WO2017150750A1 - 공중합 폴리에스테르 수지 제조용 화합물 및 이를 이용한 공중합 폴리에스테르 수지의 제조방법 - Google Patents

공중합 폴리에스테르 수지 제조용 화합물 및 이를 이용한 공중합 폴리에스테르 수지의 제조방법 Download PDF

Info

Publication number
WO2017150750A1
WO2017150750A1 PCT/KR2016/002181 KR2016002181W WO2017150750A1 WO 2017150750 A1 WO2017150750 A1 WO 2017150750A1 KR 2016002181 W KR2016002181 W KR 2016002181W WO 2017150750 A1 WO2017150750 A1 WO 2017150750A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
resin
compound
polyester resin
copolyester resin
Prior art date
Application number
PCT/KR2016/002181
Other languages
English (en)
French (fr)
Inventor
장부경
신현욱
박성윤
호요승
Original Assignee
주식회사 휴비스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59743048&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017150750(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 휴비스 filed Critical 주식회사 휴비스
Priority to CN201680029219.1A priority Critical patent/CN107709282B/zh
Priority to EP16892763.0A priority patent/EP3279178B1/en
Priority to US15/569,183 priority patent/US11046811B2/en
Priority to ES16892763T priority patent/ES2816526T3/es
Publication of WO2017150750A1 publication Critical patent/WO2017150750A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a compound for producing a copolymerized polyester resin and a method for producing a copolymerized polyester resin using the same.
  • polyester fibers represented by polyethylene terephthalate (PET)
  • PET polyethylene terephthalate
  • thermal bonding is possible at temperatures of 190 ° C or lower, and even at temperatures lower than 130 ° C.
  • heat-adhesive fibers that can be used as clothing adhesive cores or automotive interior materials using polyester resins that maintain adhesiveness as adhesive components.
  • the copolyester resins developed to date should be thermally fused at a high temperature of 190 ° C. or higher, or have a glass transition temperature lower than 60 ° C., thereby limiting workability.
  • isophthalic acid (IPA) which is used as a dicarboxylic acid to lower the melting point of the polyester resin, has a high raw material price, which not only increases the manufacturing cost but also a cyclic compound having a polymerization degree of 2-3 (melting point: about 325 ⁇ 2 °C) by-products to reduce the physical properties of the copolyester resin or workability when manufacturing the heat-adhesive fiber.
  • the cyclic compound does not melt in the polyester process with a melting temperature of 300 ° C. or higher, which acts as a foreign material in the process, thereby increasing the polymer filter cycle in the polymerization process, and also decreasing processability in the post process such as extrusion and injection. It acts as a dust and makes the working environment difficult.
  • An object of the present invention is a co-polyester which can be thermally bonded at a temperature of 190 ° C. or less, maintains adhesion even at a temperature of less than 130 ° C., and also controls raw material content such as isophthalic acid (IPA). It is to provide a method for producing a resin.
  • IPA isophthalic acid
  • R 1 is an alkyl group having 1 to 4 carbon atoms
  • a and b are each independently an integer of 0 to 3
  • the diol component provides a method for preparing a copolyester resin comprising a compound for preparing a resin represented by the following formula (1):
  • R 1 is an alkyl group having 1 to 4 carbon atoms
  • a and b are each independently an integer of 0 to 3
  • the method for producing a copolyester resin according to the present invention may include a compound represented by the formula (1) as a diol component, which is excellent in processability and may reduce manufacturing cost.
  • the resin prepared according to the present invention is not only excellent in thermal adhesion at low temperatures but also less by-products generated during the polymerization process, there is an advantage in terms of workability and processability.
  • the terms "comprises” or “having” are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
  • a "weight part” means the weight ratio between each component.
  • mol part means the mole ratio between each component.
  • polymer means oligomers and / or polymers polymerized with a monomer or a compound containing a polymerizable reactive group.
  • the present invention provides a compound for preparing a copolyester resin comprising the compound represented by Formula 1 below:
  • R 1 is an alkyl group having 1 to 4 carbon atoms
  • a and b are each independently an integer of 0 to 3
  • the compound for preparing a copolyester resin according to the present invention may include a compound represented by Formula 1 having a structure in which an alkyl group represented by R 1 is bonded side chain to an alkyl chain having a diol as a diol component.
  • the compound represented by Chemical Formula 1 may include an alkyl group represented by R 1 as a side chain to secure a space for the main chain of the polymerized resin to rotate, thereby increasing the degree of freedom of the resin and thus lowering the melting point of the resin. . This may have the same effect as using isophthalic acid (IPA) containing an asymmetric aromatic ring to lower the melting point of conventional crystalline polyester resins.
  • IPA isophthalic acid
  • the compound can be used in place of isophthalic acid (IPA) for the purpose of lowering the melting point in the manufacture of polyester resin, so that the degree of polymerization 2 to 3 derived from isophthalic acid (IPA) during the polymerization of the polyester resin Formation of the compound can be prevented.
  • IPA isophthalic acid
  • the compound for preparing the copolymerized polyester resin according to the present invention may be included without particular limitation as long as it is a compound represented by Formula 1, specifically, in Formula 1, R 1 is a methyl group, and a and b are each independently 1 or It may include a compound of two.
  • the compound represented by Formula 1 may be a compound represented by Formula 2:
  • the present invention provides a method for preparing a copolyester resin using the compound for preparing the copolyester resin according to the present invention.
  • the method of preparing a copolyester resin according to the present invention may include preparing a polyester by polymerizing an acid component and a diol component.
  • the diol component includes a compound represented by the formula (1), the step may be performed by a method commonly used in the art.
  • the acid component may include terephthalic acid or terephthalic acid derivatives, and in some cases, may further include isophthalic acid or isophthalic acid derivatives.
  • the content may be 1 to 40 mol parts based on 100 mol parts of the acid component, and specifically 1 to 30 mol parts, 5 to 25 mol parts, and 5 to 5 mol parts based on 100 mol parts of the acid component. 20 moles, 5 to 15 moles, 15 to 25 moles, 25 to 35 moles, or 10 to 30 moles.
  • the diol component may include one or more selected from the group consisting of ethylene glycol (ethyleneglycol, EG) and diethylene glycol (DEG) together with the compound represented by the formula (1).
  • the diol component may include ethylene glycol together with the compound represented by the formula (1), and optionally include ethylene glycol and diethylene glycol.
  • the content of the compound represented by Chemical Formula 1 may be 1 to 50 mol parts based on 100 mol parts of the diol component. More specifically, the compound represented by Formula 1 is 5 mole parts to 40 mole parts with respect to 100 mole parts of the diol component; 10 moles to 30 moles; 20 mole parts to 40 mole parts; 25 moles to 50 moles; Or from 30 moles to 50 moles.
  • the melting point of the resin may not be sufficiently lowered due to the low content or the physical properties of the resin may be lowered due to the excess compound.
  • the content of the diethylene glycol may be 1 mol to 20 mol parts with respect to 100 mol parts of the diol component, specifically, 5 to 20 mol parts, 10 to 20 mol parts, 13 to 17 mol parts, and 1 to about 100 mol parts of the diol component. 10 moles, 5 to 15 moles, or 4 to 16 moles.
  • the present invention can prevent the manufacturing cost of the copolymerized polyester resin from increasing by adjusting the content of isophthalic acid (IPA) and diethylene glycol (DEG), which are further included as an acid component, in the above range.
  • IPA isophthalic acid
  • DEG diethylene glycol
  • Tg glass transition temperature
  • the copolymerized polyester resin prepared according to the production method according to the invention may have a softening point (Ts) of 100 °C to 160 °C, specifically 110 °C to 160 °C; 120 ° C. to 150 ° C .; 120 ° C. to 140 ° C .; 140 ° C. and 160 ° C .; 100 ° C. to 130 ° C .; 130 ° C. to 150 ° C .; 120 ° C. to 125 ° C .; 125 ° C. to 150 ° C .; 125 ° C. to 140 ° C .; 125 ° C. to 130 ° C .; 127 ° C to 146 ° C; 122 ° C. and 128 ° C .; Or 120 ° C. to 130 ° C.
  • Ts softening point
  • the copolyester resin may have a glass transition temperature (Tg) of 50 °C or more.
  • Tg glass transition temperature
  • the glass transition temperature may be 50 °C to 80 °C, more specifically 50 °C to 60 °C, 60 °C to 70 °C, 70 °C to 80 °C, 50 °C to 55 °C, 55 °C to 60 °C, 60 ° C to 65 ° C, 65 ° C to 70 ° C, 54 ° C to 58 ° C, 58 ° C to 68 ° C, 59 ° C to 63 ° C, 55 ° C to 70 ° C, 60 ° C to 80 ° C, 65 ° C to 80 ° C, or 67 ° C To 79 ° C.
  • the copolyester resin may have an intrinsic viscosity (I.V) of 0.5 dl / g to 0.75 dl / g.
  • the intrinsic viscosity (I.V) is 0.5 dl / g to 0.70 dl / g; 0.55 dl / g to 0.65 dl / g; 0.6 dl / g to 0.65 dl / g; 0.65 dl / g to 0.70 dl / g; 0.64 dl / g to 0.69 dl / g; 0.65 dl / g to 0.68 dl / g; 0.67 dl / g to 0.75 dl / g; 0.69 dl / g to 0.72 dl / g; 0.7 dl / g to 0.75 dl / g; Or 0.63 dl / g to 0.67 dl
  • the method for preparing the copolyester resin according to the present invention can lower the content of isophthalic acid (IPA) by using a compound for preparing a resin, and accordingly the ring of polymerization degree 2 to 3 derived from isophthalic acid (IPA) during polymerization.
  • the content of the type compound can be lowered.
  • the resin may include a cyclic compound having a degree of polymerization of 2 to 3 in an amount of 1% by weight or less, specifically 0.9% by weight or less, 0.8% by weight or less, 0.7% by weight or less, 0.6 wt% or less, 0.5 wt% or less, or 0.4 wt% or less.
  • PET oligomer polyethylene terephthalate polymer
  • MPD 2-methyl-1,3-propanediol
  • DEG diethylene glycol
  • IPA isophthalic acid
  • a polycondensation polymerization catalyst was added to the obtained reaction mixture, and the polycondensation reaction was carried out while adjusting the final temperature and pressure in the reactor to be 280 ⁇ 2 ° C. and 0.1 mmHg, respectively, to prepare a copolyester resin.
  • Example 1 As a control, the polyethylene terephthalate polymerized in Example 1 was prepared.
  • IPA isophthalic acid
  • PET oligomer polyethylene terephthalate oligomer
  • the glass transition temperature (Tg) of the resins prepared in Examples 1 to 7 and Comparative Examples 1 to 6 was measured using a differential scanning calorimeter (DSC-7, Perkin Elmer).
  • the softening point (Ts) of the resin was also measured in TMA mode using a dynamic mechanical analyzer (DMA-7, Perkin Elmer).
  • the intrinsic viscosity (I.V) was measured at 35 ° C using a Uberod viscometer.
  • the resin was dissolved in trifluoro acetic acid (TFA), respectively, and filtered through a PTFE syringe filter (diameter: 0.45 ⁇ m), followed by nuclear magnetic resonance spectroscopy (NMR, Bruker). 1 H-NMR spectrum was measured. The content of the cyclic compound having a degree of polymerization of 2 to 3 remaining in the resin was derived from the measured result. The results are shown in Tables 3 and 4 below.
  • Example 1 10 - - - 78.4 0.68
  • Example 2 20 - - - 74.8 0.67
  • Example 3 30 - - 145 71.2 0.65
  • Example 4 40 - - 128 67.6 0.6
  • Example 5 30 15 - 121 61.8 0.72
  • Example 6 30 - 10 126 67.2 0.68
  • Example 7 20 - 20 124 66.8 0.69
  • Comparative Example 3 - - 20 - 74.6 0.65
  • Comparative Example 4 - - 30 30 142 72.6 0.68 Comparative Example 5 - - 40 120 69.8 0.66 Comparative Example 6 - 15 30 115 63.5 0.61
  • the resins of the examples including the compound represented by Formula 1 as the diol component have a glass transition temperature (Tg) as compared to the resin of Comparative Example 1 containing only terephthalic acid as the acid component and ethylene glycol as the diol component. It was found that the content of the compound represented by 1 decreased from about 3.7 ° C. to 14.4 ° C. as it increased from 10 mole parts to 40 mole parts. This tendency appeared similarly at the softening point, which can be seen to be equivalent to the resins of the comparative examples including isophthalic acid (IPA) or isophthalic acid derivatives in order to improve the thermal properties of conventional polyester resins.
  • Tg glass transition temperature
  • the resins of Examples 1 to 5 do not include isophthalic acid or a derivative thereof as an acid component, and thus, about 0.0001 weight of a cyclic compound having a polymerization degree of 2 to 3 derived from isophthalic acid or a derivative thereof during polymerization. It was found to contain in an amount of less than%. This is about 2500 to 7500 times lower than the resins of Comparative Examples 2 to 6 containing the same amount of isophthalic acid, which has been conventionally used to improve the thermal properties of the polyester resin, as the compound represented by the formula (1).
  • the compound represented by Formula 1 according to the present invention can be included as a diol component in the preparation of the copolyester resin to improve the thermal properties of the resin, thereby replacing isophthalic acid or derivatives thereof, Not only can lower the content of the cyclic compounds generated in the manufacturing process.
  • the method for preparing the copolyester resin according to the present invention may include a compound represented by Chemical Formula 1 as a diol component, thereby improving processability and reducing manufacturing costs.
  • a compound represented by Chemical Formula 1 as a diol component, thereby improving processability and reducing manufacturing costs.
  • there are fewer by-products generated during the polymerization process there is an advantage in terms of workability and processability, and thus may be usefully used in the field of clothing or automobile parts using polyester resin as a heat adhesive fiber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

본 발명은 공중합 폴리에스테르 수지 제조용 화합물 및 이를 이용한 공중합 폴리에스테르 수지의 제조방법에 관한 것이다. 본 발명에 따른 공중합 폴리에스테르 수지의 제조방법은 화학식 1로 나타내는 화합물을 사용함으로써 효과 발현이 우수하고, 제조비용을 절감할 수 있다. 또한, 이에 따라 제조되는 수지는 저온에서도 열 접착력이 우수할 뿐만 아니라 중합 과정에서 발생되는 부산물이 적어 작업성 및 공정성 측면에서 이점이 있다.

Description

공중합 폴리에스테르 수지 제조용 화합물 및 이를 이용한 공중합 폴리에스테르 수지의 제조방법
본 발명은 공중합 폴리에스테르 수지 제조용 화합물 및 이를 이용한 공중합 폴리에스테르 수지의 제조방법에 관한 것이다.
최근 부직포 등의 섬유 분야에서 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, 이하 "PET")로 대표되는 폴리에스테르 섬유의 역할이 커지고 있는 가운데, 190℃ 이하의 온도에서 열 접착이 가능하고, 130℃ 미만의 온도에서도 접착성을 유지하는 폴리에스테르 수지를 접착성분으로 하여 의류 접착코어나 자동차 내장재 등에 사용 가능한 열 접착성 섬유에 대한 수요가 증가되고 있다.
이에 따라, 폴리에스테르 수지의 용융점을 낮춰 열 접착성 섬유의 접착 성분으로 활용하기 위한 연구가 활발히 진행되고 있으며, 그 예로서, 미국 공개특허 제4,129,675호 및 미국 공개특허 제4,065,439호는 테레프탈산, 이소프탈산, 아디핀산, 세바신산 등의 디카르복실산과 에틸렌글리콜, 네오펜틸글리콜 등의 디올 화합물을 공중합시킨 공중합 폴리에스테르 수지가 개발된 바 있다.
그러나, 현재까지 개발된 공중합 폴리에스테르 수지는 190℃ 이상의 고온 조건에서 열 융착이 수행되어야 하거나 유리전이온도가 60℃ 미만으로 낮아져 작업성이 나쁜 한계가 있다. 또한, 폴리에스테르 수지의 용융점을 낮추기 위하여 디카르복실산으로 사용되는 이소프탈산(isophthalic acid, IPA)은 원료 가격이 높아 제조 단가를 상승시킬 뿐만 아니라 중합도 2 내지 3을 갖는 고리형 화합물(용융점: 약 325±2℃)을 부산물로 형성하여 공중합 폴리에스테르 수지의 물성을 저하시키거나 열 접착성 섬유 제조 시 작업성을 저하시키는 문제가 있다. 구체적으로, 고리형 화합물은 용융온도가 300℃ 이상으로 폴리에스테르 공정에서 용융이 되지 않아 공정에서 이물질로 작용하여 중합공정에서 폴리머 필터 주기를 늘리고, 또한 압출 및 사출과 같은 후공정에서 공정성을 떨어뜨리고 분진으로 작용하여 작업 환경을 어렵게 하는 요인이 된다.
이러한 문제를 해결하기 위하여,
본 발명의 목적은 190℃ 이하의 온도에서 열 접착이 가능하고, 130℃ 미만의 온도에서도 접착성을 유지할 뿐만 아니라 이소프탈산(IPA) 등의 원료 함량이 제어되어 작업성 및 경제성이 우수한 공중합 폴리에스테르 수지를 제조하는 방법을 제공하는데 있다.
상기 목적을 달성하기 위하여,
본 발명은 일실시예에서,
하기 화학식 1로 나타내는 화합물을 포함하는 공중합 폴리에스테르 수지 제조용 화합물을 제공한다:
[화학식 1]
Figure PCTKR2016002181-appb-I000001
상기 화학식 1에서,
R1은 탄소수 1 내지 4의 알킬기이고,
a 및 b는 서로 독립적으로 0 내지 3의 정수이며,
a 및 b가 0인 경우, 단일결합을 의미한다.
또한, 본 발명은 일실시예에서,
산 성분과 디올 성분을 중합시켜 폴리에스테르 수지를 제조하는 단계를 포함하고,
상기 디올 성분은 하기 화학식 1로 나타내는 수지 제조용 화합물을 포함하는 공중합 폴리에스테르 수지의 제조방법을 제공한다:
[화학식 1]
Figure PCTKR2016002181-appb-I000002
상기 화학식 1에서,
R1은 탄소수 1 내지 4의 알킬기이고,
a 및 b는 서로 독립적으로 0 내지 3의 정수이며,
a 및 b가 0인 경우, 단일결합을 의미한다.
본 발명에 따른 공중합 폴리에스테르 수지의 제조방법은 디올 성분으로 화학식 1로 나타내는 화합물을 포함함으로써 공정성이 우수하고 제조비용을 절감할 수 있다. 또한, 본 발명에 따라 제조되는 상기 수지는 저온에서도 열 접착력이 우수할 뿐만 아니라 중합 과정에서 발생되는 부산물이 적어 작업성 및 공정성 측면에서 이점이 있다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명에서 "중량부"란, 각 성분간의 중량 비율을 의미한다
아울러, 본 발명에서 "몰부"이란, 각 성분간의 몰(mol) 비율을 의미한다.
이와 더불어, 본 발명에서 "중합체"란, 단량체 또는 중합 가능한 반응성기를 함유하는 화합물을 중합한 올리고머(oligomer) 및/또는 고분자(polymer)를 의미한다.
이하, 본 발명을 보다 상세히 설명한다.
본 발명은 일실시예에서, 하기 화학식 1로 나타내는 화합물을 포함하는 공중합 폴리에스테르 수지 제조용 화합물을 제공한다:
[화학식 1]
Figure PCTKR2016002181-appb-I000003
상기 화학식 1에서,
R1은 탄소수 1 내지 4의 알킬기이고,
a 및 b는 서로 독립적으로 0 내지 3의 정수이며,
a 및 b가 0인 경우, 단일결합을 의미한다.
본 발명에 따른 공중합 폴리에스테르 수지 제조용 화합물은 디올 성분으로서 디올이 결합된 알킬 사슬에 R1으로 나타내는 알킬기가 측쇄로 결합된 구조를 갖는 화학식 1로 나타내는 화합물을 포함할 수 있다. 상기 화학식 1로 나타내는 화합물은 R1으로 나타내는 알킬기를 측쇄로 포함하여 중합된 수지의 주쇄가 회전할 수 있도록 공간을 확보할 수 있으며, 이에 따라 수지의 자유도를 증가시켜 수지의 융점을 저하시킬 수 있다. 이는 종래 결정성 폴리에스테르 수지의 융점을 낮추기 위하여 비대칭 방향족 고리를 함유하는 이소프탈산(isophthalic acid, IPA)을 사용하는 경우와 동일한 효과를 나타낼 수 있다. 또한, 상기 화합물은 폴리에스테르 수지의 제조 시, 융점을 저하시키는 것을 목적으로 이소프탈산(IPA)을 대신하여 사용 가능하므로 폴리에스테르 수지 중합 시 이소프탈산(IPA)으로부터 유도되는 중합도 2 내지 3인 고리형 화합물의 형성을 방지할 수 있다.
이때, 본 발명에 따른 공중합 폴리에스테르 수지 제조용 화합물은 화학식 1로 나타내는 화합물이라면 특별히 제한하지 않고 포함할 수 있으나, 구체적으로는 화학식 1에서, R1은 메틸기이고, a 및 b는 서로 독립적으로 1 또는 2인 화합물을 포함할 수 있다.
하나의 예로서, 상기 화학식 1로 나타내는 화합물은 하기 화학식 2로 나타내는 화합물일 수 있다:
[화학식 2]
Figure PCTKR2016002181-appb-I000004
또한, 본 발명은 일실시예에서, 본 발명에 따른 상기 공중합 폴리에스테르 수지 제조용 화합물을 이용한 공중합 폴리에스테르 수지의 제조방법을 제공한다.
본 발명에 따른 공중합 폴리에스테르 수지의 제조방법은 산 성분과 디올 성분을 중합시켜 폴리에스테르를 제조하는 단계를 포함할 수 있다. 이때, 상기 디올 성분은 화학식 1로 나타내는 화합물을 포함하며, 상기 단계는 당업계에서 통상적으로 사용되는 방법에 의해 수행될 수 있다.
상기 산 성분은 테레프탈산(terephthalic acid) 또는 테레프탈산 유도체를 포함할 수 있으며, 경우에 따라서는 이소프탈산 또는 이소프탈산 유도체를 더 포함할 수 있다. 이소프탈산 또는 이소프탈산 유도체가 더 포함되는 경우, 그 함량은 산 성분 100 몰부에 대하여 1 내지 40 몰부 일 수 있으며, 구체적으로는 산 성분 100 몰부에 대하여 1 내지 30 몰부, 5 내지 25 몰부, 5 내지 20 몰부, 5 내지 15 몰부, 15 내지 25 몰부, 25 내지 35 몰부, 또는 10 내지 30 몰부일 수 있다.
또한, 상기 디올 성분은 화학식 1로 나타내는 화합물과 함께 에틸렌글리콜(ethyleneglycol, EG) 및 디에틸렌글리콜(diethyleneglycol, DEG)로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 구체적으로 디올 성분은 화학식 1로 나타내는 화합물과 함께 에틸렌글리콜을 포함할 수 있으며, 경우에 따라서 에틸렌글리콜과 디에틸렌글리콜을 함께 포함할 수 있다.
여기서, 화학식 1로 나타내는 화합물의 함량은 디올 성분 100 몰부에 대하여 1 몰부 내지 50 몰부일 수 있다. 보다 구체적으로, 화학식 1로 나타내는 화합물은 디올 성분 100 몰부에 대하여 5 몰부 내지 40 몰부; 10 몰부 내지 30 몰부; 20 몰부 내지 40 몰부; 25 몰부 내지 50 몰부; 또는 30 몰부 내지 50 몰부일 수 있다. 본 발명은 화학식 1로 나타내는 화합물의 함량을 상기 범위로 조절함으로써 낮은 함량으로 인해 수지의 융점이 충분히 낮아지지 않거나 과량의 화합물로 인해 수지의 물성이 저하되는 것을 방지할 수 있다.
아울러, 상기 디에틸렌글리콜의 함량은 디올 성분 100 몰부에 대하여 1 몰부 내지 20 몰부일 수 있으며, 구체적으로는 디올 성분 100 몰부에 대하여 5 내지 20 몰부, 10 내지 20 몰부, 13 내지 17 몰부, 1 내지 10 몰부, 5 내지 15 몰부, 또는 4 내지 16 몰부일 수 있다.
본 발명은 산 성분으로 추가 포함되는 이소프탈산(IPA)과 디올 성분으로 추가 포함되는 디에틸렌글리콜(DEG)의 함량을 상기 범위로 조절함으로써 공중합 폴리에스테르 수지의 제조단가가 증가하는 것을 방지할 수 있고, 유리전이온도(Tg) 저하되어 공중합 폴리에스테르를 방사하는 등의 후공정에서 경시변화가 발생되는 것을 예방할 수 있다.
한편, 본 발명에 따른 제조방법에 따라 제조되는 공중합 폴리에스테르 수지는 100℃ 내지 160℃의 연화점(Ts)을 가질 수 있고, 구체적으로는 110℃ 내지 160℃; 120℃ 내지 150℃; 120℃ 내지 140℃; 140℃ 내지 160℃; 100℃ 내지 130℃; 130℃ 내지 150℃; 120℃ 내지 125℃; 125℃ 내지 150℃; 125℃ 내지 140℃; 125℃ 내지 130℃; 127℃ 내지 146℃; 122℃ 내지 128℃; 또는 120℃ 내지 130℃일 수 있다.
또한, 상기 공중합 폴리에스테르 수지는 50℃ 이상의 유리전이온도(Tg)를 가질 수 있다. 구체적으로 상기 유리전이온도는 50℃ 내지 80℃일 수 있으며, 보다 구체적으로 50℃ 내지 60℃, 60℃ 내지 70℃, 70℃ 내지 80℃, 50℃ 내지 55℃, 55℃ 내지 60℃, 60℃ 내지 65℃, 65℃ 내지 70℃, 54℃ 내지 58℃, 58℃ 내지 68℃, 59℃ 내지 63℃, 55℃ 내지 70℃, 60℃ 내지 80℃, 65℃ 내지 80℃, 또는 67℃ 내지 79℃일 수 있다.
아울러, 상기 공중합 폴리에스테르 수지는 0.5 ㎗/g 내지 0.75 ㎗/g의 고유점도(I.V)를 가질 수 있다. 구체적으로 상기 고유점도(I.V)는 0.5 ㎗/g 내지 0.70 ㎗/g; 0.55 ㎗/g 내지 0.65 ㎗/g; 0.6 ㎗/g 내지 0.65 ㎗/g; 0.65 ㎗/g 내지 0.70 ㎗/g; 0.64 ㎗/g 내지 0.69 ㎗/g; 0.65 ㎗/g 내지 0.68 ㎗/g; 0.67 ㎗/g 내지 0.75 ㎗/g; 0.69 ㎗/g 내지 0.72 ㎗/g; 0.7 ㎗/g 내지 0.75 ㎗/g; 또는 0.63 ㎗/g 내지 0.67 ㎗/g일 수 있다.
나아가, 본 발명에 따른 공중합 폴리에스테르 수지의 제조방법은 수지 제조용 화합물을 사용함으로써 이소프탈산(IPA)의 함량을 낮출 수 있으며, 이에 따라 중합 시 이소프탈산(IPA)으로부터 유도되는 중합도 2 내지 3의 고리형 화합물의 함량을 낮출 수 있다.
하나의 예로서, 상기 수지는 중합도가 2 내지 3인 고리형 화합물을 전체 중량에 대하여 1 중량% 이하로 포함할 수 있으며, 구체적으로는 0.9 중량% 이하, 0.8 중량% 이하, 0.7 중량% 이하, 0.6 중량% 이하, 0.5 중량% 이하 또는 0.4 중량% 이하로 포함할 수 있다.
이하, 본 발명을 실시예 및 실험예에 의해 보다 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.
실시예 1 내지 실시예 7.
에스테르 반응조에 테레프탈산 및 에틸렌글리콜을 투입하고, 258℃에서 통상적인 중합반응을 수행하여 반응율이 약 96%인 폴리에틸렌 테레프탈레이트 중합체(PET oligomer)를 제조하였다. 제조된 폴리에틸렌 테레프탈레이트(PET)에 화학식 2로 나타내는 2-메틸-1,3-프로판디올(MPD), 디에틸렌글리콜(DEG) 및 이소프탈산(IPA)을 하기 표 1에 나타낸 함량 비율로 혼합하고, 에스테르 교환 반응 촉매를 첨가하여 250±2℃에서 에스테르 교환 반응을 수행하였다. 그 후 얻어진 반응 혼합물에 축중합 반응 촉매를 첨가하고 반응조 내 최종 온도 및 압력이 각각 280±2℃ 및 0.1 mmHg이 되도록 조절하면서 축중합 반응을 수행하여 공중합 폴리에스테르 수지를 제조하였다.
MPD [몰부] DEG [몰부] IPA [몰부]
실시예 1 10 - -
실시예 2 20 - -
실시예 3 30 - -
실시예 4 40 - -
실시예 5 30 15 -
실시예 6 30 - 10
실시예 7 20 - 20
- 표 1에서, 각 성분의 몰부는 폴리에틸렌 테레프탈레이트 올리고머(PET oligomer)의 몰수(100 몰부)를 기준으로 도출한 것이다.
비교예 1.
대조군으로서 상기 실시예 1에서 중합된 폴리에틸렌 테레프탈레이트를 준비하였다.
비교예 2 내지 비교예 6.
상기 실시예 1에서 폴리에틸렌 테레프탈레이트 올리고머(PET oligomer)에 이소프탈산(IPA)을 표 1에 나타낸 함량 비율로 혼합하는 대신에 하기 표 2에 나타낸 함량 비율로 혼합하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 공중합 폴리에스테르 수지를 제조하였다.
IPA [몰부] DEG [몰부]
비교예 2 10 -
비교예 3 20 -
비교예 4 30 -
비교예 5 40 -
비교예 6 30 15
- 표 2에서, 몰부는 폴리에틸렌 테레프탈레이트 올리고머(PET oligomer)의 몰수(100 몰부)를 기준으로 도출한 것이다.
실험예 1.
본 발명에 따라 제조되는 수지의 물성을 확인하기 위하여, 실시예 1 내지 실시예 7과 비교예 1 내지 비교예 6에서 제조된 수지의 유리전이온도(Tg)를 열시차 주사 열량계(DSC-7, Perkin Elmer)를 이용하여 측정하였다. 또한, 상기 수지의 연화점(Ts)을 동적기계 분석기(DMA-7, Perkin Elmer)를 이용하여 TMA 모드에서 측정하였다.
아울러, 페놀 및 테트라클로로에탄을 1:1 중량 비율로 혼합한 용액에 상기 수지를 각각 0.5 중량%의 농도로 용해시킨 후 우베로드 점도계를 이용하여 35℃에서 고유점도(I.V)를 측정하였다.
이와 더불어, 상기 수지를 각각 트리플루오로 아세트산(trifluoro acetic acid, TFA)에 용해시키고 이를 PTFE 실린지 필터(직경: 0.45㎛)로 여과한 다음 핵자기 공명 분광기(nuclear magnetic resonance, NMR, Bruker)를 이용하여 1H-NMR 스펙트럼을 측정하였다. 측정된 결과로부터 수지 내에 잔류하는 중합도 2 내지 3인 고리형 화합물의 함량을 도출하였다. 상기 결과들은 하기 표 3 및 표 4에 나타내었다.
MPD[몰부] DEG[몰부] IPA[몰부] Ts[℃] Tg[℃] I.V[㎗/g]
실시예 1 10 - - - 78.4 0.68
실시예 2 20 - - - 74.8 0.67
실시예 3 30 - - 145 71.2 0.65
실시예 4 40 - - 128 67.6 0.6
실시예 5 30 15 - 121 61.8 0.72
실시예 6 30 - 10 126 67.2 0.68
실시예 7 20 - 20 124 66.8 0.69
비교예 1 - - - - 82.1 0.66
비교예 2 - - 10 - 78.0 0.69
비교예 3 - - 20 - 74.6 0.65
비교예 4 - - 30 142 72.6 0.68
비교예 5 - - 40 120 69.8 0.66
비교예 6 - 15 30 115 63.5 0.61
고리형 화합물 함량[중량%] 고리형 화합물 함량[중량%]
실시예 1 ≤ 0.0001 비교예 2 0.25
실시예 2 ≤ 0.0001 비교예 3 0.41
실시예 3 ≤ 0.0001 비교예 4 0.56
실시예 4 ≤ 0.0001 비교예 5 0.75
실시예 5 ≤ 0.0001 비교예 6 0.63
실시예 6 0.17
실시예 7 0.36
상기 표 3 및 표 4에 나타낸 바와 같이 본 발명에 따른 화학식 1로 나타내는 화합물을 폴리에스테르 수지의 디올 성분으로 포함하는 경우, 제조되는 공중합 폴리에스테르 수지의 연화점(Ts), 유리전이온도(Tg) 등의 열적 특성이 저온에서 열접착이 가능한 수지의 요구 물성에 도달하는 것을 알 수 있다. 또한, 제조 시 발생되는 고리형 화합물의 함량이 감소하여 작업성 및/또는 공정성이 개선되는 것을 알 수 있다.
구체적으로, 표 3을 살펴보면 화학식 1로 나타내는 화합물을 디올 성분으로 포함한 실시예의 수지들은 산 성분으로 테레프탈산과 디올 성분으로 에틸렌글리콜 만을 포함하는 비교예 1의 수지와 대비하여 유리전이온도(Tg)가 화학식 1로 나타내는 화합물의 함량이 10 몰부에서 40 몰부로 증가함에 따라 약 3.7℃에서 14.4℃ 감소하는 것으로 나타났다. 이러한 경향은 연화점에서도 유사하게 나타났는데, 이는 종래 폴리에스테르 수지의 열적 특성을 개선하기 위하여 이소프탈산(IPA) 또는 이소프탈산 유도체를 포함하는 비교예의 수지들과 동등한 효과임을 알 수 있다.
또한, 표 4를 살펴보면 실시예 1 내지 실시예 5의 수지들은 이소프탈산 또는 이의 유도체를 산 성분으로 포함하지 않아 중합 시 이소프탈산 또는 이의 유도체로부터 유래되는 중합도 2 내지 3의 고리형 화합물을 약 0.0001 중량% 이하의 함량으로 포함하는 것으로 나타났다. 이는 폴리에스테르 수지의 열적 특성을 개선하기 위하여 종래 사용되어온 이소프탈산을 화학식 1로 나타내는 화합물과 동일 함량 포함하는 비교예 2 내지 비교예 6의 수지들과 대비하여 약 2500배 내지 7500배 낮은 수치이다.
이러한 결과로부터, 본 발명에 따른 화학식 1로 나타내는 화합물은 공중합 폴리에스테르 수지의 제조 시 디올 성분으로 포함되어 수지의 열적 특성을 향상시킬 수 있으며 이에 따라 이소프탈산 또는 이의 유도체를 대체할 수 있으므로, 제조단가를 낮출 수 있을 뿐만 아니라 제조 과정에서 발생되는 고리형 화합물의 함량을 낮출 수 있다.
본 발명에 따른 공중합 폴리에스테르 수지의 제조방법은 디올 성분으로 화학식 1로 나타내는 화합물을 포함함으로써 공정성이 우수하고 제조비용을 절감할 수 있으며, 이에 따라 제조되는 상기 수지는 저온에서도 열 접착력이 우수할 뿐만 아니라 중합 과정에서 발생되는 부산물이 적어 작업성 및 공정성 측면에서 이점이 있으므로 폴리에스테르 수지를 열 접착성 섬유로 활용하는 의류 분야 또는 자동차 부품 관련 분야 등에서 유용하게 사용될 수 있다.

Claims (12)

  1. 하기 화학식 1로 나타내는 화합물을 포함하는 공중합 폴리에스테르 수지 제조용 화합물:
    [화학식 1]
    Figure PCTKR2016002181-appb-I000005
    상기 화학식 1에서,
    R1은 탄소수 1 내지 4의 알킬기이고,
    a 및 b는 서로 독립적으로 0 내지 3의 정수이며,
    a 및 b가 0인 경우, 단일결합을 의미한다.
  2. 제1항에 있어서,
    R1은 메틸기이고,
    a 및 b는 서로 독립적으로 1 또는 2인 것을 특징으로 하는 공중합 폴리에스테르 수지 제조용 화합물.
  3. 제1항에 있어서,
    화학식 1로 나타내는 화합물은, 하기 화학식 2로 나타내는 화합물인 것을 특징으로 하는 공중합 폴리에스테르 수지 제조용 화합물:
    [화학식 2]
    Figure PCTKR2016002181-appb-I000006
    .
  4. 산 성분과 디올 성분을 중합시켜 폴리에스테르 수지를 제조하는 단계를 포함하고,
    상기 디올 성분은 하기 화학식 1로 나타내는 수지 제조용 화합물을 포함하는 공중합 폴리에스테르 수지의 제조방법:
    [화학식 1]
    Figure PCTKR2016002181-appb-I000007
    상기 화학식 1에서,
    R1은 탄소수 1 내지 4의 알킬기이고,
    a 및 b는 서로 독립적으로 0 내지 3의 정수이며,
    a 및 b가 0인 경우, 단일결합을 의미한다.
  5. 제4항에 있어서,
    화학식 1로 나타내는 화합물의 함량은 디올 성분 100 몰부에 대하여 1 몰부 내지 50 몰부인 것을 특징으로 하는 공중합 폴리에스테르 수지의 제조방법.
  6. 제4항에 있어서,
    산 성분은 테레프탈산 또는 테레프탈산 유도체인 것을 특징으로 하는 공중합 폴리에스테르 수지의 제조방법.
  7. 제6항에 있어서,
    산 성분은 이소프탈산 또는 이소프탈산 유도체를 더 포함하고,
    상기 이소프탈산 또는 이소프탈산 유도체의 함량은 산 성분 100 몰부에 대하여 1 내지 40 몰부인 것을 특징으로 하는 공중합 폴리에스테르 수지의 제조방법.
  8. 제4항에 있어서,
    디올 성분은 에틸렌글리콜을 포함하는 것을 특징으로 하는 공중합 폴리에스테르 수지의 제조방법.
  9. 제8항에 있어서,
    디올 성분은 디에틸렌글리콜을 더 포함하고,
    상기 디에틸렌글리콜의 함량은 디올 성분 100 몰부에 대하여 1 몰부 내지 20 몰부인 것을 특징으로 하는 공중합 폴리에스테르 수지의 제조방법.
  10. 제4항에 있어서,
    공중합 폴리에스테르 수지는 100℃ 내지 160℃의 연화점(Ts)을 갖는 것을 특징으로 하는 공중합 폴리에스테르 수지의 제조방법.
  11. 제4항에 있어서,
    공중합 폴리에스테르 수지의 고유점도(I.V)는, 0.5 ㎗/g 내지 0.75 ㎗/g인 것을 특징으로 하는 공중합 폴리에스테르 수지의 제조방법.
  12. 제4항에 있어서,
    공중합 폴리에스테르 수지의 유리전이온도(Tg)는, 50℃ 내지 80℃인 것을 특징으로 하는 공중합 폴리에스테르 수지의 제조방법.
PCT/KR2016/002181 2016-03-02 2016-03-04 공중합 폴리에스테르 수지 제조용 화합물 및 이를 이용한 공중합 폴리에스테르 수지의 제조방법 WO2017150750A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680029219.1A CN107709282B (zh) 2016-03-02 2016-03-04 用于共聚聚酯树脂的化合物及使用该化合物制备共聚聚酯树脂的方法
EP16892763.0A EP3279178B1 (en) 2016-03-02 2016-03-04 Compound for preparing copolymerized polyester resin and method for preparing copolymerized polyester resin using same
US15/569,183 US11046811B2 (en) 2016-03-02 2016-03-04 Compound for copolymeric polyester resin, and preparation method of copolymeric polyester resin using the same
ES16892763T ES2816526T3 (es) 2016-03-02 2016-03-04 Compuesto para preparar resina de poliéster copolimerizada y método para preparar resina de poliéster copolimerizada usando la misma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0025107 2016-03-02
KR1020160025107A KR101767132B1 (ko) 2016-03-02 2016-03-02 공중합 폴리에스테르 수지 제조용 화합물 및 이를 이용한 공중합 폴리에스테르 수지의 제조방법

Publications (1)

Publication Number Publication Date
WO2017150750A1 true WO2017150750A1 (ko) 2017-09-08

Family

ID=59743048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002181 WO2017150750A1 (ko) 2016-03-02 2016-03-04 공중합 폴리에스테르 수지 제조용 화합물 및 이를 이용한 공중합 폴리에스테르 수지의 제조방법

Country Status (6)

Country Link
US (1) US11046811B2 (ko)
EP (1) EP3279178B1 (ko)
KR (1) KR101767132B1 (ko)
CN (1) CN107709282B (ko)
ES (1) ES2816526T3 (ko)
WO (1) WO2017150750A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101924774B1 (ko) 2017-06-13 2018-12-05 주식회사 휴비스 충격강도가 향상된 폴리메틸프로필렌 테레프탈레이트, 그의 제조방법 및 그를 이용한 필름

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102065574B1 (ko) * 2017-12-27 2020-01-13 주식회사 삼양사 고광택 및 고경도를 갖는 폴리에스테르 수지 및 이를 포함하는 분체 도료
TWI785465B (zh) 2021-01-14 2022-12-01 遠東新世紀股份有限公司 一種新穎共聚酯及其用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155260A (ja) * 2000-09-11 2002-05-28 Toppan Printing Co Ltd ドライラミネーション用接着剤及びそれを用いた積層包装材
US7829656B2 (en) * 2006-07-11 2010-11-09 Wellman, Inc. Solid phase polymerization catalyst system
KR20120126936A (ko) * 2011-05-13 2012-11-21 신동하 생분해성 폴리에스테르 수지의 제조방법
KR20150025463A (ko) * 2013-08-29 2015-03-10 (주)에프티씨코리아 하이브리드 수용성 분산제 조성물
CN105131193A (zh) * 2015-08-11 2015-12-09 永悦科技股份有限公司 利用2-甲基1,3-丙二醇合成不饱和聚酯树脂的配方及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE759537A (fr) * 1969-11-28 1971-05-27 Fiber Industries Inc Polyesters pouvant etre teints avec des matieres colorantes basiques
DE2348353A1 (de) * 1973-09-26 1975-04-03 Bayer Ag Verfahren zur herstellung von 2-methylpropandiol-(1,3)
US4065439A (en) 1975-06-10 1977-12-27 Toyobo Co., Ltd. Copolyester and process for the production thereof
US4129675A (en) 1977-12-14 1978-12-12 E. I. Du Pont De Nemours And Company Product comprising blend of hollow polyester fiber and crimped polyester binder fiber
JPS5845225A (ja) * 1981-09-11 1983-03-16 Daicel Chem Ind Ltd 改質されたポリエチレンテレフタレ−ト成形材料
US5912307A (en) * 1996-05-03 1999-06-15 Bp Amoco Corporation Polyester compositions
US6103857A (en) * 1997-06-19 2000-08-15 Eastman Chemical Company Poly(ethylene terephthalate) (PET) copolymers containing both 1,4-cyclohexanedimethanol and isophthalic acid moieties
EP0984086B1 (en) * 1998-06-04 2001-03-28 Dairen Chemical Corporation Process for producing polyester fiber and polyester fiber therefrom
US6362306B1 (en) * 1999-08-17 2002-03-26 Eastman Chemical Company Reactor grade copolyesters for shrink film applications
US7008698B2 (en) 2003-06-17 2006-03-07 Mitsubishi Polyester Film, Llc Propane diol-based polyester resin and shrink film
KR101639629B1 (ko) * 2009-11-13 2016-07-14 에스케이케미칼주식회사 공중합 폴리에스테르 열 수축 필름
CN104558556A (zh) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 共聚酯及其制备方法和发泡制品及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155260A (ja) * 2000-09-11 2002-05-28 Toppan Printing Co Ltd ドライラミネーション用接着剤及びそれを用いた積層包装材
US7829656B2 (en) * 2006-07-11 2010-11-09 Wellman, Inc. Solid phase polymerization catalyst system
KR20120126936A (ko) * 2011-05-13 2012-11-21 신동하 생분해성 폴리에스테르 수지의 제조방법
KR20150025463A (ko) * 2013-08-29 2015-03-10 (주)에프티씨코리아 하이브리드 수용성 분산제 조성물
CN105131193A (zh) * 2015-08-11 2015-12-09 永悦科技股份有限公司 利用2-甲基1,3-丙二醇合成不饱和聚酯树脂的配方及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279178A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101924774B1 (ko) 2017-06-13 2018-12-05 주식회사 휴비스 충격강도가 향상된 폴리메틸프로필렌 테레프탈레이트, 그의 제조방법 및 그를 이용한 필름

Also Published As

Publication number Publication date
EP3279178A1 (en) 2018-02-07
US11046811B2 (en) 2021-06-29
US20190048133A1 (en) 2019-02-14
EP3279178A4 (en) 2018-10-03
KR101767132B1 (ko) 2017-08-14
EP3279178B1 (en) 2020-07-15
CN107709282B (zh) 2019-02-22
ES2816526T3 (es) 2021-04-05
CN107709282A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
WO2014003210A1 (en) Polyamide-imide copolymer film and method of preparing polyamide-imide copolymer
WO2012105770A2 (ko) 폴리에스테르 수지 조성물 및 그 제조방법
WO2013048126A1 (en) Polyamide-imide copolymer film and method of preparing polyamide-imide copolymer
WO2016027963A1 (ko) 투명 생분해성 고분자
WO2017150747A1 (ko) 저융점 복합섬유
WO2017003250A1 (ko) 프탈로니트릴 수지
WO2017150750A1 (ko) 공중합 폴리에스테르 수지 제조용 화합물 및 이를 이용한 공중합 폴리에스테르 수지의 제조방법
WO2012165734A1 (ko) 내가수분해성 및 생분해성 지방족/방향족 코폴리에스테르 수지 조성물
US5686559A (en) Poly(imide-amic ester), process for preparing the same, and processes for preparing polyimide film and polyimide fiber from the same
WO2010147378A2 (en) Methods of preparing wholly aromatic liquid crystalline polyester resin and wholly aromatic liquid crystalline polyester resin compound with constant melt viscosity
WO2017082710A1 (ko) 유동성이 향상된 전방향족 폴리에스테르 수지의 제조방법 및 이에 따라 제조된 전방향족 폴리에스테르
WO2020111563A1 (ko) 접착강도가 향상된 바인더용 폴리에스테르 수지 및 그를 이용한 폴리에스테르 섬유
EP0252415B1 (en) Novel polyester polymers
WO2020197147A1 (ko) 블록 공중합체 제조 방법
WO2012121472A1 (ko) 전방향족 액정 폴리에스테르 수지의 제조방법과 그 방법에 의해 제조된 수지, 및 상기 수지를 포함하는 컴파운드
WO2020004803A1 (ko) 열접착성 섬유용 폴리에스테르 조성물 및 이를 포함하는 열접착성 복합섬유
WO2013089408A1 (ko) 폴리아미드 수지, 이의 제조 방법 및 이를 포함하는 물품
WO2020197148A1 (ko) 트리블록 공중합체 및 이의 제조 방법
EP0242818B1 (en) Heat-resistant polyamide
WO2014104482A1 (ko) 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품
JP2595925B2 (ja) 熱硬化性ポリアリーレート樹脂
WO2022255615A1 (ko) 향상된 기계적 물성을 갖는 생분해성 퓨란계 복합체 및 이의 제조방법
WO2018139697A1 (ko) Fbpe를 포함하는 pet-pen 공중합체 조성물 및 그 제조방법
WO2017111261A1 (ko) 생분해성 폴리에스테르 수지의 제조 방법 및 그 방법에 의해 제조된 생분해성 폴리에스테르 수지
WO2023096435A1 (ko) 고내열성 폴리에틸렌 테레프탈레이트 공중합체

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016892763

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE