う際、領域の設定に関する上述の情報(図8参照)に基づき、2つの照明光学系(第1の照明光学系100および第2の照明光学系110)の一方を撮像位置に応じて使用する。 The imaging device 1 is configured to perform imaging at a plurality of imaging positions according to a scanning movement recipe indicating a plurality of imaging positions and an imaging order thereof. Note that “imaging position” in the present specification means a position corresponding to the center of the imaging field when imaging is performed (this position coincides with the position of the optical axis of the objective lens 131). For example, when the imaging arrangement (arrangement of a plurality of imaging positions) is as shown in FIG. 9 (the positions indicated by reference numerals P1 to P23 represent the imaging positions), for example, in FIG. Scanning for imaging is performed as indicated by an arrow 53. Although the well plate WP includes a plurality of wells W, in FIG. 9 and FIG. 10, attention is paid to one well W for convenience. Further, when the imaging apparatus 1 performs imaging in accordance with the scanning movement recipe, based on the above-described information (see FIG. 8) regarding the setting of the region, the two illumination optical systems (the first illumination optical system 100 and the second illumination optical) One of the systems 110) is used depending on the imaging position.
 図11は、撮像装置1で撮像が行われる際の全体の処理の流れを示すフローチャートである。まず、撮像対象の試料容器の種類(例えば、メーカー名と型番など)の情報および培地Mとして用いる液体の量などの撮像条件に関する情報が入手される(ステップS10)。次に、試料容器の種類および撮像条件を考慮して、図9に示したような撮像配置の決定が行われる(ステップS20)。なお、撮像配置を決定する方法についての詳しい説明は後述する。撮像配置の決定後、撮像配置に基づいて走査移動レシピが作成される(ステップS30)。その後、走査移動レシピが撮像装置1に与えられるとともに、撮像装置1において撮像対象の試料容器の種類の指定(選択)がオペレータによって行われる(ステップS40)。これにより、撮像装置1は、走査移動レシピに基づいて撮像を行う(ステップS50)。 FIG. 11 is a flowchart showing the overall processing flow when imaging is performed by the imaging apparatus 1. First, information on the imaging conditions such as the type (for example, manufacturer name and model number) of the sample container to be imaged and the amount of liquid used as the culture medium M is obtained (step S10). Next, taking into consideration the type of the sample container and the imaging conditions, the imaging arrangement as shown in FIG. 9 is determined (step S20). A detailed description of the method for determining the imaging arrangement will be given later. After determining the imaging arrangement, a scanning movement recipe is created based on the imaging arrangement (step S30). Thereafter, a scanning movement recipe is given to the imaging apparatus 1, and the operator designates (selects) the type of sample container to be imaged in the imaging apparatus 1 (step S40). Thereby, the imaging device 1 performs imaging based on the scanning movement recipe (step S50).
<5.撮像配置の決定方法>
 次に、撮像配置の決定方法について詳しく説明する。図12は、撮像配置を決定する手順を示すフローチャートである。
<5. Method for determining imaging arrangement>
Next, a method for determining the imaging arrangement will be described in detail. FIG. 12 is a flowchart illustrating a procedure for determining the imaging arrangement.
<5.1 有効視野領域の決定>
 まず、撮像が行われた際に充分な量の光が照射されて充分な画質の画像が得られると認めることのできる領域である有効視野領域が決定される(ステップS210)。撮像画像のうちステップS210で決定された有効視野領域内の画像のみが、最終的にユーザに提示される画像を構成することになる。すなわち、1つのウェルWに対して複数の撮像位置で撮像が行われた場合、複数の撮像画像のそれぞれの有効視野領域内の画像のみを合成することによって、当該1つのウェルWの全体を表す画像が作成される。本実施形態に係る撮像装置1では、ウェル周縁領域で撮像が行われる際には第1の照明光学系100が使用され、ウェル中央領域で撮像が行われる際には第2の照明光学系110が使用される。従って、ステップS210では、第1の照明光学系100を使用した撮像が行われた場合の有効視野領域と第2の照明光学系110を使用した撮像が行われた場合の有効視野領域とが決定される。
<5.1 Determination of effective visual field area>
First, an effective visual field area, which is an area where it can be recognized that a sufficient amount of light is irradiated and an image with sufficient image quality is obtained when imaging is performed is determined (step S210). Of the captured images, only the image within the effective visual field area determined in step S210 constitutes an image that is finally presented to the user. That is, when imaging is performed on a single well W at a plurality of imaging positions, the whole of the single well W is represented by synthesizing only the images within the effective visual field of each of the plurality of captured images. An image is created. In the imaging apparatus 1 according to the present embodiment, the first illumination optical system 100 is used when imaging is performed in the well peripheral region, and the second illumination optical system 110 is performed when imaging is performed in the well central region. Is used. Therefore, in step S210, the effective visual field region when imaging using the first illumination optical system 100 is performed and the effective visual field region when imaging using the second illumination optical system 110 are performed are determined. Is done.
 図13~図17を参照しつつ、第1の照明光学系100を使用した撮像が行われた場合の有効視野領域および第2の照明光学系110を使用した撮像が行われた場合の有効視野領域のそれぞれの具体例を説明する。図13で符号54で示すようにウェル周縁領域が撮像視野に含まれる場合、第1の照明光学系100を使用した撮像が行われる。このとき、例えば図14に示すような撮像画像が得られる。図14より、撮像視野内に輝度が不充分な領域が存在することが把握される。そこで、例えば、“最小輝度を0%、最大輝度を100%としたときに輝度が50%以上となっている領域”が第1の照明光学系100を使用した撮像が行われた場合の有効視野領域に定められる。この例では、有効視野領域は、図15で符号57の太線で囲まれた領域となる。 With reference to FIGS. 13 to 17, an effective field of view when imaging using the first illumination optical system 100 is performed and an effective field of view when imaging using the second illumination optical system 110 is performed. A specific example of each area will be described. When the well peripheral area is included in the imaging visual field as indicated by reference numeral 54 in FIG. 13, imaging using the first illumination optical system 100 is performed. At this time, for example, a captured image as shown in FIG. 14 is obtained. From FIG. 14, it is understood that there is a region with insufficient luminance in the imaging field. Therefore, for example, “an area where the luminance is 50% or more when the minimum luminance is 0% and the maximum luminance is 100%” is effective when imaging using the first illumination optical system 100 is performed. Determined in the field of view. In this example, the effective visual field area is an area surrounded by a thick line 57 in FIG.
 図13で符号55で示すようにウェル周縁領域が撮像視野に含まれない場合、第2の照明光学系110を使用した撮像が行われる。このとき、例えば図16に示すような撮像画像が得られる。図16より、撮像視野の周縁部では輝度が不充分であることが把握される。そこで、例えば、撮像視野全体の70%の矩形領域(当該矩形領域の中心を撮像視野の中心と一致させる)が第2の照明光学系110を使用した撮像が行われた場合の有効視野領域に定められる。この例では、有効視野領域は、図17で符号58の太線で囲まれた領域となる。 When the well peripheral region is not included in the imaging field as indicated by reference numeral 55 in FIG. 13, imaging using the second illumination optical system 110 is performed. At this time, for example, a captured image as shown in FIG. 16 is obtained. It can be understood from FIG. 16 that the luminance is insufficient at the peripheral portion of the imaging field. Therefore, for example, a rectangular area of 70% of the entire imaging field (the center of the rectangular area coincides with the center of the imaging field) becomes an effective field area when imaging using the second illumination optical system 110 is performed. Determined. In this example, the effective visual field region is a region surrounded by a bold line 58 in FIG.
 ところで、特にウェル周縁領域での撮像に関しては、充分な画質が得られる領域が培養条件によって変化する。例えば、充分な画質が得られる領域は、培地Mとして用いられる液体の量によって変化する。例えば、或る量の液体が培地Mとして用いられた場合に図18で符号61の網掛けで示す領域で充分な画質が得られても、別の量の同じ液体が培地Mとして用いられた場合に図18で符号62の網掛けで示す領域でしか充分な画質が得られないことがある。このように充分な画質が得られる領域が培養条件によって変化するので、有効視野領域の決定(ステップS210)は、培養条件を考慮して行われることが好ましい。 By the way, especially for imaging in the peripheral region of the well, the region where sufficient image quality can be obtained varies depending on the culture conditions. For example, the region where sufficient image quality is obtained varies depending on the amount of liquid used as the medium M. For example, when a certain amount of liquid is used as the medium M, another amount of the same liquid is used as the medium M even if sufficient image quality is obtained in the area indicated by the shaded 61 in FIG. In some cases, sufficient image quality may be obtained only in the area indicated by the shaded reference numeral 62 in FIG. Since the region where sufficient image quality can be obtained varies depending on the culture conditions, it is preferable that the effective visual field region is determined (step S210) in consideration of the culture conditions.
<5.2.1 ウェル周縁領域での撮像位置の決定>
 上述のようにして有効視野領域が決定された後、ウェル周縁領域での複数の撮像位置のうちの1つが決定される(ステップS220)。以下、このステップS220で決定される撮像位置のことを「基準位置」という。ここでは、ウェルWを或る向きで平面視したときに図19に示すようにウェルWの上方に基準位置BPを配置する例を挙げて説明する。なお、図19で符号63の網掛けで示す領域は、基準位置BPにおける有効視野領域(基準位置BPが撮像視野の中心となるように撮像が行われたときの有効視野領域)を表している。
<5.2.1 Determination of Imaging Position in Well Peripheral Area>
After the effective visual field region is determined as described above, one of a plurality of imaging positions in the well peripheral region is determined (step S220). Hereinafter, the imaging position determined in step S220 is referred to as “reference position”. Here, an example will be described in which the reference position BP is disposed above the well W as shown in FIG. In addition, the area | region shown with the code | symbol 63 of FIG. 19 represents the effective visual field area | region in the reference position BP (effective visual field area | region when imaging is performed so that the reference position BP may become the center of an imaging visual field). .
 基準位置BPを決定する際には、ウェルWのエッジ部(壁面)WEでの明るさを観測しつつ、図20に示すように撮像視野Vを少しずつ動かす。より詳しくは、ウェルWの中心WCとウェルWの或るエッジ部WEとを通る直線65上に撮像視野Vの中心が位置するようにして、撮像視野Vに含まれるウェルW内の領域が徐々に大きくなるように、エッジ部WEでの明るさを観測しつつ撮像視野Vを少しずつ動かす。そして、第2の照明光学系110を使用してウェルWの中心WCを撮像したときに得られる明るさ(ウェルWの中心WCの明るさ)と第1の照明光学系100を使用してウェル周縁領域を撮像したときに得られるエッジ部WEの明るさとがほぼ一致する位置が基準位置BPに定められる。但し、撮像視野Vをごく少し動かしただけで、充分な明るさが得られる範囲(面積)が大きく変わることもある。従って、エッジ部WEの明るさがウェルWの中心WCの明るさとほぼ同程度になるのであれば、充分な明るさが得られる範囲(面積)ができるだけ大きくなるように基準位置BPを定めることが好ましい。 When determining the reference position BP, the imaging field of view V is moved little by little while observing the brightness at the edge (wall surface) WE of the well W as shown in FIG. More specifically, an area in the well W included in the imaging field V is gradually set such that the center of the imaging field V is positioned on a straight line 65 passing through the center WC of the well W and a certain edge WE of the well W. The imaging field of view V is moved little by little while observing the brightness at the edge portion WE. Then, the brightness obtained when the center WC of the well W is imaged using the second illumination optical system 110 (the brightness of the center WC of the well W) and the well using the first illumination optical system 100. A position where the brightness of the edge portion WE obtained when the peripheral area is imaged substantially coincides with the reference position BP. However, the range (area) in which sufficient brightness can be obtained may change greatly even if the imaging field of view V is moved a little. Therefore, if the brightness of the edge portion WE is approximately the same as the brightness of the center WC of the well W, the reference position BP is determined so that the range (area) in which sufficient brightness can be obtained is as large as possible. preferable.
 基準位置BPが定まることにより、図21から把握されるように、基準位置BPとウェルWのエッジ部WEとの間の距離LEが定まる。すなわち、第1の照明光学系100を使用した撮像が行われる際の撮像位置とウェルWのエッジ部WEとの間の距離が定まる。 When the reference position BP is determined, the distance LE between the reference position BP and the edge portion WE of the well W is determined as can be understood from FIG. That is, the distance between the imaging position and the edge portion WE of the well W when the imaging using the first illumination optical system 100 is performed is determined.
 基準位置BPの決定後、ウェル周縁領域での残りの撮像位置(基準位置BP以外の撮像位置)が決定される(ステップS230)。ステップS230では、まず、図22に示すように、ウェルWの中心WCと基準位置BPとを結ぶ直線70をウェルWの中心WCを回転中心として回転させ、基準位置BPに隣接する撮像位置73における有効視野領域72と基準位置BPにおける有効視野領域71とが部分的に重なり合うように、基準位置BPに隣接する撮像位置73が決定される。その際、ウェルWのエッジ部WEから撮像位置73までの距離は、ウェルWのエッジ部WEから基準位置BPまでの距離LE(図21参照)と等しくされる。換言すれば、ウェルWの中心WCと基準位置BPとを結ぶ線分をウェルWの中心WCを回転中心として回転させ、回転後の線分の2つの端点のうちウェルWの中心WCの位置にある端点とは異なる方の端点の位置が基準位置BPに隣接する撮像位置73に定められる。このようにして基準位置BPに隣接する撮像位置73が決定された後、同様にして、当該撮像位置73に隣接する(基準位置BPとは反対側に隣接する)撮像位置が決定される。以上のような処理が繰り返される。その際、互いに隣接する2つの撮像位置における有効視野領域の重なり部分の大きさは一定(ウェルWの中心WCと互いに隣接する2つの撮像位置とをそれぞれ結ぶ2つの線分のなす角度は一定)にされる。このようにして、図23に示すように、ウェル周縁領域に配置されるべき全ての撮像位置が決定される。なお、図24に示すようにウェルWのエッジ部WEよりも外側に撮像位置が配置される場合もある。 After the determination of the reference position BP, the remaining imaging positions in the well peripheral area (imaging positions other than the reference position BP) are determined (step S230). In step S230, first, as shown in FIG. 22, a straight line 70 connecting the center WC of the well W and the reference position BP is rotated with the center WC of the well W as the rotation center, and the image pickup position 73 adjacent to the reference position BP is rotated. The imaging position 73 adjacent to the reference position BP is determined so that the effective field area 72 and the effective field area 71 at the reference position BP partially overlap. At this time, the distance from the edge portion WE of the well W to the imaging position 73 is made equal to the distance LE (see FIG. 21) from the edge portion WE of the well W to the reference position BP. In other words, the line segment connecting the center WC of the well W and the reference position BP is rotated with the center WC of the well W as the rotation center, and the center of the well W is positioned at the position of the center WC of the well W among the two end points of the rotated line segment. The position of an end point that is different from a certain end point is determined as an imaging position 73 adjacent to the reference position BP. After the imaging position 73 adjacent to the reference position BP is determined in this way, the imaging position adjacent to the imaging position 73 (adjacent to the side opposite to the reference position BP) is similarly determined. The above process is repeated. At that time, the size of the overlapping portion of the effective visual field region at two imaging positions adjacent to each other is constant (the angle formed by two line segments connecting the center WC of the well W and the two imaging positions adjacent to each other is constant). To be. In this way, as shown in FIG. 23, all the imaging positions to be arranged in the well peripheral region are determined. In addition, as shown in FIG. 24, the imaging position may be arranged outside the edge portion WE of the well W.
 以上のように、本実施形態においては、まず、試料収納部としてのウェルWの壁面に沿って複数の撮像位置が配置されるよう、ウェル周縁領域(第1の照明光学系100を使用した撮像が行われるべき領域)における複数の撮像位置の配置が決定される。 As described above, in the present embodiment, first, a well peripheral region (imaging using the first illumination optical system 100) is performed so that a plurality of imaging positions are arranged along the wall surface of the well W as the sample storage unit. The arrangement of a plurality of imaging positions in the region where the image is to be performed is determined.
<5.2.2 ウェル中央領域での撮像位置の決定>
 その後、ウェル中央領域(ウェル周縁領域以外の領域)での撮像位置(通常、複数の撮像位置)が決定される(ステップS240)。このステップS240では、ウェル周縁領域での撮像位置に基づく有効視野領域以外の領域がウェル中央領域での撮像位置に基づく有効視野領域として効率的に埋められるよう、撮像位置が決定される。本実施形態においては、具体的には、撮像装置1による全ての撮像位置での撮像に要する走査回数が最小となるように撮像位置が決定される。これについて、図25および図26を参照しつつ説明する。
<5.2.2 Determination of imaging position in well central region>
Thereafter, an imaging position (usually a plurality of imaging positions) in the well center region (region other than the well peripheral region) is determined (step S240). In step S240, the imaging position is determined so that an area other than the effective visual field area based on the imaging position in the well peripheral area is efficiently filled as an effective visual field area based on the imaging position in the well central area. In the present embodiment, specifically, the imaging position is determined so that the number of scans required for imaging at all imaging positions by the imaging apparatus 1 is minimized. This will be described with reference to FIGS. 25 and 26. FIG.
 図25および図26には、一部の領域における撮像配置の例を示している。図25では、ウェル周辺領域の撮像位置を符号P31,P32で示し、ウェル中央領域の撮像位置を符号P41~P44で示している。図26では、ウェル周辺領域の撮像位置を符号P51,P52で示し、ウェル中央領域の撮像位置を符号P61~P64で示している。なお、図25および図26では、それぞれの撮像位置における有効視野領域の外縁を太線で表している。仮に一部の領域における撮像配置が図25に示すようなものであれば、当該領域の撮像画像を得るために、主走査方向に撮像部13を1往復させる必要がある。すなわち、ウェル周辺領域の撮像位置の走査とウェル中央領域の撮像位置の走査とが別の走査となる。これに対して、一部の領域における撮像配置が図26に示すようなものであれば、主走査方向に撮像部13を片道分だけ移動させれば(すなわち1回の走査で)当該領域の撮像画像を得ることができる。このように、複数の撮像位置の配置のしかたが撮像の効率性に影響を及ぼすことが把握される。そこで、上述したように、本実施形態においては、撮像装置1による全ての撮像位置での撮像に要する走査回数が最小となるように、ウェル中央領域での撮像位置が決定される。 FIG. 25 and FIG. 26 show examples of the imaging arrangement in a partial area. In FIG. 25, the imaging positions of the well peripheral region are indicated by symbols P31 and P32, and the imaging positions of the well central region are indicated by symbols P41 to P44. In FIG. 26, the imaging positions in the well peripheral area are indicated by symbols P51 and P52, and the imaging positions in the well central area are indicated by symbols P61 to P64. In FIGS. 25 and 26, the outer edge of the effective visual field area at each imaging position is indicated by a bold line. If the imaging arrangement in a partial area is as shown in FIG. 25, it is necessary to reciprocate the imaging unit 13 once in the main scanning direction in order to obtain a captured image of the area. That is, the scanning of the imaging position in the well peripheral region and the scanning of the imaging position in the well central region are different scans. On the other hand, if the imaging arrangement in a part of the region is as shown in FIG. 26, the imaging unit 13 is moved by one way in the main scanning direction (that is, in one scanning). A captured image can be obtained. As described above, it can be understood that the arrangement of the plurality of imaging positions affects the efficiency of imaging. Therefore, as described above, in the present embodiment, the imaging position in the well center region is determined so that the number of scans required for imaging at all imaging positions by the imaging apparatus 1 is minimized.
 以上のようにして、ウェル周縁領域およびウェル中央領域のそれぞれにおける撮像位置が決定される。これにより、例えば図9に示したように、撮像配置が決定される。なお、本実施形態においては、上記ステップS210によって有効視野領域決定ステップが実現され、上記ステップS220,S230によって第1の撮像配置決定ステップが実現され、上記ステップS240によって第2の撮像配置決定ステップが実現されている。また、上記ステップS220によって基準位置決定ステップが実現され、上記ステップS230によって撮像位置順次決定ステップが実現されている(図12参照)。 As described above, the imaging positions in each of the well peripheral region and the well central region are determined. Thereby, for example, as shown in FIG. 9, the imaging arrangement is determined. In the present embodiment, the effective visual field region determination step is realized by the step S210, the first imaging arrangement determination step is realized by the steps S220 and S230, and the second imaging arrangement determination step is executed by the step S240. It has been realized. Further, the reference position determining step is realized by the step S220, and the imaging position sequential determining step is realized by the step S230 (see FIG. 12).
<6.効果>
 本実施形態によれば、照明光学系としてメニスカスの影響を受ける領域の撮像に適した第1の照明光学系100とメニスカスの影響を受けない領域の撮像に適した第2の照明光学系110とが設けられた撮像装置1による撮像が行われる際、各照明光学系を使用した場合の有効視野領域が定められた後、ウェルWのエッジ部(壁面)WEに沿って複数の撮像位置が配置されるよう、第1の照明光学系100を使用した撮像が行われるべき複数の撮像位置の配置が決定される。エッジ部WEに沿った複数の撮像位置の配置を考えるとき、エッジ部近傍の1つの撮像位置(上記基準位置BP)が定まると、第1の照明光学系100を使用した撮像が行われるべき全ての撮像位置について、エッジ部WEからの距離が定まる。また、互いに隣接する2つの撮像位置の間の距離は有効視野領域を考慮して決定すれば良い。以上より、第1の照明光学系100を使用した撮像が行われるべき複数の撮像位置の配置を比較的容易に決定することができる。また、第2の照明光学系110を使用した撮像が行われるべき撮像位置の配置を考える時には、第1の照明光学系100を使用した撮像が行われるべき複数の撮像位置に基づく有効視野領域が既に定まっている。このため、残りの領域の広さと第2の照明光学系110を使用した場合の有効視野領域の広さとを考慮して、第2の照明光学系110を使用した撮像が行われるべき撮像位置の配置を比較的容易に決定することができる。
<6. Effect>
According to this embodiment, the first illumination optical system 100 suitable for imaging a region affected by a meniscus as the illumination optical system, and the second illumination optical system 110 suitable for imaging a region not affected by the meniscus, When imaging is performed by the imaging apparatus 1 provided with a plurality of imaging positions are arranged along the edge portion (wall surface) WE of the well W after the effective visual field region is determined when each illumination optical system is used. As described above, the arrangement of a plurality of imaging positions at which imaging using the first illumination optical system 100 is to be performed is determined. When considering the arrangement of a plurality of imaging positions along the edge portion WE, once one imaging position in the vicinity of the edge portion (the reference position BP) is determined, all the imaging using the first illumination optical system 100 should be performed. The distance from the edge portion WE is determined for the image pickup position. In addition, the distance between two imaging positions adjacent to each other may be determined in consideration of the effective visual field region. As described above, it is possible to determine the arrangement of a plurality of imaging positions where imaging using the first illumination optical system 100 is to be performed relatively easily. Further, when considering the arrangement of the imaging positions where the imaging using the second illumination optical system 110 is to be performed, the effective visual field region based on the plurality of imaging positions where the imaging using the first illumination optical system 100 is to be performed is It has already been decided. For this reason, in consideration of the width of the remaining area and the area of the effective visual field when the second illumination optical system 110 is used, the imaging position where imaging using the second illumination optical system 110 should be performed is performed. The arrangement can be determined relatively easily.
 また、第2の照明光学系110を使用した撮像が行われるべき撮像位置は、撮像装置1による全ての撮像位置での撮像に要する走査回数が最小となるように決定される。このため、効率的な撮像が行われる。さらに、各照明光学系を使用した場合の有効視野領域が試料容器の種類や培養条件を考慮して定められるので、より効率的に複数の撮像位置を配置させることが可能になるとともに、複数の撮像画像の合成によって得られる全体画像中に明るさが不充分な領域が生じることが抑制される。 In addition, the imaging position where imaging using the second illumination optical system 110 is to be performed is determined so that the number of scans required for imaging at all imaging positions by the imaging apparatus 1 is minimized. For this reason, efficient imaging is performed. Furthermore, since the effective visual field region when each illumination optical system is used is determined in consideration of the type and culture conditions of the sample container, it is possible to arrange a plurality of imaging positions more efficiently and Generation of a region with insufficient brightness in the whole image obtained by combining the captured images is suppressed.
 以上のように、本実施形態によれば、2つの照明光学系を有する撮像装置での撮像に関し、好品質の画像を効率的に得ることのできる撮像配置を容易に決定することができる。 As described above, according to the present embodiment, it is possible to easily determine an imaging arrangement capable of efficiently obtaining a good quality image regarding imaging with an imaging apparatus having two illumination optical systems.
<7.変形例>
 以下、上記実施形態の変形例について説明する。
<7. Modification>
Hereinafter, modifications of the embodiment will be described.
<7.1 ウェル中央領域での撮像位置の決定に関する変形例>
 上記実施形態においては、撮像装置1による全ての撮像位置での撮像に要する走査回数が最小となるように、ウェル中央領域での撮像位置が決定されていた。しかしながら、本発明はこれに限定されず、撮像枚数が最小となるように(すなわち、撮像位置の数が最小となるように)ウェル中央領域での撮像位置が決定されても良い。これにより、資源が有効に活用される。
<7.1 Modification Regarding Determination of Imaging Position in Well Central Area>
In the above embodiment, the imaging position in the well center region is determined so that the number of scans required for imaging at all imaging positions by the imaging apparatus 1 is minimized. However, the present invention is not limited to this, and the imaging position in the well center region may be determined so that the number of imaging is minimized (that is, the number of imaging positions is minimized). Thereby, resources are effectively utilized.
<7.2 ウェル周縁領域での撮像位置の決定に関する変形例>
 上記実施形態においては、ウェル周縁領域での撮像位置に着目すると、互いに隣接する2つの撮像位置における有効視野領域の重なり部分の大きさは一定(ウェルWの中心WCと互いに隣接する2つの撮像位置とをそれぞれ結ぶ2つの線分のなす角度は一定)となっていた。この場合、撮像のための走査回数を少なくするためにウェル中央領域での撮像位置のX座標をウェル周辺領域での撮像位置のX座標に合わせると、図27に示すように、主走査方向に対して垂直な方向(副走査方向)について、ウェルWの中心WCからエッジ部WEに近づくにつれて撮像位置の間隔が狭くなる。このように撮像位置の間隔が密になる領域が生じると、かえって撮像配置が非効率となることもある。
<7.2 Modification Regarding Determination of Imaging Position in Well Peripheral Area>
In the above embodiment, when focusing on the imaging position in the well peripheral region, the size of the overlapping portion of the effective visual field region in two adjacent imaging positions is constant (two imaging positions adjacent to the center WC of the well W). The angle formed by the two line segments connecting the two is constant). In this case, when the X coordinate of the imaging position in the well central region is matched with the X coordinate of the imaging position in the well peripheral region in order to reduce the number of scans for imaging, as shown in FIG. 27, in the main scanning direction. On the other hand, in the direction perpendicular to the sub-scanning direction, the interval between the imaging positions becomes narrower from the center WC of the well W toward the edge portion WE. If there is a region where the intervals between the imaging positions are close, the imaging arrangement may be inefficient.
 そこで、仮にウェルWの中心WCのX座標を0としたとき、図28に示すように、撮像位置のX座標の絶対値が大きくなるほどウェルWの中心WCと互いに隣接する2つの撮像位置とをそれぞれ結ぶ2つの線分のなす角度を大きくするようにしても良い。図28において、K1~K3は角度を表しており、「K1>K2>K3」が成立している。このように、撮像装置1による撮像が行われる際の主走査方向に対して垂直な方向についての撮像間隔が等間隔に近づくように第1の照明光学系100を使用した撮像が行われるべき複数の撮像位置の微調整を行うことにより、ウェル中央領域において効率的に複数の撮像位置が配置される。 Therefore, if the X coordinate of the center WC of the well W is set to 0, as shown in FIG. 28, the center WC of the well W and the two imaging positions adjacent to each other are increased as the absolute value of the X coordinate of the imaging position increases. You may make it enlarge the angle which the two line segments which connect respectively increase. In FIG. 28, K1 to K3 represent angles, and “K1> K2> K3” is established. As described above, a plurality of images that should be captured using the first illumination optical system 100 so that the imaging intervals in the direction perpendicular to the main scanning direction when imaging by the imaging device 1 is close to equal intervals. By performing fine adjustment of the imaging position, a plurality of imaging positions are efficiently arranged in the well center region.
<7.3 有効視野領域の決定に関する変形例>
 上記実施形態においては、有効視野領域を決定する際、試料容器の種類および培地Mとしての液体の量が考慮されていた。しかしながら、本発明はこれに限定されない。有効視野領域を決定する際、例えば、試料容器の表面加工の状態、試料容器の材質(材質によって反射率が異なる)、培養液(培地)の物性(例えば、粘度、透過率)などを考慮するようにしても良い。
<7.3 Modification Regarding Determining Effective Field of View>
In the embodiment described above, the type of sample container and the amount of liquid as the medium M are taken into account when determining the effective visual field area. However, the present invention is not limited to this. When determining the effective visual field area, for example, the surface processing state of the sample container, the material of the sample container (reflectance varies depending on the material), and the physical properties (eg, viscosity, transmittance) of the culture medium (medium) are considered. You may do it.
<7.4 撮像装置の構成に関する変形例>
 撮像装置1による撮像が行われる際には、オペレータによってホルダ12上の所定の位置に試料容器(上記実施形態ではウェルプレートWP)がセットされる。ところが、試料容器の設計誤差や試料容器をセットする際の位置ずれなどに起因して、所望の撮像画像が得られないことがある。従って、そのような設計誤差や位置ずれがあっても所望の撮像画像が得られるよう、撮像に際してアライメント処理が行われるようにしても良い。そこで、本変形例では、撮像装置1の制御部14内にアライメント処理部(撮像位置調整部)が設けられる。
<7.4 Modification Regarding Configuration of Imaging Device>
When imaging by the imaging apparatus 1 is performed, the sample container (in the above embodiment, the well plate WP) is set at a predetermined position on the holder 12 by the operator. However, a desired captured image may not be obtained due to a design error of the sample container or a positional shift when the sample container is set. Therefore, alignment processing may be performed during imaging so that a desired captured image can be obtained even if there is such a design error or positional deviation. Therefore, in this modification, an alignment processing unit (imaging position adjustment unit) is provided in the control unit 14 of the imaging device 1.
 例えば、本来的には図29に示すようにウェルプレートWPがホルダ12にセットされるべきであるにも関わらず、図30に示すようにウェルプレートWPが平面視で傾いた状態でホルダ12にセットされたと仮定する。このような場合、ウェルプレートWP内のいくつかのウェルWの中心位置に基づいて、各ウェルWについて現在の位置と本来的な位置とのズレを求めることができる。このようにして求められたズレに基づいて、アライメント処理部は、走査移動レシピに基づく撮像位置を補正し、実際に撮像が行われる際の撮像位置を求める。このような処理が行われることにより、試料容器の設計誤差や試料容器をセットする際の位置ずれに関わらず所望の撮像画像が得られる。また、位置ずれがあったときにウェルプレートWPのセットのやり直しが行われると、細胞等にダメージを及ぼすおそれがある。この点、上述のようなアライメント処理が行われる構成が採用されると、ウェルプレートWPのセットのやり直しが不要となるので、細胞等にダメージを及ぼすことなく所望の撮像画像を得ることが可能となる。 For example, although the well plate WP should originally be set in the holder 12 as shown in FIG. 29, the well plate WP is tilted in plan view as shown in FIG. Assume that it is set. In such a case, the difference between the current position and the original position can be obtained for each well W based on the center positions of several wells W in the well plate WP. Based on the deviation obtained in this way, the alignment processing unit corrects the imaging position based on the scanning movement recipe and obtains the imaging position when the actual imaging is performed. By performing such processing, a desired captured image can be obtained regardless of the design error of the sample container and the positional deviation when setting the sample container. In addition, if the well plate WP is re-set when there is a positional shift, there is a risk of damaging cells and the like. In this regard, when the configuration in which the alignment process as described above is performed is adopted, it is not necessary to redo the setting of the well plate WP, so that a desired captured image can be obtained without damaging cells or the like. Become.
 1…撮像装置
 10…照明部
 12…ホルダ
 13…撮像部
 14…制御部
 15…駆動機構
 100…第1の照明光学系
 110…第2の照明光学系
 W…ウェル
 Wb…ウェル底面
 WE…ウェルのエッジ部
 WP…ウェルプレート
 WR…ウェル辺縁部
DESCRIPTION OF SYMBOLS 1 ... Imaging device 10 ... Illuminating part 12 ... Holder 13 ... Imaging part 14 ... Control part 15 ... Drive mechanism 100 ... 1st illumination optical system 110 ... 2nd illumination optical system W ... Well Wb ... Well bottom surface WE ... Well of Edge WP ... Well plate WR ... Well edge

Claims (13)

  1.  第1の照明光学系および第2の照明光学系を有し、1以上の試料収納部を有する試料容器の種類と撮像位置とに応じて前記第1の照明光学系と前記第2の照明光学系との間で使用する照明光学系を切り替えつつ撮像を行う撮像装置における複数の撮像位置の配置を決定する撮像配置決定方法であって、
     前記撮像装置による撮像が行われる際の有効視野領域を決定する有効視野領域決定ステップと、
     前記試料収納部の壁面に沿って、前記第1の照明光学系を使用した撮像が行われるべき複数の撮像位置を配置する第1の撮像配置決定ステップと、
     前記試料収納部内の任意の位置が全ての撮像位置のうちの少なくとも1つでの撮像によって得られる有効視野領域に含まれるよう、前記第1の撮像配置決定ステップで決定された複数の撮像位置での撮像によって得られる有効視野領域以外の領域に、前記第2の照明光学系を使用した撮像が行われるべき複数の撮像位置を配置する第2の撮像配置決定ステップと
    を含むことを特徴とする、撮像配置決定方法。
    The first illumination optical system and the second illumination optical system having the first illumination optical system and the second illumination optical system, and the first illumination optical system and the second illumination optics according to the type and imaging position of the sample container having one or more sample storage units An imaging arrangement determination method for determining an arrangement of a plurality of imaging positions in an imaging apparatus that performs imaging while switching an illumination optical system to be used with a system,
    An effective visual field region determining step for determining an effective visual field region when imaging by the imaging device is performed;
    A first imaging arrangement determining step for arranging a plurality of imaging positions to be imaged using the first illumination optical system along the wall surface of the sample storage unit;
    The plurality of imaging positions determined in the first imaging arrangement determination step so that an arbitrary position in the sample storage unit is included in an effective visual field region obtained by imaging at at least one of all imaging positions. And a second imaging arrangement determination step of arranging a plurality of imaging positions where imaging using the second illumination optical system is to be performed in an area other than the effective visual field area obtained by imaging The imaging arrangement determination method.
  2.  前記有効視野領域決定ステップでは、前記第1の照明光学系を使用した撮像が行われる際の有効視野領域と、前記第2の照明光学系を使用した撮像が行われる際の有効視野領域とが決定され、
     前記第1の撮像配置決定ステップでは、前記試料収納部の壁面に沿って互いに隣接する2つの撮像位置での撮像によって得られるそれぞれの有効視野領域の一部が互いに重なるよう、前記第1の照明光学系を使用した撮像が行われるべき複数の撮像位置の配置が決定され、
     前記第2の撮像配置決定ステップでは、前記第1の撮像配置決定ステップで決定された複数の撮像位置での撮像によって得られる有効視野領域以外の領域において互いに隣接する2つの撮像位置での撮像によって得られるそれぞれの有効視野領域の一部が互いに重なるよう、前記第2の照明光学系を使用した撮像が行われるべき複数の撮像位置の配置が決定されることを特徴とする、請求項1に記載の撮像配置決定方法。
    In the effective visual field area determination step, an effective visual field area when imaging using the first illumination optical system is performed and an effective visual field area when imaging using the second illumination optical system is performed. Determined,
    In the first imaging arrangement determination step, the first illumination is performed so that a part of each effective visual field region obtained by imaging at two imaging positions adjacent to each other along the wall surface of the sample storage unit overlaps each other. The arrangement of a plurality of imaging positions where imaging using an optical system is to be performed is determined,
    In the second imaging arrangement determination step, by imaging at two imaging positions adjacent to each other in an area other than the effective visual field area obtained by imaging at a plurality of imaging positions determined in the first imaging arrangement determination step. The arrangement of a plurality of imaging positions where imaging using the second illumination optical system is to be performed is determined so that a part of each obtained effective visual field region overlaps each other. The imaging arrangement | positioning determination method of description.
  3.  前記試料収納部の底面の形状は円形であって、
     前記第1の撮像配置決定ステップは、
      前記第1の照明光学系を使用した撮像が行われるべき複数の撮像位置のうちの任意の1つである基準位置を決定する基準位置決定ステップと、
      前記試料収納部の中心と前記基準位置とを結ぶ線分を前記試料収納部の中心を回転中心として所定角度ずつ回転させ、回転の都度、回転後の線分の2つの端点のうち前記試料収納部の中心の位置にある端点とは異なる方の端点の位置を前記第1の照明光学系を使用した撮像が行われるべき撮像位置に定める撮像位置順次決定ステップと
    を含むことを特徴とする、請求項2に記載の撮像配置決定方法。
    The shape of the bottom surface of the sample storage part is circular,
    The first imaging arrangement determination step includes:
    A reference position determining step for determining a reference position which is an arbitrary one of a plurality of imaging positions where imaging using the first illumination optical system is to be performed;
    A line segment connecting the center of the sample storage unit and the reference position is rotated by a predetermined angle with the center of the sample storage unit as a rotation center, and the sample storage is performed between two end points of the rotated line segment each time the rotation is performed. An imaging position sequential determination step for determining the position of the end point that is different from the end point at the center position of the part as the imaging position where imaging using the first illumination optical system is to be performed, The imaging arrangement | positioning determination method of Claim 2.
  4.  前記基準位置決定ステップでは、撮像位置を少しずつ動かしながら前記第1の照明光学系を使用した撮像が行われ、前記試料収納部の壁面の位置での明るさが前記試料収納部の中心で前記第2の照明光学系を使用した撮像が行われたときの前記試料収納部の中心での明るさとほぼ同じになる撮像位置が前記基準位置に定められることを特徴とする、請求項3に記載の撮像配置決定方法。 In the reference position determination step, imaging using the first illumination optical system is performed while moving the imaging position little by little, and the brightness at the position of the wall surface of the sample storage unit is the center of the sample storage unit. The imaging position that is substantially the same as the brightness at the center of the sample storage unit when imaging using the second illumination optical system is performed is defined as the reference position. Imaging arrangement determination method.
  5.  前記第2の撮像配置決定ステップでは、前記撮像装置による全ての撮像位置での撮像に要する走査回数が最小となるように、前記第2の照明光学系を使用した撮像が行われるべき複数の撮像位置の配置が決定されることを特徴とする、請求項1から4までのいずれか1項に記載の撮像配置決定方法。 In the second imaging arrangement determination step, a plurality of imagings that should be imaged using the second illumination optical system so that the number of scans required for imaging at all imaging positions by the imaging device is minimized. The method of determining an imaging arrangement according to any one of claims 1 to 4, wherein the arrangement of positions is determined.
  6.  前記第2の撮像配置決定ステップでは、前記撮像装置による撮像回数が最小となるように、前記第2の照明光学系を使用した撮像が行われるべき複数の撮像位置の配置が決定されることを特徴とする、請求項1から4までのいずれか1項に記載の撮像配置決定方法。 In the second imaging arrangement determination step, the arrangement of a plurality of imaging positions where imaging using the second illumination optical system is to be performed is determined so that the number of times of imaging by the imaging device is minimized. The imaging arrangement determination method according to any one of claims 1 to 4, wherein the imaging arrangement determination method is characterized.
  7.  前記第1の撮像配置決定ステップでは、前記撮像装置による撮像が行われる際の主走査方向に対して垂直な方向についての撮像間隔が等間隔に近づくように、前記第1の照明光学系を使用した撮像が行われるべき複数の撮像位置の微調整が行われることを特徴とする、請求項1から6までのいずれか1項に記載の撮像配置決定方法。 In the first imaging arrangement determination step, the first illumination optical system is used so that imaging intervals in a direction perpendicular to a main scanning direction when imaging by the imaging device is performed approach an equal interval. The imaging arrangement determination method according to any one of claims 1 to 6, wherein a fine adjustment of a plurality of imaging positions where the imaging should be performed is performed.
  8.  前記有効視野領域決定ステップでは、前記試料容器の種類および前記試料収納部に注入される撮像対象物の培養条件を考慮して有効視野領域が決定されることを特徴とする、請求項1から7までのいずれか1項に記載の撮像配置決定方法。 8. The effective visual field region determining step determines an effective visual field region in consideration of a type of the sample container and a culture condition of an imaging object to be injected into the sample storage unit. The imaging arrangement | positioning determination method of any one of until.
  9.  前記試料収納部の底面への主光線の入射状態が、前記第1の照明光学系と前記第2の照明光学系とで異なることを特徴とする、請求項1から8までのいずれか1項に記載の撮像配置決定方法。 The incident state of the chief ray on the bottom surface of the sample storage unit is different between the first illumination optical system and the second illumination optical system, according to any one of claims 1 to 8. The imaging arrangement | positioning determination method of description.
  10.  前記第1の照明光学系は、主光線が平行な状態で前記試料収納部の底面に入射するよう、前記試料収納部に向けて光を出射し、
     前記第2の照明光学系は、前記試料収納部の底面に入射する主光線が光軸から遠ざかる方向の成分を有するよう、前記試料収納部に向けて光を出射し、
     前記撮像装置は、主光線が光軸から遠ざかる方向の成分を有する光を受光するように構成された撮像光学系を含むことを特徴とする、請求項9に記載の撮像配置決定方法。
    The first illumination optical system emits light toward the sample storage unit so that the principal ray is incident on the bottom surface of the sample storage unit in a parallel state,
    The second illumination optical system emits light toward the sample storage unit such that a principal ray incident on the bottom surface of the sample storage unit has a component in a direction away from the optical axis,
    10. The imaging arrangement determining method according to claim 9, wherein the imaging device includes an imaging optical system configured to receive light having a component in a direction in which a principal ray moves away from an optical axis.
  11.  底面が光透過性を有する試料収納部に液体と共に保持された撮像対象物を撮像する撮像装置であって、
     1以上の前記試料収納部を有する試料容器を保持する容器保持部と、
     前記試料収納部に保持された撮像対象物に光を照射する照明部と、
     前記試料収納部に保持された撮像対象物の撮像を行う撮像部と、
     撮像位置に応じて前記撮像部と前記照明部とを一体的に移動させる駆動部と、
     前記照明部、前記撮像部、および前記駆動部の動作を制御する制御部と
    を備え、
     前記照明部は、前記試料収納部の底面への主光線の入射状態が互いに異なる第1の照明光学系および第2の照明光学系からなり、
     前記制御部は、
      前記試料収納部の壁面に沿って配置された複数の撮像位置である第1の撮像位置群および当該第1の撮像位置群での撮像によって得られる有効視野領域以外の領域に配置された複数の撮像位置である第2の撮像位置群で撮像が行われるよう前記撮像部および前記駆動部を制御するとともに、
      前記第1の撮像位置群に含まれる撮像位置で撮像が行われる際には前記第1の照明光学系から光が出射されるよう、かつ、前記第2の撮像位置群に含まれる撮像位置で撮像が行われる際には前記第2の照明光学系から光が出射されるよう、前記照明部を制御することを特徴とする、撮像装置。
    An imaging device for imaging an imaging object held together with a liquid in a sample storage unit having a light-transmitting bottom surface,
    A container holding part for holding a sample container having one or more sample storage parts;
    An illuminating unit that irradiates light to the imaging object held in the sample storage unit;
    An imaging unit for imaging an imaging object held in the sample storage unit;
    A driving unit that integrally moves the imaging unit and the illumination unit according to an imaging position;
    A controller that controls operations of the illumination unit, the imaging unit, and the drive unit;
    The illumination unit is composed of a first illumination optical system and a second illumination optical system in which the incident state of the chief ray on the bottom surface of the sample storage unit is different from each other,
    The controller is
    A first imaging position group that is a plurality of imaging positions arranged along the wall surface of the sample storage unit, and a plurality of areas arranged in areas other than the effective visual field area obtained by imaging at the first imaging position group. While controlling the imaging unit and the driving unit so that imaging is performed at the second imaging position group that is the imaging position,
    When imaging is performed at an imaging position included in the first imaging position group, light is emitted from the first illumination optical system, and at an imaging position included in the second imaging position group. An imaging apparatus, wherein the illumination unit is controlled so that light is emitted from the second illumination optical system when imaging is performed.
  12.  前記制御部は、外部から指示された撮像位置を前記容器保持部上における前記試料容器の位置および向きに応じて補正して前記撮像部により実際に撮像が行われる際の撮像位置を求める撮像位置調整部を含むことを特徴とする、請求項11に記載の撮像装置。 The control unit corrects the imaging position instructed from the outside according to the position and orientation of the sample container on the container holding unit, and obtains the imaging position when the imaging unit actually performs imaging. The imaging apparatus according to claim 11, further comprising an adjustment unit.
  13.  前記第1の照明光学系は、主光線が平行な状態で前記試料収納部の底面に入射するよう、前記試料収納部に向けて光を出射し、
     前記第2の照明光学系は、前記試料収納部の底面に入射する主光線が光軸から遠ざかる方向の成分を有するよう、前記試料収納部に向けて光を出射し、
     前記撮像部は、主光線が光軸から遠ざかる方向の成分を有する光を受光するように構成された撮像光学系を含むことを特徴とする、請求項11または12に記載の撮像装置。
    The first illumination optical system emits light toward the sample storage unit so that the principal ray is incident on the bottom surface of the sample storage unit in a parallel state,
    The second illumination optical system emits light toward the sample storage unit such that a principal ray incident on the bottom surface of the sample storage unit has a component in a direction away from the optical axis,
    The imaging apparatus according to claim 11, wherein the imaging unit includes an imaging optical system configured to receive light having a component in a direction in which a principal ray moves away from an optical axis.
PCT/JP2016/079755 2016-03-10 2016-10-06 Imaging arrangement determination method for imaging device and imaging device WO2017154253A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-046679 2016-03-10
JP2016046679A JP6293186B2 (en) 2016-03-10 2016-03-10 Imaging arrangement determining method in imaging apparatus and imaging apparatus

Publications (1)

Publication Number Publication Date
WO2017154253A1 true WO2017154253A1 (en) 2017-09-14

Family

ID=59790321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079755 WO2017154253A1 (en) 2016-03-10 2016-10-06 Imaging arrangement determination method for imaging device and imaging device

Country Status (3)

Country Link
JP (1) JP6293186B2 (en)
TW (1) TWI625548B (en)
WO (1) WO2017154253A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040569A (en) * 2016-09-05 2018-03-15 株式会社Screenホールディングス Picked-up image arrangement determining method, image pick-up method, and image pick-up apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019088034A1 (en) * 2017-11-06 2020-11-19 富士フイルム株式会社 Observation area setting device, imaging control device, operation method of observation area setting device, and observation area setting program
JPWO2019116807A1 (en) * 2017-12-15 2020-11-19 富士フイルム株式会社 Observation device, observation method and observation program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080297774A1 (en) * 2007-05-31 2008-12-04 Genetix Limited Methods and apparatus for optical analysis of samples in biological sample containers
JP2009122356A (en) * 2007-11-14 2009-06-04 Nikon Corp Phase contrast microscope
JP2009175334A (en) * 2008-01-23 2009-08-06 Olympus Corp Microscopic system, image forming method, and program
WO2010128670A1 (en) * 2009-05-08 2010-11-11 株式会社ニコン Focus control device, and incubation and observation device
JP2011048013A (en) * 2009-08-25 2011-03-10 Nikon Corp Control device and microscope system using the control device
JP2013190428A (en) * 2012-03-14 2013-09-26 Tecan Trading Ag Method for examining biological cell or cell culture and micro-plate reader
WO2014091661A1 (en) * 2012-12-14 2014-06-19 ソニー株式会社 Phase-contrast microscope, control device for phase-contrast microscope, and control method for phase-contrast microscope

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4288323B1 (en) * 2008-09-13 2009-07-01 独立行政法人科学技術振興機構 Microscope device and fluorescence observation method using the same
EP2520923A1 (en) * 2011-05-06 2012-11-07 bioMérieux Bio-imaging method and system
EP2731051A1 (en) * 2012-11-07 2014-05-14 bioMérieux Bio-imaging method
WO2015052936A1 (en) * 2013-10-09 2015-04-16 株式会社ニコン Structured illumination microscope device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080297774A1 (en) * 2007-05-31 2008-12-04 Genetix Limited Methods and apparatus for optical analysis of samples in biological sample containers
JP2009122356A (en) * 2007-11-14 2009-06-04 Nikon Corp Phase contrast microscope
JP2009175334A (en) * 2008-01-23 2009-08-06 Olympus Corp Microscopic system, image forming method, and program
WO2010128670A1 (en) * 2009-05-08 2010-11-11 株式会社ニコン Focus control device, and incubation and observation device
JP2011048013A (en) * 2009-08-25 2011-03-10 Nikon Corp Control device and microscope system using the control device
JP2013190428A (en) * 2012-03-14 2013-09-26 Tecan Trading Ag Method for examining biological cell or cell culture and micro-plate reader
WO2014091661A1 (en) * 2012-12-14 2014-06-19 ソニー株式会社 Phase-contrast microscope, control device for phase-contrast microscope, and control method for phase-contrast microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040569A (en) * 2016-09-05 2018-03-15 株式会社Screenホールディングス Picked-up image arrangement determining method, image pick-up method, and image pick-up apparatus

Also Published As

Publication number Publication date
JP6293186B2 (en) 2018-03-14
JP2017161385A (en) 2017-09-14
TW201732366A (en) 2017-09-16
TWI625548B (en) 2018-06-01

Similar Documents

Publication Publication Date Title
JP6692660B2 (en) Imaging device
JP6899963B2 (en) Real-time autofocus scanning
KR102419163B1 (en) Real-time autofocus focusing algorithm
JP7167276B2 (en) Low-Resolution Slide Imaging, Slide Label Imaging and High-Resolution Slide Imaging Using Dual Optical Paths and Single Imaging Sensor
JP6419761B2 (en) Imaging arrangement determination method, imaging method, and imaging apparatus
JP6940696B2 (en) Two-dimensional and three-dimensional fixed Z-scan
EP3214427B1 (en) Imaging apparatus and imaging method
JP6293186B2 (en) Imaging arrangement determining method in imaging apparatus and imaging apparatus
JP6952891B2 (en) Carousel for 2x3 and 1x3 slides
JP6945737B2 (en) Dual processor image processing

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893577

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893577

Country of ref document: EP

Kind code of ref document: A1