WO2017152456A1 - 交流转直流电源输出*** - Google Patents

交流转直流电源输出*** Download PDF

Info

Publication number
WO2017152456A1
WO2017152456A1 PCT/CN2016/078882 CN2016078882W WO2017152456A1 WO 2017152456 A1 WO2017152456 A1 WO 2017152456A1 CN 2016078882 W CN2016078882 W CN 2016078882W WO 2017152456 A1 WO2017152456 A1 WO 2017152456A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
voltage
resistor
illuminator
photocoupler
Prior art date
Application number
PCT/CN2016/078882
Other languages
English (en)
French (fr)
Inventor
李文芳
李文东
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2017152456A1 publication Critical patent/WO2017152456A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present invention relates to the field of power circuit technologies, and in particular, to an AC to DC power supply output system.
  • Power supply is an indispensable component of various electronic devices, and its performance is directly related to the technical specifications of electronic devices and whether it can work safely and reliably.
  • the main part is the power board, the system-on-a-chip (SOC) board, and the timing control (T-con) board.
  • the power board needs to convert the 220V AC voltage.
  • FIG. 1 is a structural block diagram of an existing AC-to-DC power supply output system, including: a bridge rectifier circuit 10', the bridge rectifier circuit 10' is connected to a 220V AC voltage, and is used to convert 220V AC voltage.
  • the input voltage of the pulse control module (LD5530) 20' is connected to the bridge rectifier circuit 10' for the 310V DC voltage;
  • the voltage is switched and controlled to be converted into a varying voltage;
  • the transformer 30' the primary coil of the transformer 30' is connected to the output pin of the pulse control module (LD5530) 20' for outputting the pulse control module (LD5530) 20'
  • the varying voltage is transformed;
  • the rectifier diode module 40', the anode of the rectifier diode module 40' is connected to the secondary coil of the transformer 30', and is used to rectify the voltage after the transformer 30' is transformed, and after rectification 12V DC voltage output;
  • voltage feedback module 50' the voltage feedback module 50' is connected to the DC voltage
  • FIG. 2 is a circuit diagram of a voltage feedback module 50' in the AC-to-DC power supply output system shown in FIG. 1, comprising a first resistor R1', a second resistor R2', a third resistor R3', and a fourth resistor R4', first
  • the capacitor C1', the second capacitor C2', the photocoupler P1', and the potential adjuster IC1' constitute a voltage feedback module 50'.
  • the input terminal of the voltage feedback module 50' that is, the common terminal of the first resistor R1' and the second resistor R2' receives the output DC voltage through the negative pole connected to the rectifier diode module 40', and the output terminal is the photocoupler P1' connected to the pulse control module. (LD5530) 20' feedback pin COMP.
  • the working process of the above AC to DC power supply output system is: when the output DC voltage is too large, the voltage feedback mode 50' block feeds back the voltage change to the pulse control module (LD5530) 20', and passes the pulse control module (LD5530) 20' Reduce the output voltage; when the output DC voltage is too small, The voltage feedback module 50' feeds this change back to the pulse control module (LD 5530) 20', and the output voltage is increased by the pulse control module (LD 5530) 20' such that the output DC voltage is relatively stable.
  • the above result occurs only when the circuit condition is in an ideal state.
  • An object of the present invention is to provide an AC-to-DC power supply output system having an overvoltage protection function capable of preventing a power-converted IC of a SOC board and a T-con board that are burned out when the DC voltage output is too high.
  • an AC to DC power supply output system including:
  • a pulse control module connected to the bridge rectifier circuit
  • a voltage feedback module connected to the rectifier diode module and the pulse control module
  • an overvoltage protection module connected to the rectifier diode module and the voltage feedback module
  • the input end of the overvoltage protection module is connected to the DC voltage outputted by the rectifier diode module, and the output terminal is connected to the voltage feedback module; when the DC voltage outputted by the rectifier diode module is overvoltage, the overvoltage protection module passes the voltage feedback module The photocurrent is increased to stop the voltage output of the pulse control module.
  • the overvoltage protection module includes: a Zener diode, and a triode; the voltage feedback module includes a photocoupler composed of an illuminator and a photoreceiver;
  • the cathode of the Zener diode is connected to the output end of the rectifier diode module, and the anode is connected to the base of the transistor;
  • the base of the triode is connected to the positive pole of the Zener diode, the emitter is grounded, and the collector is connected as an output of the overvoltage protection module to the cathode of the illuminator in the photocoupler.
  • the illuminator and the photoreceiver are packaged in the same tube; the illuminator is a light emitting diode, and the photoreceiver is a photosensitive three-stage tube.
  • the bridge rectifier circuit is connected to a 220V AC voltage.
  • the main component of the pulse control module is the chip LD5530.
  • the input pin of the pulse control module is connected to the bridge rectifier circuit, the output pin is connected to the primary coil of the transformer, and the feedback pin is connected to the output end of the voltage feedback module.
  • the secondary winding of the transformer is connected to the input of the rectifier diode module.
  • the voltage feedback module further includes: a first resistor, a second resistor, a third resistor, a first capacitor, a second capacitor, a potential adjuster, and a fourth resistor;
  • One end of the first resistor is connected to the output end of the rectifier diode module, the other end is connected to the anode of the illuminator in the photocoupler and one end of the third resistor; the other end of the third resistor is connected to the cathode of the illuminator in the photocoupler;
  • One end of the second resistor is connected to the output end of the rectifier diode module, and the other end is connected to one end of the fourth resistor; the other end of the fourth resistor is grounded;
  • the two ends of the first capacitor are respectively connected to the other end of the second resistor and the other end of the third resistor;
  • the two ends of the second capacitor are respectively connected to the collector and the emitter of the photoreceiver in the photocoupler;
  • the cathode of the potential adjuster is connected to the negative pole of the illuminator in the photocoupler, the anode is grounded, and the other end of the second resistor is connected to the control pole;
  • the collector of the photocoupler in the photocoupler is connected to the feedback pin of the voltage feedback module as the output of the voltage feedback module.
  • the invention also provides an AC to DC power supply output system, comprising:
  • a pulse control module connected to the bridge rectifier circuit
  • a voltage feedback module connected to the rectifier diode module and the pulse control module
  • an overvoltage protection module connected to the rectifier diode module and the voltage feedback module
  • the input end of the overvoltage protection module is connected to the DC voltage outputted by the rectifier diode module, and the output terminal is connected to the voltage feedback module; when the DC voltage outputted by the rectifier diode module is overvoltage, the overvoltage protection module passes the voltage feedback module The photocurrent is increased to stop the voltage output of the pulse control module;
  • the overvoltage protection module includes: a Zener diode, and a triode; the voltage feedback module includes a photocoupler composed of an illuminator and a photoreceiver;
  • the cathode of the Zener diode is connected to the output end of the rectifier diode module, and the anode is connected to the base of the transistor;
  • the base of the triode is connected to the anode of the Zener diode, the emitter is grounded, and the collector is connected as an output of the overvoltage protection module to the cathode of the illuminator in the photocoupler;
  • the illuminator and the photoreceptor are packaged in the same tube; the illuminator is a light-emitting diode, and the photoreceiver is a photosensitive three-stage tube.
  • the AC to DC power supply output system provided by the present invention, except for setting The bridge rectifier circuit, the pulse control module, the transformer, the rectifier diode module, and the voltage feedback module are further provided with an overvoltage protection module connected to the rectifier diode module and the voltage feedback module, wherein the overvoltage protection module includes a Zener diode, And the triode; when the DC voltage output is too high, the Zener diode of the overvoltage protection module reversely breaks down and transmits a voltage to the triode to turn it on, and pulls down the voltage of the anode of the illuminator in the photocoupler of the voltage feedback module The luminous intensity of the illuminator is increased, and the photocurrent of the photoreceptor in the photocoupler is increased, thereby causing the pulse control module to generate protection without outputting a voltage, thereby realizing an overvoltage protection function, which can prevent the DC voltage output from being too high when burned.
  • FIG. 1 is a structural block diagram of a conventional AC-to-DC power supply output system
  • FIG. 2 is a circuit diagram of a voltage feedback module in the AC-to-DC power supply output system shown in FIG. 1;
  • FIG. 3 is a structural block diagram of an AC-to-DC power supply output system of the present invention.
  • FIG. 4 is a circuit diagram of a voltage feedback module and a voltage protection module in an AC-to-DC power supply output system of the present invention.
  • the present invention provides an AC to DC power supply output system.
  • the AC-to-DC power supply output system of the present invention comprises: a bridge rectifier circuit 10, a pulse control module 20 connected to the bridge rectifier circuit 10, a transformer 30 connected to the pulse control module 20, and a transformer 30.
  • the bridge rectifier circuit 10 is connected to a 220V AC voltage, converts the 220V AC voltage into a DC voltage of 310V, and transmits a DC voltage of 310V to the pulse control module 20 connected thereto.
  • the main component of the pulse control module 20 is the chip LD5530, and its input pin VCC is connected to the bridge rectifier circuit 10, and receives the 310V DC voltage obtained by the bridge rectifier circuit.
  • the pin OUT is connected to the primary winding of the transformer 30, and the feedback pin COMP is connected to the output of the voltage feedback module 50.
  • the LD 5530 performs a switching action, converts the received 310 V DC voltage into a varying voltage, and transmits the changed voltage to the transformer 30.
  • the secondary winding of transformer 30 is coupled to the input of rectifier diode module 40.
  • the primary coil of the transformer 30 receives the varying voltage output by the pulse control module 20, and after being transformed by the transformer 30, produces a varying voltage across the secondary winding of the transformer 30 and transmits the varying voltage to the rectifier diode module 40.
  • the rectifier diode module 40 receives the varying voltage transmitted by the transformer 30, and rectifies the changed voltage to obtain the required 12V DC voltage, and outputs the 12V DC voltage to the SOC board and the T-con connected to the AC-DC power supply output system. board.
  • the voltage feedback module 50 is connected to the output DC voltage, that is, connected to the output end of the rectifier diode module 40, and the output terminal is connected to the feedback pin COMP of the pulse control module.
  • the voltage feedback module 50 includes a first resistor R1, a second resistor R2, a third resistor R3, a first capacitor C1, a photocoupler P1, a second capacitor C2, a potential regulator IC1, and a fourth resistor R4. .
  • the photocoupler P1 is composed of an illuminator and a photoreceiver packaged in the same package, and the illuminator is preferably a light-emitting diode, and the photoreceiver is preferably a photosensitive three-stage tube;
  • One end of the first resistor R1 is connected to the output end of the rectifier diode module 40, the other end is connected to the anode of the illuminator in the photocoupler P1 and one end of the third resistor R3; the other end of the third resistor R3 is connected to the illuminator in the photocoupler P1.
  • One end of the second resistor R2 is connected to the output end of the rectifier diode module 40, the other end is connected to one end of the fourth resistor R4; the other end of the fourth resistor R4 is grounded;
  • the two ends of the first capacitor C1 are respectively connected to the other end of the second resistor R2 and the other end of the third resistor R3;
  • the two ends of the second capacitor C2 are respectively connected to the collector and the emitter of the photoreceiver in the photocoupler P1;
  • the cathode of the potential adjuster IC1 is connected to the negative pole of the illuminator in the photocoupler P1, the anode is grounded, and the control pole is connected to the other end of the second resistor R2;
  • the collector of the photoreceiver in the photocoupler P1 is connected to the feedback pin COMP of the voltage feedback module 50 as the output of the voltage feedback module 50.
  • the voltage feedback module 50 is configured to feed back the magnitude of the output DC voltage to the pulse control module 20 in the event that the DC voltage output by the rectifier diode module 40 does not exhibit an overvoltage.
  • the potential adjuster IC1 is turned on, and the photocoupler P1 emits light.
  • the potential of the negative electrode is reduced accordingly, so that the current flowing through the illuminator is increased, the brightness of the illuminator is increased, and the photocurrent flowing through the photoreceptor is also increased, and the photocurrent is transmitted to the collector of the optical device.
  • the feedback pin COMP of the voltage feedback module 50 controls the output voltage to reduce the voltage drop.
  • the potential regulator IC1 is turned off, the partial pressure of the third resistor R3 is decreased, the voltage between the positive and negative electrodes of the illuminator is lowered, and the current flowing through the illuminator is decreased.
  • the brightness of the illuminator is slightly darkened, so that the photocurrent flowing through the photoreceptor is also reduced, and the photocurrent is transmitted to the collector of the optical device to the feedback pin COMP of the voltage feedback module 50, and the pulse control module 20 controls the output.
  • the voltage rises to achieve the boosting purpose.
  • the input end of the overvoltage protection module 60 is connected to the DC voltage output by the rectifier diode module 40, and the output terminal is connected to the voltage feedback module 50.
  • the overvoltage protection module 60 includes a Zener diode ZD1 and a transistor Q1.
  • the cathode of the Zener diode ZD1 is connected to the output end of the rectifier diode module 40, the anode is connected to the base of the transistor Q1; the base of the transistor Q1 is connected to the anode of the Zener diode ZD1, the emitter is grounded, and the collector is used as an overvoltage protection module.
  • the output of 60 is connected to the negative terminal of the illuminator in the photocoupler P1.
  • the over-voltage protection module 60 works: the Zener diode ZD1 reverse-breaks to stabilize For example, when the breakdown voltage of the diode ZD1 is 15V, when the output DC voltage is higher than 15.7V, the voltage on the Zener diode ZD1 is 15V, and the base voltage of the transistor Q1 is 0.7V, due to the base of the transistor Q1.
  • the voltage is greater than the voltage of the emitter, the transistor Q1 is turned on, and the voltage of the collector and the negative electrode of the illuminator in the photocoupler P1 is pulled down to 0V, the current flowing through the illuminator is greatly increased, and the brightness of the illuminator is greatly increased.
  • the photocurrent of the photoreceiver is greatly increased, and the photocurrent is transmitted to the feedback pin COMP of the voltage feedback module 50, so that the pulse control module 20 is protected from outputting voltage, that is, when the rectifier diode module 40 outputs
  • the overvoltage protection module 60 stops the voltage output of the pulse control module 20 by increasing the photocurrent of the voltage feedback module 50, and correspondingly, the rectifier diode module
  • the output of the block 40 is also stopped, and an overvoltage protection function is realized, which prevents the SOC board and the power conversion IC of the T-con board from being burnt out due to excessive DC voltage output.
  • the AC to DC power supply output system of the present invention is provided with a rectifier rectifier circuit, a pulse control module, a transformer, a rectifier diode module, and a voltage feedback module, and is also provided with a rectifier diode module and a voltage feedback module.
  • the overvoltage protection module includes a Zener diode and a triode; when the DC voltage output is too high, the Zener diode of the overvoltage protection module reversely breaks down and transmits a voltage to the triode to guide Pass, pull low voltage feedback mode
  • the voltage of the negative electrode of the illuminator in the photocoupler of the block increases the luminous intensity of the illuminator, and the photocurrent of the photoreceptor in the photocoupler increases, thereby causing the pulse control module to generate protection without outputting voltage, thereby realizing overvoltage protection.
  • the function can prevent the power conversion IC of the SOC board and the T-con board after the DC voltage output is too high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种交流转直流电源输出***,除设置桥式整流电路(10)、脉冲控制模块(20)、变压器(30)、整流二极管模块(40)、及电压反馈模块(50)外,还设置有过压保护模块(60),所述过压保护模块(60)包括稳压二极管(ZD1)、及三极管(Q1);当直流电压输出过高时,稳压二极管(ZD1)反向击穿并传输电压给三极管(Q1)使之导通,拉低电压反馈模块(50)的光电耦合器(P1)内发光器负极的电压,使得发光器的发光强度增大,光电耦合器(P1)内受光器的光电流增大,从而引起脉冲控制模块(20)产生保护而不输出电压,实现了过压保护功能,能够防止直流电压输出过高时烧坏后接的SOC板及T-con板上的电源转换的IC。

Description

交流转直流电源输出*** 技术领域
本发明涉及电源电路技术领域,尤其涉及一种交流转直流电源输出***。
背景技术
电源是各种电子设备必不可少的组成部分,其性能的优劣直接关系到电子设备的技术指标及能否安全可靠地工作。在电视的电路***构架中,主要的部分为电源板、***级芯片(System-on-a-chip,SOC)板、及时序控制(T-con)板,电源板需要把220V的交流电压转换成SOC板和T-con板所需要的12V直流电压。
图1所示为一种现有的交流转直流电源输出***的结构框图,包括:桥式整流电路10’,所述桥式整流电路10’接入220V交流电压,用于将220V交流电压转换为310V直流电压;脉冲控制模块(LD5530)20’,所述脉冲控制模块(LD5530)20’的输入引脚与桥式整流电路10’相连,用于将桥式整流电路10’获得的310V直流电压进行开关控制而转换成变化的电压;变压器30’,所述变压器30’的初级线圈与脉冲控制模块(LD5530)20’的输出引脚相连,用于对脉冲控制模块(LD5530)20’输出的变化电压进行变压;整流二极管模块40’,所述整流二极管模块40’的正极连接于变压器30’的次级线圈,用于将变压器30’变压后的电压进行整流,并将整流后的12V直流电压输出;电压反馈模块50’,所述电压反馈模块50’与直流电压输出端及脉冲控制模块(LD5530)20’的反馈引脚COMP相连,用于将输出的直流电压的大小反馈给脉冲控制模块(LD5530)20’。
图2为图1所示的交流转直流电源输出***中电压反馈模块50’的电路图,由第一电阻R1’、第二电阻R2’、第三电阻R3’、第四电阻R4’、第一电容C1’、第二电容C2’、光电耦合器P1’和电位调节器IC1’构成了电压反馈模块50’。电压反馈模块50’的输入端即第一电阻R1’和第二电阻R2’的公共端通过连接整流二极管模块40’的负极接收输出的直流电压,输出端即光电耦合器P1’接脉冲控制模块(LD5530)20’的反馈引脚COMP。
上述交流转直流电源输出***的工作过程为:当输出的直流电压偏大时,电压反馈模50’块将电压变化反馈给脉冲控制模块(LD5530)20’,通过脉冲控制模块(LD5530)20’降低输出电压;当输出的直流电压偏小时, 电压反馈模块50’将该变化反馈给脉冲控制模块(LD5530)20’,通过脉冲控制模块(LD5530)20’提高输出电压,这样使得输出的直流电压比较稳定。但是,上述结果是在电路状况处于理想状态下才出现的,当交流转直流电源输出***的某处出现异常而输出远超过12V的过高电压时,由于该现有的交流转直流电源输出***没有设置过压保护措施,会烧坏后接的SOC板及T-con板上的电源转换的IC。
发明内容
本发明的目的在于提供一种交流转直流电源输出***,其具有过压保护功能,能够防止直流电压输出过高时烧坏后接的SOC板及T-con板上的电源转换的IC。
为实现上述目的,本发明提供一种交流转直流电源输出***,包括:
桥式整流电路;
与所述桥式整流电路连接的脉冲控制模块;
与所述脉冲控制模块连接的变压器;
与所述变压器连接的整流二极管模块;
与所述整流二极管模块和脉冲控制模块连接的电压反馈模块;
以及与所述整流二极管模块和电压反馈模块连接的过压保护模块;
所述过压保护模块的输入端接入整流二极管模块输出的直流电压,输出端连接电压反馈模块;当整流二极管模块输出的直流电压过压时,所述过压保护模块通过使得电压反馈模块的光电流增大来停止脉冲控制模块的电压输出。
所述过压保护模块包括:稳压二极管、及三极管;所述电压反馈模块包括由发光器与受光器构成的光电耦合器;
稳压二极管的负极连接于整流二极管模块的输出端,正极连接于三极管的基极;
三极管的基极连接于稳压二极管的正极,发射极接地,集电极作为过压保护模块的输出端连接于光电耦合器内发光器的负极。
所述发光器与受光器封装在同一管壳内;所述发光器为发光二级管,所述受光器为光敏三级管。
所述桥式整流电路接入220V交流电压。
所述脉冲控制模块的主要元件为芯片LD5530。
所述脉冲控制模块的输入引脚与桥式整流电路相连,输出引脚与变压器的初级线圈相连,反馈引脚与电压反馈模块的输出端相连。
变压器的次级线圈连接整流二极管模块的输入端。
所述电压反馈模块还包括:第一电阻、第二电阻、第三电阻、第一电容、第二电容、电位调节器、以及第四电阻;
第一电阻的一端连接于整流二极管模块的输出端,另一端连接光电耦合器内发光器的正极以及第三电阻的一端;第三电阻的另一端连接光电耦合器内发光器的负极;
所述第二电阻的一端连接于整流二极管模块的输出端,另一端连接第四电阻的一端;第四电阻的另一端接地;
第一电容的两端分别连接第二电阻的另一端、与第三电阻的另一端;
第二电容的两端分别连接光电耦合器内受光器的集电极、与发射极;
电位调节器的阴极连接光电耦合器内发光器的负极,阳极接地,控制极连接第二电阻的另一端;
光电耦合器内受光器的集电极作为电压反馈模块的输出端连接电压反馈模块的反馈引脚。
本发明还提供一种交流转直流电源输出***,包括:
桥式整流电路;
与所述桥式整流电路连接的脉冲控制模块;
与所述脉冲控制模块连接的变压器;
与所述变压器连接的整流二极管模块;
与所述整流二极管模块和脉冲控制模块连接的电压反馈模块;
以及与所述整流二极管模块和电压反馈模块连接的过压保护模块;
所述过压保护模块的输入端接入整流二极管模块输出的直流电压,输出端连接电压反馈模块;当整流二极管模块输出的直流电压过压时,所述过压保护模块通过使得电压反馈模块的光电流增大来停止脉冲控制模块的电压输出;
其中,所述过压保护模块包括:稳压二极管、及三极管;所述电压反馈模块包括由发光器与受光器构成的光电耦合器;
稳压二极管的负极连接于整流二极管模块的输出端,正极连接于三极管的基极;
三极管的基极连接于稳压二极管的正极,发射极接地,集电极作为过压保护模块的输出端连接于光电耦合器内发光器的负极;
其中,所述发光器与受光器封装在同一管壳内;所述发光器为发光二级管,所述受光器为光敏三级管。
本发明的有益效果:本发明提供的交流转直流电源输出***,除设置 桥式整流电路、脉冲控制模块、变压器、整流二极管模块、及电压反馈模块外,还设置有与整流二极管模块和电压反馈模块连接的过压保护模块,所述过压保护模块包括稳压二极管、及三极管;当直流电压输出过高时,所述过压保护模块的稳压二极管反向击穿并传输电压给三极管使之导通,拉低电压反馈模块的光电耦合器内发光器负极的电压,使得发光器的发光强度增大,光电耦合器内受光器的光电流增大,从而引起脉冲控制模块产生保护而不输出电压,实现了过压保护功能,能够防止直流电压输出过高时烧坏后接的SOC板及T-con板上的电源转换的IC。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为一种现有的交流转直流电源输出***的结构框图;
图2为图1所示的交流转直流电源输出***中电压反馈模块的电路图;
图3为本发明的交流转直流电源输出***的结构框图;
图4为本发明的交流转直流电源输出***中电压反馈模块和电压保护模块的电路图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请同时参阅图3与图4,本发明提供一种交流转直流电源输出***。如图3所示,本发明的交流转直流电源输出***包括:桥式整流电路10、与桥式整流电路10连接的脉冲控制模块20、与脉冲控制模块20连接的变压器30、与变压器30连接的整流二极管模块40、与整流二极管模块40和脉冲控制模块20连接的电压反馈模块50、以及与整流二极管模块40和电压反馈50模块连接的过压保护模块60。
所述桥式整流电路10接入220V交流电压,将220V交流电压转换为310V的直流电压,并将310V的直流电压传递至与之相连接的脉冲控制模块20。
脉冲控制模块20的主要构成元件为芯片LD5530,其输入引脚VCC与桥式整流电路10相连,接收桥式整流电路获得的310V直流电压,输出引 脚OUT与变压器30的初级线圈相连,反馈引脚COMP与电压反馈模块50的输出端相连。当有310V的直流电压输入脉冲控制模块20时,LD5530进行开关作用,将接收到的310V直流电压转换成变化的电压,并将变化的电压传输给变压器30。
变压器30的次级线圈连接整流二极管模块40的输入端。变压器30的初级线圈接收脉冲控制模块20输出的变化电压,经变压器30变压后,在变压器30的次级线圈上产生变化电压,并将变化的电压传输至整流二极管模块40。
整流二极管模块40接收变压器30传输的变化电压,并将变化电压进行整流,可以得到所需的12V直流电压,并将12V直流电压输出给交流转直流电源输出***后接的SOC板及T-con板。
结合图3与图4,电压反馈模块50接入输出的直流电压,即与整流二极管模块40的输出端相连接,输出端连接脉冲控制模块的反馈引脚COMP。
具体地,所述电压反馈模块50包括第一电阻R1、第二电阻R2、第三电阻R3、第一电容C1、光电耦合器P1、第二电容C2、电位调节器IC1、及第四电阻R4。
进一步地,所述光电耦合器P1由封装在同一管壳内的发光器与受光器构成,所述发光器优选为发光二级管,所述受光器优选为光敏三级管;
第一电阻R1的一端连接于整流二极管模块40的输出端,另一端连接光电耦合器P1内发光器的正极以及第三电阻R3的一端;第三电阻R3的另一端连接光电耦合器P1内发光器的负极;
所述第二电阻R2的一端连接于整流二极管模块40的输出端,另一端连接第四电阻R4的一端;第四电阻R4的另一端接地;
第一电容C1的两端分别连接第二电阻R2的另一端、与第三电阻R3的另一端;
第二电容C2的两端分别连接光电耦合器P1内受光器的集电极、与发射极;
电位调节器IC1的阴极连接光电耦合器P1内发光器的负极,阳极接地,控制极连接第二电阻R2的另一端;
光电耦合器P1内受光器的集电极作为电压反馈模块50的输出端连接电压反馈模块50的反馈引脚COMP。
在整流二极管模块40输出的直流电压不出现过压的情况下,所述电压反馈模块50用于将输出的直流电压的大小反馈给脉冲控制模块20。当输出的直流电压比12V略偏大时,电位调节器IC1导通,光电耦合器P1内发光 器负极的电位随之降低,使得流过发光器的电流有所增大,发光器的亮度增高,从而使流过受光器的光电流也有所增大,光电流经受光器的集电极传输至电压反馈模块50的反馈引脚COMP,脉冲控制模块20便控制输出电压降低,达到降压目的。
反之,当输出的直流电压比12V略偏小时,电位调节器IC1截止,第三电阻R3的分压减小,发光器正极与负极之间的电压降低,流过发光器的电流有所减小,发光器的亮度略变暗,从而使流过受光器的光电流也有所减小,光电流经受光器的集电极传输至电压反馈模块50的反馈引脚COMP,脉冲控制模块20便控制输出电压升高,达到升压目的。
结合图3与图4,所述过压保护模块60的输入端接入整流二极管模块40输出的直流电压,输出端连接电压反馈模块50。
具体地,所述过压保护模块60包括稳压二极管ZD1、及三极管Q1。
稳压二极管ZD1的负极连接于整流二极管模块40的输出端,正极连接于三极管Q1的基极;三极管Q1的基极连接于稳压二极管ZD1的正极,发射极接地,集电极作为过压保护模块60的输出端连接于光电耦合器P1内发光器的负极。
当交流转直流电源输出***的某处出现异常而出现过压现象,即输出的直流电压超过12V一定幅值时,所述过压保护模块60工作:稳压二极管ZD1反向击穿,以稳压二极管ZD1的击穿电压为15V为例,当输出的直流电压高过15.7V后,稳压二极管ZD1上的电压为15V,则三极管Q1的基极电压为0.7V,由于三极管Q1的基极的电压大于发射极的电压,三极管Q1导通,其集电极及光电耦合器P1内发光器负极的电压被拉低到0V,流过发光器的电流大幅增大,发光器的亮度大幅增高,从而使受光器的光电流大幅增大,光电流经受光器的集电极传输至电压反馈模块50的反馈引脚COMP,使得脉冲控制模块20发生保护不输出电压,即当整流二极管模块40输出的直流电压过压时,所述过压保护模块60通过使得电压反馈模块50的光电流增大来停止脉冲控制模块20的电压输出,相应的,整流二极管模块40的输出端也停止输出,实现了过压保护功能,能够防止因直流电压输出过高而烧坏后接的SOC板及T-con板上的电源转换的IC。
综上所述,本发明的交流转直流电源输出***,除设置桥式整流电路、脉冲控制模块、变压器、整流二极管模块、及电压反馈模块外,还设置有与整流二极管模块和电压反馈模块连接的过压保护模块,所述过压保护模块包括稳压二极管、及三极管;当直流电压输出过高时,所述过压保护模块的稳压二极管反向击穿并传输电压给三极管使之导通,拉低电压反馈模 块的光电耦合器内发光器负极的电压,使得发光器的发光强度增大,光电耦合器内受光器的光电流增大,从而引起脉冲控制模块产生保护而不输出电压,实现了过压保护功能,能够防止直流电压输出过高时烧坏后接的SOC板及T-con板上的电源转换的IC。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (14)

  1. 一种交流转直流电源输出***,包括:
    桥式整流电路;
    与所述桥式整流电路连接的脉冲控制模块;
    与所述脉冲控制模块连接的变压器;
    与所述变压器连接的整流二极管模块;
    与所述整流二极管模块和脉冲控制模块连接的电压反馈模块;
    以及与所述整流二极管模块和电压反馈模块连接的过压保护模块;
    所述过压保护模块的输入端接入整流二极管模块输出的直流电压,输出端连接电压反馈模块;当整流二极管模块输出的直流电压过压时,所述过压保护模块通过使得电压反馈模块的光电流增大来停止脉冲控制模块的电压输出。
  2. 如权利要求1所述的交流转直流电源输出***,其中,所述过压保护模块包括:稳压二极管、及三极管;所述电压反馈模块包括由发光器与受光器构成的光电耦合器;
    稳压二极管的负极连接于整流二极管模块的输出端,正极连接于三极管的基极;
    三极管的基极连接于稳压二极管的正极,发射极接地,集电极作为过压保护模块的输出端连接于光电耦合器内发光器的负极。
  3. 如权利要求2所述的交流转直流电源输出***,其中,所述发光器与受光器封装在同一管壳内;所述发光器为发光二级管,所述受光器为光敏三级管。
  4. 如权利要求1所述的交流转直流电源输出***,其中,所述桥式整流电路接入220V交流电压。
  5. 如权利要求1所述的交流转直流电源输出***,其中,所述脉冲控制模块的主要元件为芯片LD5530。
  6. 如权利要求5所述的交流转直流电源输出***,其中,所述脉冲控制模块的输入引脚与桥式整流电路相连,输出引脚与变压器的初级线圈相连,反馈引脚与电压反馈模块的输出端相连。
  7. 如权利要求6所述的交流转直流电源输出***,其中,变压器的次级线圈连接整流二极管模块的输入端。
  8. 如权利要求6所述的交流转直流电源输出***,其中,所述电压反 馈模块还包括:第一电阻、第二电阻、第三电阻、第一电容、第二电容、电位调节器、以及第四电阻;
    第一电阻的一端连接于整流二极管模块的输出端,另一端连接光电耦合器内发光器的正极以及第三电阻的一端;第三电阻的另一端连接光电耦合器内发光器的负极;
    所述第二电阻的一端连接于整流二极管模块的输出端,另一端连接第四电阻的一端;第四电阻的另一端接地;
    第一电容的两端分别连接第二电阻的另一端、与第三电阻的另一端;
    第二电容的两端分别连接光电耦合器内受光器的集电极、与发射极;
    电位调节器的阴极连接光电耦合器内发光器的负极,阳极接地,控制极连接第二电阻的另一端;
    光电耦合器内受光器的集电极作为电压反馈模块的输出端连接电压反馈模块的反馈引脚。
  9. 一种交流转直流电源输出***,包括:
    桥式整流电路;
    与所述桥式整流电路连接的脉冲控制模块;
    与所述脉冲控制模块连接的变压器;
    与所述变压器连接的整流二极管模块;
    与所述整流二极管模块和脉冲控制模块连接的电压反馈模块;
    以及与所述整流二极管模块和电压反馈模块连接的过压保护模块;
    所述过压保护模块的输入端接入整流二极管模块输出的直流电压,输出端连接电压反馈模块;当整流二极管模块输出的直流电压过压时,所述过压保护模块通过使得电压反馈模块的光电流增大来停止脉冲控制模块的电压输出;
    其中,所述过压保护模块包括:稳压二极管、及三极管;所述电压反馈模块包括由发光器与受光器构成的光电耦合器;
    稳压二极管的负极连接于整流二极管模块的输出端,正极连接于三极管的基极;
    三极管的基极连接于稳压二极管的正极,发射极接地,集电极作为过压保护模块的输出端连接于光电耦合器内发光器的负极;
    其中,所述发光器与受光器封装在同一管壳内;所述发光器为发光二级管,所述受光器为光敏三级管。
  10. 如权利要求9所述的交流转直流电源输出***,其中,所述桥式整流电路接入220V交流电压。
  11. 如权利要求9所述的交流转直流电源输出***,其中,所述脉冲控制模块的主要元件为芯片LD5530。
  12. 如权利要求11所述的交流转直流电源输出***,其中,所述脉冲控制模块的输入引脚与桥式整流电路相连,输出引脚与变压器的初级线圈相连,反馈引脚与电压反馈模块的输出端相连。
  13. 如权利要求12所述的交流转直流电源输出***,其中,变压器的次级线圈连接整流二极管模块的输入端。
  14. 如权利要求12所述的交流转直流电源输出***,其中,所述电压反馈模块还包括:第一电阻、第二电阻、第三电阻、第一电容、第二电容、电位调节器、以及第四电阻;
    第一电阻的一端连接于整流二极管模块的输出端,另一端连接光电耦合器内发光器的正极以及第三电阻的一端;第三电阻的另一端连接光电耦合器内发光器的负极;
    所述第二电阻的一端连接于整流二极管模块的输出端,另一端连接第四电阻的一端;第四电阻的另一端接地;
    第一电容的两端分别连接第二电阻的另一端、与第三电阻的另一端;
    第二电容的两端分别连接光电耦合器内受光器的集电极、与发射极;
    电位调节器的阴极连接光电耦合器内发光器的负极,阳极接地,控制极连接第二电阻的另一端;
    光电耦合器内受光器的集电极作为电压反馈模块的输出端连接电压反馈模块的反馈引脚。
PCT/CN2016/078882 2016-03-08 2016-04-08 交流转直流电源输出*** WO2017152456A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610131666.X 2016-03-08
CN201610131666.XA CN105634306A (zh) 2016-03-08 2016-03-08 交流转直流电源输出***

Publications (1)

Publication Number Publication Date
WO2017152456A1 true WO2017152456A1 (zh) 2017-09-14

Family

ID=56048942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078882 WO2017152456A1 (zh) 2016-03-08 2016-04-08 交流转直流电源输出***

Country Status (2)

Country Link
CN (1) CN105634306A (zh)
WO (1) WO2017152456A1 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107464738A (zh) * 2017-09-19 2017-12-12 珠海美华医疗科技有限公司 一种高压耦合脉冲发生器及飞行时间质谱仪
CN107863951A (zh) * 2017-12-19 2018-03-30 宁波欧罗巴焊割科技有限公司 一种igbt
CN108512544A (zh) * 2018-04-24 2018-09-07 中国船舶重工集团公司第七二六研究所 转换电路
CN109445348A (zh) * 2018-11-26 2019-03-08 中国人民解放军陆军工程大学 一种用于导弹武器***的导弹检测模拟装置
CN109917840A (zh) * 2019-03-07 2019-06-21 浙江大学 光电倍增管专用高压电源的输出电压调节装置
CN110113845A (zh) * 2019-06-06 2019-08-09 湖南凯上电子科技有限公司 一种led照明电源护眼软启动控制电路
CN110224611A (zh) * 2019-05-31 2019-09-10 深圳市奋勇光电有限公司 一种完全隔离的电路
CN110830024A (zh) * 2019-11-05 2020-02-21 徐州汉通电子科技有限公司 一种光电耦合器过压保护电路
CN110890847A (zh) * 2018-09-11 2020-03-17 深圳市国王科技有限公司 一种节能稳压电路
CN111999549A (zh) * 2020-08-27 2020-11-27 广东电网有限责任公司广州供电局 零线带电故障警示装置
CN112162163A (zh) * 2020-09-24 2021-01-01 南京璞骏新能源技术有限公司 一种新型高压直流电容大电流测试装置
CN112671088A (zh) * 2020-12-28 2021-04-16 国家电网有限公司 电力低压直流供电控制***
CN112763804A (zh) * 2020-12-25 2021-05-07 无锡扬晟科技股份有限公司 一种基于激励脉冲信号的回路电阻检测装置
CN112821521A (zh) * 2021-02-24 2021-05-18 广东东菱电源科技有限公司 数模共存的脉冲充电电路及驱动电源
CN113300593A (zh) * 2021-04-20 2021-08-24 辽宁长风科技有限责任公司 一种用于随钻仪器的直流稳压电源***
CN113608004A (zh) * 2021-07-05 2021-11-05 株洲国创轨道科技有限公司 一种宽幅电压检测电路
CN115877904A (zh) * 2023-02-03 2023-03-31 深圳市昂佳科技有限公司 一种线性稳压电路
CN116073497A (zh) * 2023-03-23 2023-05-05 深圳市凌康技术有限公司 一种电池充电电路及电池充电方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105979659B (zh) * 2016-06-21 2017-11-07 卫星电子(中山)有限公司 一种断电后瞬间启动电路
CN106941323A (zh) * 2017-01-17 2017-07-11 茌平信源铝业有限公司 一种电解铝用整流***
CN108321772A (zh) * 2018-03-05 2018-07-24 广东顺德奥为德科技有限公司 用于逆变电源的直流高压电解电容防爆电路及其控制方法
CN108807305B (zh) * 2018-07-02 2024-02-13 山东晶导微电子股份有限公司 一种带输出保护的电源功率模块结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070138971A1 (en) * 2005-08-15 2007-06-21 Liang Chen AC-to-DC voltage converter as power supply for lamp
CN101888730A (zh) * 2010-06-30 2010-11-17 海洋王照明科技股份有限公司 交流恒流源led驱动电路
CN202261029U (zh) * 2011-09-19 2012-05-30 深圳市共进电子股份有限公司 具有过压保护的开关电源电路
CN103647454A (zh) * 2013-12-23 2014-03-19 无锡隆玛科技股份有限公司 光伏***自供电电源电路
CN204858705U (zh) * 2015-08-13 2015-12-09 深圳市龙威盛电子科技有限公司 手机充电器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700808B2 (en) * 2002-02-08 2004-03-02 Mobility Electronics, Inc. Dual input AC and DC power supply having a programmable DC output utilizing a secondary buck converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070138971A1 (en) * 2005-08-15 2007-06-21 Liang Chen AC-to-DC voltage converter as power supply for lamp
CN101888730A (zh) * 2010-06-30 2010-11-17 海洋王照明科技股份有限公司 交流恒流源led驱动电路
CN202261029U (zh) * 2011-09-19 2012-05-30 深圳市共进电子股份有限公司 具有过压保护的开关电源电路
CN103647454A (zh) * 2013-12-23 2014-03-19 无锡隆玛科技股份有限公司 光伏***自供电电源电路
CN204858705U (zh) * 2015-08-13 2015-12-09 深圳市龙威盛电子科技有限公司 手机充电器

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107464738B (zh) * 2017-09-19 2023-07-07 珠海美华医疗科技有限公司 一种高压耦合脉冲发生器及飞行时间质谱仪
CN107464738A (zh) * 2017-09-19 2017-12-12 珠海美华医疗科技有限公司 一种高压耦合脉冲发生器及飞行时间质谱仪
CN107863951A (zh) * 2017-12-19 2018-03-30 宁波欧罗巴焊割科技有限公司 一种igbt
CN107863951B (zh) * 2017-12-19 2023-07-04 宁波欧罗巴科技有限公司 一种igbt
CN108512544A (zh) * 2018-04-24 2018-09-07 中国船舶重工集团公司第七二六研究所 转换电路
CN108512544B (zh) * 2018-04-24 2024-06-11 中国船舶重工集团公司第七二六研究所 转换电路
CN110890847A (zh) * 2018-09-11 2020-03-17 深圳市国王科技有限公司 一种节能稳压电路
CN110890847B (zh) * 2018-09-11 2023-11-14 深圳市国王科技有限公司 一种节能稳压电路
CN109445348A (zh) * 2018-11-26 2019-03-08 中国人民解放军陆军工程大学 一种用于导弹武器***的导弹检测模拟装置
CN109445348B (zh) * 2018-11-26 2023-09-22 中国人民解放军陆军工程大学 一种用于导弹武器***的导弹检测模拟装置
CN109917840A (zh) * 2019-03-07 2019-06-21 浙江大学 光电倍增管专用高压电源的输出电压调节装置
CN109917840B (zh) * 2019-03-07 2023-05-02 浙江大学 光电倍增管专用高压电源的输出电压调节装置
CN110224611A (zh) * 2019-05-31 2019-09-10 深圳市奋勇光电有限公司 一种完全隔离的电路
CN110113845B (zh) * 2019-06-06 2024-03-22 湖南凯上电子科技有限公司 一种led照明电源护眼软启动控制电路
CN110113845A (zh) * 2019-06-06 2019-08-09 湖南凯上电子科技有限公司 一种led照明电源护眼软启动控制电路
CN110830024A (zh) * 2019-11-05 2020-02-21 徐州汉通电子科技有限公司 一种光电耦合器过压保护电路
CN111999549A (zh) * 2020-08-27 2020-11-27 广东电网有限责任公司广州供电局 零线带电故障警示装置
CN111999549B (zh) * 2020-08-27 2023-10-20 广东电网有限责任公司广州供电局 零线带电故障警示装置
CN112162163A (zh) * 2020-09-24 2021-01-01 南京璞骏新能源技术有限公司 一种新型高压直流电容大电流测试装置
CN112763804A (zh) * 2020-12-25 2021-05-07 无锡扬晟科技股份有限公司 一种基于激励脉冲信号的回路电阻检测装置
CN112763804B (zh) * 2020-12-25 2024-05-28 无锡扬晟科技股份有限公司 一种基于激励脉冲信号的回路电阻检测装置
CN112671088A (zh) * 2020-12-28 2021-04-16 国家电网有限公司 电力低压直流供电控制***
CN112821521A (zh) * 2021-02-24 2021-05-18 广东东菱电源科技有限公司 数模共存的脉冲充电电路及驱动电源
CN113300593A (zh) * 2021-04-20 2021-08-24 辽宁长风科技有限责任公司 一种用于随钻仪器的直流稳压电源***
CN113300593B (zh) * 2021-04-20 2022-08-30 辽宁长风科技有限责任公司 一种用于随钻仪器的直流稳压电源***
CN113608004B (zh) * 2021-07-05 2024-04-16 株洲国创轨道科技有限公司 一种宽幅电压检测电路
CN113608004A (zh) * 2021-07-05 2021-11-05 株洲国创轨道科技有限公司 一种宽幅电压检测电路
CN115877904B (zh) * 2023-02-03 2024-05-31 深圳市昂佳科技有限公司 一种线性稳压电路
CN115877904A (zh) * 2023-02-03 2023-03-31 深圳市昂佳科技有限公司 一种线性稳压电路
CN116073497B (zh) * 2023-03-23 2023-10-20 深圳市凌康技术有限公司 一种电池充电电路及电池充电方法
CN116073497A (zh) * 2023-03-23 2023-05-05 深圳市凌康技术有限公司 一种电池充电电路及电池充电方法

Also Published As

Publication number Publication date
CN105634306A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2017152456A1 (zh) 交流转直流电源输出***
TWI405502B (zh) 發光二極體的調光電路及其隔離型電壓產生器與調光方法
TWI481140B (zh) Switching power supply circuit and electronic equipment with protection function
JP4013162B2 (ja) スイッチング電源装置
US20140119065A1 (en) Switching power-supply device
TWI514745B (zh) 交流直流轉換裝置及其操作方法
CN107770901B (zh) 发光二极管驱动装置及驱动装置的短路保护方法
CN112512163A (zh) 一种输出过压保护控制电路及驱动电路
TW201434349A (zh) 發光二極體驅動器
JP2015053225A (ja) Led駆動回路
US20160087535A1 (en) Self-excited power conversion circuit for secondary side control output power
WO2019015224A1 (zh) 过流保护电路
US20190027918A1 (en) Over current protection circuit
TW201705664A (zh) 整合過電流保護偵測和過電壓保護偵測的升壓裝置
CN110634448B (zh) 一种背光灯条保护电路及电视机
CN111489706A (zh) 一种led背光源驱动装置及电视机
JP2011200034A (ja) スイッチング電源装置
CN203813419U (zh) 一种开关电源的过流保护电路
US20210351580A1 (en) Power adapter and electronic device
WO2018149020A1 (zh) 一种背光驱动电路及液晶显示器
CN212256867U (zh) 一种led背光源驱动装置及电视机
JP2019122205A (ja) スイッチング電源
CN112601338B (zh) 灯具及其调控电路
CN213818302U (zh) 灯具及其调控电路
KR101246837B1 (ko) 직관형 엘이디 램프 조명장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893104

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893104

Country of ref document: EP

Kind code of ref document: A1