WO2017150705A1 - 選択性透過膜及びその製造方法、該選択性透過膜を用いる水処理方法 - Google Patents

選択性透過膜及びその製造方法、該選択性透過膜を用いる水処理方法 Download PDF

Info

Publication number
WO2017150705A1
WO2017150705A1 PCT/JP2017/008486 JP2017008486W WO2017150705A1 WO 2017150705 A1 WO2017150705 A1 WO 2017150705A1 JP 2017008486 W JP2017008486 W JP 2017008486W WO 2017150705 A1 WO2017150705 A1 WO 2017150705A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
phospholipid
porous membrane
amphotericin
phospholipid bilayer
Prior art date
Application number
PCT/JP2017/008486
Other languages
English (en)
French (fr)
Inventor
孝博 川勝
秀人 松山
大輔 佐伯
徹 高井
Original Assignee
栗田工業株式会社
国立大学法人神戸大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社, 国立大学法人神戸大学 filed Critical 栗田工業株式会社
Priority to US16/077,310 priority Critical patent/US10583405B2/en
Priority to JP2017513154A priority patent/JP7011137B2/ja
Priority to CN201780009627.5A priority patent/CN108602025B/zh
Publication of WO2017150705A1 publication Critical patent/WO2017150705A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00111Polymer pretreatment in the casting solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • B01D67/00135Air gap characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/142Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"
    • B01D69/144Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers" containing embedded or bound biomolecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/74Natural macromolecular material or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Definitions

  • the present invention relates to a selective permeable membrane used in the field of water treatment and a method for producing the same, and more particularly to a selective permeable membrane having a coating layer composed of a phospholipid bilayer membrane and a method for producing the same.
  • RO membranes are widely used as selective permeable membranes in fields such as seawater and brine desalination, industrial water and ultrapure water production, and wastewater collection.
  • RO membrane treatment has the advantage that ions and low molecular organic substances can be removed to a high degree, but requires a higher operating pressure than microfiltration (MF) membranes and ultrafiltration (UF) membranes.
  • MF microfiltration
  • UF ultrafiltration
  • contrivances such as controlling the fold structure of the skin layer and increasing the surface area have been made.
  • Non-Patent Document 1 a membrane protein that selectively transports water molecules, has attracted attention as a water channel material, and phospholipid bilayer membranes incorporating this protein can have a theoretically higher water permeability than conventional polyamide RO membranes. Sexuality has been suggested (Non-Patent Document 1).
  • a method for producing a selective permeable membrane having a phospholipid bilayer membrane incorporating a water channel substance a method of sandwiching a lipid bilayer incorporating a water channel substance with a porous support, a lipid in the pores of the porous support
  • a method of incorporating a bilayer and a method of forming a lipid bilayer around a hydrophobic membrane Patent Document 1.
  • the pressure resistance of the phospholipid bilayer membrane is improved, but the porous support itself in contact with the water to be treated is contaminated.
  • concentration polarization occurs and the rejection rate is greatly reduced, and the porous support may become a resistance and water permeability may be reduced.
  • the Danish aquaporin company has produced an RO membrane in which aquaporin is introduced into the polymer matrix.
  • the water permeability is about 1.2 times that of the existing RO membrane, and there is no clear description in Non-Patent Document 2.
  • Patent Document 2 describes that a cationic phospholipid is used to be firmly supported on a nanofiltration (NF) membrane.
  • NF nanofiltration
  • Non-Patent Document 3 reports the result of introducing amphotericin B, which is a channel substance, by supporting phospholipids on an NF membrane, but the water transmission rate is 0.3 L / (m 2 ⁇ h ⁇ atm) or less. is there.
  • ergosterol coexisting with amphotericin B itself has an effect of increasing water permeability at a water permeation rate of 0 to 1 L / (m 2 ⁇ h ⁇ atm), so that optimum addition of amphotericin B and ergosterol The problem is that the amount is not clear.
  • Non-patent Document 6 Non-patent Document 6
  • amphotericin B and ergo necessary for producing RO membrane or forward osmosis (FO) membrane are also reported.
  • the optimal relationship of sterols is not known.
  • a selective permeable membrane comprising a porous membrane main body having selective permeability and a coating layer made of a phospholipid bilayer membrane formed on the surface of the porous membrane main body has a high water permeability.
  • the present invention relates to a RO membrane having a high water permeability and a salt blocking performance, comprising a porous membrane body having selective permeability and a coating layer comprising a phospholipid bilayer membrane formed on the surface of the porous membrane body. Another object is to provide an FO film.
  • the present inventors have found that the surface of the porous membrane having a specific alkyl group on the surface of the porous membrane main body and having a pore diameter of 5 nm to 50 nm.
  • the present invention was completed by finding that the above object could be achieved by forming a selective permeable membrane having a coating layer composed of a phospholipid bilayer containing amphotericin B and ergosterol in a predetermined range as channel materials. That is, the present invention provides the following [1] to [7].
  • a selective permeable membrane having a porous membrane having a pore diameter of 5 nm to 50 nm, and a coating layer formed of a phospholipid bilayer formed on the surface of the porous membrane (I) the phospholipid bilayer comprises phospholipid, amphotericin B and ergosterol; (Ii) The content of amphotericin B is 3 to 20 mol% with respect to the phospholipid bilayer, (iii) The selective permeable membrane, wherein the total content of ergosterol and amphotericin B in the phospholipid bilayer is 10 to 30 mol%.
  • a coating layer composed of a phospholipid bilayer is formed on the surface of the porous membrane by bringing a coating layer forming solution satisfying the following (i) to (iii) into contact with the porous membrane:
  • Process A process for producing a selective permeable membrane, comprising: (i) The coating layer forming solution contains a phospholipid, a channel substance, and ergosterol.
  • the channel substance is amphotericin B, and the concentration of amphotericin B in the coating layer forming solution is 3 to 20 mol%.
  • the total content of ergosterol and amphotericin B in the coating layer forming solution is 10 to 30 mol%.
  • a water treatment method comprising a step of subjecting water to be treated to membrane separation using the selective permeable membrane according to any one of [1] to [3].
  • the selective permeable membrane of the present invention is a selective permeable membrane having a porous membrane having a pore size of 5 nm to 50 nm and a coating layer formed of a phospholipid bilayer formed on the surface of the porous membrane.
  • the phospholipid bilayer comprises phospholipid, amphotericin B and ergosterol;
  • the content of amphotericin B is 3 to 20 mol% with respect to the phospholipid bilayer,
  • the selective permeable membrane, wherein the total content of ergosterol and amphotericin B in the phospholipid bilayer is 10 to 30 mol%.
  • a preferred embodiment is a selective permeable membrane in which an alkyl group having 1 to 30 carbon atoms is bonded to the surface of the porous membrane.
  • the method for producing a selective permeable membrane of the present invention comprises a porous membrane having a pore diameter of 5 nm to 50 nm, and a phospholipid bilayer containing a phospholipid and a channel substance formed on the surface of the porous membrane.
  • a coating layer-forming solution satisfying the following (i) to (iii) and the porous membrane, thereby contacting the porous membrane to form a phospholipid bilayer: And a step of forming a coating layer on the surface of the porous membrane.
  • the coating layer forming solution contains a phospholipid, a channel substance and ergosterol.
  • the channel substance is amphotericin B, and the concentration of amphotericin B in the coating layer forming solution is 3 to 20 mol%.
  • the total content of ergosterol and amphotericin B in the coating layer forming solution is 10 to 30 mol%.
  • the porous membrane body is not particularly limited as long as it is a porous membrane having a pore diameter of 5 nm to 50 nm.
  • cellulose, polyethersulfone, polyvinylidene fluoride, alumina, zirconia and the like are preferable. is there.
  • the porous membrane body used in the present invention is characterized in that the pore diameter is 5 nm to 50 nm. If the pore diameter is less than 5 nm, the water permeability is inferior, and if the pore diameter exceeds 50 nm, a pressure resistance problem occurs.
  • the range of the pore diameter corresponds to the region of the UF membrane, and the molecular weight cut-off corresponds to 10,000 to 1,500,000.
  • the measuring method of the pore diameter in the present invention is based on the air flow method.
  • the air flow method is a method for measuring the pore diameter of a membrane, which is also described in ASTM F306, and can measure a pore diameter in the range of 15 nm to 180 ⁇ m.
  • a pore diameter calculated at a pressure corresponding to a half permeation amount of the total gas permeation amount is used.
  • pores of 1 nm to 15 nm it is described in non-patent literature (Tsuru, T. et al., J. Mmbrane Sci., Vol. 149, pp. 127-135, 1998) or Japanese Patent No. 5426367. According to the contents, it is obtained from the permeation flow rate of nitrogen gas containing water vapor and n-hexane vapor using the Kelvin equation.
  • the porous membrane used in the present invention preferably has a porous membrane main body and an alkyl group having 1 to 30 carbon atoms bonded to the surface of the porous membrane main body.
  • an alkyl group having 1 to 30 carbon atoms By bonding an alkyl group having 1 to 30 carbon atoms to the surface, adhesion to a coating layer composed of a phospholipid bilayer can be improved.
  • the type of the alkyl group is not particularly limited, and may have a substituent such as a fluoro group, a chloro group, an amino group, or a carboxyl group. Further, it may be linear or branched. From the viewpoint of further improving the adhesion to the coating layer composed of the phospholipid bilayer, a linear alkyl group is preferred.
  • the alkyl group is preferably bonded to the surface of the porous membrane body as an alkylated silane coupling agent.
  • the carbon number of the alkyl group is in the range of 1 to 30, the porous membrane (main body) and the coating layer composed of the phospholipid bilayer are formed in the step of membrane separation treatment of the water to be treated using the selective permeable membrane. There is no inconvenience such as separation and filtration.
  • the alkyl group preferably has 6 to 25 carbon atoms, and particularly preferably 8 to 20 carbon atoms.
  • Preferred alkylated silane coupling agents include methoxysilane coupling agents having the above carbon number, trimethoxysilane coupling agents, ethoxysilane coupling agents, triethoxy coupling agents, chlorosilane coupling agents, trichlorosilane coupling agents, especially Preferable coupling agents include octadecyltrichlorosilane having 18 carbon atoms from the viewpoint of hydrophobicity and reactivity.
  • Examples of the method for bonding alkyl groups include a method of immersing the porous membrane body in an alkylated silane coupling agent solution. Furthermore, it is preferable to hydrophilize the surface of the porous membrane body prior to treatment with the alkylated silane coupling agent.
  • the amount of alkyl group binding to the porous membrane body is preferably such that the water droplet contact angle is 100 degrees or more.
  • the phospholipid used in the present invention examples include palmitoyl oleoyl phosphatidylcholine (POPC), dipalmitoyl phosphatidylcholine (DPPC), dimyristoyl phosphatidylcholine (DMPC), distearoyl phosphatidylcholine (DSPC), and the like.
  • POPC palmitoyl oleoyl phosphatidylcholine
  • the phospholipid bilayer contains a phospholipid and a channel substance, and the channel substance forms a pore in the phospholipid bilayer to form a channel that promotes water permeation. Is used.
  • Examples of the method of coating the surface of the porous membrane main body with a coating layer comprising a phospholipid bilayer include the Langmuir-Blodgett method and the vesicle fusion method.
  • phospholipid is preferably dissolved in a solvent together with amphotericin B as a channel substance and ergosterol.
  • a solvent chloroform, chloroform / methanol mixed solution, or the like can be used.
  • the mixing ratio of phospholipid and amphotericin B as a channel substance is preferably such that the content of amphotericin B in the phospholipid bilayer is 3 to 20 mol%, particularly 5 to 10 mol%.
  • the mixing ratio of phospholipid and amphotericin B as a channel substance and ergosterol is 10 to 30 mol% in total of amphotericin B and ergosterol in the total of the three, and 10 to 25 mol% is more Preferably, 13 to 25 mol% is more preferable, and 13 to 20 mol% is particularly preferable.
  • the upper limit of the content of ergosterol in the phospholipid bilayer is 27 mol%, and it is particularly preferable that the content is 3 to 20 mol%.
  • a 0.3 to 50 mM, particularly 1 to 30 mM, solution of phospholipid containing ergosterol and a channel substance is prepared, and dried under reduced pressure to obtain a dry lipid film. By setting the temperature higher than the phase transition temperature of the lipid, a dispersion of vesicles having a spherical shell shape is obtained.
  • the vesicle dispersion is first brought into a frozen state in liquid nitrogen, and the vesicles are grown by a freeze-thaw method in which the vesicle dispersion is repeatedly exposed to a molten state at a temperature higher than the phase transition temperature of the phospholipid. , Decrease the number of phospholipid bilayers constituting the vesicle.
  • the vesicle dispersion is then filtered through a membrane having pores with a pore size of 0.05 to 0.4 ⁇ m (for example, a polycarbonate track etching membrane) to form a single particle having a particle size of 0.05 to 0.4 ⁇ m or less.
  • a dispersion of spherical shell vesicles composed of a phospholipid bilayer membrane is used.
  • the vesicle dispersion is used as it is without being subjected to the freeze-thaw treatment.
  • the average particle size of the vesicles of the vesicle dispersion used in the present invention is preferably 0.05 to 0.4 ⁇ m, particularly preferably 0.1 to 0.2 ⁇ m.
  • the average particle diameter of the vesicle of the vesicle dispersion is a value calculated by a dynamic light scattering method.
  • the vesicle dispersion is brought into contact with the porous membrane, and the vesicle is adsorbed on the surface of the porous membrane by keeping the vesicle dispersion in contact with the vesicle dispersion for 0.5 to 6 hours, particularly 1 to 3 hours.
  • Forming a coating layer of the phospholipid bilayer membrane Thereafter, the porous membrane with a coating layer is pulled up from the solution and washed with ultrapure water or pure water as necessary to selectively permeate the membrane with a phospholipid bilayer coating layer (number of layers 1 to 30). A membrane is obtained.
  • the thickness of the phospholipid bilayer membrane is preferably about 1 to 30 layers, particularly about 1 to 15 layers.
  • the number of layers as the thickness of the phospholipid bilayer membrane can be confirmed by quantifying phosphorus by the Barrett method. (Bartlett, G. R., J. Biol. Chem., Vol. 234, no. 3, 466-468, 1959)
  • a water permeation amount of 20 L / (m 2 ⁇ h ⁇ atm) or more is obtained in a driving pressure range of 0.1 to 30 atm. be able to.
  • a phospholipid bilayer containing amphotericin B as a channel substance can be introduced into a porous membrane, and an FO membrane or RO membrane having high water permeability and high salt rejection can be obtained. Obtainable. And the obtained film
  • membrane can be applied to a water treatment.
  • Phospholipid As the phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, phospholipid containing an unsaturated fatty acid in the phospholipid acyl group, phase transition temperature -2 ° C., NOF Corporation) Using.
  • POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
  • Ergosterol Ergosterol was used from Tokyo Kasei Co., Ltd. In FIGS. 1 to 3, “Erg” is used.
  • channel material amphotericin B from Cayman Chemical Co. was used. In FIGS. 1 to 3, “AmB” is used.
  • Octadecyltrichlorosilane which is a silane coupling agent having an octadecyl group having 18 carbon atoms [hereinafter referred to as a “silane coupling agent”, as a material for imparting an alkyl group having 1 to 30 carbon atoms. ] was used.
  • the porous membrane body was treated as follows using the silane coupling agent. First, the porous membrane body was immersed in pure water and subjected to ultrasonic cleaning for 5 minutes. Next, plasma treatment was performed using a tabletop vacuum plasma apparatus (YHS-R, Sakai Semiconductor Co., Ltd.) to make the surface hydrophilic. The porous membrane body was immersed in a 2 vol% hexane solution of octadecyltrichlorosilane for 15 minutes, washed with hexane and pure water, and allowed to stand overnight at room temperature. This treatment changed the water droplet contact angle from 13 degrees to 149 degrees.
  • ⁇ Vesicle preparation method and development to porous membrane The phospholipid, ergosterol, and channel material were dissolved in a mixed solvent (organic solvent) of chloroform and methanol. The organic solvent was evaporated under reduced pressure, pure water was added to the dried lipid thin film remaining in the container, and hydrated at 40 ° C. to prepare a vesicle dispersion. The obtained vesicle dispersion was subjected to grain growth by a freeze-thaw method in which immersion operation was alternately repeated 5 times in liquid nitrogen and a 40 ° C. hot water bath.
  • the vesicle dispersion was extruded and sized using a polycarbonate track etching membrane having a pore size of 0.2 ⁇ m, and diluted with pure water to a phospholipid concentration of 3 mM.
  • the porous membrane body treated with the silane coupling agent was immersed in this vesicle dispersion for 2 hours, thereby adsorbing phospholipids on the membrane body. Thereafter, ultrasonic cleaning was performed for 10 minutes, and the phospholipid adsorbed excessively on the porous membrane body was peeled off.
  • FIGS. 1 to 3 show the results of channel formation evaluation of amphotericin B by CD spectrum.
  • FIG. 1 shows a case where the concentration of amphotericin B (shown as “AmB” in FIGS. 1 to 3) is 10 mol% and the concentration of ergosterol (shown as “Erg” in FIGS. 1 to 3) is changed.
  • AmB amphotericin B
  • Erg concentration of ergosterol
  • the concentration of amphotericin B is changed by setting the concentration of ergosterol to 10 mol%, but it was confirmed that the concentration of amphotericin B at which a channel is formed is 3 to 20 mol%.
  • FIG. 3 shows the case where the molar ratio of amphotericin B and ergosterol is 1: 1, but when amphotericin B is 5, 10, and 15 mol%, a channel is formed, and when 20 mol%, a channel is not formed. .
  • the concentrations (content ratios) of amphotericin B and ergosterol satisfying the conditions for channel formation are set in the following ranges. That is, the content of amphotericin B in the phospholipid bilayer is 3 mol% to 20 mol%. The total content of ergosterol and amphotericin B in the phospholipid bilayer is 10 to 30 mol%.
  • Example 1 A phospholipid bilayer is developed on an alumina porous membrane having a pore diameter of 20 nm to which an alkyl group is bonded by the above-mentioned method using 87 mol% of phospholipid POPC, 10 mol% of amphotericin B, 3 mol% of ergosterol, A selective permeable membrane having 1 to 15 phospholipid bilayers was obtained, and the water permeation rate and the salt rejection rate were determined.
  • Example 2 A phospholipid bilayer is developed on an alumina porous membrane having a pore diameter of 20 nm to which an alkyl group is bonded by the above-described method using 85 mol% of phospholipid POPC, 10 mol% of amphotericin B, 5 mol% of ergosterol, A selective permeable membrane having 1 to 15 phospholipid bilayers was obtained, and the water permeation rate and the salt rejection rate were determined.
  • Example 3 A phospholipid bilayer is developed on an alumina porous membrane having a pore diameter of 20 nm to which an alkyl group is bonded by the above-described method using 80 mol% of phospholipid POPC, 10 mol% of amphotericin B and 10 mol% of ergosterol. A selective permeable membrane in which 1 to 15 phospholipid bilayers were formed was obtained, and the water permeation rate and the salt rejection rate were determined.
  • Example 4 A phospholipid bilayer is developed on an alumina porous membrane having a pore diameter of 20 nm and bonded with an alkyl group by the above-mentioned method using 70 mol% of phospholipid POPC, 10 mol% of amphotericin B and 20 mol% of ergosterol. A selective permeable membrane in which 1 to 15 phospholipid bilayers were formed was obtained, and the water permeation rate and the salt rejection rate were determined.
  • Comparative Example 1 Using POPC, a phospholipid bilayer was developed on an alumina porous membrane having a pore diameter of 20 nm, and the water transmission rate and the salt rejection rate were determined. A phospholipid bilayer was not formed on the alumina porous membrane.
  • Comparative Example 2 Selectivity in which 1 to 15 phospholipid bilayers were formed by developing phospholipid bilayers on an alumina porous membrane having a pore size of 20 nm to which alkyl groups were bonded by the above-described method using POPC as phospholipids. A permeable membrane was obtained, and the water permeation rate and salt rejection rate were determined.
  • Comparative Example 3 A phospholipid bilayer is developed on an alumina porous membrane having a pore diameter of 20 nm and bonded with an alkyl group by the above-mentioned method using 90 mol% of phospholipids of POPC and 10 mol% of amphotericin B. A selective permeable membrane in which a phospholipid bilayer was formed was obtained, and the water transmission rate and the salt rejection rate were determined.
  • Comparative Example 4 A phospholipid bilayer is developed on an alumina porous membrane having a pore diameter of 20 nm to which an alkyl group is bonded by the above-described method using 90 mol% of phospholipid POPC and 10 mol% of ergosterol, and 1 to 15 layers are formed. A selective permeable membrane in which a phospholipid bilayer was formed was obtained, and the water transmission rate and the salt rejection rate were determined.
  • Comparative Example 5 Using the phospholipid POPC, the phospholipid bilayer was developed on the alumina porous membrane having a pore size of 200 nm to which the alkyl group was bonded by the above-described method, and 1 to 15 phospholipid bilayers were formed. A selective permeable membrane was obtained, and the water permeation rate and salt rejection were determined.
  • Comparative Example 6 A phospholipid bilayer is developed on an alumina porous membrane having a pore diameter of 20 nm and bonded with an alkyl group by the above-described method using 60 mol% of phospholipid POPC, 10 mol% of amphotericin B, and 30 mol% of ergosterol. A selective permeable membrane in which 1 to 15 phospholipid bilayers were formed was obtained, and the water permeation rate and the salt rejection rate were determined.
  • Comparative Example 7 A phospholipid bilayer is developed on an alumina porous membrane having a pore diameter of 20 nm to which an alkyl group is bonded by the above-mentioned method using 60 mol% of phospholipid POPC, 20 mol% of amphotericin B, and 20 mol% of ergosterol. A selective permeable membrane in which 1 to 15 phospholipid bilayers were formed was obtained, and the water permeation rate and the salt rejection rate were determined.
  • Table 1 shows the structures of the multi-hard membrane and the phospholipid bilayer and the channel material in each Example and Comparative Example, and the water permeation rate and the salt rejection rate as their evaluation.
  • Examples 1 to 4 as compared with Non-Patent Document 3, a water transmission rate of 50 times or more is obtained.
  • a salt rejection rate of 98% or more is obtained. It is considered that a channel was formed and functioned effectively by using a porous material having an appropriate pore size and developing a phospholipid containing amphotericin B and ergosterol at appropriate molar concentrations. Comparative Example 1 is not suitable for measurement because a phospholipid bilayer is not formed.
  • Comparative Example 2 the phospholipid bilayer was developed on the porous body, but it was composed only of phospholipid and no channel material was present, so the water transmission rate was not obtained.
  • amphotericin B which is a channel substance
  • water permeability is not obtained because ergosterol necessary for channel formation is not present.
  • ergosterol is present, but the water permeability is not obtained because amphotericin B, which is a channel substance, is not present.
  • Comparative Example 5 since the pore diameter of the porous membrane was as large as 200 nm, the membrane could not withstand the osmotic pressure difference between the primary side and the secondary side, and was destroyed, so that despite the absence of amphotericin B and ergosterol, to some extent The water transmission rate is obtained. However, since the expression of water permeability is destruction of the membrane, the salt rejection rate is deteriorated. In Comparative Example 6 and Comparative Example 7, the sum of the molar concentrations of amphotericin B and ergosterol exceeds 30 mol%, so that the channel is not sufficiently formed and a sufficient water transmission rate is not obtained.
  • the selective permeable membrane of the present invention is excellent in water permeability and salt rejection, seawater, brackish water desalination treatment, engineering water, sewage, tap water purification treatment, fine chemicals, pharmaceuticals, food concentration, etc. Can be used effectively.
  • the method for producing a selective permeable membrane of the present invention can be effectively used as a method for producing the selective permeable membrane of the present invention with good reproducibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Nanotechnology (AREA)

Abstract

本発明は、孔径が5nm~50nmである多孔質膜と、前記多孔質膜の表面に形成された、リン脂質二重層よりなる被覆層とを有する選択性透過膜であって、(i)前記リン脂質二重層は、リン脂質、アムホテリシンB及びエルゴステロールを含み、(ii)前記アムホテリシンBの含有量は、前記リン脂質二重層に対して、3~20mol%であり、(iii)前記リン脂質二重層におけるエルゴステロールとアムホテリシンBとの合計含有量が10~30mol%である、選択性透過膜であり、多孔質膜本体の表面に形成されたリン脂質二重膜よりなる被覆層からなる、高透水量で塩阻止性能を有するRO膜あるいはFO膜を提供する。

Description

選択性透過膜及びその製造方法、該選択性透過膜を用いる水処理方法
 本発明は、水処理分野で使用される選択性透過膜と、その製造方法に関し、特にリン脂質二重膜よりなる被覆層を有する選択性透過膜と、その製造方法に関する。
 海水、かん水の淡水化や、工業用水および超純水の製造、排水回収などの分野で、選択性透過膜として、逆浸透(RO)膜が広く用いられている。RO膜処理は、イオンや低分子有機物を高度に除去できるという利点を有するが、一方、精密濾過(MF)膜や限外濾過(UF)膜と比べ、高い運転圧力を必要とする。RO膜の透水性を高めるために、例えば、ポリアミドRO膜においては、スキン層のひだ構造を制御し、表面積を大きくするなどの工夫がなされてきた。
 近年、水分子を選択的に輸送する膜タンパク質であるアクアポリンが水チャネル物質として注目され、このタンパク質を組み込んだリン脂質二重膜は、従来のポリアミドRO膜よりも理論上高い透水性を有する可能性が示唆されている(非特許文献1)。
 水チャネル物質を組み込んだリン脂質二重膜を有する選択性透過膜の製造方法として、水チャネル物質を組み込んだ脂質二重層を多孔質支持体でサンドイッチする方法、多孔質支持体の孔内部に脂質二重層を組み込む方法、疎水性膜周囲に脂質二重層を形成する方法などがある(特許文献1)。
 リン脂質二重膜を多孔質支持体でサンドイッチする方法では、リン脂質二重膜の耐圧性は向上するが、被処理水と接触する多孔質支持体自体が汚染される、多孔質支持体の中で濃度分極が発生して阻止率が大きく低下する、多孔質支持体が抵抗となり透水性が低下するおそれがあるなどの問題がある。
 デンマークのアクアポリン社がポリマーマトリクスにアクアポリンを導入したRO膜を作製しているが、既存RO膜の1.2倍程度の透水性であり、非特許文献2にも明確な記載がない。
 特許文献2では、カチオン性のリン脂質を用いることでナノろ過(NF)膜へ強固に担持させることが記載されているが、NF膜自体の抵抗が高いため、本来のチャネル物質が有する透水性を発現させることが難しいという課題がある。
 非特許文献3には、NF膜にリン脂質を担持させてチャネル物質であるアムホテリシンBを導入した結果が報告されているが、透水速度は0.3L/(m・h・atm)以下である。また、透水速度0~1L/(m・h・atm)レベルにおいては、アムホテリシンBと共存させるエルゴステロール自体にも透水性を増大させる効果があることから、アムホテリシンBとエルゴステロールの最適な添加量が明確になっていないという課題が窺える。
 これらに関して、エルゴステロールを共存させない場合、アムホテリシンBはチャネルを形成しないことが知られている。リン脂質ベシクル分散液の円二色性(CD)スペクトルによってチャネル形成評価を行ったところ、アムホテリシンB単独では、330nmに正のピークが現れるが、エルゴステロールが存在してチャネルが形成されると340~350nmに正のピーク、370nm、390nmに負のピークが現れる(非特許文献4、5)。
 ところが、エルゴステロールが存在しない場合のCDスペクトルでも同様な領域のピークを検出した報告もあり(非特許文献6)、RO膜あるいは正浸透(FO)膜を作製するために必要なアムホテリシンBとエルゴステロールの最適な関係は分かっていない。
特開2012-192408号 特開2014-100645号
Pohl, P et al., Proceedings of the National Academy of Sciences 2001, 98, 9624-9629. Habel, J. et al., Proceedings of the 10th International Congress on Membranes and Membrane Processes, pp.1300, 2014. 会津心之亮ら、分離機能層としてリン脂質二重層を導入した逆浸透膜の開発、化学工学会第43回秋季大会, I220, 2011 Vertut-Croquin, A. et al., Biochemistry, Vol. 22, pp.2939-2944, 1983. Kasai, Y. et al., Chem. Eur. J., Vol. 14, pp.1178-1185, 2008. Kim, J. et al., Arch. Pharm. Res., Vol.18, No.2, pp.84-89, 1995.
 アムホテリシンBをチャネル物質として含むリン脂質二重層を、多孔質膜として孔径のサイズの小さいNF膜に担持する方法では、透過水量を大きくできない。一方、精密ろ過膜のような孔径のサイズが大きい多孔質膜に担持させると耐圧性に問題が生じる。
 そこで、本発明では、多孔質膜の孔径の適切なサイズについて鋭意検討した。
 さらに、本発明では、選択的透過性を有した多孔質膜本体と、該多孔質膜本体の表面に形成されたリン脂質二重膜よりなる被覆層とからなる選択性透過膜について、高透水量で塩阻止性能を有するRO膜あるいはFO膜を作製するために、リン脂質二重層において、アムホテリシンBがチャネルを形成するのに最適な濃度と添加するエルゴステロールの濃度との関係を鋭意検討して、本発明を完成した。
 本発明は、選択的透過性を有する多孔質膜本体と、該多孔質膜本体の表面に形成されたリン脂質二重膜よりなる被覆層からなる、高透水量で塩阻止性能を有するRO膜あるいはFO膜を提供することを目的とする。
 本発明者らは、上記の従来技術の問題点を解決するため鋭意研究した結果、多孔質膜本体の表面に特定のアルキル基を有し、孔径が5nm~50nmである多孔質膜の表面に、チャネル物質としてアムホテリシンBとエルゴステロールを所定の範囲で含むリン脂質二重層からなる被覆層を有する選択性透過膜とすることで上記目的が達成できることを見出して本発明を完成した。
 すなわち、本発明は、以下の〔1〕~〔7〕を提供する。
〔1〕孔径が5nm~50nmである多孔質膜と、前記多孔質膜の表面に形成された、リン脂質二重層よりなる被覆層とを有する選択性透過膜であって、
(i)前記リン脂質二重層は、リン脂質、アムホテリシンB及びエルゴステロールを含み、
(ii)前記アムホテリシンBの含有量は、前記リン脂質二重層に対して、3~20mol%であり、
(iii)前記リン脂質二重層におけるエルゴステロールとアムホテリシンBとの合計含有量が10~30mol%である、選択性透過膜。
〔2〕前記多孔質膜表面に、炭素数1~30のアルキル基が結合されている、前記〔1〕に記載の選択性透過膜。
〔3〕前記リン脂質がパルミトイルオレオイルホスファチジルコリン(POPC)を含む、前記〔1〕または〔2〕に記載の選択性透過膜。
〔4〕孔径が5nm~50nmである多孔質膜と、前記多孔質膜の表面に形成された、リン脂質及びチャネル物質を含有するリン脂質二重層よりなる被覆層とを有する選択性透過膜の製造方法において、下記の(i)~(iii)を満足する被覆層形成液と、前記多孔質膜とを接触させることにより、リン脂質二重層よりなる被覆層を多孔質膜の表面に形成する工程、
を有することを特徴とする選択性透過膜の製造方法。
(i)前記被覆層形成液は、リン脂質と、チャネル物質及びエルゴステロールを含有する。
(ii)前記チャネル物質がアムホテリシンBであり、前記被覆層形成液中におけるアムホテリシンBの濃度が3~20mol%である。
(iii)前記被覆層形成液中におけるエルゴステロールとアムホテリシンBとの合計含有量が10~30mol%である。
〔5〕前記リン脂質二重層よりなる被覆層を多孔質膜の表面に形成する工程の前に、前記多孔質膜に炭素数1~30のアルキル基を結合させて多孔質膜を形成する工程をさらに有する、前記〔4〕に記載の選択性透過膜の製造方法。
〔6〕前記リン脂質がパルミトイルオレオイルホスファチジルコリン(POPC)を含む、前記〔4〕または〔5〕に記載の選択性透過膜の製造方法。
〔7〕前記〔1〕~〔3〕のいずれかに記載の選択性透過膜を用いて被処理水を膜分離処理する工程を有することを特徴とする水処理方法。
アムホテリシンBの濃度(含有量)を10 mol%に固定して作製した膜のチャネル形成評価のためのCDスペクトルである。 エルゴステロールの濃度(含有量)を10 mol%に固定して作製した膜のチャネル形成評価のためのCDスペクトルである。 アムホテリシンBとエルゴステロールのモル比を1:1に固定して作製した膜のチャネル形成評価のためのCDスペクトルである。 透水性、塩排除性の評価設備の模式的説明図である。
 1   選択性透過膜
 2   リン脂質二重層
 3   多孔質膜(本体)
 4、5 容器
 6   スターラー
 本発明の選択性透過膜は、孔径が5nm~50nmである多孔質膜と、前記多孔質膜の表面に形成された、リン脂質二重層よりなる被覆層とを有する選択性透過膜であって、
(i)前記リン脂質二重層は、リン脂質、アムホテリシンB及びエルゴステロールを含み、
(ii)前記アムホテリシンBの含有量は、前記リン脂質二重層に対して、3~20mol%であり、
(iii)前記リン脂質二重層におけるエルゴステロールとアムホテリシンBとの合計含有量が10~30mol%である、選択性透過膜である。
 さらに、好適な態様として、前記多孔質膜表面に、炭素数1~30のアルキル基が結合されている選択性透過膜である。
 また、本発明の選択性透過膜の製造方法は、孔径が5nm~50nmである多孔質膜と、前記多孔質膜の表面に形成された、リン脂質及びチャネル物質を含有するリン脂質二重層よりなる被覆層とを有する選択性透過膜の製造方法において、下記の(i)~(iii)を満足する被覆層形成液と、前記多孔質膜とを接触させることにより、リン脂質二重層よりなる被覆層を多孔質膜の表面に形成する工程、を有することを特徴とする選択性透過膜の製造方法である。
(i)前記被覆層形成液は、リン脂質と、チャネル物質及びエルゴステロールを含有する。
(ii)前記チャネル物質がアムホテリシンBであり、前記被覆層形成液中におけるアムホテリシンBの濃度が3~20mol%である。
(iii)前記被覆層形成液中におけるエルゴステロールとアムホテリシンBとの合計含有量が10~30mol%である。
 なお、本発明においては、物の発明としての選択性透過膜の構成要件、及び製造方法における被覆層形成液の要件は、概ね重複するので、以下の説明において物の発明、製造方法の発明を特に区別することなく述べる。
[多孔質膜本体]
 この多孔質膜本体としては、孔径が5nm~50nmの多孔質膜であれば特に限定されないが、例えば膜の材質としては、セルロース、ポリエーテルスルホン、ポリビニリデンフルオライド、アルミナ、ジルコニアなどが好適である。
 本発明に用いられる多孔質膜本体は、孔径が5nm~50nmであることを特徴としている。孔径が5nm未満では透水性に劣り、孔径が50nmを超えると耐圧性の問題が生じる。この細孔径の範囲は、UF膜の領域に当たり、分画分子量としては、1万~150万に相当する。
 ここで、本発明における細孔径の測定方法は、エアーフロー法による。エアーフロー法は、ASTM F306にも記載されている膜の細孔径の測定方法であり、孔径15 nm~180μmの範囲の測定が可能である。細孔径分布を有する膜の平均細孔径として、気体の全透過量の半分の透過量に相当する圧力で計算される細孔径が用いられる。1nm~15nmの細孔の場合は、非特許文献(Tsuru, T. et al., J. Mmbrane Sci., Vol. 149, pp. 127-135, 1998)や、特許第5426367号公報に記載の内容に従って、水蒸気やn-ヘキサン蒸気を含む窒素ガスの透過流量からケルビンの式を用いて求める。
 本発明に用いられる多孔質膜は、多孔質膜本体と、前記多孔質膜本体の表面に結合された炭素数1~30のアルキル基とを有することが好ましい。炭素数1~30のアルキル基を表面に結合させることにより、リン脂質二重層よりなる被覆層との付着性を向上させることができる。アルキル基の種類は特に限定されないが、例えばフルオロ基、クロロ基、アミノ基、カルボキシル基などの置換基を有していてもよい。また、直鎖状、分岐状いずれであってもよい。リン脂質二重層よりなる被覆層との付着性をより向上させる観点からは、直鎖状アルキル基が好ましい。アルキル基はアルキル化シランカップリング剤として多孔質膜本体の表面に結合されるのが好ましい。アルキル基の炭素数が1~30の範囲であれば、選択性透過膜を用いて被処理水を膜分離処理する工程において、多孔質膜(本体)とリン脂質二重層よりなる被覆層とが剥離してろ過ができないなどの不都合がない。アルキル基としては、炭素数が6~25が好ましく、8~20が特に好ましい。好ましいアルキル化シランカップリング剤として、上記炭素数のメトキシシランカップリング剤、トリメトキシシランカップリング剤、エトキシシランカップリング剤、トリエトキシカップリング剤、クロロシランカップリング剤、トリクロロシランカップリング剤、特に好ましいカップリング剤として、疎水性と反応性の観点から、炭素数18のオクタデシルトリクロロシランを挙げることができる。
 アルキル基の結合方法としては、アルキル化シランカップリング剤溶液に多孔質膜本体を浸漬する方法などが例示される。さらに、アルキル化シランカップリング剤処理に先立って多孔質膜本体の表面をプラズマ処理して親水化することが好ましい。
 また、多孔質膜本体に対するアルキル基の結合量は、水滴接触角が100度以上となる量が好ましい。
 本発明において用いられるリン脂質としては、パルミトイルオレオイルホスファチジルコリン(POPC)、ジパルミトイルホスファチジルコリン(DPPC)、ジミリストイルホスファチジルコリン(DMPC)、ジステアロイルホスファチジルコリン(DSPC)などが挙げられ、これらの中で脂質二重層に流動性と適切な厚みを与える観点から、特にパルミトイルオレオイルホスファチジルコリン(POPC)が奨用される。
 本発明において、リン脂質二重層はリン脂質およびチャネル物質を含有するが、チャネル物質は、リン脂質二重層内で細孔を形成し、水の透過を促進するチャネルを形成するもので、アムホテリシンBが使用される。
[リン脂質二重層による被覆方法]
 多孔質膜本体表面をリン脂質二重層よりなる被覆層(以下、「リン脂質二重膜」という場合がある。)で被覆する方法としては、ラングミュア-ブロジェット法、ベシクル融合法が挙げられる。
 ベシクル融合法によってリン脂質二重膜を形成するに際しては、まずリン脂質を好ましくはチャネル物質としてのアムホテリシンB、及びエルゴステロールと共に溶媒に溶解させる。溶媒としては、クロロホルム、クロロホルム/メタノール混合液などを用いることができる。
 リン脂質とチャネル物質としてのアムホテリシンBの混合割合は、リン脂質二重層においてアムホテリシンBの含有量が3~20mol%であり、特に5~10mol%となる程度が好適である。
 また、リン脂質とチャネル物質としてのアムホテリシンB、及びエルゴステロールとの混合割合は、3者の合計に占めるアムホテリシンBとエルゴステロールの合計含有量が10~30mol%であり、10~25mol%がより好ましく、13~25mol%がさらに好ましく、13~20mol%が特に好適である。
 なお、エルゴステロールのリン脂質二重層における含有量は、上限が27mol%であり、特に3~20mol%となる程度が好適である。
 次に、エルゴステロールを含むリン脂質とチャネル物質との0.3~50mM特に1~30mMの溶液を調製し、減圧乾燥させることにより、乾燥脂質膜を得、これに純水を添加し、リン脂質の相転移温度よりも高い温度とすることにより、球殻形状を有したベシクルの分散液とする。
 本発明の一態様では、このベシクル分散液を、まず液体窒素中での凍結状態とし、リン脂質の相転移温度よりも高い温度における融解状態に繰り返し晒す凍結融解法により、ベシクルを粒成長させるとともに、ベシクルを構成するリン脂質二分子膜の膜数を低下させる。次いで、このベシクル分散液を、孔径0.05~0.4μmのポアを有した膜(例えばポリカーボネートトラックエッチング膜)で濾過して粒径0.05~0.4μm又はそれ以下の、単一のリン脂質二分子膜からなる球殻状ベシクルの分散液とする。
 本発明の別の一態様では、かかる凍結融解処理を施すことなく、そのままベシクル分散液として用いる。
 本発明で用いるベシクル分散液のベシクルの平均粒径は、好ましくは0.05~0.4μm、特に好ましくは0.1~0.2μmである。
 なお、ベシクル分散液のベシクルの平均粒径は、動的光散乱法により算出した値である。
 このベシクル分散液と多孔質膜とを接触させ、このベシクル分散液に接触させた状態に0.5~6時間、特に1~3時間程度保つことにより、多孔質膜の表面にベシクルを吸着させ、リン脂質二重膜の被覆層を形成する。その後、被覆層付きの多孔質膜を溶液から引き上げ、必要に応じ超純水又は純水で水洗することにより、リン脂質二重膜の被覆層(層数1~30)を有した選択性透過膜が得られる。
 リン脂質二重膜の厚さは1~30層、特に1~15層程度であることが好ましい。なお、リン脂質二重膜の厚さとしての層数は、バーレット法でリンを定量することにより確認できる。(Bartlett, G. R., J. Biol. Chem., vol. 234, no. 3, 466-468, 1959)
 本発明の選択性透過膜を用い、RO膜処理又はFO膜処理において透過水を得る場合、駆動圧力0.1~30atmの範囲で、透水量20L/(m・h・atm)以上を得ることができる。
 以上詳細に述べたように、本発明により、チャネル物質としてアムホテリシンBを含むリン脂質二重層を多孔質膜に導入することができ、高い透水性と高い塩排除率を有するFO膜やRO膜を得ることができる。そして、得られた膜を水処理に適用することができる。
 以下、実施例及び比較例について説明する。まず、用いた材料及び評価方法等について説明する。
<材料>
[多孔質膜本体]
 以下の実施例及び比較例では、多孔質膜本体として、陽極酸化アルミナ膜(Anodisc、直径25mm、厚み60mm、孔径20nmまたは200nm、GEヘルスケア社)を用いた。
 なお、孔径20nmは、前述のエアーフロー法により測定された孔径である。
[リン脂質]
 リン脂質としては、1-パルミトイル-2-オレオイル-sn-グリセロ-3-ホスホコリン(POPC、リン脂質のアシル基に不飽和脂肪酸を含むリン脂質、相転移温度-2℃、日油社)を用いた。
[エルゴステロール] 
 エルゴステロールは、東京化成社のものを用いた。なお、図1~3においては「Erg」と表記した。
[チャネル物質]
 チャネル物質としては、ケイマンケミカル社のアムホテリシンBを用いた。なお、図1~3においては、「AmB」と表記した。
[炭素数1~30のアルキル基を付与する材料]
 炭素数1~30のアルキル基を付与する材料として、炭素数18のオクタデシル基を有するシランカップリング剤であるオクタデシルトリクロロシラン(シグマアルドリッチ社)[以下、「シランカップリング剤」という。]を用いた。
<多孔質膜本体へのアルキル基の結合>
 上記多孔質膜をリン脂質二重層で被覆するために、多孔質膜本体を、上記シランカップリング剤を用いて以下のように処理した。
 最初に多孔質膜本体を純水に浸漬させ、5分間超音波洗浄を行った。次に、卓上真空プラズマ装置 (YHS-R、魁半導体社)を用いてプラズマ処理を行い、表面を親水化した。この多孔質膜本体を、オクタデシルトリクロロシランの2vol%ヘキサン溶液に15分間浸漬した後、ヘキサンおよび純水で洗浄し、一晩室温で静置した。この処理によって、水滴接触角は13度から149度に変化した。
<ベシクルの調製方法と多孔質膜への展開>
 上記リン脂質とエルゴステロール、チャネル物質をクロロホルムとメタノールの混合溶媒(有機溶媒)に溶解した。減圧下で有機溶媒を蒸発させ、容器内に残存した乾燥脂質薄膜に純水を添加し、40℃で水和させることで、ベシクル分散液を作製した。得られたベシクル分散液は、液体窒素と40℃の湯浴に交互に浸漬操作を5回繰り返す凍結融解法により、粒成長させた。ベシクル分散液は孔径0.2μmのポリカーボネートトラックエッチング膜を用い、押し出し整粒し、リン脂質濃度が3mMになるように純水で希釈した。
 このベシクル分散液中に、シランカップリング剤で処理した多孔質膜本体を2時間浸漬させることで、膜本体にリン脂質を吸着させた。その後、10分間超音波洗浄を行い、多孔質膜本体に余分に吸着したリン脂質を剥がした。
<チャネル物質によるチャネル形成の確認実験>
 リン脂質二重層内に導入したチャネル物質が水チャネル物質としての機能を有するのかについては、多孔質膜本体表面を被覆するリン脂質二重層と同じ組成からなるベシクル分散液の円二色性(CD)スペクトルを、円二色性分散計(J-725K、日本分光社)を用いて測定することで確認した。
 図1~図3にCDスペクトルによるアムホテリシンBのチャネル形成評価を行った結果を示す。
 図1は、アムホテリシンB(図1~3で「AmB」と表記)の濃度を10mol%として、エルゴステロール(図1~3で「Erg」と表記)の濃度を変化させた場合であるが、エルゴステロールを含まない場合は、チャネル形成を示すピークが現れず、5~20mol%でチャネル形成のピークが現れている。エルゴステロールの濃度が高くなり、30mol%以上になるとチャネルが形成されないことが分かった。
 図2は、エルゴステロールの濃度を10mol%として、アムホテリシンBの濃度を変化させた場合であるが、チャネルが形成されるアムホテリシンBの濃度は3~20mol%であることが確認された。
 図3は、アムホテリシンBとエルゴステロールのモル比を1:1とした場合であるが、アムホテリシンBが5、10、15mol%ではチャネルが形成し、20mol%の場合はチャネルが形成されないことが分かる。
 以上の検討により、本発明では、チャネル形成の条件を満たすアムホテリシンBとエルゴステロールの濃度(含有率)を以下の範囲とした。
 すなわち、アムホテリシンBは、前記リン脂質二重層におけるその含有量が3mol%~20mol%である。
 また、リン脂質二重層におけるエルゴステロールとアムホテリシンBとの合計含有量が10~30mol%である。
<選択性透過膜の性能の評価>
 図4に示す実験装置により、膜の透水性と塩の排除性を測定した。容器4の一次側に純水、容器5の二次側に0.1質量%の塩化ナトリウム水溶液を用い、多孔質膜(本体)2の表面をリン脂質二重層3で被覆した選択性透過膜1を容器4、5間に装着し、容器4、5をそれぞれマグネチックスターラー6で攪拌しつつ、一次側から二次側への水の透水速度を計測するとともに、24時間経過後の一次側と二次側における塩化ナトリウム濃度(電気伝導度)を測定し、以下の式(1)により塩排除率を求めた。
塩排除率 [%] =(1-一次側の電気伝導度/二次側の電気伝導度)×100  (1)
 なお、透水速度は、上記濃度の塩化ナトリウム水溶液の条件で浸透圧差(二次側の圧力-一次側の圧力)0.8atmを設けて、駆動圧力0.8atmにおける透水量を求め、それを駆動圧力で除し、透水速度(L/(m・h・atm)とした。
 透水量は、水位の変化ΔH(cm)、水柱の断面積S(cm)、膜面積S(m)、時間t(s)から、式(2)を用いて算出した。
  透水量{L/(m・h)}=3.6・ΔH・S/(S・t)   …(2)
実施例1
 リン脂質であるPOPCを87mol%、アムホテリシンBを10mol%、エルゴステロール3mol%用いて、上述の方法でアルキル基を結合させた孔径20nmのアルミナ多孔質膜上に、リン脂質二重層を展開し、1~15層のリン脂質二重層が形成された選択性透過膜を得て、透水速度と塩排除率を求めた。
実施例2
 リン脂質であるPOPCを85mol%、アムホテリシンBを10mol%、エルゴステロール5mol%用いて、上述の方法でアルキル基を結合させた孔径20nmのアルミナ多孔質膜上に、リン脂質二重層を展開し、1~15層のリン脂質二重層が形成された選択性透過膜を得て、透水速度と塩排除率を求めた。
実施例3
 リン脂質であるPOPCを80mol%、アムホテリシンBを10mol%、エルゴステロールを10mol%用いて、上述の方法でアルキル基を結合させた孔径20nmのアルミナ多孔質膜上に、リン脂質二重層を展開し、1~15層のリン脂質二重層が形成された選択性透過膜を得て、透水速度と塩排除率を求めた。
実施例4
 リン脂質であるPOPCを70mol%、アムホテリシンBを10mol%、エルゴステロールを20mol%用いて、上述の方法でアルキル基を結合させた孔径20nmのアルミナ多孔質膜上に、リン脂質二重層を展開し、1~15層のリン脂質二重層が形成された選択性透過膜を得て、透水速度と塩排除率を求めた。
比較例1
 POPCを用いて、孔径20nmのアルミナ多孔質膜上にリン脂質二重層展開し、透水速度と塩排除率を求めた。リン脂質二重層はアルミナ多孔質膜上に形成されなかった。
比較例2
 リン脂質としてPOPCを用いて、上述の方法でアルキル基を結合させた孔径20nmのアルミナ多孔質膜上に、リン脂質二重層展開し、1~15層のリン脂質二重層が形成された選択性透過膜を得て、透水速度と塩排除率を求めた。
比較例3
 リン脂質であるPOPCを90mol%、アムホテリシンBを10mol%用いて、上述の方法でアルキル基を結合させた孔径20nmのアルミナ多孔質膜上に、リン脂質二重層を展開し、1~15層のリン脂質二重層が形成された選択性透過膜を得て、透水速度と塩排除率を求めた。
比較例4
 リン脂質であるPOPCを90mol%、エルゴステロールを10mol%用いて、上述の方法でアルキル基を結合させた孔径20nmのアルミナ多孔質膜上に、リン脂質二重層を展開し、1~15層のリン脂質二重層が形成された選択性透過膜を得て、透水速度と塩排除率を求めた。
比較例5
 リン脂質であるPOPCを用いて、上述の方法でアルキル基を結合させた孔径200nmのアルミナ多孔質膜上に、リン脂質二重層を展開し、1~15層のリン脂質二重層が形成された選択性透過膜を得て、透水速度と塩排除率を求めた。
比較例6
 リン脂質であるPOPCを60mol%、アムホテリシンBを10mol%、エルゴステロールを30mol%用いて、上述の方法でアルキル基を結合させた孔径20nmのアルミナ多孔質膜上に、リン脂質二重層を展開し、1~15層のリン脂質二重層が形成された選択性透過膜を得て、透水速度と塩排除率を求めた。
比較例7
 リン脂質であるPOPCを60mol%、アムホテリシンBを20mol%、エルゴステロールを20mol%用いて、上述の方法でアルキル基を結合させた孔径20nmのアルミナ多孔質膜上に、リン脂質二重層を展開し、1~15層のリン脂質二重層が形成された選択性透過膜を得て、透水速度と塩排除率を求めた。
<結果及び考察>
 表1に各実施例及び比較例における多硬質膜及びリン脂質二重層、チャネル物質の構成及び、それらの評価としての透水速度と塩排除率を示す。
 実施例1~4では、非特許文献3と比較して、50倍以上の透水速度が得られている。また、98%以上の塩排除率が得られている。
 適切な孔径の多孔質体を使用し、適切なモル濃度のアムホテリシンBとエルゴステロールを含むリン脂質を展開することで、チャネルが形成され、有効に機能したためと考えられる。
 比較例1はリン脂質二重層が形成されないため、測定不適である。比較例2では、多孔質体にリン脂質二重層が展開したが、リン脂質のみで構成されており、チャネル物質が存在していないため、透水速度が得られていない。比較例3では、チャネル物質であるアムホテリシンBは存在しているが、チャネルの形成に必要なエルゴステロールが存在していないため、透水速度が得られていない。比較例4では、エルゴステロールは存在しているが、チャネル物質であるアムホテリシンBが存在していないため、透水速度が得られていない。比較例5では、多孔質膜の孔径が200nmと大きいため、一次側と二次側の浸透圧差に膜が耐えられず、破壊されたため、アムホテリシンBとエルゴステロールが存在しないにも拘わらず、ある程度の透水速度が得られている。ただし、透水性の発現が膜の破壊であるため、塩排除率が悪化している。比較例6、比較例7では、アムホテリシンBとエルゴステロールのモル濃度の和が30 mol%を超えているため、チャネルが十分に形成されず、十分な透水速度が得られていない。
Figure JPOXMLDOC01-appb-T000001
 本発明の選択性透過膜は、透水性と塩排除性に優れているので、海水、かん水の脱塩処理、工水、下水、水道水の浄化処理の他、ファインケミカル、医薬、食品の濃縮などに有効に利用できる。また、本発明の選択性透過膜の製造方法は、本発明の選択性透過膜を再現性よく製造する方法として有効に利用できる。

Claims (7)

  1.  孔径が5nm~50nmである多孔質膜と、前記多孔質膜の表面に形成された、リン脂質二重層よりなる被覆層とを有する選択性透過膜であって、
    (i)前記リン脂質二重層は、リン脂質、アムホテリシンB及びエルゴステロールを含み、
    (ii)前記アムホテリシンBの含有量は、前記リン脂質二重層に対して、3~20mol%であり、
    (iii)前記リン脂質二重層におけるエルゴステロールとアムホテリシンBとの合計含有量が10~30mol%である、
    選択性透過膜。
  2.  前記多孔質膜表面に、炭素数1~30のアルキル基が結合されている、請求項1に記載の選択性透過膜。
  3.  前記リン脂質がパルミトイルオレオイルホスファチジルコリン(POPC)を含む、請求項1または2に記載の選択性透過膜。
  4.  孔径が5nm~50nmである多孔質膜と、前記多孔質膜の表面に形成された、リン脂質及びチャネル物質を含有するリン脂質二重層よりなる被覆層とを有する選択性透過膜の製造方法において、
    下記の(i)~(iii)を満足する被覆層形成液と、前記多孔質膜とを接触させることにより、リン脂質二重層よりなる被覆層を多孔質膜の表面に形成する工程、
    を有することを特徴とする選択性透過膜の製造方法。
    (i)前記被覆層形成液は、リン脂質と、チャネル物質及びエルゴステロールを含有する。
    (ii)前記チャネル物質がアムホテリシンBであり、前記被覆層形成液中におけるアムホテリシンBの濃度が3~20mol%である。
    (iii)前記被覆層形成液中におけるエルゴステロールとアムホテリシンBとの合計含有量が10~30mol%である。
  5.  前記リン脂質二重層よりなる被覆層を多孔質膜の表面に形成する工程の前に、前記多孔質膜に炭素数1~30のアルキル基を結合させて多孔質膜を形成する工程をさらに有する、
    請求項4に記載の選択性透過膜の製造方法。
  6.  前記リン脂質がパルミトイルオレオイルホスファチジルコリン(POPC)を含む、請求項4または5に記載の選択性透過膜の製造方法。
  7.  請求項1~3いずれかに記載の選択性透過膜を用いて被処理水を膜分離処理する工程を有することを特徴とする水処理方法。
PCT/JP2017/008486 2016-03-04 2017-03-03 選択性透過膜及びその製造方法、該選択性透過膜を用いる水処理方法 WO2017150705A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/077,310 US10583405B2 (en) 2016-03-04 2017-03-03 Permselective membrane, method for producing same, and water treatment method using the permselective membrane
JP2017513154A JP7011137B2 (ja) 2016-03-04 2017-03-03 選択性透過膜及びその製造方法、該選択性透過膜を用いる水処理方法
CN201780009627.5A CN108602025B (zh) 2016-03-04 2017-03-03 选择性透过膜及其制造方法、使用该选择性透过膜的水处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016042103 2016-03-04
JP2016-042103 2016-03-04

Publications (1)

Publication Number Publication Date
WO2017150705A1 true WO2017150705A1 (ja) 2017-09-08

Family

ID=59744102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008486 WO2017150705A1 (ja) 2016-03-04 2017-03-03 選択性透過膜及びその製造方法、該選択性透過膜を用いる水処理方法

Country Status (4)

Country Link
US (1) US10583405B2 (ja)
JP (1) JP7011137B2 (ja)
CN (1) CN108602025B (ja)
WO (1) WO2017150705A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118636A (ja) * 2019-01-28 2020-08-06 国立大学法人福井大学 脂質二重膜の水透過性の評価システム、脂質二重膜の水透過性の評価方法、および、脂質二重膜の水透過性を制御する薬剤のスクリーニング方法
JP2021010885A (ja) * 2019-07-08 2021-02-04 栗田工業株式会社 選択性透過膜、選択性透過膜の製造方法および水処理方法
JP2021010884A (ja) * 2019-07-08 2021-02-04 栗田工業株式会社 選択性透過膜の製造方法および水処理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501782A (ja) * 2004-06-11 2008-01-24 ジテンドラ ナス ベルマ 塩水中のステロール濃縮混合層状アンフォテリシン(Amphotericin)挿入リポソーム及びその調製方法
JP2008540108A (ja) * 2005-05-20 2008-11-20 アクアポリン エーピーエス 水を濾過する膜
WO2009074155A1 (en) * 2007-12-11 2009-06-18 Aquaporin A/S Scaffold for composite biomimetic membrane
WO2013043118A1 (en) * 2011-09-21 2013-03-28 Nanyang Technological University Aquaporin based thin film composite membranes
JP2013532054A (ja) * 2010-05-21 2013-08-15 ブロゼル,エイドリアン 自己集合界面活性剤構造
JP2014504209A (ja) * 2010-12-17 2014-02-20 アクアポリン アー/エス 水抽出に適した液膜
JP2014100645A (ja) * 2012-11-19 2014-06-05 Kurita Water Ind Ltd 選択性透過膜及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006294205B2 (en) 2005-09-20 2010-12-16 Aquaporin A/S Biomimetic water membrane comprising aquaporins used in the production of salinity power
DK177144B1 (en) * 2009-06-19 2012-02-06 Aquaporin As A liquid membrane suitable for water extraction
JP2012100645A (ja) * 2010-11-12 2012-05-31 Yoichiro Kasai 板挟み式漬物製造装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501782A (ja) * 2004-06-11 2008-01-24 ジテンドラ ナス ベルマ 塩水中のステロール濃縮混合層状アンフォテリシン(Amphotericin)挿入リポソーム及びその調製方法
JP2008540108A (ja) * 2005-05-20 2008-11-20 アクアポリン エーピーエス 水を濾過する膜
WO2009074155A1 (en) * 2007-12-11 2009-06-18 Aquaporin A/S Scaffold for composite biomimetic membrane
JP2013532054A (ja) * 2010-05-21 2013-08-15 ブロゼル,エイドリアン 自己集合界面活性剤構造
JP2014504209A (ja) * 2010-12-17 2014-02-20 アクアポリン アー/エス 水抽出に適した液膜
WO2013043118A1 (en) * 2011-09-21 2013-03-28 Nanyang Technological University Aquaporin based thin film composite membranes
JP2014100645A (ja) * 2012-11-19 2014-06-05 Kurita Water Ind Ltd 選択性透過膜及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WAGH, PRIYESH: "A new technique to fabricate high-performance biologically inspired membranes for water treatment", SEPARATION AND PURIFICATION TECHNOLOGY, vol. 156, 2015, pages 754 - 765, XP029320021 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118636A (ja) * 2019-01-28 2020-08-06 国立大学法人福井大学 脂質二重膜の水透過性の評価システム、脂質二重膜の水透過性の評価方法、および、脂質二重膜の水透過性を制御する薬剤のスクリーニング方法
JP7179330B2 (ja) 2019-01-28 2022-11-29 国立大学法人福井大学 脂質二重膜の水透過性の評価システム、脂質二重膜の水透過性の評価方法、および、脂質二重膜の水透過性を制御する薬剤のスクリーニング方法
JP2021010885A (ja) * 2019-07-08 2021-02-04 栗田工業株式会社 選択性透過膜、選択性透過膜の製造方法および水処理方法
JP2021010884A (ja) * 2019-07-08 2021-02-04 栗田工業株式会社 選択性透過膜の製造方法および水処理方法
JP7251370B2 (ja) 2019-07-08 2023-04-04 栗田工業株式会社 選択性透過膜、選択性透過膜の製造方法および水処理方法
JP7251369B2 (ja) 2019-07-08 2023-04-04 栗田工業株式会社 選択性透過膜の製造方法および水処理方法

Also Published As

Publication number Publication date
US10583405B2 (en) 2020-03-10
JP7011137B2 (ja) 2022-02-10
CN108602025A (zh) 2018-09-28
JPWO2017150705A1 (ja) 2018-12-27
US20190046933A1 (en) 2019-02-14
CN108602025B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
JP6132276B2 (ja) 塩除去率及び透過流量特性に優れた逆浸透分離膜の製造方法
Sun et al. A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane
US11547972B2 (en) Porous membranes comprising nanosheets and fabrication thereof
JP6028533B2 (ja) 選択性透過膜の製造方法
Li et al. Recent developments in reverse osmosis desalination membranes
JP6265287B1 (ja) 選択性透過膜、その製造方法及び水処理方法
CN105358238A (zh) 多通道膜
JP2012529984A5 (ja)
WO2017150705A1 (ja) 選択性透過膜及びその製造方法、該選択性透過膜を用いる水処理方法
Saeki et al. Reverse osmosis membranes based on a supported lipid bilayer with gramicidin A water channels
WO2016140061A1 (ja) 選択性透過膜及びその製造方法
KR101570304B1 (ko) 하이브리드 형 액체 여과 구조체
Yeh et al. Plasma-engineered GQD-inorganic membranes with tunable interactions for ultrahigh-efficiency molecular separations
WO2019187870A1 (ja) 選択性透過膜、その製造方法及び水処理方法
US20220152559A1 (en) Stabilized filtration device
JP7251370B2 (ja) 選択性透過膜、選択性透過膜の製造方法および水処理方法
JP7251369B2 (ja) 選択性透過膜の製造方法および水処理方法
Agboola et al. Advanced Nanofiltration Membranes for Wastewater Treatment
Abdelrasoul et al. Novel desalination RO membranes
WO2021156393A1 (en) Reverse electro-osmotic filtration system and uses thereof
KR20200070653A (ko) 분리막의 제조방법, 분리막 및 수처리 모듈

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017513154

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760167

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17760167

Country of ref document: EP

Kind code of ref document: A1