WO2017153640A1 - Pansement se présentant sous la forme d'une bande autoadhérente - Google Patents

Pansement se présentant sous la forme d'une bande autoadhérente Download PDF

Info

Publication number
WO2017153640A1
WO2017153640A1 PCT/FR2016/050529 FR2016050529W WO2017153640A1 WO 2017153640 A1 WO2017153640 A1 WO 2017153640A1 FR 2016050529 W FR2016050529 W FR 2016050529W WO 2017153640 A1 WO2017153640 A1 WO 2017153640A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
polymers
nonwoven
dressing according
fiber
Prior art date
Application number
PCT/FR2016/050529
Other languages
English (en)
Inventor
Jean-Marc Pernot
Original Assignee
Urgo Recherche Innovation Et Developpement
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Urgo Recherche Innovation Et Developpement filed Critical Urgo Recherche Innovation Et Developpement
Priority to EP16714484.9A priority Critical patent/EP3426207A1/fr
Priority to PCT/FR2016/050529 priority patent/WO2017153640A1/fr
Priority to FR1770216A priority patent/FR3048607A1/fr
Publication of WO2017153640A1 publication Critical patent/WO2017153640A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43918Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres nonlinear fibres, e.g. crimped or coiled fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive bandages or dressings
    • A61F13/0273Adhesive bandages for winding around limb, trunk or head, e.g. cohesive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/00051Accessories for dressings
    • A61F13/00063Accessories for dressings comprising medicaments or additives, e.g. odor control, PH control, debriding, antimicrobic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/01Non-adhesive bandages or dressings
    • A61F13/01008Non-adhesive bandages or dressings characterised by the material
    • A61F13/01017Non-adhesive bandages or dressings characterised by the material synthetic, e.g. polymer based
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/26Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/58Adhesives
    • A61L15/585Mixtures of macromolecular compounds
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/50Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by treatment to produce shrinking, swelling, crimping or curling of fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00365Plasters use
    • A61F2013/00463Plasters use haemostatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/04Materials for stopping bleeding

Definitions

  • a lesion located on capillaries will involve primary haemostasis that can stop the bleeding by forming a "platelet”.
  • Primary haemostasis will be enhanced by plasma coagulation, which will come into play to form an insoluble and solid fibrin clot.
  • This clot also serves as a matrix for the migration of cells involved in healing.
  • the mechanisms of fibrinolysis will allow clot dissolution, which is an obstacle to free vascular circulation.
  • Haemostatic products which promote or activate hemostasis, can intervene at several levels to help stop bleeding. The use of various haemostatic products has long been known to treat hemostasis.
  • Haemostatic products act mainly on haemostasis by reproducing the last stage of coagulation. Fibrinogen is transformed into fibrin, under the action of thrombin. Fibrinogen then divides into fibrin and fibrinopeptide monomers. The fibrin monomers aggregate and form a fibrin clot. Physiologically, the activated Factor XIII (FXIIIa) will stabilize the clot by creating internal bonds between the fibrin monomers. During wound healing, the increase in fibrinolytic activity is induced by plasmin, and the degradation of fibrin is initiated. The proteolytic degradation of fibrin can be inhibited by antifibrinolytics (tranexamic acid, aprotinin, etc.).
  • Hemostatic products with no specific action on the cascade of events occurring during coagulation will, in turn, contribute to stop bleeding, by acting nonspecifically on the different phases of hemostasis and coagulation.
  • collagen examples include collagen, gelatin, the combination of bovine thrombin with gelatin, alginates, oxidized cellulose, polysaccharides, aldehydes, cyanoacrylates or polyethylene glycols.
  • Collagen is a tissue protein found in the media of the wall of blood vessels. When vascular breccias appear, circulating platelets are exposed to collagen, adhere to these fibers and initiate their activation process. The contribution of exogenous collagen makes it possible, by increasing the adhesion surface, to promote this step, which results in the formation of the platelet nail and participates in the activation of the coagulation.
  • Gelatin is a collagen breakdown product that, in contact with blood, increases in volume and forms a gelatinous plug that fills the wound and mechanically opposes the flow of blood. Under the effect of the expansion of gelatin, the gel becomes saturated with blood, concentrates blood elements and promotes platelet activation. The physical matrix constituted by the gelatin network helps to stabilize the clot.
  • bovine thrombin with the gelatin matrix adds a direct action on the coagulation cascade.
  • the blood circulates between the gelatin granules and is locally exposed to high concentrations of thrombin, which intervenes to transform the fibrinogen of the patient into fibrin.
  • the exchange of Ca 2 + ions of the alginates against the Na + ions of the blood and exudate leads to the gradual transformation of the dry dressing into a gel.
  • the release of Ca2 + ions promotes platelet activation and fibrinogenesis.
  • the alginate fibers by their physical absorption capacity and their role of matrix participate in the formation of the clot.
  • hydrophilic microporous spherical particles of polysaccharides absorb the plasma by osmotic effect, form a gel which fills the wound and act by mechanical blocking of the blood flow.
  • the aldehydes act by forming an amide bond between two amino functions present on the amino acids of the tissue proteins and the aldehydes. These covalent bonds make it possible to create a stable bridging between the tissue proteins.
  • Cyanoacrylates are composed of various monomers which, under the action of a freshly mixed catalyst, polymerize and harden to form a tissue-adhering film and prevent bleeding by mechanical occlusion of blood flow.
  • Polyethylene glycols consist of precursors that, when mixed, polymerize to form a hydrogel. Anchorage of PEG particles to tissue proteins is provided by the formation of covalent bonds and creates a mechanical barrier.
  • a product according to the present invention In order to promote or activate hemostasis and particularly to promote or activate wound-related hemostasis, the use of a product according to the present invention has proved its effectiveness in treating and preventing prolonged bleeding. Indeed, it has been demonstrated that the product according to the present invention facilitates the coagulation of blood.
  • the dressing When used to stop bleeding, on a finger, for example, the dressing is in the form of a band is laid and wound with one or more turns depending on the strength of the desired band.
  • This dressing consists of a self-adhesive elastic band consists of a specific nonwoven which was obtained from short conjugated fibers which were crimped.
  • Nonwovens are generally textile materials that can not be used to make medical bandages or bandages because they are not elastic enough or stretchy. Also, have recently been developed nonwovens of curled fibers which have better properties of extensibility. Such products are described in the patent application WO 2008/015972, for their use as a retaining band or bandage, easily tearable.
  • this dressing has remarkable haemostatic properties which make it particularly suitable for use in the activation or the promotion of haemostasis.
  • the band included in the dressing according to the invention is advantageously self-adhesive.
  • the fibers constituting the band are advantageously crimped uniformly in the direction of the thickness of the nonwoven, and have a mean radius of curvature preferably between 10 and 200 microns.
  • the number of crimped fibers on the surface of the nonwoven is advantageously greater than 10 crimped fibers / cm.
  • the nonwoven preferably has a basis weight of between 10 g / m 2 and 300 g / m 2 .
  • the subject of the invention is a dressing comprising a strip consisting of a nonwoven of crimped fibers obtained from conjugated short fibers, in which
  • the nonwoven has a basis weight of between 10 g / m 2 and 300 g / m 2 , said fibers are uniformly crimped in the direction of the thickness of the nonwovens, and have an average radius of curvature of between 10 and 200 microns, and
  • the number of crimped fibers on the surface of the nonwoven is greater than 10 crimped fibers / cm 2 .
  • a variant of the present invention relates to a dressing which, in addition to the band, comprises at least one additional layer on one side of the nonwoven.
  • the fibers that have been used to make the nonwoven are preferably conjugated, polymeric in nature, and non-continuous (short).
  • the conjugate fibers in the sense of the invention are "latching friable" fibers having an asymmetric or laminated structure, which have the property of curling under the effect of heating. They owe this property to the difference of thermal contraction coefficient of the polymers which constitute them.
  • These fibers advantageously consist of at least two polymers which have a different coefficient of thermal contraction.
  • These polymers usually have softening points or different melting points. They may be chosen from thermoplastic polymers such as, for example: olefinic polymers (especially polymers of polyolefins C 2 -4 such as low and medium density polyethylenes and polypropylenes), acrylic polymers (especially acrylonitrile polymers with acrylonitrile units) such as acrylonitrile / vinyl chloride copolymers), vinylacetal polymers (especially polyvinyl acetal polymers), chlororovinyl polymers (especially polyvinyl chlorides, vinyl chloride / vinyl acetate copolymers and vinyl chloride / acrylonitrile copolymers) , chlorovinylidene polymers (especially vinylidene chloride / vinyl chloride copolymers and vinylidene chloride / vinyl acetate copolymers), styrenic polymers (especially heat-resistant polysty
  • non-adhesive polymers are preferred in wet heat (or water-resistant hydrophobic or non-water-soluble polymers). softening or melting point greater than or equal to 100 ° C, such as, for example, polypropylene polymers, polyester polymers and polyamide polymers. These polymers make it possible to avoid fiber bonding by melting or softening the fibers. Polyester aromatic polymers and polyamide polymers are particularly preferred for their excellent stability, heat resistance and ability to form fibers.
  • the fibers used are two-component.
  • the two-component fibers may be composed of polymers of the same chemical family or polymers of different chemical families, provided they have different thermal contraction coefficients.
  • the conjugated short fibers are bicomponent, the two components constituting them being polymers which have a softening point of greater than or equal to 100 ° C., said polymers being chosen from polypropylene polymers, polyester polymers and polyesters. or the polyamide polymers, and preferably are two different aromatic polyester polymers.
  • the two-component fibers consist of two polymers of the same chemical family: for example a homopolymer and a copolymer. It is indeed possible to lower the degree of crystallinity of the homopolymer, or even to make it amorphous, or to lower its melting point or its softening point, by copolymerizing the monomer with another.
  • the difference in melting point or softening point of the two polymers may be for example of the order of 5 to 150 ° C, preferably 50 to 130 ° C, and more preferably 70 to 120 ° C.
  • the proportion of copolymerizable monomer, relative to the total amount of monomers, is for example of the order of 1 to 50 mol%, preferably 2 to 40 mol%, and more preferably 3 to 30 mol% (particularly from 5 to 20 mol%).
  • the weight ratio of the homopolymer and the copolymer can be chosen according to the fiber structure; it is for example, in terms of the homopolymer (A) / copolymer (B) ratio, of the order of 90/10 to 10/90, preferably of 70/30 to 30/70, and more preferably of 60/40 to 40/60.
  • the bicomponent fibers consist of two aromatic polyester polymers and in particular the combination of a polyalkylene arylate homopolymer (a) and a polyalkylene arylate copolymer (b).
  • the polyalkylene arylate homopolymer (a) may be a homopolymer of an aromatic dicarboxylic acid (especially a symmetrical aromatic dicarboxylic acid such as terephthalic acid or naphthalene-2,6-dicarboxylic acid) and an alkane component diol (especially ethylene glycol or butylene glycol).
  • a polymer of the polyalkylene terephthalate series such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT) is used, and usually a PET with an intrinsic viscosity of the order of 0.6 to 0.7 used for manufacture of ordinary PET fibers.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • the polyalkylene arylate copolymer (b) can be obtained from a first monomer for the preparation of the polyalkylene arylate homopolymer (a), and a second monomer selected from a dicarboxylic acid such as a dicarboxylic acid an asymmetric aromatic, an alicyclic dicarboxylic acid, an aliphatic dicarboxylic acid, a longer chain alkane-diol component than the alkane diol of the polyalkylene arylate polymer (a), and / or a diol carrying an ether linkage.
  • a dicarboxylic acid such as a dicarboxylic acid an asymmetric aromatic, an alicyclic dicarboxylic acid, an aliphatic dicarboxylic acid, a longer chain alkane-diol component than the alkane diol of the polyalkylene arylate polymer (a), and / or a diol carrying an ether linkage.
  • an asymmetric aromatic dicarboxylic acid in particular isophthalic acid, phthalic acid or sodium 5-sulfoisophthalic acid,
  • an aliphatic dicarboxylic acid in particular a C 1-12 aliphatic dicarboxylic acid such as adipic acid,
  • alkane-diol in particular 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol or neopentylglycol,
  • a polyoxyalkylene glycol especially diethylene glycol, triethylene glycol, polyethylene glycol or polytetramethylene glycol.
  • an asymmetric aromatic dicarboxylic acid such as isophthalic acid
  • a polyoxyalkylene glycol such as diethylene glycol
  • the polyalkylene arylate copolymer (b) may optionally be a hard segment elastomer of alkylene arylate (ethylene terephthalate, butylene terephthalate) and flexible segments for example of (poly) oxyalkylene glycol.
  • the proportion of dicarboxylic acid component intended to lower the melting point or the softening point relative to the total amount of dicarboxylic acid component is for example of the order of 1 to 50 mol%, preferably 5 to 50% by moles, and more preferably from 15 to 40% by moles.
  • the proportion of diol component intended to lower the melting point or the softening point, relative to the total amount of diol component is, for example, at most 30 mol%, and preferably at most 10 mol%, by example of the order of 0.1 to 10 mol%.
  • the cross section (perpendicular to the fiber length direction) of two-component fibers is not limited to the round shape (the ordinary form of solid fibers) and the modified shapes (flattened, elliptical, polygonal, 3- to 14-folate , T, H, V, dog bone (i), etc.), but may also be a hollow section.
  • the round section is usually chosen.
  • phased structures formed by a plurality of polymers for example the heart-shell, island and sea type structures, mixed, parallel (side-by-side or multilayer laminate), radial (radial laminate), hollow radial, block or random.
  • these structures it is preferred, for a more spontaneous development of thermal crimping, an eccentric heart-bark type structure or parallel type.
  • the core may consist of a polymer of the vinyl alcohol family such as an ethylene / vinyl alcohol copolymer or a polyvinyl alcohol, or a thermoplastic polymer having a melting point or a low softening point, for example a polystyrene or a low density polyethylene, provided that it allows crimping by having a thermal contraction coefficient deviation with the polymer constituting the bark.
  • a polymer of the vinyl alcohol family such as an ethylene / vinyl alcohol copolymer or a polyvinyl alcohol
  • a thermoplastic polymer having a melting point or a low softening point for example a polystyrene or a low density polyethylene
  • the two-component fibers have a side-by-side structure and consist of a first polymer which is a polyethylene terephthalate, and a second polymer which is a copolymer of an alkylene arylate with the isophthalic acid and / or diethylene glycol.
  • the average titer of the conjugated short fibers may for example be between 0.1 to 50 dtex, preferably between 0.5 and 10 dtex, and more preferably between 1 and 5 dtex (particularly between 1.5 and 3 dtex). ). If the title is too thin, not only are the fibers difficult to manufacture but they may lack strength. In addition, at the crimping stage, it is difficult to obtain beautiful serpentine crimps. If the title is too big, the fibers become stiff and make it difficult to develop sufficient crimping.
  • the average length of the conjugated short fibers before crimping may for example be between 10 and 100 mm, preferably between 20 and 80 mm, and more preferably between 25 and 75 mm (particularly between 40 and 60 mm). If the fibers are too short, in addition to the difficulty of forming the fiber web, entanglement of the fibers is insufficient in the crimping step and it is difficult to guarantee good strength and extensibility properties. If the fibers are too long, not only does it become difficult to form a web of uniformly weighted fibers, but the fibers become entangled excessively during the formation of the web, to the point of interfering with each other at the time of crimping and to prevent the development of extensibility.
  • the choice of the length of fiber in the aforesaid range allows some of the crimped fibers on the surface of the nonwoven to emerge moderately from said surface of the nonwoven and thus improve the non-woven self-adhesive which will be discussed later.
  • the average titer of the conjugated short fibers is between 1 and 5 dtex, preferably between 1.5 and 3 dtex, and the average length of the conjugated short fibers is between 10 and 100 mm, and preferably between 40 and 60 mm.
  • the application of a heat treatment to these conjugate fibers has the effect of developing the crimp and printing them embossed crimps in the form of coils (spiral or "coil spring").
  • the average radius of curvature of the crimped fibers in the sense of the invention corresponds to the average radius of curvature of the circles formed by the loops of the coils of the crimped fibers; it may be between 10 and 200 microns, for example between 10 and 250 microns, preferably between 20 and 200 microns, preferably between 50 and 160 microns, and more preferably between 70 and 130 microns.
  • the average radius of curvature of the crimped fibers can be determined by electron microscopy according to the following method.
  • a photograph (magnification ⁇ 100) of a nonwoven section is taken with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the fibers appearing on the plate one selects the fibers forming at least 1 spiral turn (serpentine) and one determines their radius of curvature like the radius of the circle traced along the spiral (radius of the circle when one observes the curly fiber in the direction of the axis of the coil).
  • the radius of curvature is determined as the half-sum of the large and small diameters of the ellipse.
  • the nonwoven according to the invention has the characteristic that the crimping of the conjugate fibers oriented approximately parallel to the planar direction is developed in a substantially uniform manner in the direction of thickness.
  • the number of fibers forming at least 1 spiral crimped turn is for example, in the central part (inner layer), from 5 to 50 by 5 mm (planar length) and 0.2 mm (thickness), preferably from 10 to 50 by 5 mm (planar) and 0.2 mm (thickness) and more preferably 20 to 50 per 5 mm (planar) and 0.2 mm (thickness).
  • the nonwoven Since most of the curled fibers have their axis oriented in the planar direction and the number of crimps is uniform in the direction of thickness, the nonwoven exhibits a high extensibility (without containing rubber or elastomer), and good operational resistance (without any adhesives).
  • areas delimited by a division into three equal parts in the direction of the thickness is meant the different areas obtained when cutting the nonwoven into three equal slices oriented perpendicular to the thickness.
  • the uniformity of the crimp in the direction of the thickness can be defined by the ratio of curvature of fiber.
  • fiber curl ratio is meant the ratio L2 / L1 of the length of the bilaterally stretched fiber L2 at the distance L1 of both ends of the fiber in the curled state.
  • This fiber curvature ratio (in particular in the central region in the direction of the thickness) is for example of the order of at least 1.3 (for example from 1.35 to 5), preferably from 1 to , 4 to 4 (for example from 1.5 to 3.5), and more preferably from 1.6 to 3 (particularly from 1.8 to 2.5).
  • the length of fiber L2 does not correspond to the length of the fiber that would be obtained if the three-dimensional curled fiber was stretched and rectilinearized. She corresponds to the length of fiber on the plate that is obtained when stretching and rectilinearizes the fiber appearing curly bidimensionally on the plate. In other words, the fiber length on the plate that is measured according to the invention is less than the actual fiber length.
  • the fiber curvature ratio is also uniform in the direction of the thickness.
  • the uniformity of the fiber curvature ratio can be evaluated by comparing, in a section taken in the direction of thickness, the fiber curl ratios obtained in the different layers delimited by a partition in three equal parts in the sense of thickness.
  • the nonwoven has in a section taken in the direction of the thickness, a fiber curvature ratio of greater than or equal to 1.3 in each of the areas delimited by a division into three equal parts in the sense of thickness, and the ratio of the minimum value to the maximum value of the fiber curl ratio in the different fields is greater than 75%.
  • the method of taking a photograph of the nonwoven section under the electron microscope and measuring the fiber curl ratio on selected areas within the different areas of sharing in three equal parts in the direction of thickness is carried out in each of the upper layers (recto domain), internal (central domain) and lower (backside domain), on domains which, in the direction of the length, are at least 2 mm, and in the direction of thickness, are positioned near the center of each layer and have the same thickness from one area to another.
  • these measurement domains are parallel in the direction of the thickness, and are defined such that each contains at least 100 fiber fragments allowing the measurement of their curvature ratio (of the order of preferably from minus 300, and more preferably from 500 to 1000).
  • the fiber curvature ratio of all the fibers in the domain is measured and the average value is calculated on each measurement domain, then the uniformity of the fiber curl ratio is calculated by comparing the domain showing the largest mean value and the domain showing the smallest mean value.
  • the measurement of the fiber curl ratio and its uniformity can be performed according to the following methodology. Take a photo (magnification ⁇ 100) of a section of non-woven fabric under an electron microscope and, in a part where the fibers appeared on the plate, the thickness is divided into three equal areas (front, inner and back layers), and near the center of each domain, measuring domains of at least 2 mm in the length direction and containing at least 500 measurable fiber fragments are defined. On these domains, we measure on the one hand the inter-end distance (the shortest distance) between the two ends of the fiber and on the other hand the fiber length (length of the fiber on the plate).
  • the fiber curvature ratio is calculated as the L2 / L1 ratio of the fiber length L2 to the inter-end distance L1 of the fibers. Then we calculate the average on each of the front, inner and back layers of the partition in three equal parts in the direction of the thickness. Finally, the uniformity of the fiber curvature ratio in the direction of the thickness is calculated from the ratio of its maximum and minimum values in the different layers.
  • FIGS. 4-a and 4-b of the patent application WO 2008/015972 The principle of the method of measurement of the fiber length is illustrated in FIGS. 4-a and 4-b of the patent application WO 2008/015972.
  • Fig.4- (a) illustrates the case of a fiber having one end emerging at the surface and the other end dipping into the nonwoven.
  • the inter-end distance L1 is here the distance from one end of the fiber to the dive boundary portion in the nonwoven.
  • the length of fiber L2 is the length obtained when the dimension of the observable fiber (part extending from the end of the fiber to the dive portion in the non-dimensional portion) is stretched bilaterally on the plate. woven).
  • Fig.4- (b) illustrates the case of a fiber whose two ends plunge into the nonwoven.
  • the inter-end distance L1 is here the distance of the two ends of the emerging portion to the surface of the nonwoven (ends on the plate).
  • the length of fiber L2 is the length obtained when two-dimensionally stretched, on the plate, the fiber in the part emerging on the surface of the nonwoven.
  • the average pitch of the coil is for example of the order of 0.03 to 0.5 mm, preferably of 0.03 to 0.3 mm, and more preferably of 0.05 to 0.2 mm.
  • the nonwoven may also contain fibers that are not bi-component fibers.
  • additional single-component fibers mention may be made, for example, of the polymer fibers already mentioned above, but also the cellulosic fibers such as, for example, natural fibers (wood wool, sheep's wool, silk, hemp), semi-synthetic fibers. synthetic (especially acetate fibers such as triacetate fibers) or regenerated fibers (rayon, lyocell).
  • the average titre and the average length of the single-component fibers are preferably identical to those of the two-component fibers. A single species can be used or several species of these single-component fibers can be combined.
  • regenerated fibers such as rayon fibers, semi-synthetic fibers such as acetate fibers, polyolefin fibers such as polypropylene or polyethylene fibers, and polyester fibers. and polyamide fibers.
  • the weight ratio between the two-component fibers and the single-component fibers is, for example, of the order of 80/20 to 100/0 (for example from 80/20 to 99/1), preferably from 90/10 to 100/0. and more preferably 95/5 to 100/0.
  • the nonwoven may also contain actives or additives such as stabilizers, UV filters, light stabilizers, antioxidants, antibacterials, deodorants, fragrances, dyes, fillers, antistatic agents, flame, plasticizers, lubricants, or crystallization retarders.
  • actives or additives such as stabilizers, UV filters, light stabilizers, antioxidants, antibacterials, deodorants, fragrances, dyes, fillers, antistatic agents, flame, plasticizers, lubricants, or crystallization retarders.
  • actives or additives such as stabilizers, UV filters, light stabilizers, antioxidants, antibacterials, deodorants, fragrances, dyes, fillers, antistatic agents, flame, plasticizers, lubricants, or crystallization retarders.
  • actives or additives such as stabilizers, UV filters, light stabilizers, antioxidants, antibacterials, deodorants, fragrances, dyes, fillers, antistatic agents, flame, plasticizers, lubricants, or crystallization retard
  • the assets are chosen from: anti-bacterials such as polymyxin B, penicillins (amoxycillin), clavulanic acid, tetracyclines, minocycline, chlorotetracycline, aminoglycosides, amikacin, gentamicin, neomycin, silver and its salts (Sulfadiazine argentic), probiotics;
  • anti-bacterials such as polymyxin B, penicillins (amoxycillin), clavulanic acid, tetracyclines, minocycline, chlorotetracycline, aminoglycosides, amikacin, gentamicin, neomycin, silver and its salts (Sulfadiazine argentic), probiotics;
  • antiseptics such as sodium mercurothiolate, eosin, chlorhexidine, phenylmercury borate, hydrogen peroxide, Dakin liquor, triclosan, biguanide, hexamidine, thymol, Lugol, Povidone iodine, Merbromine, Benzalkonium and Benzethonium Chloride, ethanol, isopropanol;
  • anti-virals such as Acyclovir, Famciclovir, Ritonavir;
  • anti fungal agents such as polyenes, Nystatin, Amphotericin B,
  • anti-pain agents such as paracetamol, codeine, dextropropoxyphene, tramadol, morphine and its derivatives, corticosteroids and derivatives;
  • anti-inflammatories such as glucocorticoids, nonsteroidal anti-inflammatory drugs, aspirin, ibuprofen, ketoprofen, flurbiprofen, diclofenac, aceclofenac, ketorolac, meloxicam, piroxicam, tenoxicam, Naproxen, Indomethacin, Naproxcinod, Nimesulide, Celecoxib, Etoricoxib, Parecoxib, Rofecoxib, Valdecoxib, Phenylbutazone, Niflumic acid, Mefenamic acid, Beta-18-glycyrrhetinic acid;
  • - restructuring assets for example rescutants of dander
  • rescutants of dander such as silica derivatives, vitamin E, chamomile, calcium, horsetail extract, silk Lipester
  • anesthetics such as benzocaine, lidocaine, dibucaine, pramoxine hydrochloride, bupivacaine, mepivacaine, prilocaine and etidocaine.
  • haemostatics such as fibrinogen, factor XIII, fibronectin, thrombin, bovine aprotinin, tranexamic acid, collagen, aldehydes, cyanoacrylates, polyethylene glycol, alginates, cellulose, polysaccharides.
  • the other mechanical properties of the nonwoven will preferably be as follows.
  • the thickness of the nonwoven fabric is advantageously between 0.25 and 5 mm, preferably between 0.4 and 2.5 mm and very particularly between 0.5 and 1.5 mm.
  • the thickness can be measured according to EN 9073-2.
  • the self-adhesion of the web according to the invention is achieved by the presence of many fibers in the partially free state on the surface of the nonwovens, the surface fibers becoming entangled with each other at the time of the superimposition of the web on it. -even.
  • the number of crimped fibers, in particular in the form of a coil or a loop, on the surface of the nonwoven is advantageously greater than 10 crimped fibers / cm 2. and preferably between 10 and 50 crimped fibers / cm 2 .
  • a number of crimped fibers on the nonwoven surface of between 10 and 35 crimped fibers / cm 2 will be preferred.
  • the number of crimped fibers on the surface of the nonwoven can be determined as follows.
  • the self-adhesion characterization of the band is evaluated visually.
  • a strip of nonwoven having a width of 15 mm is wound by stretching it slightly on the fingertip so as to form three turns and then torn manually.
  • the self-gripping power is then estimated. It follows from this test that the bands remain on the finger for at least 30 minutes.
  • This additional layer makes it possible to improve, if necessary, the properties of the self-adhesive elastic band, for example by adapting its absorption, damping, conformability, rigidity or occlusivity capacities.
  • materials based on synthetic or natural fibers we can mention woven fabrics, nonwovens, knits, 3D knits, films, foams and their combinations.
  • the additional layer may optionally contain active agents that contribute to improving the healing of the wound or that can reduce the pain, or antibacterial agents.
  • active agents that contribute to improving the healing of the wound or that can reduce the pain, or antibacterial agents.
  • antibacterial fibers for example silver fibers
  • an antibacterial agent for example triclosan.
  • the example uses a nonwoven, based on two-component asymmetric crimped fibers, manufactured according to the teaching of the patent application WO 2008/015972.
  • This nonwoven can be reference SR 0046 from Kuraray.
  • This nonwoven is made from the side-by-side fiber, based on polyester copolymers of the company Kuraray whose reference is PN-780.
  • the performance of dressings consisting of a web of nonwoven according to the invention on the coagulation of blood was evaluated.
  • Whole sheep blood was contacted with a nonwoven web according to the invention at a ratio of 1 cm 2 / mL in test tubes incubated at 37 ⁇ 1 ° C.
  • a control tube without tape is tested under the same conditions as a negative control.
  • the test tubes are gently inverted every minute until a blood clot is observed.
  • the coagulation time is recorded for the article tested (4 trials).
  • the average coagulation time of the sheep blood in the presence of the nonwoven according to the invention was 13 minutes thirty seconds.
  • the mean clotting time of the sheep blood in the control test tube was about 26 minutes thirty seconds.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Textile Engineering (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

La présente invention est relative à un nouveau pansement se présentant sous la forme d'une bande autoadhérente, pour son utilisation pour favoriser ou activer l'hémostase. Cette bande est composée d'un non tissé autoadhérent obtenu à partir de fibres courtes conjuguées qui ont été frisées. Les fibres sont de préférence en polyester. Le pansement peut en outre comprendre une couche supplémentaire.

Description

Pansement se présentant sous la forme d'une bande autoadhérente
La survenue d'une plaie vasculaire entraîne la mise en place d'un mécanisme de défense pour empêcher la fuite de sang. Une lésion située sur des vaisseaux capillaires va mettre en jeu l'hémostase primaire qui pourra arrêter l'hémorragie par formation d'un « clou plaquettaire ». L'hémostase primaire sera renforcée par la coagulation plasmatique, qui entrera en jeu pour former un caillot de fibrine insoluble et solide. Ce caillot sert également de matrice pour la migration de cellules participant à la cicatrisation. Lorsque la cicatrisation du vaisseau sera terminée, les mécanismes de fïbrinolyse permettront une dissolution du caillot qui constitue un obstacle à la libre circulation vasculaire. Les produits hémostatiques, qui favorisent ou activent l'hémostase, peuvent intervenir à plusieurs niveaux, afin de participer à l'arrêt des saignements. L'utilisation de divers produits hémostatiques est connue depuis longtemps pour traiter l'hémostase.
Les produits hémostatiques agissent essentiellement sur l'hémostase en reproduisant la dernière étape de la coagulation. Le fibrinogène se transforme en fibrine, sous l'action de la thrombine. Le fibrinogène se divise alors en monomères de fibrine et fîbrinopeptides. Les monomères de fibrine s'agrègent et forment un caillot de fibrine. Physiologiquement, le Facteur XIII activé (FXIIIa) va stabiliser le caillot en créant des liaisons internes entre les monomères de fibrine. Au cours de la cicatrisation de la plaie, l'augmentation de l'activité fibrinolytique est induite par la plasmine, et la dégradation de la fibrine est initiée. La dégradation protéolytique de la fibrine peut être inhibée par des antifibrinolytiques (acide tranexamique, aprotinine, etc.).
Les produits hémostatiques sans action spécifique sur la cascade d'événements survenant au cours de la coagulation vont, quant à eux, contribuer à l'arrêt du saignement, en agissant de manière non spécifique sur les différentes phases d'hémostase et de coagulation.
Parmi ces produits, on peut citer à titre d'exemple, le collagène, la gélatine, l'association de thrombine bovine à la gélatine, les alginates, la cellulose oxydée, les polysaccharides, les aldéhydes, les cyanoacrylates ou les polyéthylènes glycols.
Le collagène est une protéine tissulaire présente dans la média de la paroi des vaisseaux sanguins. Lors de l'apparition de brèches vasculaires, les plaquettes circulantes sont exposées au collagène, adhèrent à ces fibres et initient leur processus d'activation. L'apport de collagène exogène permet, en augmentant la surface d'adhésion, de promouvoir cette étape, qui aboutit à la formation du clou plaquettaire et participe à l'activation de la coagulation. La gélatine est un produit de dégradation du collagène qui, au contact du sang, augmente de volume et forme un bouchon gélatineux qui comble la plaie et s'oppose mécaniquement à l'écoulement du sang. Sous l'effet de l'expansion de la gélatine, le gel se sature de sang, concentre des éléments sanguins et favorise l'activation plaquettaire. La matrice physique constituée par le réseau de gélatine aide à stabiliser le caillot.
L'association de thrombine bovine à la matrice de gélatine ajoute une action directe sur la cascade de la coagulation. Le sang circule entre les granules de gélatine et se trouve localement exposé à des concentrations élevées de thrombine, qui intervient pour transformer le fïbrinogène du patient en fibrine.
Au contact des liquides biologiques, l'échange des ions Ca2+ des alginates contre les ions Na+ du sang et de Γ exsudât entraîne la transformation progressive du pansement sec en un gel. La libération des ions Ca2+ favorise l'activation plaquettaire et la fïbrino-formation. Les fibres d'alginates par leur capacité physique d'absorption et leur rôle de matrice participent à la formation du caillot.
Une fois saturée de sang, la cellulose oxydée gonfle et se transforme en une masse gélatineuse noire ou brune qui contribue à la formation du caillot. Cette action semble être due à un effet physique par compression et absorption du sang, plutôt qu'à une modification du mécanisme physiologique normal de la coagulation.
Les particules sphériques microporeuses hydrophiles de polysaccharides absorbent par effet osmotique le plasma, forment un gel qui comble la plaie et agissent par blocage mécanique du flux sanguin.
Les aldéhydes agissent par formation d'une liaison amide entre deux fonctions aminés présentes sur les acides aminés des protéines tissulaires et les aldéhydes. Ces liaisons covalentes permettent de créer un pontage stable entre les protéines tissulaires.
Les cyanoacrylates sont composés de différents monomères qui, sous l'action d'un catalyseur mélangé extemporanément, polymérisent et durcissent pour former un film adhérant aux tissus et prévenir les saignements par occlusion mécanique du flux sanguin.
Les Polyéthylène glycols (PEG) sont constituées de précurseurs qui, une fois mélangés, polymérisent pour former un hydrogel. L'ancrage des particules de PEG aux protéines tissulaires est assuré par la formation de liaisons covalentes et créé une barrière mécanique.
Afin de favoriser ou d'activer l'hémostase et tout particulièrement favoriser ou activer l'hémostase liée aux plaies, l'utilisation d'un produit selon la présente invention a prouvé son efficacité pour soigner et éviter les saignements prolongés. En effet, il a été démontré que le produit selon la présente invention facilitait la coagulation du sang.
Lors de son utilisation pour stopper un saignement, sur un doigt par exemple, le pansement se présentant sous la forme d'une bande est posé et enroulé avec une ou plusieurs spires en fonction de la tenue de la bande désirée.
Le pansement selon la présente invention présente l'avantage :
- d'être facile et rapide à poser,
- d'être peu épais, ce qui permet d'améliorer son confort et sa conformabilité,
- de ne pas utiliser de latex ou d'adhésif susceptible de venir au contact de la peau,
- d'être déchirable.
Ce pansement est composé d'une bande élastique autoadhérente est constitué d'un non tissé spécifique qui a été obtenu à partir de fibres conjuguées courtes qui ont été frisées.
Les non tissés sont généralement des matériaux textiles qui ne peuvent servir à fabriquer des bandes ou des bandages médicaux parce qu'ils ne sont pas assez élastiques ou extensibles. Aussi, ont été récemment mis au point des non tissés de fibres frisées qui présentent de meilleures propriétés d'extensibilité. De tels produits sont décrits dans la demande de brevet WO 2008/015972, pour leur utilisation comme bande de maintien ou de bandage, aisément déchirables.
De façon tout à fait surprenante, ce pansement présente des propriétés hémostatiques remarquables qui la rendent particulièrement adaptée à une utilisation dans l'activation ou la favorisation de l'hémostase.
La bande comprise dans le pansement selon l'invention est avantageusement autoadhérente.
Les fibres constituant la bande sont avantageusement frisées de façon uniforme dans le sens de l'épaisseur du non tissé, et présentent un rayon de courbure moyen de préférence compris entre 10 et 200 micromètres. Le nombre de fibres frisées à la surface du non-tissé est avantageusement supérieur à 10 fibres frisées/cm .
Le non tissé a de préférence un grammage compris entre 10 g/m2 et 300 g/m2.
Dans un mode de réalisation particulier, l'invention a pour objet un pansement comprenant une bande constitué d'un non tissé de fibres frisées obtenues à partir de fibres courtes conjuguées, dans laquelle
- le non tissé a un grammage compris entre 10 g/m2 et 300 g/m2, - lesdites fibres sont frisées de façon uniforme dans le sens de l'épaisseur des non tissés, et présentent un rayon de courbure moyen compris entre 10 et 200 micromètres, et
- le nombre de fibres frisées à la surface du non-tissé est supérieur à 10 fibres frisées/cm2.
Une variante de la présente invention est relative à un pansement qui, en plus de la bande, comprend au moins une couche supplémentaire sur une des faces du non tissé.
Le non tissé utilisable dans le cadre de la présente invention est décrit dans la demande de brevet WO 2008/015972.
De façon générale, les fibres qui ont été utilisées pour fabriquer le non tissé sont de préférence conjuguées, de nature polymérique, et non continues (courtes).
Les fibres conjuguées au sens de l'invention sont des fibres «à frisabilité latente» dotées d'une structure asymétrique ou stratifiée, qui ont la propriété de friser sous l'effet d'un chauffage. Elles doivent cette propriété à la différence de coefficient de contraction thermique des polymères qui les constituent.
Ces fibres sont avantageusement constituées d'au moins deux polymères qui présentent un coefficient de contraction thermique différent. Ces polymères ont ordinairement des points de ramollissement ou des points de fusion différents. Ils peuvent être choisis parmi les polymères thermoplastiques comme par exemple : les polymères oléfmiques (notamment les polymères de polyoléfïnes C2-4 tels que les polyéthylènes et polypropylènes basse, moyenne et haute densité), les polymères acryliques (notamment les polymères acrylonitriliques à unités acrylonitrile tels que les copolymères acrylonitrile/chlorure de vinyle), les polymères vinylacétaliques (notamment les polymères de polyvinylacétal), les polymères chlororovinyliques (notamment les polychlorures de vinyle, les copolymères chlorure de vinyle/acétate de vinyle et les copolymères chlorure de vinyle/acrylonitrile), les polymères chlorovinylidéniques (notamment les copolymères chlorure de vinylidène/chlorure de vinyle et les copolymères chlorure de vinylidène/acétate de vinyle), les polymères styréniques (notamment les polystyrènes résistants à la chaleur), les polymères polyesters (notamment les polymères de polyalkylène C2_4 arylates tels que les polymères de polyéthylène téréphtalate, de polytriméthylène téréphtalate, de polybutylène téréphtalate et de polyéthylène naphtalate), les polymères polyamides (notamment les polymères polyamides aliphatiques tels que les polyamides 6, 6-6, 11, 12, 6-10 et 6-12, les polymères polyamides semi-aromatiques, les polymères polyamides aromatiques tels que le polyphénylène isophtalamide, le polyhexaméthylène téréphtalamide et le polyparaphénylène téréphtalamide), les polymères polycarbonates (notamment les polycarbonates de type bisphénol A), les polymères de polyparaphénylène benzobisoxazole, les polymères de polysulfure de phénylène, les polymères polyuréthanes, les polymères cellulosiques (notamment les esters de cellulose), etc. Ces polymères thermoplastiques peuvent éventuellement contenir d'autres unités copolymérisables.
Lorsque le chauffage des fibres est réalisé avec de la vapeur à haute température, selon le mode préféré de réalisation du non tissé, on préfère des polymères non adhésifs sous chaleur humide (ou des polymères hydrophobes ou non hydrosolubles résistants à la chaleur) de point de ramollissement ou de point de fusion supérieur ou égal à 100°C, comme par exemple les polymères polypropyléniques, les polymères polyesters et les polymères polyamides. Ces polymères permettent d'éviter le collage des fibres par fusion ou le ramollissement des fibres. On préfère tout particulièrement les polymères polyesters aromatiques et les polymères polyamides, pour leur excellente stabilité, leur résistance à la chaleur et leur aptitude à former des fibres.
Selon un mode préféré de la présente invention les fibres utilisées sont bicomposants. Les fibres bicomposants peuvent être composées de polymères de la même famille chimique ou de polymères de familles chimiques différentes, pourvu qu'ils aient des coefficients de contraction thermiques différents.
Dans un mode de mise en œuvre, les fibres courtes conjuguées sont bicomposants, les deux composants les constituant étant des polymères qui présentent un point de ramollissement supérieur ou égal à 100°C, lesdits polymères étant choisis parmi les polymères polypropyléniques, les polymères polyesters et/ou les polymères polyamides, et de préférence sont deux polymères polyesters aromatiques différents.
On préfère que les fibres bicomposants soient constituées de deux polymères de la même famille chimique : par exemple d'un homopolymère et d'un copolymère. On peut en effet abaisser le taux de cristallinité de l'homopolymère, voire le rendre amorphe, ou abaisser son point de fusion ou son point de ramollissement, en copolymérisant le monomère avec un autre. L'écart de point de fusion ou de point de ramollissement des deux polymères peut être par exemple de l'ordre de 5 à 150°C, préférentiellement de 50 à 130°C, et plus préférentiellement de 70 à 120°C. La proportion de monomère copolymérisable, rapportée à la quantité totale de monomères, est par exemple de l'ordre de 1 à 50 % en moles, préférentiellement de 2 à 40 % en moles, et plus préférentiellement de 3 à 30 % en moles (particulièrement de 5 à 20 % en moles). Le rapport pondéral de l'homopolymère et du copolymère peut être choisi en fonction de la structure des fibres; il est par exemple, en termes de rapport homopolymère (A)/copolymère (B), de l'ordre de 90/10 à 10/90, préférentiellement de 70/30 à 30/70, et plus préférentiellement de 60/40 à 40/60. Dans un mode de réalisation préféré, les fibres bicomposants sont constituées de deux polymères polyesters aromatiques et en particulier de l'association d'un homopolymère de polyalkylène arylate (a) et d'un copolymère de polyalkylène arylate (b). L'homopolymère de polyalkylène arylate (a) peut être un homopolymère d'un acide dicarboxylique aromatique (notamment un acide dicarboxylique aromatique symétrique tel que l'acide téréphtalique ou l'acide naphtalène-2,6-dicarboxylique) et d'un composant alcane-diol (notamment l'éthylène- glycol ou le butylène-glycol). On utilise par exemple un polymère de la série des polyalkylène téréphtalates tel que le polyéthylène téréphtalate (PET) ou le polybutylène téréphtalate (PBT), et ordinairement un PET de viscosité intrinsèque de l'ordre de 0,6 à 0,7 servant à la fabrication des fibres de PET ordinaires. Le copolymère de polyalkylène arylate (b) peut être obtenu à partir d'un premier monomère servant à la préparation de l'homopolymère de polyalkylène arylate (a), et d'un deuxième monomère choisi parmi un acide dicarboxylique tel qu'un acide dicarboxylique aromatique asymétrique, un acide dicarboxylique alicyclique, un acide dicarboxylique aliphatique, un composant alcane-diol de chaîne plus longue que l'alcane-diol du polymère de polyalkylène arylate (a), et/ou un diol porteur d'une liaison éther.
Il est possible d'utiliser un seul ou d'associer plusieurs de ces deuxièmes monomères. Parmi ces composants, on utilise de préférence :
- un acide dicarboxylique aromatique asymétrique, notamment l'acide isophtalique, l'acide phtalique ou l'acide 5-sulfoisophtalique de sodium,
- ou un acide dicarboxylique aliphatique, notamment un acide dicarboxylique aliphatique C1-12 tel que l'acide adipique,
- un alcane-diol, notamment le 1,3-propane-diol, le 1 ,4-butane-diol, le 1,6-hexane- diol ou le néopentylglycol,
- un polyoxyalkylène-glycol, notamment le diéthylène-glycol, le triéthylène-glycol, le polyéthylène-glycol ou le polytétraméthylène-glycol.
Parmi eux, on choisit de préférence notamment un acide dicarboxylique aromatique asymétrique tel que l'acide isophtalique, et un polyoxyalkylène-glycol tel que le diéthylène- glycol. Le copolymère de polyalkylène arylate (b) peut éventuellement être un élastomère à segments durs d'alkylène arylate (éthylène téréphtalate, butylène téréphtalate) et à segments souples par exemple de (poly)oxyalkylène-glycol. Dans le copolymère de polyalkylène arylate (b), la proportion de composant acide dicarboxylique destiné à abaisser le point de fusion ou le point de ramollissement rapportée à la quantité totale de composant acide dicarboxylique est par exemple de l'ordre de 1 à 50 % en moles, préférentiellement de 5 à 50 % en moles, et plus préférentiellement de 15 à 40 % en moles. La proportion de composant diol destiné à abaisser le point de fusion ou le point de ramollissement rapportée à la quantité totale de composant diol, est par exemple d'au plus 30 % en moles, et préférentiellement d'au plus 10 % en moles, par exemple de l'ordre de 0,1 à 10 % en moles.
La section transversale (perpendiculaire au sens de la longueur des fibres) des fibres bicomposants n'est pas limitée à la forme ronde (la forme ordinaire des fibres pleines) et aux formes modifiées (aplatie, elliptique, polygonale, 3- à 14-foliée, en T, en H, en V, en «os à chien» (en i), etc.), mais peut être aussi une section creuse. Toutefois, on choisit usuellement la section ronde.
Pour la structure transversale des fibres bicomposants, on peut citer les structures phasées formées par une pluralité de polymères, comme par exemple les structures de types cœur-écorce, îles et mer, mélangé, parallèle (côte-à-côte ou laminé multicouche), radial (laminé radial), radial creux, à blocs ou aléatoire. Parmi ces structures, on préfère, pour un développement plus spontané du frisage thermique, une structure de type cœur-écorce excentrique ou de type parallèle. Dans le cas de fibres bicomposants de type cœur-écorce et par exemple de type cœur-écorce excentrique, l'âme peut être constituée d'un polymère de la famille de l'alcool vinylique tel qu'un copolymère éthylène/alcool vinylique ou un alcool polyvinylique, ou d'un polymère thermoplastique de point de fusion ou de point de ramollissement bas, par exemple un polystyrène ou un polyéthylène basse densité, pourvu qu'elle autorise le frisage par le fait d'avoir un écart de coefficient de contraction thermique avec le polymère constituant l'écorce.
Dans un mode de réalisation particulier, les fibres bicomposants ont une structure de type côte à côte et sont constituées d'un premier polymère qui est un polyéthylène téréphtalate, et d'un second polymère qui est un copolymère d'un alkylène arylate avec l'acide isophtalique et/ou du diéthylène glycol.
Le titre moyen des fibres courtes conjuguées, notamment bicomposants, peut être par exemple compris entre 0,1 à 50 dtex, préférentiellement entre 0,5 et 10 dtex, et plus préférentiellement entre 1 et 5 dtex (particulièrement entre 1,5 et 3 dtex). Si le titre est trop fin, non seulement les fibres sont difficiles à fabriquer mais elles risquent de manquer de résistance. De plus, à l'étape de frisage, il est difficile d'obtenir de belles frisures en serpentin. Si le titre est trop gros, les fibres deviennent raides et rendent difficile le développement d'un frisage suffisant.
La longueur moyenne des fibres courtes conjuguées avant le frisage peut être par exemple comprise entre 10 et 100 mm, préférentiellement entre 20 et 80 mm, et plus préférentiellement entre 25 et 75 mm (particulièrement entre 40 et 60 mm). Si les fibres sont trop courtes, outre la difficulté de former le voile de fibres, l'enchevêtrement des fibres est insuffisant à l'étape de frisage et il est difficile de garantir de bonnes propriétés de résistance et d'extensibilité. Si les fibres sont trop longues, non seulement il devient difficile de former un voile de fibres de grammage uniforme, mais les fibres s'enchevêtrent excessivement lors de la formation du voile, au point de se gêner mutuellement au moment du frisage et d'empêcher le développement de l'extensibilité. De plus, dans l'invention, le choix de la longueur de fibre dans la plage précitée permet à une partie des fibres frisées à la surface du non-tissé d'émerger modérément de ladite surface du non-tissé et ainsi d'améliorer l'auto-adhésivité du non-tissé qui sera évoquée plus loin.
Dans un mode de réalisation, le titre moyen des fibres courtes conjuguées est compris entre 1 et 5 dtex, de préférence entre 1,5 et 3 dtex, et la longueur moyenne des fibres courtes conjuguées est comprise entre 10 à 100 mm, et de préférence entre 40 et 60 mm.
L'application d'un traitement thermique à ces fibres conjuguées a pour effet de développer le frisage et de leur imprimer des frisures en relief ayant la forme de serpentins (en spirale ou en «ressort à boudin»). Le rayon de courbure moyen des fibres frisées au sens de l'invention correspond au rayon de courbure moyen des cercles formés par les boucles des serpentins des fibres frisées ; il peut compris entre 10 et 200 microns, par exemple entre 10 et 250 microns, de préférence entre 20 et 200 microns, préférentiellement entre 50 et 160 microns, et plus préférentiellement entre 70 et 130 microns.
Le rayon de courbure moyen des fibres frisées peut être déterminé par microscopie électronique selon la méthode suivante. On prend une photo (grossissement xlOO) d'une section de non-tissé au microscope électronique à balayage (MEB). Parmi les fibres apparaissant sur le cliché, on sélectionne les fibres formant au moins 1 tour de spirale (serpentin) et on détermine leur rayon de courbure comme le rayon du cercle tracé le long de la spirale (rayon du cercle quand on observe la fibre frisée dans le sens de l'axe du serpentin). Quand la fibre dessine une spirale elliptique, le rayon de courbure est déterminé comme la demi-somme des grand et petit diamètres de l'ellipse. Afin d'exclure les fibres ayant développé un frisage en serpentin insuffisant et les fibres apparaissant elliptiques à cause d'une observation oblique de la spirale, on s'est limité aux fibres elliptiques de rapport entre grand et petit diamètres compris entre 0,8 et 1,2. On réalise la mesure sur l'image MEB d'une section arbitraire de non tissé et on détermine la moyenne sur une population de fibres n=100.
Lorsque le frisage est réalisé par de la vapeur à haute température, le non-tissé selon l'invention a pour caractéristique que le frisage des fibres conjuguées orientées à peu près parallèlement au sens planaire est développé de façon à peu près uniforme dans le sens de l'épaisseur. Dans une section de non tissé prise dans le sens de l'épaisseur, parmi les domaines délimités par un partage en trois parts égales dans le sens de l'épaisseur, le nombre de fibres formant au moins 1 tour de frisure spiralée est par exemple, dans la partie centrale (couche interne), de 5 à 50 par 5 mm (longueur en sens planaire) et 0,2 mm (épaisseur), préférentiellement de 10 à 50 par 5 mm (planaire) et 0,2 mm (épaisseur), et plus préférentiellement de 20 à 50 par 5 mm (planaire) et 0,2 mm (épaisseur).
Comme la majeure partie des fibres frisées ont leur axe orienté dans le sens planaire et que le nombre de frisures est uniforme dans le sens de l'épaisseur, le non-tissé manifeste une haute extensibilité (sans contenir de caoutchouc ou d'élastomère), et une bonne résistance opérationnelle (sans contenir d'adhésifs).
Dans la présente description, par «domaines délimités par un partage en trois parts égales dans le sens de l'épaisseur», on entend les différents domaines obtenus quand on coupe le non-tissé en trois tranches égales orientées perpendiculairement à l'épaisseur.
Dans le non-tissé, l'uniformité du frisage dans le sens de l'épaisseur peut être définie par le ratio d'incurvation de fibre. Par «ratio d'incurvation de fibre», on entend le rapport L2/L1 de la longueur de la fibre étirée bidimentionnellement L2 à la distance Ll des deux extrémités de la fibre à l'état frisé. Ce ratio d'incurvation de fibre (en particulier dans le domaine central dans le sens de l'épaisseur) est par exemple de l'ordre d'au moins 1,3 (par exemple de 1,35 à 5), préférentiellement de 1,4 à 4 (par exemple de 1,5 à 3,5), et plus préférentiellement de 1,6 à 3 (particulièrement de 1,8 à 2,5).
Lorsque le ratio d'incurvation de fibre est mesuré sur la base de micrographies électroniques de sections du non-tissé, la longueur de fibre L2 ne correspond pas à la longueur de la fibre qui serait obtenue si on étirait et rectilinéarisait la fibre frisée tridimensionnellement. Elle correspond à la longueur de fibre sur cliché qui est obtenue quand on étire et rectilinéarise la fibre apparaissant frisée bidimensionnellement sur le cliché. Autrement dit, la longueur de fibre sur cliché qui est mesurée selon l'invention est inférieure à la longueur de fibre réelle. Lorsque le développement du frisage est à peu près uniforme dans le sens de l'épaisseur, le ratio d'incurvation de fibre est également uniforme dans le sens de l'épaisseur. L'uniformité du ratio d'incurvation de fibre peut être évaluée en comparant, dans une section prise dans le sens de l'épaisseur, les ratios d'incurvation de fibre obtenus dans les différentes couches délimitées par un partage en trois parts égales dans le sens de l'épaisseur. Ainsi, dans une section prise dans le sens de l'épaisseur, les ratios d'incurvation de fibre obtenus dans les différents domaines délimités par le partage en trois parts égales dans le sens de l'épaisseur se situent tous dans la plage précitée, et le rapport de la valeur minimale à la valeur maximale du ratio d'incurvation de fibre dans les différents domaines (rapport du domaine où le ratio d'incurvation de fibre est minimal au domaine où il est maximal) est par exemple de l'ordre d'au moins 75 % (par exemple de 75 à 100 %), préférentiellement de 80 à 99 %, et plus préférentiellement de 82 à 98 % (particulièrement de 85 à 97 %).
Selon un mode de réalisation, le non tissé présente dans une section prise dans le sens de l'épaisseur, un ratio d'incurvation de fibre supérieur ou égal à 1,3 dans chacun des domaines délimités par un partage en trois parts égales dans le sens de l'épaisseur, et le rapport de la valeur minimale à la valeur maximale du ratio d'incurvation de fibre dans les différents domaines est supérieur à 75 %.
Comme méthode concrète de mesure du ratio d'incurvation de fibre et de son uniformité, on peut appliquer la méthode qui consiste à prendre une photo de la section du non- tissé au microscope électronique et à mesurer le ratio d'incurvation de fibre sur des domaines choisis au sein des différents domaines du partage en trois parts égales dans le sens de l'épaisseur. La mesure est réalisée, dans chacune des couches supérieures (domaine recto), interne (domaine central) et inférieure (domaine verso), sur des domaines qui, dans le sens de la longueur, font au moins 2 mm, et dans le sens de l'épaisseur, sont positionnés près du centre de chaque couche et ont la même épaisseur d'un domaine à l'autre. De plus, ces domaines de mesure sont parallèles dans le sens de l'épaisseur, et sont définis de telle sorte que chacun renferme au moins 100 fragments de fibres autorisant la mesure de leur ratio d'incurvation (de l'ordre préférentiellement d'au moins 300, et plus préférentiellement de 500 à 1000). Après avoir défini ces domaines de mesure, on mesure le ratio d'incurvation de fibre de toutes les fibres situées dans le domaine et on calcule la valeur moyenne sur chaque domaine de mesure, puis on calcule l'uniformité du ratio d'incurvation de fibre en comparant le domaine montrant la valeur moyenne la plus grande et le domaine montrant la valeur moyenne la plus petite.
La mesure du ratio d'incurvation de fibre et de son uniformité peut être effectuée selon la méthodologie suivante. On prend une photo (grossissement xlOO) d'une section de non- tissé au microscope électronique et, dans une partie où apparaissaient les fibres sur le cliché, on partage l'épaisseur en trois domaines égaux (couches recto, interne et verso), et près du centre de chaque domaine, on définit des domaines de mesure d'au moins 2 mm dans le sens de la longueur et contenant au moins 500 fragments de fibres mesurables. Sur ces domaines, on mesure d'une part la distance inter-extrémités (distance la plus courte) entre les deux extrémités de la fibre et d'autre part la longueur de fibre (longueur de la fibre sur cliché).
Précisément, quand une extrémité de fibre émerge à la surface du non-tissé, elle est retenue telle quelle comme extrémité de mesure de la distance inter-extrémités; quand une extrémité de fibre plonge dans le non-tissé, on retient la partie limite de plongée dans le non-tissé (extrémité sur cliché) comme extrémité de mesure de la distance inter-extrémités.
Parmi les fibres imagées, on exclut de la mesure celles sur lesquelles on ne peut isoler une continuité d'au moins 100 μιη. On calcule le ratio d'incurvation de fibre comme le rapport L2/L1 de la longueur de fibre L2 à la distance inter-extrémités Ll des fibres. Puis on calcule la moyenne sur chacune des couches recto, interne et verso du partage en trois parts égales dans le sens de l'épaisseur. On calcule enfin l'uniformité du ratio d'incurvation de fibre dans le sens de l'épaisseur à partir du rapport de ses valeurs maximale et minimale dans les différentes couches.
Le principe de la méthode de mesure de la longueur de fibre est illustré sur les figures 4-a et 4-b de la demande de brevet WO 2008/015972.
La Fig.4-(a) illustre le cas d'une fibre dont une extrémité émerge à la surface et l'autre extrémité plonge dans le non-tissé. La distance inter-extrémités Ll est ici la distance d'une extrémité de la fibre jusqu'à la partie limite de plongée dans le non-tissé. D'autre part, la longueur de fibre L2 est la longueur obtenue quand on étire bidimensionnellement, sur le cliché, la partie de la fibre observable (partie allant de l'extrémité de la fibre jusqu'à la partie de plongée dans le non-tissé). La Fig.4-(b) illustre le cas d'une fibre dont les deux extrémités plongent dans le non- tissé. La distance inter-extrémités Ll est ici la distance des deux extrémités de la partie émergeant à la surface du non-tissé (extrémités sur cliché). D'autre part, la longueur de fibre L2 est la longueur obtenue quand on étire bidimensionnellement, sur le cliché, la fibre dans la partie émergeant à la surface du non-tissé.
Pour des fibres frisées en forme de serpentin, le pas moyen du serpentin est par exemple de l'ordre de 0,03 à 0,5 mm, préférentiellement de 0,03 à 0,3 mm, et plus préférentiellement de 0,05 à 0,2 mm.
Le non-tissé peut aussi contenir des fibres qui ne sont pas des fibres bicomposants. Parmi ces fibres additionnelles mono-composants, on peut par exemple citer les fibres de polymères déjà cités précédemment, mais aussi les fibres cellulosiques comme par exemple les fibres naturelles (laine de bois, laine de mouton, soie, chanvre), les fibres semi-synthétiques (notamment les fibres d'acétate telles que les fibres de triacétate) ou les fibres régénérées (rayonne, lyocell). Le titre moyen et la longueur moyenne des fibres mono-composants sont de préférence identiques à ceux des fibres bicomposants. On peut utiliser une seule espèce ou associer plusieurs espèces de ces fibres mono-composants. Parmi ces fibres mono-composants, la préférence va notamment aux fibres régénérées telles que les fibres de rayonne, aux fibres semi- synthétiques telles que les fibres d'acétate, aux fibres polyoléfîniques telles que les fibres de polypropylène ou de polyéthylène, aux fibres polyesters et aux fibres polyamides.
On préfère associer à des fibres bicomposants d'une famille chimique (par exemple de polyester) des fibres mono-composants de la même famille chimique.
Le rapport pondéral entre les fibres bicomposants et les fibres mono-composants est par exemple de l'ordre de 80/20 à 100/0 (par exemple de 80/20 à 99/1), préférentiellement de 90/10 à 100/0, et plus préférentiellement de 95/5 à 100/0.
Le non-tissé peut aussi contenir des actifs ou des additifs tels que des agents stabilisants, des filtres UV, des photostabilisants, des antioxydants, des antibactériens, des désodorisants, des parfums, des colorants, des charges, des agents antistatiques, des retardateurs de flamme, des plastifiants, des lubrifiants, ou des retardateurs de cristallisation. On peut utiliser un seul ou plusieurs de ces actifs ou additifs. Ces additifs peuvent aussi bien être supportés à la surface des fibres que contenus à l'intérieur des fibres.
De manière générale, les actifs sont choisis parmi : - les anti-bactériens tels que le Polymyxine B, les pénicillines (Amoxycilline), l'acide clavulanique, les tétracyclines, la Minocycline, la chlorotétracycline, les aminoglycosides, l'Amikacine, la Gentamicine, la Néomycine, l'argent et ses sels (Sulfadiazine argentique), les probiotiques ;
- les antiseptiques tels que le mercurothiolate de sodium, l'éosine, la chlorhexidine, le borate de phénylmercure, l'eau oxygénée, la liqueur de Dakin, le triclosan, le biguanide, l'hexamidine, le thymol, le Lugol, la Povidone iodée, le Merbromine, le Chlorure de Benzalkonium et de Benzethonium, l'éthanol, l'isopropanol ;
- les anti-viraux tels que l'Acyclovir, le Famciclovir, le Ritonavir ;
- les anti fongiques tels que les polyènes, le Nystatin, l'Amphotéricine B, la
Natamycine, les imidazolés (Miconazole, Ketoconazole, Clotrimazole, Éconazole, Bifonazole, Butoconazole, Fenticonazole, Isoconazole, Oxiconazole, Sertaconazole, Sulconazole, Thiabendazole, Tioconazole), les triazolés (Fluconazole, Itraconazole, Ravuconazole, Posaconazole, Voriconazole), les allylamines, la Terbinafme, l'Amorolfine, la Naftifîne, la Buténafme ;
- la Flucytosine (antimétabolite), la Griséofulvine, la Caspofungine, la Micafungine ;
- les anti-douleurs tels que le Paracétamol, la Codéine, le Dextropropoxyphène, le Tramadol, la Morphine et ses dérivés, les Corticoïdes et dérivés ;
- les anti-inflammatoires tels que les Glucocorticoïdes, les anti inflammatoires non stéroïdiens, l'Aspirine, l'Ibuprofène, le Kétoprofène, le Flurbiprofène, le Diclofénac, l'Acéclofénac, le Kétorolac, le Méloxicam, le Piroxicam, le Ténoxicam, le Naproxène, l'Indométacine, le Naproxcinod, le Nimésulide, le Célécoxib, l'Etoricoxib, le Parécoxib, le Rofécoxib, le Valdécoxib, la Phénylbutazone, l'acide niflumique, l'acide méfénamique, l'acide bêta-18-glycyrrhétinique ;
- les actifs favorisant la cicatrisation tels que le Rétinol, la Vitamine A, la Vitamine
E, la N-acétyl-hydroxyproline, les extraits de Centella Asiatica, la papaïne, les silicones, les huiles essentielles de thym, de niaouli, de romarin et de sauge, l'acide hyaluronique, les oligosaccharides polysulfatés synthétiques ayant 1 à 4 unités oses tels que le sel de potassium du sucrose octasulfaté, le sel d'argent du sucrose octasulfaté ou le sucralfate, l'AUantoïne, la metformine ;
- les actifs restructurants (par exemple resctructurants des phanères) tels que les dérivés de silice, la vitamine E, la camomille, le calcium, l'extrait de prêle, le Lipester de soie ; - les anesthésiques tels que la benzocaïne, la lidocaïne, la dibucaïne, le chlorhydrate de pramoxine, la bupivacaïne, la mepivacaïne, la prilocaïne, l'étidocaïne.
-les hémostatiques tels que le fïbrinogène, le facteur XIII, la fïbronectine, la thrombine, l'aprotinine bovine, l'acide tranexamique, le collagène, les aldéhydes, les cyanoacrylates, le polyéthylène glycol, les alginates, la cellulose, les polysaccharides.
Les autres propriétés mécaniques du non tissé seront de préférence les suivantes.
L'épaisseur du non tissé sera avantageusement comprise entre 0,25 et 5 mm, de préférence entre 0,4 et 2,5 mm et tout particulièrement entre 0,5 et 1,5 mm. L'épaisseur peut être mesurée selon la norme EN 9073-2.
L' autoadhérence de la bande selon l'invention est obtenue grâce à la présence de nombreuses fibres à l'état partiellement libre à la surface des non tissés, les fibres de surface s 'enchevêtrant mutuellement au moment de la superposition de la bande sur elle-même. Pour obtenir cette propriété d'autoadhérence sans altérer les propriétés de déchirabilité et d'extensibilité, le nombre de fibres frisées, notamment en forme de serpentin ou de boucle, à la surface du non tissé, est avantageusement supérieur à 10 fibres frisées/cm2, et de préférence compris entre 10 et 50 fibres frisées/cm2. Pour la réalisation du pansement selon l'invention, on préférera un nombre de fibres frisées à la surface du non tissé compris entre 10 à 35 fibres frisées/cm2.
Le nombre de fibres frisées à la surface du non tissé peut être déterminé comme suit.
On prend une photo (grossissement xlOO) de la surface du non-tissé au microscope électronique, et on compte le nombre de fibres frisées (fibres faisant au moins un tour de spirale en boucle ou de serpentins formés à la surface du non-tissé), sur une aire unitaire de 1 cm2 de surface de fibres imagées. La mesure peut être effectuée en cinq endroits arbitraires, et on calcule le nombre moyen de fibres bouclées arrondie à l'unité la plus proche.
La caractérisation de Γ autoadhérence de la bande est évaluée visuellement. Une bande de non tissé présentant une largeur de 15 mm est enroulée en l'étirant légèrement sur le bout du doigt de façon à former trois spires puis déchirée manuellement. Le pouvoir auto- agrippant est alors estimée. Il résulte de ce test que les bandes restent sur le doigt au moins 30 minutes.
Selon une variante de la présente invention, on pourra ajouter au non tissé une (ou plusieurs) couche(s) supplémentaire(s) choisie(s) parmi les matériaux textiles, les matériaux alvéolaires, les films les matériaux absorbants ou leurs combinaisons. Cette couche supplémentaire permet d'améliorer si nécessaire, les propriétés de la bande autoadhérente élastique, par exemple en adaptant ses capacités d'absorption, d'amortissement, de conformabilité, de rigidité, ou d'occlusivité.
Parmi les matériaux, on pourra utiliser des matériaux à base de fibres synthétiques ou naturelles. On peut citer les tissés, les non tissés, les tricots, les tricots 3D, les films, les mousses et leurs combinaisons.
La couche supplémentaire pourra contenir éventuellement des agents actifs qui contribuent à l'amélioration de la cicatrisation de la plaie ou qui permettent de diminuer la douleur, ou encore des agents antibactériens. Selon une variante de réalisation, on pourra introduire dans la couche supplémentaire des fibres antibactériennes, par exemple des fibres argent, ou imprégner celle-ci avec un antibactérien par exemple du triclosan.
La structure aérée et la présence de boucles confèrent à la bande de l'invention d'excellentes propriétés d'amortissement et de conformabilité.
Exemple : Pansement selon l'invention
L'exemple utilise un non tissé, à base de fibres bicomposants asymétriques frisées, fabriqués selon l'enseignement de la demande de brevet WO 2008/015972. Ce non tissé peut être de référence SR 0046 de la société Kuraray. Ce non tissé est réalisé à partir de la fibre, de type côte à côte, à base de copolymères polyesters de la société Kuraray dont la référence est PN - 780.
Ce non tissé présente les propriétés et les caractéristiques suivantes :
Non tissé
Grammage (norme EN 9073-1) 90 g/m2
Epaisseur (norme EN 9073-2) 1,15 mm
Elongation longitudinale (norme EN 9073-3)98 %
- Nombre de fibres frisées
à la surface du non tissé* 19 /cm2
* mesuré selon la méthode décrite précédemment 3. Performance des pansements
La performance de pansements constitués d'une bande de non tissé selon l'invention sur la coagulation du sang a été évaluée. Du sang complet de mouton a été mis en contact avec une bande de non tissé selon l'invention à un ratio de lcm2/mL dans des tubes à essais incubés à 37 ±1°C. Un tube à essai témoin sans bande est testé dans les mêmes conditions comme contrôle négatif. Après l'incorporation du sang, les tubes à essai sont retournés doucement toutes les minutes jusqu'à ce qu'un caillot sanguin soit observé. Le temps de coagulation est enregistré pour l'article testé (4 essais). Le temps de coagulation moyen du sang de mouton en présence du non tissé selon l'invention était de 13 minutes trente secondes. Le temps de coagulation moyen du sang de mouton dans le tube à essai témoin était d'environ 26 minutes trente secondes.

Claims

1 REVENDICATIONS
1. Pansement comprenant au moins une bande constitué d'un non tissé de fibres frisées obtenues à partir de fibres courtes conjuguées, dans laquelle
- le non tissé a un grammage compris entre 10 g/m2 et 300 g/m2,
- lesdites fibres sont frisées de façon uniforme dans le sens de l'épaisseur des non tissés, et présentent un rayon de courbure moyen compris entre 10 et 200 micromètres, et
- le nombre de fibres frisées à la surface de chacun des non-tissés est supérieur à 10 fibres frisées/cm
pour son utilisation pour favoriser et/ou activer l'hémostase
2. Pansement selon la revendication 1, caractérisée en ce que les fibres courtes conjuguées sont bicomposants, les deux composants les constituant étant des polymères qui présentent un point de ramollissement supérieur ou égal à 100°C, lesdits polymères étant choisis parmi les polymères polypropyléniques, les polymères polyesters et/ou les polymères polyamides, et de préférence sont deux polymères polyesters aromatiques différents.
3. Pansement selon la revendication 2, caractérisée en ce que les fibres bicomposants ont une structure de type côte à côte et sont constituées d'un premier polymère qui est un polyéthylène téréphtalate, et d'un second polymère qui est un copolymère d'un alkylène arylate avec l'acide isophtalique et/ou du diéthylène glycol.
4. Pansement selon la revendication 1, caractérisée en ce que le titre moyen des fibres courtes conjuguées est compris entre 1 et 5 dtex, de préférence entre 1,5 et 3 dtex, et la longueur moyenne des fibres courtes conjuguées est comprise entre 10 à 100 mm, et de préférence entre 40 et 60 mm.
5. Pansement selon la revendication 1, caractérisée en ce que les fibres frisées présentent un rayon de courbure moyen compris entre 50 et 160 microns, et de préférence entre 70 et 130 microns. 2
6. Pansement selon la revendication 1, caractérisée en ce que le non tissé a un grammage compris entre 50 et 150 g/m2 et de préférence entre 70 et 110 g/m2.
7. Pansement selon la revendication 1, caractérisée en ce que le nombre de fibres frisées à la surface de chacun des non tissés est compris entre 10 et 50 fibres frisées / cm2 et de préférence entre 10 et 35 fibres frisées / cm2.
8. Pansement selon la revendication 1, caractérisée en ce que le non tissé présente dans une section prise dans le sens de l'épaisseur, un ratio d'incurvation de fibre supérieur ou égal à 1,3 dans chacun des domaines délimités par un partage en trois parts égales dans le sens de l'épaisseur, et le rapport de la valeur minimale à la valeur maximale du ratio d'incurvation de fibre dans les différents domaines est supérieur à 75 %.
9. Pansement selon la revendication 1, caractérisée en ce qu'elle comprend une couche supplémentaire choisie parmi les matériaux textiles, les matériaux alvéolaires, les films ou leurs combinaisons.
10. Pansement selon la revendication 1, caractérisée en ce que la bande contient des additifs ou des actifs.
PCT/FR2016/050529 2016-03-08 2016-03-08 Pansement se présentant sous la forme d'une bande autoadhérente WO2017153640A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16714484.9A EP3426207A1 (fr) 2016-03-08 2016-03-08 Pansement se présentant sous la forme d'une bande autoadhérente
PCT/FR2016/050529 WO2017153640A1 (fr) 2016-03-08 2016-03-08 Pansement se présentant sous la forme d'une bande autoadhérente
FR1770216A FR3048607A1 (fr) 2016-03-08 2017-03-06 Pansement se presentant sous la forme d’une bande autoadherente

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2016/050529 WO2017153640A1 (fr) 2016-03-08 2016-03-08 Pansement se présentant sous la forme d'une bande autoadhérente

Publications (1)

Publication Number Publication Date
WO2017153640A1 true WO2017153640A1 (fr) 2017-09-14

Family

ID=55661475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/050529 WO2017153640A1 (fr) 2016-03-08 2016-03-08 Pansement se présentant sous la forme d'une bande autoadhérente

Country Status (3)

Country Link
EP (1) EP3426207A1 (fr)
FR (1) FR3048607A1 (fr)
WO (1) WO2017153640A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004046442A1 (fr) * 2002-11-21 2004-06-03 Invista Technologies S.À.R.L. Non-tisse a recuperation d'elasticite elevee, et procede de production
WO2008015972A1 (fr) 2006-08-04 2008-02-07 Kuraray Kuraflex Co., Ltd. tissu non tissé étirable et rouleaux
US20110282364A1 (en) * 2010-05-17 2011-11-17 Olajompo Moloye-Olabisi Reinforced Absorbable Multi-Layered Fabric for Hemostatic Applications
US20110280919A1 (en) * 2010-05-17 2011-11-17 Olajompo Moloye-Olabisi Reinforced Absorbable Synthethic Matrix for Hemostatic Applications
WO2014033418A1 (fr) * 2012-09-03 2014-03-06 Laboratoires Urgo Nouvelle bande elastique aux proprietes de contention optimisees

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004046442A1 (fr) * 2002-11-21 2004-06-03 Invista Technologies S.À.R.L. Non-tisse a recuperation d'elasticite elevee, et procede de production
WO2008015972A1 (fr) 2006-08-04 2008-02-07 Kuraray Kuraflex Co., Ltd. tissu non tissé étirable et rouleaux
EP2058424A1 (fr) * 2006-08-04 2009-05-13 Kuraray Kuraflex Co., Ltd. Tissu non tisse etirable et rouleaux
US20110282364A1 (en) * 2010-05-17 2011-11-17 Olajompo Moloye-Olabisi Reinforced Absorbable Multi-Layered Fabric for Hemostatic Applications
US20110280919A1 (en) * 2010-05-17 2011-11-17 Olajompo Moloye-Olabisi Reinforced Absorbable Synthethic Matrix for Hemostatic Applications
WO2014033418A1 (fr) * 2012-09-03 2014-03-06 Laboratoires Urgo Nouvelle bande elastique aux proprietes de contention optimisees

Also Published As

Publication number Publication date
EP3426207A1 (fr) 2019-01-16
FR3048607A1 (fr) 2017-09-15

Similar Documents

Publication Publication Date Title
CA2832885C (fr) Pansement adhesif mince tres absorbant, ses utilisations pour le traitement des plaies chroniques
JP2010520377A (ja) 不織繊維布帛
CA2878869C (fr) Pansement a liberation prolongee d'actifs
CH625702A5 (fr)
FR2783412A1 (fr) Compresse non adherente sterile
CA2832883A1 (fr) Pansement absorbant hydrocellulaire, ses utilisations pour le traitement des plaies chroniques et aigues
EP2892483B1 (fr) Nouvelle bande elastique aux proprietes de contention optimisees
EP2892482B1 (fr) Nouvelle bande elastique autoadherente utilisable notamment pour le traitement et la prevention des pathologies d'origine veineuse.
WO1989001790A1 (fr) Matiere de pansement a base d'agent pharmacologique actif piege dans des liposomes
EP2836243A1 (fr) Poudre formant pansement et materiau absorbant correspondant
EP3426207A1 (fr) Pansement se présentant sous la forme d'une bande autoadhérente
FR2959418A1 (fr) Pansement ampoule comprenant une masse adhesive hydrocolloide
EP3233003B1 (fr) Pansement comprenant un support et une matrice elastomerique hydrophobe
WO2014033419A1 (fr) Nouvelle bande elastique utilisable notamment pour le traitement et la prevention des pathologies d'origine veineuse
EP3082887B1 (fr) Materiau composite de remplissage des plaies cavitaires
WO2015092314A1 (fr) Matériau composite de remplissage des plaies cavitaires
EP3515386B1 (fr) Pansement absorbant comprenant un non-tisse superabsorbant hydrodelitable
FR3048617B1 (fr) Pansement adapte aux peaux sensibles
WO2017017386A1 (fr) Pansement comprenant un support et une matrice elastomerique hydrophobe.
EP3651708A1 (fr) Pansement interface
FR3126879A3 (fr) Pansement composite comprenant une couche de nanofibres active

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016714484

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016714484

Country of ref document: EP

Effective date: 20181008

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16714484

Country of ref document: EP

Kind code of ref document: A1