WO2017152730A1 - 一种参考信号映射方法及装置 - Google Patents

一种参考信号映射方法及装置 Download PDF

Info

Publication number
WO2017152730A1
WO2017152730A1 PCT/CN2017/073077 CN2017073077W WO2017152730A1 WO 2017152730 A1 WO2017152730 A1 WO 2017152730A1 CN 2017073077 W CN2017073077 W CN 2017073077W WO 2017152730 A1 WO2017152730 A1 WO 2017152730A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
equal
csi
reference signal
mapped
Prior art date
Application number
PCT/CN2017/073077
Other languages
English (en)
French (fr)
Inventor
李辉
高秋彬
陈润华
塔玛拉卡·拉盖施
陈文洪
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US16/082,529 priority Critical patent/US10560239B2/en
Priority to KR1020187027465A priority patent/KR102196371B1/ko
Priority to JP2018547923A priority patent/JP7152310B2/ja
Priority to EP17762416.0A priority patent/EP3429115B1/en
Publication of WO2017152730A1 publication Critical patent/WO2017152730A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/066Combined feedback for a number of channels, e.g. over several subcarriers like in orthogonal frequency division multiplexing [OFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0003Code application, i.e. aspects relating to how codes are applied to form multiplexed channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a reference signal mapping method and apparatus.
  • C-RS Cell-specific Reference Signal
  • UE-RS user-specific reference.
  • DM-RS Demodulation-Reference Signal
  • CSI-RS Channel State Indication Reference Signal
  • CSI-RS is used for downlink channel measurement and estimation.
  • the CSI-RS can be configured as a 2-port, 4-port or 8-port, and there are 20 2-port CSI-RSs in one PRB (as shown in Figure 1a, one 2-port CSI-RS is mapped to a set of identifiers as 0). ⁇ 1 RE on), or 10 groups of 4-port CSI-RS (as shown in Figure 1b, one 4-port CSI-RS is mapped to a set of REs with IDs 0-3), or five 8-port CSIs -RS (As shown in Figure 1c, one 8-port CSI-RS is mapped to a set of REs identified as 0-7).
  • the LTE system cannot support more CSI-RSs of antenna ports, such as CSI-RS transmissions of more than 16 ports.
  • N an integer greater than 16 wherein an N-port reference signal pattern in which an N-port CSI-RS is mapped to the RE
  • the location is determined according to the RE location to which the multiple sets of M-port CSI-RSs in the M-port reference signal pattern are mapped, and M is equal to 4 or 8;
  • Resource mapping is performed on the CSI-RS according to the determined RE.
  • an N-port CSI-RS in the N-port reference signal pattern is mapped to the RE position, and the L-port 8 port in the 8-port reference signal pattern
  • the CSI-RS is mapped with the same RE position; where, when N is equal to 18, 24, L is equal to 3, when N is equal to 20, 28, or 32, L is equal to 4, and:
  • Each group of 8-port CSI-RSs in the N port is divided into two packet CSI-RSs, each of which is multiplexed with 4 codewords of 4-bit orthogonal spreading codes, wherein one packet CSI-RS is mapped to 4 ports corresponding to RE; where N is equal to 24 or 32.
  • the location of the RE to which the N-port CSI-RS in the N-port reference signal pattern is mapped is the same as the location of the L ⁇ P REs to which the L-group 8-port CSI-RS in the 8-port reference signal pattern is mapped;
  • P is equal to 6 or 8 when N is equal to 18, P is equal to 5 or 8 when N is equal to 20, P is equal to 7 or 8 when N is equal to 28, P is equal to 8 when N is equal to 24, and P is equal to 32 when N is equal to Equal to 8.
  • the 4-port reference signal pattern includes 10 groups of 4-port CSI-RSs, and each of the 4 groups of port CSI-RSs is time-division multiplexed. Mapping to 4 REs on the first to fourth OFDM symbols, and each of the 6 groups of 4-port CSI-RSs is mapped to the fifth to sixth in a time division multiplexing combined with frequency division multiplexing.
  • DMRS DeModulation Reference Signal
  • Each group of 8-port CSI-RSs is mapped to 4 REs on the first to fourth OFDM symbols and 4 REs on the fifth to sixth OFDM symbols in a time division multiplexing and frequency division multiplexing manner; wherein, the first The fourth OFDM symbol is the symbol in which the DMRS is located.
  • the first to fourth OFDM symbols are the sixth to seventh OFDM symbols in the first slot of one subframe and the subframe, respectively, in a normal cyclic subframe including 14 OFDM symbols.
  • the sixth to seventh OFDM symbols in the second slot, the fifth to sixth OFDM symbols being the third to fourth OFDM symbols in the second slot of the subframe, respectively; or,
  • the first to fourth OFDM symbols are respectively the third to fourth OFDM symbols in the first slot of one subframe and the first OFDM symbol of the subframe The third to fourth OFDM symbols of the two slots, the fifth to sixth OFDM symbols being the sixth to seventh OFDM symbols in the first slot of the subframe, respectively.
  • each group of M port CSI-RSs in the M port reference signal pattern is mapped to one sub-band in a time division multiplexing manner and a frequency division multiplexing manner.
  • the fifth to sixth OFDM symbols in the first slot of the frame and the fifth to sixth OFDM symbols in the second slot of the subframe are mapped to one sub-band in a time division multiplexing manner and a frequency division multiplexing manner.
  • a determining module configured to determine, according to the N-port reference signal pattern, an RE to which the channel state information reference signal CSI-RS is mapped, where N is an integer greater than 16, wherein an N-port CSI-RS in the N-port reference signal pattern
  • the RE position to be mapped is determined according to the RE position to which the plurality of sets of M port CSI-RSs in the M port reference signal pattern are mapped, and M is equal to 4 or 8;
  • N is equal to 18, 20, 24, 28 or 32; wherein M is equal to 4 or 8 when N is equal to 24 or 32, and M is equal to 8 when N is equal to 18, 20, 28.
  • N is equal to 24 or 32
  • an N-port CSI-RS in the N-port reference signal pattern is mapped to the RE position
  • the Q-group 4-port CSI-RS in the 4-port reference signal pattern is mapped to The RE positions are the same
  • each group of 4-port CSI-RS is multiplexed with 4 code words of 4 bits of orthogonal spreading code.
  • Each S port in the N port is multiplexed with S code words of 8 code words of an 8-bit orthogonal spreading code, and mapped to an RE position occupied by an 8-port CSI-RS; wherein, when N is equal to S is equal to 6 or 8 at 18 o'clock, S is equal to 5 or 8 when N is equal to 20, S is equal to 7 or 8 when N is equal to 28, S is equal to 8 when N is equal to 24, and S is equal to 8 when N is equal to 32;
  • Each group of 8-port CSI-RSs in the N port is divided into two packet CSI-RSs, each of which is multiplexed with 4 codewords of 4-bit orthogonal spreading codes, wherein one packet CSI-RS is mapped to 4 ports corresponding to RE; where N is equal to 24 or 32.
  • the location of the RE to which the N-port CSI-RS in the N-port reference signal pattern is mapped is the same as the location of the P-relays to which the L-group 8-port CSI-RS is mapped in the 8-port reference signal pattern; P is equal to 6 or 8 when N is equal to 18, P is equal to 5 or 8 when N is equal to 20, P is equal to 7 or 8 when N is equal to 28, P is equal to 8 when N is equal to 24, and P is equal to 8 when N is equal to 32. .
  • the 8-port reference signal pattern includes five groups of 8-port CSI- RS, where:
  • Each group of 8-port CSI-RSs is mapped to 4 REs on the first to fourth OFDM symbols and 4 REs on the fifth to sixth OFDM symbols in a time division multiplexing and frequency division multiplexing manner; wherein, the first The fourth OFDM symbol is the symbol in which the DMRS is located.
  • the first to fourth OFDM symbols are the sixth to seventh OFDM symbols in the first slot of one subframe and the subframe, respectively, in a normal cyclic subframe including 14 OFDM symbols.
  • the sixth to seventh OFDM symbols in the second slot, the fifth to sixth OFDM symbols being the third to fourth OFDM symbols in the second slot of the subframe, respectively; or,
  • the first to fourth OFDM symbols are respectively the third to fourth OFDM symbols in the first slot of one subframe and the first OFDM symbol of the subframe The third to fourth OFDM symbols of the two slots, the fifth to sixth OFDM symbols being the sixth to seventh OFDM symbols in the first slot of the subframe, respectively.
  • each group of M port CSI-RSs in the M port reference signal pattern is mapped to one sub-band in a time division multiplexing manner and a frequency division multiplexing manner.
  • the fifth to sixth OFDM symbols in the first slot of the frame and the fifth to sixth OFDM symbols in the second slot of the subframe are mapped to one sub-band in a time division multiplexing manner and a frequency division multiplexing manner.
  • a reference signal mapping apparatus provided by an embodiment of the present disclosure includes: a processor and a memory.
  • the processor is configured to read a program in the memory and perform the following process:
  • N an integer greater than 16; wherein an N-port CSI-RS in the N-port reference signal pattern is mapped to The RE position is determined according to the RE position to which the plurality of sets of M port CSI-RSs in the M port reference signal pattern are mapped, and M is equal to 4 or 8;
  • Resource mapping is performed on the CSI-RS according to the determined RE.
  • the memory is capable of storing data used by the processor when performing operations.
  • a base station provided by an embodiment of the present disclosure includes: a processor, a memory, a transceiver, and a bus interface;
  • the processor is configured to read a program in the memory and perform the following process:
  • N an integer greater than 16; wherein an N-port CSI-RS in the N-port reference signal pattern is mapped to The RE position is determined according to the RE position to which the plurality of sets of M port CSI-RSs in the M port reference signal pattern are mapped, and M is equal to 4 or 8;
  • Resource mapping is performed on the CSI-RS according to the determined RE.
  • the reference signal pattern of the N port is obtained according to the 4-port or 8-port reference signal pattern, and when the reference signal mapping is performed, the CSI-RS is determined to be mapped according to the reference signal pattern of the N port.
  • 1a, 1b, and 1c are respectively a 2-port, 4-port, and 8-port reference signal pattern in the related art
  • 2a and 2b are respectively 12-port and 16-port reference signal patterns in the LTE Rel-13 in the related art
  • FIG. 3 is a schematic flowchart of a reference signal mapping provided by an embodiment of the present disclosure
  • 4a, 4b, 4c, and 4d are respectively 32-port reference signal patterns in the method 1 of the embodiment of the present disclosure
  • 5a, 5b, 5c, and 5d are respectively 32-port reference signal patterns in the method 2 of the embodiment of the present disclosure
  • 6a, 6b, 6c, and 6d are respectively 32-port reference signal patterns in the method 3 of the embodiment of the present disclosure
  • 7a, 7b, 7c, and 7d are respectively a 24-port reference signal pattern in the method 1 of the embodiment of the present disclosure
  • 8a, 8b, 8c, and 8d are respectively 24-port reference signal patterns in the method 2 of the embodiment of the present disclosure
  • 10a, 10b, 10c, and 10d are respectively 18-port reference signal patterns in the embodiments of the present disclosure
  • 11a, 11b, 11c, and 11d are respectively 20-port reference signal patterns in the embodiment of the present disclosure.
  • 12a, 12b, 12c, and 12d are respectively 28 port reference signal patterns in the embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of a reference signal mapping apparatus according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • the LTE standard supports 1, 2, 4, 8, 12, and 16 port CSI-RS transmissions, and does not support CSI-RS transmission of more than 16 ports such as 18, 20, 24, 28, or 32 ports.
  • the present disclosure embodiment proposes a reference signal mapping method and apparatus capable of supporting 16-port or more CSI-RS transmission such as 18, 20, 24, 28 or 32 ports.
  • a reference signal is transmitted on each of the downstream antenna ports.
  • An antenna port is a logical port used for transmission, which can correspond to one or more actual physical antennas.
  • the definition of the antenna port is defined from the perspective of the receiver, that is, if the receiver needs to distinguish the spatial difference of resources, it is necessary to define multiple antenna ports.
  • the reference signal corresponding to an antenna port received by the terminal defines a corresponding antenna port, although the reference signal may be a composite of signals transmitted by multiple physical antennas.
  • Step 301 Determine, according to the N-port reference signal pattern, an RE to which the CSI-RS is mapped, where N is an integer greater than 16, wherein an RE position to which an N-port CSI-RS is mapped in the N-port reference signal pattern is According to the RE position to which the plurality of sets of M port CSI-RSs are mapped in the M port reference signal pattern, M is equal to 4 or 8;
  • Step 302 Perform resource mapping on the CSI-RS according to the determined RE.
  • N is equal to 18, 20, 24, 28 or 32; wherein M is equal to 4 or 8 when N is equal to 24 or 32, and M is equal to 8 when N is equal to 18, 20, 28.
  • the base station can configure the terminal N-port CSI-RS.
  • the terminal measures the channel on the configured CSI-RS port and feeds back the channel information.
  • the test signal pattern determines the location of the RE to which the N-port CSI-RS is mapped, and may specifically include the following situations:
  • Case 1-1 For a 24-port CSI-RS mapping or transmission, a 24-port CSI-RS in a 24-port reference signal pattern is mapped to the RE position, and a 4-port 4-port CSI-RS in the 4-port reference signal pattern
  • OCC Orthogonal Cover Code
  • each group of 4-port CSI-RS is mapped to 4 REs.
  • Case 1-2 For a 32-port CSI-RS mapping or transmission, a 32-port CSI-RS in a 32-port reference signal pattern is mapped to the RE position, and a 4-port 4-port CSI-RS in the 4-port reference signal pattern
  • each group of 4-port CSI-RS is mapped to 4 REs.
  • the symbol position of the RE to which the CSI-RS is mapped is also different, and specifically includes the following cases: :
  • the 4-port reference signal pattern used includes 10 groups of 4-port CSI-RSs, of which 4 groups of ports are CSI
  • Each group of 4-port CSI-RSs in the -RS is mapped to 4 REs on the first to fourth OFDM symbols in a time division multiplex manner, and each of the 6 groups of 4-port CSI-RSs is 4-port CSI-RS
  • the four REs on the fifth to sixth OFDM symbols are mapped in time division multiplexing in combination with frequency division multiplexing; wherein the first to fourth OFDM symbols are symbols in which the DMRS is located.
  • the first to fourth OFDM symbols are respectively the first one of the subframes.
  • the sixth to seventh OFDM symbols in the slot ie, OFDM symbol 5 and OFDM symbol 6 in slot 0
  • the sixth to seventh OFDM symbols in the second slot of the subframe ie, slot
  • OFDM symbol 5 and OFDM symbol 6 OFDM symbol 5 and OFDM symbol 6
  • the fifth to sixth OFDM symbols are respectively the third to fourth OFDM symbols in the second slot of the subframe (ie, OFDM in slot 1) Symbol 2 and OFDM symbol 3).
  • the first to fourth The OFDM symbols are respectively the third to fourth OFDM symbols in the first slot of one subframe (ie, OFDM symbol 2 and OFDM symbol 3 in slot 0) and the second slot in the subframe.
  • Three to fourth OFDM symbols ie, OFDM symbol 2 and OFDM symbol 3 in slot 1
  • the fifth to sixth OFDM symbols being the sixth to the first of the first slots of the subframe, respectively Seven OFDM symbols (ie, OFDM symbol 5 and OFDM symbol 6 in slot 0).
  • each group of 4-port CSI-RSs in the 4-port reference signal pattern used in the above case 1-1 and case 1-2 Mapping to the fifth to sixth OFDM symbols in the first slot of one subframe (ie, OFDM symbol 4 and OFDM symbol 5 in slot 0) in a time division multiplexing manner in combination with frequency division multiplexing.
  • the fifth to sixth OFDM symbols in the second slot of the subframe ie, OFDM symbol 4 and OFDM symbol 5 in slot 1).
  • the embodiment of the present disclosure redefines the 4-port reference signal pattern as a basis for determining the N-port reference signal pattern. For example, in a case where 14 subframes are included in one subframe, in the redefined 4-port reference signal pattern, 4 groups of 4-port CSI-RSs respectively occupy 4 OFDM symbols, and the 4-port CSI-RS is time-divided.
  • the multiplexing mode is mapped to OFDM symbol 5, OFDM symbol 6 in the first slot of the subframe, and OFDM symbol 5, OFDM symbol 6 of the second slot of the subframe; and another 4 groups of 4-port CSI-RS Two OFDM symbols are respectively occupied, and the 4-port CSI-RS is mapped to OFDM symbol 2 and OFDM symbol 3 in the second slot of the subframe by time division multiplexing and frequency division multiplexing.
  • the location of the RE to which the N-port CSI-RS is mapped is determined based on the 8-port reference signal pattern, which may include the following situations:
  • Case 2-2 For a 20-port CSI-RS mapping or transmission, a 20-port CSI-RS in a 20-port reference signal pattern is mapped to the RE position, and a 4-port 8-port CSI-RS in the 8-port reference signal pattern
  • each group of 5-port CSI-RS is mapped to 8 REs.
  • Case 2-3 For a 24-port CSI-RS mapping or transmission, a 24-port CSI-RS in a 24-port reference signal pattern is mapped to the RE position, and a 3-port 8-port CSI-RS in the 8-port reference signal pattern The mapped RE locations are the same.
  • each group of 8-port CSI-RS is mapped to 8 REs.
  • Case 2-4 For a 28-port CSI-RS mapping or transmission, a 28-port CSI-RS in a 28-port reference signal pattern is mapped to the RE position, and a 4-port 8-port CSI-RS in the 8-port reference signal pattern
  • each group of 7-port CSI-RS is mapped to 8 REs.
  • the RE location to which the 28-port CSI-RS is mapped is the same as the 28 RE locations in the RE locations mapped by the 4 groups of 8-port CSI-RSs in the 8-port reference signal pattern.
  • each group of 7-port CSI-RS is mapped to 7 REs.
  • Case 2-5 For a 32-port CSI-RS mapping or transmission, a 32-port CSI-RS in a 32-port reference signal pattern is mapped to the RE position, and a 4-port 8-port CSI-RS in the 8-port reference signal pattern The mapped RE locations are the same.
  • the symbol position of the RE to which the CSI-RS is mapped is also different, and may specifically include the following cases. :
  • the 8-port reference signal pattern used includes five 8-port CSI-RSs, and specifically includes the following two forms:
  • Each group of 8-port CSI-RSs contains two packet CSI-RSs, each of which is multiplexed with 4 codewords of 4-bit orthogonal spreading codes, one of which is time-divided by CSI-RS Mapping to 4 REs on the first to fourth OFDM symbols, and another packet CSI-RS is mapped to 4 REs on the fifth to sixth OFDM symbols by time division multiplexing combined with frequency division multiplexing;
  • the first to fourth OFDM symbols are symbols in which the DMRS is located.
  • Each group of 8-port CSI-RSs is multiplexed with 8-bit orthogonal spreading codes, and an 8-port CSI-RS is mapped to the first to fourth OFDM symbols by time division multiplexing in a frequency division multiplexing manner.
  • the first to fourth OFDM symbols are respectively the sixth to seventh OFDM symbols in the first slot of one subframe (ie, slot) in a normal cyclic prefix subframe including 14 OFDM symbols.
  • said The fifth to sixth OFDM symbols are respectively the third to fourth OFDM symbols in the second slot of the subframe (ie, OFDM symbol 2 and OFDM symbol 3 in slot 1).
  • the first to fourth OFDM symbols are respectively the third to fourth OFDM symbols in the first slot of one subframe (ie, in slot 0) OFDM symbol 2 and OFDM symbol 3) and third to fourth OFDM symbols in the second slot of the subframe (ie, OFDM symbol 2 and OFDM symbol 3 in slot 1)
  • the fifth to the fifth Six OFDM symbols are the sixth to seventh of the first slot of the subframe OFDM symbol (ie, OFDM symbol 5 and OFDM symbol 6 in slot 0).
  • each group of 8-port CSI-RSs in the 8-port reference signal pattern used in the above cases 2-1 to 2-5 is combined in a time division multiplexing manner.
  • the frequency division multiplexing scheme maps to the fifth to sixth OFDM symbols in the first slot of one subframe (ie, OFDM symbol 4 and OFDM symbol 5 in slot 0) and the second timing of the subframe The fifth to sixth OFDM symbols in the slot (ie, OFDM symbol 4 and OFDM symbol 5 in slot 1).
  • the embodiment of the present disclosure redefines the 8-port reference signal pattern as a basis for determining the N-port reference signal pattern. For example, in a case where 14 subframes are included in one subframe, in the redefined 8-port reference signal pattern, each group of 8-port CSI-RSs respectively occupy 6 OFDM symbols, and 4 of the ports are time division multiplexed. Mapping to OFDM symbol 5, OFDM symbol 6 in the first slot of the subframe, and OFDM symbol 5 and OFDM symbol 6 of the second slot of the subframe, the remaining 4 ports are combined with time division multiplexing and frequency division The multiplexed manner is mapped to OFDM symbol 2 and OFDM symbol 3 in the second slot of the subframe.
  • the following is an example of a 32-port CSI-RS, a 24-port CSI-RS, an 18-port CSI-RS, a 20-port CSI-RS, and a 28-port CSI-RS.
  • Method 1 32-port reference signal pattern, 32 RE locations to which a 32-port CSI-RS is mapped, and 32 REs to which 8 groups of 4-port CSI-RSs in a 4-port reference signal pattern are mapped The locations are the same, and each set of 4-port CSI-RSs is multiplexed with 4-bit orthogonal spreading codes.
  • 10 groups of 4-port CSI-RSs may be included in one PRB, and 8 groups of 4-port CSI-RSs in the embodiments of the present disclosure may optionally constitute a 32-port CSI-RS.
  • 8 sets of 4-port CSI-RS patterns may be arbitrarily selected from OFDM symbol 2 and OFDM symbol 3 in slot 1, and with OFDM symbol 5 in slot 0 and slot 1, and 4 on OFDM symbol 6.
  • a group of 4-port CSI-RS pattern combinations form a 32-port CSI-RS pattern.
  • Figure 4a exemplarily shows a 32-port reference signal pattern in Method 1.
  • each square represents an RE.
  • the corresponding cell of each RE is identified by a letter, and the RE of the same letter corresponds to the RE to which a set of 4-port CSI-RSs in the 4-port reference signal pattern is mapped.
  • the 32-port reference signal pattern shown in FIG. 4a includes eight groups of 4-port CSI-RSs, and the REs mapped by the eight groups of 4-port CSI-RSs are respectively identified as A, B, C, D, E, F, and I. J, each group of REs has the same RE position as a group of CSI-RSs mapped in the 4-port reference signal pattern.
  • the OFDM symbol 5 in slot 0, the RE identified as A on OFDM symbol 6, and the OFDM symbol 5 in slot 1 and the RE identified as A on OFDM symbol 6 form a packet in the form of TDM.
  • OFDM symbol 5 in slot 0 and slot 1, and REs identified as B, I, J on OFDM symbol 6 each constitute one packet;
  • the OFDM symbol 2 in slot 1 and the REs identified as D, E, and F on OFDM symbol 3 each constitute a packet.
  • FIG. 4b exemplarily shows another 32-port reference signal pattern in method 1.
  • 4b differs from FIG. 4a in that the OFDM symbol 2 in slot 1 and the CSI-RS packet on OFDM symbol 3 are different.
  • the CSI-RS corresponding to the same letter is multiplexed using a set of 4-bit orthogonal spreading codes.
  • FIG. 4a and FIG. 4b respectively show only one possible 32-port reference signal pattern, and based on the distribution rule of the foregoing 32-port reference signal pattern, other 32-port reference signal patterns can also be obtained, and no longer List one by one.
  • the 32-port reference signal pattern in the DwPTS region of the Time Division Duplexing (TDD) subframe may also be obtained based on the principle of the above method 1.
  • Figures 4c and 4d respectively show another 32-port reference signal pattern, wherein the pattern shown in Figure 4c is suitable for DwPTS containing 11 or 12 OFDM symbols, and the pattern shown in Figure 4d is suitable for using an extended CP. The length is 12 symbols of the subframe.
  • the 32-port CSI-RS pattern provided by the foregoing method 1 can ensure that 32 CSI-RS ports have the same transmission power, and the orthogonal spreading code used by the port can reuse the spreading code definition in Rel-13.
  • Method 2 in the 32-port reference signal pattern, 32 RE locations to which a group of 32-port CSI-RSs are mapped, and 32 REs to which 4 groups of 8-port CSI-RSs in the 8-port reference signal pattern are mapped The positions are the same, and two packet CSI-RSs in each group of 8-port CSI-RSs are respectively multiplexed by 4-bit orthogonal spreading codes, wherein one packet CSI-RS is mapped to REs corresponding to 4 ports. .
  • 5 groups of 8-port CSI-RSs may be included in one PRB, and optionally, four groups of 8-port CSI-RSs in the embodiments of the present disclosure constitute a 32-port CSI-RS.
  • the REs to which each group of 8-port CSI-RSs are mapped are distributed in OFDM symbol 5, OFDM symbol 6, time slot 1 OFDM symbol 5, OFDM symbol 6, and time slot 1 OFDM symbol 2, OFDM symbol 3.
  • OFDM symbol 5 distributed in slot 0 2 REs of OFDM symbol 6, and 2 REs of OFDM symbol 5 and OFDM symbol 6 distributed in slot 1 constitute one Packet, 4 OFDM symbols distributed in slot 1, 2 OFDM symbols 3 RE constitutes a group.
  • Figure 5a exemplarily shows a 32 port reference signal pattern in method 2.
  • each square represents an RE.
  • the square corresponding to each RE is identified by a letter.
  • the 32-port reference signal pattern shown in FIG. 5a includes four groups of 8-port CSI-RSs, and the REs mapped to the four groups of 8-port CSI-RSs are respectively identified as A to H, and two sets of REs identified as A and B.
  • the RE positions mapped to a group of 8-port CSI-RSs in the 8-port reference signal pattern are the same.
  • two sets of REs identified as C and D, two sets of REs identified as E and F, and the identifiers are G and
  • the two sets of REs of H are the same as the RE locations mapped to a group of 8-port CSI-RSs in the 8-port reference signal pattern.
  • the OFDM symbol 5 in slot 0, the RE identified as A on OFDM symbol 6, and the OFDM symbol 5 in slot 1 and the RE identified as A on OFDM symbol 6 form a packet in the form of TDM.
  • OFDM symbol 5 in slot 0 and slot 1, and REs identified as C, E, G on OFDM symbol 6 each constitute one packet;
  • OFDM symbol 2 in slot 1 and RE identified as B on OFDM symbol 3 are TDM
  • the FDM is combined to form a packet.
  • the OFDM symbols in slot 1 and the REs identified as D, F, and H on OFDM symbol 3 each constitute a packet.
  • FIG. 5b exemplarily shows another 32-port reference signal pattern in method 2.
  • 5b differs from FIG. 5a in that the OFDM symbol 2 in slot 1 and the CSI-RS packet on OFDM symbol 3 are different.
  • FIG. 5a and FIG. 5b respectively show only one possible 32-port reference signal pattern. Based on the distribution rule of the foregoing 32-port reference signal pattern, other 32-port reference signal patterns can also be obtained, for example, FIG. 5a.
  • the 32-port reference signal pattern in the DwPTS region of the TDD subframe may also be obtained based on the principle of the above method 2.
  • Figures 5c and 5d respectively show another 32-port reference signal pattern, wherein the pattern shown in Figure 5c is suitable for DwPTS containing 11 or 12 OFDM symbols, and the pattern shown in Figure 5d is suitable for using an extended CP. The length is 12 symbols of the subframe.
  • the 32-port CSI-RS pattern consists of four 8-port CSI-RS patterns (two different letter-represented REs are a group of 8-port CSI-RS patterns), and the same letter corresponds to the CSI-
  • FIG. 5c and FIG. 5d only show two possible 32-port reference signal patterns. Based on the distribution rule of the foregoing 32-port reference signal pattern, other 32-port reference signal patterns can also be obtained, and no longer one. An enumeration.
  • the 32-port CSI-RS pattern provided by the foregoing method 2 can ensure that 32 CSI-RS ports have the same transmission power, and the orthogonal spreading code used by the port can reuse the spreading code definition in Rel-13.
  • 5 groups of 8-port CSI-RSs may be included in one PRB, and optionally, four groups of 8-port CSI-RSs in the embodiments of the present disclosure constitute a 32-port CSI-RS.
  • the REs to which each group of 8-port CSI-RSs are mapped are distributed in OFDM symbol 5, OFDM symbol 6, time slot 1 OFDM symbol 5, OFDM symbol 6, and time slot 1 OFDM symbol 2, OFDM symbol 3.
  • OFDM symbol 5 distributed in slot 0 2 REs of OFDM symbol 6, OFDM symbol 5 distributed in slot 1, and 2 REs of OFDM symbol 6 and distribution
  • the OFDM symbol 2 in slot 1 and the four REs of OFDM symbol 3 form a group.
  • Figure 6a exemplarily shows a 32 port reference signal pattern in method 3.
  • each square represents an RE.
  • the square corresponding to each RE is identified by a letter.
  • the 32-port reference signal pattern shown in FIG. 6a includes four groups of 8-port CSI-RSs, and the REs mapped to the four groups of 8-port CSI-RSs are respectively identified as A to D, and the REs and 8-port references identified as A
  • the RE positions mapped to a group of 8-port CSI-RSs in the signal pattern are the same.
  • a group of REs identified as B, a group of REs identified as C, and a group of REs identified as D are respectively associated with 8
  • the RE locations mapped to a group of 8-port CSI-RSs in the port reference signal pattern are the same.
  • the OFDM symbol 5 in slot 0 the RE identified as A on OFDM symbol 6, the OFDM symbol 5 in slot 1, the RE identified as A on OFDM symbol 6, and the OFDM symbol 2, OFDM in slot 1.
  • the RE identified as A on symbol 3 constitutes a packet in the manner of TDM combined with FDM.
  • REs identified as B, C, and D respectively constitute one packet.
  • Figure 6b exemplarily shows another 32-port reference signal pattern in method 3.
  • 6b differs from FIG. 6a in that the distribution of REs of one packet (ie, the REs to which one 8-port CSI-RS in the 8-port reference signal pattern is mapped) is different on the OFDM symbols in slot 1.
  • FIG. 6a and FIG. 6b respectively show only one possible 32-port reference signal pattern.
  • other 32-port reference signal patterns can also be obtained, for example, an OFDM symbol. 2.
  • the four packet locations and the unused resource locations in the OFDM symbol 3 can be arbitrarily selected and do not overlap each other, and each packet can be further divided into two groups of non-adjacent sub-packets in the frequency domain. List them one by one.
  • the 32-port reference signal pattern in the DwPTS region of the TDD subframe may also be obtained based on the principle of the above method 2.
  • FIG. 6c and 6d respectively show another 32-port reference signal pattern, wherein the pattern shown in Fig. 6c is applicable to a DwPTS containing 11 or 12 OFDM symbols, and the pattern shown in Fig. 6d is suitable for using an extended CP.
  • the length is 12 symbols of the subframe.
  • the 32-port CSI-RS pattern consists of four 8-port CSI-RS patterns.
  • the code is multiplexed.
  • FIG. 6c and FIG. 6d only show two possible 32-port reference signal patterns. Based on the distribution rule of the foregoing 32-port reference signal pattern, other 32-port reference signal patterns can also be obtained, and no longer one. An enumeration.
  • Method 1 in the 24-port reference signal pattern, 24 RE locations to which a group of 24-port CSI-RSs are mapped, and 24 REs to which 6 groups of 4-port CSI-RSs in the 4-port reference signal pattern are mapped The locations are the same, and each set of 4-port CSI-RSs is multiplexed with 4-bit orthogonal spreading codes.
  • the 10 PRBs may include 10 groups of 4-port CSI-RSs, and the 6 groups of 4-port CSI-RSs in the embodiment of the present disclosure may constitute a 24-port CSI-RS.
  • the 6 groups of 4-port CSI-RSs in the embodiment of the present disclosure may constitute a 24-port CSI-RS.
  • three sets of 4-port CSI-RS patterns may be arbitrarily selected from OFDM symbol 2 and OFDM symbol 3 in slot 1, and with OFDM symbol 5 in slot 0 and slot 1, and 3 on OFDM symbol 6.
  • a group of 4-port CSI-RS pattern combinations form a 24-port CSI-RS pattern.
  • Figure 7a exemplarily shows a 24-port reference signal pattern in Method 1.
  • the OFDM symbol 5 in slot 1 and the RE identified as B and I on OFDM symbol 6 each constitute one packet; the OFDM symbol 2 in slot 1 and the RE identified as C on OFDM symbol 3 are constructed by TDM combined with FDM.
  • the OFDM symbol 2 in slot 1 and the REs identified as D and E on OFDM symbol 3 each constitute a packet.
  • Figure 7b exemplarily shows another 24-port reference signal pattern in Method 1.
  • the difference between FIG. 7b and FIG. 7a is that the OFDM symbol 2 in slot 1 and the CSI-RS packet on OFDM symbol 3 are different.
  • the CSI-RS corresponding to the same letter is multiplexed using a set of 4-bit orthogonal spreading codes.
  • FIG. 7a and FIG. 7b respectively show only one possible 24-port reference signal pattern. Based on the distribution pattern of the aforementioned 24-port reference signal pattern, other 24-port reference signal patterns can also be obtained, and no longer List one by one.
  • Figures 7c and 7d respectively show another 24-port reference signal pattern, wherein the pattern shown in Figure 7c is suitable for DwPTS containing 11 or 12 OFDM symbols, and the pattern shown in Figure 7d is suitable for using an extended CP. The length is 12 symbols of the subframe.
  • the 24-port CSI-RS pattern provided by the foregoing method 1 can ensure that 24 CSI-RS ports have the same transmission power, and the orthogonal spreading code used by the port can reuse the spreading code definition in Rel-13.
  • Five groups of 8-port CSI-RSs may be included in one PRB, and three groups of 8-port CSI-RSs may optionally be configured in the embodiments of the present disclosure to form a 24-port CSI-RS.
  • Figure 8a exemplarily shows a 24-port reference signal pattern in Method 2.
  • the OFDM symbol 5 in slot 0, the RE identified as A on OFDM symbol 6, and the OFDM symbol 5 in slot 1 and the RE identified as A on OFDM symbol 6 form a packet in the form of TDM.
  • the OFDM symbol 5 in slot 0 and slot 1 and the RE identified as C on OFDM symbol 6 each constitute one packet; the OFDM symbol 2 in slot 1 and the RE identified as B on OFDM symbol 3 are combined with FDM by TDM.
  • the way constitutes a group.
  • Figure 8b exemplarily shows another 24-port reference signal pattern in Method 2.
  • 8b differs from FIG. 8a in that the OFDM symbol 2 in slot 1 and the CSI-RS packet on OFDM symbol 3 are different.
  • FIG. 8a and FIG. 8b respectively show only one possible 24-port reference signal pattern, and other 24-port reference signal patterns can be obtained based on the distribution pattern of the aforementioned 24-port reference signal pattern.
  • the 24-port CSI-RS pattern consists of three 8-port CSI-RS patterns (two different letter-represented REs are a group of 8-port CSI-RS patterns), and the same letter corresponds to the CSI-
  • FIG. 8c and FIG. 8d only show two possible 24-port reference signal patterns. Based on the distribution pattern of the aforementioned 24-port reference signal pattern, other 24-port reference signal patterns can also be obtained, and no longer one. An enumeration.
  • the 24-port CSI-RS pattern provided by the foregoing method 2 can ensure that 24 CSI-RS ports have the same transmission power, and the orthogonal spreading code used by the port can reuse the spreading code definition in Rel-13.
  • Five groups of 8-port CSI-RSs may be included in one PRB, and three groups of 8-port CSI-RSs may optionally be configured in the embodiments of the present disclosure to form a 24-port CSI-RS.
  • Figure 9a exemplarily shows a 24-port reference signal pattern in method 3.
  • the OFDM symbol 5 in slot 0 the RE identified as A on OFDM symbol 6, the OFDM symbol 5 in slot 1, the RE identified as A on OFDM symbol 6, and the OFDM symbol 2 in slot 1.
  • the REs identified as A on the OFDM symbol 3 form a packet in the manner of TDM and FDM.
  • the REs identified as B and C respectively constitute a packet.
  • FIG. 9b exemplarily shows another 24-port reference signal pattern in method 3.
  • FIG. 9b differs from FIG. 9a in that the distribution of REs of one packet (ie, REs to which one 8-port CSI-RS in an 8-port reference signal pattern is mapped) is different on the OFDM symbols in slot 1.
  • FIG. 9a and FIG. 9b respectively show only one possible 24-port reference signal pattern. Based on the distribution pattern of the aforementioned 24-port reference signal pattern, other 24-port reference signal patterns can also be obtained, and no longer List one by one.
  • Figures 9c and 9d respectively show another 24-port reference signal pattern, wherein the pattern shown in Figure 9c is suitable for DwPTS containing 11 or 12 OFDM symbols, and the pattern shown in Figure 9d is suitable for using an extended CP.
  • the length is 12 symbols of the subframe.
  • the 24-port CSI-RS pattern consists of three 8-port CSI-RS patterns.
  • the code is multiplexed.
  • FIG. 9c and FIG. 9d only show two possible 24-port reference signal patterns. Based on the distribution pattern of the aforementioned 24-port reference signal pattern, other 24-port reference signal patterns can also be obtained, and no longer one. An enumeration.
  • 18-port CSI-RS, 20-port CSI-RS, and 28-port CSI-RS it can be implemented based on the 32-port CSI-RS or 24-port CSI-RS mapping principle described above, except that the 8-port CSI is determined based on the 8-port reference signal pattern.
  • RS, 20-port CSI-RS or 28-port CSI-RS mapped to When RE is determined, when the REs mapped to the 24-port CSI-RS or the 32-port CSI-RS are determined based on the 8-port reference signal pattern, the number of CSI-RS ports multiplexed per packet is reduced, and each group of CSI-RSs is mapped to The number of REs has decreased or remained the same.
  • 18 RE locations to which a group of 18-port CSI-RSs are mapped, and 18 REs of all REs to which 3 groups of 8-port CSI-RSs in the 8-port reference signal pattern are mapped The location is the same.
  • Each group of 6-port CSI-RSs is mapped to 6 REs and multiplexed with 6-bit orthogonal spreading codes.
  • Figure 10a exemplarily shows an 18 port reference signal pattern.
  • each square represents an RE.
  • the square corresponding to each RE is identified by a letter.
  • the 18-port reference signal pattern shown in FIG. 10a includes three groups of 6-port CSI-RSs, and the REs mapped by the three groups of 6-port CSI-RSs are respectively identified as A to C.
  • Figure 10b exemplarily shows another 18 port reference signal pattern.
  • the difference between FIG. 10b and FIG. 10a is that the OFDM symbol 2 in slot 1 and the CSI-RS packet on OFDM symbol 3 are different.
  • FIG. 10a and FIG. 10b respectively show only one possible 18-port reference signal pattern. Based on the distribution rule of the aforementioned 18-port reference signal pattern, other 18-port reference signal patterns can also be obtained.
  • the 18-port reference signal pattern in the DwPTS region of the TDD subframe may also be obtained based on the above principle.
  • Figures 10c and 10d respectively show another 18-port reference signal pattern, wherein the pattern shown in Figure 10c is suitable for DwPTS containing 11 or 12 OFDM symbols, and the pattern shown in Figure 10d is suitable for using an extended CP.
  • the length is 12 symbols of the subframe.
  • the 18-port CSI-RS pattern consists of three 8-port CSI-RS patterns.
  • the CSI-RSs corresponding to the same letter form a packet and are multiplexed using a set of 6-bit orthogonal spreading codes. .
  • FIG. 10c and FIG. 10d only show two possible 18-port reference signal patterns. Based on the distribution rule of the aforementioned 18-port reference signal pattern, other 18-port reference signal patterns can also be obtained, and no longer one. An enumeration.
  • Another implementation is a 24-port reference signal pattern in which a set of 18-port CSI-RSs are mapped to 24 RE locations, and all REs mapped to 3 groups of 8-port CSI-RSs in an 8-port reference signal pattern. The same location. Each group of 6-port CSI-RSs is mapped to 8 REs, and is multiplexed by 6 codewords of 8-bit orthogonal spreading codes.
  • the example diagram is identical to Figures 7a to 7d.
  • the 18-port CSI-RS pattern provided above can ensure that all 18 CSI-RS ports have the same transmission power, and the orthogonal spreading code used by the port can reuse the spreading code definition in Rel-13.
  • each group of 5-port CSI-RSs is mapped to 5 REs and multiplexed with 5-bit orthogonal spreading codes.
  • Figure 11a exemplarily shows a 20 port reference signal pattern.
  • each square represents an RE.
  • the square corresponding to each RE is identified by a letter.
  • the 18-port reference signal pattern shown in FIG. 11a includes four groups of 5-port CSI-RSs, and the REs mapped to the four groups of 5-port CSI-RSs are respectively identified as A to D.
  • Figure 11b exemplarily shows another 20 port reference signal pattern.
  • the difference between FIG. 11b and FIG. 11a is that the OFDM symbol 2 in slot 1 and the CSI-RS packet on OFDM symbol 3 are different.
  • FIG. 11a and FIG. 11b respectively show only one possible 20-port reference signal pattern, and other 20-port reference signal patterns can be obtained based on the distribution rule of the aforementioned 20-port reference signal pattern.
  • the 20-port reference signal pattern in the DwPTS region of the TDD subframe may also be obtained based on the above principle.
  • FIG. 11c and 11d respectively show another 20-port reference signal pattern, wherein the pattern shown in Fig. 11c is suitable for a DwPTS containing 11 or 12 OFDM symbols, and the pattern shown in Fig. 11d is suitable for using an extended CP.
  • the length is 12 symbols of the subframe.
  • the 20-port CSI-RS pattern consists of four 8-port CSI-RS patterns, and the CSI-RS corresponding to the same letter.
  • a packet is constructed and multiplexed using a set of 5-bit orthogonal spreading codes.
  • FIG. 11c and FIG. 11d only show two possible 20-port reference signal patterns. Based on the distribution rule of the foregoing 20-port reference signal pattern, other 20-port reference signal patterns can also be obtained, and no longer one. An enumeration.
  • Another implementation is a 32-port reference signal pattern in which a set of 20-port CSI-RSs are mapped to 32 RE locations, and all REs mapped to four 8-port CSI-RSs in an 8-port reference signal pattern. The same location.
  • Each group of 5-port CSI-RSs is mapped to 8 REs, and is multiplexed by 5 codewords of 8-bit orthogonal spreading codes.
  • the example diagram is identical to Figures 6a to 6d.
  • the 20-port CSI-RS pattern provided above can ensure that 20 CSI-RS ports have the same transmission power, and the orthogonal spreading code used by the port can reuse the spreading code definition in Rel-13.
  • Figure 12a exemplarily shows a 28 port reference signal pattern.
  • each square represents an RE.
  • the square corresponding to each RE is identified by a letter.
  • the 28-port reference signal pattern shown in FIG. 12a includes four sets of 7-port CSI-RSs, and the REs mapped by the four sets of 7-port CSI-RSs are respectively identified as A to D.
  • Figure 12b exemplarily shows another 28 port reference signal pattern.
  • the difference between FIG. 12b and FIG. 12a is that the OFDM symbol 2 in slot 1 and the CSI-RS packet on OFDM symbol 3 are different.
  • FIG. 12a and FIG. 12b only show one possible 28-port reference signal pattern, respectively, and other 28-port reference signal patterns can be obtained based on the distribution rule of the aforementioned 28-port reference signal pattern.
  • the 28-port reference signal pattern in the DwPTS region of the TDD subframe may also be obtained based on the above principle.
  • the 28-port CSI-RS pattern consists of four 8-port CSI-RS patterns.
  • the CSI-RSs corresponding to the same letter form a packet and are multiplexed using a set of 7-bit orthogonal spreading codes.
  • FIG. 12c and FIG. 12d only show two possible 28-port reference signal patterns. Based on the distribution pattern of the aforementioned 28-port reference signal pattern, other 28-port reference signal patterns can also be obtained, and no longer one. An enumeration.
  • Another implementation is a 32-port reference signal pattern in which 32 RE-positions of a 28-port CSI-RS are mapped, and all REs mapped to 4 8-port CSI-RSs in an 8-port reference signal pattern. The same location.
  • Each group of 7-port CSI-RSs is mapped to 8 REs, and is multiplexed by 7 codewords of 8-bit orthogonal spreading codes.
  • the example diagram is identical to Figures 6a to 6d.
  • the 28-port CSI-RS pattern provided above can ensure that 28 CSI-RS ports have the same transmission power, and the orthogonal spreading code used by the port can reuse the spreading code definition in Rel-13.
  • the reference signal pattern of the 18, 20, 24, 28 or 32 port is obtained according to the 4-port or 8-port reference signal pattern, and when the reference signal mapping is performed, Determining an RE location to which the CSI-RS is mapped according to the reference signal pattern of the 18, 20, 24, 28 or 32 ports, and performing resource mapping on the CSI-RS according to the RE location, thereby implementing 18, 20, 24, 28 or 32-port CSI-RS mapping, which in turn enables the transmission of 18, 20, 24, 28 or 32-port CSI-RS.
  • the embodiment of the present disclosure also provides a reference signal mapping device.
  • FIG. 13 is a schematic structural diagram of a reference signal mapping apparatus according to an embodiment of the present disclosure, where the apparatus can implement the reference signal mapping process.
  • the apparatus can include a determination module 1301 and a mapping module 1302, wherein:
  • the determining module 1301 is configured to determine, according to the N port reference signal pattern, the resource unit RE to which the channel state information reference signal CSI-RS is mapped, where N is an integer greater than 16, wherein an N port in the N port reference signal pattern
  • the RE location to which the CSI-RS is mapped is based on the M port.
  • the position of the RE to which the plurality of sets of M-port CSI-RSs in the reference signal pattern are mapped is determined, and M is equal to 4 or 8;
  • the mapping module 1302 is configured to perform resource mapping on the CSI-RS according to the determined RE.
  • N is equal to 18, 20, 24, 28 or 32; wherein M is equal to 4 or 8 when N is equal to 24 or 32, and M is equal to 8 when N is equal to 18, 20, 28.
  • the determining module 1301 determines the method of the RE to which the channel state information reference signal CSI-RS is mapped according to the N port reference signal pattern, and the format of the M port reference signal pattern. For details, refer to the foregoing embodiment, which is not repeated here.
  • FIG. 14 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • the base station may include: a processor 1401, a memory 1402, a transceiver 1403, and a bus interface.
  • the processor 1401 is responsible for managing the bus architecture and general processing, and the memory 1402 can store data used by the processor 1401 in performing operations.
  • the transceiver 1403 is configured to receive and transmit data under the control of the processor 1401.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1401 and various circuits of memory represented by memory 1402.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1403 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • each step of the data transmission process may be completed by an integrated logic circuit of hardware in the processor 1401 or an instruction in the form of software.
  • the processor 1401 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or perform embodiments of the present disclosure.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly embodied as hardware processor execution completion, or using hardware and software in the processor.
  • the module combination execution is completed.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1402, and the processor 1401 reads the information in the memory 1402, and combines its hardware to complete the steps of the processing method of the control plane.
  • the processor 1401 is configured to read a program in the memory 1402 and perform the following process:
  • N an integer greater than 16; wherein an N-port CSI-RS in the N-port reference signal pattern is mapped to The RE position is determined according to the RE position to which the plurality of sets of M port CSI-RSs in the M port reference signal pattern are mapped, and M is equal to 4 or 8;
  • Resource mapping is performed on the CSI-RS according to the determined RE.
  • N is equal to 18, 20, 24, 28 or 32; wherein M is equal to 4 or 8 when N is equal to 24 or 32, and M is equal to 8 when N is equal to 18, 20, 28.
  • the method for the processor 1401 to determine the RE to which the channel state information reference signal CSI-RS is mapped according to the N port reference signal pattern, and the format of the M port reference signal pattern can be referred to the foregoing embodiment, and is not repeated here.
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • These computer program instructions can also be stored in a bootable computer or other programmable data processing device.
  • a computer readable memory that operates in a particular manner, causing instructions stored in the computer readable memory to produce an article of manufacture comprising an instruction device implemented in one or more flows and/or block diagrams of the flowchart The function specified in the box or in multiple boxes.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开文本提供一种参考信号映射方法及装置。本公开文本中,根据4端口或8端口参考信号图样,得到N端口参考信号图样,N为大于16的整数,比如N端口参考信号图样包括18、20、24、28或32端口的参考信号图样,并在进行参考信号映射时,根据该N端口的参考信号图样确定CSI-RS被映射到的RE位置,根据该RE位置对CSI-RS进行资源映射,从而实现了16端口以上CSI-RS映射,进而实现了16端口以上CSI-RS的传输。

Description

一种参考信号映射方法及装置
相关申请的交叉引用
本申请主张在2016年3月10日在中国提交的中国专利申请No.201610136905.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本涉及无线通信技术领域,尤其涉及一种参考信号映射方法及装置。
背景技术
版本10(Rel-10)的长期演进(Long Term Evolution,LTE)***中,下行定义了多种参考信号,主要包括:小区专用参考信号(Cell-specific Reference Signal,C-RS)、用户专用参考信号(UE-specific reference signal,简称为UE-RS,又称DM-RS,英文为Demodulation-Reference Signal,即解调参考信号)以及信道状态信息参考信号(Channel State Indication Reference Signal,CSI-RS)。其中,CSI-RS用于下行信道测量和估计。
图1a、图1b和图1c分别示出了LTE***中支持CSI-RS的参考信号图样。该参考信号图样示出了不同参考信号的资源位置,即示出了不同参考信号被映射到的资源单元(Resource Element,RE)在物理资源块(Physical Resource Block,PRB)中的位置。
每一个下行天线端口上传输一个参考信号。CSI-RS可被配置为2端口、4端口或8端口,1个PRB中有20组2端口CSI-RS(如图1a所示,1个2端口CSI-RS被映射到一组标识为0~1的RE上),或者10组4端口CSI-RS(如图1b所示,1个4端口CSI-RS被映射到一组标识为0~3的RE上),或者5组8端口CSI-RS(如图1c所示,1个8端口CSI-RS被映射到一组标识为0~7的RE上)。图1a、图1b和图1c中方框内的数字表示端口号。每两个端口在相邻2个RE上采用码分复用,比如在图1a中,一组标识为0~1的2个RE复用了端口0和端口1,采用(1 1)和(1 -1)复用在一起。这种复 用方式表示为正交扩频码OCC=2。
在此基础上,Rel-13版本中引入了12端口CSI-RS及16端口CSI-RS,12端口CSI-RS及16端口CSI-RS均通过端口聚合的方式生成。同时为了得到更好的功率利用,在Rel-10的正交扩频码OCC=2的基础上,又引入了OCC=4的方式。这样,12端口CSI-RS由3个4端口CSI-RS(OCC=2或者OCC=4)聚合得到,如图2a所示,其中标识为A、B和C的3个4端口CSI-RS构成1个12端口CSI-RS;16端口CSI-RS由2个8端口CSI-RS(OCC=2或者OCC=4)聚合得到,如图2b所示,其中标识为A和B的1个8端口CSI-RS与标识为C和D的1个8端口CSI-RS构成1个16端口CSI-RS。图2a和图2b中相同的字母部分构成一个OCC=4的分组,每个分组采用时分复用(Time Division Multiplexing,TDM)结合频分复用(Frequency Division Multiplexing,FDM)的方式,4个端口的CSI-RS复用在每个分组的4个RE上。
目前LTE***无法支持更多天线端口的CSI-RS,比如无法支持16端口以上的CSI-RS传输。
发明内容
本公开文本实施例提供了一种参考信号映射方法及装置,用以实现16端口以上的CSI-RS映射,从而实现16端口以上的CSI-RS传输。
本公开文本实施例提供的参考信号映射方法,包括:
根据N端口参考信号图样,确定信道状态信息参考信号CSI-RS被映射到的RE,N为大于16的整数;其中,所述N端口参考信号图样中一个N端口CSI-RS被映射到的RE位置是根据M端口参考信号图样中的多组M端口CSI-RS被映射到的RE位置确定的,M等于4或8;
根据确定出的RE对CSI-RS进行资源映射。
可选地,N等于18、20、24、28或32;其中,当N等于24或32时M等于4或8,当N等于18、20、28时M等于8。
可选地,当N等于24或32时,N端口参考信号图样中的一个N端口CSI-RS被映射到的RE位置,与4端口参考信号图样中的Q组4端口CSI-RS被映射到的RE位置相同,每组4端口CSI-RS采用4位正交扩频码的4个码 字进行复用,
Figure PCTCN2017073077-appb-000001
可选地,当N等于18、20、24、28或32时,N端口参考信号图样中的一个N端口CSI-RS被映射到的RE位置,与8端口参考信号图样中的L组8端口CSI-RS被映射的RE位置相同;其中,当N等于18、24时,L等于3,当N等于20、28或32时,L等于4,且:
N端口中的每S端口采用8位正交扩频码的8个码字中的S个码字进行复用,并映射到一个8端口CSI-RS所占用的RE位置;其中,当N等于18时S等于6或8,当N等于20时S等于5或8,当N等于28时S等于7或8,当N等于24时S等于8,当N等于32时S等于8;或者,
N端口中的每K端口采用K位正交扩频码进行复用,并映射到一个8端口CSI-RS所占用的RE位置中的K个RE位置;其中,当N等于18时K等于6,当N等于20时K等于5,当N等于28时K等于7;或者,
N端口中每组8端口CSI-RS被分成两个分组CSI-RS,每个分组分别采用4位正交扩频码的4个码字进行复用,其中,一个分组CSI-RS被映射到4个端口对应的RE上;其中,N等于24或32。
其中,N端口参考信号图样中的一个N端口CSI-RS被映射到的RE位置,与8端口参考信号图样中的L组8端口CSI-RS被映射到的L×P个RE的位置相同;其中,当N等于18时P等于6或8,当N等于20时P等于5或8,当N等于28时P等于7或8,当N等于24时P等于8,当N等于32时P等于8。
可选地,在一个包含14个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号的正常循环前缀子帧或者包含11个或12个OFDM符号的下行导频时隙(Downlink Pilot Time Slot,DwPTS)中,M等于4时,所述4端口参考信号图样中包含10组4端口CSI-RS,其中的4组端口CSI-RS中的每组4端口CSI-RS被以时分复用方式映射到第一至第四OFDM符号上的4个RE,另外6组4端口CSI-RS中的每组4端口CSI-RS被以时分复用结合频分复用方式映射到第五至第六OFDM符号上的4个RE;其中,第一至第四OFDM符号为解调参考信号(DeModulation Reference Signal,DMRS)所在的符号。
可选地,在一个包含14个OFDM符号的正常循环前缀子帧或者包含11个或12个OFDM符号的DwPTS中,M等于8时,所述8端口参考信号图样中包含5组8端口CSI-RS,其中:
每组8端口CSI-RS中包含两个分组CSI-RS,每个分组CSI-RS采用4位正交扩频码的4个码字进行复用,其中一个分组CSI-RS被以时分复用方式映射到第一至第四OFDM符号上的4个RE,另外一个分组CSI-RS被以时分复用结合频分复用方式映射到第五至第六OFDM符号上的4个RE;其中,第一至第四OFDM符号为DMRS所在的符号;或者,
每组8端口CSI-RS被以时分复用结合频分复用方式映射到第一至第四OFDM符号上的4个RE和第五至第六OFDM符号上的4个RE;其中,第一至第四OFDM符号为DMRS所在的符号。
其中,在一个包含14个OFDM符号的正常循环子帧中,所述第一至第四OFDM符号分别为一个子帧的第一个时隙中第六个至第七个OFDM符号以及该子帧的第二个时隙中的第六个至第七个OFDM符号,所述第五至第六OFDM符号分别为该子帧的第二个时隙中的第三个至第四个OFDM符号;或者,
在一个包含11个或12个OFDM符号的DwPTS中,所述第一至第四OFDM符号分别为一个子帧的第一个时隙中第三个至第四个OFDM符号以及该子帧的第二个时隙中的第三个至第四个OFDM符号,所述第五至第六OFDM符号分别为该子帧的第一个时隙中的第六个至第七个OFDM符号。
可选地,在一个扩展循环前缀子帧的12个OFDM符号中,所述M端口参考信号图样中的每组M端口CSI-RS被以时分复用方式结合频分复用方式映射到一个子帧的第一个时隙中的第五个至第六个OFDM符号以及该子帧的第二个时隙中的第五个至第六个OFDM符号。
本公开文本实施例提供的参考信号映射装置,包括:
确定模块,用于根据N端口参考信号图样,确定信道状态信息参考信号CSI-RS被映射到的RE,N为大于16的整数;其中,所述N端口参考信号图样中一个N端口CSI-RS被映射到的RE位置是根据M端口参考信号图样中的多组M端口CSI-RS被映射到的RE位置确定的,M等于4或8;
映射模块,用于根据确定出的RE对CSI-RS进行资源映射。
可选地,N等于18、20、24、28或32;其中,当N等于24或32时M等于4或8,当N等于18、20、28时M等于8。
可选地,当N等于24或32时,N端口参考信号图样中的一个N端口CSI-RS被映射到的RE位置,与4端口参考信号图样中的Q组4端口CSI-RS被映射到的RE位置相同,每组4端口CSI-RS采用4位正交扩频码的4个码字进行复用,
Figure PCTCN2017073077-appb-000002
可选地,当N等于18、20、24、28或32时,N端口参考信号图样中的一个N端口CSI-RS被映射到的RE位置,与8端口参考信号图样中的L组8端口CSI-RS被映射的RE位置相同;其中,当N等于18、24时,L等于3,当N等于20、28或32时,L等于4,且:
N端口中的每S端口采用8位正交扩频码的8个码字中的S个码字进行复用,并映射到一个8端口CSI-RS所占用的RE位置;其中,当N等于18时S等于6或8,当N等于20时S等于5或8,当N等于28时S等于7或8,当N等于24时S等于8,当N等于32时S等于8;或者,
N端口中的每K端口采用K位正交扩频码进行复用,并映射到一个8端口CSI-RS所占用的RE位置中的K个RE位置;其中,当N等于18时K等于6,当N等于20时K等于5,当N等于28时K等于7;或者,
N端口中每组8端口CSI-RS被分成两个分组CSI-RS,每个分组分别采用4位正交扩频码的4个码字进行复用,其中,一个分组CSI-RS被映射到4个端口对应的RE上;其中,N等于24或32。
其中,N端口参考信号图样中的一个N端口CSI-RS被映射到的RE位置,与8端口参考信号图样中的L组8端口CSI-RS被映射到的P个RE的位置相同;其中,当N等于18时P等于6或8,当N等于20时P等于5或8,当N等于28时P等于7或8,当N等于24时P等于8,当N等于32时P等于8。
可选地,在一个包含14个OFDM符号的正常循环前缀子帧或者包含11个或12个OFDM符号的DwPTS中,M等于4时,所述4端口参考信号图样中包含10组4端口CSI-RS,其中的4组端口CSI-RS中的每组4端口CSI-RS 被以时分复用方式映射到第一至第四OFDM符号上的4个RE,另外6组4端口CSI-RS中的每组4端口CSI-RS被以时分复用结合频分复用方式映射到第五至第六OFDM符号上的4个RE;其中,第一至第四OFDM符号为解调参考信号DMRS所在的符号。
可选地,在一个包含14个OFDM符号的正常循环前缀子帧或者包含11个或12个OFDM符号的DwPTS中,M等于8时,所述8端口参考信号图样中包含5组8端口CSI-RS,其中:
每组8端口CSI-RS中包含两个分组CSI-RS,每个分组CSI-RS采用4位正交扩频码的4个码字进行复用,其中一个分组CSI-RS被以时分复用方式映射到第一至第四OFDM符号上的4个RE,另外一个分组CSI-RS被以时分复用结合频分复用方式映射到第五至第六OFDM符号上的4个RE;其中,第一至第四OFDM符号为DMRS所在的符号;或者,
每组8端口CSI-RS被以时分复用结合频分复用方式映射到第一至第四OFDM符号上的4个RE和第五至第六OFDM符号上的4个RE;其中,第一至第四OFDM符号为DMRS所在的符号。
其中,在一个包含14个OFDM符号的正常循环子帧中,所述第一至第四OFDM符号分别为一个子帧的第一个时隙中第六个至第七个OFDM符号以及该子帧的第二个时隙中的第六个至第七个OFDM符号,所述第五至第六OFDM符号分别为该子帧的第二个时隙中的第三个至第四个OFDM符号;或者,
在一个包含11个或12个OFDM符号的DwPTS中,所述第一至第四OFDM符号分别为一个子帧的第一个时隙中第三个至第四个OFDM符号以及该子帧的第二个时隙中的第三个至第四个OFDM符号,所述第五至第六OFDM符号分别为该子帧的第一个时隙中的第六个至第七个OFDM符号。
可选地,在一个扩展循环前缀子帧的12个OFDM符号中,所述M端口参考信号图样中的每组M端口CSI-RS被以时分复用方式结合频分复用方式映射到一个子帧的第一个时隙中的第五个至第六个OFDM符号以及该子帧的第二个时隙中的第五个至第六个OFDM符号。
本公开文本实施例提供的参考信号映射装置,包括:处理器和存储器。
所述处理器,用于读取存储器中的程序,执行下列过程:
根据N端口参考信号图样,确定信道状态信息参考信号CSI-RS被映射到的资源单元RE,N为大于16的整数;其中,所述N端口参考信号图样中一个N端口CSI-RS被映射到的RE位置是根据M端口参考信号图样中的多组M端口CSI-RS被映射到的RE位置确定的,M等于4或8;以及
根据确定出的RE对CSI-RS进行资源映射。
所述存储器能够存储处理器在执行操作时所使用的数据。
本公开文本实施例提供的基站,包括:处理器、存储器、收发机以及总线接口;
所述处理器,用于读取存储器中的程序,执行下列过程:
根据N端口参考信号图样,确定信道状态信息参考信号CSI-RS被映射到的资源单元RE,N为大于16的整数;其中,所述N端口参考信号图样中一个N端口CSI-RS被映射到的RE位置是根据M端口参考信号图样中的多组M端口CSI-RS被映射到的RE位置确定的,M等于4或8;
根据确定出的RE对CSI-RS进行资源映射。
本公开文本的上述实施例中,根据4端口或8端口参考信号图样,得到N端口的参考信号图样,并在进行参考信号映射时,根据该N端口的参考信号图样确定CSI-RS被映射到的RE位置,根据该RE位置对CSI-RS进行资源映射。由于N为大于16的整数,从而实现了16端口以上的CSI-RS映射,进而实现了16端口以上的CSI-RS的传输。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。以下附图并未刻意按实际尺寸等比例缩放绘制,重点在于示出本申请的主旨。
图1a、图1b和图1c分别为相关技术中2端口、4端口和8端口参考信号图样;
图2a、图2b分别为相关技术中的LTE Rel-13中的12端口和16端口参考信号图样;
图3为本公开文本实施例提供的参考信号映射流程示意图;
图4a、图4b、图4c和图4d分别为本公开文本实施例方法1中32端口参考信号图样;
图5a、图5b、图5c和图5d分别为本公开文本实施例方法2中32端口参考信号图样;
图6a、图6b、图6c和图6d分别为本公开文本实施例方法3中的32端口参考信号图样;
图7a、图7b、图7c和图7d分别为本公开文本实施例方法1中24端口参考信号图样;
图8a、图8b、图8c和图8d分别为本公开文本实施例方法2中24端口参考信号图样;
图9a、图9b、图9c和图9d分别为本公开文本实施例方法3中的24端口参考信号图样;
图10a、图10b、图10c和图10d分别为本公开文本实施例中18端口参考信号图样;
图11a、图11b、图11c和图11d分别为本公开文本实施例中20端口参考信号图样;
图12a、图12b、图12c和图12d分别为本公开文本实施例中28端口参考信号图样;
图13为本公开文本实施例提供的参考信号映射装置的结构示意图;以及
图14为本公开文本实施例提供的基站的结构示意图。
具体实施方式
下面将结合本公开文一些实施例中的附图,对本公开文一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开文本一部分实施例,而不是全部的实施例。基于本公开文本中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属 于本公开文本保护的范围。
目前LTE标准中支持1、2、4、8、12及16端口CSI-RS传输,还没有支持18、20、24、28或32端口等16端口以上的CSI-RS传输。这对该问题,本公开文本实施例提出了能够支持18、20、24、28或32端口等16端口以上CSI-RS传输的参考信号映射方法和装置。
下面结合说明书附图对本公开文本实施例做详细描述。
每一个下行天线端口上传输一个参考信号。天线端口是指用于传输的逻辑端口,它可以对应一个或多个实际的物理天线。天线端口的定义是从接收机的角度来定义的,即如果接收机需要区分资源在空间上的差别,就需要定义多个天线端口。对于终端来说,其接收到的某天线端口对应的参考信号就定义了相应的天线端口,尽管此参考信号可能是由多个物理天线传输的信号复合而成。
参见图3,为本公开文本实施例提供的参考信号映射流程示意图。该流程可由基站执行。如图所示,该流程可包括:
步骤301:根据N端口参考信号图样,确定CSI-RS被映射到的RE,N为大于16的整数;其中,所述N端口参考信号图样中一个N端口CSI-RS被映射到的RE位置是根据M端口参考信号图样中多组M端口CSI-RS被映射到的RE位置确定的,M等于4或8;
步骤302:根据确定出的RE对CSI-RS进行资源映射。
更具体地,N等于18、20、24、28或32;其中,当N等于24或32时M等于4或8,当N等于18、20、28时M等于8。
通过上述流程,在基站天线端口数为N的情况下,基站可以配置终端N端口CSI-RS。终端在配置的CSI-RS端口上测量信道并反馈信道信息。
可以看出,本公开文本实施例中,根据4端口或8端口参考信号图样,得到N端口(N=18,20,24,28或32)的参考信号图样,并在参考信号映射时,根据该N端口的参考信号图样确定CSI-RS被映射到的RE位置,根据该RE位置对CSI-RS进行资源映射,从而实现了N端口的CSI-RS映射,进而实现了N端口CSI-RS的传输。
下面以N等于18,20,24,28或32为例,根据以上流程,基于4端口参 考信号图样确定N端口CSI-RS被映射到的RE位置,具体可包括如下几种情况:
情况1-1:对于24端口CSI-RS映射或传输,24端口参考信号图样中的一个24端口CSI-RS被映射到的RE位置,与4端口参考信号图样中的6组4端口CSI-RS被映射的RE位置相同,且每组4端口CSI-RS采用4位正交扩频码(Orthogonal Cover Code,OCC)的4个码字进行复用(即OCC=4)。其中,每组4端口CSI-RS映射到4个RE上。
情况1-2:对于32端口CSI-RS映射或传输,32端口参考信号图样中的一个32端口CSI-RS被映射到的RE位置,与4端口参考信号图样中的8组4端口CSI-RS被映射的RE位置相同,且每组4端口CSI-RS采用4位正交扩频码的4个码字进行复用(即OCC=4)。其中,每组4端口CSI-RS映射到4个RE上。
上述情况1-1或情况1-2中,根据一个子帧中包含的符号数量,4端口参考信号图样中,CSI-RS所映射到的RE所在的符号位置也有所不同,具体可包括以下情况:
在一个包含14个OFDM符号的正常循环前缀子帧或者包含11个或12个OFDM符号的DwPTS中,所使用的4端口参考信号图样中包含10组4端口CSI-RS,其中的4组端口CSI-RS中的每组4端口CSI-RS被以时分复用方式映射到第一至第四OFDM符号上的4个RE,另外6组4端口CSI-RS中的每组4端口CSI-RS被以时分复用结合频分复用方式映射到第五至第六OFDM符号上的4个RE;其中,第一至第四OFDM符号为DMRS所在的符号。
其中,在一个包含14个OFDM符号的正常循环子帧中(比如采用常规循环前缀(Cyclic Prefix,CP)的子帧),所述第一至第四OFDM符号分别为一个子帧的第一个时隙中第六个至第七个OFDM符号(即slot 0中的OFDM符号5和OFDM符号6)以及该子帧的第二个时隙中的第六个至第七个OFDM符号(即slot 1中的OFDM符号5和OFDM符号6),所述第五至第六OFDM符号分别为该子帧的第二个时隙中的第三个至第四个OFDM符号(即slot 1中的OFDM符号2和OFDM符号3)。
在一个包含11个或12个OFDM符号的DwPTS中,所述第一至第四 OFDM符号分别为一个子帧的第一个时隙中第三个至第四个OFDM符号(即slot 0中的OFDM符号2和OFDM符号3)以及该子帧的第二个时隙中的第三个至第四个OFDM符号(即slot 1中的OFDM符号2和OFDM符号3),所述第五至第六OFDM符号分别为该子帧的第一个时隙中的第六个至第七个OFDM符号(即slot 0中的OFDM符号5和OFDM符号6)。
在一个子帧中包含12个OFDM符号的情况下(比如采用扩展CP的子帧),上述情况1-1和情况1-2所使用的4端口参考信号图样中的每组4端口CSI-RS被以时分复用方式结合频分复用方式映射到一个子帧的第一个时隙中的第五个至第六个OFDM符号(即slot 0中的OFDM符号4和OFDM符号5)以及该子帧的第二个时隙中的第五个至第六个OFDM符号(即slot 1中的OFDM符号4和OFDM符号5)。
通过以上描述可以看出,本公开文本实施例重新定义了4端口参考信号图样,作为确定N端口参考信号图样的依据。例如,在一个子帧中包含14个OFDM符号的情况下,重新定义的4端口参考信号图样中,有4组4端口CSI-RS分别占用4个OFDM符号,该4端口CSI-RS被以时分复用的方式映射至子帧的第一时隙中的OFDM符号5、OFDM符号6上以及该子帧的第二时隙的OFDM符号5、OFDM符号6上;另外4组4端口CSI-RS分别占用2个OFDM符号,该4端口CSI-RS以时分复用结合频分复用的方式映射至子帧的第二时隙中的OFDM符号2、OFDM符号3上。
根据以上流程,基于8口参考信号图样确定N端口CSI-RS被映射到的RE位置,具体可包括如下几种情况:
情况2-1:对于18端口CSI-RS映射或传输,18端口参考信号图样中的一个18端口CSI-RS被映射到的RE位置,与8端口参考信号图样中的3组8端口CSI-RS被映射的RE位置相同,且18端口CSI-RS中的每组6个端口采用8位正交扩频码的8个码字中的6个码字进行复用(即OCC=8)。其中,每组6端口CSI-RS映射到8个RE上。
情况2-1的一种替代方案中,18端口CSI-RS被映射到的RE位置,与8端口参考信号图样中的3组8端口CSI-RS被映射的RE位置中的18个RE位置相同,且18端口CSI-RS中的每6个端口采用6位正交扩频码进行复用 (即OCC=6)。其中,每组6端口CSI-RS映射到6个RE上。
情况2-2:对于20端口CSI-RS映射或传输,20端口参考信号图样中的一个20端口CSI-RS被映射到的RE位置,与8端口参考信号图样中的4组8端口CSI-RS被映射的RE位置相同,且20端口CSI-RS中的每组5个端口采用8位正交扩频码的8个码字中的5个码字进行复用(即OCC=8)。其中,每组5端口CSI-RS映射到8个RE上。
情况2-2的一种替代方案中,20端口CSI-RS被映射到的RE位置,与8端口参考信号图样中的4组8端口CSI-RS被映射的RE位置中的20个RE位置相同,且20端口CSI-RS中的每5个端口采用5位正交扩频码进行复用(即OCC=5)。其中,每组5端口CSI-RS映射到5个RE上。
情况2-3:对于24端口CSI-RS映射或传输,24端口参考信号图样中的一个24端口CSI-RS被映射到的RE位置,与8端口参考信号图样中的3组8端口CSI-RS被映射的RE位置相同。每组8端口CSI-RS可以采用8位正交扩频码的8个码字中的8个码字进行复用(即OCC=8),也可以每组8端口CSI-RS中的两个分组CSI-RS分别采用4位正交扩频码的4个码字进行复用(即OCC=4),其中,一个分组CSI-RS被映射到4个端口对应的RE上。其中,每组8端口CSI-RS映射到8个RE上。
情况2-4:对于28端口CSI-RS映射或传输,28端口参考信号图样中的一个28端口CSI-RS被映射到的RE位置,与8端口参考信号图样中的4组8端口CSI-RS被映射的RE位置相同,且28端口CSI-RS中的每组7个端口采用8位正交扩频码的8个码字中的7个码字进行复用(即OCC=8)。其中,每组7端口CSI-RS映射到8个RE上。
情况2-4的一种替代方案中,28端口CSI-RS被映射到的RE位置,与8端口参考信号图样中的4组8端口CSI-RS被映射的RE位置中的28个RE位置相同,且28端口CSI-RS中的每组7个端口采用7位正交扩频码进行复用(即OCC=7)。其中,每组7端口CSI-RS映射到7个RE上。
情况2-5:对于32端口CSI-RS映射或传输,32端口参考信号图样中的一个32端口CSI-RS被映射到的RE位置,与8端口参考信号图样中的4组8端口CSI-RS被映射的RE位置相同。每组8端口CSI-RS可以采用8位正交 扩频码的8个码字中的8个码字进行复用(即OCC=8),也可以每组8端口CSI-RS中的两个分组CSI-RS分别采用4位正交扩频码的4个码字进行复用(即OCC=4),其中,一个分组CSI-RS被映射到4个端口对应的RE上。其中,每组8端口CSI-RS映射到8个RE上。
上述情况2-1至情况2-5中,根据一个子帧中包含的符号数量,8端口参考信号图样中,CSI-RS所映射到的RE所在的符号位置也有所不同,具体可包括以下情况:
在一个子帧中包含14或11个OFDM符号的情况下,所使用的8端口参考信号图样中,包含5组8端口CSI-RS,并具体可包含以下两种形式:
-每组8端口CSI-RS中包含两个分组CSI-RS,每个分组CSI-RS采用4位正交扩频码的4个码字进行复用,其中一个分组CSI-RS被以时分复用方式映射到第一至第四OFDM符号上的4个RE,另外一个分组CSI-RS被以时分复用结合频分复用方式映射到第五至第六OFDM符号上的4个RE;其中,第一至第四OFDM符号为DMRS所在的符号。
-每组8端口CSI-RS采用8位正交扩频码进行复用,一个8端口CSI-RS被以时分复用方式结合频分复用方式映射到第一至第四OFDM符号上的4个RE,以及第五至第六OFDM符号上的4个RE;其中,第一至第四OFDM符号为DMRS所在的符号。
其中,在一个包含14个OFDM符号的正常循环前缀子帧中,所述第一至第四OFDM符号分别为一个子帧的第一个时隙中第六个至第七个OFDM符号(即slot 0中的OFDM符号5和OFDM符号6)以及该子帧的第二个时隙中的第六个至第七个OFDM符号(即slot 1中的OFDM符号5和OFDM符号6),所述第五至第六OFDM符号分别为该子帧的第二个时隙中的第三个至第四个OFDM符号(即slot 1中的OFDM符号2和OFDM符号3)。
在一个包含11个或12个OFDM符号的DwPTS中,所述第一至第四OFDM符号分别为一个子帧的第一个时隙中第三个至第四个OFDM符号(即slot 0中的OFDM符号2和OFDM符号3)以及该子帧的第二个时隙中的第三个至第四个OFDM符号(即slot 1中的OFDM符号2和OFDM符号3),所述第五至第六OFDM符号分别为该子帧的第一个时隙中的第六个至第七个 OFDM符号(即slot 0中的OFDM符号5和OFDM符号6)。
在在一个包含12个OFDM符号的扩展循环前缀子帧中,上述情况2-1至情况2-5所使用的8端口参考信号图样中的每组8端口CSI-RS被以时分复用方式结合频分复用方式映射到一个子帧的第一个时隙中的第五个至第六个OFDM符号(即slot 0中的OFDM符号4和OFDM符号5)以及该子帧的第二个时隙中的第五个至第六个OFDM符号(即slot 1中的OFDM符号4和OFDM符号5)。
通过以上描述可以看出,本公开文本实施例重新定义了8端口参考信号图样,作为确定N端口参考信号图样的依据。例如,在一个子帧中包含14个OFDM符号的情况下,重新定义的8端口参考信号图样中,每组8端口CSI-RS分别占用6个OFDM符号,其中4个端口以时分复用的方式映射至子帧的第一时隙中的OFDM符号5、OFDM符号6上,以及该子帧的第二时隙的OFDM符号5、OFDM符号6上,其余4个端口以时分复用结合频分复用的方式映射至该子帧的第二时隙中的OFDM符号2、OFDM符号3上。
对于32端口CSI-RS,若直接采用图1a、图1b或图1c中的OCC=2的端口进行聚合,比如采用16组2端口CSI-RS聚合、8组4端口CSI-RS聚合或者4组8端口CSI-RS聚合,则每个端口的功率不能充分利用,导致导频的功率仅为数据功率的四分之一;若直接采用图2中的OCC=4的端口进行聚合,如采用8组4端口聚合或者4组8端口聚合,则会导致OFDM符号5、OFDM符号6与OFDM符号2、OFDM符号3中的导频功率不一致(OFDM符号5、OFDM符号6的导频功率为数据功率的四分之一,而OFDM符号2、OFDM符号3的导频功率为数据功率的二分之一)。这都会影响到导频的覆盖。类似地,对于18、20、24或28端口导频,也存在同样的导频功率不一致问题。而基于本公开文本实施例上述的一种可选方案中,采用8位正交扩频码(即OCC=8)进行聚合,在不增加额外导频资源且不降低导频密度的条件下,实现了CSI-RS的等功率发送并在扩展至OCC=8时实现导频的满功率利用。
下面分别以32端口CSI-RS、24端口CSI-RS、18端口CSI-RS、20端口CSI-RS和28端口CSI-RS为例描述。
(一)32端口参考信号图样
方法1
在方法1中,32端口参考信号图样中,一组32端口CSI-RS被映射到的32个RE位置,与4端口参考信号图样中的8组4端口CSI-RS被映射到的32个RE的位置相同,并且每组4端口CSI-RS采用4位正交扩频码进行复用。
1个PRB中可包含10组4端口CSI-RS,本公开文本实施例中可任选其中的8组4端口CSI-RS构成32端口CSI-RS。可选地,可从时隙1中OFDM符号2、OFDM符号3上任意选择4组4端口CSI-RS图样,并与时隙0和时隙1中的OFDM符号5、OFDM符号6上的4组4端口CSI-RS图样组合,构成32端口CSI-RS图样。
图4a示例性地示出了方法1中的一种32端口参考信号图样。图4a中,每个方格表示一个RE。32端口CSI-RS所映射到的RE中,每个RE对应的方格用字母标识,相同字母的RE对应4端口参考信号图样中的一组4端口CSI-RS映射到的RE。图4a所示的32端口参考信号图样中,包含8组4端口CSI-RS,该8组4端口CSI-RS所映射到的RE分别标识为A、B、C、D、E、F、I、J,每组RE与4端口参考信号图样中的一组CSI-RS所映射到的RE位置相同。
具体地,时隙0中OFDM符号5、OFDM符号6上标识为A的RE,与时隙1中OFDM符号5、OFDM符号6上标识为A的RE,以TDM的方式构成一个分组,同理,时隙0和时隙1中OFDM符号5、OFDM符号6上标识为B、I、J的RE各自构成一个分组;时隙1中OFDM符号2、OFDM符号3上标识为C的RE以TDM结合FDM的方式构成一个分组,同理,时隙1中OFDM符号2、OFDM符号3上标识为D、E、F的RE各自构成一个分组。
相同字母所对应的CSI-RS构成一个OCC=4的分组,采用一组4位正交扩频码进行复用(即OCC=4)。
图4b示例性地示出了方法1中的另一种32端口参考信号图样。其中,图4b与图4a的区别在于:时隙1中的OFDM符号2、OFDM符号3上的CSI-RS分组不同。图4b中,相同字母所对应的CSI-RS采用一组4位正交扩频码进行复用。
需要说明的是,图4a和图4b仅分别示出了一种可能的32端口参考信号图样,基于前述32端口参考信号图样的分布规律,还可以得到其他32端口参考信号图样,在此不再一一列举。
本公开文本实施例中,还可以基于上述方法1的原理得到时分双工(Time Division Duplexing,TDD)子帧的DwPTS区域中的32端口参考信号图样。
图4c和图4d分别示出了另一种32端口参考信号图样,其中,图4c所示的图样适用于包含11个或12个OFDM符号的DwPTS,图4d所示的图样适用于采用扩展CP的长度为12个符号的子帧。图4c中和图4d中,32端口CSI-RS图样由8组4端口CSI-RI图样构成,每组用一个相同的字母标识,相同字母所对应的CSI-RS构成一个OCC=4的分组,采用一组4位正交扩频码进行复用。需要说明的是,图4c和图4d仅示出了两种可能的32端口参考信号图样,基于前述32端口参考信号图样的分布规律,还可以得到其他32端口参考信号图样,在此不再一一列举。
上述方法1所提供的32端口CSI-RS图样,可以保证32个CSI-RS端口均具有相同的发送功率,其端口使用的正交扩频码可以重用Rel-13中的扩频码定义。
方法2
在方法2中,32端口参考信号图样中,一组32端口CSI-RS被映射到的32个RE位置,与8端口参考信号图样中的4组8端口CSI-RS被映射到的32个RE的位置相同,并且每组8端口CSI-RS中的两个分组CSI-RS分别采用4位正交扩频码进行复用,其中,一个分组CSI-RS被映射到4个端口对应的RE上。
1个PRB中可包含5组8端口CSI-RS,本公开文本实施例中可任选其中的4组8端口CSI-RS构成32端口CSI-RS。可选地,每组8端口CSI-RS所映射到的RE分布于时隙0中的OFDM符号5、OFDM符号6,时隙1中的OFDM符号5、OFDM符号6,以及时隙1中的OFDM符号2、OFDM符号3。其中,一组8端口CSI-RS中,分布于时隙0中的OFDM符号5、OFDM符号6的2个RE与分布于时隙1中的OFDM符号5、OFDM符号6的2个RE构成一个分组,分布于时隙1中的OFDM符号2、OFDM符号3的4个 RE构成一个分组。
图5a示例性地示出了方法2中的一种32端口参考信号图样。图5a中,每个方格表示一个RE。32端口CSI-RS所映射到的RE中,每个RE对应的方格用字母标识。图5a所示的32端口参考信号图样中,包含4组8端口CSI-RS,该4组8端口CSI-RS所映射到的RE分别标识为A到H,标识为A和B的两组RE与8端口参考信号图样中的一组8端口CSI-RS所映射到的RE位置相同,同理,标识为C和D的两组RE、标识为E和F的两组RE、标识为G和H的两组RE,分别与8端口参考信号图样中的一组8端口CSI-RS所映射到的RE位置相同。
具体地,时隙0中OFDM符号5、OFDM符号6上标识为A的RE,与时隙1中OFDM符号5、OFDM符号6上标识为A的RE,以TDM的方式构成一个分组,同理,时隙0和时隙1中OFDM符号5、OFDM符号6上标识为C、E、G的RE各自构成一个分组;时隙1中OFDM符号2、OFDM符号3上标识为B的RE以TDM结合FDM的方式构成一个分组,同理,时隙1中OFDM符号2、OFDM符号3上标识为D、F、H的RE各自构成一个分组。
相同字母所对应的CSI-RS构成一个OCC=4的分组,采用一组4位正交扩频码进行复用。
图5b示例性地示出了方法2中的另一种32端口参考信号图样。其中,图5b与图5a的区别在于:时隙1中的OFDM符号2、OFDM符号3上的CSI-RS分组不同。图5b中,相同字母所对应的CSI-RS构成一个OCC=4的分组,采用一组4位正交扩频码进行复用。
需要说明的是,图5a和图5b仅分别示出了一种可能的32端口参考信号图样,基于前述32端口参考信号图样的分布规律,还可以得到其他32端口参考信号图样,比如,图5a中在OFDM符号2、3中的4个OCC=4的分组(标号为B、D、F、H)所在位置及未被使用的资源所在位置仅作为一种实例,其可以选在符号2、3中的任意位置,且互不重叠。
本公开文本实施例中,还可以基于上述方法2的原理得到TDD子帧的DwPTS区域中的32端口参考信号图样。
图5c和图5d分别示出了另一种32端口参考信号图样,其中,图5c所示的图样适用于包含11个或12个OFDM符号的DwPTS,图5d所示的图样适用于采用扩展CP的长度为12个符号的子帧。图5c中和图5d中,32端口CSI-RS图样由4组8端口CSI-RS图样构成(2种不同字母标识的RE为1组8端口CSI-RS图样),相同字母所对应的CSI-RS构成一个OCC=4的分组,采用一组4位正交扩频码进行复用。需要说明的是,图5c和图5d仅示出了两种可能的32端口参考信号图样,基于前述32端口参考信号图样的分布规律,还可以得到其他32端口参考信号图样,在此不再一一列举。
上述方法2所提供的32端口CSI-RS图样,可以保证32个CSI-RS端口均具有相同的发送功率,其端口使用的正交扩频码可以重用Rel-13中的扩频码定义。
方法3
在方法3中,32端口参考信号图样中,一组32端口CSI-RS被映射到的32个RE位置,与8端口参考信号图样中的4组8端口CSI-RS被映射到的32个RE的位置相同,并且每组8端口CSI-RS可采用8位正交扩频码进行复用。
1个PRB中可包含5组8端口CSI-RS,本公开文本实施例中可任选其中的4组8端口CSI-RS构成32端口CSI-RS。可选地,每组8端口CSI-RS所映射到的RE分布于时隙0中的OFDM符号5、OFDM符号6,时隙1中的OFDM符号5、OFDM符号6,以及时隙1中的OFDM符号2、OFDM符号3。其中,一组8端口CSI-RS中,分布于时隙0中的OFDM符号5、OFDM符号6的2个RE与分布于时隙1中的OFDM符号5、OFDM符号6的2个RE以及分布于时隙1中的OFDM符号2、OFDM符号3的4个RE构成一组。
图6a示例性地示出了方法3中的一种32端口参考信号图样。图6a中,每个方格表示一个RE。32端口CSI-RS所映射到的RE中,每个RE对应的方格用字母标识。图6a所示的32端口参考信号图样中,包含4组8端口CSI-RS,该4组8端口CSI-RS所映射到的RE分别标识为A到D,标识为A的RE与8端口参考信号图样中的一组8端口CSI-RS所映射到的RE位置相同,同理,标识为B的一组RE、标识为C的一组RE、标识为D的一组RE,分别与8 端口参考信号图样中的一组8端口CSI-RS所映射到的RE位置相同。
具体地,时隙0中OFDM符号5、OFDM符号6上标识为A的RE,与时隙1中OFDM符号5、OFDM符号6上标识为A的RE,以及时隙1中OFDM符号2、OFDM符号3上标识为A的RE,以TDM结合FDM的方式构成一个分组,同理,标识为B、C、D的RE分别构成一个分组。
相同字母所对应的CSI-RS构成一个OCC=8的分组,采用一组8位正交扩频码进行复用。比如可以根据表1所示的方式进行复用。
表1
Figure PCTCN2017073077-appb-000003
可以看出,本公开文本实施例中结合了TDM与FDM的复用方式,同时使用OCC=8,可以实现导频的满功率利用(full-power utilization),使得导频与数据具有相同的发送功率。
图6b示例性地示出了方法3中的另一种32端口参考信号图样。其中,图6b与图6a的区别在于:一个分组的RE(即8端口参考信号图样中的一个8端口CSI-RS映射到的RE)在时隙1中的OFDM符号上的分布不同。图6b中,相同字母所对应的CSI-RS构成一个OCC=8的分组,采用一组8位正交扩频码进行复用。比如可以根据表2所示的方式进行复用。
需要说明的是,图6a和图6b仅分别示出了一种可能的32端口参考信号图样,基于前述32端口参考信号图样的分布规律,还可以得到其他32端口参考信号图样,例如,OFDM符号2、OFDM符号3中的4个分组位置及未被使用的资源位置可以任意选取且互不重叠,同时每个分组可以在频域上进一步分为两组不相邻的子分组,在此不再一一列举。
本公开文本实施例中,还可以基于上述方法2的原理得到TDD子帧的DwPTS区域中的32端口参考信号图样。
图6c和图6d分别示出了另一种32端口参考信号图样,其中,图6c所示的图样适用于包含11个或12个OFDM符号的DwPTS,图6d所示的图样适用于采用扩展CP的长度为12个符号的子帧。图6c中和图6d中,32端口CSI-RS图样由4组8端口CSI-RS图样构成,相同字母所对应的CSI-RS构成一个OCC=8的分组,采用一组8位正交扩频码进行复用。需要说明的是,图6c和图6d仅示出了两种可能的32端口参考信号图样,基于前述32端口参考信号图样的分布规律,还可以得到其他32端口参考信号图样,在此不再一一列举。
(二)24端口参考信号图样
方法1
在方法1中,24端口参考信号图样中,一组24端口CSI-RS被映射到的24个RE位置,与4端口参考信号图样中的6组4端口CSI-RS被映射到的24个RE的位置相同,并且每组4端口CSI-RS采用4位正交扩频码进行复用。
1个PRB中可包含10组4端口CSI-RS,本公开文本实施例中可任选其中的6组4端口CSI-RS构成24端口CSI-RS。可选地,可从时隙1中OFDM符号2、OFDM符号3上任意选择3组4端口CSI-RS图样,并与时隙0和时隙1中的OFDM符号5、OFDM符号6上的3组4端口CSI-RS图样组合,构成24端口CSI-RS图样。
图7a示例性地示出了方法1中的一种24端口参考信号图样。时隙0中OFDM符号5、OFDM符号6上标识为A的RE,与时隙1中OFDM符号5、OFDM符号6上标识为A的RE,以TDM的方式构成一个分组,同理,时隙0和时隙1中OFDM符号5、OFDM符号6上标识为B、I的RE各自构成一个分组;时隙1中OFDM符号2、OFDM符号3上标识为C的RE以TDM结合FDM的方式构成一个分组,同理,时隙1中OFDM符号2、OFDM符号3上标识为D、E的RE各自构成一个分组。
相同字母所对应的CSI-RS构成一个OCC=4的分组,采用一组4位正交扩频码进行复用(即OCC=4)。
图7b示例性地示出了方法1中的另一种24端口参考信号图样。其中,图7b与图7a的区别在于:时隙1中的OFDM符号2、OFDM符号3上的CSI-RS分组不同。图7b中,相同字母所对应的CSI-RS采用一组4位正交扩频码进行复用。
需要说明的是,图7a和图7b仅分别示出了一种可能的24端口参考信号图样,基于前述24端口参考信号图样的分布规律,还可以得到其他24端口参考信号图样,在此不再一一列举。
图7c和图7d分别示出了另一种24端口参考信号图样,其中,图7c所示的图样适用于包含11个或12个OFDM符号的DwPTS,图7d所示的图样适用于采用扩展CP的长度为12个符号的子帧。图7c中和图7d中,24端口CSI-RS图样由6组4端口CSI-RI图样构成,每组用一个相同的字母标识,相同字母所对应的CSI-RS构成一个OCC=4的分组,采用一组4位正交扩频码进行复用。需要说明的是,图7c和图7d仅示出了两种可能的24端口参考信号图样,基于前述24端口参考信号图样的分布规律,还可以得到其他24端口参考信号图样,在此不再一一列举。
上述方法1所提供的24端口CSI-RS图样,可以保证24个CSI-RS端口均具有相同的发送功率,其端口使用的正交扩频码可以重用Rel-13中的扩频码定义。
方法2
在方法2中,24端口参考信号图样中,一组24端口CSI-RS被映射到的24个RE位置,与8端口参考信号图样中的3组8端口CSI-RS被映射到的24个RE的位置相同,并且每组8端口CSI-RS中的两个分组CSI-RS分别采用4位正交扩频码进行复用,其中,一个分组CSI-RS被映射到4个端口对应的RE上。
1个PRB中可包含5组8端口CSI-RS,本公开文本实施例中可任选其中的3组8端口CSI-RS构成24端口CSI-RS。
图8a示例性地示出了方法2中的一种24端口参考信号图样。图8a中,时隙0中OFDM符号5、OFDM符号6上标识为A的RE,与时隙1中OFDM符号5、OFDM符号6上标识为A的RE,以TDM的方式构成一个分组,同 理,时隙0和时隙1中OFDM符号5、OFDM符号6上标识为C的RE各自构成一个分组;时隙1中OFDM符号2、OFDM符号3上标识为B的RE以TDM结合FDM的方式构成一个分组。相同字母所对应的CSI-RS构成一个OCC=4的分组,采用一组4位正交扩频码进行复用。
图8b示例性地示出了方法2中的另一种24端口参考信号图样。其中,图8b与图8a的区别在于:时隙1中的OFDM符号2、OFDM符号3上的CSI-RS分组不同。图8b中,相同字母所对应的CSI-RS构成一个OCC=4的分组,采用一组4位正交扩频码进行复用。
需要说明的是,图8a和图8b仅分别示出了一种可能的24端口参考信号图样,基于前述24端口参考信号图样的分布规律,还可以得到其他24端口参考信号图样。
图8c和图8d分别示出了另一种24端口参考信号图样,其中,图8c所示的图样适用于包含11个或12个OFDM符号的DwPTS,图8d所示的图样适用于长度为采用扩展CP的12个符号的子帧。图8c中和图8d中,24端口CSI-RS图样由3组8端口CSI-RS图样构成(2种不同字母标识的RE为1组8端口CSI-RS图样),相同字母所对应的CSI-RS构成一个OCC=4的分组,采用一组4位正交扩频码进行复用。需要说明的是,图8c和图8d仅示出了两种可能的24端口参考信号图样,基于前述24端口参考信号图样的分布规律,还可以得到其他24端口参考信号图样,在此不再一一列举。
上述方法2所提供的24端口CSI-RS图样,可以保证24个CSI-RS端口均具有相同的发送功率,其端口使用的正交扩频码可以重用Rel-13中的扩频码定义。
方法3
在方法3中,24端口参考信号图样中,一组24端口CSI-RS被映射到的24个RE位置,与8端口参考信号图样中的3组8端口CSI-RS被映射到的24个RE的位置相同,并且每组8端口CSI-RS可采用8位正交扩频码进行复用。
1个PRB中可包含5组8端口CSI-RS,本公开文本实施例中可任选其中的3组8端口CSI-RS构成24端口CSI-RS。
图9a示例性地示出了方法3中的一种24端口参考信号图样。图9a中,时隙0中OFDM符号5、OFDM符号6上标识为A的RE,与时隙1中OFDM符号5、OFDM符号6上标识为A的RE,以及时隙1中OFDM符号2、OFDM符号3上标识为A的RE,以TDM结合FDM的方式构成一个分组,同理,标识为B、C的RE分别构成一个分组。
相同字母所对应的CSI-RS构成一个OCC=8的分组,采用一组8位正交扩频码进行复用。
可以看出,本公开文本实施例中结合了TDM与FDM的复用方式,同时使用OCC=8,可以实现导频的满功率利用(full-power utilization),使得导频与数据具有相同的发送功率。
图9b示例性地示出了方法3中的另一种24端口参考信号图样。其中,图9b与图9a的区别在于:一个分组的RE(即8端口参考信号图样中的一个8端口CSI-RS映射到的RE)在时隙1中的OFDM符号上的分布不同。图9b中,相同字母所对应的CSI-RS构成一个OCC=8的分组,采用一组8位正交扩频码进行复用。
需要说明的是,图9a和图9b仅分别示出了一种可能的24端口参考信号图样,基于前述24端口参考信号图样的分布规律,还可以得到其他24端口参考信号图样,在此不再一一列举。
图9c和图9d分别示出了另一种24端口参考信号图样,其中,图9c所示的图样适用于包含11个或12个OFDM符号的DwPTS,图9d所示的图样适用于采用扩展CP的长度为12个符号的子帧。图9c中和图9d中,24端口CSI-RS图样由3组8端口CSI-RS图样构成,相同字母所对应的CSI-RS构成一个OCC=8的分组,采用一组8位正交扩频码进行复用。需要说明的是,图9c和图9d仅示出了两种可能的24端口参考信号图样,基于前述24端口参考信号图样的分布规律,还可以得到其他24端口参考信号图样,在此不再一一列举。
对于18端口CSI-RS、20端口CSI-RS和28端口CSI-RS,可以基于上述32端口CSI-RS或24端口CSI-RS映射原理实现,区别在于基于8端口参考信号图样确定18端口CSI-RS、20端口CSI-RS或28端口CSI-RS映射到的 RE时,比基于8端口参考信号图样确定24端口CSI-RS或32端口CSI-RS映射到的RE时,每个分组复用的CSI-RS端口数减少,此外每组CSI-RS所映射到的RE数量有所减少或者保持不变。
(三)18端口参考信号图样
18端口参考信号图样中,一组18端口CSI-RS被映射到的18个RE位置,与8端口参考信号图样中的3组8端口CSI-RS被映射到的所有RE中的18个RE的位置相同。其中,每组6端口CSI-RS映射到6个RE上,且采用6位正交扩频码进行复用。
图10a示例性地示出了一种18端口参考信号图样。图10a中,每个方格表示一个RE。18端口CSI-RS所映射到的RE中,每个RE对应的方格用字母标识。图10a所示的18端口参考信号图样中,包含3组6端口CSI-RS,该3组6端口CSI-RS所映射到的RE分别标识为A到C。相同字母所对应的CSI-RS构成一个OCC=6的分组,采用一组6位正交扩频码进行复用。
图10b示例性地示出了另一种18端口参考信号图样。其中,图10b与图10a的区别在于:时隙1中的OFDM符号2、OFDM符号3上的CSI-RS分组不同。
需要说明的是,图10a和图10b仅分别示出了一种可能的18端口参考信号图样,基于前述18端口参考信号图样的分布规律,还可以得到其他18端口参考信号图样。
本公开文本实施例中,还可以基于上述原理得到TDD子帧的DwPTS区域中的18端口参考信号图样。
图10c和图10d分别示出了另一种18端口参考信号图样,其中,图10c所示的图样适用于包含11个或12个OFDM符号的DwPTS,图10d所示的图样适用于采用扩展CP的长度为12个符号的子帧。图10c中和图10d中,18端口CSI-RS图样由3组8端口CSI-RS图样构成,相同字母所对应的CSI-RS构成一个分组,采用一组6位正交扩频码进行复用。需要说明的是,图10c和图10d仅示出了两种可能的18端口参考信号图样,基于前述18端口参考信号图样的分布规律,还可以得到其他18端口参考信号图样,在此不再一一列举。
另一种实现方式是18端口参考信号图样中,一组18端口CSI-RS被映射到的24个RE位置,与8端口参考信号图样中的3组8端口CSI-RS被映射到的所有RE的位置相同。其中,每组6端口CSI-RS映射到8个RE上,且采用8位正交扩频码中的6个码字进行复用。实例图与图7a至图7d完全相同。
上述提供的18端口CSI-RS图样,可以保证18个CSI-RS端口均具有相同的发送功率,其端口使用的正交扩频码可以重用Rel-13中的扩频码定义。
(四)20端口参考信号图样
20端口参考信号图样中,一组20端口CSI-RS被映射到的20个RE位置,与8端口参考信号图样中的4组8端口CSI-RS被映射到的所有RE中的20个RE的位置相同。其中,每组5端口CSI-RS映射到5个RE上,且采用5位正交扩频码进行复用。
图11a示例性地示出了一种20端口参考信号图样。图11a中,每个方格表示一个RE。20端口CSI-RS所映射到的RE中,每个RE对应的方格用字母标识。图11a所示的18端口参考信号图样中,包含4组5端口CSI-RS,该4组5端口CSI-RS所映射到的RE分别标识为A到D。相同字母所对应的CSI-RS构成一个OCC=5的分组,采用一组5位正交扩频码进行复用。
图11b示例性地示出了另一种20端口参考信号图样。其中,图11b与图11a的区别在于:时隙1中的OFDM符号2、OFDM符号3上的CSI-RS分组不同。
需要说明的是,图11a和图11b仅分别示出了一种可能的20端口参考信号图样,基于前述20端口参考信号图样的分布规律,还可以得到其他20端口参考信号图样。
本公开文本实施例中,还可以基于上述原理得到TDD子帧的DwPTS区域中的20端口参考信号图样。
图11c和图11d分别示出了另一种20端口参考信号图样,其中,图11c所示的图样适用于包含11个或12个OFDM符号的DwPTS,图11d所示的图样适用于采用扩展CP的长度为12个符号的子帧。图11c中和图10d中,20端口CSI-RS图样由4组8端口CSI-RS图样构成,相同字母所对应的CSI-RS 构成一个分组,采用一组5位正交扩频码进行复用。需要说明的是,图11c和图11d仅示出了两种可能的20端口参考信号图样,基于前述20端口参考信号图样的分布规律,还可以得到其他20端口参考信号图样,在此不再一一列举。
另一种实现方式是20端口参考信号图样中,一组20端口CSI-RS被映射到的32个RE位置,与8端口参考信号图样中的4组8端口CSI-RS被映射到的所有RE的位置相同。其中,每组5端口CSI-RS映射到8个RE上,且采用8位正交扩频码中的5个码字进行复用。实例图与图6a至图6d完全相同。
上述提供的20端口CSI-RS图样,可以保证20个CSI-RS端口均具有相同的发送功率,其端口使用的正交扩频码可以重用Rel-13中的扩频码定义。
(五)28端口参考信号图样
28端口参考信号图样中,一组20端口CSI-RS被映射到的20个RE位置,与8端口参考信号图样中的4组8端口CSI-RS被映射到的所有RE中的28个RE的位置相同。其中,每组7端口CSI-RS映射到7个RE上,且采用7位正交扩频码进行复用。
图12a示例性地示出了一种28端口参考信号图样。图12a中,每个方格表示一个RE。28端口CSI-RS所映射到的RE中,每个RE对应的方格用字母标识。图12a所示的28端口参考信号图样中,包含4组7端口CSI-RS,该4组7端口CSI-RS所映射到的RE分别标识为A到D。相同字母所对应的CSI-RS构成一个OCC=7的分组,采用一组7位正交扩频码进行复用。
图12b示例性地示出了另一种28端口参考信号图样。其中,图12b与图12a的区别在于:时隙1中的OFDM符号2、OFDM符号3上的CSI-RS分组不同。
需要说明的是,图12a和图12b仅分别示出了一种可能的28端口参考信号图样,基于前述28端口参考信号图样的分布规律,还可以得到其他28端口参考信号图样。
本公开文本实施例中,还可以基于上述原理得到TDD子帧的DwPTS区域中的28端口参考信号图样。
图12c和图12d分别示出了另一种28端口参考信号图样,其中,图12c所示的图样适用于包含11个或12个OFDM符号的DwPTS,图12d所示的图样适用于采用扩展CP的长度为12个符号的子帧。图12c中和图12d中,28端口CSI-RS图样由4组8端口CSI-RS图样构成,相同字母所对应的CSI-RS构成一个分组,采用一组7位正交扩频码进行复用。需要说明的是,图12c和图12d仅示出了两种可能的28端口参考信号图样,基于前述28端口参考信号图样的分布规律,还可以得到其他28端口参考信号图样,在此不再一一列举。
另一种实现方式是28端口参考信号图样中,一组28端口CSI-RS被映射到的32个RE位置,与8端口参考信号图样中的4组8端口CSI-RS被映射到的所有RE的位置相同。其中,每组7端口CSI-RS映射到8个RE上,且采用8位正交扩频码中的7个码字进行复用。实例图与图6a至图6d完全相同。
上述提供的28端口CSI-RS图样,可以保证28个CSI-RS端口均具有相同的发送功率,其端口使用的正交扩频码可以重用Rel-13中的扩频码定义。
通过以上描述可以看出,本公开文本的上述实施例中,根据4端口或8端口参考信号图样,得到18、20、24、28或32端口的参考信号图样,并在进行参考信号映射时,根据该18、20、24、28或32端口的参考信号图样确定CSI-RS被映射到的RE位置,根据该RE位置对CSI-RS进行资源映射,从而实现了18、20、24、28或32端口的CSI-RS映射,进而实现了18、20、24、28或32端口CSI-RS的传输。
基于相同的技术构思,本公开文本实施例还提供了一种参考信号映射装置。
参见图13,为本公开文本实施例提供的参考信号映射装置的结构示意图,该装置可实现上述参考信号映射流程。该装置可包括:确定模块1301和映射模块1302,其中:
确定模块1301,用于根据N端口参考信号图样,确定信道状态信息参考信号CSI-RS被映射到的资源单元RE,N为大于16的整数;其中,所述N端口参考信号图样中一个N端口CSI-RS被映射到的RE位置是根据M端口 参考信号图样中的多组M端口CSI-RS被映射到的RE位置确定的,M等于4或8;
映射模块1302,用于根据确定出的RE对CSI-RS进行资源映射。
可选地,N等于18、20、24、28或32;其中,当N等于24或32时M等于4或8,当N等于18、20、28时M等于8。
其中,确定模块1301根据N端口参考信号图样,确定信道状态信息参考信号CSI-RS被映射到的RE的方法,以及M端口参考信号图样的形式,可参见前述实施例,在此不再重复。
基于相同的技术构思,本公开文本实施例还提供了一种基站,该基站可实现上述参考信号映射流程。
参见图14,为本公开文本实施例提供的基站的结构示意图,该基站可包括:处理器1401、存储器1402、收发机1403以及总线接口。
处理器1401负责管理总线架构和通常的处理,存储器1402可以存储处理器1401在执行操作时所使用的数据。收发机1403用于在处理器1401的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1401代表的一个或多个处理器和存储器1402代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1403可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。
本公开文本实施例揭示的流程,可以应用于处理器1401中,或者由处理器1401实现。在实现过程中,数据传输流程的各步骤可以通过处理器1401中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1401可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开文本实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开文本实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件 模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1402,处理器1401读取存储器1402中的信息,结合其硬件完成控制面的处理方法的步骤。
具体地,处理器1401,用于读取存储器1402中的程序,执行下列过程:
根据N端口参考信号图样,确定信道状态信息参考信号CSI-RS被映射到的资源单元RE,N为大于16的整数;其中,所述N端口参考信号图样中一个N端口CSI-RS被映射到的RE位置是根据M端口参考信号图样中的多组M端口CSI-RS被映射到的RE位置确定的,M等于4或8;
根据确定出的RE对CSI-RS进行资源映射。
可选地,N等于18、20、24、28或32;其中,当N等于24或32时M等于4或8,当N等于18、20、28时M等于8。
其中,处理器1401根据N端口参考信号图样,确定信道状态信息参考信号CSI-RS被映射到的RE的方法,以及M端口参考信号图样的形式,可参见前述实施例,在此不再重复。
本领域内的技术人员应明白,本公开文本的实施例可提供为方法、***、或计算机程序产品。因此,本公开文本可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开文本可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开文本是参照根据本公开文本实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开文本进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本公开文本的这些修改和变型属于本公开文本权利要求及其等同技术的范围之内,则本公开文本也意图包含这些改动和变型在内。

Claims (20)

  1. 一种参考信号映射方法,包括:
    根据N端口参考信号图样,确定信道状态信息参考信号(Channel State Indication Reference Signal,CSI-RS)被映射到的资源单元(Resource Block,RE),N为大于16的整数;其中,所述N端口参考信号图样中一个N端口CSI-RS被映射到的RE位置是根据M端口参考信号图样中的多组M端口CSI-RS被映射到的RE位置确定的,M等于4或8;以及
    根据确定出的RE对CSI-RS进行资源映射。
  2. 如权利要求1所述的方法,其中,N等于18、20、24、28或32;其中,当N等于24或32时M等于4或8,当N等于18、20、28时M等于8。
  3. 如权利要求1或2所述的方法,其中,当N等于24或32时,N端口参考信号图样中的一个N端口CSI-RS被映射到的RE位置,与4端口参考信号图样中的Q组4端口CSI-RS被映射到的RE位置相同,每组4端口CSI-RS采用4位正交扩频码的4个码字进行复用,
    Figure PCTCN2017073077-appb-100001
  4. 如权利要求1或2所述的方法,其中,当N等于18、20、24、28或32时,N端口参考信号图样中的一个N端口CSI-RS被映射到的RE位置,与8端口参考信号图样中的L组8端口CSI-RS被映射的RE位置相同;其中,当N等于18、24时,L等于3,当N等于20、28或32时,L等于4,且:
    N端口中的每S端口采用8位正交扩频码的8个码字中的S个码字进行复用,并映射到一个8端口CSI-RS所占用的RE位置;其中,当N等于18时S等于6或8,当N等于20时S等于5或8,当N等于28时S等于7或8,当N等于24时S等于8,当N等于32时S等于8;或者,
    N端口中的每K端口采用K位正交扩频码进行复用,并映射到一个8端口CSI-RS所占用的RE位置中的K个RE位置;其中,当N等于18时K等于6,当N等于20时K等于5,当N等于28时K等于7;或者,
    N端口中每组8端口CSI-RS被分成两个分组CSI-RS,每个分组分别采用4位正交扩频码的4个码字进行复用,其中,一个分组CSI-RS被映射到4个端口对应的RE上;其中,N等于24或32。
  5. 如权利要求4所述的方法,其中,N端口参考信号图样中的一个N端口CSI-RS被映射到的RE位置,与8端口参考信号图样中的L组8端口CSI-RS被映射到的L×P个RE的位置相同;其中,当N等于18时P等于6或8,当N等于20时P等于5或8,当N等于28时P等于7或8,当N等于24时P等于8,当N等于32时P等于8。
  6. 如权利要求1至5中任一项所述的方法,其中,在一个包含14个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号的正常循环前缀子帧或者包含11个或12个OFDM符号的下行导频时隙(Downlink Pilot Time Slot,DwPTS)中,M等于4时,所述4端口参考信号图样中包含10组4端口CSI-RS,其中的4组端口CSI-RS中的每组4端口CSI-RS被以时分复用方式映射到第一至第四OFDM符号上的4个RE,另外6组4端口CSI-RS中的每组4端口CSI-RS被以时分复用结合频分复用方式映射到第五至第六OFDM符号上的4个RE;其中,第一至第四OFDM符号为解调参考信号(DeModulation Reference Signal,DMRS)所在的符号。
  7. 如权利要求1至5中任一项所述的方法,其中,在一个包含14个OFDM符号的正常循环前缀子帧或者包含11个或12个OFDM符号的DwPTS中,M等于8时,所述8端口参考信号图样中包含5组8端口CSI-RS,其中:
    每组8端口CSI-RS中包含两个分组CSI-RS,每个分组CSI-RS采用4位正交扩频码的4个码字进行复用,其中一个分组CSI-RS被以时分复用方式映射到第一至第四OFDM符号上的4个RE,另外一个分组CSI-RS被以时分复用结合频分复用方式映射到第五至第六OFDM符号上的4个RE;其中,第一至第四OFDM符号为DMRS所在的符号;或者,
    每组8端口CSI-RS被以时分复用结合频分复用方式映射到第一至第四OFDM符号上的4个RE和第五至第六OFDM符号上的4个RE;其中,第一至第四OFDM符号为DMRS所在的符号。
  8. 如权利要求6或7所述的方法,其中,在一个包含14个OFDM符号的正常循环子帧中,所述第一至第四OFDM符号分别为一个子帧的第一个时隙中第六个至第七个OFDM符号以及该子帧的第二个时隙中的第六个至第七个OFDM符号,所述第五至第六OFDM符号分别为该子帧的第二个时隙中 的第三个至第四个OFDM符号;或者,
    在一个包含11个或12个OFDM符号的DwPTS中,所述第一至第四OFDM符号分别为一个子帧的第一个时隙中第三个至第四个OFDM符号以及该子帧的第二个时隙中的第三个至第四个OFDM符号,所述第五至第六OFDM符号分别为该子帧的第一个时隙中的第六个至第七个OFDM符号。
  9. 如权利要求1至5中任一项所述的方法,其中,在一个扩展循环前缀子帧的12个OFDM符号中,所述M端口参考信号图样中的每组M端口CSI-RS被以时分复用方式结合频分复用方式映射到一个子帧的第一个时隙中的第五个至第六个OFDM符号以及该子帧的第二个时隙中的第五个至第六个OFDM符号。
  10. 一种参考信号映射装置,包括:
    确定模块,用于根据N端口参考信号图样,确定信道状态信息参考信号CSI-RS被映射到的资源单元RE,N为大于16的整数;其中,所述N端口参考信号图样中一个N端口CSI-RS被映射到的RE位置是根据M端口参考信号图样中的多组M端口CSI-RS被映射到的RE位置确定的,M等于4或8;以及
    映射模块,用于根据确定出的RE对CSI-RS进行资源映射。
  11. 如权利要求10所述的装置,其中,N等于18、20、24、28或32;其中,当N等于24或32时M等于4或8,当N等于18、20、28时M等于8。
  12. 如权利要求10或11所述的装置,其中,当N等于24或32时,N端口参考信号图样中的一个N端口CSI-RS被映射到的RE位置,与4端口参考信号图样中的Q组4端口CSI-RS被映射到的RE位置相同,每组4端口CSI-RS采用4位正交扩频码的4个码字进行复用,
    Figure PCTCN2017073077-appb-100002
  13. 如权利要求10或11所述的装置,其中,当N等于18、20、24、28或32时,N端口参考信号图样中的一个N端口CSI-RS被映射到的RE位置,与8端口参考信号图样中的L组8端口CSI-RS被映射的RE位置相同;其中,当N等于18、24时,L等于3,当N等于20、28或32时,L等于4,且:
    N端口中的每S端口采用8位正交扩频码的8个码字中的S个码字进行 复用,并映射到一个8端口CSI-RS所占用的RE位置;其中,当N等于18时S等于6或8,当N等于20时S等于5或8,当N等于28时S等于7或8,当N等于24时S等于8,当N等于32时S等于8;或者,
    N端口中的每K端口采用K位正交扩频码进行复用,并映射到一个8端口CSI-RS所占用的RE位置中的K个RE位置;其中,当N等于18时K等于6,当N等于20时K等于5,当N等于28时K等于7;或者,
    N端口中每组8端口CSI-RS被分成两个分组CSI-RS,每个分组分别采用4位正交扩频码的4个码字进行复用,其中,一个分组CSI-RS被映射到4个端口对应的RE上;其中,N等于24或32。
  14. 如权利要求13所述的装置,其中,N端口参考信号图样中的一个N端口CSI-RS被映射到的RE位置,与8端口参考信号图样中的L组8端口CSI-RS被映射到的P个RE的位置相同;其中,当N等于18时P等于6或8,当N等于20时P等于5或8,当N等于28时P等于7或8,当N等于24时P等于8,当N等于32时P等于8。
  15. 如权利要求10至14中任一项所述的装置,其中,在一个包含14个OFDM符号的正常循环前缀子帧或者包含11个或12个OFDM符号的DwPTS中,M等于4时,所述4端口参考信号图样中包含10组4端口CSI-RS,其中的4组端口CSI-RS中的每组4端口CSI-RS被以时分复用方式映射到第一至第四OFDM符号上的4个RE,另外6组4端口CSI-RS中的每组4端口CSI-RS被以时分复用结合频分复用方式映射到第五至第六OFDM符号上的4个RE;其中,第一至第四OFDM符号为解调参考信号DMRS所在的符号。
  16. 如权利要求10至14中任一项所述的装置,其中,在一个包含14个OFDM符号的正常循环前缀子帧或者包含11个或12个OFDM符号的DwPTS中,M等于8时,所述8端口参考信号图样中包含5组8端口CSI-RS,其中:
    每组8端口CSI-RS中包含两个分组CSI-RS,每个分组CSI-RS采用4位正交扩频码的4个码字进行复用,其中一个分组CSI-RS被以时分复用方式映射到第一至第四OFDM符号上的4个RE,另外一个分组CSI-RS被以时分复用结合频分复用方式映射到第五至第六OFDM符号上的4个RE;其中,第一至第四OFDM符号为DMRS所在的符号;或者,
    每组8端口CSI-RS被以时分复用结合频分复用方式映射到第一至第四OFDM符号上的4个RE和第五至第六OFDM符号上的4个RE;其中,第一至第四OFDM符号为DMRS所在的符号。
  17. 如权利要求15或16所述的装置,其中,在一个包含14个OFDM符号的正常循环子帧中,所述第一至第四OFDM符号分别为一个子帧的第一个时隙中第六个至第七个OFDM符号以及该子帧的第二个时隙中的第六个至第七个OFDM符号,所述第五至第六OFDM符号分别为该子帧的第二个时隙中的第三个至第四个OFDM符号;或者,
    在一个包含11个或12个OFDM符号的DwPTS中,所述第一至第四OFDM符号分别为一个子帧的第一个时隙中第三个至第四个OFDM符号以及该子帧的第二个时隙中的第三个至第四个OFDM符号,所述第五至第六OFDM符号分别为该子帧的第一个时隙中的第六个至第七个OFDM符号。
  18. 如权利要求10至16中任一项所述的装置,其中,在一个扩展循环前缀子帧的12个OFDM符号中,所述M端口参考信号图样中的每组M端口CSI-RS被以时分复用方式结合频分复用方式映射到一个子帧的第一个时隙中的第五个至第六个OFDM符号以及该子帧的第二个时隙中的第五个至第六个OFDM符号。
  19. 一种参考信号映射装置,包括:处理器和存储器,其中:
    所述处理器用于读取存储器中的程序,执行下列过程:
    根据N端口参考信号图样,确定信道状态信息参考信号CSI-RS被映射到的资源单元RE,N为大于16的整数;其中,所述N端口参考信号图样中一个N端口CSI-RS被映射到的RE位置是根据M端口参考信号图样中的多组M端口CSI-RS被映射到的RE位置确定的,M等于4或8;以及
    根据确定出的RE对CSI-RS进行资源映射,
    所述存储器能够存储处理器在执行操作时所使用的数据。
  20. 一种基站,包括:处理器、存储器和收发机,其中:
    所述处理器用于读取存储器中的程序,执行下列过程:
    根据N端口参考信号图样,确定信道状态信息参考信号CSI-RS被映射到的资源单元RE,N为大于16的整数;其中,所述N端口参考信号图 样中一个N端口CSI-RS被映射到的RE位置是根据M端口参考信号图样中的多组M端口CSI-RS被映射到的RE位置确定的,M等于4或8;以及
    根据确定出的RE对CSI-RS进行资源映射,
    所述收发机用于接收和发送数据,
    所述存储器能够存储处理器在执行操作时所使用的数据。
PCT/CN2017/073077 2016-03-10 2017-02-08 一种参考信号映射方法及装置 WO2017152730A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/082,529 US10560239B2 (en) 2016-03-10 2017-02-08 Reference signal mapping method and device
KR1020187027465A KR102196371B1 (ko) 2016-03-10 2017-02-08 참조신호 맵핑 방법 및 장치
JP2018547923A JP7152310B2 (ja) 2016-03-10 2017-02-08 参照信号マッピング方法および装置
EP17762416.0A EP3429115B1 (en) 2016-03-10 2017-02-08 Reference signal mapping method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610136905.0A CN107181578B (zh) 2016-03-10 2016-03-10 一种参考信号映射方法及装置
CN201610136905.0 2016-03-10

Publications (1)

Publication Number Publication Date
WO2017152730A1 true WO2017152730A1 (zh) 2017-09-14

Family

ID=59789000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073077 WO2017152730A1 (zh) 2016-03-10 2017-02-08 一种参考信号映射方法及装置

Country Status (7)

Country Link
US (1) US10560239B2 (zh)
EP (1) EP3429115B1 (zh)
JP (1) JP7152310B2 (zh)
KR (1) KR102196371B1 (zh)
CN (1) CN107181578B (zh)
TW (1) TWI650982B (zh)
WO (1) WO2017152730A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019514272A (ja) * 2016-03-31 2019-05-30 ドコモ イノヴェーションズ インクDocomo Innovations, Inc. Csi‐rsを送信する方法及び基地局

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888364B (zh) * 2016-09-30 2020-07-21 电信科学技术研究院 一种参考信号映射方法及装置
CN110855329B (zh) * 2018-08-20 2022-01-04 大唐移动通信设备有限公司 一种确定码字映射方式的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103179664A (zh) * 2011-12-20 2013-06-26 中兴通讯股份有限公司 端口映射、预编码矩阵和调制编码方式选择方法及装置
CN103347298A (zh) * 2012-12-31 2013-10-09 上海华为技术有限公司 参考信号配置方法和参考信号发送方法及相关设备
CN103974315A (zh) * 2013-02-05 2014-08-06 电信科学技术研究院 三维信道测量资源配置和质量测量方法及设备
CN104767592A (zh) * 2014-01-02 2015-07-08 ***通信集团公司 一种csi-rs的端口配置、csi-rs传输的方法和设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873626B (zh) 2009-04-27 2013-05-29 电信科学技术研究院 信道质量测量方法和***以及基站、中继节点和用户终端
US9432164B2 (en) * 2009-10-15 2016-08-30 Qualcomm Incorporated Method and apparatus for reference signal sequence mapping in wireless communication
WO2011106559A2 (en) * 2010-02-24 2011-09-01 Zte (Usa) Inc. Methods and systems for csi-rs resource allocation in lte-advance systems
CN102223212B (zh) 2010-04-16 2014-06-25 电信科学技术研究院 预编码矩阵索引上报方法和设备
WO2013025551A1 (en) 2011-08-12 2013-02-21 Interdigital Patent Holding, Inc. Reference signal configuration for extension carriers and carrier segments
CN102571284B (zh) 2012-01-19 2014-12-24 新邮通信设备有限公司 一种lte***的信道测量方法
US9503235B2 (en) 2012-09-11 2016-11-22 Lg Electronics Inc. Method and apparatus for transmitting channel state information-reference signals in wireless communication system
WO2014051374A1 (en) * 2012-09-27 2014-04-03 Lg Electronics Inc. Method and apparatus for transmitting or receiving reference signal in wireless communication system
CN105144612B (zh) * 2013-02-21 2018-03-23 Lg 电子株式会社 在无线通信***中对于大规模mimo在天线端口之间配置qcl的方法和设备
JP6114153B2 (ja) * 2013-09-26 2017-04-12 株式会社Nttドコモ 基地局、移動局、参照信号送信方法及びチャネル品質測定方法
US20160094326A1 (en) * 2014-09-26 2016-03-31 Electronics And Telecommunications Research Institute Method and apparatus for transmitting channel state information reference signal
WO2017078798A1 (en) * 2015-11-03 2017-05-11 Intel Corporation Antenna port multiplexing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103179664A (zh) * 2011-12-20 2013-06-26 中兴通讯股份有限公司 端口映射、预编码矩阵和调制编码方式选择方法及装置
CN103347298A (zh) * 2012-12-31 2013-10-09 上海华为技术有限公司 参考信号配置方法和参考信号发送方法及相关设备
CN103974315A (zh) * 2013-02-05 2014-08-06 电信科学技术研究院 三维信道测量资源配置和质量测量方法及设备
CN104767592A (zh) * 2014-01-02 2015-07-08 ***通信集团公司 一种csi-rs的端口配置、csi-rs传输的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3429115A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019514272A (ja) * 2016-03-31 2019-05-30 ドコモ イノヴェーションズ インクDocomo Innovations, Inc. Csi‐rsを送信する方法及び基地局
US11146371B2 (en) 2016-03-31 2021-10-12 Ntt Docomo, Inc. Method of transmission of CSI-RS and base station

Also Published As

Publication number Publication date
JP2019509688A (ja) 2019-04-04
EP3429115A1 (en) 2019-01-16
JP7152310B2 (ja) 2022-10-12
TW201733323A (zh) 2017-09-16
EP3429115A4 (en) 2019-03-13
US20190089497A1 (en) 2019-03-21
US10560239B2 (en) 2020-02-11
EP3429115B1 (en) 2020-11-18
CN107181578B (zh) 2020-01-14
CN107181578A (zh) 2017-09-19
TWI650982B (zh) 2019-02-11
KR102196371B1 (ko) 2020-12-29
KR20180115315A (ko) 2018-10-22

Similar Documents

Publication Publication Date Title
BR112012019729B1 (pt) Método de mapeamento de uma camada para uma porta de símbolo de referência de demodulação de multiplexação e aparato para alcançar pré-codificação baseado em um símbolo de referência de demodulação de multiplexação
JP6618607B2 (ja) 参照信号マッピング方法および装置
CN103391629A (zh) 一种参考信号的配置方法和***
WO2017152730A1 (zh) 一种参考信号映射方法及装置
CN102340801B (zh) 一种参考信号位置的确定方法和设备
JP2015519014A (ja) 制御チャネル送信方法および装置
CN109728888B (zh) 解调参考信号资源单元个数的确定方法、终端及网络设备
TWI670958B (zh) 一種參考信號映射方法及裝置
US20200067751A1 (en) Reference signal pattern transmission method and apparatus therefor
CN109586871B (zh) 一种csi-rs的传输方法及装置
WO2018059424A1 (zh) 一种参考信号映射方法及装置
CN107294676B (zh) 导频映射方法、导频信号传输方法及装置、基站和终端
WO2017075836A1 (zh) Csi-rs配置的方法及相关设备
WO2018171675A1 (zh) 一种参考信号发送、接收方法及装置
WO2018145488A1 (zh) 信息指示方法、设备及***
WO2017054167A1 (zh) 传输信道状态信息-参考信号csi-rs的方法及装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018547923

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187027465

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187027465

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2017762416

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017762416

Country of ref document: EP

Effective date: 20181010

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762416

Country of ref document: EP

Kind code of ref document: A1