WO2017152354A1 - An electron-donating unit, a copolymer thereof and their preparation methods, as well as their uses - Google Patents

An electron-donating unit, a copolymer thereof and their preparation methods, as well as their uses Download PDF

Info

Publication number
WO2017152354A1
WO2017152354A1 PCT/CN2016/075839 CN2016075839W WO2017152354A1 WO 2017152354 A1 WO2017152354 A1 WO 2017152354A1 CN 2016075839 W CN2016075839 W CN 2016075839W WO 2017152354 A1 WO2017152354 A1 WO 2017152354A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
electron
polymer
conducted
thiophene
Prior art date
Application number
PCT/CN2016/075839
Other languages
French (fr)
Inventor
Xugang GUO
Xiaojie GUO
Qiaogan LIAO
Yongye Liang
Original Assignee
South University Of Science And Technology Of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South University Of Science And Technology Of China filed Critical South University Of Science And Technology Of China
Priority to PCT/CN2016/075839 priority Critical patent/WO2017152354A1/en
Publication of WO2017152354A1 publication Critical patent/WO2017152354A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/30Hetero atoms other than halogen
    • C07D333/32Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/36Oligomers, i.e. comprising up to 10 repeat units
    • C08G2261/364Oligomers, i.e. comprising up to 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention belongs to the field of semiconductor material, in particular to an electron-donating unit, a copolymer thereof and their preparation methods, as well as their uses.
  • Polymer semiconductors have received great attention due to their potential for fabricating diverse opto-electrical devices using solution-based processing techniques, such as coating and printing 1-3 .
  • the solution processability enables the fabrication of cost-effective, large area, and mechanically flexible electronic devices, such as organic thin-film transistors (OTFTs) and polymer solar cells (PSCs) 2, 4-6 .
  • OFTs organic thin-film transistors
  • PSCs polymer solar cells
  • the semiconducting materials should possess well-tailored bandgaps, energetically optimized frontier molecular orbitals (FMOs) , a desirable film morphology, and good solubility 4, 7-15 .
  • FMOs frontier molecular orbitals
  • polymer semiconductors are typically functionalized with solubilizing alkyl side chain substituents.
  • alkylation patterns must be strategically manipulated to minimize steric hindrance, hence head-to-head (HH) linkages should be avoided in semiconducting polymer design to minimize accompanying backbone torsion, which reduces conjugation along the polymer chain, compromises film crystallinity/order, and diminishes charge carrier mobility 16-19 .
  • HH head-to-head
  • the backbone In order to achieve high degrees of macromolecular backbone planarity for enhanced charge carrier delocalization, the backbone must be designed to energetically favor planar conformations versus any twisted alternatives. Although in principal conjugated backbones should be energetically favored in planar conformations, adverse steric interactions, mainly from side substituents, often prevent realization of this ideal case.
  • two materials design strategies are widely employed in polymer electronics, 1) reducing steric hindrance by inserting spacers (or bridges) along the chain 17, 20 , and 2) conformation locking with covalent bonds 21, 22 or non-covalent.
  • spacers mainly unsubstituted thiophene (or thiazole) derivatives
  • PBTTT and PQT 20 have yielded great success in high-performance semiconductors such as PBTTT and PQT 20, 23-27 .
  • the spacer incorporation requires additional steps in the monomer synthesis 28-30 and could also dilute the concentration of key building blocks, typically the acceptor units, in the polymeric backbones, risking sub-optimal opto-electronic properties for the resulting semiconductors 31-34 .
  • such spacers are typically nonalkylated, which could reduce polymer solubilities 17, 35, 36 .
  • Form 2 Conformation locking through covalent bonds (Formula 2) has also provided great success as a planarizining design strategy, however, the sp 3 orbital hybridization of the bridging atoms, such as C, Si, and Ge, leads to out-of-plane substituent orientation, thereby enlarging intermolecular stacking distances, reducing interchain ⁇ - ⁇ orbital overlap, and lowering carrier mobilities 21, 22, 37 . Therefore, polymer semiconductors containing cyclopentadithiophene or dithienosilole (germole) frequently have limited OTFT mobilities and suboptimal fill factors (FFs; ⁇ 70%) in bulk heterojunction (BHJ) PSCs 38-41 .
  • FFs suboptimal fill factors
  • Poly (3, 4-ethylenedioxythiophene) (PEDOT) is a widely used conducting polymer with high doped state conductivity 42, 43 which is partially attributed to substantial backbone planarity 44 .
  • PEDOT polyethylenedioxythiophene
  • 2-bis (3, 4-ethylenedioxythiophene) the distance between the (thienyl) sulfur and (3, 4-ethylenedioxy) oxygen atoms (S...O) is substantially below the sum of the S and O van der Waals radii
  • This intramolecular non-covalent S...O interaction promotes a planar backbone conformation and charge carrier delocalizations 41, 46, 47 .
  • Yoshimura developed an electron rich 5H-dithieno [3, 2-b: 2’ , 3’ -d] pyran (DTP, Figure 1c) 62 , which has greater electron-donating capacity than cyclopentadithiophene 63 .
  • DTP Figure 1c
  • the resulting polymer semiconductor exhibits a smaller bandgap than the cyclopentadithiophene counterpart but maintains a decent V oc of 0.7 V.
  • the PSCs show promising power conversion efficiencies (PCEs) of 8.0% 62 and 10.6% 64 in single junction and tandem cells, respectively.
  • the present invention provides the design and synthesis of the novel electron-donating 3-alkyl-3’ -alkoxy-2, 2’ -bithiophene (TRTOR) unit ( Figure 1e) and that its incorporation into copolymers affords semiconductors (Formula 4) with good materials solubility, high degrees of backbone planarity, appropriately placed FMOs, and ordered film morphologies.
  • TRTOR novel electron-donating 3-alkyl-3’ -alkoxy-2, 2’ -bithiophene
  • R 1 is a straight or branched alkyl, preferably having 5-15 carbon atoms, and more preferably having 7-12 carbon atoms
  • R 2 is a straight or branched alkyl, preferably having 5-15 carbon atoms, and more preferably having 7-12 carbon atoms
  • R 1 and R 2 are same or different.
  • TRTOR is a 2H-pyran ring opened DTP, hence TRTOR should have electronic properties comparable to those of DTP.
  • Density functional theory (DFT) computation demonstrates a planar backbone conformation for TTOR unit ( Figure 1d) , which is functionalized with a single solubilizing alkoxy chain. The introduction of an extra alkyl chain on the 3-position of thiophene should not be detrimental to the TRTOR backbone planarity. Indeed this is confirmed by the DFT computation, which indicates that a TRTOR-containing HH linkage maintains a planar conformation enabled by the single planarizing alkoxy side chain ( Figure 1e) 46, 50 .
  • TRTOR is a more promising building block since it contains more solubilizing substituent chains and has a more symmetrical structure.
  • the asymmetric single-chain functionalized bithiophene based polymer exhibits poor PSC device performance 32 .
  • TRTOR has a low-lying HOMO at -4.92 eV --0.25 eV below that of BTOR (-4.67 eV) and comparable to that of DTP (-4.97 eV; Figure 1) . Therefore, TRTOR-based copolymers should have lower-lying HOMOs versus the BTOR-based counterparts, which will benefit both OTFT and PSC device performance.
  • TRTOR is a promising building block for polymer semiconductor construction due to its planar conformation, solubilizing characteristics, appropriately lying HOMO, and centrosymmetric geometry.
  • the present invention provides a copolymer of the electron-donating unit described herein having the Formula 4,
  • R 1 is a straight or branched alkyl, preferably having 5-15 carbon atoms, and more preferably having 7-12 carbon atoms
  • R 2 is a straight or branched alkyl, preferably having 5-15 carbon atoms, and more preferably having 7-12 carbon atoms
  • R 1 and R 2 are same or different
  • is an electron-deficient group
  • n depends on the desired solubility of the copolymer, preferably being 5-80.
  • is selected from the following group:
  • R is a straight or branched alkyl, preferably having 5-15 carbon atoms, and more preferably having 7-12 carbon atoms.
  • phthalimide 10, 57, 66 was chosen as the in-chain acceptor unit for constructing a copolymer semiconductor series. It will be seen that the resulting phthalimide-TRTOR polymers exhibit promising device performance in both ogranic thin-film transistors and polymer solar cells, with the PCE (6.3%) of the phthalimide-TRTOR polymer being among the highest reported to date for phthalimide-based polymers 10 . These results demonstrate that a single planarizing alkoxy substituent to reduce steric emcumbrance and an S...O interaction to lock the polymer backbone toward planarity render TRTOR a promising building block for polymer semiconductor construction. Materials structure-property-device performance correlations are established here, and offer useful insights into organic electronics materials design. We believe that more promising performance can be realized by optimizing the chemical structures of TRTOR-based materials.
  • the present invention provides a preparation method of the electron-donating unit described herein wherein R 1 and R 2 are straight alkyls comprising:
  • the mole ratio of the 2-bromo-3-alkoxy-thiophene to the alkali carbonate is 1: 0.5-2, for example, 1: 0.8, 1: 1.2, 1: 1.7 and so on, preferably 1: 0.7-1.5, more preferably 1: 1.
  • the ratio of the organic solvent or water to the 2-bromo-3-alkoxy-thiophene is 2-10 mL/mmol, for example, 3 mL/mmol, 5 mL/mmol, 8 mL/mmol and so on, preferably 3-7 mL/mmol; the ratio of the THF or water to the 2-bromo-3-alkoxy-thiophene may be same or different.
  • the alkali carbonate is selected from K 2 CO 3 , Na 2 CO 3 , Li 2 CO 3 or a mixture of at least two of them.
  • the organic solvent is selected from THF, EtOH, dioxane, DMF, toluene or a mixture of at least two of them.
  • time of the purging is more than 10 minutes, preferably more than 20 minutes, more preferably 30 minutes.
  • the mixture is heated to 50-80 °C, for example, 55 °C, 57 °C, 65 °C, 74 °C and so on; preferably to 70 °C;
  • the inert gas is selected from any one of Ar, N 2 , He, Ne, or a mixture of at least two of them.
  • the mole ratio of the Pd (PPh 3 ) 4 to the 2-bromo-3-alkoxy-thiophene is 1: 5-20, for example, 1: 7, 1: 11, 1: 16 and so on, preferably 1: 8-15, more preferably 1: 10.
  • time of the purging is more than 5 minutes, preferably more than 10 minutes, more preferably 20 minutes.
  • the mixture is heated to 50-80 °C, for example, 55 °C, 57 °C, 65 °C, 74 °C and so on; preferably to 70 °C.
  • the inert gas is selected from any one of Ar, N 2 , He, Ne, or a mixture of at least two of them.
  • step (3) the 2- (3-alkylthiophen-2-yl) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane is added with a mole ratio to the 2-bromo-3-alkoxy-thiophene of 1: 3-15, for example, 1: 4, 1: 7, 1: 14 and so on, preferably 1: 5-10, more preferably 1: 6.3.
  • the 2- (3-alkylthiophen-2-yl) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane is added dropwise.
  • the mixture is refluxed at 50-80 °C, for example, 55 °C, 57 °C,65 °C, 74 °C and so on; preferably at 70 °C.
  • step (4) the reaction mixture is extracted with organic solvent, preferably with DCM.
  • the washing is conducted with water and brine.
  • step (5) the concentrating is conducted under reduced pressure.
  • the purifying is conducted by column chromatography using petroleum ether as an eluent.
  • the present invention provides a preparation method of the electron-donating unit described herein wherein R 1 or/and R 2 is (are) branched alkyl comprising:
  • step (1) the ratio of the 2-bromo-3-alkoxy-thiophene to 2- (3-alkylthiophen-2-yl) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane is 1: 0.5-1, preferably 1: 0.7-0.9, more preferably 1: 0.8.
  • the mixture is stirred and purged with an inert gas.
  • the inert gas is selected from any one of Ar, N 2 , He, Ne, or a mixture of at least two of them.
  • the ratio of the solvent to the 2-bromo-3-alkoxy-thiophene is 10-80 mL/g, preferably 20-50 mL/g.
  • step (2) the mixture is heated to 100-120 °C for 10-20 h, more preferably the mixture is heated to 100-110 °C for 13-18 h.
  • the Aliquat is in toluene.
  • the alkali carbonate is selected from K 2 CO 3 , Na 2 CO 3 , Li 2 CO 3 or a mixture of at least two of them.
  • the mass ratio of [Pd (PPh 3 ) 4 ] , Aliquat, and alkali carbonate is 1: 1-5: 2-10, for example, 1: 2: 5, 1: 4: 9, 1: 3: 4 and so on, preferably 1: 2-3: 3-8, more preferably 1: 2.5: 5.
  • step (4) the reaction mixture is extracted with organic solvent, preferably with DCM.
  • the washing is conducted with water.
  • the drying is conducted over MgSO 4 .
  • step (5) the concentrating is conducted under reduced pressure.
  • the purifying is conducted by column chromatography or silica gel using petroleum ether as an eluent.
  • the present invention provides a preparation method of the copolymer described herein comprising:
  • step (4) drying the solid precipitate obtained in step (4) to give the crude product, and then extracting the crude product;
  • the electron-deficient material is selected from the following group:
  • the mole ratio of the electron-donating unit of claim 1 to the electron-deficient material is 1: 0.5-2, for example, 1: 0.8, 1: 1.2, 1: 1.8 and so on, preferably 1: 0.8-1.5, more preferably 1: 1.
  • the mole ratio of the tris (dibenzylideneacetone) dipalladium (0) (Pd 2 (dba) 3 ) to tris (o-tolyl) phosphine (P (o-tolyl) 3 ) is 1: 4-15, for example, 1: 6, 1: 9, 1: 13 and so on, preferably 1: 6-10, more preferably 1: 8; the Pd loading is 0.005-0.1 equiv, preferably 0.01-0.06.
  • reaction vessel and the mixture are subjected to 1-5 pump/purge cycles with Ar.
  • the inert gas is selected from any one of Ar, N 2 , He, Ne, or a mixture of at least two of them.
  • the inert gas is selected from any one of Ar, N 2 , He, Ne, or a mixture of at least two of them.
  • the organic solvent is selected from any one of anhydrous toluene, benzene, chlorobenzene, DMF, or a mixture of at least two of them.
  • the ratio of the organic solvent to the electron-donating unit is 10-75 mL/mmol, preferably 5-50 mL/mmol.
  • the heating is conducted at 50-170 °C for 1-72h, preferably at 80-150 °C for 3-50h.
  • the heating is conducted under microwave irradiation.
  • the heating is conducted by 80 °C for 10 minutes, 100 °C for 10 minutes, and 140 °C for 3 h under microwave irradiation.
  • step (3) the heating is conducted at 80-170 °C for more than 0.2 h, preferably at 100-160 °C for more than 0.4 h.
  • the heating is conducted under microwave irradiation.
  • the heating is conducted under microwave irradiation at 140 °C for 0.5 h;finally, adding 2-bromothiophene and stirring the reaction mixture at 140 °C for another 0.5 h.
  • the mole ratio of the 2- (tributylstanny) thiophene to the electron-donating unit is 0.1-0.5: 1, for example, 0.2: 1, 0.4: 1 and so on, preferably 0.2: 0.4-1.
  • the mole ratio of the 2-bromothiophene to the electron-donating unit is 0.2-1.5: 1, for example, 0.4: 1, 0.8: 1, 1.3: 1 and so on, preferably 0.4: 0.8-1; preferably, in step (4) , the methanol contains 0.5-10mL hydrochloric acid,preferably 0.5-10mLof 5-20 mol/L hydrochloric acid.
  • the dripping is conducted under vigorous stirring, preferably is conducted for at least 0.5 h, preferably at least 1 h.
  • step (6) the dripping is conducted under vigorous stirring.
  • the collecting is conducted by filtration.
  • the drying is conducted under reduced pressure.
  • the present invention provides an use of the copolymer according to the present invention in thin-film transistor or polymer solar cell.
  • the raw material used in above preparation method can be prepared by known method in the art or by the following method described below or buying on the market.
  • TRTOR head-to-head linakge containing electron-donating 3-alkyl-3’ -alkoxy-2, 2’ -bithiophene (TRTOR) unit for constructing high-performance polymer semiconductors.
  • TRTOR 3-alkyl-3’ -alkoxy-2, 2’ -bithiophene
  • BTOR 3’ -dialkoxy-2, 2’ -bithiophene (BTOR) unit having two alkoxy substituents, which utilizes the reduced steric hindrance of the O (versus CH 2 ) and conformation locking effect of intramolecular S...O non-covalent interactions to induce backbone planarity
  • TRTOR reported here has a single planarizing alkoxy substituent hence an optimized single S...O interaction.
  • TRTOR has comparable electronic properties but a centrosymmetric geometry, promoting a more compact and ordered structure than DTP, which is axisymmetric with out-of-plane substituents.
  • TRTOR is an effective building block for constructing high-performance polymer semiconductors due to its solubilizing ability, centrosymmetric geometry, backbone planarity, compact packing, and appropriate electron donating ability versus the previously reported BTOR and DTP units.
  • a head-to-head linkage containing one alkyl chain and one alkoxy substituent at the bithiophene 3-positions can achieve planar backbones due to reduced steric hindrance and intramolecular non-covalent S...O interactions, and strategically employing single S...O interactions is thus a promising strategy for materials design in organic electronics.
  • Figure 1 are chemical structures, optimized geometries, and energy levels of the frontier molecular orbitals of (a) 3, 3’ -dialkyl bithiophene (BTR) ; (b) 3, 3’ -dialkoxy bithiophene (BTOR) ; (c) 5H-dithieno [3, 2-b: 2’ , 3’ -d] pyran (DTP) ; (d) 3-alkoxy-2, 2’ -bithiophene (TTOR) , and (e) 3-alkyl-3’ -alkoxy-2, 2’ -bithiophene (TRTOR) ; calculations carried out at the DFT//B3LYP/6-31G**level, alkyl substituents truncated here to simplify the calculations.
  • FIG. 7 TEM images of P1 (aand h) , P2 (b and i) , P3 (c and j) , P4 (d and k) , P5a (e and l) , P5b (f and m) , and P5c (g and n) bulk heterojunction blend (polymer: PC 71 BM) films processed without (up row) and with (bottom row) processing additive, 1, 8-octanedithiol (ODT) . (Scale bar: 500 nm) .
  • Figure 10 Computed optimized geometry for the repeating units of DTP-based polymer P3 (a) and TRTOR-based polymer P5 (b) .
  • the calculations were carried out at the DFT//B3LYP/6-31G**level, alkyl substituents are truncated here to simplify the calculations.
  • FIG. 16 AFM topographical images of polymer: PC 71 BM blend films of P1 (a, h) , P2 (b, i) , P3 (c, j) , P4 (d, k) , P5a (e, l) , P5b (f, m) and P5c (g, n) processed without (1 st and 2 nd rows) and with (3 rd and 4 th rows) additive, 1, 8-octanedithiol.
  • the image size is 5 ⁇ m ⁇ 5 ⁇ m.
  • the monomer (5, 5-bis (3, 7-dimethyloctyl) -5H-dithieno [3, 2-b: 2’ , 3’ -d] pyran-2, 7-diyl) bis (tributylstan nane) was purchased from SunaTech Inc. (Suzhou, Jiangsu) , and 5, 5’ -bis (trimethylstannyl) -3, 3’ -bis (dodecyl-oxy) -2, 2’ -bithiophene was synthesized via the published procedures 88 . All other reagents were used as received except where noted. Unless otherwise stated, all manipulations and reactions were carried out under argon using standard Schlenk line techniques. Polymerizations were carried out on Initiator+ Microwave Synthesizer (Biotage, Sweden) .
  • TGA curves were recorded on a TA Instrument (Mettler, STAR e ) .
  • UV-Vis data were recorded on a Shimadzu UV-3600 UV-VIS-NIR spectrophotometer.
  • Cyclic voltammetry measurements of polymers were carried out under argon atmosphere using a CHI760E voltammetric analyzer with 0.1 M tetra-n-butylammonium hexafluorophosphate in acetonitrile as supporting electrolyte.
  • a platinum disk working electrode, a platinum wire counter electrode and silver wire reference electrode were employed, and F c /F c+ was used as internal reference for all measurements.
  • the scan rate was 100 mV/S.
  • Polymer films were drop-coated from chloroform solutions on a Pt working electrode (2 mm in diameter) .
  • the supporting electrolyte solution was thoroughly purged with Ar before all CV measurements.
  • AFM measurements of polymer: PCBM blend films were performed by using a Dimension Icon Scanning Probe Microscope (Asylum Research, MFP-3D-Stand Alone) in tapping mode.
  • TEM specimens were prepared following identical conditions as the actual devices, but were drop-cast onto 40 nm PEDOT: PSS covered substrate. After drying, substrates were transferred to deionized water and the floated films were transferred to TEM grids.
  • TEM images were obtained on Tecnai Spirit (20 kV) TEM.
  • Reagents/conditions in Scheme 1 are: (i) NBS, chloroform, HOAc; (ii) n-BuLi, isopropoxyboronic acid pinacol ester, THF; (iii) ROH, PTSA, toluene, 110 °C; (iv) NBS, DMF; (v) Pd (PPh 3 ) 4 , K 2 CO 3 , THF, H 2 O; (vi) n-BuLi, Me 3 SnCl, THF (vii) Pd 2 (dba) 3 , P (o-tolyl) 3 , toluene, microwave, 140 °C.
  • 2-bromo-3-dodecyl-thiophene 2a (4.0 g, 12.07 mmol) was added into an oven dried flask and then dissolved in 90 mL anhydrous THF under argon. After cooling to -78 °C, n-BuLi (13.28 mmol, 8.30 mL, 1.6 M in hexane) was added dropwise and the whole was stirred at -78 °C for 50 min. Then 2-isopropoxy-4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane (2.47 g, 13.28 mmol) was added in one portion and the reaction mixture was warmed to room temperature and stirred overnight.
  • NBS (1.83 g, 10.29 mmol) was added in one portion to 5a (2.5 g, 9.8 mmol) in 20 mL DMF at 0 °C and the whole was warmed to room temperature and stirred for 15 h.
  • the reaction mixture was diluted with ether (50 mL) and washed with water (2 ⁇ 20 mL) .
  • the organic layer was dried over MgSO 4 , concentrated under reduced pressure, and the residue was subjected to column chromatography (silica gel, petroleum ether) to give 6a as a colorless solid (3.02 g, 92.4 %) .
  • Monomer 10 was prepared and isolated as a colorless oil from 9 using the same procedures employed for monomer 8a (82 %) .
  • 1 H NMR (CDCl 3 , 400MHz, ppm) ⁇ 7.03 (s, 2H) , 2.52 (t, 4H) , 1.56 (m, 4H) , 1.25 (m, 36H) , 0.90 (t, 6H) , 0.38 (s, 18H) .
  • Monomer 12 was synthesized following the same procedure employed in synthesis of compound 8a.
  • 1 H NMR 400MHz, CDCl 3 , ppm) : 7.37 (d, 1H) , 7.11 (d, 1H) , 6.91 (s, 1H) , 4.15 (t, 2H) , 1.87 (m, 2H) , 1.56 (m, 2H) , 1.35 (m, 16H) , 0.91 (t, 3H) , 0.40 (s, 18H) .
  • the tube was sealed under argon flow and then stirred at 80 °C for 10 minutes, 100 °C for 10 minutes, and 140 °C for 3 h under microwave irradiation. Then, 0.1 mL of 2- (tributylstanny) thiophene was added and the reaction mixture was stirred under microwave irradiation at 140 °C for 0.5 h. Finally, 0.2 mL of 2-bromothiophene was added and the reaction mixture was stirred at 140 °C for another 0.5 h. After cooling to room temperature, the reaction mixture was slowly dripped into 100 mL of methanol (containing 5 mL 12 N hydrochloric acid) under vigorous stirring.
  • the solid precipitate was transferred to a Soxhlet thimble.
  • the crude product was subjected to sequential Soxhlet extraction with the choice of solvents and sequence depending on the solubility of the particular polymer.
  • the polymer solution was concentrated to approximately 20 mL, and then dripped into 100 mL of methanol under vigorous stirring. The polymer was collected by filtration and dried under reduced pressure to afford deep colored solid as the product.
  • P1 1 was synthesized by following Scheme 17.
  • Polymer P3 containing the 5H-dithieno [3, 2-b: 2’ , 3’ -d] pyran (DTP) 62 electron donor unit has a bandgap of 1.93 eV, which is between that of P1 (2.42 eV) and P2 (1.65 eV) .
  • the larger P3 bandgap (1.93 eV) is attributed to the weaker electron donating ability of DTP which contains one electron donating OR and one CH 2 versus two ORs in BTOR.
  • TRTOR should be a more effective unit for creating narrow bandgap polymers than DTP.
  • P3 has a low-lying HOMO of -5.34 eV due to the moderate DTP electron donating ability 62 and torsional polymer backbone 20, 73 .
  • polymer P4 shows a slightly higher-lying HOMO at -5.28 eV, attributable to the higher degree of P4 conjugation due to more planar backbone and compact packing 74 .
  • replacement of one alkoxy substituent by an alkyl substituent lowers the P5a HOMO (-5.19 eV) by 0.26 eV vs that of P2 (-4.93 eV) .
  • Polymer P5c with a branched N-2-ethylhexyl group has a slightly lower HOMO (-5.25 eV) than P5a (-5.19 eV) and P5b (-5.18 eV) with linear N-alkyl substituents 74 .
  • polymers P5a-c have slightly higher HOMOs, likely due to the weak electron-donating P5 alkyl substituent.
  • reaction mixture was stirred at room temperature overnight.
  • the reaction was quenched with 2 M of hydrochloric acid (15mL) .
  • DCM was added and the organic layer was washed three times with water.
  • the organic layer was dried over MgSO 4 and the solvent was removed under reduced pressure.
  • the crude product was passed through silica gel using PE as an eluent to give colorless oil (3g, 39.6%) .
  • 3-methoxythiophene (3.0 g, 26.28 mmol) , 2-propylheptan-1-ol (4.159g, 26.28mmol) and anhydrous sodium hydrogen sulfate (0.5 g, 4.16 mmol) were charged into around bottom flask.
  • Toluene (100 mL) was then added, purged by argon for 30 min and the mixture was heated to 130 °Cfor 19 hr under argon protection. After cooling to room temperature, saturate NaHCO 3 water was added and extraction with ethyl acetate was done. The organic layer was dried over anhydrous MgSO 4 , filtered and concentrated for purification via column chromatography (silica gel, PE 100%) to afford compound 5c (3.5g, 55.4%) .
  • This compound was prepared with the same procedure according to 6c.
  • This compound was prepared with the same procedure according to 7c.
  • This compound was prepared with the same procedure according to 8c.
  • This compound was prepared with the same procedure according to 1c.
  • This compound was prepared with the same procedure according to 2c.
  • This compound was prepared with the same procedure according to 3c.
  • the tube was sealed under argon flow and then stirred at 80 °C for 10 minutes, 100 °C for 10 minutes, and 140 °C for 3 h under microwave irradiation. Then, 0.05 mL of 2- (tributylstanny) thiophene was added and the reaction mixture was stirred under microwave irradiation at 140 °C for 0.5 h. Finally, 0.10 mL of 2-bromothiophene was added and the reaction mixture was stirred at 140 °C for another 0.5 h. After cooling to room temperature, the reaction mixture was slowly dripped into 100 mL of methanol (containing 1 mL 12 N hydrochloric acid) under vigorous stirring.
  • the UV-Vis absorption spectra show bathochromic shifts due to the F atom influence. From solution to film state, the polymers show bathochromic shifts due to the increased backbone planarity and enhanced aggregation.
  • Top-gate/bottom-contact (TG/BC) device structure was used to investigate the charge transport property of polymers in organic thin-film transistors (OTFTs) .
  • OTFTs organic thin-film transistors
  • polymer solution was spin-coated at 1500 rpm for 120 sec in N 2 -purged glove box.
  • the polymer semiconductor films were then thermally annealed in a N 2 -purged glove box at 150, 175, 200, 225, 250, or 275 °C for 30 min.
  • PMMA poly (methyl methacrylate)
  • n-butyl acetate 80 mg/mL
  • Pre-patterned ITO-coated glass with a sheet resistance of ⁇ 10 ⁇ / ⁇ is used as the substrate, which is cleaned by sequential sonication in water containing detergent, deionized water, methanol, isopropanol, and acetone followed by UV/ozone (BZS250GF-TC, HWOTECH, Shenzhen) treatment for 20 min.
  • ZnO precursor was prepared according to the published procedure 89 .
  • the precursor solution was spin-coated (4000 rpm for 30 s) onto the pre-patterned ITO-coated glass.
  • the films were annealed at 200 °C for 30 min in air, and then transferred into a N 2 glovebox.
  • the ZnO film thickness is about 30 nm.
  • PC 71 BM blend (1: 1.6 w/w, 26 mg/mL)
  • P1 PC 71 BM
  • P2 PC 71 BM
  • P3 PC 71 BM
  • P4 PC 71 BM
  • P5a PC 71 BM
  • ODT 8-octanedithiol
  • Grazing incidence wide-angle x-ray scattering (GIWAXS) measurements were performed at Beamline 8-ID-E of the Advanced Photon Source at Argonne National Laboratory. Polymer samples were prepared on Si substrate using identical spin speeds, solvents, concentrations and annealing temperature and times to the relevant OTFT and PSC devices. All spectra were collected in air. The photon energy is 7.35 keV and data were collected on a Pilatus 1M pixel array detector at a sample-detector distance of 204 mm. Spectra were collected at an incidence angle of 0.2°; the films were exposure for 20 seconds. To account for the gaps in the detector array, two images were taken per sample, one with the detector in the standard position and the other translated 23 mm down to fill the gap, the two images are then merged.
  • GIWAXS Grazing incidence wide-angle x-ray scattering
  • 1D line cuts were taken from the 2D scattering spectra in the in-plane and out-of-plane directions using the GIXSGUI software package developed by the beamline scientists. To account for air scatter, the line cuts were background subtracted utilizing an exponential fit. The background-subtracted peaks were fit using the multipeak fit function in igor pro. Scherrer analysis was performed utilizing the method by Smiglies 90 to account for instrumental broadening and detection limits in the 2d detector. The values presented represent a lower limit for correlation length, as the Scherrer analysis does not account for broadening due to defects in the crystallites.
  • the data are the average value calculated from 5 devices at least.
  • BTR-based polymer P1 is inactive in OTFTs, which is attributed to the very low-lying HOMO (-5.66 eV) , twisted polymer backbone, limited conjugation, and low degree of crystallinity 79 .
  • P2 shows a high hole mobility ( ⁇ h ) of 1.45 cm 2 /Vs, which is almost 10x than in bottom-gate/bottom-contact OTFTs (0.17 cm 2 /Vs) 57 .
  • the high P2 mobility can be partially ascribed to facile hole injection from the gold electrode to the high-lying HOMO, since the bottom-contact gold electrode has lower work function of ca. -4.5 –-4.7 eV.
  • P5a shows a > 1000x smaller off-current (10 -12 –10 -11 A) and ⁇ 100x higher I on /I off (10 5-6 ) in the linear region ( Figure 4a) , primarily ascribable to the lower-lying P5a HOMO. Due to the enhanced solubility, P5b and P5c containing short alkyl substituents are also sufficiently soluble for OTFT fabrication, and the resulting OTFTs has appreciable ⁇ h s of 0.043 and 0.030 cm 2 /Vs, respectively.
  • the enhanced P5a mobility with longer alkyl substituents could be attributed to the smaller ⁇ - ⁇ stacking and more ordered microstructure derived from the side chain crystallization 47 as revealed by the grazing incidence wide-angle X-ray scattering (GIWAXS, vide infra) .
  • GIWAXS grazing incidence wide-angle X-ray scattering
  • P5a films have lower carrier mobility, which is likely due to the lower-lying HOMO and hence a larger charge injection barrier.
  • the large V oc is ascribed to the twisted polymer backbone 73 , and the small J sc to the sub-optimal blend film morphology (vide infra) and the negligible carrier mobility as measured from both OTFT/in-plane (Table 2) and space-charge limited current (SCLC, Table 5) /out-of-plane techniques.
  • the J sc s integrated from external quantum efficiency (EQE, Figure 12) vs an AM1.5 reference spectrum are within ⁇ 5%of those acquired from the J-V data, showing good internal consistency.
  • TRTOR-based P5 shows greatly increased PSC performance in V oc s, EQE, and FFs.
  • the V oc enhancement is attributed to the depressed HOMO achieved by replacing one alkoxy with an alkyl substituent, and in comparison to P3, the substantially enhanced J sc and FF are ascribed to the smaller P5 bandgap, closer packing, and higher mobility.
  • VOC of PSC is proportional to the difference between the HOMO level of polymer and the LUMO level of PC71BM, therefore,the F atom could lower the polymer LUMO and HOMO, so the polymer P1’ have lower HOMO than P2’ a nd P3’ , and the lower lying HOMO level of P1’ compare with P2’ a nd P3’ .
  • the hole-only and electron-only devices with a structure of ITO/PEDOT: PSS/polymer: PC 71 M/MoO 3 /Ag and Al/polymer: PC 71 BM/Ca/Al, respectively, are fabricated with or without using the processing additive, 1, 8-octanedithiol (ODT) .
  • Grazing incidence wide-angle X-ray scattering was carried out at beamline 8-ID-E of the advanced photon source to examine polymer film microstructure and morphology.
  • the polymer films were prepared neat on octyldecyltrichlorosilane (OTS) -modified Si substrates, blended with PC 71 BM, and blended with PC 71 BM processed with 3% (v/v) ODT as the processing additive on bare Si.
  • OTS octyldecyltrichlorosilane
  • 2D images for the blend films processed with ODT are presented in Figure 7 and the 2D images for the neat films and the blend films without using processing additive are shown in the Supporting Information ( Figures 13 and 14 ) .
  • 1 indicates a preferential face-on domain.
  • 2 indicates a preferential edge-on domain.
  • the neat polymer films exhibit a range of differing preferred orientations and relative crystallinities (Figure 5) .
  • Polymers P2 and P5 featuring intramolecular S...O interaction show similar lamellar and ⁇ - ⁇ stacking structures, while polymers P1, P3, and P4 appear to have more disparate stacking structures.
  • the BTR-based polymer P1 demonstrates in-plane (q xy ) peaks that each would be consistent with a face-on lamellar structure.
  • the DTP-based polymer P3 is almost completely amorphous with only a broad peak at and no further intermolecular order, which is attributed to its slightly twisted polymer backbone and the out-of-plane side chain orientation.
  • P4 demonstrates a clear edge-on orientation with a lamellar (100) spacing of and a ⁇ - ⁇ stacking distance of Therefore on the basis of the ⁇ - ⁇ stacking distance, the use of TTOR leads to more compact packing for P4 versus the BTR-based polymer P1, which could be attributed to the reduced steric hindrance and the planarizing intramolecular S...O interaction.
  • the diffraction patterns show that none of polymers P2, P5a, P5b and P5c demonstrate a clear preference for edge-on or face-on orientation in neat films as they show lamellar (100) and ⁇ - ⁇ stacking (010) diffractions in both the in-plane (q xy ) and out-of-plane (q z ) directions ( Figure 5) .
  • P5a shows the largest (010) correlation lengths (5.8 nm; Table 8) , which in combination with its smallest ⁇ - ⁇ stacking distance is likely contributed to its highest mobility among the polymers P5a-c.
  • the cells have a structure of ITO/ZnO/polymer: PC 71 M/MoO 3 /Al and are fabricated without using processing additive, 1, 8-octanedithiol.
  • the high planarity of the TRTOR unit enabled by the inclusion of the alkoxy side chains allows for very strong face-on (010) orientation. Due to the reduced side chain bulk breaking up domains on P5b, Scherrer analysis reveals larger face-on (010) domains in P5b than P5a, P5c, and P2 in both blends with and without ODT. This extended ⁇ - ⁇ periodicity helps explain the increased FF and J sc in P5b leading to its peak PSC performance in this polymer series.
  • the replacement of one alkoxy chain with an alkyl chain can result in a better mixing between the polymer donors P5 and the acceptor PC 71 BM.
  • the higher J sc and FF in combination of the much larger V oc lead to the substantial higher PCE (6.31%) for P5b PSCs versus that (3.38%) of P2 cells.
  • the introduction of alkyl chain on the 3-position of bithiophene in TRTOR leads to crystalline packing more favorable to device performance with a standard lamellar and close ⁇ - ⁇ stacking morphology and favorable polymer orientation for TRTOR-based polymers.
  • the TRTOR-based polymers show greatly improved J sc , FF, and PCE due to their more planar backbone, higher degree of crystallinity with favorable backbone orientation, and higher charge carrier mobility.
  • Figure 19 shows J-V curves of the photovoltaic devices based on the five polymers P1’ -P6’ with PC 71 BM.
  • P1’ s hows the optimized device performance and the polymer for comparison.
  • the photovoltaic performance of corresponding device is listed in table 4.
  • the device based on P1’ exhibited a significantly improved PCE of 7.86%with a J SC of 17.984mA cm -2 , a V oc of 0.663V, and a FF of 66.0%.
  • the Voc is decreased from 0.663 to 0.533V, and through change the dialkyl side chain, the Voc have a small change, the dialkyl side chain is long, and then the Voc is increase, because the long dialkyl side chain have steric hindrance, so the HOMO is low, and follow with high Voc.
  • TRTOR novel electron donor unit
  • TRTOR contains a head-to-head linkage and hence possesses good solubilizing capability.
  • TRTOR shows well-tailored opto-electrical property and high degree of backbone planarity enabled by the use of a single alkoxy side chain, which reduces side chain steric bulk near the backbone (versus dialkyl bithiophene in BTR) and leads to an optimized single intramolecular S...O interaction.
  • TRTOR has comparable electrical properties but with easy materials accessbility, centrosymmetric geometry, and more compact structure than DTP, which is axisymmetric and contains out-of-plane sidechains.
  • the incorporation of the single alkoxy side chain and optimizing the S...O interaction affords the resulting TRTOR polymers with low-lying HOMO, close intermolecular ⁇ - ⁇ stacking, high degree of crystallinity, and enhanced materials processability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

An electron-donating unit of the Formula, a copolymer thereof and their preparation methods, as well as their uses in thin-film transistor or polymer solar cell. The electron-donating unit is an effective building block for constructing high-performance polymer semiconductors due to its solubilizing ability, centrosymmetric geometry, backbone planarity, compact packing, and appropriate electron donating ability versus the previously reported BTOR and DTP units.

Description

An electron-donating unit, a copolymer thereof and their preparation methods, as well as their uses FIELD
The present invention belongs to the field of semiconductor material, in particular to an electron-donating unit, a copolymer thereof and their preparation methods, as well as their uses.
BACKGROUND
Polymer semiconductors have received great attention due to their potential for fabricating diverse opto-electrical devices using solution-based processing techniques, such as coating and printing1-3. The solution processability enables the fabrication of cost-effective, large area, and mechanically flexible electronic devices, such as organic thin-film transistors (OTFTs) and polymer solar cells (PSCs) 2, 4-6. In order to achieve optimal performance while maintaining straightforward, scalable device fabrication, the semiconducting materials should possess well-tailored bandgaps, energetically optimized frontier molecular orbitals (FMOs) , a desirable film morphology, and good solubility4, 7-15. However, designing and realizing organic semiconductors which can synergistically integrate these performance enhancing parameters without sacrificing materials processability presents a great challenge.
To achieve such processability, polymer semiconductors are typically functionalized with solubilizing alkyl side chain substituents. However, the alkylation patterns must be strategically manipulated to minimize steric hindrance, hence head-to-head (HH) linkages should be avoided in semiconducting polymer  design to minimize accompanying backbone torsion, which reduces conjugation along the polymer chain, compromises film crystallinity/order, and diminishes charge carrier mobility16-19.
In order to achieve high degrees of macromolecular backbone planarity for enhanced charge carrier delocalization, the backbone must be designed to energetically favor planar conformations versus any twisted alternatives. Although in principal conjugated backbones should be energetically favored in planar conformations, adverse steric interactions, mainly from side substituents, often prevent realization of this ideal case. To achieve enhanced planarity,conjugation, and mobility, two materials design strategies are widely employed in polymer electronics, 1) reducing steric hindrance by inserting spacers (or bridges) along the chain17, 20, and 2) conformation locking with covalent bonds21, 22 or non-covalent.
The strategy of inserting spacers (Formula 1) , mainly unsubstituted thiophene (or thiazole) derivatives, has yielded great success in high-performance semiconductors such as PBTTT and PQT20, 23-27. However, the spacer incorporation requires additional steps in the monomer synthesis28-30 and could also dilute the concentration of key building blocks, typically the acceptor units, in the polymeric backbones, risking sub-optimal opto-electronic properties for the resulting semiconductors31-34. Moreover, such spacers are typically nonalkylated, which could reduce polymer solubilities17, 35, 36.
Figure PCTCN2016075839-appb-000001
Conformation locking through covalent bonds (Formula 2) has also provided  great success as a planarizining design strategy, however, the sp3 orbital hybridization of the bridging atoms, such as C, Si, and Ge, leads to out-of-plane substituent orientation, thereby enlarging intermolecular stacking distances, reducing interchain π-π orbital overlap, and lowering carrier mobilities21, 22, 37. Therefore, polymer semiconductors containing cyclopentadithiophene or dithienosilole (germole) frequently have limited OTFT mobilities and suboptimal fill factors (FFs; < 70%) in bulk heterojunction (BHJ) PSCs38-41.
Figure PCTCN2016075839-appb-000002
Poly (3, 4-ethylenedioxythiophene) (PEDOT) is a widely used conducting polymer with high doped state conductivity42, 43 which is partially attributed to substantial backbone planarity44. From the crystal structure of 2, 2-bis (3, 4-ethylenedioxythiophene) , the distance between the (thienyl) sulfur and (3, 4-ethylenedioxy) oxygen atoms (S…O) is 
Figure PCTCN2016075839-appb-000003
 substantially below the sum of the S and O van der Waals radii 
Figure PCTCN2016075839-appb-000004
 This intramolecular non-covalent S…O interaction promotes a planar backbone conformation and charge carrier delocalizations41, 46, 47.
Inspired by the success of PEDOT, we first reported a HH linkage containing donor unit, 3, 3’ -dialkoxy-2, 2’ -bithiophene (BTOR, Figure 1b) 48, via employing a dual strategy of reducing the steric bulk of the side chain fragment closest to the conjugated system by replacing a CH2 fragment with a less bulky O group and utilizing the intramolecular non-covalent (thienyl) S… (alkoxy) O interaction49-56 to help planarize the backbone. Incorporating BTOR units into polymers affords  semiconductors (Formula 3) with small bandgaps, close intermolecular packing, substantial hole mobility of ~0.2 cm2/Vs, and excellent solubility from the high density of alkyl substituent chains57. The results demonstrate that strategically utilizing alkoxy side chains and employing the intramolecular non-covalent S…O interaction is an effective strategy for organic electronic materials design46, 50, 51.
Figure PCTCN2016075839-appb-000005
Unfortunately, highly electron-rich BTOR significantly elevates the resulting copolymer HOMOs, and such semiconductors suffer from unsatisfactory air stability in OTFTs58 and small open-circuit voltages (Vocs < 0.6 V) in PSCs, severely limiting BTOR materials applicability59-61.
Note that Yoshimura developed an electron rich 5H-dithieno [3, 2-b: 2’ , 3’ -d] pyran (DTP, Figure 1c) 62, which has greater electron-donating capacity than cyclopentadithiophene63. When copolymerized with difluorobenzothiadiazole, the resulting polymer semiconductor exhibits a smaller bandgap than the cyclopentadithiophene counterpart but maintains a decent Voc of 0.7 V. The PSCs show promising power conversion efficiencies (PCEs) of 8.0%62 and 10.6%64 in single junction and tandem cells, respectively. However, the DTP synthesis is tedious and PSC performance is limited by the small FF (63%) due to the low mobility of the DTP polymer, likely attributable to the out-of-plane orientation of the solubilizing substituents and asymmetric DTP structure.
SUMMARY
In order to overcome the defects raised by BTOR and DTP-based copolymers, the present invention provides the design and synthesis of the novel electron-donating 3-alkyl-3’ -alkoxy-2, 2’ -bithiophene (TRTOR) unit (Figure 1e) and that its incorporation into copolymers affords semiconductors (Formula 4) with good materials solubility, high degrees of backbone planarity, appropriately placed FMOs, and ordered film morphologies.
In order to achieve this purpose, the present invention employs the following technical solutions:
An electron-donating unit of the Formula I,
Figure PCTCN2016075839-appb-000006
wherein R1 is a straight or branched alkyl, preferably having 5-15 carbon atoms, and more preferably having 7-12 carbon atoms, R2 is a straight or branched alkyl, preferably having 5-15 carbon atoms, and more preferably having 7-12 carbon atoms, R1 and R2 are same or different.
To reduce BTOR electron-donating characteristics, an oxygen is removed from an alkoxy chain to afford the optimized building block TRTOR, which bears one alkoxy and one alkyl chain substituent, and hence a single S…O interaction. From another perspective, TRTOR is a 2H-pyran ring opened DTP, hence TRTOR should have electronic properties comparable to those of DTP. Density functional theory (DFT) computation demonstrates a planar backbone conformation for TTOR  unit (Figure 1d) , which is functionalized with a single solubilizing alkoxy chain. The introduction of an extra alkyl chain on the 3-position of thiophene should not be detrimental to the TRTOR backbone planarity. Indeed this is confirmed by the DFT computation, which indicates that a TRTOR-containing HH linkage maintains a planar conformation enabled by the single planarizing alkoxy side chain (Figure 1e) 46, 50.
In comparison to TTOR, TRTOR is a more promising building block since it contains more solubilizing substituent chains and has a more symmetrical structure. In contrast, the asymmetric single-chain functionalized bithiophene based polymer exhibits poor PSC device performance32. Regarding energetic considerations, TRTOR has a low-lying HOMO at -4.92 eV --0.25 eV below that of BTOR (-4.67 eV) and comparable to that of DTP (-4.97 eV; Figure 1) . Therefore, TRTOR-based copolymers should have lower-lying HOMOs versus the BTOR-based counterparts, which will benefit both OTFT and PSC device performance. Furthermore, the single TRTOR S…O interaction should afford the copolymers with enhanced processability versus the BTOR counterparts due to the weaker non-covalent interactions in the former. In comparison to DTP, TRTOR should have more compact stacking due to the abscence of out-of-plane substituents and pseudo-centrosymmetric geometry65. Thus, TRTOR is a promising building block for polymer semiconductor construction due to its planar conformation, solubilizing characteristics, appropriately lying HOMO, and centrosymmetric geometry.
In another aspect, the present invention provides a copolymer of the electron-donating unit described herein having the Formula 4,
Figure PCTCN2016075839-appb-000007
wherein R1 is a straight or branched alkyl, preferably having 5-15 carbon atoms, and more preferably having 7-12 carbon atoms, R2 is a straight or branched alkyl, preferably having 5-15 carbon atoms, and more preferably having 7-12 carbon atoms, R1 and R2 are same or different, π is an electron-deficient group, n depends on the desired solubility of the copolymer, preferably being 5-80.
Preferably, on the basis of the technical solution provided by the present invention, π is selected from the following group:
Figure PCTCN2016075839-appb-000008
Figure PCTCN2016075839-appb-000009
wherein R is a straight or branched alkyl, preferably having 5-15 carbon atoms, and more preferably having 7-12 carbon atoms.
To verify the above materials deisgn strategy, phthalimide10, 57, 66 was chosen as the in-chain acceptor unit for constructing a copolymer semiconductor series. It will be seen that the resulting phthalimide-TRTOR polymers exhibit promising device performance in both ogranic thin-film transistors and polymer solar cells, with the PCE (6.3%) of the phthalimide-TRTOR polymer being among the highest reported to date for phthalimide-based polymers10. These results demonstrate that a single planarizing alkoxy substituent to reduce steric emcumbrance and an S…O interaction to lock the polymer backbone toward planarity render TRTOR a promising building block for polymer semiconductor construction. Materials structure-property-device performance correlations are established here, and offer useful insights into organic electronics materials design. We believe that more promising performance can be realized by optimizing the chemical structures of TRTOR-based materials.
In another aspect, the present invention provides a preparation method of the electron-donating unit described herein wherein R1 and R2 are straight alkyls comprising:
(1) adding 2-bromo-3-alkoxy-thiophene, an alkali carbonate, an organic solvent and water into a reaction vessel, and purging the mixture with an inert gas;
(2) adding Pd (PPh34 and then purging an inert gas, heating the mixture to 40-90 ℃;
(3) adding 2- (3-alkylthiophen-2-yl) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane to the mixture and refluxing the mixture at 40-90 ℃, for example, 45 ℃, 53 ℃, 65 ℃,  74 ℃, 83 ℃ and so on;
(4) extracting the reaction mixture and washing;
(5) concentrating the organic layer and purifying to give the electron-donating unit;
wherein the alkoxy and alkyl both are straight.
Preferably, on the basis of the technical solution provided by the present invention, in step (1) , the mole ratio of the 2-bromo-3-alkoxy-thiophene to the alkali carbonate is 1: 0.5-2, for example, 1: 0.8, 1: 1.2, 1: 1.7 and so on, preferably 1: 0.7-1.5, more preferably 1: 1.
preferably, the ratio of the organic solvent or water to the 2-bromo-3-alkoxy-thiophene is 2-10 mL/mmol, for example, 3 mL/mmol, 5 mL/mmol, 8 mL/mmol and so on, preferably 3-7 mL/mmol; the ratio of the THF or water to the 2-bromo-3-alkoxy-thiophene may be same or different.
preferably, the alkali carbonate is selected from K2CO3, Na2CO3, Li2CO3 or a mixture of at least two of them.
preferably, the organic solvent is selected from THF, EtOH, dioxane, DMF, toluene or a mixture of at least two of them.
preferably, time of the purging is more than 10 minutes, preferably more than 20 minutes, more preferably 30 minutes.
preferably, the mixture is heated to 50-80 ℃, for example, 55 ℃, 57 ℃, 65 ℃, 74 ℃ and so on; preferably to 70 ℃;
preferably, the inert gas is selected from any one of Ar, N2, He, Ne, or a mixture of at least two of them.
preferably, in step (2) , the mole ratio of the Pd (PPh34 to the 2-bromo-3-alkoxy-thiophene is 1: 5-20, for example, 1: 7, 1: 11, 1: 16 and so on, preferably 1: 8-15, more preferably 1: 10.
preferably, time of the purging is more than 5 minutes, preferably more than 10 minutes, more preferably 20 minutes.
preferably, the mixture is heated to 50-80 ℃, for example, 55 ℃, 57 ℃, 65 ℃, 74 ℃ and so on; preferably to 70 ℃.
preferably, the inert gas is selected from any one of Ar, N2, He, Ne, or a mixture of at least two of them.
preferably, in step (3) , the 2- (3-alkylthiophen-2-yl) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane is added with a mole ratio to the 2-bromo-3-alkoxy-thiophene of 1: 3-15, for example, 1: 4, 1: 7, 1: 14 and so on, preferably 1: 5-10, more preferably 1: 6.3.
preferably, the 2- (3-alkylthiophen-2-yl) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane is added dropwise.
preferably, the mixture is refluxed at 50-80 ℃, for example, 55 ℃, 57 ℃,65 ℃, 74 ℃ and so on; preferably at 70 ℃.
preferably, in step (4) , the reaction mixture is extracted with organic solvent, preferably with DCM.
preferably, the washing is conducted with water and brine.
preferably, in step (5) , the concentrating is conducted under reduced pressure.
preferably, the purifying is conducted by column chromatography using petroleum ether as an eluent.
In another aspect, the present invention provides a preparation method of the electron-donating unit described herein wherein R1 or/and R2 is (are) branched alkyl comprising:
(1) adding 2-bromo-3-alkoxy-thiophene, 2- (3-alkylthiophen-2-yl) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane and a solvent into a reaction vessel, and purging the mixture with an inert gas; the solvent is known in the art, such as benzene, toluene and the like, or a mixture of at least two of them;
(2) adding a mixture of [Pd (PPh34] , Aliquat, and aqueous alkali carbonate, heating the mixture to 90-150 ℃ for 5-30 h;
(3) cooling the reaction mixture to room temperature,
(4) extracting the reaction mixture and washing the combined organic phases after being extracted and drying the organic phase to mainly remove the water therein;
(5) concentrating the organic layer and purifying to give the electron-donating unit;
wherein the alkoxy and alkyl both are branched.
Preferably, on the basis of the technical solution provided by the present invention, in step (1) , the ratio of the 2-bromo-3-alkoxy-thiophene to 2- (3-alkylthiophen-2-yl) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane is 1: 0.5-1, preferably 1: 0.7-0.9, more preferably 1: 0.8.
preferably, the mixture is stirred and purged with an inert gas.
preferably, the inert gas is selected from any one of Ar, N2, He, Ne, or a mixture of at least two of them.
preferably, the ratio of the solvent to the 2-bromo-3-alkoxy-thiophene is 10-80 mL/g, preferably 20-50 mL/g.
preferably, in step (2) , the mixture is heated to 100-120 ℃ for 10-20 h, more preferably the mixture is heated to 100-110 ℃ for 13-18 h.
preferably, the Aliquat is in toluene.
preferably, the alkali carbonate is selected from K2CO3, Na2CO3, Li2CO3 or a mixture of at least two of them.
preferably, the mass ratio of [Pd (PPh34] , Aliquat, and alkali carbonate is 1: 1-5: 2-10, for example, 1: 2: 5, 1: 4: 9, 1: 3: 4 and so on, preferably 1: 2-3: 3-8, more preferably 1: 2.5: 5.
preferably, in step (4) , the reaction mixture is extracted with organic solvent, preferably with DCM.
preferably, the washing is conducted with water.
preferably, the drying is conducted over MgSO4.
preferably, in step (5) , the concentrating is conducted under reduced pressure.
preferably, the purifying is conducted by column chromatography or silica gel using petroleum ether as an eluent.
In another aspect, the present invention provides a preparation method of the copolymer described herein comprising:
(1) adding the electron-donating unit of claim 1, an electron-deficient material, tris (dibenzylideneacetone) dipalladium (0) (Pd2 (dba) 3) , and tris (o-tolyl) phosphine (P (o-tolyl) 3) into a reaction vessel, and subjecting the reaction vessel and the mixture to an inert gas;
(2) adding an organic solvent; sealing the reaction vessel under an inert gas flow and then stirring while heating;
(3) adding 2- (tributylstanny) thiophene and stirring the reaction mixture while heating;finally, adding 2-bromothiophene and stirring the reaction mixture while heating;
(4) after cooling to room temperature, dripping the reaction mixture into methanol containing hydrochloric acid;
(5) drying the solid precipitate obtained in step (4) to give the crude product, and then extracting the crude product;
(6) after final extraction, concentrating the polymer solution, and then being dripped into methanol, collecting the polymer and drying to give the copolymer. Preferably, on the basis of the technical solution provided by the present invention, in step (1) , the electron-deficient material is selected from the following group:
Figure PCTCN2016075839-appb-000010
Figure PCTCN2016075839-appb-000011
Figure PCTCN2016075839-appb-000012
preferably, the mole ratio of the electron-donating unit of claim 1 to the electron-deficient material is 1: 0.5-2, for example, 1: 0.8, 1: 1.2, 1: 1.8 and so on, preferably 1: 0.8-1.5, more preferably 1: 1.
preferably, the mole ratio of the tris (dibenzylideneacetone) dipalladium (0) (Pd2 (dba) 3) to tris (o-tolyl) phosphine (P (o-tolyl) 3) is 1: 4-15, for example, 1: 6, 1: 9, 1: 13 and so on, preferably 1: 6-10, more preferably 1: 8; the Pd loading is 0.005-0.1 equiv, preferably 0.01-0.06.
preferably, the reaction vessel and the mixture are subjected to 1-5 pump/purge cycles with Ar.
preferably, the inert gas is selected from any one of Ar, N2, He, Ne, or a mixture of at least two of them.
preferably, in step (2) , the inert gas is selected from any one of Ar, N2, He, Ne,  or a mixture of at least two of them.
preferably, the organic solvent is selected from any one of anhydrous toluene, benzene, chlorobenzene, DMF, or a mixture of at least two of them.
preferably, the ratio of the organic solvent to the electron-donating unit is 10-75 mL/mmol, preferably 5-50 mL/mmol.
preferably, the heating is conducted at 50-170 ℃ for 1-72h, preferably at 80-150 ℃ for 3-50h.
preferably, the heating is conducted under microwave irradiation.
preferably, the heating is conducted by 80 ℃ for 10 minutes, 100 ℃ for 10 minutes, and 140 ℃ for 3 h under microwave irradiation.
preferably, in step (3) , the heating is conducted at 80-170 ℃ for more than 0.2 h, preferably at 100-160 ℃ for more than 0.4 h.
preferably, the heating is conducted under microwave irradiation.
preferably, the heating is conducted under microwave irradiation at 140 ℃ for 0.5 h;finally, adding 2-bromothiophene and stirring the reaction mixture at 140 ℃ for another 0.5 h.
preferably, the mole ratio of the 2- (tributylstanny) thiophene to the electron-donating unit is 0.1-0.5: 1, for example, 0.2: 1, 0.4: 1 and so on, preferably 0.2: 0.4-1.
preferably, the mole ratio of the 2-bromothiophene to the electron-donating unit is 0.2-1.5: 1, for example, 0.4: 1, 0.8: 1, 1.3: 1 and so on, preferably 0.4: 0.8-1; preferably, in step (4) , the methanol contains 0.5-10mL hydrochloric acid,preferably 0.5-10mLof 5-20 mol/L hydrochloric acid.
preferably, the dripping is conducted under vigorous stirring, preferably is conducted for at least 0.5 h, preferably at least 1 h.
preferably, in step (6) , the dripping is conducted under vigorous stirring.
preferably, the collecting is conducted by filtration.
preferably, the drying is conducted under reduced pressure.
In still another aspect, the present invention provides an use of the copolymer according to the present invention in thin-film transistor or polymer solar cell.
The raw material used in above preparation method can be prepared by known method in the art or by the following method described below or buying on the market.
We report here the design and synthesis of a simple head-to-head linakge containing electron-donating 3-alkyl-3’ -alkoxy-2, 2’ -bithiophene (TRTOR) unit for constructing high-performance polymer semiconductors. In comparison to the 3, 3’ -dialkoxy-2, 2’ -bithiophene (BTOR) unit having two alkoxy substituents, which utilizes the reduced steric hindrance of the O (versus CH2) and conformation locking effect of intramolecular S…O non-covalent interactions to induce backbone planarity, TRTOR reported here has a single planarizing alkoxy substituent hence an optimized single S…O interaction. Replacement of one alkoxy substituent with a less electron-donating alkyl substituent yields TRTOR polymers with lower-lying HOMOs and increased solubility without sacrificing backbone planarity due to the weaker single S…O interaction. From another perspective, alike pyran ring-opened 5H-dithieno [3, 2-b: 2’ , 3’ -d] pyran (DTP) , TRTOR has comparable electronic  properties but a centrosymmetric geometry, promoting a more compact and ordered structure than DTP, which is axisymmetric with out-of-plane substituents.
Copolymerizing TRTOR with electron-deficient phthalimides yields copolymers with promising organic thin-film transistor and polymer solar cell performance. The power conversion efficiency (6.3%) of the TRTOR polymer is the highest among all phthalimide-based polymers reported to date. These results demonstrate that TRTOR is an effective building block for constructing high-performance polymer semiconductors due to its solubilizing ability, centrosymmetric geometry, backbone planarity, compact packing, and appropriate electron donating ability versus the previously reported BTOR and DTP units. Hence, a head-to-head linkage containing one alkyl chain and one alkoxy substituent at the bithiophene 3-positions can achieve planar backbones due to reduced steric hindrance and intramolecular non-covalent S…O interactions, and strategically employing single S…O interactions is thus a promising strategy for materials design in organic electronics.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 are chemical structures, optimized geometries, and energy levels of the frontier molecular orbitals of (a) 3, 3’ -dialkyl bithiophene (BTR) ; (b) 3, 3’ -dialkoxy bithiophene (BTOR) ; (c) 5H-dithieno [3, 2-b: 2’ , 3’ -d] pyran (DTP) ; (d) 3-alkoxy-2, 2’ -bithiophene (TTOR) , and (e) 3-alkyl-3’ -alkoxy-2, 2’ -bithiophene (TRTOR) ; calculations carried out at the DFT//B3LYP/6-31G**level, alkyl substituents truncated here to simplify the calculations.
Figure 2. (a) Optical absorption spectra of polymer films of P1-P5; (b) Cyclic voltammograms of P1-P5 films in 0.1 M (n-Bu) 4N. PF6 acetonitrile solution (the Fc/Fc+ redox couple was used as an internal standard) .
Figure 3. DSC thermograms of the polymers P1-P5 at a temperature ramp rate of 10 ℃/min under N2. The top line is from the first cooling run and the bottom line is from the second heating run.
Figure 4. Transfer curves of P2 and P5 organic thin-film transistors at (a) the linear (Vd = -10V) and (b) saturation region (Vd= -80V) ; (c) J-V characteristics of the optimized inverted polymer solar cells of P1-P5 under simulated AM 1.5 G illumination (100 mW cm-2) .
Figure 5. In-plane (qxy) and out-of-plane (qz) line cuts of the GIWAXS images for the neat polymer films prepared on octyldecyltrichlorosilane (OTS) -modified Si substrate. The spectra are split in order to better view the (100) lamellar interactions (left) and the (010) π-π interactions (right) .
Figure 6. GIWAXS images of polymers blended with PC71BM and processed with 3%ODT additive.
Figure 7. TEM images of P1 (aand h) , P2 (b and i) , P3 (c and j) , P4 (d and k) , P5a (e and l) , P5b (f and m) , and P5c (g and n) bulk heterojunction blend (polymer: PC71BM) films processed without (up row) and with (bottom row) processing additive, 1, 8-octanedithiol (ODT) . (Scale bar: 500 nm) .
Figure 8. UV-Vis absorption spectra of polymers P1-P5 in chloroform solution (1 × 10-5 M) .
Figure 9. Thermogravimetric analysis of polymers P1-P5 at temperature ramp  rate of 10 ℃/min.
Figure 10. Computed optimized geometry for the repeating units of DTP-based polymer P3 (a) and TRTOR-based polymer P5 (b) . The calculations were carried out at the DFT//B3LYP/6-31G**level, alkyl substituents are truncated here to simplify the calculations.
Figure 11. J-V characteristics of the inverted polymer solar cells of P2-P5 under simulated AM 1.5 G illumination (100 mW cm-2) , the cells has the same composition with the optimized PSCs but without using processing additive, 1, 8-octanedithiol.
Figure 12. External quantum efficiency (EQE) of polymer soar cells of P2, P3, and P5 fabricated under optimized conditions.
Figure 13. 2D GIWAXS images for thermal annealed neat polymer films deposited on octyldecyltrichlorosilane modified Si substrate.
Figure 14. 2D GIWAXS images for polymer: PC71BM blend films without using processing additive.
Figure 15. Out-of-plane (qz) and in-plane (qxy) line cuts cuts of the GIWAXS for blend films without (solid) and with (dashed) 3% (v/v) ODT as the processing additive.
Figure 16. AFM topographical images of polymer: PC71BM blend films of P1 (a, h) , P2 (b, i) , P3 (c, j) , P4 (d, k) , P5a (e, l) , P5b (f, m) and P5c (g, n) processed without (1st and 2nd rows) and with (3rd and 4th rows) additive, 1, 8-octanedithiol. The image size is 5 μm × 5 μm.
Figure 17. UV-Vis absorption spectra of polymers P1’ -P6’ in thin films.
Figure 18. UV-Vis absorption spectra of polymers P1’ -P6’ in chloroform  solution (1 ×10-5 M) .
Figure 19. J-V curves of the photovoltaic devices based on the five polymers with PC71BM.
DETAILED DESCRIPTION
To facilitate understanding of the present invention, the embodiment of the present invention is exemplified as follows. Skilled in the art should be appreciated that the embodiments are merely used to help understand the present invention and should not be regarded as specific limits on the invention.
All reagents and chemicals were commercially available and were used without further purification unless otherwise stated. Tetrahydrofuran and toluene were distilled from Na/benzophenone, and anhydrous dichloromethane and acetonitrile were distilled from CaH2. The known monomers N-dodecyl-3, 6-dibromophthalimide87, N- (2-ethylhexyl) -3, 6-dibromophthalimide87 were prepared by following the published procedure, and N-octyl-3, 6-dibromophthalimide was synthesized via the same procedure from 3, 6-dibromophthalic anhydride and n-octylamine. The monomer (5, 5-bis (3, 7-dimethyloctyl) -5H-dithieno [3, 2-b: 2’ , 3’ -d] pyran-2, 7-diyl) bis (tributylstan nane) was purchased from SunaTech Inc. (Suzhou, Jiangsu) , and 5, 5’ -bis (trimethylstannyl) -3, 3’ -bis (dodecyl-oxy) -2, 2’ -bithiophene was synthesized via the published procedures88. All other reagents were used as received except where noted. Unless otherwise stated, all manipulations and reactions were carried out under argon using standard Schlenk line techniques. Polymerizations were  carried out on Initiator+ Microwave Synthesizer (Biotage, Sweden) .
1H and 13C spectra were recorded on a Bruker Ascend 400MHz spectrometer. Chemical shifts were referenced to residual protio-solvent signals. C, H, N, S elemental analyses (EA) of monomers and polymers were performed at Shenzhen University (Shenzhen, Guangdong) . Polymer molecular weights were measured on Polymer Laboratories GPC-PL220 high temperature GPC/SEC system at 170 ℃ vs polystyrene standards using trichlorobenzene as eluent. DSC curves were recorded on a differential scanning calorimetry (Mettler, STARe, heating rate = 10 ℃/min, nitrogen purge) . TGA curves were recorded on a TA Instrument (Mettler, STARe) . UV-Vis data were recorded on a Shimadzu UV-3600 UV-VIS-NIR spectrophotometer. Cyclic voltammetry measurements of polymers were carried out under argon atmosphere using a CHI760E voltammetric analyzer with 0.1 M tetra-n-butylammonium hexafluorophosphate in acetonitrile as supporting electrolyte. A platinum disk working electrode, a platinum wire counter electrode and silver wire reference electrode were employed, and Fc/Fc+ was used as internal reference for all measurements. The scan rate was 100 mV/S. Polymer films were drop-coated from chloroform solutions on a Pt working electrode (2 mm in diameter) . The supporting electrolyte solution was thoroughly purged with Ar before all CV measurements. AFM measurements of polymer: PCBM blend films were performed by using a Dimension Icon Scanning Probe Microscope (Asylum Research, MFP-3D-Stand Alone) in tapping mode. TEM specimens were prepared following identical conditions as the actual devices, but were drop-cast onto 40 nm PEDOT: PSS covered substrate. After drying, substrates were transferred to deionized water and  the floated films were transferred to TEM grids. TEM images were obtained on Tecnai Spirit (20 kV) TEM.
The synthesis of the key TRTOR building block is straightforward, and Scheme 1 depicts the Synthesis of TRTOR monomer and TRTOR-based polymers P5. The BTR(seeing Figure 1a) , BTOR, DTP, and TTOR-based polymers P1-P4 were also synthesized for comparison. The intramolecular non-covalent S…O interaction is marked by dash line.
Figure PCTCN2016075839-appb-000013
Reagents/conditions in Scheme 1 are: (i) NBS, chloroform, HOAc; (ii) n-BuLi,  isopropoxyboronic acid pinacol ester, THF; (iii) ROH, PTSA, toluene, 110 ℃; (iv) NBS, DMF; (v) Pd (PPh34, K2CO3, THF, H2O; (vi) n-BuLi, Me3SnCl, THF (vii) Pd2 (dba) 3, P (o-tolyl) 3, toluene, microwave, 140 ℃.
More detailed monomer and polymer synthetic and characterization information is reported as follows. Dioxaborolane 367 and brominated thiophene 648 were synthesized following published procedures. Suzuki coupling between 3 and 6 affords monomer precursor 7 in good yield (> 60%) , with subsequent lithiation and quenching with Me3 SnCl providing monomer 8 in good purity. After further purification via recrystallization from isopropyl alcohol, 8 was copolymerized with the imide-functionalized arene, dibromophthalimide57, 66, under a typical Stille polymerization protocol using microwaves for heating (Scheme 1) .
Monomer and Polymer Synthesis-wherein R is a linear alkane
3a: 2- (3-dodecylthiophen-2-yl) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane synthesized by following Scheme 2
Figure PCTCN2016075839-appb-000014
Commercial available 2-bromo-3-dodecyl-thiophene 2a (4.0 g, 12.07 mmol) was added into an oven dried flask and then dissolved in 90 mL anhydrous THF under argon. After cooling to -78 ℃, n-BuLi (13.28 mmol, 8.30 mL, 1.6 M in hexane) was added dropwise and the whole was stirred at -78 ℃ for 50 min. Then 2-isopropoxy-4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane (2.47 g, 13.28 mmol) was added in one portion and the reaction mixture was warmed to room temperature and  stirred overnight. The reaction was quenched with 30 mL water and the mixture was diluted with diethyl ether. The aqueous phase was extracted with diethyl ether twice and the combined organic phase was washed with brine once and dried over sodium sulfate. After removal of solvent under reduced pressure, the crude product was subjected to column chromatography using hexane: dichloromethane (DCM) = 4: 1 as eluent to afford 3a as a liquid (2.3 g, 50 %) .
1H NMR (400 MHz, CDCl3, ppm) : δ 7.49 (d, 1H) , 7.03 (d, 1H) , 2.89 (t, 2H) , 1.59 (m, 2H) , 1.27-1.34 (m, 30H) , 0.90 (t, 3H) . 13C NMR (100 MHz, CDCl3, ppm) : δ 154.65, 131.20, 130.23, 83.44, 31.87, 31.77, 30.06, 29.65, 29.61, 29.58, 29.41, 29.31, 29.24, 24.72, 24.51, 22.64, 14.07.
5a: 3- (undecyloxy) thiophene synthesized by following Scheme 3
Figure PCTCN2016075839-appb-000015
A mixture of 3-methoxythiophene 4 (10.00 g, 87.60 mmol) , undecan-1-ol (30.2 g, 175.2 mmol) , p-toluenesulfonic acid monohydrate (1.67 g, 0.1 eq) and 65 ml toluene was heated in a 110 ℃ bath overnight under argon. After dichloromethane/water extraction, the organic phase was dried over MgSO4. The solvent was then removed by rotvap, and the residue was purified by column chromatography (silica gel) using petroleum ether as eluent to give 5a as a colorless oil (13.8 g, 62 %) .
1H NMR (400 MHz, CDCl3, ppm) : δ 7.17 (dd, 1H) , 6.75 (dd, 1H) , 6.29 (dd, 1H) , 3.93 (t, 2H) , 1.92-1.65 (m, 2H) , 1.51-1.11 (m, 16H) , 0.88 (t, 3H) .
6a: 2-bromo-3- (undecyloxy) thiophene synthesized by following Scheme 4
Figure PCTCN2016075839-appb-000016
NBS (1.83 g, 10.29 mmol) was added in one portion to 5a (2.5 g, 9.8 mmol) in 20 mL DMF at 0 ℃ and the whole was warmed to room temperature and stirred for 15 h. The reaction mixture was diluted with ether (50 mL) and washed with water (2 × 20 mL) . The organic layer was dried over MgSO4, concentrated under reduced pressure, and the residue was subjected to column chromatography (silica gel, petroleum ether) to give 6a as a colorless solid (3.02 g, 92.4 %) .
1H NMR (400 MHz, CDCl3, ppm) : δ 7.19 (d, 1H) , 6.74 (d, 1H) , 4.03 (t, 2H) , 1.85-1.62 (m, 2H) , 1.52-1.14 (m, 16H) , 0.88 (t, 3H) .
7a: 3-dodecyl-3' - (undecyloxy) -2, 2' -bithiophene synthesized by following Scheme 5
Figure PCTCN2016075839-appb-000017
An oven-dried two necked 100 mL round bottom flask were equipped with a condenser and cooled under Ar protection. To the flask was added 2-bromo-3- (undecyloxy) -thiophene 6a (0.5 g, 1.5 mmol) , K2CO3 (0.207 g, 1.5 mmol) , THF (7 mL) and H2O (7 mL) , and the whole was purged with Ar for 30 minutes. Pd (PPh34 (0.173 g, 0.15 mmol) was then added followed by Ar purging for 20 minutes. The reaction mixture was then heated to 70 ℃. 2- (3-dodecylthiophen-2-yl) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane 3a (0.568 g, 1.5 mmol) was added dropwise and the solution was refluxed at 70 ℃ overnight. The  reaction mixture was extracted with DCM and washed with water and brine. The organic layer was concentrated under reduced pressure and purified by column chromatography using petroleum ether as the eluent to give a yellowish solid (0.47 g, 62 %) .
1H NMR (400 MHz, CDCl3, ppm) : δ 7.22 (d, 1H) , 7.18 (d, 1H) , 6.91 (d, 1H) , 6.87 (d, 1H) , 4.00 (t, 2H) , 2.74-2.62 (t, 2H) , 1.77-1.66 (m, 2H) , 1.64-1.55 (m, 2H) , 1.45-1.16 (m, 34H) , 0.88 (t, 6H) .
8a: 3-dodecyl-3' - (undecyloxy) -5, 5’ -bis (trimethylstannyl) -2, 2' -bithiophene synthesized by following Scheme 6
Figure PCTCN2016075839-appb-000018
3-dodecyl-3' - (undecyloxy) -2, 2' -bithiophene 7a (224 mg, 0.44 mmol) and 5 mL dry THF was added to a flask. The resulting clear solution was cooled to -78 ℃ using dry ice/acetone bath. Then 0.67 mL n-BuLi solution in hexane (1.07 mmol, 1.6 mol/L) was added dropwise. After stirring at -78 ℃ for 1 h and room temperature for 1 h, 1.15 mL trimethyltin chloride (1.15 mmol, 1 mol/L) was added in one portion, and then the cooling bath was removed. After being stirred at ambient temperature for 4 h, the reaction mixture was quenched with water carefully and then poured into cool water and extracted with diethyl ether for twice. After removal of organic solvent, the monomer was obtained as a yellowish oil, which was further purified by recrystallization in isopropyl alcohol to provide the product as pale solid (0.35 g, 95%) .
1H NMR (400 MHz, CDCl3, ppm) : δ 7.01 (s, 1H) , 6.88 (s, 1H) , 4.03 (t, 2H) , 2.69-2.73 (t, 2H) , 1.70-1.76 (m, 2H) , 1.60-1.64 (m, 2H) , 1.25-1.45 (m, 34H) , 0.88 (t, 6H) , 0.28-0.38 (m, 18H) . 13C NMR (100 MHz, CDCl3, ppm) : δ 154.76, 141.15, 137.21, 136.13, 135.34, 134.16, 124.94, 119.85, 71.92, 32.00, 30.81, 29.86, 29.78, 29.76, 29.74, 29.72, 29.58, 29.50, 29.44, 29.42, 26.13, 22.76, 14.20, -8.22, -10.06. Anal. Calcd for C37H68OS2Sn2 (%) : C, 53.51; H, 8.25; N, 0; S, 7.72. Found (%) : C, 53.89; H, 8.47; N, 0.02; S, 7.83.
3b: 4, 4, 5, 5-tetramethyl-2- (3-octylthiophen-2-yl) -1, 3, 2-dioxaborolane synthesized by following Scheme 7
Figure PCTCN2016075839-appb-000019
4, 4, 5, 5-tetramethyl-2- (3-octylthiophen-2-yl) -1, 3, 2-dioxaborolane was synthesized following the same procedure employed in synthesis of compound 3a. After column chromatography, the product was obtained as an oil (57 %) . 1H NMR (400 MHz, CDCl3, ppm) : δ 7.49 (d, 1H) , 7.02 (d, 1H) , 2.98-2.83 (t, 2H) , 1.60 (m, 2H) , 1.36-1.25 (m, 22H) , 0.89 (t, 3H) . 13C NMR (100 MHz, CDCl3, ppm) : δ 154.72, 131.29, 130.30, 83.52, 31.95, 31.85, 30.15, 29.45, 29.33, 24.80, 22.72, 14.15.
5b: 3- (heptyloxy) thiophene synthesized by following Scheme 8
Figure PCTCN2016075839-appb-000020
3- (heptyloxy) thiophene 5b was synthesized following the same procedure employed in synthesis of compound 5a, and the product was obtained as a colorless  oil (61 %) . 1H NMR (400 MHz, CDCl3, ppm) : δ 7.17 (dd, 1H) , 6.76 (dd, 1H) , 6.23 (dd, 1H) , 3.94 (t, 2H) , 1.78 (m, 2H) , 1.50-1.24 (m, 8H) , 0.91 (t, 3H) . 13C NMR (100 MHz, CDCl3, ppm) : δ 158.08, 124.53, 119.57, 96.95, 70.29, 31.81, 29.31, 29.10, 26.05, 22.65, 14.12.
6b: 2-bromo-3- (heptyloxy) thiophene synthesized by following Scheme 9
Figure PCTCN2016075839-appb-000021
2-bromo-3- (heptyloxy) thiophene 6b was synthesized following the same procedure employed in the synthesis of compound 6a. After purification over column chromatography (silica gel, petroleum ether) , the product was obtained as a colorless oil (92 %) . 1H NMR (400 MHz, CDCl3, ppm) : δ 7.20 (d, 1H) , 6.76 (d, 1H) , 4.05 (t, 2H) , 1.76 (m, 2H) , 1.51-1.23 (m, 8H) , 0.90 (t, 3H) . 13C NMR (100 MHz, CDCl3, ppm) : δ 154.58, 124.13, 117.55, 91.62, 72.28, 31.62, 29.51, 29.03, 25.81, 22.62, 14.11.
7b: 3- (heptyloxy) -3' -octyl-2, 2' -bithiophene synthesized by following Scheme 10
Figure PCTCN2016075839-appb-000022
3- (heptyloxy) -3' -octyl-2, 2' -bithiophene was synthesized following the same procedure employed in synthesis of compound 7a. After purification over column chromatography, the product was obtained as pale oil (61 %) . 1H NMR (400 MHz, CDCl3, ppm) : δ 7.23 (d, 1H) , 7.19 (d, 1H) , 6.93 (d, 1H) , 6.88 (d, 1H) , 4.02 (t, 2H) , 2.75-2.66 (t, 2H) , 1.80-1.69 (m, 2H) , 1.61 (m, 2H) , 1.47-1.20 (m, 18H) , 0.95-0.84 (m, 6H) . 13C NMR (100 MHz, CDCl3, ppm) δ 153.54, 140.53, 128.85, 127.80,  124.38, 123.11, 117.57, 113.56, 71.97, 31.89, 30.63, 29.67, 29.63, 29.51, 29.47, 29.34, 29.06, 25.94, 22.74, 22.65, 14.17, 14.14.
8b: 3-octyl-3' - (heptyloxy) -5, 5’ -bis (trimethylstannyl) -2, 2' -bithiophene synthesized by following Scheme 11
Figure PCTCN2016075839-appb-000023
3-octyl-3' - (heptyloxy) -5, 5’ -bis (trimethylstannyl) -2, 2' -bithiophene 8b was synthesized following the same procedure employed in the synthesis of monomer 8a. After recrystallization in isopropyl alcohol at ~0 ℃, the monomer was obtained as a yellowish solid (92%) . 1H NMR (400 MHz, CDCl3, ppm) : δ 6.99 (s, 1H) , 6.89 (s, 1H) , 4.04 (t, 2H) , 2.73 (t, 2H) , 1.73 (m, 2H) , 1.61 (m, 2H) , 1.48-1.21 (m, 18H) , 0.87 (m, 6H) , 0.46-0.27 (m, 18H) . 13C NMR (100 MHz, CDCl3, ppm) : δ 154.75, 141.13, 137.18, 136.11, 135.31, 134.16, 124.94, 119.87, 71.91, 31.95, 31.88, 30.77, 29.81, 29.74, 29.48, 29.40, 29.34, 29.11, 26.06, 22.72, 22.67, 14.17, 14.15, -8.25. Anal. Calcd for C29H52OS2Sn2 (%) : C, 48.49; H, 7.30; N, 0; S, 8.93. Found (%) : C, 49.08; H, 7.46; N, 0.02; S, 9.05.
9: 3, 3’ -didodecyl-2, 2’ -bithiophene synthesized by following Scheme 12
Figure PCTCN2016075839-appb-000024
Known compound 9 was prepared and isolated via the published procedure (Kumada coupling of dodecyl magnesium bromide and 3, 3’ -dibromo-2, 2’ -bithiophene) as a colorless solid (92 %) after column  chromatography21H NMR (CDCl3, 400 MHz, ppm) : δ 7.29 (d, 2H) , 6.97 (d, 2H) , 2.50 (t, 4H) , 1.51-1.57 (m, 4H) , 1.23-1.32 (m, 36H) , 0.88 (t, 6H) . 13C NMR (CDCl3, 100 MHz, ppm) : δ 142.56, 128.93, 128.74, 125.43, 32.15, 30.94, 29.91, 29.89, 29.79, 29.67, 29.65, 29.59, 29.00, 22.92, 14.35.
10: 5, 5’ -bis (trimethylstannyl) -3, 3’ -didodecyl-2, 2’ -bithiophene synthesized by following Scheme 13
Figure PCTCN2016075839-appb-000025
Monomer 10 was prepared and isolated as a colorless oil from 9 using the same procedures employed for monomer 8a (82 %) . 1H NMR (CDCl3, 400MHz, ppm) : δ 7.03 (s, 2H) , 2.52 (t, 4H) , 1.56 (m, 4H) , 1.25 (m, 36H) , 0.90 (t, 6H) , 0.38 (s, 18H) . 13CNMR (CDCl3, 100 MHz, ppm) : δ 142.84, 137.31, 136.83, 135.17, 31.97, 30.98, 29.72, 29.63, 29.49, 29.41, 28.77, 22.73, 14.16, -8.20 Anal. Calcd for C38H70S2Sn2 (%) : C, 55.09; H, 8.52; N, 0; S, 7.74.
11: 3- (dodecyloxy) -2, 2' -bithiophene synthesized by following Scheme 14
Figure PCTCN2016075839-appb-000026
An oven-dried two necked 100 mL round bottom flask containing a stir bar were equipped with a condenser and cooled under Ar. To the flask was added 2-bromo-3- (dodecyloxy) thiophene (1.02 g, 2.94 mmol) , K2CO3 (0.406 g, 2.94 mmol) , 15 mL THF and 15 mL H2O, followed by purging with Ar for 30 minutes. Pd (PPh34 (0.340 g, 0.294 mmol) was then added and purged with Ar for 20 minutes.  The whole was heated to 70 ℃. The commercial available 4, 4, 5, 5-tetramethyl-2- (thiophen-2-yl) -1, 3, 2-dioxaborolane (0.617 g, 2.94 mmol) was added dropwise and the solution was refluxed at 70 ℃ overnight. The reaction was cooled to room temperature and the organic layer was extracted with CH2Cl2 and washed with water and brine. The organic layer was concentrated under reduced pressure via rotvap and purified by column chromatography using petroleum ether as the eluent to yield a colorless oil (0.515 g, 50 %) .
1H NMR (400 MHz, CDCl3, ppm) δ 7.26 (dd, 1H) , 7.23 (dd, 1H) , 7.08, 7.03 (dd, 1H) , (dd, 1H) , 6.87 (d, 1H) , 4.13 (t, 2H) , 1.86 (m, 2H) , 1.55 (m, 2H) , 1.38 (m, 16H) , 0.92 (t, 3H) . 13C NMR (100 MHz, CDCl3, ppm) : δ 152.56, 135.36, 126.72, 123.51, 122.45, 121.35, 117.48, 115.48, 71.91, 31.99, 29.73, 29.72, 29.65, 29.61, 29.42, 29.40, 26.07, 22.76, 14.19.
12: 3-dodecyloxy-5, 5’ -bis (trimethylstannyl) -2, 2’ -bithiophene synthesized by following Scheme 15
Figure PCTCN2016075839-appb-000027
Monomer 12 was synthesized following the same procedure employed in synthesis of compound 8a. 1H NMR (400MHz, CDCl3, ppm) : 7.37 (d, 1H) , 7.11 (d, 1H) , 6.91 (s, 1H) , 4.15 (t, 2H) , 1.87 (m, 2H) , 1.56 (m, 2H) , 1.35 (m, 16H) , 0.91 (t, 3H) , 0.40 (s, 18H) . 13C NMR (100MHz, CDCl3, ppm) : δ 153.91, 141.05, 135.19, 134.90, 133.95, 124.81, 123.56, 121.08, 71.71, 31.88, 29.73, 29.66, 29.61, 29.39, 29.33, 26.09, 22.65, 14.09, -6.47, -8.32, -10.17. Anal. Calcd for C26H44OS2Sn2 (%) :  C, 46.32; H, 6.58; N, 0; S, 9.51.
13: N-octyl-3, 6-dibromophthalimide synthesized by following Scheme 16
Figure PCTCN2016075839-appb-000028
3, 6-dibromo phthalic anhydride (1.53 g, 5 mmol) , n-octylamine (0.84 g, 6.5 mmol) and glacial acetic acid (30 ml) were combined and refluxed under Ar for 2 h. After the acetic acid was removed under reduced pressure, the target compound 13 was purified via column chromatography (silica gel, dichloromethane: hexanes 1: 2) . The resulting white solid was further purified via recrystallization from hexanes to afford a white crystal as the product (1.88 g, 90 %) .
1H NMR (400 MHz, CDCl3, ppm) : δ 7.64 (s, 2H) , 3.73-3.61 (t, 2H) , 1.74-1.63 (m, 2H) , 1.29 (m, 10H) , 0.86 (t, 3H) . 13C NMR (100 MHz, CDCl3, ppm) : δ 164.87, 139.49, 131.31, 117.50, 38.68, 31.78, 29.11, 28.32, 26.84, 22.63, 14.10. Anal. Calcd for C16H19Br2NO2 (%) : C, 46.07; H, 4.59; N, 3.36; S, 0. Found (%) : C, 46.08; H, 4.47; N, 3.23; S, 0.03.
General Procedure for Polymerizations via Stille Coupling for Synthesis of Polymers P1-P5.
An glass tube was charged with two monomers (0.2 mmol each) , tris (dibenzylideneacetone) dipalladium (0) (Pd2 (dba) 3, and tris (o-tolyl) phosphine (P (o-tolyl) 3) (1: 8, Pd2 (dba) 3: P (o-tolyl) 3 molar ratio; Pd loading: 0.03-0.05 equiv) . The tube and its contents were subjected to 3 pump/purge cycles with argon, followed by the addition of anhydrous toluene (6-8 mL) via syringe. The tube was  sealed under argon flow and then stirred at 80 ℃ for 10 minutes, 100 ℃ for 10 minutes, and 140 ℃ for 3 h under microwave irradiation. Then, 0.1 mL of 2- (tributylstanny) thiophene was added and the reaction mixture was stirred under microwave irradiation at 140 ℃ for 0.5 h. Finally, 0.2 mL of 2-bromothiophene was added and the reaction mixture was stirred at 140 ℃ for another 0.5 h. After cooling to room temperature, the reaction mixture was slowly dripped into 100 mL of methanol (containing 5 mL 12 N hydrochloric acid) under vigorous stirring. After stirring for 4h, the solid precipitate was transferred to a Soxhlet thimble. After drying, the crude product was subjected to sequential Soxhlet extraction with the choice of solvents and sequence depending on the solubility of the particular polymer. After final extraction, the polymer solution was concentrated to approximately 20 mL, and then dripped into 100 mL of methanol under vigorous stirring. The polymer was collected by filtration and dried under reduced pressure to afford deep colored solid as the product.
P11 was synthesized by following Scheme 17.
Figure PCTCN2016075839-appb-000029
The solvent sequence for Soxhlet extraction was methanol, acetone, hexane, dichloromethane and chloroform. The polymer was obtained as a yellow solid (114 mg, 68%yield) . 1H NMR (400 MHz, CDCl3, ppm) : δ 7.82 (s, 2H) , 7.81 (s, 2H) , 3.72 (br, 2H) , 2.67 (t, 4H) , 1.69 (m, 6H) , 1.25 (m, 54H) , 0.87 (m, 9H) . Anal. Calcd for  C52H79NO2S2 (%) : C, 76.70; H, 9.78; N, 1.72; S, 7.87.
P2 was synthesized by following Scheme 18.
Figure PCTCN2016075839-appb-000030
The solvent sequence for Soxhlet extraction was methanol, acetone, hexane, dichloromethane and chloroform. The polymer was obtained as a blue solid with copper-like metallic luster (108 mg, 64%yield) . 1H NMR (400 MHz, CDCl3) : δ 7.97 (br, 4H) , 4.28 (br, 4H) , 3.70 (br, 2H) , 1.99 (br, 4H) , 1.56-1.23 (m, 56H) , 0.94 (m, 9H) . Anal. Calcd for C52H79NO4S2 (%) : C, 73.80; H, 9.41; N, 1.66; S, 7.58. Found (%) : C, 73.81; H, 9.72; N, 1.53; S, 7.31.
P3 was synthesized by following Scheme 19.
Figure PCTCN2016075839-appb-000031
The solvent sequence for Soxhlet extraction was methanol, acetone, and hexane. This polymer was obtained as brown solid (97 mg, 62%yield) . Mn = 8.1 kDa, PDI =3.13. 1H NMR (400 MHz, CDCl3) δ 7.76 (dd, 4H) , 3.70 (br, 2H) , 2.12-1.86 (m, 4H) , 1.77-0.98 (m, 40H) , 0.96-0.54 (m, 21H) . Anal. Calcd for C49H71NO3S2 (%) : C, 74.86; H, 9.10; N, 1.78; S, 8.16. Found (%) : C, 74.01; H, 9.41; N, 1.60; S, 7.47.
P4 was synthesized by following Scheme 20.
Figure PCTCN2016075839-appb-000032
The solvent sequence for Soxhlet extraction was methanol, acetone, hexane and chloroform. The polymer was obtained as a blue solid with copper-like metallic luster (86 mg, 60%yield) . 1H NMR (400 MHz, CDCl3) : δ 8.14 –7.41 (m, 4H) , 7.00 (s, 1H) , 4.21 (s, 2H) , 3.59 (s, 2H) , 1.93 (s, 4H) , 1.26 (s, 42H) , 0.86 (s, 12H) . Anal. Calcd for C44H63NO3S2 (%) : C, 73.59; H, 8.84; N, 1.95; S, 8.93.
P5a was synthesized by following Scheme 21.
Figure PCTCN2016075839-appb-000033
The solvent sequence for Soxhlet extraction was methanol, acetone, and hexane, chloroform. This polymer was obtained as a brown solid (155 mg, 95%yield) . Mn = 29.3 kDa, PDI = 2.14.1H NMR (400 MHz, CDCl3) δ 7.96-7.80 (m, 4H) , 4.23 (br, 2H) , 3.71 (br, 2H) , 2.89 (br, 2H) , 1.88 (br, 2H) , 1.75 (br, 2H) , 1.55 (br, 4H) , 1.49-1.02 (m, 50H) , 0.87-0.83 (m, 9H) . Anal. Calcd for C51H77NO3S2 (%) : C, 75.04; H, 9.51; N, 1.72; S, 7.85. Found (%) : C, 75.13; H, 9.47; N, 1.63; S, 7.77.
P5b was synthesized by following Scheme 22.
Figure PCTCN2016075839-appb-000034
The solvent sequence for Soxhlet extraction was methanol, acetone, and hexane, dichloromethane, and chloroform. This polymer was obtained as a purple solid (102 mg, 79%yield) . Mn = 35.3 kDa, PDI = 1.48.1H NMR (400 MHz, CDCl3) δ 7.96-7.79 (m, 4H) , 4.22-3.70 (m, 4H) , 2.87 (s, 2H) , 2.00-1.29 (m, 34H) , 0.88 (s, 9H) . Anal. Calcd for C39H53NO3S2 (%) : C, 72.29; H, 8.24; N, 2.16; S, 9.90. Found (%) : C, 72.20; H, 8.57; N, 2.04; S, 9.58.
P5c was synthesized by following Scheme 23.
Figure PCTCN2016075839-appb-000035
The solvent sequence for Soxhlet extraction was methanol, acetone, and hexane, dichloromethane, and chloroform. This polymer was obtained as a purple solid (88 mg, 68%yield) . Mn = 18.5 kDa, PDI = 1.91.1H NMR (400 MHz, CDCl3) δ 8.03-7.71 (m, 4H) , 4.23 (br, 2H) , 3.62 (br, 2H) , 2.89 (br, 2H) , 1.89 (br, 3H) , 1.75 (br, 2H) , 1.60-1.16 (m, 26H) , 0.88 (d, 12H) . Anal. Calcd for C39H53NO3S2 (%) : C, 72.29; H, 8.24; N, 2.16; S, 9.90. Found (%) : C, 72.41; H, 8.57; N, 2.05; S, 9.62.
For better comparison and elucidation of the structure-property correlations of TRTOR-based polymers P5, BTR (P1) , BTOR (P2) , DTP (P3) , and TTOR-based (P4) polymer analogues were also synthesized. After polymerizations, the polymer chains were end-capped with mono-functionalized thiophene68. The polymers were collected by precipitation in methanol, which were then subjected to purification via  Soxhlet extractions using different solvent sequences, depending on the polymer solubility. The identity and purity of the product polymers were supported by 1H NMR as well as by elemental analysis. All the polymers exhibit good solubility in common organic solvents for device fabrication. Polymer molecular weights were measured by gel permeation chromatography (GPC) versus polystyrene standards. Number average molecular weight, Mn, and polydispersity index (PDI) data are summarized in Table 1.
Table 1. Molecular weights, optical absorption, and electrochemical data for polymer series P1-P5
Figure PCTCN2016075839-appb-000036
a GPC versus polystyrene standards, trichlorobenzene as eluent, at 170 ℃. b Solution absorption spectra (1×10-5 M in chloroform) . cThin film absorption spectra of pristine film cast from 5 mg/mL CHCl3 solution. d EHOMO = - (Eox onset + 4.80) eV,  and Eox onset determined electrochemically using Fc/Fc+ internal standard. e ELUMO =EHOMO + Eg optf Optical bandgap estimated from absorption edge of as-cast thin film.
It is instructive to compare the polymer solubilities. Among all polymers, P1 is most soluble due to its twisted backbone induced by the head-to-head linkage. Due to the single S…O interaction in TRTOR, P5a shows greatly enhanced solubilities versus P2, which has stronger BTOR double S…O interactions57. Hence, polymers P5b and P5c with shorter alkyl chains are also synthesized and demonstrate good solubility at 25 ℃, however P2 analogues having the same side chains are intractable. Therefore, enhanced materials processability can be achieved by optimizing the intramolecular S…O interactions. For polymer P4, a large branched 2-hexyldecyl chain is attached to the phthalimide unit for achieving good materials solubility since the TTOR unit only contains one solubilizing side chain.
Polymer Optical and Electrochemical Properties
Absorption spectra of all polymer films are depicted in Figure 2, and the relevant absorption data and optical bandgaps are summarized in Table 1. In solution, all polymers show featureless absorption profiles (Figure 8) , which indicate a lack of aggregation and ordering in chloroform. From solution to film state, the polymers show bathochromic shifts due to the increased backbone planarity and enhanced aggregation69. Among all polymers, P2 shows the most bathochromically shifted absorption and the smallest bandgap of 1.65 eV due to the strong BTOR electron-donating ability. In comparison to P1, the insertion of the oxygen atom between the thiophene and alkyl side chain leads to a dramatic red shift (202 nm) of  the absorption maximum and a ~0.8 eV smaller optical bandgap for P2 in film state. This substantialbandgap narrowing in P2 is attributed to the stronger alkoxy substituent electron-donating ability (versus that of an alkyl substituent) , more planar polymer backbone due to the reduced steric hindrance by replacing a CH2 with a less bulky O and the intramolecular non-covalent S…O interaction.
Polymer P3 containing the 5H-dithieno [3, 2-b: 2’ , 3’ -d] pyran (DTP) 62 electron donor unit has a bandgap of 1.93 eV, which is between that of P1 (2.42 eV) and P2 (1.65 eV) . In comparison to the bandgap of P2, the larger P3 bandgap (1.93 eV) is attributed to the weaker electron donating ability of DTP which contains one electron donating OR and one CH2 versus two ORs in BTOR. Considering the comparable electronic properties of DTP and TRTOR (Figure 1) with each having one electron donating OR and one CH2, P5a exhibits red-shifted absorption and a smaller bandgap (1.85 eV) versus that of P3 (1.93 eV) , likely reflecting the more compact intermolecular stacking due to the absence of out-of-plane substituents and greater phthalimide acceptor-thiophene donor coplanarity in P5a, supported by DFT analysis (Figure 10) . Therefore, TRTOR should be a more effective unit for creating narrow bandgap polymers than DTP.
It is instructive to compare the optical absorption spectra of P4 and P5a, which both contain a single electron-donating alkoxy substituent. In spite of potentially enhanced steric repulsion by introducing the solubilizing alkyl chain on TRTOR vs TTOR, P5a shows a red-shifted absorption maximum and a slightly smaller bandgap than P4. The smaller P5a bandgap is reasonably attributed to the weak electron-donating ability of the alkyl chain, but the effect of polymer molecular  weight (Mn) should not be ruled out70. Importantly, these results show that the TRTOR alkyl chain is not detrimental to backbone planarity or molecule packing, otherwise the P5a bandgap would be greater than that of P4. Due to the weaker conformational locking strength of the single TRTOR S…O non-covalent interaction vs the double S…O interaction in BTOR, polymers P5b and P5c containing smaller solubilizing groups were also synthesized (Scheme 1) and have good solubility. As the solubilizing substituents become smaller, P5b and P5c have red-shifted absorptions and smaller bandgaps of 1.79 and 1.81 eV, respectively, accompanied by a distinctive absorption shoulder ~640 nm. From the solution to film state, TRTOR polymers P5 show the largest redshift (~100 nm) of the absorption maximum versus others in the series (18-47 nm) , indicating the highest degree of polymer backbone conformational change. Such changes are attributed to the strong TRTOR solubilizing ability, the weak single S…O conformational locking, and the high degree of film state backbone planarity. Of all the present polymers, only those having S…O interactions show optical absorption shoulders typical of ordered film structures17, 71, 72. From the optical absorption profiles and DFT results it can be concluded that the steric benefit and the S…O interaction of the single alkoxy side chain are effective to lock polymer backbone to achieve planar conformation. Clearly the addition of the extra 3-position bithiophene alkyl substituent is not detrimental to polymer packing in TRTOR-based polymers.
The electrochemical properties of polymers P1-P5 were investigated using cyclic voltammetry with a ferrocene/ferrocium (Fc/Fc+) internal standard (Figure 2b) . Among all polymers, P1 doesn’t show an obvious oxidation peak, likely due to  the weak BTR electron donor and limited backbone conjugation created by the head-to-head linkage. In contrast, polymers P2-P5 exhibit distinctive oxidation peaks. Going from P1 to P2, the O insertion affords the highest lying HOMO (-4.93 eV) in the series for polymer P2, in good agreement with the DFT computation (Figure 1) , and reflecting the strong BTOR unit electron donor ability. P3 has a low-lying HOMO of -5.34 eV due to the moderate DTP electron donating ability62 and torsional polymer backbone20, 73. In comparison to P3, polymer P4 shows a slightly higher-lying HOMO at -5.28 eV, attributable to the higher degree of P4 conjugation due to more planar backbone and compact packing74. In comparison to BTOR-based polymer P2, replacement of one alkoxy substituent by an alkyl substituent lowers the P5a HOMO (-5.19 eV) by 0.26 eV vs that of P2 (-4.93 eV) . Polymer P5c with a branched N-2-ethylhexyl group has a slightly lower HOMO (-5.25 eV) than P5a (-5.19 eV) and P5b (-5.18 eV) with linear N-alkyl substituents74. In comparison to P4, polymers P5a-c have slightly higher HOMOs, likely due to the weak electron-donating P5 alkyl substituent. From the electrochemical data, the removal of one oxygen in BTOR effectively lowers the TRTOR polymer HOMOs by a large margin (~ 0.3 eV) , which should enhance Ion/Ioff ratios and device stability in OTFTs as well as increase Vocs in PSCs (vide infra) 75-77.
Polymer Thermal Properties
Polymer thermal analysis was carried out by differential scanning calorimetry (DSC, Figure 3) . The BTOR-based polymer P2 shows irreversible endotherm around 340 ℃, which is likely attributed to the thermal decomposition of polymer according to the thermogravimetric analysis (Figure 9) 57. For the DTP-based  polymer P3, DSC reveals a featureless thermogram, indicating amorphous character or low crystallinity, while the TRTOR-based polymers P5a-c show distinct thermal transitions, indicating higher degrees of crystallinity vs BTOR-based polymer P2 and DTP-based polymer P317. Therefore, in comparison to BTOR-based polymer P2, the removal of one O is not detrimental to TRTOR-based P5 crystallinity. Compared to DTP-based P3, the DTP ring-opening affords enhanced crystallinity for TRTOR-based polymer P5, attributable to eliminating the out-of-plane alkyl substituents and the TRTOR centrosymmetric geometry. As the solubilizing substituents contract, the transition temperatures become higher and peaks sharpen from P5a→P5b33, 71. Note also that in spite of its twisted backbone, dialkylbithiophene-based polymer P1 shows a distinct thermal transition at a low temperature of ~200 ℃, consistent with some extent of ordering.
Monomer and Polymer Synthesis-wherein R is a branched alkane
1c: 2-Butyl-1-octylbromide synthesized by following Scheme 24
Figure PCTCN2016075839-appb-000037
Bromine (100mmol, 5.115mL) , triphenylphosphine (26.18g, 100 mmol) were dissolved in 250 mL of DCM and the solution was bubbled with Ar for 10 min. 2-butyl-1-octanol (18.635g, 100 mmol) was added at 0 ℃ and stirred at this temperature for 30 min and then at room temperature overnight. Then the reaction was added little Na2SO3, After removal of solvent, residue was filtrated and washed with hexane. The crude product was passed through a plug of silica gel using PE as  an eluent to give colorless oil (22.0g, 88.1%) .
1H NMR (400 MHz, CDCl3) δ 3.45 (d, J = 4.8 Hz, 2H) , 1.59 (dd, J = 11.1, 5.3 Hz, 1H) , 1.40 –1.21 (m, 16H) , 0.90 (q, J = 6.9 Hz, 6H) .
13C NMR (125 MHz, CDCl3) δ 39.88, 39.62, 32.71, 32.40, 31.95, 29.61, 28.92, 26.68, 22.99, 22.80, 14.25, 14.21.
2c: 3- (2-Butyl-1-octyl) thiophene synthesized by following Scheme 25
Figure PCTCN2016075839-appb-000038
Magnesium, Turnings (1.147 g, 47.17 mmol) and iodine (76.6 mg, 0.3018 mmol) was dissolved in 50 mL of THF under an Ar atmosphere. 2-Butyl-1-octylbromide (9.496g, 38.1 mmol) in 25 mL was added over 10 min and the mixture was refluxed for 2 h to afford the Grignard reagent. 3-Bromothiophene (4.891g, 30mmol) and NiCl2 (dppp) (256 mg, 0.4725 mmol) was dissolved in 25 mL of THF and the Grignard reagent was added slowly keeping with the reaction temperature at 0 ℃. The reaction mixture was stirred at room temperature overnight. The reaction was quenched with 2 M of hydrochloric acid (15mL) . DCM was added and the organic layer was washed three times with water. The organic layer was dried over MgSO4 and the solvent was removed under reduced pressure. The crude product was passed through silica gel using PE as an eluent to give colorless oil (3g, 39.6%) .
1H NMR (400 MHz, CDCl3) δ 7.23 (dd, J = 4.9, 3.0 Hz, 1H) , 6.90 (t, J = 4.2 Hz, 2H) , 2.56 (d, J = 6.8 Hz, 2H) , 1.67 –1.58 (m, 1H) , 1.25 (d, J = 3.7 Hz, 19H) , 0.88 (t, J = 6.7 Hz, 7H) .
13C NMR (100MHz, CDCl3) δ 142.07 , 128.96, 124.91 , 120.78 , 39.08 , 37.88 , 34.86 , 33.86 , 33.53 (d, J = 6.0 Hz) , 33.17 , 32.10 (d, J = 7.3 Hz) , 29.92 (d, J = 15.2 Hz) , 29.10 (d, J = 14.2 Hz) , 26.80 (d, J = 9.7 Hz) , 23.27 (d, J = 13.7 Hz) , 22.86 (d, J = 3.2 Hz) , 14.30 (t, J = 3.8 Hz) .
3c: 2-Bromo-3- (Butyl-1-octyl) thiophene synthesized by following Scheme 26
Figure PCTCN2016075839-appb-000039
3- (2-Butyl-1-octyl) thiophene (6.0 g, 23.77mmol) and N-bromosuccinimide (4.23g, 23.77mmol) was dissolved in 100 mL of 1: 1 mixture of acetic acid and chloroform and the mixture was stirred at room temperature overnight. Water was added to the reaction and the organic layer was washed with water and saturated sodium bicarbonate aqueous solution, and water. After the removal of solvent with rotary evaporator, the crude passed through a plug of silica gel with PE. The product was afforded colorless oil (6.36g, 81.3%) .
1H NMR (400 MHz, CDCl3) δ 7.18 (d, J = 5.6 Hz, 1H) , 6.76 (d, J = 5.6 Hz, 1H) , 2.49 (d, J = 7.2 Hz, 2H) , 1.64 (s, 1H) , 1.26 (dd, J = 10.7, 8.6 Hz, 16H) , 0.88 (t, J = 6.8 Hz, 6H) .
13C NMR (100 MHz, CDCl3) δ 141.19, 128.83, 124.93, 109.42, 38.54, 34.03, 33.35, 33.05, 31.90, 29.68, 28.78, 26.51, 23.05, 22.69, 14.13.
4c: 2- (3- (2-Butyl-1-octyl) thiophene) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane synthesized by following Scheme 27
Figure PCTCN2016075839-appb-000040
A solution of bromide 1 (5.0g, 15.09mmol) in THF (35mL) was cooled to -78 ℃, and a 2.4M solution of n-BuLi in hexane (6.92mL, 16.6mmol) . The mixture was stirred for 90min at -78 ℃. 2-isopropoxy-4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane (3.088g, 16.6mmol) was added, the mixture was stirred at -78 ℃ for 30min and allowed to reach room temperature and stirred for 12h, then the mixture was poured into water, extracted several times used diethyl ether, The organic layer was dried over MgSO4 and the solvent was removed under reduced pressure. The crude product was passed through silica gel using PE: DCM (5: 1) as an eluent to afford the compound 4c (2.58g, 45.2%) .
1H NMR (400 MHz, CDCl3) δ 7.47 (d, J = 4.7 Hz, 1H) , 6.97 (d, J = 4.7 Hz, 1H) , 2.81 (d, J = 7.2 Hz, 2H) , 1.58 (s, 1H) , 1.33 (s, 12H) , 1.28 –1.21 (m, 16H) , 0.89 –0.85 (m, 6H) .
13C NMR (100 MHz, CDCl3) δ 153.88, 131.15, 131.10, 83.67, 40.27, 34.94, 33.59, 33.25, 32.08, 29.95, 28.94, 26.70, 24.92, 23.28, 22.86, 14.29.
5c: 3- (2-propylheptan-1-oloxy) thiophene synthesized by following Scheme 28
Figure PCTCN2016075839-appb-000041
3-methoxythiophene (3.0 g, 26.28 mmol) , 2-propylheptan-1-ol (4.159g,  26.28mmol) and anhydrous sodium hydrogen sulfate (0.5 g, 4.16 mmol) were charged into around bottom flask. Toluene (100 mL) was then added, purged by argon for 30 min and the mixture was heated to 130 ℃for 19 hr under argon protection. After cooling to room temperature, saturate NaHCO3 water was added and extraction with ethyl acetate was done. The organic layer was dried over anhydrous MgSO4, filtered and concentrated for purification via column chromatography (silica gel, PE 100%) to afford compound 5c (3.5g, 55.4%) .
1H NMR (400 MHz, CDCl3) δ 7.18 (dd, J = 5.2, 3.1 Hz, 1H) , 6.77 (dd, J = 5.2, 1.5 Hz, 1H) , 6.23 (dd, J = 3.1, 1.5 Hz, 1H) , 3.84 (d, J = 5.7 Hz, 2H) , 1.85 –1.74 (m, 1H) , 1.51 –1.24 (m, 12H) , 0.92 (dt, J = 9.9, 6.9 Hz, 6H) .
13C NMR (100 MHz, CDCl3) δ 158.45, 124.54, 119.78, 96.86, 77.48, 77.16, 76.84, 73.26, 37.93, 33.82, 32.36, 31.44, 26.66, 22.80, 20.15, 14.58, 14.24.
6c: 2-bromo-3- (2-propylheptan-1-oloxy) thiophene synthesized by following Scheme 29
Figure PCTCN2016075839-appb-000042
Compound 5c (3.5g, 14.56mmol) was dissolved in anhydrous CHCl3 (50mL) and cool down to 0 ~ 4 ℃via an ice bath. NBS (2.46 g, 13.85 mmol, ) was then dissolve in anhydrous DMF and added into the solution drop wise via a dropping funnel. The mixture was then stirred for 1 hr with exclusion from light, removed from ice bath and warm up to room temperature. It was then allowed to stirred for  overnight with protection from light. water was added and extraction with CHCl3 was done. The organic layer was dried over anhydrous MgSO4, filtered and concentrated for purification via column chromatography (silica gel, PE) to afforded the pure compound 6c (3.6g, 77.4%) .
1H NMR (400 MHz, CDCl3) δ 7.18 (d, J = 5.9 Hz, 1H) , 6.74 (d, J = 6.0 Hz, 1H) , 3.91 (d, J = 5.8 Hz, 2H) , 1.76 (dd, J = 11.5, 5.8 Hz, 1H) , 1.50 –1.22 (m, 14H) , 0.98 –0.82 (m, 7H) .
13C NMR (125 MHz, CDCl3) δ 154.93, 124.22, 117.63, 91.63, 77.41, 77.16, 76.91, 75.22, 38.09, 33.60, 32.36, 31.25, 26.61, 22.79, 20.12, 14.60, 14.26.
7c: 3- (2-Butyl-1-octyl) -3' - (2-propylheptan-1-oloxy) -2, 2' -bithiophene synthesized by following Scheme 30
Figure PCTCN2016075839-appb-000043
To a 150 mL 3-necked reaction flask were added compound 4c (2.58g, 6.818mmol) , 2.72g (8.52mmol) of compound 6c, and 80 mL of toluene. The resulting mixture was stirred and purged with argon before a mixture of 0.474g [Pd (PPh3) 4] , 1.25g of Aliquat in 5 mL toluene, and 12.0mL of 2 M aqueous Na2CO3 was added. Subsequently, the reaction mixture was heated at 105 ℃ for 15 h, cooled to room temperature and diluted with DCM. Extracted with DCM, Combined organic phases were washed with water , dried over MgSO4, and concentrated in vacuum. The crude product was passed through silica gel using PE as an eluent to afforded the  compound 7c (1.65g, 49.3%) .
1H NMR (500 MHz, CDCl3) δ 7.20 (dd, J = 19.2, 5.4 Hz, 2H) , 6.87 (dd, J = 7.6, 5.4 Hz, 2H) , 3.86 (d, J = 5.6 Hz, 2H) , 2.63 (d, J = 7.2 Hz, 2H) , 1.75 –1.66 (m, 1H) , 1.60 (s, 1H) , 1.44 -1.14 (m, 28H) , 0.94 –0.79 (m, 12H) .
13C NMR (125 MHz, CDCl3) δ 154.02, 140.11, 129.53, 128.40, 124.34, 123.30, 117.71, 113.52, 77.41, 77.16, 76.91, 74.75, 38.90, 38.19, 33.92, 33.62, 33.56, 33.24, 32.37, 32.08, 31.29, 29.85, 28.83, 26.60, 23.20, 22.85, 22.79, 20.06, 14.58, 14.29, 14.27.
8c: 3- (2-Butyl-1-octyl) -3' - (2-propylheptan-1-oloxy) -5, 5’ -bis (trimethylstannyl) 2, 2' -bithiophene synthesized by following Scheme 31
Figure PCTCN2016075839-appb-000044
To a flask was added compound 7c (1.3176g, 2.6843mmol) and 15mL dry THF. The resulting clear solution was cooled to -78 ℃ using dry ice/acetone bath. Then 2.684 mL n-BuLi solution in hexane (6.4423 mmol, 2.4 mol/L) was added dropwise. After stirring at -78 ℃ for 1 h and room temperature for 1 h, and then cooled to -78 ℃, 6.98mL trimethyltin chloride (6.98 mmol, 1 mol/L) was added in one portion, and then the cooling bath was removed. After being stirred at ambient temperature for 4 h, the reaction mixture was quenched with water carefully and then poured into cool water and extracted with diethyl ether for twice. After removal of organic  solvent, the monomer was obtained as a yellowish oil (1.85 g, 84.5%) .
1H NMR (400 MHz, CDCl3) δ 6.90 (d, J = 5.4 Hz, 2H) , 3.89 (d, J = 5.7 Hz, 2H) , 2.68 (d, J = 7.1 Hz, 2H) , 1.77 –1.68 (m, 1H) , 1.64 (s, 1H) , 1.49 –1.38 (m, 2H) , 1.37 –1.12 (m, 26H) , 0.86 (ddd, J = 9.8, 6.1, 4.1 Hz, 12H) , 0.45 –0.26 (m, 36H) .
13C NMR (125 MHz, CDCl3) δ 155.14, 140.42, 138.00, 135.68, 135.24, 134.82, 124.96, 119.88, 77.41, 77.16, 76.91, 74.73, 38.89, 38.28, 33.79, 33.70, 33.61, 33.31, 32.44, 32.10, 31.37, 29.90, 28.85, 26.67, 26.56, 23.24, 22.86, 22.83, 20.12, 14.63, 14.35, 14.31, 14.30, -8.17, -8.19.
5d: 3- (2-Butyl-1-octyloxy) thiophene synthesized by following Scheme 32
Figure PCTCN2016075839-appb-000045
This compound was prepared with the same procedure according to 5c.
1H NMR (400 MHz, CDCl3) δ 7.17 (dd, J = 5.1, 3.2 Hz, 1H) , 6.80 –6.73 (m, 1H) , 6.22 (dd, J = 3.0, 1.4 Hz, 1H) , 3.83 (d, J = 5.7 Hz, 2H) , 1.81 –1.70 (m, 1H) , 1.41 –1.23 (m, 15H) , 0.95 –0.86 (m, 6H) .
13C NMR (125 MHz, CDCl3) δ 158.46, 124.56, 119.80, 96.88, 77.41, 77.16, 76.91, 73.28, 38.12, 32.01, 31.49, 31.18, 29.83, 29.21, 26.97, 23.21, 22.83, 14.27, 14.25.
6d: 2-bromo-3- (2-Butyl-1-octyloxy) thiophene synthesized by following Scheme 33
Figure PCTCN2016075839-appb-000046
This compound was prepared with the same procedure according to 6c.
1H NMR (400 MHz, CDCl3) δ 7.18 (d, J = 5.9 Hz, 1H) , 6.73 (d, J = 5.9 Hz, 1H) , 3.90 (d, J = 5.8 Hz, 2H) , 1.78 –1.69 (m, 1H) , 1.51 –1.21 (m, 16H) , 0.88 (t, J =6.8 Hz, 6H) .
13C NMR (125MHz, CDCl3) δ 154.94, 124.22, 117.65, 91.63, 75.24, 38.28, 31.99, 31.28, 30.97, 29.82, 29.16, 26.91, 23.20, 22.83, 14.27, 14.25.
7d: 3- (2-Butyl-1-octyl) -3' - (2-Butyl-1-octyloxy) -2, 2' -bithiophene synthesized by following Scheme 34
Figure PCTCN2016075839-appb-000047
This compound was prepared with the same procedure according to 7c.
1H NMR (400 MHz, CDCl3) δ 7.22 (d, J = 5.2 Hz, 5H) , 7.18 (d, J = 5.6 Hz, 5H) , 6.87 (dd, J = 5.3, 3.9 Hz, 10H) , 3.88 (d, J = 5.6 Hz, 11H) , 2.64 (d, J = 7.2 Hz, 11H) , 1.64 (dd, J = 12.1, 6.0 Hz, 13H) , 1.52 –1.13 (m, 184H) , 0.93 –0.81 (m, 88H) .
13C NMR (100MHz, CDCl3) δ 154.03, 140.11, 129.51, 128.42, 124.35, 123.30, 117.67, 113.48, 39.86, 38.89, 33.96, 33.59, 33.27, 32.07, 30.50, 29.85, 29.17, 28.84, 26.61, 23.85, 23.19, 22.84, 14.27, 14.22, 11.19.
8d: 3- (2-Butyl-1-octyl) -3' - (2-Butyl-1-octyloxy) -5, 5’ -bis (trimethylstannyl) 2, 2' -bith iophene synthesized by following Scheme 35
Figure PCTCN2016075839-appb-000048
This compound was prepared with the same procedure according to 8c.
1H NMR (500 MHz, CDCl3) δ 6.91 (d, J = 5.8 Hz, 5H) , 3.89 (d, J = 5.1 Hz, 5H) , 2.68 (d, J = 6.8 Hz, 5H) , 1.71 (d, J = 5.5 Hz, 3H) , 1.64 (s, 3H) , 1.43 (d, J = 5.1 Hz, 6H) , 1.35 –1.15 (m, 86H) , 0.94 –0.81 (m, 35H) , 0.45 –0.27 (m, 47H) .
13C NMR (101 MHz, CDCl3) δ 155.16, 140.45, 138.01, 135.71, 135.27, 134.83, 124.99, 119.90, 77.48, 77.16, 76.84, 74.76, 38.91, 38.49, 33.80, 33.63, 33.33, 32.11, 32.06, 31.44, 31.12, 29.90, 29.20, 28.86, 27.00, 26.58, 23.24, 22.86, 14.34, 14.28, -8.18, -8.19.
1d: 2-propylheptan-1-olbromide synthesized by following Scheme 36
Figure PCTCN2016075839-appb-000049
This compound was prepared with the same procedure according to 1c.
1H NMR (400 MHz, CDCl3) δ 3.44 (d, J = 4.8 Hz, 2H) , 1.60 (dt, J = 11.3, 5.8 Hz, 1H) , 1.41 –1.21 (m, 12H) , 0.95 –0.85 (m, 6H) .
13C NMR (101 MHz, CDCl3) δ 77.48, 77.16, 76.84, 39.73, 39.39, 35.00, 32.64, 32.13, 26.36, 22.75, 19.87, 14.35, 14.19.
2d: 3- (2-propylheptan-1-ol) thiophene synthesized by following Scheme 37
Figure PCTCN2016075839-appb-000050
This compound was prepared with the same procedure according to 2c.
1H NMR (400 MHz, CDCl3) δ 7.22 (dd, J = 4.9, 3.0 Hz, 1H) , 6.92 –6.87 (m, 2H) , 2.56 (d, J = 6.8 Hz, 2H) , 1.66 –1.58 (m, 1H) , 1.34 –1.17 (m, 20H) , 0.87 (ddd, J = 10.0, 4.9, 2.6 Hz, 9H) .
3d: 2-Bromo-3- (2-propylheptan-1-ol) thiophene synthesized by following Scheme 38
Figure PCTCN2016075839-appb-000051
This compound was prepared with the same procedure according to 3c.
1H NMR (400 MHz, CDCl3) δ 7.18 (d, J = 5.6 Hz, 1H) , 6.76 (d, J = 5.6 Hz, 1H) , 2.50 (d, J = 7.2 Hz, 2H) , 1.72 –1.62 (m, 1H) , 1.40 –1.16 (m, 20H) , 0.93 –0.84 (m, 9H) .
13C NMR (101 MHz, CDCl3) δ 141.31, 128.96, 125.06, 109.57, 38.52, 35.88, 34.17, 33.45, 32.38, 26.34, 22.82, 19.86, 14.58, 14.26.
4d: 2- (3- (2-propylheptan-1-ol) ) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane synthesized by following Scheme 39
Figure PCTCN2016075839-appb-000052
This compound was prepared with the same procedure according to 4c.
1H NMR (400 MHz, CDCl3) δ 7.47 (d, J = 4.7 Hz, 1H) , 6.97 (d, J = 4.7 Hz, 1H) , 2.81 (d, J = 7.2 Hz, 2H) , 1.67 –1.58 (m, 1H) , 1.38 –1.16 (m, 24H) , 0.85 (dd, J = 14.9, 7.1 Hz, 6H) .
7e: 3- (2-propylheptan-1-ol) -3' - (2-propylheptan-1-oloxy) -2, 2' -bithiophene synthesized by following Scheme 40
Figure PCTCN2016075839-appb-000053
This compound was prepared with the same procedure according to 7c.
1H NMR (500 MHz, CDCl3) δ 7.23 (d, J = 5.2 Hz, 1H) , 7.18 (d, J = 5.5 Hz, 1H) , 6.87 (dd, J = 8.9, 5.4 Hz, 2H) , 3.87 (d, J = 5.6 Hz, 2H) , 2.64 (d, J = 7.2 Hz, 2H) , 1.75 –1.68 (m, 1H) , 1.39 (d, J = 6.8 Hz, 2H) , 1.34 –1.11 (m, 23H) , 0.92 –0.80 (m, 12H) .
13C NMR (126 MHz, CDCl3) δ 154.03, 140.08, 129.51, 128.41, 124.34, 123.30, 117.70, 113.52, 77.41, 77.16, 76.91, 74.75, 38.71, 38.20, 35.97, 33.95, 33.63, 33.50, 32.41, 32.37, 31.29, 26.60, 26.27, 22.86, 22.79, 20.07, 19.77, 14.59, 14.58, 14.28, 14.27.
8e: 3- (2-propylheptan-1-ol) -3' - (2-propylheptan-1-oloxy) -5, 5’ -bis (trimethylstannyl) 2, 2' -bithiophene synthesized by following Scheme 41
Figure PCTCN2016075839-appb-000054
This compound was prepared with the same procedure according to 8c.
1H NMR (400 MHz, CDCl3) δ 6.91 (d, J = 5.8 Hz, 2H) , 3.89 (d, J = 5.7 Hz, 2H) , 2.68 (d, J = 7.1 Hz, 2H) , 1.72 (dd, J = 11.5, 5.8 Hz, 1H) , 1.66 (s, 1H) , 1.42 (dd, J = 11.7, 5.1 Hz, 2H) , 1.37 –1.12 (m, 25H) , 0.92 –0.78 (m, 13H) , 0.47 –0.25 (m, 18H) .
13C NMR (126 MHz, CDCl3) δ 155.15, 140.42, 137.97, 135.70, 135.27, 134.81, 124.96, 119.88, 77.41, 77.16, 76.91, 74.74, 38.68, 38.27, 36.07, 33.83, 33.69, 33.48, 32.44, 31.37, 26.66, 26.20, 22.86, 22.83, 20.11, 19.79, 14.63, 14.32, 14.30, -8.18.
General Procedure for Polymerizations via Stille Coupling for Synthesis of Polymers P1’ -P6’ according to Scheme 42-Scheme 47.
An glass tube was charged with two monomers (0.2 mmol each) , tris (dibenzylideneacetone) dipalladium (0) (Pd2 (dba) 3, and tris (o-tolyl) phosphine (P (o-tolyl) 3) (1: 8, Pd2 (dba) 3: P (o-tolyl) 3 molar ratio; Pd loading: 0.015equiv) . The tube and its contents were subjected to 3 pump/purge cycles with argon, followed by the addition of anhydrous toluene (4-5 mL) via syringe. The tube was sealed under argon flow and then stirred at 80 ℃ for 10 minutes, 100 ℃ for 10 minutes, and 140  ℃ for 3 h under microwave irradiation. Then, 0.05 mL of 2- (tributylstanny) thiophene was added and the reaction mixture was stirred under microwave irradiation at 140 ℃ for 0.5 h. Finally, 0.10 mL of 2-bromothiophene was added and the reaction mixture was stirred at 140 ℃ for another 0.5 h. After cooling to room temperature, the reaction mixture was slowly dripped into 100 mL of methanol (containing 1 mL 12 N hydrochloric acid) under vigorous stirring. After stirring for 1h, the solid precipitate was transferred to a Soxhlet thimble. After drying, the crude product was subjected to sequential Soxhlet extraction with the choice of solvents and sequence depending on the solubility of the particular polymer. After final extraction, the polymer solution was concentrated to approximately 6 mL, and then dripped into 100 mL of methanol under vigorous stirring. The polymer was collected by filtration and dried under reduced pressure to afford deep colored solid as the product.
Figure PCTCN2016075839-appb-000055
Figure PCTCN2016075839-appb-000056
Figure 17. shows UV-Vis absorption spectra of polymers P1’ -P6’ in thin films, Figure 18. shows UV-Vis absorption spectra of polymers P1’ -P6’ in chloroform solution (1 ×10-5 M) . UV-Vis absorption spectra of polymer P1’ -P6’ in thin films are shown in Figure 17, and the UV-Vis absorption spectra of polymer P1’ -P6 in dilute solution (CF) in Figure 18, From solution to film state, the polymers show bathochromic shifts due to the increased backbone planarity and enhanced aggregation. In the film, from the polymer P1’ to P2’ , the UV-Vis absorption spectra show bathochromic shifts due to the F atom influence. From solution to film state, the polymers show bathochromic shifts due to the increased backbone planarity and enhanced aggregation.
Device Fabrication and Characterization
Organic Thin Film Transistor Fabrication and Characterization
Top-gate/bottom-contact (TG/BC) device structure was used to investigate the charge transport property of polymers in organic thin-film transistors (OTFTs) . The Corning XG glass with Au/Ni (15 nm/3 nm thick; Ni is employed as an adhesion layer) source/drain electrodes, which are patterned using a conventional photolithography method, is used as device substrates. Substrates were sequentially cleaned with acetone and 2-propanol in an ultrasonic bath for 10 min each, and dried with N2 blowing. Polymer semiconductors were dissolved in 1, 2-dichlorobenzene (10 mg/mL) . After without or with UV-O3 treatment of the cleaned substrates for 20 min, polymer solution was spin-coated at 1500 rpm for 120 sec in N2-purged glove box. The polymer semiconductor films were then thermally annealed in a N2-purged glove box at 150, 175, 200, 225, 250, or 275 ℃ for 30 min. As a top-gated polymer  dielectric layer, poly (methyl methacrylate) (PMMA) was dissolved in n-butyl acetate (80 mg/mL) and spin-coated at 2000 rpm for 60 sec. Residual solvents were completely removed by thermal baking at 80 ℃ for 60 min at the same glove box. Finally, the aluminum (Al) gate electrodes (~35 nm) were deposited via thermal evaporation method in a high vacuum chamber using a metal shadow mask. The electrical characteristics of the OFET devices were measured using a Keithley 4200-SCS in vacuum (below 10-2 torr) .
Polymer Solar Cell Fabrication and Characterization
Pre-patterned ITO-coated glass with a sheet resistance of < 10Ω/□ is used as the substrate, which is cleaned by sequential sonication in water containing detergent, deionized water, methanol, isopropanol, and acetone followed by UV/ozone (BZS250GF-TC, HWOTECH, Shenzhen) treatment for 20 min. ZnO precursor was prepared according to the published procedure89. The precursor solution was spin-coated (4000 rpm for 30 s) onto the pre-patterned ITO-coated glass. The films were annealed at 200 ℃ for 30 min in air, and then transferred into a N2 glovebox. The ZnO film thickness is about 30 nm. Except P5c: PC71BM blend (1: 1.6 w/w, 26 mg/mL) , P1: PC71BM, P2: PC71BM, P3: PC71BM, P4: PC71BM, P5a: PC71BM, P5b: PC71BM blends (1: 1.5 w/w, 25 mg/mL) in CB with 3 vol%1, 8-octanedithiol (ODT) were spin-coated on the ZnO interfacial layer (600 rpm for 90s) . Finally, MoOx (~10 nm) and Ag (~100 nm) were thermally evaporated under a shadow mask (pressure ca. 10-4 Pa) . The effective area for the devices is 0.16 cm2. For device characterization, J-V curves were measured under AM 1.5G light (100 mW/cm2) with a computerized Keithley 2400 source meter (Figure 11 without ODT) . The light  intensity is calibrated using an NREL-certified monocrystalline Si diode coupled to a KG3 filter to bring spectral mismatch to unity. Device characterization was performed in the N2 glovebox using a Xeno-lamp-based solar simulator (Newport, Oriel AM1.5G, 100 mW/cm2) .
GIWAXS Measurements
Grazing incidence wide-angle x-ray scattering (GIWAXS) measurements were performed at Beamline 8-ID-E of the Advanced Photon Source at Argonne National Laboratory. Polymer samples were prepared on Si substrate using identical spin speeds, solvents, concentrations and annealing temperature and times to the relevant OTFT and PSC devices. All spectra were collected in air. The photon energy is 7.35 keV 
Figure PCTCN2016075839-appb-000057
 and data were collected on a Pilatus 1M pixel array detector at a sample-detector distance of 204 mm. Spectra were collected at an incidence angle of 0.2°; the films were exposure for 20 seconds. To account for the gaps in the detector array, two images were taken per sample, one with the detector in the standard position and the other translated 23 mm down to fill the gap, the two images are then merged.
1D line cuts were taken from the 2D scattering spectra in the in-plane and out-of-plane directions using the GIXSGUI software package developed by the beamline scientists. To account for air scatter, the line cuts were background subtracted utilizing an exponential fit. The background-subtracted peaks were fit using the multipeak fit function in igor pro. Scherrer analysis was performed utilizing the method by Smiglies90 to account for instrumental broadening and detection limits in the 2d detector. The values presented represent a lower limit for  correlation length, as the Scherrer analysis does not account for broadening due to defects in the crystallites.
Characterization results
Top-gate/bottom-contact organic thin-film transistors (OTFTs) with poly (methyl methacrylate) (PMMA) gate dielectrics and gold source/drain electrodes were fabricated to characterize the charge transport properties of phthalimide copolymers P1-P578. Device performance data are compiled in Table 2, Table 3 and representative transfer curves (the drain current, Id versus gate voltage, Vg) of the P2 and P5 OTFTs are shown in Figure 4.
Table 2. Organic thin-film transistor performance and photovoltaic response properties of polymer semiconductors P1-P5
Figure PCTCN2016075839-appb-000058
Figure PCTCN2016075839-appb-000059
a Average performance of ≥5 devices. b Device area = 0.16 cm2.
Table 3. Bottom-gate/top-contact (BG/TC) OTFT performance of polymers P2 and P5 fabricated under various conditions
Figure PCTCN2016075839-appb-000060
Figure PCTCN2016075839-appb-000061
Table 4. The photovoltaic performance of the five kinds of devices
Figure PCTCN2016075839-appb-000062
The data are the average value calculated from 5 devices at least.
BTR-based polymer P1 is inactive in OTFTs, which is attributed to the very low-lying HOMO (-5.66 eV) , twisted polymer backbone, limited conjugation, and low degree of crystallinity79. Under optimized condition, P2 shows a high hole mobility (μh) of 1.45 cm2/Vs, which is almost 10x than in bottom-gate/bottom-contact OTFTs (0.17 cm2/Vs) 57. The high P2 mobility can be partially ascribed to facile hole injection from the gold electrode to the high-lying HOMO, since the bottom-contact gold electrode has lower work function of ca. -4.5 –-4.7 eV. Versus bottom-gate OTFTs, the performance enhancement in the top-gate OTFTs likely reflects the lower contact resistance due to reduced current crowding effects in staggered contact structures80, as well as the excellent active channel -polymer dielectric compatibility without charge-trapping sites, and favorable self-encapsulation by the upper dielectric layer and gate electrode. Nevertheless, despite the substantial P2 μh, the TFT performance is plagued by high off-currents (10-8 -10-7 A) , hence a small on/off-current ratio Ion/Ioff = 103-4 in the linear regime at a drain voltage, Vd = -10 V (Figure 4a) due to the high-lying P2 HOMO.
New TRTOR-based polymer P5a has an average μh = 0.18 cm2/Vs with small off-currents, 10-12 –10-11 A and a high Ion/Ioff = 105-6 (Table 1) ; the maximum P5a mobility measured is 0.42 cm2/Vs from top-gate/bottom-contact OTFTs. The substantial μh is attributed to its high degree of polymer backbone planarity, close π-π stacking distance, and an ordered film morphology. In comparison to the BTOR-based polymer P2, P5a shows a > 1000x smaller off-current (10-12 –10-11 A) and ~100x higher Ion/Ioff (105-6) in the linear region (Figure 4a) , primarily ascribable to the lower-lying P5a HOMO. Due to the enhanced solubility, P5b and P5c containing short alkyl substituents are also sufficiently soluble for OTFT fabrication, and the resulting OTFTs has appreciable μhs of 0.043 and 0.030 cm2/Vs, respectively. The enhanced P5a mobility with longer alkyl substituents could be attributed to the smaller π-π stacking and more ordered microstructure derived from the side chain crystallization47 as revealed by the grazing incidence wide-angle X-ray scattering (GIWAXS, vide infra) . In comparison to P2, P5a films have lower carrier mobility, which is likely due to the lower-lying HOMO and hence a larger charge injection barrier.
Although extensive film growth optimizations were carried out with DTP-based polymer P3, this material exhibits negligible transistor response, in accord with the out-of-plane alkyl chain orientation, twisted backbone, and amorphous film morphology revealed by the GIWAXS (Figure 4) . Therefore, opening the DTP ring affords greatly enhanced μh for the TRTOR-based polymer P5a vs that of DTP-based P2. The TTOR-based polymer P4 also shows negligible OTFT mobility, which agrees with the poor film-forming properties and limited crystallinity revealed  by GIWAXS (vide infra) . Therefore, introducing an alkyl chain in the bithiophene 3-position greatly increases the hole mobility of the TRTOR-based polymer P5a vs that of TTOR-based polymer P4 due to the more symmetric structure of TRTOR and more crystalline film morphology of P5a. The OTFT study indicates that TRTOR is a promising building block for high-mobility polymer semiconductors.
Inverted PSCs having a device structure, ITO/ZnO/polymer: PC71BM/MoO3/Ag were fabricated to investigate the solar cell performance of polymers P1-P581, and the current density -voltage (J-V) curves are illustrated in Figure 4c, with relevant performance parameters collected in Table 2. During the device optimizations, it was found that the processing additive, 1, 8-octanedithiol (ODT) (Table 9 without ODT) , greatly improves PSC performance by promoting nanoscale phase separation and bicontinuous interpenetrating network formation (vide infra) 82, 83. Among all polymers, P1 and P4 show negligible PSC response with PCE ≤ 0.1% (Table 8) , due to their non-ideal film morphologies, poor film-forming properties, and negligible charge transport capacity. The P2 performance parameters of PCE = 3.38%, Jsc=11.84 mA/cm2, Voc = 0.45 V, and FF = 63.5%are substantially higher than for previous cell with conventional artchitectures59. The performance of P2 cells is mainly limited by the small Voc, in good agreement with the high-lying HOMO (Figure 2b) , reflecting the electron-rich BTOR character. The DTP-based polymer P3 cells have PCE = 1.46%, Jsc = 2.67 mA/cm2, Voc = 0.95 V, and FF = 57.4%. The large Voc is ascribed to the twisted polymer backbone73, and the small Jsc to the sub-optimal blend film morphology (vide infra) and the negligible carrier mobility as measured from both OTFT/in-plane (Table 2) and space-charge limited current  (SCLC, Table 5) /out-of-plane techniques. Note that TRTOR-based P5a shows a promising PCE of 5.62%with a Jsc = 11.81 mA/cm2, Voc = 0.72 V, and FF = 66%. Due to the weaker intramolecular S…O interaction in TRTOR versus the double S…O interactions in BTOR, more compact solubilizing substituents could be used and the resulting P5b cells have a further enhanced PCE = 6.31%with a Jsc = 12.50 mA/cm2, Voc = 0.71 V, and FF = 71.4%. The Jscs integrated from external quantum efficiency (EQE, Figure 12) vs an AM1.5 reference spectrum are within ±5%of those acquired from the J-V data, showing good internal consistency. During the course of device optimization, high FFs of 70-75%were routinely obtained from P5b PSCs under various fabrication conditions, primarily attributable to the high hole mobility of P5b with νh, SCLC = 1.98 × 10-3 cm2/Vs (Table 5) due to elimination of the out-of-plane side substituents and greater film order/crystallinity23, 84, while P3 PSCs have a s lower FF (57.4%) , which is partially attributed to its low SCLC mobility (2.93× 10-5 cm2/Vs) . In comparison to P2, TRTOR-based P5 shows greatly increased PSC performance in Vocs, EQE, and FFs. Using branched 2-ethylhexyl substituted P5c as the donor, a further increases Voc to 0.77 V. Therefore, TRTOR is an effective unit for creating semiconducting copolymers with large PSC Vocs. In comparison to P2, the Voc enhancement is attributed to the depressed HOMO achieved by replacing one alkoxy with an alkyl substituent, and in comparison to P3, the substantially enhanced Jsc and FF are ascribed to the smaller P5 bandgap, closer packing, and higher mobility. Compared to P4, placing an alkyl chain on the bithiophene 3-position greatly enhances P5 PSC response. The P5 performance is far higher than any phthalimide-based polymer reported to date10, and demonstrates the  potential of TRTOR units for high-performance OTFTs and PSCs.
Table 4 show the device performance of P1’ -P4 and P6’ . The P1’ /PC71BM device showed a promising PCE of 7.86%with a VOC of 0.663V, a JSC of 17.984mA/cm2, and a FF of 66.0%.
It is known that the VOC of PSC is proportional to the difference between the HOMO level of polymer and the LUMO level of PC71BM, therefore,the F atom could lower the polymer LUMO and HOMO, so the polymer P1’ have lower HOMO than P2’ a nd P3’ , and the lower lying HOMO level of P1’ compare with P2’ a nd P3’ .
Table 5. Hole and electron mobility of polymer blends measured in SCLC regime
Figure PCTCN2016075839-appb-000063
Figure PCTCN2016075839-appb-000064
The hole-only and electron-only devices with a structure of ITO/PEDOT: PSS/polymer: PC71M/MoO3/Ag and Al/polymer: PC71BM/Ca/Al, respectively, are fabricated with or without using the processing additive, 1, 8-octanedithiol (ODT) .
Film Morphology Characterization and Correlations with Device Performance
Grazing incidence wide-angle X-ray scattering (GIWAXS) was carried out at beamline 8-ID-E of the advanced photon source to examine polymer film microstructure and morphology. The polymer films were prepared neat on octyldecyltrichlorosilane (OTS) -modified Si substrates, blended with PC71BM, and blended with PC71BM processed with 3% (v/v) ODT as the processing additive on bare Si. 2D images for the blend films processed with ODT are presented in Figure 7 and the 2D images for the neat films and the blend films without using processing additive are shown in the Supporting Information (Figures 13 and 14 ) . In-plane (qxy) and out-of-plane (qz) line cuts were taken from all 2D spectra to examine polymer orientation differences in the films. Figure 5 shows the line cuts for the neat polymer films on OTS-modified Si substrate and the line cuts for the blend films are presented in the SI (Figure 15) . The d-spacings and crystalline correlation lengths (CCL) from Scherrer analysis85 for polymers P2, P5a, P5b, and P5c are collected in Table 8 with the values for polymers P1, P3, and P4 available in the SI (Table 6 and 7) .
Table 6. d-Spacings and crystalline correlation lengths (calculated via Scherrer analysis) for the different diffractions in P1
Figure PCTCN2016075839-appb-000065
Figure PCTCN2016075839-appb-000066
All calculated domains are from the face-on orientation.
Table 7. d-Spacings and crystalline correlation lengths of polymers P2 and P4 (calculated via Scherrer analysis)
Figure PCTCN2016075839-appb-000067
1 indicates a preferential face-on domain. 2 indicates a preferential edge-on domain.
The neat polymer films exhibit a range of differing preferred orientations and relative crystallinities (Figure 5) . Polymers P2 and P5 featuring intramolecular S…O interaction show similar lamellar and π-π stacking structures, while polymers P1, P3,  and P4 appear to have more disparate stacking structures. In spite of the existence of head-to-head linkage, the BTR-based polymer P1 demonstrates in-plane (qxy) peaks that each would be consistent with a face-on lamellar structure. There are 2 different peaks that could be considered as the (100) peak, coming at d-spacings of 39.6 and 
Figure PCTCN2016075839-appb-000068
 and the third d-spacing of 
Figure PCTCN2016075839-appb-000069
 is likely attributed to the second order (200) diffraction of the first one. It is possible that the existence of multiple interaction distances indicates some sort of twist in the backbone, which causes a variety of different side-chain interaction lengths. P1 also demonstrates a large π-π stacking distance of 
Figure PCTCN2016075839-appb-000070
 (Table 6) , likely due to the twisted polymer backbone. On the basis of the diffraction pattern, the DTP-based polymer P3 is almost completely amorphous with only a broad peak at 
Figure PCTCN2016075839-appb-000071
 and no further intermolecular order, which is attributed to its slightly twisted polymer backbone and the out-of-plane side chain orientation. For the TTOR-base polymer, P4 demonstrates a clear edge-on orientation with a lamellar (100) spacing of 
Figure PCTCN2016075839-appb-000072
 and a π-π stacking distance of 
Figure PCTCN2016075839-appb-000073
 Therefore on the basis of the π-π stacking distance, the use of TTOR leads to more compact packing for P4 versus the BTR-based polymer P1, which could be attributed to the reduced steric hindrance and the planarizing intramolecular S…O interaction.
Table 8. d-Spacing and crystalline correlation lengths (calculated via Scherrer analysis) for the face-on domains in polymers P2, P5a, P5b, and P5c
Figure PCTCN2016075839-appb-000074
Figure PCTCN2016075839-appb-000075
For the polymers containing intramolecular S…O interaction, P2, P5a, P5b and P5c show a fairly standard lamellar structure with short π-π stacking distances. P2 and P5a have larger (100) d-spacings 
Figure PCTCN2016075839-appb-000076
 versus those 
Figure PCTCN2016075839-appb-000077
 of P5b and P5c, consistent with their longer side chains. The π-π stacking distances derived from (010) diffractions are 3.61, 3.56, 3.59, 
Figure PCTCN2016075839-appb-000078
 for P2, P5a, P5b, and P5c neat films,  respectively. Therefore, the replacement of the BTOR with TRTOR leads to comparable or even slightly smaller π-π stacking distance. Therefore in comparison to BTOR, the higher degree of steric hindrance by the replacement of one alkoxy chain with an alkyl chain and the weaker single S…O conformation locking strength in TRTOR is not detrimental to the packing and crystallinity of polymer P5a. As the N-substituents on the phthalimide vary from the straight n-dodecyl chain to the branched 2-ethylhexyl chain, the π-π stacking distance is slightly enlarged by 
Figure PCTCN2016075839-appb-000079
 for P5c, which has also been observed in the BTOR-phthalimide polymers57 and the alkylthieno [3, 4-c] pyrrole-4, 6-dione-based polymers. 74 The smallest π-π stacking distance of 
Figure PCTCN2016075839-appb-000080
 is likely attributed to the highest P5a mobility among P5 in OTFTs. In comparison to the TTOR-base polymer P4 with a π-π stacking distance of 
Figure PCTCN2016075839-appb-000081
 the TRTOR-base polymer P5a show a much smaller π-π stacking distance of 
Figure PCTCN2016075839-appb-000082
 Therefore the attachment of an alkyl chain on the 3-position in bithiophene improves the polymer film crystallinity and narrows the π-π stacking distance for P5a, which is likely attributed to the more symmetric structure of TRTOR and the elimination of the highly branched alkyl chain on the phthalimide unit. The diffraction patterns show that none of polymers P2, P5a, P5b and P5c demonstrate a clear preference for edge-on or face-on orientation in neat films as they show lamellar (100) and π-π stacking (010) diffractions in both the in-plane (qxy) and out-of-plane (qz) directions (Figure 5) . Among the TRTOR-based polymers, P5a shows the largest (010) correlation lengths (5.8 nm; Table 8) , which in combination with its smallest π-π stacking distance 
Figure PCTCN2016075839-appb-000083
 is likely contributed to its highest mobility among the polymers P5a-c.
For the P1-5 blend films, the films processed with ODT typically result in more crystalline morphology, which leads to enhanced charge carrier mobility measured in SCLC regime (Table 5) and improved device performance in PSCs. On the basis of the GIWAXS images of the polymer blend, the P1: PC71BM film processed from ODT shows little difference from its neat film or blend counterpart without using processing additive, continuing to demonstrate the multiple lamellar interactions, a likely result of twisted backbone due to the head-to-head linkage containing BTR. P3 continues to demonstrate little intermolecular order, as it shows no scattering beyond an initial isotropic lamellar peak and the PC71BM ring. The total lack of π-π stacking and general amorphous character is an unsurprising result given the out-of-plane side chains that will disrupt polymer stacking, which results in low PCE (1.46%) in PSCs.
P4 demonstrates a high degree of crystalline structure when processed with ODT as evidenced by the sharp and intense on axis diffraction peaks and additional off axis diffraction peaks (Figure 6 and 9) . The poor PSC performance is likely attributed to the overly high crystallinity, which can create poorly intermixed domains and grain boundaries that will cause charge recombination, this is also evident by the large crystallites in the TEM and the relatively low mobility (10-5 cm2/Vs) as measured in the SCLC regime from the P4: PC71BM film. The blend films of polymers P2, P5a, P5b, P5c featuring intramolecular S…O interaction processed with ODT all demonstrate preferential face-on orientation with high degree of materials crystallinity (Figure 6) , which should be beneficial to charge carrier transport (10-4 -10-3 cm2/Vs, Table 5) and extraction in PSCs. 8, 86 Such morphology in  combination with their absorption characteristics leads to the substantial PSC performance in the series.
Table 9. Inverted polymer solar cell performance metrics for polymers P1-P5
Polymer Polymer: PC71BM Jsc (mA/cm2) Voc (V) FF (%) PCE (%)
P1 1: 1.5 NA NA NA NA
P2 1: 1.5 4.15 0.49 49.7 1.01
P3 1: 1.5 2.48 0.94 48.6 1.13
P4 1: 1.5 0.49 0.29 27.5 0.04
P5a 1: 1.5 8.50 0.70 64.5 3.84
P5b 1: 1.5 7.28 0.77 54.0 2.94
P5c 1: 1.6 3.61 0.83 37.3 1.12
The cells have a structure of ITO/ZnO/polymer: PC71M/MoO3/Al and are fabricated without using processing additive, 1, 8-octanedithiol.
The high planarity of the TRTOR unit enabled by the inclusion of the alkoxy side chains allows for very strong face-on (010) orientation. Due to the reduced side chain bulk breaking up domains on P5b, Scherrer analysis reveals larger face-on (010) domains in P5b than P5a, P5c, and P2 in both blends with and without ODT. This extended π-π periodicity helps explain the increased FF and Jsc in P5b leading to its peak PSC performance in this polymer series.
Overall, the BTOR and TRTOR polymers containing the planarizing alkyoxy side chain demonstrate a much greater affinity for face-on π-π stacking than other polymers in the series. This is consistent with their increased planarity demonstrated throughout and is clearly beneficial for the function of the polymers in PSCs. In spite  of comparable charge carrier mobility, blend film crystallinity, and backbone orientation, the BTOR-based polymer P2 shows smaller external quantum efficiency (EQE, Figure 12) and FF (Table 2) versus P5-based PSC, which is likely attributed to the slightly coarser nanoscale phase separation of P2: PC71BM blend as revealed by the transmission electron microscope measurement.
Therefore, the replacement of one alkoxy chain with an alkyl chain can result in a better mixing between the polymer donors P5 and the acceptor PC71BM. The higher Jsc and FF in combination of the much larger Voc lead to the substantial higher PCE (6.31%) for P5b PSCs versus that (3.38%) of P2 cells. In comparison to TTOR-based polymer, the introduction of alkyl chain on the 3-position of bithiophene in TRTOR leads to crystalline packing more favorable to device performance with a standard lamellar and close π-π stacking morphology and favorable polymer orientation for TRTOR-based polymers. In comparison to the DTP-based polymers, the TRTOR-based polymers show greatly improved Jsc, FF, and PCE due to their more planar backbone, higher degree of crystallinity with favorable backbone orientation, and higher charge carrier mobility.
Transmission electron microscope (TEM) was also used to investigate the blend film morphology of PSCs. For the blend film processed without using additive ODT, the TEM images (Figure 7) show that the PC71BM-rich domains with sizes (up to several hundred nanometers) greater than the typical exciton diffusion length (~20 nm) are embedded in the blend film, which leads to the poor device performance due to the inefficient exciton dissociation. In marked contrast, the use of ODT as the processing additive greatly improved the mixing between the polymer donor and the  fullerene acceptor, and nanoscale phase separation with significantly smaller domain sizes as well as a bicontinuous interpenetrating network are clearly visible, which leads to improved PSC performance. The TEM images show that the TRTOR-based P5 blends (Figure 7l-n) have finer domain sizes versus the BTOR-based P2 blend (Figure 7i) , which results in the greater EQEs and FFs for P5 PSC. The better mixing between P5 and PC71BM is likely attributed to the reduced aggregation of P5 due to the weaker single S…O conformation locking strength in TRTOR. Atomic force microscopy (AFM) topographic images (Figure 16) reveal similar morphology evolution after the use of the ODT processing additive.
Figure 19 shows J-V curves of the photovoltaic devices based on the five polymers P1’ -P6’ with PC71BM. P1’ s hows the optimized device performance and the polymer for comparison. The photovoltaic performance of corresponding device is listed in table 4. In contrast, the device based on P1’ exhibited a significantly improved PCE of 7.86%with a JSC of 17.984mA cm-2, a Voc of 0.663V, and a FF of 66.0%. From the polymer P1’ to P3’ , the Voc is decreased from 0.663 to 0.533V, and through change the dialkyl side chain, the Voc have a small change, the dialkyl side chain is long, and then the Voc is increase, because the long dialkyl side chain have steric hindrance, so the HOMO is low, and follow with high Voc.
In summary, we designed and synthesized a novel electron donor unit TRTOR, which contains a head-to-head linkage and hence possesses good solubilizing capability. TRTOR shows well-tailored opto-electrical property and high degree of backbone planarity enabled by the use of a single alkoxy side chain, which reduces side chain steric bulk near the backbone (versus dialkyl bithiophene in BTR) and  leads to an optimized single intramolecular S…O interaction. In comparison to the dialkoxy bithiophene BTOR, the replacement of one alkoxy chain with a less electron donating alkyl chain results in lower-lying HOMO for the TRTOR polymers, and such structure modification also improves materials processability without sacrificing backbone planarity and materials crystallinity.
From another perspective, as ring opened DTP, TRTOR has comparable electrical properties but with easy materials accessbility, centrosymmetric geometry, and more compact structure than DTP, which is axisymmetric and contains out-of-plane sidechains. The incorporation of the single alkoxy side chain and optimizing the S…O interaction affords the resulting TRTOR polymers with low-lying HOMO, close intermolecular π-π stacking, high degree of crystallinity, and enhanced materials processability.
When incorporated into organic thin-film transistors and polymer solar cells, the TRTOR-based polymers show highly promising device performance, and the PSC of TRTOR-phthalimide polymer is the highest among all phthalimide-based polymers reported to date. The results demonstrate that TRTOR is an effective building block for constructing high-performance polymer semiconductors, and unitizing alkoxy side chain with reduced steric hindrance and optimizing intramolecular non-covalent S…O interaction is a highly promising strategy for materials design in organic electronics.
Embodiments of the invention have been described above and, obviously, modifications and alterations will occur to others upon the reading and understanding of this specification. The invention and any claims are intended to include all  modifications and alterations insofar as they come within the scope of the claims or the equivalent thereof.

Claims (10)

  1. An electron-donating unit of the Formula I,
    Figure PCTCN2016075839-appb-100001
    wherein R1 is a straight or branched alkyl, preferably having 5-15 carbon atoms, and more preferably having 7-12 carbon atoms, R2 is a straight or branched alkyl, preferably having 5-15 carbon atoms, and more preferably having 7-12 carbon atoms.
  2. A copolymer of the electron-donating unit of claim 1 having the Formula 4,
    Figure PCTCN2016075839-appb-100002
    wherein R1 is a straight or branched alkyl, preferably having 5-15 carbon atoms, and more preferably having 7-12 carbon atoms, R2 is a straight or branched alkyl, preferably having 5-15 carbon atoms, and more preferably having 7-12 carbon atoms, R1 and R2 are same or different, π is an electron-deficient group, n is 5-80.
  3. The copolymer according to claim 2, characterized in that, π is selected from the following group:
    Figure PCTCN2016075839-appb-100003
    Figure PCTCN2016075839-appb-100004
    Figure PCTCN2016075839-appb-100005
    wherein R is a straight or branched alkyl, preferably having 5-15 carbon atoms, and more preferably having 7-12 carbon atoms.
  4. Preparation method of the electron-donating unit of claim 1 wherein R1 and R2 are straight alkyls comprising:
    (1) adding 2-bromo-3-alkoxy-thiophene, an alkali carbonateθan organic solvent and water into a reaction vessel, and purging the mixture with an inert gas;
    (2) adding Pd (PPh34 and then purging an inert gas, heating the mixture to 40-90 ℃;
    (3) adding 2- (3-alkylthiophen-2-yl) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane to the mixture and refluxing the mixture at 40-90 ℃;
    (4) extracting the reaction mixture and washing;
    (5) concentrating the organic layer and purifying to give the electron-donating unit; wherein the alkoxy and alkyl both are straight.
  5. The preparation method according to claim 4, characterized in that, in step (1) , the mole ratio of the 2-bromo-3-alkoxy-thiophene to the alkali carbonate is 1: 0.5-2, preferably 1: 0.7-1.5, more preferably 1: 1;
    preferably, the ratio of the organic solvent or water to the 2-bromo-3-alkoxy-thiophene is 2-10 mL/mmol, preferably 3-7 mL/mmol;
    preferably, the alkali carbonate is selected from K2CO3, Na2CO3, Li2CO3 or a mixture of at least two of them;
    preferably, the organic solvent is selected from THF, EtOH, dioxane, DMF, toluene or a mixture of at least two of them;
    preferably, time of the purging is more than 10 minutes, preferably more than 20 minutes, more preferably 30 minutes;
    preferably, the mixture is heated to 50-80 ℃; preferably to 70 ℃;
    preferably, the inert gas is selected from any one of Ar, N2, He, Ne, or a mixture of at least two of them;
    preferably, in step (2) , the mole ratio of the Pd (PPh34 to the 2-bromo-3-alkoxy-thiophene is 1: 5-20, preferably 1: 8-15, more preferably 1: 10;
    preferably, time of the purging is more than 5 minutes, preferably more than 10 minutes, more preferably 20 minutes;
    preferably, the mixture is heated to 50-80 ℃; preferably to 70 ℃;
    preferably, the inert gas is selected from any one of Ar, N2, He, Ne, or a mixture of at least two of them;
    preferably, in step (3) , the 2- (3-alkylthiophen-2-yl) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane is added with a mole ratio to the 2-bromo-3-alkoxy-thiophene of 1: 3-15, preferably 1: 5-10, more preferably 1: 6.3;
    preferably, the 2- (3-alkylthiophen-2-yl) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane is added dropwise;
    preferably, the mixture is refluxed at 50-80 ℃; preferably at 70 ℃;
    preferably, in step (4) , the reaction mixture is extracted with organic solvent, preferably with DCM;
    preferably, the washing is conducted with water and brine;
    preferably, in step (5) , the concentrating is conducted under reduced pressure;
    preferably, the purifying is conducted by column chromatography using petroleum ether as an eluent.
  6. Preparation method of the electron-donating unit of claim 1 wherein R1 or/and R2 is (are) branched alkyl comprising:
    (1) adding 2-bromo-3-alkoxy-thiophene, 2- (3-alkylthiophen-2-yl) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane and a solvent into a reaction vessel, and purging the mixture with an inert gas; the solvent is known in the art, such as benzene, toluene and the like, or a mixture of at least two of them;
    (2) adding a mixture of [Pd (PPh34] , Aliquat, and aqueous alkali carbonate, heating the mixture to 90-150 ℃ for 5-30 h;
    (3) cooling the reaction mixture to room temperature,
    (4) extracting the reaction mixture and washing the combined organic phases after  being extracted and drying the organic phase to mainly remove the water therein;
    (5) concentrating the organic layer and purifying to give the electron-donating unit; wherein the alkoxy and alkyl both are branched.
  7. The preparation method of according to claim 6, characterized in that, in step (1) , the mole ratio of the 2-bromo-3-alkoxy-thiophene to 2- (3-alkylthiophen-2-yl) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane is 1: 0.5-1, preferably 1: 0.7-0.9, more preferably 1: 0.8;
    preferably, the mixture is stirred and purged with an inert gas;
    preferably, the inert gas is selected from any one of Ar, N2, He, Ne, or a mixture of at least two of them;
    preferably, the ratio of the solvent to the 2-bromo-3-alkoxy-thiophene is 10-80 mL/g, preferably 20-50 mL/g;
    preferably, in step (2) , the mixture is heated to 100-120 ℃ for 10-20 h, more preferably the mixture is heated to 100-110 ℃ for 13-18 h;
    preferably, the Aliquat is in toluene;
    preferably, the alkali carbonate is selected from K2CO3, Na2CO3, Li2CO3 or a mixture of at least two of them;
    preferably, the mass ratio of [Pd (PPh34] , Aliquat, and alkali carbonate is 1: 1-5: 2-10, preferably 1: 2-3: 3-8, more preferably 1: 2.5: 5;
    preferably, in step (4) , the reaction mixture is extracted with organic solvent, preferably with DCM;
    preferably, the washing is conducted with water;
    preferably, the drying is conducted over MgSO4
    preferably, in step (5) , the concentrating is conducted under reduced pressure;
    preferably, the purifying is conducted by column chromatography or silica gel using petroleum ether as an eluent.
  8. Preparation method of the copolymer of claim 2 or 3 comprising:
    (1) adding the electron-donating unit of claim 1, an electron-deficient material, tris (dibenzylideneacetone) dipalladium (0) (Pd2 (dba) 3) , and tris (o-tolyl) phosphine (P (o-tolyl) 3) into a reaction vessel, and subjecting the reaction vessel and the mixture to an inert gas;
    (2) adding an organic solvent; sealing the reaction vessel under an inert gas flow and then stirring while heating;
    (3) adding 2- (tributylstanny) thiophene and stirring the reaction mixture while heating; finally, adding 2-bromothiophene and stirring the reaction mixture while heating;
    (4) after cooling to room temperature, dripping the reaction mixture into methanol containing hydrochloric acid;
    (5) drying the solid precipitate obtained in step (4) to give the crude product, and then extracting the crude product;
    (6) after final extraction, concentrating the polymer solution, and then being dripped into methanol, collecting the polymer and drying to give the copolymer.
  9. The preparation method of according to claim 8, characterized in that, in step (1) , the electron-deficient material is selected from the following group:
    Figure PCTCN2016075839-appb-100006
    Figure PCTCN2016075839-appb-100007
    preferably, the mole ratio of the electron-donating unit of claim 1 to the electron-deficient material is 1: 0.5-2, preferably 1: 0.8-1.5, more preferably 1: 1;
    preferably, the mole ratio of the tris (dibenzylideneacetone) dipalladium (0) (Pd2 (dba) 3) to tris (o-tolyl) phosphine (P (o-tolyl) 3) is 1: 4-15, preferably 1: 6-10, more preferably 1: 8; the Pd loading is 0.005-0.1 equiv, preferably 0.01-0.06;
    preferably, the reaction vessel and the mixture are subjected to 1-5 pump/purge cycles with Ar;
    preferably, the inert gas is selected from any one of Ar, N2, He, Ne, or a mixture of at least two of them;
    preferably, in step (2) , the inert gas is selected from any one of Ar, N2, He, Ne, or a mixture of at least two of them;
    preferably, the organic solvent is selected from any one of anhydrous toluene, benzene, chlorobenzene, DMF, or a mixture of at least two of them;
    preferably, the ratio of the organic solvent to the electron-donating unit is 10-75 mL/mmol, preferably 5-50 mL/mmol;
    preferably, the heating is conducted at 50-170 ℃ for 1-72h, preferably at 80-150 ℃for 3-50h;
    preferably, the heating is conducted under microwave irradiation;
    preferably, the heating is conducted by 80 ℃ for 10 minutes, 100 ℃ for 10 minutes, and 140 ℃ for 3 h under microwave irradiation;
    preferably, in step (3) , the heating is conducted at 80-170 ℃ for more than 0.2 h, preferably at 100-160 ℃ for more than 0.4 h;
    preferably, the heating is conducted under microwave irradiation;
    preferably, the heating is conducted under microwave irradiation at 140 ℃ for 0.5 h; finally, adding 2-bromothiophene and stirring the reaction mixture at 140 ℃ for another 0.5 h;
    preferably, the mole ratio of the 2- (tributylstanny) thiophene to the electron-donating unit is 0.1-0.5: 1, preferably 0.2: 0.4-1;
    preferably, the mole ratio of the 2-bromothiophene to the electron-donating unit is 0.2-1.5: 1, preferably 0.4: 0.8-1; preferably, in step (4) , the methanol contains  0.5-10mL hydrochloric acid, preferably 0.5-10mLof 5-20 mol/L hydrochloric acid; preferably, the dripping is conducted under vigorous stirring, preferably is conducted for at least 0.5 h, preferably at least 1 h;
    preferably, in step (6) , the dripping is conducted under vigorous stirring;
    preferably, the collecting is conducted by filtration;
    preferably, the drying is conducted under reduced pressure.
  10. Use of the copolymer according to claim 2 or 3 in thin-film transistor or polymer solar cell.
PCT/CN2016/075839 2016-03-08 2016-03-08 An electron-donating unit, a copolymer thereof and their preparation methods, as well as their uses WO2017152354A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/075839 WO2017152354A1 (en) 2016-03-08 2016-03-08 An electron-donating unit, a copolymer thereof and their preparation methods, as well as their uses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/075839 WO2017152354A1 (en) 2016-03-08 2016-03-08 An electron-donating unit, a copolymer thereof and their preparation methods, as well as their uses

Publications (1)

Publication Number Publication Date
WO2017152354A1 true WO2017152354A1 (en) 2017-09-14

Family

ID=59789937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075839 WO2017152354A1 (en) 2016-03-08 2016-03-08 An electron-donating unit, a copolymer thereof and their preparation methods, as well as their uses

Country Status (1)

Country Link
WO (1) WO2017152354A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524918A (en) * 2022-03-03 2022-05-24 中山大学 Conductive polymer and synthesis method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100327271A1 (en) * 2008-02-18 2010-12-30 Sumitomo Chemical Company, Limited Composition and organic photoelectric converter using the same
US20120100285A1 (en) * 2009-06-18 2012-04-26 Sumitomo Chemical Company, Limited Organic photoelectric conversion element
CN103030790A (en) * 2012-12-14 2013-04-10 华南理工大学 Conjugated polymer containing fluorobenzothiadiazole and preparation method and application thereof
US20140167002A1 (en) * 2010-11-22 2014-06-19 The Regents Of The University Of California Organic small molecule semiconducting chromophores for use in organic electronic devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100327271A1 (en) * 2008-02-18 2010-12-30 Sumitomo Chemical Company, Limited Composition and organic photoelectric converter using the same
US20120100285A1 (en) * 2009-06-18 2012-04-26 Sumitomo Chemical Company, Limited Organic photoelectric conversion element
US20140167002A1 (en) * 2010-11-22 2014-06-19 The Regents Of The University Of California Organic small molecule semiconducting chromophores for use in organic electronic devices
CN103030790A (en) * 2012-12-14 2013-04-10 华南理工大学 Conjugated polymer containing fluorobenzothiadiazole and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524918A (en) * 2022-03-03 2022-05-24 中山大学 Conductive polymer and synthesis method and application thereof

Similar Documents

Publication Publication Date Title
Shin et al. Synthesis and characterization of 2, 1, 3-benzoselenadiazole-based conjugated polymers for organic photovoltaic cells
WO2013018951A1 (en) Conductive polymer comprising 3,6-carbazole and organic solar cell using same
Kim et al. Benzotriazole-based donor–acceptor type semiconducting polymers with different alkyl side chains for photovoltaic devices
Wang et al. Bulky side-chain density effect on the photophysical, electrochemical and photovoltaic properties of polythiophene derivatives
Tao et al. Wide bandgap copolymers with vertical benzodithiophene dicarboxylate for high-performance polymer solar cells with an efficiency up to 7.49%
Kranthiraja et al. Influential effects of π-spacers, alkyl side chains, and various processing conditions on the photovoltaic properties of alkylselenyl substituted benzodithiophene based polymers
Kim et al. Conjugated polymers containing 6-(2-thienyl)-4H-thieno [3, 2-b] indole (TTI) and isoindigo for organic photovoltaics
Pola et al. Synthesis of fluorinated benzotriazole (BTZ)-and benzodithiophene (BDT)-based low-bandgap conjugated polymers for solar cell applications
Gao et al. Efficient polymer solar cells based on poly (thieno [2, 3-f] benzofuran-co-thienopyrroledione) with a high open circuit voltage exceeding 1 V
Fan et al. Side chain effect on poly (beznodithiophene-co-dithienobenzoquinoxaline) and their applications for polymer solar cells
Yue et al. Effects of flanked units on optoelectronic properties of diketopyrrolopyrrole based π-conjugated polymers
WO2018035695A1 (en) Polymeric semiconductors and their preparation methods, as well as their uses
Kim et al. Two dibenzo [Def, Mno] chrysene‐based polymeric semiconductors: Surprisingly opposite device performances in field‐effect transistors and solar cells
Opoku et al. Facile synthesis and optoelectronic properties of thienopyrroledione based conjugated polymer for organic field effect transistors
Lee et al. Synthesis and photovoltaic property of polymer semiconductor with phthalimide derivative as a promising electron withdrawing material
Agneeswari et al. Effects of the incorporation of an additional pyrrolo [3, 4-c] pyrrole-1, 3-dione unit on the repeating unit of highly efficient large band gap polymers containing benzodithiophene and pyrrolo [3, 4-c] pyrrole-1, 3-dione derivatives
Li et al. Cyclopentadithiophene–naphthalenediimide polymers; synthesis, characterisation, and n-type semiconducting properties in field-effect transistors and photovoltaic devices
Zhu et al. Triisopropylsilylethynyl substituted benzodithiophene copolymers: synthesis, properties and photovoltaic characterization
Luponosov et al. Effects of bridging atom and π-bridge length on physical and photovoltaic properties of A–π-D–π-A oligomers for solution-processed organic solar cells
WO2018076247A1 (en) A weak electron-donating building block, copolymers thereof and their preparation methods as well as their applications
Atlı et al. Synthesis and characterization of optical, electrochemical and photovoltaic properties of selenophene bearing benzodithiophene based alternating polymers
Sun et al. The effect of the length of alkyl side-chains on the molecular aggregation and photovoltaic performance of the isoindigo-based polymers
Kim et al. High open-circuit voltage organic photovoltaic cells fabricated using semiconducting copolymers consisting of bithiophene and fluorinated quinoxaline or triazole derivatives
Cao et al. DA copolymers based on lactam acceptor unit and thiophene derivatives for efficient polymer solar cells
Kim et al. New naphthalene diimide-based n-type copolymers: The effects of conjugated side chains

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893006

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893006

Country of ref document: EP

Kind code of ref document: A1