WO2017152710A1 - 一种近眼显示***及头戴显示设备 - Google Patents

一种近眼显示***及头戴显示设备 Download PDF

Info

Publication number
WO2017152710A1
WO2017152710A1 PCT/CN2017/070139 CN2017070139W WO2017152710A1 WO 2017152710 A1 WO2017152710 A1 WO 2017152710A1 CN 2017070139 W CN2017070139 W CN 2017070139W WO 2017152710 A1 WO2017152710 A1 WO 2017152710A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
display system
eye display
color
Prior art date
Application number
PCT/CN2017/070139
Other languages
English (en)
French (fr)
Inventor
周旭东
黄琴华
Original Assignee
成都理想境界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201620173623.3U external-priority patent/CN205485073U/zh
Priority claimed from CN201620171521.8U external-priority patent/CN205450454U/zh
Priority claimed from CN201610127263.8A external-priority patent/CN105629474B/zh
Application filed by 成都理想境界科技有限公司 filed Critical 成都理想境界科技有限公司
Publication of WO2017152710A1 publication Critical patent/WO2017152710A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2286Particular reconstruction light ; Beam properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2223Particular relationship between light source, hologram and observer
    • G03H2001/2234Transmission reconstruction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/10Spectral composition
    • G03H2222/17White light
    • G03H2222/18RGB trichrome light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/16Optical waveguide, e.g. optical fibre, rod

Definitions

  • the present invention relates to the field of near-eye display, and more particularly to a near-eye display system and a head-mounted display device.
  • Google Glass projects images on the LCOS microdisplay through a projection optics system.
  • the projected image passes through a prism and mirror and is reflected to the user's eye by a beam splitter built into the prism.
  • Hololens couples the image on the LCOS or DLP microdisplay into the waveguide through the holographic grating, transmits it through the waveguide, and finally couples it in front of the human eye through the corresponding holographic grating to project into the human eye.
  • Both of the near-eye display technologies have problems of small field of view.
  • the former has a field of view of around 14° and the latter has a field of view of around 30°, so that neither can meet the needs of current consumer products.
  • the large field of view has become an urgent problem to be solved.
  • the present invention provides a near-eye display system including a light source system, a light guiding system, and an image display system; the image display system is for displaying a hologram; and the light source system is for guiding light input lighting a light beam; the light guiding system is configured to transmit and expand the illumination beam, and then illuminate the hologram displayed by the image display system to activate the hologram in a transmissive manner.
  • the light source in the light source system is an RGB three-color laser light source or an RGB three-color LED light source, and the three-color light alternately illuminates the hologram of the corresponding color on the image display system in a high frequency manner.
  • the light guiding system comprises a horizontal light guiding system.
  • the light guiding system further comprises a vertical light guiding system, and the illumination beam output by the light source system first passes through the vertical light guiding system and is coupled into the horizontal light guiding system.
  • the vertical light guiding system in the light guiding system adopts an array optical waveguide or a flat optical waveguide
  • the horizontal light guiding system adopts one of an array flat optical waveguide, a holographic optical waveguide and a slab waveguide.
  • the light incident region of the horizontal light guiding system is covered with an anti-reflection film.
  • the display element of the image display system is a digital holographic display element.
  • the display element of the image display system is a transparent digital holographic display element.
  • the light source system comprises: an RGB three-color laser light source, a coupling structure, an optical fiber and a fiber collimating mirror, and the RGB three-color laser outputted by the RGB three-color laser light source is first coupled into the optical fiber through the coupling structure, and then through the optical fiber.
  • the fiber collimating mirror coupled to the exit end is coupled into the light guiding system.
  • the light source system comprises: an RGB three-color laser light source and a light combining system, and the light combining system is configured to combine the RGB three-color laser beams output by the RGB three-color laser light source.
  • the light combining system is constructed by an X-cube prism or a dichroic mirror.
  • the light source system is an array light source in which a plurality of light sources are combined.
  • the present invention also provides a head mounted display device including a microprocessor and a near-eye display system, the near-eye display system being the above-described near-eye display system, the light source system and image in the microprocessor and the near-eye display system The display system is connected.
  • the invention also provides a near-eye display system, comprising a three-color light source system and an image display system, wherein the display element of the image display system is a transparent digital holographic display element; the three-color light generated by the three-color light source system is illuminated in a high frequency manner to transparent The hologram is activated in a reflective manner on the digital holographic display element.
  • the light source in the three-color light source system is an RGB three-color laser light source or an RGB three-color LED light source.
  • the three-color light source system comprises: an RGB three-color laser light source, a light combining system and a laser beam expanding collimation system, and the three-color laser light emitted by the RGB three-color laser light source is first combined by the light combining system, and then The laser beam expanding collimation system modulates into a collimated wide beam and illuminates the transparent digital holographic display element.
  • the light combining system is constructed by an X-cube prism or a dichroic mirror.
  • the present invention also provides a head mounted display device including a microprocessor and a near-eye display system, the near-eye display system being the near-eye display system described in the previous embodiment, the microprocessor and the near-eye display system Tri-color source The system is connected to the image display system.
  • the present invention has the following beneficial effects:
  • the near-eye display system of the present invention is based on the design of a computational holographic display technology, and the diffraction field can be used to make the field of view of the near-eye display large (the diffraction angle can be made large), which can break through the traditional near-eye display optical system. Restrictions on the field of view;
  • the invention adopts a light guiding system to carry out transmission and transmission of an illumination beam, and provides a guarantee for realizing a large field of view for the near-eye display system of the invention
  • the head-mounted display device of the invention adopts a near-eye display technology based on computational holography, and can realize the depth of field adjustment of the projected image by an algorithm to realize the three-dimensional effect of the object display.
  • FIG. 1 is a schematic structural view 1 of a near-eye display system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view 1 of a light source system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view 1 of a light guiding system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view 2 of a light guiding system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram 3 of a light guiding system according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view 4 of a light guiding system according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram 5 of a light guiding system according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram 6 of a light guiding system according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram 7 of a light guiding system according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural view 2 of a light source system according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural view 3 of a light source system according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural view 2 of a near-eye display system according to an embodiment of the present invention.
  • Figure 13 is a schematic structural view 1 of the light combining system of Figure 12;
  • Figure 14 is a schematic structural view 2 of the light combining system of Figure 12;
  • 15 is a schematic structural view 3 of a near-eye display system according to an embodiment of the present invention.
  • 1-light source system 2-light guide system, 3-image display system, 4-human eye, 5-coating, 11-coupling structure, 12-fiber, 13-fiber collimating mirror, 14-laser Light source, 15-laser source, 16-laser source, 17-combination system, 18-collimation beam expander system, 21-vertical light guide system, 22-horizontal light guide system, 221-horizontal coupling-out grating, 171-R Incident surface, 172-G incident surface, 173-B incident surface, 174-exit surface, 175-reflecting surface, 176-reflecting surface, 177-dichroic mirror, 178-dichroic mirror.
  • Holographic technology one of the virtual imaging techniques, uses the principles of interference and diffraction to record and reproduce a true three-dimensional image of an object.
  • Computational holography is based on mathematical calculations and modern optics, using computer coding to make holograms. It can comprehensively record the amplitude and phase of light waves, low noise, high repeatability, can record holograms of any object, and even realize stereoscopic display of three-dimensional objects that do not exist in nature.
  • optical structure of the near-eye display system of the present invention is designed based on the computational holography technique, and the embodiments of the present invention are described below with reference to the accompanying drawings.
  • the holographic display element of the present invention generally employs a light modulator
  • the digital holographic display element generally employs a high resolution spatial light modulator such as a display element such as an LCD or an OLED.
  • the near-eye display system of the present embodiment includes a light source system 1, a light guiding system 2, and an image display system 3.
  • the image display system 3 is for displaying a hologram.
  • the light source system 1 is used to guide the illumination system 2 to input an illumination beam.
  • the light guiding system 2 is configured to transmit and expand the illumination beam, and then illuminate the hologram displayed by the image display system 3 to activate the hologram in a transmissive manner.
  • Reference numeral 4 in Fig. 1 denotes a human eye.
  • the display elements of the image display system 3 are digital holographic display elements (eg, LCD display screens, OLCD display screens), or other components that enable digital holographic image display.
  • the display element is preferably a transparent digital holographic display element (a transparent digital holographic display element may also be referred to as a transparent computational holographic display chip).
  • the holographic image display element in the image display system 3 changes the holographic structure in real time according to the display information under the control of the processor, so that the virtual object can be reproduced by the coherent light illumination to make the human eye 4 visible.
  • the specific principle adopted is that the illumination beam is diffracted by the holographic structure to generate a virtual display light source, and the light enters the human eye 4, and the human can see the virtual object.
  • the holographic image displayed on the image display system 3 of the present invention is a computed holographic image generated by the processor. Since the computational holographic calculation can comprehensively record the amplitude and phase of the light wave, by adjusting the algorithm for generating the computational hologram, it is possible to project the object at a position of 250 mm to infinity from the human eye. Therefore, near-eye display can be achieved, and adjustment of the depth of field can be achieved.
  • the depth of field referred to in the present invention refers to the distance of the virtual image from the human eye 4, that is, the imaging depth.
  • is the source laser wavelength
  • ⁇ X, ⁇ Y are the length and width dimensions of the spatial light modulator
  • ⁇ X max and ⁇ Y max are the maximum field of view in the horizontal and vertical directions
  • asin is the inverse sine.
  • ⁇ X max asin( ⁇ / ⁇ Y ).
  • the light source in the light source system 1 is an RGB three-color laser light source or an RGB three-color LED light source.
  • the three-color light needs to alternately illuminate the hologram of the corresponding color on the image display system 3 in a high frequency manner. That is, the three-color source needs to be time-matched with the computed hologram.
  • the RGB three-color laser light source may be coupled into the light guiding system 2 by an optical fiber structure, or may be coupled to the light guiding system 2 by light combining and combining light. The specific structure will be described later with reference to Figs.
  • the green light source and the blue light source are turned off, and the red light emitted by the red light source is coupled into the light guiding system 2.
  • the red light is coupled out from the light guiding system 2, it is transmitted to the computational holographic display chip in a transmissive manner.
  • the transparent chip displays the calculated hologram of the red beam recorded material, thereby displaying the red portion of the image information.
  • the red and blue light sources are turned off, and the green light beam emitted by the green light source activates the corresponding green light recorded computational hologram, thereby projecting the green portion of the image information.
  • the blue portion of the image information can be projected.
  • the human eye can see the color image information of the three colors superimposed due to the visual persistence effect of the human eye.
  • the holographic display element is a transparent element
  • the human eye can also see the real external environment through the transparent display element, thereby realizing the effect of augmented reality.
  • the light guiding system 2 may be composed of a single horizontal light guiding system, or may be composed of a vertical light guiding system and a horizontal light guiding system.
  • the light source system 1 is preferably designed as a vertically expanding light source, for example an array light source in which a plurality of light sources are combined.
  • a vertically extended light source for example an array light source in which a plurality of light sources are combined.
  • FIG. 2 an example structure when the light source system 1 is a vertically extended light source.
  • the vertically extended light source of Figure 2 employs a combination of a vertical array of optical fibers and a microlens array.
  • the light guiding system 2 is composed of two parts of a vertical light guiding system and a horizontal light guiding system, as shown in FIG.
  • 21 denotes a vertical light guiding system
  • 22 denotes a horizontal light guiding system.
  • the illumination beam output by the light source system 1 passes through the vertical light guiding system 21 and is coupled to the horizontal light guiding system 22.
  • the vertical light guiding system 21 is used to expand the light exiting area in the vertical direction of the light source.
  • the horizontal light guiding system 22 is used to expand the light exiting area of the light source in the horizontal direction.
  • the light beam irradiated onto the digital holographic display element is a surface light source, which is more in line with the basic theory of near-eye display.
  • the horizontal light guiding system 22 is preferably disposed to be covered with an anti-reflection film in the "overlapping" region adjacent to the vertical light guiding system 21 (i.e., the light incident region of the horizontal light guiding system 22 is covered with an anti-reflection film). It is used to reduce the influence of stray light caused by reflection on the sharpness of the image, and also improve the transmission of light energy.
  • the vertical light guiding system 21 in the light guiding system 2 employs an array optical waveguide or a flat optical waveguide.
  • the horizontal light guiding system 22 employs one of an array flat optical waveguide, a holographic optical waveguide, and a slab waveguide.
  • the holographic optical waveguide means that a hologram element is provided as a coupling-out device in the waveguide.
  • the light guiding system 2 will be described below with reference to Figs. 4 to 9 .
  • FIG. 4 it is a schematic diagram 2 of the structure of the light guiding system 2.
  • the vertical light guiding system 21 expands the illumination beam aperture in the vertical direction in the form of a reflective array waveguide, and the light emitted from the vertical light guiding system 21 is incident perpendicularly to the horizontal light guiding system 22.
  • the vertical light guiding system 21 is a parallel flat plate.
  • Parallel plates are used for vertical extended transmission of the input source.
  • the angle between the input source and the parallel plate is greater than the critical angle of the parallel plate in the air medium, so the input source can be transmitted in total reflection in parallel plates.
  • a coating (or film layer) is coated on one side of the parallel flat near-horizontal light guiding system 22, and the coating (film layer) functions to destroy the total reflection of the input light source on the side of the parallel flat near-horizontal light guiding system 22 condition.
  • the coating can be a multilayer film having an equivalent refractive index greater than air.
  • the film layer can be designed as a non-uniform equivalent refractive index in the vertical direction.
  • FIG. 6 is a schematic structural view of the light guiding system 2.
  • Figure 6 is a light guiding system 2 improved according to the structure of Figure 5.
  • the beam coupling surface of the horizontal light guiding system 22 and the beam extending transmission parallel plate of the horizontal light guiding system 22 The interface has a wedge angle a such that the beam emerging from the coating is incident perpendicularly to the horizontal light guiding system 22.
  • the purpose of this embodiment is to reduce the vertical dimension of the horizontal light guiding system 22 and also reduce the digital holographic device when the light beam is horizontally transmitted by the horizontal light guiding system 22 without tilting the light beam due to the vertical direction angle.
  • the complexity of computing holography is to reduce the vertical dimension of the horizontal light guiding system 22 and also reduce the digital holographic device when the light beam is horizontally transmitted by the horizontal light guiding system 22 without tilting the light beam due to the vertical direction angle.
  • FIG. 7 it is a schematic diagram 5 of the structure of the light guiding system 2.
  • the horizontal light guiding system 22 takes the form of a reflective array waveguide, and the light that is emitted from the wave is vertically incident on the digital holographic display element.
  • FIG. 8 is a schematic structural diagram 6 of the light guiding system 2.
  • the horizontal light guiding system 22 employs a parallel slab waveguide.
  • a coating 5 (or film layer) is coated on one side of the parallel slab waveguide near digital holographic display element.
  • the role of the coating 5 is to destroy the total reflection conditions.
  • the beam hits the face, the beam is partially reflected and continues to travel in the parallel plate, a portion of which is refracted to the coating 5 and re-refracted from the coating 5 onto the digital holographic display element.
  • FIG. 9 a schematic diagram VII of the light guiding system 2 is shown.
  • the horizontal light guiding system 22 employs a holographic waveguide, and the light beam is coupled out through a horizontal coupling-out grating 221.
  • the light source system 1 includes an RGB three-color laser light source (not shown in Fig. 10), a coupling structure 11, an optical fiber 12, and a fiber collimating mirror 13.
  • the RGB trichromatic laser is first coupled into the optical fiber 12 through the coupling structure 11, and coupled to the light guiding system 2 via the optical fiber collimating mirror 13 coupled to the exit end of the optical fiber 12.
  • the light source system 1 includes RGB three-color laser light sources 14, 15, 16 and a light combining system 17.
  • the RCB trichromatic laser source of Figure 11 itself has a collimating element so that the light emerging from the source is collimated.
  • the light combining system 17 combines the RGB three-color laser beams and couples them into the light guiding system 2. If the RGB three laser sources do not have collimating elements themselves, a laser collimation system or a laser beam expanding collimation system 18 may be added between the combining system 17 and the light guiding system 2, as shown in FIG.
  • FIG. 12 is a schematic structural view of a near-eye display system of the present invention.
  • the light beams emitted by the R, G, and B three-color laser sources in FIG. 12 are combined by the light combining system 17 and then adjusted by the collimated beam expanding system 18 into a collimated wide beam, which is then coupled into the light guiding system 2.
  • the parallel beam emitted by the light guiding system 2 is irradiated onto the transparent display chip, and the displayed calculated hologram is activated to project the virtual image into the human eye.
  • the light combining system 17 may employ an X-cube prism or a dichroic mirror.
  • the X-cube prism structure can be referred to FIG. Refer to Figure 14 for the dichroic mirror structure.
  • the function of the light combining system 17 is to emit a red, green and blue three-color laser light source. The paths of the R, G, and B beams are combined on the same path in the same direction.
  • the X-cube prism of FIG. 13 includes an R incident surface 171, a G incident surface 172, a B incident surface 173, and an exit surface 174, and two selective reflective surfaces 175 and 176.
  • the red, green, and blue trichromatic lasers radiate the respective R, G, and B beams to the incident surfaces 171, 172, and 173, respectively.
  • a selective reflective layer is formed on the selective reflective surface 175 to reflect the light beam R and transmit the light beams G and B.
  • Another selective reflective layer is formed on the selective reflective surface 176 to reflect the beam B and transmit the beams R and G.
  • the R, G, and B beams incident through the three incident surfaces 171, 172, and 173 are respectively emitted through the exit surface 174. In this configuration, the beam paths of R, G, and B coincide.
  • Figure 14 is a schematic view of a dichroic mirror.
  • Dichroic mirrors also known as dichroic mirrors, are commonly used in laser technology. It is characterized by almost complete transmission of light of a certain wavelength and almost complete reflection of light of other wavelengths.
  • the dichroic mirror 177 is completely transmitted to the G light and is completely reflected by the R light.
  • the dichroic mirror 178 is completely transparent to the G light and completely reflects the B light.
  • the near-eye display system in the foregoing embodiment fully fused the waveguide light guiding technology and the computational holographic display technology, making the near-eye display system lightweight, and enabling large field of view display and depth of field adjustment by computational holography. Therefore, it can be widely applied to the field of smart glasses or head-mounted display devices.
  • the near-eye display system of the present invention can be designed as a near-eye display system that reflects computational holographic reproduction. In the reflective structure, no light guiding system is required.
  • the near-eye display system includes a light source system and an image display system 3.
  • the display elements of image display system 3 are transparent digital holographic display elements.
  • the light source system can be an RGB three-color laser light source or an RGB three-color LED light source. The generated three-color light is alternately irradiated onto the transparent digital holographic display element in a high frequency manner to activate the hologram in a reflective manner.
  • the light source system also includes a light combining system 17 and a laser beam expanding collimation system 18.
  • the three-color laser light emitted by the RGB three-color laser light source is first combined by the light combining system 17, and then modulated by the laser beam expanding collimation system 18 into a collimated wide beam, and then irradiated onto the transparent digital holographic display element 3 for reflection.
  • the way to activate the hologram The principle of hologram reproduction of the reflective near-eye display system of the present invention is consistent with the principle of the transmissive near-eye display system of the present invention, both of which are imaged by optical interference.
  • the principle is that the digital holographic element changes the holographic structure in real time according to the display information, and the structure causes the illumination beam to be diffracted to generate a virtual display light source, and the virtual display light source is incident on the human eye, and the virtual display information can be seen by the human eye.
  • the light combining system of Fig. 15 may employ the combined color X cube prism of Fig. 13 or the dichroic mirror of Fig. 14.
  • the near-eye display system of the invention utilizes the computational holographic display technology, makes the near-eye display system light, and can realize large field of view display and depth of field adjustment by calculating holography, and thus can be widely applied to the field of smart glasses or head-mounted display devices.
  • Hololens only uses all of its optical systems compared to the current leading hololens. Instead of using a holographic display method, the field of view is naturally small. With the near-eye optical display system of the present invention, the field of view has obvious advantages.
  • the present invention also provides a head mounted display device comprising the near-eye display system of the present invention, comprising a microprocessor and a near-eye display system.
  • the microprocessor is coupled to a three-color light source system and an image display system in a near-eye display system to provide functions such as light modulation, holographic calculation, and operating system loading.
  • the head-mounted display device can also integrate one or more of a rechargeable battery, a headset, a communication chip, a wifi module, and a Bluetooth module to interconnect with other smart devices, such as a smart phone or a computer.
  • the head-mounted display device can be configured with an image recognition system and an interactive system.
  • the image recognition system can integrate the virtual image with the real environment by recognizing the external image.
  • the interactive system allows a person to input corresponding operational information through gestures or eyeball control.
  • the invention is not limited to the specific embodiments described above.
  • the invention extends to any new feature or any new combination disclosed in this specification, as well as any novel method or process steps or any new combination disclosed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)

Abstract

一种近眼显示***及头戴显示设备,近眼显示***包括光源***(1)、导光***(2)和图像显示***(3)。所述图像显示***(3)用于显示全息图,所述光源***(1)用于向导光***(2)输入照明光束,所述导光***(2)用于将所述照明光束进行传输扩展后,照射到图像显示***(3)所显示的全息图上,以透射方式激活全息图。所述近眼显示***充分融合波导导光技术和计算全息技术,使得该近眼显示***轻巧,并且可实现大视场显示以及通过计算全息实现景深调节。

Description

一种近眼显示***及头戴显示设备
本申请要求享有2016年3月7日提交的名称为“一种近眼显示***及头戴显示设备”的中国专利申请CN201610127263.8的优先权、2016年3月7日提交的名称为“一种近眼显示***及头戴显示设备”的中国专利申请CN201620173623.3的优先权、以及2016年3月7日提交的名称为“一种近眼显示***及头戴显示设备”的中国专利申请CN201620171521.8的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及近眼显示领域,尤其涉及一种近眼显示***及头戴显示设备。
背景技术
随着科技的进步,增强现实智能眼镜逐渐出现在大众视野,例如谷歌的Google Glass和微软的Hololens。Google Glass通过一个投影光学***将LCOS微显示器上的图像投影。经投影的图像经过一个棱镜和反射镜,通过内置在棱镜中的分光镜被反射到用户眼睛。Hololens是将LCOS或者DLP微显示器上的图像通过全息光栅耦合进入波导,并通过波导传输,最后在人眼正前方通过相应的全息光栅耦合输出,投影进入人眼。这两者的近眼显示技术均存在视场较小的问题。前者的视场在14°左右,后者的视场在30°左右,从而两者均无法满足目前消费类产品的需求。欲使增强现实智能眼镜满足消费类产品的需求,大视场已成为亟待解决的问题。
发明内容
本发明的目的是提供一种可实现大视场、景深可调的近眼显示***及头戴显示设备。
为了实现上述发明目的,本发明提供了一种近眼显示***,包括光源***、导光***和图像显示***;所述图像显示***用于显示全息图;所述光源***用于向导光***输入照明光束;所述导光***用于将所述照明光束进行传输扩展后,照射到图像显示***所显示的全息图上,以透射方式激活全息图。
优选的,所述光源***中的光源为RGB三色激光光源或RGB三色LED光源,三色光以高频方式轮流照射图像显示***上对应颜色的全息图。
优选的,所述导光***包括水平导光***。
优选的,所述导光***还包括垂直导光***,光源***输出的照明光束先经过垂直导光***,再耦入水平导光***。
优选的,所述导光***中的垂直导光***采用阵列光波导或平板光波导,水平导光***采用阵列平板光波导、全息光波导和平板波导中的一种。
优选的,在所述水平导光***的入光区域覆有抗反膜。
优选的,所述图像显示***的显示元件为数字全息显示元件。
优选的,所述图像显示***的显示元件为透明数字全息显示元件。
优选的,所述光源***包括:RGB三色激光光源、耦合结构、光纤和光纤准直镜,由所述RGB三色激光光源输出的RGB三色激光先通过耦合结构耦合进入光纤,再经光纤出射端所耦合的光纤准直镜耦合进入导光***。
优选的,所述光源***包括:RGB三色激光光源和合光***,合光***用于将所述RGB三色激光光源输出的RGB三色激光光束进行合光。
优选的,所述合光***由X立方体棱镜或二向色镜构建而成。
优选的,所述光源***为多个光源组合成的阵列光源。
相应的,本发明还提出一种头戴显示设备,包括微处理器和近眼显示***,所述近眼显示***为上述的近眼显示***,所述微处理器与近眼显示***中的光源***和图像显示***相连。
本发明还提供了一种近眼显示***,包括三色光源***和图像显示***,图像显示***的显示元件为透明数字全息显示元件;三色光源***产生的三色光以高频方式轮流照射到透明数字全息显示元件上,以反射方式激活全息图。
优选的,三色光源***中的光源为RGB三色激光光源或RGB三色LED光源。
优选的,所述三色光源***包括:RGB三色激光光源、合光***和激光扩束准直***,RGB三色激光光源发出的三色激光,先通过合光***进行合光,再被激光扩束准直***调制成准直宽光束后,照射到透明数字全息显示元件上。
优选的,所述合光***由X立方体棱镜或二向色镜构建而成。
相应地,本发明还提出一种头戴显示设备,包括微处理器和近眼显示***,所述近眼显示***为上一实施例所述的近眼显示***,所述微处理器与近眼显示***中的三色光源 ***和图像显示***相连。
与现有技术相比,本发明具有如下有益效果:
1.本发明近眼显示***是基于计算全息显示技术设计,利用衍射的成像原理,可以将近眼显示的视场做得很大(衍射角可以做得很大),可突破传统的近眼显示光学***对视场的限制;
2.本发明采用导光***进行照明光束的传输扩展,为本发明近眼显示***实现大视场提供保障;
3.本发明头戴显示设备采用基于计算全息的近眼显示技术,可以通过算法实现投射图像的景深调节,实现物体显示的三维效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图:
图1为本发明实施例近眼显示***结构示意图一;
图2为本发明实施例中光源***结构示意图一;
图3为本发明实施例中导光***结构示意图一;
图4为本发明实施例中导光***结构示意图二;
图5为本发明实施例中导光***结构示意图三;
图6为本发明实施例中导光***结构示意图四;
图7为本发明实施例中导光***结构示意图五;
图8为本发明实施例中导光***结构示意图六;
图9为本发明实施例中导光***结构示意图七;
图10为本发明实施例中光源***结构示意图二;
图11为本发明实施例中光源***结构示意图三;
图12为本发明实施例近眼显示***结构示意图二;
图13为图12中合光***结构示意图一;
图14为图12中合光***结构示意图二;
图15为本发明实施例近眼显示***结构示意图三;
图中标记:1-光源***,2-导光***,3-图像显示***,4-人眼,5-涂层,11-耦合结构,12-光纤,13-光纤准直镜,14-激光光源,15-激光光源,16-激光光源,17-合光***,18-准直扩束***,21-垂直导光***,22-水平导光***,221-水平耦出光栅,171-R入射面,172-G入射面、173-B入射面,174-出射面,175-反射面,176-反射面,177-二向色镜,178-二向色镜。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
全息技术,是虚拟成像技术中的一种,其利用干涉和衍射原理记录并再现物体真实的三维图像。
计算全息是建立在数学计算与现代光学的基础上,利用计算机编码制作全息图。它可以全面记录光波的振幅和相位,噪声低,重复性高,可记录任何物体的全息图,甚至可以实现自然界尚不存在的三维物体的立体显示。
本发明近眼显示***的光学结构方案是基于计算全息技术而设计,下面结合附图对本发明实施例进行介绍。
本发明中的全息显示元件一般采用光调制器,而数字全息显示元件一般采用高分辨空间光调制器,例如LCD、OLED等显示元件。
参见图1,为本发明实施例近眼显示***结构示意图。本实施例近眼显示***包括光源***1、导光***2和图像显示***3。所述图像显示***3用于显示全息图。所述光源***1用于向导光***2输入照明光束。所述导光***2用于将所述照明光束进行传输扩展后,照射到图像显示***3所显示的全息图上,以透射方式激活全息图。图1中标号4表示人眼。
所述图像显示***3的显示元件为数字全息显示元件(例如:LCD显示屏、OLCD显示屏),或其他可实现数字全息图像显示的元件。为了实现增强现实效果,显示元件优选为透明数字全息显示元件(透明数字全息显示元件也可以称为透明计算全息显示芯片)。 图像显示***3中的全息图像显示元件在处理器的控制下,根据显示信息实时改变全息结构,使得通过相干光照明可以复现虚拟物,使人眼4可见。具体采用的原理是:照明光束被全息结构衍射生成所需要的虚拟显示光源,该光进入人眼4,人即可看见虚拟物。本发明图像显示***3上显示的全息图像是处理器生成的计算全息图像。由于计算全息计算可以全面记录光波的振幅和相位,因此通过调节生成计算全息图的算法,可以实现将物投影在距离人眼250mm至无限远位置处。因此可以实现近眼显示,并且可以实现景深的调节。本发明所指景深指虚拟图像离人眼4的距离,即成像深度。
另外,计算全息显示投影出的视场角由数字全息显示元件(空间光调制器)的像素尺寸决定,计算表达式为:θXmax=asin(λ/ΔX),θYmax=asin(λ/ΔY)。式中,λ是光源激光波长,ΔX,ΔY分别是空间光调制器的长宽尺寸,θXmax和θYmax是水平方向和垂直方向的最大视场角,asin指反正弦。以波长λ为650nm红色激光器为例,当像素尺寸ΔX*ΔY为1μm*1μm时,其视场角θXmax可以达到40度左右。因此本发明近眼显示***可实现大视场。
所述光源***1中的光源为RGB三色激光光源或RGB三色LED光源。要实现彩色图像的显示,三色光需以高频方式轮流照射图像显示***3上对应颜色的全息图。即,三色光源需与计算全息图进行时序匹配。当光源***1中的光源为RGB三色激光光源时,RGB三色激光光源可以以光纤结构耦入导光***2中,也可以通过合光***进行合光后耦入导光***2中。具体结构后面结合图10和11进行说明。
本发明全息图复现的具体实现原理为:
某一时刻,绿色光源和蓝色光源关闭,红色光源发出的红色光,耦合进入导光***2中。红色光从导光***2耦出后,以透射的方式照射到计算全息显示芯片上。此时透明芯片显示输出的是红色光束记录物的计算全息图,从而显示出图像信息的红光部分。在下一时刻,红色光源和蓝色光源关闭,绿色光源出射的绿色光束激活相应的绿光记录的计算全息图,从而投影出图像信息的绿光部分。同理,可以投影出图像信息的蓝光部分。当计算全息图和光源的切换速率足够快时,由于人眼的视觉暂留效应,人眼就可以看见三色叠加的彩色图像信息。另外,当全息显示元件为透明元件时,人眼还可以透过透明显示元件看到真实的外界环境,实现增强现实的效果。
所述导光***2可以是由单独的水平导光***组成,也可以是由垂直导光***和水平导光***两部分组成。
当所述导光***2为单独的水平导光***时,若光源***1输入导光***2的光源不 是宽光源,则会严重影响近眼显示***的视场。因此当所述导光***2为单独的水平导光***时,所述光源***1优选设计为垂直扩展光源,例如多个光源组合成的阵列光源。参见图2,是光源***1为垂直扩展光源时的一种示例结构。图2中垂直扩展光源采用垂直方向阵列光纤与微透镜阵列的组合。
所述导光***2由垂直导光***和水平导光***两部分组成的实施例如图3所示。图3中21表示垂直导光***,22表示水平导光***。光源***1输出的照明光束先经过垂直导光***21,再耦入水平导光***22。垂直导光***21用于扩展光源垂直方向的出光面积。水平导光***22用于扩展光源水平方向的出光面积。经两个方向的扩展后,照射到数字全息显示元件上的光束为面光源,更符合近眼显示的基本理论。此种结构中,水平导光***22在其与垂直导光***21相邻的“重叠”区域优选设置为覆有抗反膜(即水平导光***22的入光区域覆有抗反膜),用于减少该区域由于反射造成的杂光对成像清晰度的影响,同时也提高了光能传输。
导光***2中的垂直导光***21采用阵列光波导或平板光波导。水平导光***22采用阵列平板光波导、全息光波导和平板波导中的一种。其中,全息光波导指在波导内具有全息元件作为耦出器件。下面结合图4至图9对导光***2进行说明。
参见图4,为导光***2的结构示意图二。在图4实施例中,垂直导光***21采用反射阵列波导形式扩展垂直方向的照明光束口径,从该垂直导光***21出射的光垂直入射至水平导光***22。
参见图5,为导光***2结构示意图三。在图5实施例中,垂直导光***21为一平行平板。平行平板用于输入光源的垂直扩展传输。输入光源与平行平板的夹角大于平行平板在空气介质中的临界角,故输入光源可以在平行平板内以全反射进行传输。在平行平板近水平导光***22的一侧覆有一层涂层(或膜层),该涂层(膜层)的作用是破坏输入光源在平行平板近水平导光***22一侧的全反射条件。当光束入射至该面时,光束一部分反射后继续在平行平板内传输,一部分折射至涂层,从涂层再折射进入水平导光***22。涂层可以是等效折射率大于空气的多层膜层。为了使得从膜层出射的光束在垂直方向的光能量比较均匀,该膜层可以设计为垂直方向非均匀等效折射率。
从图5中可以看出,从垂直导光***21出射的光束进入水平导光***22时,光束是倾斜的,倾斜角度为α。从水平导光***22出射的光束也会有角度倾斜。当全息显示元件平行于水平导光***22设置时,会增加数字全息器件的计算全息的复杂程度。
参见图6,为导光***2结构示意图四。图6是根据图5结构进行改进的导光***2 的结构示意图。为使得进入水平导光***22的光束在垂直方向与水平导光***22的光扩展传输平行平板界面垂直,水平导光***22的光束耦入面与水平导光***22的光束扩展传输平行平板界面存在一楔形角度a,使得从涂层出射的光束垂直入射至水平导光***22。本实施例的目的是当光束在水平导光***22水平传输时,不会由于垂直方向角度引起的光束倾斜,减小了水平导光***22的垂直方向的尺寸,同时也减小数字全息器件的计算全息的复杂程度。
参见图7,为导光***2结构示意图五。在图7实施例中,水平导光***22采用反射阵列波导形式,从该波导出射的光垂直照射至数字全息显示元件上。
参见图8,为导光***2结构示意图六。在图8实施例中,水平导光***22采用平行平板波导。在平行平板波导近数字全息显示元件的一侧覆有一层涂层5(或膜层)。涂层5的作用是破坏全反射条件。当光束射至该面时,光束一部分反射后继续在平行平板内传输,一部分折射至涂层5,从涂层5再折射照射到数字全息显示元件上。
参见图9,为导光***2的结构示意图七。在图9实施例中,水平导光***22采用全息波导,光束通过水平耦出光栅221耦出。
下面结合图10-12,对光源***1的结构实施例进行说明。
参见图10,为光源***1的结构示意图二。图10中,光源***1包括RGB三色激光光源(图10中未示出)、耦合结构11、光纤12和光纤准直镜13。RGB三色激光先通过耦合结构11耦合进入光纤12,再经光纤12出射端所耦合的光纤准直镜13耦合进入导光***2。
参见图11,为光源***1的结构示意图三。图11中,光源***1包括RGB三色激光光源14、15、16,以及合光***17。图11中的RCB三色激光光源本身带准直元件,因此从光源出射出来的光就是经过准直后的。合光***17将RGB三色激光光束进行合光后,耦入导光***2。若RGB三个激光光源自身不带准直元件,则可以在合光***17与导光***2之间增加一个激光准直***或激光扩束准直***18,如图12。
图12为本发明近眼显示***的一种结构示意图。图12中R、G、B三色激光光源发出的光束经过合光***17合光后,被准直扩束***18调整成准直宽光束,然后耦入导光***2中。导光***2出射的平行光束照射到透明显示芯片上,激活显示的计算全息图,从而将虚拟图像投影进入人眼。
图12中,合光***17可以采用X立方体棱镜或二向色镜。X立方体棱镜结构可参考图13。二向色镜结构可参考图14。合光***17的作用是将红绿蓝三色激光光源发出的 R、G、B光束的路径组合在相同方向的相同路径上。
图13中X立方体棱镜包括R入射面171,G入射面172,B入射面173以及出射面174,以及两个选择反射表面175和176。红绿蓝三色激光器将各自出射的R、G和B光束分别辐射到入射表面171,172和173。选择反射层形成在选择反射表面175上,以反射光束R并且透射光束G和B。另一选择反射层形成在选择反射表面176上,以反射光束B并且透射光束R和G。通过三入射表面171,172和173入射的R、G和B光束分别通过出射面174射出。在这个结构中,R、G和B的光束路径重合。
图14为二向色镜示意图。二向色镜又称双色镜,常用于激光技术中。其特点是对一定波长的光几乎完全透过,而对另一些波长的光几乎完全反射。图14中,二向色镜177对G光完全透过,对R光完全反射。二向色镜178对G光完全透过,对B光完全反射。
前述实施例中的近眼显示***充分融合波导导光技术和计算全息显示技术,使得该近眼显示***轻巧,并且可实现大视场显示以及通过计算全息实现景深调节。因此可以广泛应用于智能眼镜或者头戴显示设备领域。
前面实施例,是通过透射方式进行光干涉成像。在实际实施时,可以将本发明近眼显示***设计为反射计算全息再现的近眼显示***。反射式结构中,不需要导光***。如图15所示,该近眼显示***包括光源***和图像显示***3。图像显示***3的显示元件为透明数字全息显示元件。光源***可以为RGB三色激光光源,也可以为RGB三色LED光源。其产生的三色光以高频方式轮流照射到透明数字全息显示元件上,以反射方式激活全息图。如图15中的R、G、B激光光源,光源***还包括合光***17和激光扩束准直***18。RGB三色激光光源发出的三色激光,先通过合光***17进行合光,再被激光扩束准直***18调制成准直宽光束后,照射到透明数字全息显示元件3上,以反射方式激活全息图。本发明反射式近眼显示***的全息图复现原理与本发明透射式近眼显示***的原理一致,均是通过光干涉成像。该原理为:数字全息元件根据显示信息实时改变全息结构,该结构使得照明光束被其衍射生成所需要的虚拟显示光源,虚拟显示光源射入人眼,人眼即可以看见虚拟显示信息。
同样,图15中的合光***可以采用图13中的合色X立方体棱镜或图14中的二向色镜。
本发明近眼显示***充运用了计算全息显示技术,使得该近眼显示***轻巧,并且可实现大视场显示以及通过计算全息实现景深调节,因此可以广泛应用于智能眼镜或者头戴显示设备领域。与目前技术较为领先的hololens相比,hololens在其光学***中仅用了全 息元件,而不是采用全息显示的方法,因此其视场自然较小,采用本发明的近眼光学显示***,视场具有明显优势。
为此,本发明还提出一种包含本发明近眼显示***的头戴显示设备,包括微处理器和近眼显示***。所述微处理器与近眼显示***中的三色光源***和图像显示***相连,提供光调制、全息计算以及操作***载入等功能。另外硬件方面,头戴显示设备还可以集成可充电电池、耳机、通讯芯片、wifi模块,蓝牙等模块中的一种或多种,实现和其他智能设备互联,如智能手机,电脑等。软件方面,头戴显示设备可配置图像识别***和交互***。图像识别***通过对外界图像的识别,可以很好的将虚拟图像和真实环境进行融合。交互***允许人通过手势或者眼球控制输入相应的操作信息。
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (18)

  1. 一种近眼显示***,其特征在于,包括光源***、导光***和图像显示***;所述图像显示***用于显示全息图;所述光源***用于向导光***输入照明光束;所述导光***用于将所述照明光束进行传输扩展后,照射到图像显示***所显示的全息图上,以透射方式激活全息图。
  2. 如权利要求1所述的近眼显示***,其特征在于,所述光源***中的光源为RGB三色激光光源或RGB三色LED光源,三色光以高频方式轮流照射图像显示***上对应颜色的全息图。
  3. 如权利要求2所述的近眼显示***,其特征在于,所述导光***包括水平导光***。
  4. 如权利要求3所述的近眼显示***,其特征在于,所述导光***还包括垂直导光***,光源***输出的照明光束先经过垂直导光***,再耦入水平导光***。
  5. 如权利要求4所述的近眼显示***,其特征在于,所述导光***中的垂直导光***采用阵列光波导或平板光波导;水平导光***采用阵列平板光波导、全息光波导和平板光波导中的一种。
  6. 如权利要求4所述的近眼显示***,其特征在于,在所述水平导光***的入光区域覆有抗反膜。
  7. 如权利要求1至5任一项所述的近眼显示***,其特征在于,所述图像显示***的显示元件为数字全息显示元件。
  8. 如权利要求1至5任一项所述的近眼显示***,其特征在于,所述图像显示***的显示元件为透明数字全息显示元件。
  9. 如权利要求8所述的近眼显示***,其特征在于,所述光源***包括:RGB三色激光光源、耦合结构、光纤和光纤准直镜,由所述RGB三色激光光源输出的RGB三色激光先通过耦合结构耦合进入光纤,再经光纤出射端所耦合的光纤准直镜耦合进入导光***。
  10. 如权利要求8所述的近眼显示***,其特征在于,所述光源***包括:RGB三色激光光源和合光***,合光***用于将由所述RGB三色激光光源输出的RGB三色激光光束进行合光。
  11. 如权利要求10所述的近眼显示***,其特征在于,所述合光***由X立方体棱镜或二向色镜构建而成。
  12. 如权利要求2所述的近眼显示***,其特征在于,所述光源***为多个光源组合成的阵列光源。
  13. 一种头戴显示设备,包括微处理器和近眼显示***,其特征在于,所述近眼显示***为权利要求1至12任一项所述的近眼显示***,所述微处理器与近眼显示***中的光源***和图像显示***相连。
  14. 一种近眼显示***,其特征在于,包括三色光源***和图像显示***,图像显示***的显示元件为透明数字全息显示元件;三色光源***产生的三色光以高频方式轮流照射到透明数字全息显示元件上,以反射方式激活全息图。
  15. 如权利要求14所述的近眼显示***,其特征在于,三色光源***中的光源为RGB三色激光光源或RGB三色LED光源。
  16. 如权利要求14所述的近眼显示***,其特征在于,所述三色光源***包括:RGB三色激光光源、合光***和激光扩束准直***,RGB三色激光光源发出的三色激光,先通过合光***进行合光,再被激光扩束准直***调制成准直宽光束后,照射到透明数字全息显示元件上。
  17. 权利要求16所述的近眼显示***,其特征在于,所述合光***由合色X立方体棱镜或二向色镜构建而成。
  18. 一种头戴显示设备,包括微处理器和近眼显示***,其特征在于,所述近眼显示***为权利要求14至17任一项所述的近眼显示***,所述微处理器与近眼显示***中的三色光源***和图像显示***相连。
PCT/CN2017/070139 2016-03-07 2017-01-04 一种近眼显示***及头戴显示设备 WO2017152710A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201620173623.3U CN205485073U (zh) 2016-03-07 2016-03-07 一种近眼显示***及头戴显示设备
CN201620171521.8U CN205450454U (zh) 2016-03-07 2016-03-07 一种近眼显示***及头戴显示设备
CN201620171521.8 2016-03-07
CN201610127263.8 2016-03-07
CN201610127263.8A CN105629474B (zh) 2016-03-07 2016-03-07 一种近眼显示***及头戴显示设备
CN201620173623.3 2016-03-07

Publications (1)

Publication Number Publication Date
WO2017152710A1 true WO2017152710A1 (zh) 2017-09-14

Family

ID=59788956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070139 WO2017152710A1 (zh) 2016-03-07 2017-01-04 一种近眼显示***及头戴显示设备

Country Status (1)

Country Link
WO (1) WO2017152710A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020139755A1 (en) * 2018-12-28 2020-07-02 Magic Leap, Inc. Virtual and augmented reality display systems with emissive micro-displays
GB2586131A (en) * 2019-08-05 2021-02-10 Dualitas Ltd Holographic projector
CN112649961A (zh) * 2020-12-22 2021-04-13 上海趣立信息科技有限公司 基于空间光调制器的全息ar显示***及方法
US10998383B2 (en) * 2018-01-31 2021-05-04 Kunshan New Flat Panel Display Technology Center Co., Ltd. Display panels and devices thereof
CN114383512A (zh) * 2021-12-03 2022-04-22 西安应用光学研究所 一种用于光学镜头的光机尺寸测量装置及校准方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140160543A1 (en) * 2012-12-10 2014-06-12 Samsung Electronics Co., Ltd. Holographic imaging optical device
CN104199196A (zh) * 2014-09-04 2014-12-10 北京理工大学 一种具有眼动追踪功能的波导式集成成像三维显示***
CN104460002A (zh) * 2013-09-22 2015-03-25 江苏慧光电子科技有限公司 可佩带的平视光学***
CN104967839A (zh) * 2015-07-22 2015-10-07 杭州睿唯投资管理有限公司 一种智能眼镜及其使用方法
CN105158903A (zh) * 2015-10-27 2015-12-16 北京国承万通信息科技有限公司 显示器
CN105629474A (zh) * 2016-03-07 2016-06-01 成都理想境界科技有限公司 一种近眼显示***及头戴显示设备
CN205450454U (zh) * 2016-03-07 2016-08-10 成都理想境界科技有限公司 一种近眼显示***及头戴显示设备
CN205485073U (zh) * 2016-03-07 2016-08-17 成都理想境界科技有限公司 一种近眼显示***及头戴显示设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140160543A1 (en) * 2012-12-10 2014-06-12 Samsung Electronics Co., Ltd. Holographic imaging optical device
CN104460002A (zh) * 2013-09-22 2015-03-25 江苏慧光电子科技有限公司 可佩带的平视光学***
CN104199196A (zh) * 2014-09-04 2014-12-10 北京理工大学 一种具有眼动追踪功能的波导式集成成像三维显示***
CN104967839A (zh) * 2015-07-22 2015-10-07 杭州睿唯投资管理有限公司 一种智能眼镜及其使用方法
CN105158903A (zh) * 2015-10-27 2015-12-16 北京国承万通信息科技有限公司 显示器
CN105629474A (zh) * 2016-03-07 2016-06-01 成都理想境界科技有限公司 一种近眼显示***及头戴显示设备
CN205450454U (zh) * 2016-03-07 2016-08-10 成都理想境界科技有限公司 一种近眼显示***及头戴显示设备
CN205485073U (zh) * 2016-03-07 2016-08-17 成都理想境界科技有限公司 一种近眼显示***及头戴显示设备

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10998383B2 (en) * 2018-01-31 2021-05-04 Kunshan New Flat Panel Display Technology Center Co., Ltd. Display panels and devices thereof
WO2020139755A1 (en) * 2018-12-28 2020-07-02 Magic Leap, Inc. Virtual and augmented reality display systems with emissive micro-displays
US11977230B2 (en) 2018-12-28 2024-05-07 Magic Leap, Inc. Virtual and augmented reality display systems with emissive micro-displays
GB2586131A (en) * 2019-08-05 2021-02-10 Dualitas Ltd Holographic projector
GB2586131B (en) * 2019-08-05 2022-07-20 Dualitas Ltd Holographic projector
US11493881B2 (en) 2019-08-05 2022-11-08 Dualitas Ltd Holographic projector
CN112649961A (zh) * 2020-12-22 2021-04-13 上海趣立信息科技有限公司 基于空间光调制器的全息ar显示***及方法
CN114383512A (zh) * 2021-12-03 2022-04-22 西安应用光学研究所 一种用于光学镜头的光机尺寸测量装置及校准方法

Similar Documents

Publication Publication Date Title
CN105629474B (zh) 一种近眼显示***及头戴显示设备
JP7362828B2 (ja) 空間光変調器を照明するための方法、デバイス、およびシステム
US11418764B2 (en) Image and wave field projection through diffusive media
WO2017152710A1 (zh) 一种近眼显示***及头戴显示设备
US11803054B2 (en) Near eye 3D display with separate phase and amplitude modulators
CN205485073U (zh) 一种近眼显示***及头戴显示设备
JP7167348B2 (ja) 多焦点平面ディスプレイシステム及び装置
KR102618430B1 (ko) 가상 및 증강 현실 시스템들 및 방법들에서의 스페클-감소
CN205450454U (zh) 一种近眼显示***及头戴显示设备
US11947316B2 (en) Multi-image display apparatus providing holographic image
US11402647B2 (en) Devices with monochromatic liquid crystal on silicon displays
WO2015007201A1 (zh) 可佩带的平视光学***
CN112596242A (zh) 基于空间光调制器时分复用的彩色全息近眼显示方法及***
US20240004189A1 (en) Optical systems and methods for eye tracking based on eye imaging via collimating element and light-guide optical element
US20200088991A1 (en) Backlight Module, Holographic Display Device and Holographic Display Method Thereof
CN219871956U (zh) 光场近眼显示组件和光场近眼显示设备
US20230314804A1 (en) Polarization-recycling waveguided illumination system for microdisplay
US20240230988A9 (en) Waveguide coupler for coupling laser beam into photonic integrated circuit
US20230314816A1 (en) Tir prisms and use of backlight for lcos microdisplay illumination
CN112162474A (zh) 一种紧凑型近眼增强现实全息三维显示装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762396

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762396

Country of ref document: EP

Kind code of ref document: A1