WO2017150801A1 - Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same - Google Patents

Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same Download PDF

Info

Publication number
WO2017150801A1
WO2017150801A1 PCT/KR2017/000394 KR2017000394W WO2017150801A1 WO 2017150801 A1 WO2017150801 A1 WO 2017150801A1 KR 2017000394 W KR2017000394 W KR 2017000394W WO 2017150801 A1 WO2017150801 A1 WO 2017150801A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte
sulfur battery
nitrate
electrolyte solution
Prior art date
Application number
PCT/KR2017/000394
Other languages
French (fr)
Korean (ko)
Inventor
박인태
홍성원
송기석
이창훈
양두경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170003342A external-priority patent/KR102069836B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/755,984 priority Critical patent/US10804576B2/en
Priority to JP2018510824A priority patent/JP6651225B2/en
Priority to CN201780003115.8A priority patent/CN108028423B/en
Priority to EP17760205.9A priority patent/EP3340361B1/en
Publication of WO2017150801A1 publication Critical patent/WO2017150801A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a lithium-sulfur battery and a lithium-sulfur battery comprising the same.
  • Lithium-sulfur battery is a secondary battery that uses a sulfur-based material having an SS bond (Sulfur-sulfur bond) as a positive electrode active material and a lithium metal as a negative electrode active material.
  • Sulfur the main material of the positive electrode active material, is very rich in resources and toxic. There is no advantage, and it has the advantage of having a low weight per atom.
  • the theoretical discharge capacity of the lithium-sulfur battery is 1672 mAh / g-sulfur, and the theoretical energy density is 2,600 Wh / kg, and the theoretical energy density of other battery systems currently under study (Ni-MH battery: 450 Wh / kg, Li -FeS battery: 480Wh / kg, Li-MnO 2 battery: 1,000Wh / kg, Na-S battery: 800Wh / kg) is very high compared to the attention has been attracting attention as a battery having a high energy density characteristics.
  • the present inventors observed that a large amount of lithium-sulfur battery was manufactured and tested using a conventional electrolyte solution, and a swelling phenomenon in which a gas was generated and the battery swelled occurred while the battery was being driven. Such swelling not only depletes the electrolyte solution and causes deformation of the battery, but also causes problems such as desorption of the active material from the electrode, thereby degrading battery performance.
  • the present inventors studied the electrolyte composition of the lithium-sulfur battery in order to solve the above problems, and as a result, the present invention was completed.
  • an object of the present invention to provide an electrolyte for lithium-sulfur batteries that significantly reduces the amount of gas generated during battery operation.
  • Another object of the present invention to provide a lithium-sulfur battery comprising the electrolyte.
  • An electrolyte solution for a lithium-sulfur battery comprising a lithium salt and a non-aqueous solvent, and further comprising a radical adsorbent.
  • the radical adsorbent may be a quinone compound, an N-oxyl radical compound, a phenol compound, an amine compound, an enol compound, a thiol compound, an azide compound, a cyclopropane derivative, a cyclobutane derivative, or a combination thereof. It may include one selected from the group consisting of.
  • the quinone compound is 1,2-benzoquinone, 1,4-benzoquinone, 1,2-naphthoquinone, 1,4-naphthoquinone, 9,10-anthraquinone, 1,4-anthraquinone It may be one or more selected from the group consisting of acenaphthoquinone and derivatives thereof.
  • the N-oxyl radical compound is 2,2,6,6-tetramethyl-1-piperidinyloxyl, 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxyl , 4-oxo-2,2,6,6, -tetramethyl-1-piperidinyloxyl, 4-amino-2,2,6,6-tetramethyl-1-piperidinyloxyl, 4-acetami Figures 2,2,6,6-tetramethyl-1-piperidinyloxyl, 4-methoxy-2,2,6,6-tetramethyl-1-piperidinyloxyl, and 4-hydroxy-2 It may be at least one selected from the group consisting of 2,6,6-tetramethyl-1-piperidinyloxyl-benzoate.
  • the amine compound may be simazine, N1, N4-diphenylbenzene-1,4-diamine, and a combination thereof.
  • the radical adsorbent may be included in an amount of 0.01 to 5% by weight based on 100% by weight of the electrolyte.
  • the non-aqueous solvent may be at least one selected from the group consisting of carbonate, ester, ether, ketone, alcohol and aprotic solvents.
  • the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiC 4 BO 8 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, (SO 2 F) 2 NLi, (CF 3 SO 2 ) 3 CLi, Chloro It may be one selected from the group consisting of lithium borane, lower aliphatic lithium carbonate, lithium 4-phenyl borate, lithium imide, and combinations thereof.
  • the lithium salt may be included in a concentration of 0.2 to 2.0 M.
  • the electrolyte of the present invention may further include an additive having an intramolecular N-O bond.
  • the additive is lithium nitrate, potassium nitrate, cesium nitrate, barium nitrate, ammonium nitrate, lithium nitrite, potassium nitrite, cesium nitrite, ammonium nitrite, methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imida Zolium nitrate, pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite, octyl nitrite, nitromethane, nitropropane, nitrobutane, nitrobenzene, dinitrobenzene, nitro pyridine, dinitro It may be at least one selected from the group consisting of pyridine, nitrotoluene, dinitrotoluene, pyridine N-oxide, alkylpyridine N-oxide, and
  • the additive may be included in 0.01 to 10% by weight based on 100% by weight of the electrolyte.
  • the present invention also provides a lithium-sulfur battery comprising the electrolyte solution.
  • the electrolyte solution for a lithium-sulfur battery according to the present invention has excellent stability and a small amount of gas generated while driving the battery, the swelling phenomenon of the battery can be improved.
  • FIG. 1 is a graph comparing gas generation in Experimental Example 1.
  • FIG. 2 is a graph comparing battery life characteristics of Experimental Example 2.
  • the lithium salt and non-aqueous solvent is included, and further comprises a radical adsorbent.
  • An electrolyte solution for a sulfur battery is provided.
  • the electrolyte according to the present invention further includes a radical adsorbent to reduce side reactions caused by radicals.
  • the electrolytic solution of the present invention exhibits improved stability without deterioration of battery characteristics such as battery life and efficiency when applied to a lithium-sulfur battery, and thus improves electrolyte decomposition and gas generation problems during battery operation, resulting in electrolyte loss and desorption of active materials from electrodes. It is possible to overcome the problem of deterioration of the battery performance and quality due to the battery deformation.
  • the radical adsorbent of the present invention is not particularly limited as long as it is a substance capable of acting to prevent decomposition of the electrolyte by reacting radical substances, which are incidentally generated during operation of the lithium-sulfur battery, with the electrolyte. Easy conjugation compounds, stable radical compounds, compounds with unsaturated bonds, and the like.
  • the radical adsorbent may be a quinone compound.
  • the quinone-based compound may have a conjugation structure to act as an electron acceptor.
  • the quinone-based compound may be 1,2-benzoquinone, 1,4-benzoquinone, 1,2-naphthoquinone, 1,4 Naphthoquinone, 9,10-anthraquinone, 1,4-anthraquinone, acenaphthoquinone and derivatives thereof.
  • the radical adsorbent may be an N-oxyl radical compound.
  • N-oxyl radical compounds have a stable radical structure and can be used as an oxidation catalyst.
  • the N-oxyl radical compound is 2,2,6,6-tetramethyl-1-piperidinyloxyl (2,2,6,6-tetramethyl-1-piperidinyloxyl), 4-hydroxy-2, 2,6,6-tetramethyl-1-piperidinyloxyl (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxyl), 4-oxo-2,2,6,6, -tetramethyl -1-piperidinyloxyl (4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy), 4-amino-2,2,6,6-tetramethyl-1-piperidinyloxyl (4 -amino-2,2,6,6-tetramethyl-1-piperidinyloxy), 4-acetamido-2,2,6,6-tetramethyl-1-piperidinyl
  • radical adsorbent 2,6-di-tert-butyl-4-methylphenol (2,6-di-tert-butyl-4-methylphenol, BHT), thiodiethylene bis [2- ( 3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (thiodiethylene bis [2- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]), octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), tetrakis [methylene-3- Phenols such as (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane (tetrakis [methylene-3- (3,5-di-tert-butyl),
  • the content of the radical adsorbent is preferably 0.01 to 5% by weight based on 100% by weight of the electrolyte. If the content of the radical adsorbent is less than the above range, the effect of preventing electrolyte decomposition and gas generation during battery operation is insignificant, and if it exceeds the above range, unwanted side reactions may occur, so it is properly adjusted within the above range. In addition, when the content of the radical adsorbent is in the range of 0.5 to 2% by weight, it is possible to obtain the effect of preventing gas generation and improving the life characteristics of the battery. Thus, the content of the radical adsorbent is more preferably in the range of 0.5 to 2% by weight.
  • the solvent of the electrolyte according to the present invention is not particularly limited as long as it is a non-aqueous solvent that serves as a medium through which ions involved in the electrochemical reaction of the battery can move, and specifically, carbonate-based, ester-based, ether-based, ketone-based and alcohol-based solvents. Or an aprotic solvent can be used.
  • Examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), methyl ethyl carbonate (MEC), and ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC) and the like can be used, but is not limited thereto.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • MPC methyl propyl carbonate
  • EPC ethyl propyl carbonate
  • MEC methyl ethyl carbonate
  • EC ethylene carbonate
  • PC butylene carbonate
  • BC butylene carbonate
  • the ester solvent may be methyl acetate, ethyl acetate, n-propyl acetate, 1,1-dimethylethyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, decanolide, valero Lactone, mevalonolactone (mevalonolactone), caprolactone (caprolactone) and the like can be used, but is not limited thereto.
  • ether solvent examples include diethyl ether, dipropyl ether, dibutyl ether, dimethoxymethane (DMM), trimethoxymethane (TMM), dimethoxyethane (DME), diethoxyethane (DEE), diglyme, Triglyme, tetraglyme, tetrahydrofuran, 2-methyltetrahydrofuran, polyethylene glycol dimethyl ether and the like can be used, but are not limited thereto.
  • DDMM dimethoxymethane
  • TMS trimethoxymethane
  • DME dimethoxyethane
  • DEE diethoxyethane
  • diglyme Triglyme, tetraglyme, tetrahydrofuran, 2-methyltetrahydrofuran, polyethylene glycol dimethyl ether and the like can be used, but are not limited thereto.
  • ketone solvent for example, cyclohexanone may be used.
  • ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent
  • the aprotic solvent may include nitriles such as acetonitrile, amides such as dimethylformamide, and 1,3-dioxolane (DOL). Dioxolanes, or sulfolane, etc. may be used.
  • the non-aqueous organic solvents may be used alone or in combination of one or more, and the mixing ratio in the case of one or more mixing may be appropriately adjusted according to the desired battery performance.
  • the non-aqueous solvent is preferably used as the ether solvent described above.
  • a mixed solvent having a volume ratio of 1,3-dioxolane (DOL) to 1,2-dimethoxyethane (DME) of 50:50, or tetrahydrofuran (THF) to 1,2-dimethoxyethane ( A mixed solvent having a volume ratio of DME) of 50:50 can be used.
  • the electrolyte of the present invention includes a lithium salt added to the electrolyte to increase the ionic conductivity.
  • the lithium salt is not particularly limited in the present invention, and may be used without limitation as long as it is commonly used in a lithium secondary battery.
  • the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiC 4 BO 8 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, (SO 2 F) 2 NLi, (CF 3 SO 2 ) 3 CLi,
  • One selected from the group consisting of lithium chloroborane, lower aliphatic lithium carbonate, lithium phenyl borate, lithium imide and combinations thereof is possible, preferably (
  • the concentration of the lithium salt may be determined in consideration of ionic conductivity and the like, preferably 0.2 to 2.0 M, or 0.5 to 1.6 M. If the concentration of the lithium salt is less than the above range it is difficult to secure the ionic conductivity suitable for driving the battery, if it exceeds the above range, the viscosity of the electrolyte may be increased to reduce the mobility of lithium ions and the decomposition reaction of the lithium salt itself increases to increase the battery Since the performance of may be degraded, it is appropriately adjusted within the above range.
  • the non-aqueous electrolyte solution for lithium-sulfur batteries of the present invention may further include an additive having an intramolecular NO bond.
  • the additive has an effect of forming a stable film on the lithium electrode and greatly improves the charge and discharge efficiency.
  • Such additives may be nitric acid or nitrous acid compounds, nitro compounds and the like.
  • Examples include lithium nitrate, potassium nitrate, cesium nitrate, barium nitrate, ammonium nitrate, lithium nitrite, potassium nitrite, cesium nitrite, ammonium nitrite, methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imidazolium nitrate , Pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite, octyl nitrite, nitromethane, nitropropane, nitrobutane, nitrobenzene, dinitrobenzene, nitropyridine, dinitropyridine, nitro One or more selected from the group consisting of toluene, dinitrotoluene, pyridine N-oxide, alkylpyridine N-oxide, and tetramethyl piperidinyloxy
  • the additive is used in the range of 0.01 to 10% by weight, preferably 0.1 to 5% by weight based on 100% by weight of the total electrolyte composition. If the content is less than the above range, the above-described effects cannot be secured. On the contrary, if the content exceeds the above range, the resistance may be increased by the film, so that the above-mentioned range is appropriately adjusted.
  • the lithium-sulfur battery electrolyte according to the present invention may add a radical absorbent to ensure electrolyte stability during battery operation, thereby suppressing gas generation in the battery during charging and discharging of the battery and improving swelling. have.
  • the preparation method of the electrolyte according to the present invention is not particularly limited in the present invention, and may be prepared by conventional methods known in the art.
  • the lithium-sulfur battery according to the present invention includes a positive electrode and a negative electrode and a separator and an electrolyte interposed therebetween, and use the non-aqueous electrolyte solution for a lithium-sulfur battery according to the present invention as an electrolyte.
  • the amount of gas generated such as hydrogen gas during driving is significantly reduced, thereby improving the battery performance caused by detachment of the active material from the electrode and the quality deterioration caused by the deformation of the battery.
  • the structure of the positive electrode, the negative electrode, and the separator of the lithium-sulfur battery is not particularly limited in the present invention, and is known in the art.
  • the positive electrode according to the present invention includes a positive electrode active material formed on a positive electrode current collector.
  • any one that can be used as a current collector in the technical field is possible, and specifically, it may be preferable to use foamed aluminum, foamed nickel, and the like having excellent conductivity.
  • the cathode active material may include elemental sulfur (S8), a sulfur-based compound, or a mixture thereof.
  • the conductive material may be porous. Therefore, the conductive material may be used without limitation as long as it has porosity and conductivity, and for example, a carbon-based material having porosity may be used. As such a carbon-based material, carbon black, graphite, graphene, activated carbon, carbon fiber, or the like can be used. Moreover, metallic fibers, such as a metal mesh; Metallic powders such as copper, silver, nickel and aluminum; Or organic conductive materials, such as a polyphenylene derivative, can also be used. The conductive materials may be used alone or in combination.
  • the positive electrode may further include a binder for coupling the positive electrode active material and the conductive material and the current collector.
  • the binder may include a thermoplastic resin or a thermosetting resin.
  • polyethylene polyethylene oxide, polypropylene, polytetrafluoro ethylene (PTFE), polyvinylidene fluoride (PVDF), styrene-butadiene rubber, tetrafluoroethylene-perfluoro alkylvinyl ether copolymer, vinyl fluoride Liden-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoro propylene copolymer, propylene Tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-he
  • the positive electrode as described above may be manufactured according to a conventional method. Specifically, a positive electrode active material layer-forming composition prepared by mixing a positive electrode active material, a conductive material, and a binder on an organic solvent is applied and dried on a current collector, and optionally In order to improve the electrode density, the current collector may be manufactured by compression molding.
  • the organic solvent may uniformly disperse the positive electrode active material, the binder, and the conductive material, and preferably evaporates easily. Specifically, acetonitrile, methanol, ethanol, tetrahydrofuran, water, isopropyl alcohol, etc. are mentioned.
  • the negative electrode according to the present invention includes a negative electrode active material formed on the negative electrode current collector.
  • the negative electrode current collector may be specifically selected from the group consisting of copper, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof.
  • the stainless steel may be surface treated with carbon, nickel, titanium, or silver, and an aluminum-cadmium alloy may be used as the alloy.
  • calcined carbon, a nonconductive polymer surface-treated with a conductive material, or a conductive polymer may be used.
  • a material capable of reversibly intercalating or deintercalating lithium ions (Li + ), a material capable of reacting with lithium ions to form a reversibly lithium-containing compound, a lithium metal or a lithium alloy can be used.
  • the material capable of reversibly occluding or releasing the lithium ions (Li + ) may be, for example, crystalline carbon, amorphous carbon or a mixture thereof.
  • the material capable of reacting with the lithium ions (Li + ) to form a lithium-containing compound reversibly may be, for example, tin oxide, titanium nitrate or silicon.
  • the lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( It may be an alloy of a metal selected from the group consisting of Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al) and tin (Sn).
  • the negative electrode may further include a binder for coupling the negative electrode active material and the conductive material and the current collector.
  • the binder is the same as described above for the binder of the positive electrode.
  • the negative electrode may be lithium metal or a lithium alloy.
  • the negative electrode may be a thin film of lithium metal, one selected from the group consisting of lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al and Sn It may be an alloy with the above metals.
  • a conventional separator may be interposed between the positive electrode and the negative electrode.
  • the separator is a physical separator having a function of physically separating the electrode, and can be used without particular limitation as long as it is used as a conventional separator, and in particular, it is preferable that the separator has a low resistance to electrolyte migration and excellent electrolyte-moisture capability.
  • the separator enables the transport of lithium ions between the positive electrode and the negative electrode while separating or insulating the positive electrode and the negative electrode from each other.
  • a separator may be made of a porous and nonconductive or insulating material.
  • the separator may be an independent member such as a film or a coating layer added to the anode and / or the cathode.
  • a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer may be used alone. It may be used as a lamination or or a conventional porous non-woven fabric, for example, a non-woven fabric made of glass fibers, polyethylene terephthalate fibers of high melting point, etc. may be used, but is not limited thereto.
  • the positive electrode, the negative electrode, and the separator included in the lithium-sulfur battery may be prepared according to conventional components and manufacturing methods, respectively, and the appearance of the lithium-sulfur battery is not particularly limited, but may be cylindrical, rectangular, or pouch using a can. It may be a pouch type or a coin type.
  • LiTFSI (CF 3 SO 2 ) 2 NLi) 1.0 M, and LiNO 3 1 weight in a mixed solvent having a volume ratio of 1,3-dioxolane (DOL) and 1,2-dimethoxyethane (DME) of 50:50.
  • DOL 1,3-dioxolane
  • DME 1,2-dimethoxyethane
  • the non-aqueous electrolyte solution of Examples 1 to 5 further comprising a radical adsorbent in the electrolyte solution composition of Comparative Example 1.
  • Table 1 shows the electrolyte compositions of Examples 1 to 5 and Comparative Example 1.
  • a positive electrode active material 65% by weight of sulfur, 25% by weight of carbon black, and 10% by weight of polyethylene oxide were mixed with acetonitrile to prepare a positive electrode active material.
  • the cathode active material was coated on an aluminum current collector and dried to prepare a cathode having a loading amount of 5 mAh / cm 2 having a size of 30 ⁇ 50 mm 2 .
  • a lithium metal having a thickness of 150 ⁇ m was used as the cathode.
  • the positive electrode and the negative electrode were prepared so as to face each other, and the polyethylene separation membrane was interposed therebetween, and then, the electrolyte solution of Example 1 or Comparative Example 1 was prepared.
  • Examples 1 to 5 including the radical adsorbent show a reduced gas generation amount, while the gas generation amount is 473 ⁇ L when the radical adsorbent is not included.
  • the gas generation amount is 473 ⁇ L when the radical adsorbent is not included.
  • 1,4-benzoquinone was added, about 67 to 73%, TEMPO was added, about 33%, and simazine were added.

Abstract

The present invention relates to an electrolyte for a lithium-sulfur battery and a lithium-sulfur battery comprising the same. The electrolyte for a lithium-sulfur battery, according to the present invention, exhibits excellent stability, and inhibits gas generation during the driving of a lithium-sulfur battery so as to improve a swelling phenomenon.

Description

리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
본 출원은 2016년 3월 3일자 한국 특허 출원 제10-2016-0025398호 및 2017년 1월 10일자 한국 특허 출원 제10-2017-0003342호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0025398 dated March 3, 2016 and Korean Patent Application No. 10-2017-0003342 dated January 10, 2017. All content disclosed in the literature is included as part of this specification.
본 발명은 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지에 관한 것이다.The present invention relates to an electrolyte for a lithium-sulfur battery and a lithium-sulfur battery comprising the same.
최근 휴대용 전자기기, 전기자동차 및 대용량 전력저장 시스템 등이 발전함에 따라 대용량 전지의 필요성이 대두되고 있다. 리튬-설퍼 전지는 S-S 결합(Sulfur - sulfur bond)을 갖는 황 계열 물질을 양극 활물질로 사용하고, 리튬 금속을 음극 활물질로 사용하는 이차전지로, 양극 활물질의 주재료인 황은 자원이 매우 풍부하고, 독성이 없으며, 낮은 원자당 무게를 가지고 있는 장점이 있다. Recently, with the development of portable electronic devices, electric vehicles and large-capacity power storage systems, the need for a large-capacity battery is emerging. Lithium-sulfur battery is a secondary battery that uses a sulfur-based material having an SS bond (Sulfur-sulfur bond) as a positive electrode active material and a lithium metal as a negative electrode active material. Sulfur, the main material of the positive electrode active material, is very rich in resources and toxic. There is no advantage, and it has the advantage of having a low weight per atom.
또한, 리튬-설퍼 전지의 이론 방전용량은 1672mAh/g-sulfur이며, 이론 에너지밀도가 2,600Wh/kg로서, 현재 연구되고 있는 다른 전지시스템의 이론 에너지밀도(Ni-MH 전지: 450Wh/kg, Li-FeS 전지: 480Wh/kg, Li-MnO2 전지: 1,000Wh/kg, Na-S 전지: 800Wh/kg)에 비하여 매우 높기 때문에 고에너지 밀도 특성을 갖는 전지로서 주목 받고 있다. In addition, the theoretical discharge capacity of the lithium-sulfur battery is 1672 mAh / g-sulfur, and the theoretical energy density is 2,600 Wh / kg, and the theoretical energy density of other battery systems currently under study (Ni-MH battery: 450 Wh / kg, Li -FeS battery: 480Wh / kg, Li-MnO 2 battery: 1,000Wh / kg, Na-S battery: 800Wh / kg) is very high compared to the attention has been attracting attention as a battery having a high energy density characteristics.
본 발명자들은 통상의 전해액을 이용하여 리튬-설퍼 전지를 대용량으로 제조하여 실험하던 중, 전지 구동 중 내부에서 가스가 발생하여 전지가 부풀어 오르는 스웰링 현상이 나타나는 것을 관찰하였다. 이러한 스웰링 현상은 전해액을 고갈시키고 전지의 변형을 일으킬 뿐만 아니라, 전극으로부터 활물질의 탈리를 일으켜 전지 성능을 저하시키는 문제를 수반한다.The present inventors observed that a large amount of lithium-sulfur battery was manufactured and tested using a conventional electrolyte solution, and a swelling phenomenon in which a gas was generated and the battery swelled occurred while the battery was being driven. Such swelling not only depletes the electrolyte solution and causes deformation of the battery, but also causes problems such as desorption of the active material from the electrode, thereby degrading battery performance.
상기와 같은 전지 내 기체 발생에 의한 스웰링 현상은 그 원인과 발생 메커니즘이 아직까지 밝혀지지 않았으며, 따라서 대응책 또한 전무한 실정이다.The cause and mechanism of the swelling caused by the gas generation in the battery as described above have not been found so far, therefore, there is no countermeasure.
[선행기술문헌][Preceding technical literature]
대한민국 특허공개 제10-2012-0090113호, 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지Republic of Korea Patent Publication No. 10-2012-0090113, electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same
본 발명자들은 상기 문제를 해결하기 위해 리튬-설퍼 전지의 전해액 조성에 관하여 연구하였고, 그 결과 본 발명을 완성하였다.The present inventors studied the electrolyte composition of the lithium-sulfur battery in order to solve the above problems, and as a result, the present invention was completed.
따라서, 본 발명의 목적은 전지 구동 중 가스 발생량을 현저히 감소시키는 리튬-설퍼 전지용 전해액을 제공하는 것이다.Accordingly, it is an object of the present invention to provide an electrolyte for lithium-sulfur batteries that significantly reduces the amount of gas generated during battery operation.
또한, 본 발명의 또 다른 목적은 상기 전해액을 포함하는 리튬-설퍼 전지를 제공하는 것이다.In addition, another object of the present invention to provide a lithium-sulfur battery comprising the electrolyte.
상기 목적을 달성하기 위해, 본 발명은 In order to achieve the above object, the present invention
리튬염 및 비수계 용매를 포함하고, 라디칼 흡착제를 더 포함하는 것을 특징으로 하는 리튬-설퍼 전지용 전해액을 제공한다.An electrolyte solution for a lithium-sulfur battery, comprising a lithium salt and a non-aqueous solvent, and further comprising a radical adsorbent.
이때, 상기 라디칼 흡착제는 퀴논계 화합물, N-옥실 라디칼계 화합물, 페놀계 화합물, 아민계 화합물, 엔올계 화합물, 티올계 화합물, 아자이드계 화합물, 사이클로프로판 유도체, 사이클로부탄 유도체 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함할 수 있다.In this case, the radical adsorbent may be a quinone compound, an N-oxyl radical compound, a phenol compound, an amine compound, an enol compound, a thiol compound, an azide compound, a cyclopropane derivative, a cyclobutane derivative, or a combination thereof. It may include one selected from the group consisting of.
이때, 상기 퀴논계 화합물은 1,2-벤조퀴논, 1,4-벤조퀴논, 1,2-나프토퀴논, 1,4-나프토퀴논, 9,10-안트라퀴논, 1,4-안트라퀴논, 아세나프토퀴논 및 이들의 유도체로 이루어진 군에서 선택된 1종 이상일 수 있다.At this time, the quinone compound is 1,2-benzoquinone, 1,4-benzoquinone, 1,2-naphthoquinone, 1,4-naphthoquinone, 9,10-anthraquinone, 1,4-anthraquinone It may be one or more selected from the group consisting of acenaphthoquinone and derivatives thereof.
이때, 상기 N-옥실 라디칼계 화합물은 2,2,6,6-테트라메틸-1-피페리디닐옥실, 4-히드록시-2,2,6,6-테트라메틸-1-피페리디닐옥실, 4-옥소-2,2,6,6,-테트라메틸-1-피페리디닐옥실, 4-아미노-2,2,6,6-테트라메틸-1-피페리디닐옥실, 4-아세트아미도-2,2,6,6-테트라메틸-1-피페리디닐옥실, 4-메톡시-2,2,6,6-테트라메틸-1-피페리디닐옥실, 및 4-히드록시-2,2,6,6-테트라메틸-1-피페리디닐옥실-벤조에이트 로 이루어진 군에서 선택된 1종 이상일 수 있다.In this case, the N-oxyl radical compound is 2,2,6,6-tetramethyl-1-piperidinyloxyl, 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxyl , 4-oxo-2,2,6,6, -tetramethyl-1-piperidinyloxyl, 4-amino-2,2,6,6-tetramethyl-1-piperidinyloxyl, 4-acetami Figures 2,2,6,6-tetramethyl-1-piperidinyloxyl, 4-methoxy-2,2,6,6-tetramethyl-1-piperidinyloxyl, and 4-hydroxy-2 It may be at least one selected from the group consisting of 2,6,6-tetramethyl-1-piperidinyloxyl-benzoate.
이때, 상기 아민계 화합물은 시마진, N1, N4-디페닐벤젠-1,4-디아민, 및 이들의 조합일 수 있다.In this case, the amine compound may be simazine, N1, N4-diphenylbenzene-1,4-diamine, and a combination thereof.
이때, 상기 라디칼 흡착제는 전해액 100 중량%에 대하여 0.01 내지 5 중량%로 포함될 수 있다.In this case, the radical adsorbent may be included in an amount of 0.01 to 5% by weight based on 100% by weight of the electrolyte.
이때, 상기 비수계 용매는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계 및 비양성자성 용매로 이루어진 군에서 선택된 1종 이상일 수 있다.In this case, the non-aqueous solvent may be at least one selected from the group consisting of carbonate, ester, ether, ketone, alcohol and aprotic solvents.
이때, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiC4BO8, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, (C2F5SO2)2NLi, (SO2F)2NLi, (CF3SO2)3CLi, 클로로 보란 리튬, 저급지방족 카르본산 리튬, 4 페닐 붕산 리튬, 리튬 이미드 및 이들의 조합으로 이루어진 군에서 선택된 1종일 수 있다.At this time, the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiC 4 BO 8 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, (SO 2 F) 2 NLi, (CF 3 SO 2 ) 3 CLi, Chloro It may be one selected from the group consisting of lithium borane, lower aliphatic lithium carbonate, lithium 4-phenyl borate, lithium imide, and combinations thereof.
이때, 상기 리튬염은 0.2 내지 2.0 M 농도로 포함될 수 있다.In this case, the lithium salt may be included in a concentration of 0.2 to 2.0 M.
상기 본 발명의 전해액은 분자 내 N-O 결합을 갖는 첨가물을 더 포함할 수 있다.The electrolyte of the present invention may further include an additive having an intramolecular N-O bond.
이때, 상기 첨가물은 질산리튬, 질산칼륨, 질산세슘, 질산바륨, 질산암모늄, 아질산리튬, 아질산칼륨, 아질산세슘, 아질산암모늄, 메틸 니트레이트, 디알킬 이미다졸륨 니트레이트, 구아니딘 니트레이트, 이미다졸륨 니트레이트, 피리디늄 니트레이트, 에틸 니트라이트, 프로필 니트라이트, 부틸 니트라이트, 펜틸 니트라이트, 옥틸 니트라이트, 니트로메탄, 니트로프로판, 니트로부탄, 니트로벤젠, 디니트로벤젠, 니트로 피리딘, 디니트로피리딘, 니트로톨루엔, 디니트로톨루엔, 피리딘 N-옥사이드, 알킬피리딘 N-옥사이드, 및 테트라메틸 피페리디닐옥실로 이루어지는 군에서 선택되는 1종 이상일 수 있다.At this time, the additive is lithium nitrate, potassium nitrate, cesium nitrate, barium nitrate, ammonium nitrate, lithium nitrite, potassium nitrite, cesium nitrite, ammonium nitrite, methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imida Zolium nitrate, pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite, octyl nitrite, nitromethane, nitropropane, nitrobutane, nitrobenzene, dinitrobenzene, nitro pyridine, dinitro It may be at least one selected from the group consisting of pyridine, nitrotoluene, dinitrotoluene, pyridine N-oxide, alkylpyridine N-oxide, and tetramethyl piperidinyloxyl.
이때, 상기 첨가물은 전해액 100 중량%에 대하여 0.01 내지 10 중량%로 포함될 수 있다.In this case, the additive may be included in 0.01 to 10% by weight based on 100% by weight of the electrolyte.
또한, 본 발명은 상기 전해액을 포함하는 리튬-설퍼 전지를 제공한다.The present invention also provides a lithium-sulfur battery comprising the electrolyte solution.
본 발명에 따른 리튬-설퍼 전지용 전해액은 안정성이 우수하여 전지 구동 중 가스 발생량이 적으므로, 전지의 스웰링 현상을 개선할 수 있다.Since the electrolyte solution for a lithium-sulfur battery according to the present invention has excellent stability and a small amount of gas generated while driving the battery, the swelling phenomenon of the battery can be improved.
도 1은 실험예 1의 가스 발생량 비교 그래프이다.1 is a graph comparing gas generation in Experimental Example 1. FIG.
도 2는 실험예 2의 전지 수명 특성 비교 그래프이다.2 is a graph comparing battery life characteristics of Experimental Example 2. FIG.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
리튬-설퍼 전지용 전해액Electrolyte for Lithium Sulfur Battery
본 발명에서는 리튬-설퍼 전지의 구동 시 발생하는 수소 등 가스로 인한 스웰링(swelling)현상을 개선하기 위하여, 리튬염 및 비수계 용매를 포함하고, 라디칼 흡착제를 더 포함하는 것을 특징으로 하는 리튬-설퍼 전지용 전해액을 제공한다. In the present invention, in order to improve the swelling phenomenon caused by the gas such as hydrogen generated when the lithium-sulfur battery is driven, the lithium salt and non-aqueous solvent is included, and further comprises a radical adsorbent. An electrolyte solution for a sulfur battery is provided.
본 발명자들의 실험 결과, 비수계 용매 및 리튬염으로 구성된 통상의 전해액을 대면적 파우치 셀 등 대형 전지에 적용할 때, 전지 구동 중 전지 내에 수소, 메탄, 에텐 등의 가스가 상당량 발생하여 전지가 부푸는 스웰링(swelling)현상이 관찰되었다. 상기 현상 및 발생원인은 지금까지 보고된 바가 없으나, 전해액 불안정성에 기인하는 것으로 판단된다. 특히 전지 구동 중 생성되는 설퍼 라디칼이 전해액 분해 및 이로 인한 가스 발생의 원인으로 여겨진다.As a result of the experiments of the present inventors, when a typical electrolyte composed of a non-aqueous solvent and a lithium salt is applied to a large battery such as a large-area pouch cell, a large amount of gas such as hydrogen, methane, ethene, etc. is generated in the battery while the battery is running. A swelling phenomenon was observed. The phenomenon and the cause of occurrence have not been reported so far, but it is determined to be due to electrolyte instability. In particular, sulfur radicals generated during battery operation are considered to be the cause of electrolyte decomposition and gas generation.
본 발명에 따른 전해액은 라디칼에 의한 부반응을 감소시키기 위하여 라디칼 흡착제를 더 포함한다. 상기 본 발명의 전해액은 리튬-설퍼 전지에 적용 시 전지의 수명, 효율 등 전지 특성의 저하 없이 향상된 안정성을 나타내며, 이에 전지 구동 중 전해액 분해 및 가스 발생 문제가 개선되어 전해액 손실, 전극으로부터의 활물질 탈착에 의한 전지 성능 저하 및 전지 변형에 따른 품질 저하 문제를 극복할 수 있다. The electrolyte according to the present invention further includes a radical adsorbent to reduce side reactions caused by radicals. The electrolytic solution of the present invention exhibits improved stability without deterioration of battery characteristics such as battery life and efficiency when applied to a lithium-sulfur battery, and thus improves electrolyte decomposition and gas generation problems during battery operation, resulting in electrolyte loss and desorption of active materials from electrodes. It is possible to overcome the problem of deterioration of the battery performance and quality due to the battery deformation.
본 발명의 라디칼 흡착제는 리튬-설퍼 전지의 구동 중 부수적으로 발생하는 라디칼 물질이 전해액과 반응하기 전에 먼저 반응하여 전해액의 분해를 방지하는 역할을 할 수 있는 물질이라면 특별히 제한되는 것은 아니며, 전자를 받기 쉬운 컨쥬게이션 화합물, 안정한 라디칼 화합물, 불포화 결합을 가지는 화합물 등을 포함한다. The radical adsorbent of the present invention is not particularly limited as long as it is a substance capable of acting to prevent decomposition of the electrolyte by reacting radical substances, which are incidentally generated during operation of the lithium-sulfur battery, with the electrolyte. Easy conjugation compounds, stable radical compounds, compounds with unsaturated bonds, and the like.
상기 라디칼 흡착제는 퀴논계 화합물일 수 있다. 퀴논계 화합물은 컨쥬게이션 구조를 가지고 있어 전자 받개 역할을 할 수 있으며, 구체적으로 상기 퀴논계 화합물은 1,2-벤조퀴논, 1,4-벤조퀴논, 1,2-나프토퀴논, 1,4-나프토퀴논, 9,10-안트라퀴논, 1,4-안트라퀴논, 아세나프토퀴논 및 이들의 유도체로 이루어진 군에서 선택된 1종 이상일 수 있다. The radical adsorbent may be a quinone compound. The quinone-based compound may have a conjugation structure to act as an electron acceptor. Specifically, the quinone-based compound may be 1,2-benzoquinone, 1,4-benzoquinone, 1,2-naphthoquinone, 1,4 Naphthoquinone, 9,10-anthraquinone, 1,4-anthraquinone, acenaphthoquinone and derivatives thereof.
또한, 상기 라디칼 흡착제는 N-옥실 라디칼계 화합물일 수 있다. N-옥실 라디칼계 화합물은 안정한 라디칼 구조를 가지며, 산화 촉매로 쓰일 수 있다. 구체적으로 상기 N-옥실 라디칼계 화합물은 2,2,6,6-테트라메틸-1-피페리디닐옥실(2,2,6,6-tetramethyl-1-piperidinyloxyl), 4-히드록시-2,2,6,6-테트라메틸-1-피페리디닐옥실(4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxyl), 4-옥소-2,2,6,6,-테트라메틸-1-피페리디닐옥실(4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy), 4-아미노-2,2,6,6-테트라메틸-1-피페리디닐옥실(4-amino-2,2,6,6-tetramethyl-1-piperidinyloxy), 4-아세트아미도-2,2,6,6-테트라메틸-1-피페리디닐옥실(4-acetamido-2,2,6,6-tetramethyl-1-piperidinyloxy), 4-메톡시-2,2,6,6-테트라메틸-1-피페리디닐옥실(4-methoxy-2,2,6,6-tetramethyl-1-piperidinyloxy), 및 4-히드록시-2,2,6,6-테트라메틸-1-피페리디닐옥실-벤조에이트(4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxyl benzoate)로 이루어진 군에서 선택된 1종 이상일 수 있다.In addition, the radical adsorbent may be an N-oxyl radical compound. N-oxyl radical compounds have a stable radical structure and can be used as an oxidation catalyst. Specifically, the N-oxyl radical compound is 2,2,6,6-tetramethyl-1-piperidinyloxyl (2,2,6,6-tetramethyl-1-piperidinyloxyl), 4-hydroxy-2, 2,6,6-tetramethyl-1-piperidinyloxyl (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxyl), 4-oxo-2,2,6,6, -tetramethyl -1-piperidinyloxyl (4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy), 4-amino-2,2,6,6-tetramethyl-1-piperidinyloxyl (4 -amino-2,2,6,6-tetramethyl-1-piperidinyloxy), 4-acetamido-2,2,6,6-tetramethyl-1-piperidinyloxyl (4-acetamido-2,2, 6,6-tetramethyl-1-piperidinyloxy), 4-methoxy-2,2,6,6-tetramethyl-1-piperidinyloxyl (4-methoxy-2,2,6,6-tetramethyl-1- piperidinyloxy), and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxyl-benzoate (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxyl benzoate) It may be one or more selected from the group consisting of.
그밖에 상기 라디칼 흡착제의 비제한적인 예로서 2,6-디-터트-부틸-4-메틸페놀(2,6-di-tert-butyl-4-methylphenol, BHT), 티오디에틸렌 비스[2-(3,5-디-터트-부틸-4-히드록시페닐)프로피오네이트](thiodiethylene bis[2-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]), 옥타데실-3-(3,5-디-터트-부틸-4-히드록시페닐)프로피오네이트(octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate), 테트라키스[메틸렌-3-(3,5-디-터트-부틸-4-히드록시페닐)프로피오네이트]메탄(tetrakis[methylene-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]methane) 등 페놀계 화합물, 시마진(simazine, 6-Chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine), N1,N4-디페닐벤젠-1,4-디아민(N1,N4-diphenylbenzene-1,4-diamine) 등 아민계 화합물, 엔올계 화합물, 티올계 화합물, 아자이드계 화합물, 사이클로프로판 유도체, 사이클로부탄 유도체 등을 들 수 있으며, 이들 라디칼 흡착제는 단독 또는 혼합하여 사용할 수 있다.As other non-limiting examples of the radical adsorbent, 2,6-di-tert-butyl-4-methylphenol (2,6-di-tert-butyl-4-methylphenol, BHT), thiodiethylene bis [2- ( 3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (thiodiethylene bis [2- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]), octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), tetrakis [methylene-3- Phenols such as (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane (tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane) System compound, simazine (simazine, 6-Chloro-N, N'-diethyl-1,3,5-triazine-2,4-diamine), N1, N4-diphenylbenzene-1,4-diamine (N1, Amine compounds such as N4-diphenylbenzene-1,4-diamine), enol compounds, thiol compounds, azide compounds, cyclopropane derivatives, cyclobutane derivatives, and the like. It may be used alone or in combination.
상기 라디칼 흡착제의 함량은 전해질 100 중량% 에 대하여 0.01 내지 5 중량% 인 것이 바람직하다. 만약 라디칼 흡착제의 함량이 상기 범위 미만일 경우 전지 구동 시 전해액 분해 및 가스 발생 방지 효과가 미미하며, 상기 범위를 초과할 경우 원치 않는 부반응을 일으킬 수 있으므로 상기 범위 내에서 적절히 조절한다. 또한, 라디칼 흡착제의 함량이 0.5 내지 2 중량% 범위일 경우 가스 발생 방지 효과와 더불어 전지의 수명 특성 향상 효과도 얻을 수 있으므로, 상기 라디칼 흡착제의 함량은 0.5 내지 2 중량% 범위인 것이 보다 바람직하다. The content of the radical adsorbent is preferably 0.01 to 5% by weight based on 100% by weight of the electrolyte. If the content of the radical adsorbent is less than the above range, the effect of preventing electrolyte decomposition and gas generation during battery operation is insignificant, and if it exceeds the above range, unwanted side reactions may occur, so it is properly adjusted within the above range. In addition, when the content of the radical adsorbent is in the range of 0.5 to 2% by weight, it is possible to obtain the effect of preventing gas generation and improving the life characteristics of the battery. Thus, the content of the radical adsorbent is more preferably in the range of 0.5 to 2% by weight.
본 발명에 따른 전해액의 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 하는 비수성 용매라면 특별히 제한되지 않으며, 구체적으로 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계 또는 비양성자성 용매를 사용할 수 있다. The solvent of the electrolyte according to the present invention is not particularly limited as long as it is a non-aqueous solvent that serves as a medium through which ions involved in the electrochemical reaction of the battery can move, and specifically, carbonate-based, ester-based, ether-based, ketone-based and alcohol-based solvents. Or an aprotic solvent can be used.
상기 카보네이트계 용매로는 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 디프로필카보네이트(DPC), 메틸프로필카보네이트(MPC), 에틸프로필카보네이트(EPC), 메틸에틸카보네이트(MEC), 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 또는 부틸렌카보네이트(BC) 등이 사용될 수 있으나 이에 제한되지 않는다.Examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), methyl ethyl carbonate (MEC), and ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC) and the like can be used, but is not limited thereto.
상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 1,1-디메틸에틸 아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있으나 이에 제한되지 않는다.The ester solvent may be methyl acetate, ethyl acetate, n-propyl acetate, 1,1-dimethylethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, decanolide, valero Lactone, mevalonolactone (mevalonolactone), caprolactone (caprolactone) and the like can be used, but is not limited thereto.
상기 에테르계 용매로는 디에틸 에테르, 디프로필 에테르, 디부틸 에테르, 디메톡시메탄(DMM), 트리메톡시메탄(TMM), 디메톡시에탄(DME), 디에톡시에탄(DEE), 디글라임, 트리글라임, 테트라글라임, 테트라히드로퓨란, 2-메틸테트라히드로퓨란, 또는 폴리에틸렌 글리콜 디메틸 에테르 등이 사용될 수 있으나 이에 제한되지 않는다.Examples of the ether solvent include diethyl ether, dipropyl ether, dibutyl ether, dimethoxymethane (DMM), trimethoxymethane (TMM), dimethoxyethane (DME), diethoxyethane (DEE), diglyme, Triglyme, tetraglyme, tetrahydrofuran, 2-methyltetrahydrofuran, polyethylene glycol dimethyl ether and the like can be used, but are not limited thereto.
상기 케톤계 용매로는 예를 들어 시클로헥사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 아세토니트릴 등의 니트릴류, 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란(DOL) 등의 디옥솔란류, 또는 술포란(sulfolane) 등이 사용될 수 있다. As the ketone solvent, for example, cyclohexanone may be used. In addition, ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent, and the aprotic solvent may include nitriles such as acetonitrile, amides such as dimethylformamide, and 1,3-dioxolane (DOL). Dioxolanes, or sulfolane, etc. may be used.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용될 수 있고, 하나 이상 혼합하여 사용되는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있다. 리튬-설퍼 전지의 특성을 고려할 때 상기 비수성 용매는 상술한 에테르계 용매를 사용하는 것이 바람직하다. 일례로, 1,3-디옥솔란(DOL) 대 1,2-디메톡시에탄(DME)의 부피비를 50 : 50 으로 하는 혼합 용매, 또는 테트라히드로퓨란(THF) 대 1,2-디메톡시에탄(DME)의 부피비를 50 : 50 으로 하는 혼합 용매를 사용할 수 있다.The non-aqueous organic solvents may be used alone or in combination of one or more, and the mixing ratio in the case of one or more mixing may be appropriately adjusted according to the desired battery performance. In consideration of the characteristics of the lithium-sulfur battery, the non-aqueous solvent is preferably used as the ether solvent described above. In one example, a mixed solvent having a volume ratio of 1,3-dioxolane (DOL) to 1,2-dimethoxyethane (DME) of 50:50, or tetrahydrofuran (THF) to 1,2-dimethoxyethane ( A mixed solvent having a volume ratio of DME) of 50:50 can be used.
본 발명의 전해질은 이온 전도성을 증가시키기 위해 전해질에 첨가되는 리튬염을 포함한다. 상기 리튬염은 본 발명에서 특별히 한정하지 않으며, 리튬 이차 전지에서 통상적으로 사용 가능한 것이라면 제한 없이 사용될 수 있다. 구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiC4BO8, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, (C2F5SO2)2NLi, (SO2F)2NLi, (CF3SO2)3CLi, 클로로 보란 리튬, 저급지방족 카르본산 리튬, 4 페닐 붕산 리튬, 리튬 이미드 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하며, 바람직하기로 (CF3SO2)2NLi 이다.The electrolyte of the present invention includes a lithium salt added to the electrolyte to increase the ionic conductivity. The lithium salt is not particularly limited in the present invention, and may be used without limitation as long as it is commonly used in a lithium secondary battery. Specifically, the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiC 4 BO 8 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, (SO 2 F) 2 NLi, (CF 3 SO 2 ) 3 CLi, One selected from the group consisting of lithium chloroborane, lower aliphatic lithium carbonate, lithium phenyl borate, lithium imide and combinations thereof is possible, preferably (CF 3 SO 2 ) 2 NLi.
상기 리튬염의 농도는 이온 전도도 등을 고려하여 결정될 수 있으며, 바람직하게는 0.2 내지 2.0 M, 또는 0.5 내지 1.6 M이다. 만약 리튬염의 농도가 상기 범위 미만이면 전지의 구동에 적합한 이온 전도도의 확보가 어려우며, 상기 범위를 초과하면 전해액의 점도가 증가하여 리튬 이온의 이동성이 떨어질 수 있고 리튬염 자체의 분해 반응이 증가하여 전지의 성능이 저하될 수 있으므로 상기 범위 내에서 적절히 조절한다.The concentration of the lithium salt may be determined in consideration of ionic conductivity and the like, preferably 0.2 to 2.0 M, or 0.5 to 1.6 M. If the concentration of the lithium salt is less than the above range it is difficult to secure the ionic conductivity suitable for driving the battery, if it exceeds the above range, the viscosity of the electrolyte may be increased to reduce the mobility of lithium ions and the decomposition reaction of the lithium salt itself increases to increase the battery Since the performance of may be degraded, it is appropriately adjusted within the above range.
본 발명의 리튬-설퍼 전지용 비수계 전해액은 분자 내 N-O 결합을 갖는 첨가물을 더 포함할 수 있다. 상기 첨가물은 리튬 전극에 안정적인 피막을 형성하고 충ㆍ방전 효율을 크게 향상시키는 효과가 있다. 이러한 첨가물은 질산 또는 아질산계 화합물, 니트로 화합물 등일 수 있다. 일례로 질산리튬, 질산칼륨, 질산세슘, 질산바륨, 질산암모늄, 아질산리튬, 아질산칼륨, 아질산세슘, 아질산암모늄, 메틸 니트레이트, 디알킬 이미다졸륨 니트레이트, 구아니딘 니트레이트, 이미다졸륨 니트레이트, 피리디늄 니트레이트, 에틸 니트라이트, 프로필 니트라이트, 부틸 니트라이트, 펜틸 니트라이트, 옥틸 니트라이트, 니트로메탄, 니트로프로판, 니트로부탄, 니트로벤젠, 디니트로벤젠, 니트로 피리딘, 디니트로피리딘, 니트로톨루엔, 디니트로톨루엔, 피리딘 N-옥사이드, 알킬피리딘 N-옥사이드, 및 테트라메틸 피페리디닐옥실로 이루어지는 군에서 선택되는 1종 이상이 사용될 수 있다. 본 발명의 일 실시예에 따르면 질산리튬(LiNO3)을 사용할 수 있다.The non-aqueous electrolyte solution for lithium-sulfur batteries of the present invention may further include an additive having an intramolecular NO bond. The additive has an effect of forming a stable film on the lithium electrode and greatly improves the charge and discharge efficiency. Such additives may be nitric acid or nitrous acid compounds, nitro compounds and the like. Examples include lithium nitrate, potassium nitrate, cesium nitrate, barium nitrate, ammonium nitrate, lithium nitrite, potassium nitrite, cesium nitrite, ammonium nitrite, methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imidazolium nitrate , Pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite, octyl nitrite, nitromethane, nitropropane, nitrobutane, nitrobenzene, dinitrobenzene, nitropyridine, dinitropyridine, nitro One or more selected from the group consisting of toluene, dinitrotoluene, pyridine N-oxide, alkylpyridine N-oxide, and tetramethyl piperidinyloxyl can be used. According to one embodiment of the present invention, lithium nitrate (LiNO 3 ) may be used.
상기 첨가물은 전체 전해액 조성 100 중량%에 대하여 0.01 내지 10 중량% 범위 내에서, 바람직하게는 0.1 내지 5 중량%로 사용한다. 만약 그 함량이 상기 범위 미만이면 상기한 효과를 확보할 수 없고, 이와 반대로 상기 범위를 초과하게 되면 피막에 의해 오히려 저항이 증가할 우려가 있으므로, 상기 범위 내에서 적절히 조절한다.The additive is used in the range of 0.01 to 10% by weight, preferably 0.1 to 5% by weight based on 100% by weight of the total electrolyte composition. If the content is less than the above range, the above-described effects cannot be secured. On the contrary, if the content exceeds the above range, the resistance may be increased by the film, so that the above-mentioned range is appropriately adjusted.
전술한 바와 같이 본 발명에 따른 리튬-설퍼 전지용 전해액은 전지 구동 중 전해액 안정성을 확보하기 위해 라디칼 흡수제를 첨가하여, 전지의 충ㆍ방전 중 전지 내 기체 발생을 억제하고, 스웰링 현상을 개선할 수 있다.As described above, the lithium-sulfur battery electrolyte according to the present invention may add a radical absorbent to ensure electrolyte stability during battery operation, thereby suppressing gas generation in the battery during charging and discharging of the battery and improving swelling. have.
본 발명에 따른 상기 전해액의 제조방법은 본 발명에서 특별히 한정하지 않으며, 당업계에 공지된 통상적인 방법에 의해 제조될 수 있다.The preparation method of the electrolyte according to the present invention is not particularly limited in the present invention, and may be prepared by conventional methods known in the art.
리튬-설퍼 전지Lithium-sulfur battery
본 발명에 따른 리튬-설퍼 전지는 양극 및 음극과 이들 사이에 개재되는 분리막 및 전해액을 포함하고, 전해액으로서 본 발명에 따른 리튬-설퍼 전지용 비수계 전해액을 사용한다.The lithium-sulfur battery according to the present invention includes a positive electrode and a negative electrode and a separator and an electrolyte interposed therebetween, and use the non-aqueous electrolyte solution for a lithium-sulfur battery according to the present invention as an electrolyte.
본 발명에 따른 리튬-설퍼 전지는 구동 시 수소 기체 등 가스 발생량이 현저히 줄어들어, 전극으로부터 활물질이 탈리되어 발생하는 전지 성능 저하 및 전지의 변형에 따른 품질 저하 문제를 개선할 수 있다.In the lithium-sulfur battery according to the present invention, the amount of gas generated such as hydrogen gas during driving is significantly reduced, thereby improving the battery performance caused by detachment of the active material from the electrode and the quality deterioration caused by the deformation of the battery.
상기 리튬-설퍼 전지의 양극, 음극 및 분리막의 구성은 본 발명에서 특별히 한정하지 않으며, 이 분야에서 공지된 바를 따른다.The structure of the positive electrode, the negative electrode, and the separator of the lithium-sulfur battery is not particularly limited in the present invention, and is known in the art.
양극anode
본 발명에 따른 양극은 양극 집전체 상에 형성된 양극 활물질을 포함한다.The positive electrode according to the present invention includes a positive electrode active material formed on a positive electrode current collector.
상기 양극 집전체로는 기술분야에서 집전체로 사용될 수 있는 것이라면 모두 가능하고, 구체적으로 우수한 도전성을 갖는 발포 알루미늄, 발포 니켈 등을 사용하는 것이 바람직할 수 있다.As the cathode current collector, any one that can be used as a current collector in the technical field is possible, and specifically, it may be preferable to use foamed aluminum, foamed nickel, and the like having excellent conductivity.
상기 양극 활물질은 황 원소(Elemental sulfur, S8), 황 계열 화합물 또는 이들의 혼합물을 포함할 수 있다. 상기 황 계열 화합물은 구체적으로, Li2Sn(n≥1), 유기황 화합물 또는 탄소-황 폴리머((C2Sx)n: x=2.5 ~ 50, n≥2) 등일 수 있다. 이들은 황 물질 단독으로는 전기전도성이 없기 때문에 도전재와 복합하여 적용한다.The cathode active material may include elemental sulfur (S8), a sulfur-based compound, or a mixture thereof. Specifically, the sulfur-based compound may be Li 2 S n (n ≧ 1), an organic sulfur compound, or a carbon-sulfur polymer ((C 2 S x ) n : x = 2.5 to 50, n ≧ 2). Since sulfur materials alone are not electrically conductive, they are applied in combination with a conductive material.
상기 도전재는 다공성일 수 있다. 따라서, 상기 도전재로는 다공성 및 도전성을 갖는 것이라면 제한 없이 사용할 수 있으며, 예를 들어 다공성을 갖는 탄소계 물질을 사용할 수 있다. 이와 같은 탄소계 물질로는 카본 블랙, 그라파이트, 그래핀, 활성탄, 탄소 섬유 등을 사용할 수 있다. 또한, 금속 메쉬 등의 금속성 섬유; 구리, 은, 니켈, 알루미늄 등의 금속성 분말; 또는 폴리페닐렌 유도체 등의 유기 도전성 재료도 사용할 수 있다. 상기 도전성 재료들은 단독 또는 혼합하여 사용될 수 있다. The conductive material may be porous. Therefore, the conductive material may be used without limitation as long as it has porosity and conductivity, and for example, a carbon-based material having porosity may be used. As such a carbon-based material, carbon black, graphite, graphene, activated carbon, carbon fiber, or the like can be used. Moreover, metallic fibers, such as a metal mesh; Metallic powders such as copper, silver, nickel and aluminum; Or organic conductive materials, such as a polyphenylene derivative, can also be used. The conductive materials may be used alone or in combination.
상기 양극은 양극 활물질과 도전재의 결합과 집전체에 대한 결합을 위하여 바인더를 더 포함할 수 있다. 상기 바인더는 열가소성 수지 또는 열경화성 수지를 포함할 수 있다. 예를 들어, 폴리에틸렌, 폴리에틸렌옥사이드, 폴리프로필렌, 폴리테트라플루오로 에틸렌(PTFE), 폴리불화비닐리덴(PVDF), 스티렌-부타디엔 고무, 테트라플루오로에틸렌-퍼플루오로 알킬비닐에테르 공중합체, 불화비닐리덴-헥사 플루오로프로필렌 공중합체, 불화비닐리덴-클로로트리플루오로에틸렌 공중합체, 에틸렌-테트라플루오로에틸렌 공중합체, 폴리클로로트리플루오로에틸렌, 불화비니리덴-펜타프루오로 프로필렌 공중합체, 프로필렌-테트라플루오로에틸렌 공중합체, 에틸렌-클로로트리플루오로에틸렌 공중합체, 불화비닐리덴-헥사플루오로프로필렌-테트라 플루오로에틸렌 공중합체, 불화비닐리덴-퍼플루오로메틸비닐에테르-테트라플루오로 에틸렌 공중합체, 에틸렌-아크릴산 공중합제 등을 단독 또는 혼합하여 사용할 수 있으나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 바인더로 사용될 수 있는 것이라면 모두 가능하다.The positive electrode may further include a binder for coupling the positive electrode active material and the conductive material and the current collector. The binder may include a thermoplastic resin or a thermosetting resin. For example, polyethylene, polyethylene oxide, polypropylene, polytetrafluoro ethylene (PTFE), polyvinylidene fluoride (PVDF), styrene-butadiene rubber, tetrafluoroethylene-perfluoro alkylvinyl ether copolymer, vinyl fluoride Liden-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoro propylene copolymer, propylene Tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetra fluoroethylene copolymer, vinylidene fluoride-perfluoromethylvinylether-tetrafluoro ethylene aerial Copolymers, ethylene-acrylic acid copolymers, and the like may be used alone or in combination. It is not limited as long as they can both be used as binders in the art.
상기와 같은 양극은 통상의 방법에 따라 제조될 수 있으며, 구체적으로는 양극 활물질과 도전재 및 바인더를 유기 용매 상에서 혼합하여 제조한 양극 활물질층 형성용 조성물을 집전체 위에 도포 및 건조하고, 선택적으로 전극 밀도의 향상을 위하여 집전체에 압축 성형하여 제조할 수 있다. 이때 상기 유기 용매로는 양극 활물질, 바인더 및 도전재를 균일하게 분산시킬 수 있으며, 쉽게 증발되는 것을 사용하는 것이 바람직하다. 구체적으로는 아세토니트릴, 메탄올, 에탄올, 테트라히드로퓨란, 물, 이소프로필알코올 등을 들 수 있다.The positive electrode as described above may be manufactured according to a conventional method. Specifically, a positive electrode active material layer-forming composition prepared by mixing a positive electrode active material, a conductive material, and a binder on an organic solvent is applied and dried on a current collector, and optionally In order to improve the electrode density, the current collector may be manufactured by compression molding. In this case, the organic solvent may uniformly disperse the positive electrode active material, the binder, and the conductive material, and preferably evaporates easily. Specifically, acetonitrile, methanol, ethanol, tetrahydrofuran, water, isopropyl alcohol, etc. are mentioned.
음극cathode
본 발명에 따른 음극은 음극 집전체 상에 형성된 음극 활물질을 포함한다.The negative electrode according to the present invention includes a negative electrode active material formed on the negative electrode current collector.
상기 음극 집전체는 구체적으로 구리, 스테인리스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다. 상기 스테인리스스틸은 카본, 니켈, 티탄 또는 은으로 표면 처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금이 사용될 수 있다. 그 외에도 소성 탄소, 도전재로 표면 처리된 비전도성 고분자, 또는 전도성 고분자 등이 사용될 수도 있다.The negative electrode current collector may be specifically selected from the group consisting of copper, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof. The stainless steel may be surface treated with carbon, nickel, titanium, or silver, and an aluminum-cadmium alloy may be used as the alloy. In addition, calcined carbon, a nonconductive polymer surface-treated with a conductive material, or a conductive polymer may be used.
상기 음극 활물질로는 리튬 이온(Li+)을 가역적으로 흡장(Intercalation) 또는 방출(Deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 사용할 수 있다. 상기 리튬 이온(Li+)을 가역적으로 흡장 또는 방출할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.As the negative active material, a material capable of reversibly intercalating or deintercalating lithium ions (Li + ), a material capable of reacting with lithium ions to form a reversibly lithium-containing compound, a lithium metal or a lithium alloy Can be used. The material capable of reversibly occluding or releasing the lithium ions (Li + ) may be, for example, crystalline carbon, amorphous carbon or a mixture thereof. The material capable of reacting with the lithium ions (Li + ) to form a lithium-containing compound reversibly may be, for example, tin oxide, titanium nitrate or silicon. The lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( It may be an alloy of a metal selected from the group consisting of Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al) and tin (Sn).
상기 음극은 음극 활물질과 도전재의 결합과 집전체에 대한 결합을 위하여 바인더를 더 포함할 수 있으며, 구체적으로 상기 바인더는 앞서 양극의 바인더에서 설명한 바와 동일하다.The negative electrode may further include a binder for coupling the negative electrode active material and the conductive material and the current collector. Specifically, the binder is the same as described above for the binder of the positive electrode.
또한, 상기 음극은 리튬 금속 또는 리튬 합금일 수 있다. 비제한적인 예로, 음극은 리튬 금속의 박막일 수도 있으며, 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn 으로 이루어지는 군으로부터 선택되는 1종 이상의 금속과의 합금일 수 있다.In addition, the negative electrode may be lithium metal or a lithium alloy. As a non-limiting example, the negative electrode may be a thin film of lithium metal, one selected from the group consisting of lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al and Sn It may be an alloy with the above metals.
분리막Separator
양극과 음극 사이는 통상적인 분리막이 개재될 수 있다. 상기 분리막은 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서, 통상의 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해액의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다.A conventional separator may be interposed between the positive electrode and the negative electrode. The separator is a physical separator having a function of physically separating the electrode, and can be used without particular limitation as long as it is used as a conventional separator, and in particular, it is preferable that the separator has a low resistance to electrolyte migration and excellent electrolyte-moisture capability.
또한 상기 분리막은 양극과 음극을 서로 분리 또는 절연시키면서 양극과 음극 사이에 리튬 이온의 수송을 가능하게 한다. 이러한 분리막은 다공성이고 비전도성 또는 절연성인 물질로 이루어질 수 있다. 상기 분리막은 필름과 같은 독립적인 부재이거나, 또는 양극 및/또는 음극에 부가된 코팅층일 수 있다.In addition, the separator enables the transport of lithium ions between the positive electrode and the negative electrode while separating or insulating the positive electrode and the negative electrode from each other. Such a separator may be made of a porous and nonconductive or insulating material. The separator may be an independent member such as a film or a coating layer added to the anode and / or the cathode.
구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.Specifically, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer may be used alone. It may be used as a lamination or or a conventional porous non-woven fabric, for example, a non-woven fabric made of glass fibers, polyethylene terephthalate fibers of high melting point, etc. may be used, but is not limited thereto.
상기 리튬-설퍼 전지에 포함되는 상기 양극, 음극 및 분리막은 각각 통상적인 성분과 제조 방법에 따라 준비될 수 있으며, 또한 리튬-설퍼 전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(Pouch)형 또는 코인(Coin)형 등이 될 수 있다.The positive electrode, the negative electrode, and the separator included in the lithium-sulfur battery may be prepared according to conventional components and manufacturing methods, respectively, and the appearance of the lithium-sulfur battery is not particularly limited, but may be cylindrical, rectangular, or pouch using a can. It may be a pouch type or a coin type.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to help the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and various changes and modifications within the scope and spirit of the present invention are apparent to those skilled in the art. It goes without saying that changes and modifications belong to the appended claims.
[실시예]EXAMPLE
실시예 1 내지 5 및 비교예 1Examples 1 to 5 and Comparative Example 1
(1) 전해액의 제조(1) Preparation of Electrolyte
1,3-디옥솔란(DOL) 및 1,2-디메톡시에탄(DME)의 부피비를 50 : 50 으로 하는 혼합 용매에 LiTFSI((CF3SO2)2NLi) 1.0 M, 및 LiNO3 1 중량%를 첨가하여 비교예 1의 비수계 전해액을 제조하였다.LiTFSI ((CF 3 SO 2 ) 2 NLi) 1.0 M, and LiNO 3 1 weight in a mixed solvent having a volume ratio of 1,3-dioxolane (DOL) and 1,2-dimethoxyethane (DME) of 50:50. Non-aqueous electrolyte solution of Comparative Example 1 was prepared by adding%.
상기 비교예 1의 전해액 조성에 라디칼 흡착제를 더 포함하는 실시예 1 내지 5의 비수계 전해액을 제조하였다. 하기 표 1에 실시예 1 내지 5 및 비교예 1의 전해액 조성을 나타내었다.The non-aqueous electrolyte solution of Examples 1 to 5 further comprising a radical adsorbent in the electrolyte solution composition of Comparative Example 1. Table 1 shows the electrolyte compositions of Examples 1 to 5 and Comparative Example 1.
Figure PCTKR2017000394-appb-T000001
Figure PCTKR2017000394-appb-T000001
(2) 리튬-설퍼 전지의 제조(2) Preparation of lithium-sulfur battery
황 65 중량%, 카본 블랙 25 중량%, 및 폴리에틸렌 옥사이드 10 중량%를 아세토니트릴과 혼합하여 양극 활물질을 준비하였다. 상기 양극 활물질을 알루미늄 집전체 상에 코팅하고 이를 건조하여 30 × 50 ㎟ 크기를 가진, 로딩량 5 mAh/cm2의 양극을 제조하였다. 또, 두께 150㎛의 리튬 금속을 음극으로 하였다.65% by weight of sulfur, 25% by weight of carbon black, and 10% by weight of polyethylene oxide were mixed with acetonitrile to prepare a positive electrode active material. The cathode active material was coated on an aluminum current collector and dried to prepare a cathode having a loading amount of 5 mAh / cm 2 having a size of 30 × 50 mm 2 . In addition, a lithium metal having a thickness of 150 µm was used as the cathode.
상기 제조한 양극과 음극을 대면하도록 위치시키고 그 사이에 폴리에틸렌 분리막을 개재한 후, 상기 제조한 실시예 1 또는 비교예 1의 전해액으로 충전하였다.The positive electrode and the negative electrode were prepared so as to face each other, and the polyethylene separation membrane was interposed therebetween, and then, the electrolyte solution of Example 1 or Comparative Example 1 was prepared.
실험예Experimental Example 1: 리튬- 1: lithium- 설퍼Sulfur 전지 제조 및 충·방전 후 가스 발생량 분석 Analysis of gas generation after battery manufacturing and charging / discharging
상기 실시예 및 비교예에서 제조된 각 리튬-설퍼 전지를 25 ℃에서 율속 0.1C로 5회 충·방전 후 전지 내 가스 발생량을 측정하였고, 그 결과를 하기 표 2 및 도 1에 나타내었다.Each lithium-sulfur battery prepared in Examples and Comparative Examples was measured 5 times at 25 ° C at a rate of 0.1C five times after the discharge of the gas in the battery was measured, the results are shown in Table 2 and FIG.
하기 표 2에 나타난 바와 같이, 라디칼 흡착제를 포함하지 않는 경우 가스 발생량이 473 μL 인 데 비해, 라디칼 흡착제를 포함하는 실시예 1 내지 5는 저감된 가스 발생량을 나타내는 것을 알 수 있다. 즉, 1,4-벤조퀴논을 첨가한 경우 약 67 ~ 73 %, TEMPO를 첨가한 경우 약 33%, 시마진을 첨가한 경우 약 25%의 가스 발생 억제 효과가 나타났다. As shown in Table 2, it can be seen that Examples 1 to 5 including the radical adsorbent show a reduced gas generation amount, while the gas generation amount is 473 μL when the radical adsorbent is not included. In other words, when 1,4-benzoquinone was added, about 67 to 73%, TEMPO was added, about 33%, and simazine were added.
Figure PCTKR2017000394-appb-T000002
Figure PCTKR2017000394-appb-T000002
실험예Experimental Example 2: 전지 수명 특성 평가 2: Battery Life Characterization
상기 실시예 및 비교예에서 제조된 전지에 대하여 하기 조건으로 충전 및 방전하면서 전지의 용량유지율을 측정하였으며, 그 결과를 도 2에 나타내었다.For the batteries prepared in Examples and Comparative Examples, the capacity retention ratio of the batteries was measured while charging and discharging under the following conditions, and the results are shown in FIG. 2.
충전: 율속 0.1C, 전압 2.8V, CC/CV (5% current cut at 0.1C)Charge: 0.1C at rate, 2.8V, CC / CV (5% current cut at 0.1C)
방전: 율속 0.1C, 전압 1.5V, CCDischarge: Rate 0.1C, Voltage 1.5V, CC
도 2를 참조하면, 라디칼 흡착제를 더 포함하는 실시예 1 내지 5의 전지는 모두 비교예 1과 유사한 용량유지율을 나타내는 것을 확인할 수 있다. 특히, 라디칼 흡착제가 1 중량%로 포함된 실시예 1, 4, 및 5의 경우는 보다 더 향상된 수명 특성을 나타내었다. 이로부터, 본 발명의 전해액은 전지 성능에 영향을 미치지 않으면서 가스 발생량이 저감되어 전지의 스웰링 현상을 방지하고 안정성을 향상시킬 수 있음을 확인할 수 있다.Referring to Figure 2, it can be seen that all of the batteries of Examples 1 to 5 further including a radical adsorbent exhibit a capacity retention similar to that of Comparative Example 1. In particular, Examples 1, 4, and 5, in which the radical adsorbent was included at 1% by weight, showed more improved life characteristics. From this, it can be seen that the electrolyte solution of the present invention can reduce the amount of gas generated without affecting battery performance, thereby preventing swelling of the battery and improving stability.

Claims (13)

  1. 리튬염 및 비수계 용매를 포함하고, 라디칼 흡착제를 더 포함하는 것을 특징으로 하는 리튬-설퍼 전지용 전해액.An electrolyte solution for lithium-sulfur batteries, comprising a lithium salt and a non-aqueous solvent, and further comprising a radical adsorbent.
  2. 제1항에 있어서,The method of claim 1,
    상기 라디칼 흡착제는 퀴논계 화합물, N-옥실 라디칼계 화합물, 페놀계 화합물, 아민계 화합물, 엔올계 화합물, 티올계 화합물, 아자이드계 화합물, 사이클로프로판 유도체, 사이클로부탄 유도체 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는 것을 특징으로 하는 리튬-설퍼 전지용 전해액.The radical adsorbent is a group consisting of a quinone compound, an N-oxyl radical compound, a phenol compound, an amine compound, an enol compound, a thiol compound, an azide compound, a cyclopropane derivative, a cyclobutane derivative, and a combination thereof. Electrolyte for lithium-sulfur battery, characterized in that it comprises one selected from.
  3. 제2항에 있어서,The method of claim 2,
    상기 퀴논계 화합물은 1,2-벤조퀴논, 1,4-벤조퀴논, 1,2-나프토퀴논, 1,4-나프토퀴논, 9,10-안트라퀴논, 1,4-안트라퀴논, 아세나프토퀴논 및 이들의 유도체로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 리튬-설퍼 전지용 전해액.The quinone compound is 1,2-benzoquinone, 1,4-benzoquinone, 1,2-naphthoquinone, 1,4-naphthoquinone, 9,10-anthraquinone, 1,4-anthraquinone, ace An electrolyte solution for lithium-sulfur batteries, characterized in that at least one selected from the group consisting of naphthoquinone and derivatives thereof.
  4. 제2항에 있어서, The method of claim 2,
    상기 N-옥실 라디칼계 화합물은 2,2,6,6-테트라메틸-1-피페리디닐옥실, 4-히드록시-2,2,6,6-테트라메틸-1-피페리디닐옥실, 4-옥소-2,2,6,6,-테트라메틸-1-피페리디닐옥실, 4-아미노-2,2,6,6-테트라메틸-1-피페리디닐옥실, 4-아세트아미도-2,2,6,6-테트라메틸-1-피페리디닐옥실, 4-메톡시-2,2,6,6-테트라메틸-1-피페리디닐옥실, 및 4-히드록시-2,2,6,6-테트라메틸-1-피페리디닐옥실-벤조에이트 로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 리튬-설퍼 전지용 전해액.The N-oxyl radical compound is 2,2,6,6-tetramethyl-1-piperidinyloxyl, 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxyl, 4 -Oxo-2,2,6,6, -tetramethyl-1-piperidinyloxyl, 4-amino-2,2,6,6-tetramethyl-1-piperidinyloxyl, 4-acetamido- 2,2,6,6-tetramethyl-1-piperidinyloxyl, 4-methoxy-2,2,6,6-tetramethyl-1-piperidinyloxyl, and 4-hydroxy-2,2 Electrolyte for lithium-sulfur battery, characterized in that at least one member selected from the group consisting of 6,6-tetramethyl-1-piperidinyloxyl-benzoate.
  5. 제2항에 있어서, The method of claim 2,
    상기 아민계 화합물은 시마진, N1,N4-디페닐벤젠-1,4-디아민, 및 이들의 조합인 것을 특징으로 하는 리튬-설퍼 전지용 전해액.The amine compound is simazine, N1, N4-diphenylbenzene-1,4-diamine, and a combination thereof, an electrolyte solution for a lithium-sulfur battery.
  6. 제1항에 있어서,The method of claim 1,
    상기 라디칼 흡착제는 전해액 100 중량%에 대하여 0.01 내지 5 중량%로 포함되는 것을 특징으로 하는 리튬-설퍼 전지용 전해액.The radical adsorbent is included in an amount of 0.01 to 5% by weight based on 100% by weight of the electrolyte solution.
  7. 제1항에 있어서, The method of claim 1,
    상기 비수계 용매는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계 및 비양성자성 용매로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 리튬-설퍼 전지용 전해액.The non-aqueous solvent is a lithium-sulfur battery electrolyte, characterized in that at least one selected from the group consisting of carbonate, ester, ether, ketone, alcohol and aprotic solvent.
  8. 제1항에 있어서,The method of claim 1,
    상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiC4BO8, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, (C2F5SO2)2NLi, (SO2F)2NLi, (CF3SO2)3CLi, 클로로 보란 리튬, 저급지방족 카르본산 리튬, 4 페닐 붕산 리튬, 리튬 이미드 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는 것을 특징으로 하는 리튬-설퍼 전지용 전해액.The lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiC 4 BO 8 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, (SO 2 F) 2 NLi, (CF 3 SO 2 ) 3 CLi, chloroborane lithium An electrolyte solution for a lithium-sulfur battery, comprising one selected from the group consisting of lower aliphatic lithium carbonate, lithium phenyl borate, lithium imide, and combinations thereof.
  9. 제1항에 있어서,The method of claim 1,
    상기 리튬염은 0.2 내지 2.0 M 농도로 포함되는 것을 특징으로 하는 리튬-설퍼 전지용 전해액.The lithium salt is a lithium-sulfur battery electrolyte, characterized in that it is contained in a concentration of 0.2 to 2.0 M.
  10. 제1항에 있어서,The method of claim 1,
    상기 전해액은 분자 내 N-O 결합을 갖는 첨가물을 더 포함하는 것을 특징으로 하는 리튬-설퍼 전지용 전해액.The electrolyte solution further comprises an additive having an intramolecular N-O bond.
  11. 제10항에 있어서,The method of claim 10,
    상기 첨가물은 질산리튬, 질산칼륨, 질산세슘, 질산바륨, 질산암모늄, 아질산리튬, 아질산칼륨, 아질산세슘, 아질산암모늄, 메틸 니트레이트, 디알킬 이미다졸륨 니트레이트, 구아니딘 니트레이트, 이미다졸륨 니트레이트, 피리디늄 니트레이트, 에틸 니트라이트, 프로필 니트라이트, 부틸 니트라이트, 펜틸 니트라이트, 옥틸 니트라이트, 니트로메탄, 니트로프로판, 니트로부탄, 니트로벤젠, 디니트로벤젠, 니트로 피리딘, 디니트로피리딘, 니트로톨루엔, 디니트로톨루엔, 피리딘 N-옥사이드, 알킬피리딘 N-옥사이드, 및 테트라메틸 피페리디닐옥실로 이루어지는 군에서 선택되는 1종 이상인 것을 특징으로 하는 리튬-설퍼 전지용 전해액.The additives include lithium nitrate, potassium nitrate, cesium nitrate, barium nitrate, ammonium nitrate, lithium nitrite, potassium nitrite, cesium nitrite, ammonium nitrite, methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imidazolium nitrate Latex, pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite, octyl nitrite, nitromethane, nitropropane, nitrobutane, nitrobenzene, dinitrobenzene, nitro pyridine, dinitropyridine, An electrolyte solution for lithium-sulfur batteries, which is at least one member selected from the group consisting of nitrotoluene, dinitrotoluene, pyridine N-oxide, alkylpyridine N-oxide, and tetramethyl piperidinyloxyl.
  12. 제10항에 있어서,The method of claim 10,
    상기 첨가물은 전해액 100 중량%에 대하여 0.01 내지 10 중량%로 포함되는 것을 특징으로 하는 리튬-설퍼 전지용 전해액.The additive is an electrolyte solution for a lithium-sulfur battery, characterized in that contained in 0.01 to 10% by weight relative to 100% by weight of the electrolyte.
  13. 양극; 음극; 상기 양극과 음극 사이에 개재되는 분리막; 및 전해액을 포함하는 리튬-설퍼 전지에 있어서,anode; cathode; A separator interposed between the anode and the cathode; And a lithium-sulfur battery comprising an electrolyte solution,
    상기 전해액은 제1항 내지 제12항 중 어느 한 항의 전해액인 것을 특징으로 하는 리튬-설퍼 전지.The electrolyte solution is a lithium-sulfur battery, characterized in that the electrolyte solution of any one of claims 1 to 12.
PCT/KR2017/000394 2016-03-03 2017-01-12 Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same WO2017150801A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/755,984 US10804576B2 (en) 2016-03-03 2017-01-12 Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
JP2018510824A JP6651225B2 (en) 2016-03-03 2017-01-12 Electrolyte for lithium-sulfur battery and lithium-sulfur battery including the same
CN201780003115.8A CN108028423B (en) 2016-03-03 2017-01-12 Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
EP17760205.9A EP3340361B1 (en) 2016-03-03 2017-01-12 Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160025398 2016-03-03
KR10-2016-0025398 2016-03-03
KR10-2017-0003342 2017-01-10
KR1020170003342A KR102069836B1 (en) 2016-03-03 2017-01-10 Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof

Publications (1)

Publication Number Publication Date
WO2017150801A1 true WO2017150801A1 (en) 2017-09-08

Family

ID=59743322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000394 WO2017150801A1 (en) 2016-03-03 2017-01-12 Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same

Country Status (1)

Country Link
WO (1) WO2017150801A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020066253A1 (en) * 2018-09-28 2021-08-30 パナソニックIpマネジメント株式会社 Lithium secondary battery
US11557792B2 (en) * 2017-09-21 2023-01-17 Lg Energy Solution, Ltd. Electrolyte for lithium secondary battery and lithium-secondary battery including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110092549A (en) * 2010-02-09 2011-08-18 삼성에스디아이 주식회사 Organic electrolytic solution and lithium battery employing the same
KR101141058B1 (en) * 2007-07-16 2012-07-12 주식회사 엘지화학 Secondary Battery with Improved Thermal Stability
KR101167334B1 (en) * 2004-01-06 2012-07-19 싸이언 파워 코포레이션 Electrolytes for Lithium Sulfur Cells
KR20150028804A (en) * 2012-06-06 2015-03-16 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and methods for producing these
KR101579330B1 (en) * 2008-02-29 2015-12-21 제온 코포레이션 Binder composition for electrode of nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167334B1 (en) * 2004-01-06 2012-07-19 싸이언 파워 코포레이션 Electrolytes for Lithium Sulfur Cells
KR101141058B1 (en) * 2007-07-16 2012-07-12 주식회사 엘지화학 Secondary Battery with Improved Thermal Stability
KR101579330B1 (en) * 2008-02-29 2015-12-21 제온 코포레이션 Binder composition for electrode of nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR20110092549A (en) * 2010-02-09 2011-08-18 삼성에스디아이 주식회사 Organic electrolytic solution and lithium battery employing the same
KR20150028804A (en) * 2012-06-06 2015-03-16 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and methods for producing these

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11557792B2 (en) * 2017-09-21 2023-01-17 Lg Energy Solution, Ltd. Electrolyte for lithium secondary battery and lithium-secondary battery including the same
JPWO2020066253A1 (en) * 2018-09-28 2021-08-30 パナソニックIpマネジメント株式会社 Lithium secondary battery
JP7281776B2 (en) 2018-09-28 2023-05-26 パナソニックIpマネジメント株式会社 lithium secondary battery

Similar Documents

Publication Publication Date Title
KR102069836B1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
US10468650B2 (en) Lithium sulfur battery
EP3793005B1 (en) Method of manufacturing negative electrode for lithium secondary battery and lithium secondary battery
KR102050837B1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
KR102050838B1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
WO2017183810A1 (en) Electrolyte for lithium-sulfur battery, and lithium-sulfur battery comprising same
WO2013191476A1 (en) Electrolyte including additives for lithium secondary battery and lithium secondary battery comprising same
US8535834B1 (en) Battery having electrolyte including multiple passivation layer forming components
KR20200047365A (en) Lithium-sulfur secondary battery
US10224567B2 (en) Battery having electrolyte including multiple passivation layer forming components
WO2018004110A1 (en) Electrolyte solution for lithium-sulfur battery and lithium-sulfur battery comprising same
KR20010068820A (en) New electrolytes and lithium ion battery using the same
KR102003295B1 (en) Electrolyte for sulfur battery and sulfur battery comprising the same
WO2017150801A1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
WO2018004103A1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
WO2019059698A2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2018093092A1 (en) Anode active material and preparation method therefor
WO2019078526A2 (en) Electrolyte for lithium metal battery and lithium metal battery comprising same
JP2004079335A (en) Electrolytic solution for secondary battery and secondary battery using it
WO2019022358A1 (en) Cathode for lithium-sulfur battery, and lithium-sulfur battery comprising same
WO2017135597A1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
WO2019066352A2 (en) Binder for preparing positive electrode for lithium-sulfur secondary battery, and method for preparing positive electrode using same
WO2019022399A2 (en) Method for improving lifetime of lithium-sulfur battery
CN114551914B (en) Electrolyte containing copper ion additive and application of electrolyte in lithium/fluorocarbon battery
US20240145697A1 (en) Cathode having multi-layer cathode coating

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510824

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15755984

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2017760205

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE