WO2017150601A1 - ユーザ装置、及びランダムアクセス方法 - Google Patents

ユーザ装置、及びランダムアクセス方法 Download PDF

Info

Publication number
WO2017150601A1
WO2017150601A1 PCT/JP2017/008083 JP2017008083W WO2017150601A1 WO 2017150601 A1 WO2017150601 A1 WO 2017150601A1 JP 2017008083 W JP2017008083 W JP 2017008083W WO 2017150601 A1 WO2017150601 A1 WO 2017150601A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
message
access signal
size
base station
Prior art date
Application number
PCT/JP2017/008083
Other languages
English (en)
French (fr)
Inventor
高橋 秀明
徹 内野
ウリ アンダルマワンティ ハプサリ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016105565A external-priority patent/JP2017163519A/ja
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US15/767,300 priority Critical patent/US10660135B2/en
Priority to CN201780003687.6A priority patent/CN108141890B/zh
Priority to EP17760065.7A priority patent/EP3425989B1/en
Publication of WO2017150601A1 publication Critical patent/WO2017150601A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to a random access procedure executed between a user apparatus (hereinafter referred to as UE) and a base station (hereinafter referred to as eNB) in a wireless communication system.
  • UE user apparatus
  • eNB base station
  • a random access (hereinafter sometimes abbreviated as RA) procedure is executed when a UE establishes a connection with an eNB, or when reconnection (resynchronization) is performed.
  • the RA procedure includes a collision type RA procedure and a non-collision side RA procedure.
  • the collision-type RA procedure can be used for all purposes, and the non-collision-side RA procedure is used for a specific purpose such as handover.
  • the collision type RA procedure is targeted.
  • the UE transmits RA preamble to the eNB, and the eNB returns RA response to the UE. Then, the UE transmits a control message to the eNB using the uplink resource allocated by UL grant in the RA response.
  • This control message is called Message 3 (message 3) (Non-Patent Document 1).
  • an RRCConnectionRequest message is sent at the time of connection, and an RRCConnectionReestablishmentRequest message is sent at the time of reconnection via CCCH (Common Control Channel), which is a logical channel.
  • CCCH Common Control Channel
  • the RRCConnectionRequest message and RRCConnectionReestablishementRequest message are generically called CCCH Service Data Unit (SDU) in the standard specifications.
  • SDU Service Data Unit
  • the size of RRCConnectionRequestRRmessage and RRCConnectionReestablishmentRequest message is 48 bits, 8 bits of MAC header are added to this, and the MAC PDU is 56 bits. That is, 56-bit data becomes one Transport block that can be transmitted by the physical layer (PHY), and its size (56 bits) becomes Transport block Size (TBS).
  • PHY physical layer
  • TBS Transport block Size
  • a value larger than 56 bits can be assigned as the TBS of Message IV3.
  • Padding Buffer Status Report (Padding BSR) is added to the data.
  • Padding BSR Padding Buffer Status Report
  • LTE it is specified that the RA preamble is grouped and the UE performs the RA procedure using the RA preamble selected from the group (Non-Patent Document 2).
  • the eNB can determine whether or not the size of Message 3 is increased depending on the group to which the transmitted RA-preamble belongs, and can notify the UE of the corresponding TBS with RA-response.
  • Preamble group A / B is provided. And if Preamble group B exists, if the size of Message 3 is larger than the message size (messageSizeGroupA in RACH-ConfigCommon) set in the system information and the path loss is less than or equal to the predetermined value, Preamble group B RA preamble is selected. Otherwise, RA preamble is selected from Preamble group A.
  • Non-Patent Document 3 describes an example as solution 18.
  • the UE in order to resume RRC connection using the saved UE context, the UE sends a restart request message with Message 3. Since an ID and authentication information used for resuming the connection are added to this message, the message size may exceed the 56 bits of the existing CCCH SDU TBS (for example, Non-Patent Document 4).
  • the UE transmits CCCH SDUs of different sizes to the eNB according to the procedure. As an example, it is assumed that the UE transmits a normal RRC connection request with a 56-bit TBS and transmits RRC connection resume with a 64-bit TBS.
  • the message size of CCCH SDU was one (TBS: 56 bits).
  • TBS 56 bits
  • eNB will assign CCCH by the time of assigning UL grant of Message 3 in RA response. It is necessary to decide the TBS assigned by UL grant considering the size of SDU.
  • the TBS to be assigned by UL grant cannot be determined in consideration of the size of CCCH SDU. For this reason, for example, even if the UE tries to transmit a resume request message, it may occur that TBS is insufficient and cannot be transmitted.
  • the present invention has been made in view of the above points, and provides a technique for preventing a user apparatus from being unable to transmit a control message due to a lack of uplink resources allocated from a base station in a random access procedure. With the goal.
  • a random access signal group is selected from a plurality of random access signal groups by comparing the size of a message transmitted on a predetermined logical channel with a predetermined threshold, and a random access signal is selected from the random access signal group.
  • a selection section to select;
  • the transmission unit transmits the message on the predetermined logical channel using a resource allocated by a response from the base station to the random access signal.
  • the user device that communicates with the base station, A receiving unit that receives information on a correspondence relationship between a size of a message transmitted on a predetermined logical channel and a resource of a random access signal from the base station; A selection unit that selects a resource corresponding to the size of a message transmitted on the predetermined logical channel from the information on the correspondence;
  • a user apparatus comprising: a transmission unit that transmits a random access signal to the base station using the selected resource.
  • a technique for preventing a user apparatus from being unable to transmit a control message due to a lack of uplink resources allocated from a base station in a random access procedure is provided.
  • FIG. 10 is a flowchart illustrating a processing procedure in the second embodiment. It is a figure which shows the example of a specification change in Example 2. FIG. It is a figure which shows the example of a specification change in Example 2. FIG.
  • FIG. 10 is a diagram for explaining a modification of the second embodiment. 10 is a flowchart illustrating a processing procedure in a modification of the second embodiment. It is a figure which shows the example of a specification change in the modification of Example 2. FIG. It is a figure which shows the example of a specification change in the modification of Example 2. FIG. It is a figure which shows the example of a specification change in the modification of Example 2. FIG. It is a figure which shows the example of a specification change in the modification of Example 2.
  • FIG. 10 is a flowchart illustrating a processing procedure in the third embodiment.
  • FIG. 10 is a flowchart illustrating a processing procedure in the fourth embodiment. It is a block diagram of UE. It is a HW block diagram of UE. It is a block diagram of eNB. It is a HW block diagram of eNB.
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • FIG. 1 is a diagram illustrating a configuration example of a communication system according to an embodiment of the present invention.
  • the communication system of the present embodiment includes an eNB 10, an eNB 20, an MME 30, a serving gateway (S-GW) 40, and a UE 50.
  • S-GW serving gateway
  • the UE 50 is a user device such as a mobile phone.
  • Each of the eNBs 10 and 20 is a base station.
  • the MME 30 is a node device that accommodates the eNB and performs location control, mobility control such as paging and handover, bearer establishment / deletion, and the like.
  • the S-GW 40 is a node device that relays user data (U-Plane data).
  • a system composed of the MME 30 and the S-GW 40 is called a communication control device.
  • the MME 30 and the S-GW 40 may be configured as a single device and referred to as a communication control device.
  • the MME 30 and the eNBs 10 and 20 are connected by an S1-MME interface, and the S-GW 40 and the eNBs 10 and 20 are connected by an S1-U interface.
  • a dotted connection line indicates a control signal interface, and a solid connection line indicates a user data transfer interface.
  • the technique according to the present invention can be applied not only to the random access at the time of resuming the connection in the above-described UE context maintaining system, but in this embodiment, as one application example of the present invention, the UE context maintaining system Is used.
  • RRC-Suspended a method for defining a new RRC state which is a method described in Non-Patent Document 3 (context maintenance method 1) And a scheme (context holding scheme 2) for reusing the UE context without defining a new RRC state. Examples of these sequences will be described later.
  • Random access procedure In this embodiment, since a random access procedure between a user apparatus (referred to as UE) and a base station eNB (referred to as eNB) is targeted, first, basic processing of the random access procedure will be described.
  • UE user apparatus
  • eNB base station eNB
  • Random access (hereinafter referred to as RA) is performed when the UE establishes a connection with the eNB at the time of transmission or the like, and its main purpose is to establish uplink synchronization.
  • the RA procedure includes a collision-type RA procedure and a non-collision-side RA procedure.
  • the collision-type RA procedure can be used for all purposes, and the non-collision-side RA procedure is used for a specific purpose such as handover. In this embodiment, the collision RA procedure is targeted.
  • the collision RA procedure will be described with reference to FIG.
  • the UE transmits an RA ⁇ ⁇ preamble (selected sequence) through a Physical Random Access Channel (PRACH) using one sequence from a predetermined number of RA preambles (sequence) (step S1). If there is no other UE that performs random access using the same sequence at the same time, no collision occurs.
  • PRACH Physical Random Access Channel
  • step S2 the eNB utilizes DL-SCH (downlink shared channel), TA (timing advance) command for adjusting the transmission timing of the UE, detected RA preamble index, uplink resource allocation information (ULrantgrant ) Including RA) response (response) is transmitted to the UE.
  • DL-SCH downlink shared channel
  • TA timing advance
  • RA uplink resource allocation information
  • ULrantgrant uplink resource allocation information
  • Including RA RA response
  • the UE that has received the RA response adjusts the uplink timing and transmits a control message such as RRC connection request to the eNB by CCCH using the allocated resource (step S3).
  • the UE When the UE that sent the RA preamble fails to receive the RA response (when the random access attempt fails), the UE increases the transmission power by a predetermined step size and performs PRACH each time it fails. Send. Such an operation is called Power Ramping.
  • step S4 the eNB transmits contention resolution (contention resolution message).
  • the UE that has received the contention resolution completes the random access process by confirming that its own ID (eg, TC-RNTI, which was used for scrambling in step S3) is included. Send and receive.
  • its own ID eg, TC-RNTI, which was used for scrambling in step S3
  • ⁇ Context retention method 1 First, the context holding method 1 will be described.
  • the context maintenance method 1 in addition to the conventional RRC-Idle (RRC idle state) and RRC-Connected (RRC connection state), a state of RRC-Suspended (referred to as RRC suspension state) is added.
  • RRC suspension state a state of RRC-Suspended (referred to as RRC suspension state) is added.
  • RRC hold state the UE and the eNB each hold the UE context used for connection in the RRC connection state before entering the RRC hold state. Then, when transitioning from the RRC hold state to the RRC connection state, RRC connection establishment is performed using the held UE context.
  • step S11 the eNB 10 determines to suspend the RRC connection.
  • step S12 the eNB 10 transmits a message indicating that the RRC connection of the UE 50 is suspended to the MME 30. MME10 and eNB30 hold
  • step S15 the MME 30 returns an Ack for step S12.
  • step S16 the MME 30 enters the ECM-SUSPENDED state.
  • step S17 the eNB 10 transmits an RRC connection suspend message to the UE 50 to place the UE 50 in the RRC suspension state (step S18).
  • the RRC connection suspend message includes Resume ID (resumption ID).
  • Resume ID is an identifier used when the RRC connection is resumed next time.
  • the UE 50 and the eNB 10 each store a UE context.
  • the UE context held in each of the UE 50 and the eNB 10 includes, for example, an RRC configuration (RRC configuration), a bearer configuration (including bearer configuration: RoHC state information, etc.), an AS security context. (Access Stratum Security Context), L2 / L1 parameters (MAC, PHY configuration, etc.).
  • RRC configuration RRC configuration
  • bearer configuration including bearer configuration: RoHC state information, etc.
  • AS security context Access Stratum Security Context
  • L2 / L1 parameters MAC, PHY configuration, etc.
  • the UE 10 and the eNB 10 each retain the above information as a UE context, so that when transitioning from the RRC hold state to the RRC connection state, the RRC Connection Setup Complete, RRC Security Mode Command, RRC Security Mode Complete, RRC Connection Reconfiguration RRC connection can be established without sending / receiving messages such as RRC ConnectionRReconfiguration Complete.
  • FIG. 4 shows a case where the UE 50 in the RRC hold state (step S51) receives an incoming call (steps S52 to S55).
  • step S51 receives an incoming call
  • steps S52 to S55 receives an incoming call
  • step S56 an RRC restart procedure (resume procedure) is started from the EMM layer. Random57Access Preamble is transmitted from the UE 50 to the eNB 10 in step S57, and Random58Access Response is returned from the eNB 10 to the UE 10 in step S58.
  • step S59 the UE 50 transmits an RRC ⁇ Connection Resume Request message to the eNB 10 as the message 3.
  • the RRC Connection Resume Request message includes Resume ID (resumption ID), authentication information, and the like indicating that the UE 50 holds the UE context.
  • the eNB 10 that has received the RRC Connection Resume Request message obtains the UE context of the UE 50 stored in association with the Resume Id included in the message, and performs bearer resumption and the like based on the UE context information.
  • the eNB 10 transmits an RRC ⁇ Connection Resume Complete message including Resume ⁇ ⁇ ⁇ ⁇ ⁇ Id to the UE 50.
  • step S61 the UE 50 and the eNB 10 resume the stored security context.
  • steps S62 to S65 notification of a change in the state of the UE 50 to the MME 30 is performed.
  • the context holding method 2 will be described.
  • the context maintenance method 2 does not define a new state such as RRC-Suspended, and the UE and the eNB hold the UE context in the RRC idle state, and hold it when transitioning to the RRC connected state.
  • the number of signaling can be reduced by reusing the UE context.
  • the UE 50 is in an RRC connection state in the cell of the eNB 10 and an S1-C / U connection related to the UE 50 is established.
  • the S1-C connection includes a connection between the eNB 10 and the MME 30 and a connection between the MME 30 and the S-GW 40
  • the S1-U connection includes a connection between the eNB 10 and the S-GW 40.
  • the procedure related to the first connection can also be applied to the context holding method 1.
  • the eNB 10 transmits RRC ⁇ Connection Setup to the UE 50, sets the UE 50 to the RRC connection state, and receives RRC Connection Setup Complete from the UE 50.
  • the eNB 10 receives an Initial Context Setup Request from the MME 30, transmits an RRC Security Mode to the UE 50, receives an RRC Security Mode Complete from the UE 50, and transmits an RRC Connection Reconfiguration to the UE 50, RRC Connection Reconfiguration Complete is received from UE50, and InitialInContext Setup Response is transmitted to MME30.
  • the UE context and the UE context are established and held in the UE 50 and the eNB 10.
  • the eNB 10 transmits a connection maintenance instruction signal to the MME 30 (step S71). Also, the MME 30 transmits a connection maintenance instruction signal to the S-GW 40 (step S72).
  • the connection maintenance instruction signal is a signal that instructs the MME 30 to perform the paging by holding down the downlink data in the S-GW 40 when receiving the call to the UE 50 while maintaining the S1-C / U connection related to the UE 50.
  • the S-GW 40 that has received the connection maintenance instruction signal transmits a confirmation response indicating that the instruction has been confirmed to the MME 30 (step S73), and the MME 30 transmits a confirmation response to the eNB 10 (step S74).
  • connection maintenance instruction signal from the eNB 10 to the MME 30 regarding the UE 50 may be triggered by, for example, an event that causes the UE 50 to transition to the RRC idle state in the eNB 10, or the UE 50 is initially under the control of the eNB 10. It may be performed immediately after entering the RRC connection state and establishing the S1-C / U connection for the UE 50.
  • the event that causes the transition to the RRC idle state is, for example, when it is detected that communication with the UE 50 (uplink / downlink user data communication) does not occur for a certain period of time due to expiration of a predetermined timer (eg, UE : Inactivity Timer). However, it is not limited to this.
  • FIG. 5 assumes a case where it is triggered by detecting that communication with the UE 50 (uplink / downlink user data communication) does not occur for a certain period of time.
  • RRC connection release RRC Connection
  • Release is transmitted to the UE 50, and the UE 50 is shifted to the RRC idle state (step S75). Even when the UE 50 transitions to the RRC idle state, the UE context established at the time of RRC connection is maintained in each of the UE 50 and the eNB 10.
  • step S76 downlink data for the UE 50 is generated, and the downlink data arrives at the S-GW 40 (step S76).
  • the S1-U connection has been established, but based on the connection maintenance instruction signal received in step S72, the S-GW 40 holds the downlink data in the buffer without transferring it to the eNB 10.
  • the S-GW 40 transmits a downlink data incoming notification to the MME 30 (step S77), and the MME 30 transmits an S1-AP paging signal for the UE 50 to the eNB 10 (step S78).
  • This paging itself is the same as the existing paging, and is transmitted to each eNB in the tracking area of the UE 50, but FIG. 5 shows transmission to the eNB 10.
  • the eNB 10 that has received the S1-AP paging signal transmits the RRC paging signal to the subordinate UE 50 (step S79).
  • the UE50 which received the RRC paging signal performs an RRC connection establishment procedure, and establishes an RRC connection (step S80). Thereafter, the eNB 10 transmits RRC connection establishment completion, which is a signal indicating that establishment of the RRC connection is completed, to the MME 30 (step S81).
  • the MME 30 transmits an RRC connection establishment completion signal to the S-GW 40 (step S82).
  • the S-GW 40 determines that the RRC connection between the UE 50 and the eNB 10 has been established, and uses the S1-U connection related to the UE 50 that has already been established to transfer the pending downlink data to the eNB 10.
  • Start step S83.
  • the downlink data reaches the UE 50 from the eNB 10 (step S84). In this way, transmission of downlink data to the UE 50 is started.
  • RRC connection establishment can be performed without transmitting / receiving messages such as Reconfiguration, RRC ⁇ Connection Reconfiguration Complete, and the like.
  • Examples 1 to 4 will be described below as methods for solving the problems in the random access procedure described above. That is, Embodiments 1 to 4 will be described as an example of a method for avoiding that the UE cannot transmit because the TBS is insufficient even if the UE tries to transmit Message 3.
  • the entire random access procedure in each of the following embodiments is as shown in FIG.
  • the user apparatus is referred to as UE
  • the base station is referred to as eNB.
  • Example 1 First, Example 1 will be described.
  • the UE selects an RA preamble group from RA preamble group A / B in the random access procedure, the size of the CCCH SDU is not satisfied even if it falls outside the conditions for selecting an existing RA preamble group B.
  • (size including the MAC header) is larger than messageSizeGroupA, RA preamble group B is selected, and RA preamble is selected from RA preamble group B and transmitted.
  • RA preamble group B exists. That is, the UE receives an SIB2 message (or RRC dedicated message) from the eNB, and in RACH-ConfigCommon in the message, sizeOfRA-PreamblesGroupA (the number of preambles of Group A) is not equal to numberOfRA-Preambles (the number of all preambles) The UE determines that RA preamble group B exists.
  • messageSizeGroupA is a parameter in RACH-ConfigCommon, and is a threshold value to be compared with the message size (size of Message 3) in the selection determination of RA ⁇ preamble group A / B.
  • FIG. 6 shows a description example (excerpt) of the specification (3GPP TS 36.321) corresponding to the operation of the UE of the first embodiment.
  • the changed part from Non-Patent Document 2 is underlined.
  • the condition that CCCH SDU size is larger than messageSizeGroupA is added to the condition for determining RA preamble group B with OR. .
  • the UE according to the first embodiment conforming to this specification first determines whether or not RA ⁇ preamble group B exists before performing step S1 shown in FIG. I do.
  • the UE determines whether the size of the message (UL data + MAC header, if necessary + MAC CE) to be transmitted as Message 3 is larger than messageSizeGroupA and the path loss is equal to or smaller than a predetermined value. If the determination result is Yes, RA preamble group B is selected.
  • CCCH SDU size in the present embodiment (examples 1 to 4) means a size to which MAC header is added even if it is not explicitly described that the size is the sum of MAC header. However, instead of this, the size of CCCH SDU not including MAC header may be used.
  • the UE selects RA preamble group A.
  • the UE randomly selects one RA preamble from the RA preamble in the selected group and transmits it to the eNB (step S1 in Fig. 2).
  • a larger TBS is assigned as a UL resource than when the RA preamble of RA preamble group A is received, and the RA response including UL grant is assigned to the UE. (Step S2 in FIG. 2). Thereby, UE can transmit Message 3 larger than 56 bits to eNB, for example.
  • FIG. 7 shows another example of the description (excerpt) of the specification (3GPP TS 36.321) corresponding to the operation of the UE of the first embodiment.
  • the example shown in FIG. 7 is an example that clearly describes that the size to be compared with messageSizeGroupA is the size of “CCCH SDU size + MAC header”. That is, the UE executing the operation of the specification determines whether or not “the random access procedure is started for the CCCH logical channel and“ CCCH SDU size + MAC header ”is larger than messageSizeGroupA”. If the result is Yes, RA preamble group B is selected, except for this part, which is the same as in Fig. 6.
  • the random access procedure is started for the CCCH logical channel means, for example, RRCConnectionRequest This corresponds to the initiation of a random access procedure for transmitting message, RRCConnectionReestablishmentRequestRemessage, RRC connection resume message, and the like.
  • the value of messageSizeGroupA notified from the eNB to the UE is not limited to a specific value, but is 56 bits, for example.
  • Embodiment 1 is particularly suitable when only one additional CCCH SDU size is specified in addition to the current 56-bit TBS.
  • the technique of the first embodiment can be used even when two or more additional CCCH ⁇ SDU sizes are defined.
  • Example 2 Next, Example 2 will be described.
  • a new RA preamble group is provided for a newly added CCCH SDU size.
  • Group C is newly added. That is, in this case, a plurality of preambles that can be randomly selected by the UE (e.g., 64, values notified by numberOfRA-Preambles of RACH-ConfigCommon) are divided into three groups (Group C, Group B, and Group C). .
  • the UE starts a random access procedure when, for example, it wishes to transmit the above-mentioned message for resuming connection to the eNB as Message 3.
  • step S101 for example, the UE grasps that the RA-Preamble is not explicitly signaled from the eNB, and starts the RA-preamble selection process in the MAC layer.
  • step S102 the UE determines whether or not message size (CCCH SDU + MAC header) to be transmitted is equal to the message size of Group C. If the determination result is Yes, the process proceeds to step S104, Group C is selected, and RA preamble is selected from Group C.
  • message size CCCH SDU + MAC header
  • step S102 determines whether the Potential message size (UL data + MAC header, if necessary, + MAC CE) is larger than the Message message size of Group C, and the path loss is equal to or less than a predetermined value. If the determination result is Yes, the process proceeds to step S105, Group B is selected, and RA preamble is selected from Group B. Note that “Potential message size” is the size of the message scheduled to be sent as Message 3.
  • step S103 determines whether the determination result in step S103 is No. If the determination result in step S103 is No, the process proceeds to step S106, where Group A is selected, and RA preamble is selected from Group A.
  • the eNB allocates a 64-bit TBS to the UE when the Group C RA preamble is received from the UE. Also, in this case, when the eNB receives the Group B RAmblepreamble from the UE, the eNB allocates a TBS larger than 64 bits (e.g., 80 bits) to the UE. Also, when the Group A RA preamble is received from the UE, a TBS smaller than 64 bits (e.g., 56 bits) is allocated to the UE.
  • FIG. 9 shows a description example (excerpt) of specifications (3GPP TS 36.321, 5.1.1) corresponding to the operation of the UE of the second embodiment.
  • the changed part from Non-Patent Document 2 is underlined.
  • the preambles included in RA Preambles group A, RA Preambles group B, and RA Preambles ⁇ group C are calculated from parameters of numberOfRA-Preambles, sizeOfRA-PreamblesGroupA, and sizeOfRA-PreamblesGroupC. ing.
  • the preamble of RA Preamble Group C is from sizeOfRA-PreamblesGroupA to numberOfRA-PreamblesC-1
  • the preamble of RA ⁇ Preamble Group B is from sizeOfRA-PreamblesGroupC to numberOfRA-Preambles- It is specified that
  • FIG. 10 shows a description example (excerpt) of specifications (3GPP TS 36.321, 5.1.2) corresponding to the operation of the UE of the second embodiment.
  • the changed part from Non-Patent Document 2 is underlined.
  • the description example shown in FIG. 10 corresponds to the content of the flowchart shown in FIG. As shown in FIG. 10, when Group ⁇ C does not exist, Group B is selected when potential message size is equal to or larger than message size of Group A and the path loss is equal to or less than a predetermined value, as in the conventional case.
  • FIG. 11 and FIG. 12 show a description example (extract) of the specification (3GPP TS 36.331) corresponding to the operation of the UE of the second embodiment.
  • the changed part from the nonpatent literature 5 is underlined.
  • RACH-ConfigCommon information element parameters such as sizeOfRA-PreamblesGroupC, messageSizeGroupC, and messagePowerOffsetGroupB are added to RACH-ConfigCommon information element.
  • messageSizeGroupC is a threshold value used for determination (message size of GroupC).
  • sizeOfRA-PreamblesGroupC is the size (number of preambles) of GroupC.
  • RA preamble groups are provided so as to be divided into five patterns shown in FIG.
  • the message size of RA preamble group A is 56 bits and the message size of RA preamble group C is 80 bits, but this is only an example.
  • RACH-ConfigCommon a plurality of preambles that can be randomly selected by the UE are divided into four groups (Group D, Group C, Group B, and Group C).
  • the UE starts a random access procedure when, for example, it wishes to transmit the above-mentioned message for resuming connection to the eNB as Message 3.
  • step S201 the UE grasps that the RA-Preamble has not been explicitly signaled from the eNB, and starts the RA-preamble selection process in the MAC layer.
  • step S202 the UE determines whether the Potential message size (UL data + MAC header, if necessary, + MAC CE) is larger than the Message message size of Group C, and the path loss is equal to or less than a predetermined value. If the determination result is Yes, the process proceeds to step S204, Group B is selected, and RA preamble is selected from Group B.
  • step S202 determines whether or not message size (CCCH SDU + MAC header) of Message 3 to be transmitted is equal to message80size (eg, 80 bits) of Group C. If the determination result is Yes, the process proceeds to step S205, Group C is selected, and RA preamble is selected from Group C.
  • message size CCCH SDU + MAC header
  • message80size eg, 80 bits
  • step S206 the UE determines that “Potential message size (UL data + MAC header, if necessary, + MAC CE) is smaller than Group C message size and PotentialPmessage size (UL data + MAC header, if necessary, It is determined whether + MAC CE) is larger than Group A message56size (for example, 56 bits) and the path loss is equal to or less than a predetermined value. If the determination result is Yes, the process proceeds to step S207, where Group D is selected, and RA preamble is selected from Group D. If the determination result is No, the process proceeds to step S208, Group A is selected, and RA preamble is selected from Group A.
  • the eNB receives the Group C RA preamble from the UE. It is conceivable to allocate a bit TBS to the UE. In addition, when the eNB receives RA preamble of Group B from the UE, the eNB allocates a TBS larger than 80 bits to the UE. In addition, when a Group A RA preamble is received from a UE, a 56-bit TBS is allocated to the UE. In addition, when a Group D RA preamble is received from the UE, a TBS larger than 56 bits and smaller than 80 bits (eg, 64 bits) is allocated to the UE.
  • FIG. 15 shows a description example (excerpt) of a specification (3GPP TS 36.321, 5.1.1) corresponding to the UE operation of the modified example of the second embodiment.
  • 3GPP TS 36.321, 5.1.1 a specification of a specification
  • FIG. 15 changes from Non-Patent Document 2 are underlined.
  • the preambles included in RA Preambles group A, RA Preambles group B, RA Preambles group C, and RA Preambles group D are calculated from the parameters of numberOfRA-Preambles, sizeOfRA-PreamblesGroupA, and sizeOfRA-PreamblesGroupC. Is stipulated.
  • the preamble of RA Preamble Group C is from sizeOfRA-PreamblesGroupA to numberOfRA-PreamblesC-1 ⁇
  • the preamble of RA Preamble Group D is from sizeOfRA-PreamblesGroupC It is specified that numberOfRA-PreamblesD-1 and the preamble of RA Preamble Group B is from sizeOfRA-PreamblesGroupD to numberOfRA-Preambles-1.
  • FIG. 16 shows a description example (excerpt) of specifications (3GPP TS 36.321, 5.1.2) corresponding to the operation of the UE according to the modification of the second embodiment.
  • the changes from Non-Patent Document 2 are underlined.
  • the description example shown in FIG. 16 corresponds to the content of the flowchart shown in FIG. As shown in FIG. 16, when Group ⁇ C does not exist, Group B is selected when potential message size is equal to or larger than message size of Group A and the path loss is equal to or less than a predetermined value, as in the conventional case.
  • FIG. 17 and 18 show a description example (excerpt) of a specification (3GPP TS 36.331) corresponding to the operation of the UE according to the modification of the second embodiment.
  • the changes from Non-Patent Document 5 are underlined.
  • RACH-ConfigCommon information element parameters such as sizeOfRA-PreamblesGroupC, messageSizeGroupC, messagePowerOffsetGroupB, and sizeOfRA-PreamblesGroupD are added to RACH-ConfigCommon information element.
  • messageSizeGroupC is a threshold value used for determination (message size of GroupC).
  • sizeOfRA-PreamblesGroupC is the size (number of preambles) of GroupC.
  • Example 3 Next, Example 3 will be described.
  • 64 different RA preamble resources PRACH resources
  • 64 is an example.
  • the UE can determine the number based on system information from the eNB or RRC dedicated signaling. In the following description, it is assumed that there are 64.
  • the CCCH SDU size and the RA preamble resource do not need to correspond one-to-one, and may correspond to one-to-N (N is an integer of 2 or more), for example.
  • each of 64 different RA preamble sequences corresponds to the size of CCCH SDU. For example, when transmitting a 72-bit CCCH SDU message, the UE transmits an RA preamble sequence 1 corresponding to 80 bits, and when transmitting a 56-bit CCCH SDU message, the UE supports an RA corresponding to 56 bits. Transmit preamble series 2.
  • the RA preamble sequence may be the same regardless of the CCCH SDU size, and the frequency / time resource for transmitting the RA preamble sequence may be associated with the CCCH SDU size.
  • the frequency / time resource corresponds to the above RA preamblearesource.
  • the UE transmits an 80-bit CCCHDUSDU message
  • the UE transmits an RA preamble with a frequency / time resource 1 corresponding to 80 bits and transmits a 56-bit CCCH SDU message.
  • Information on the correspondence relationship between CCCH SDU size and RA ⁇ preamble resource is notified from the eNB to the UE by system information or RRC dedicated signaling.
  • the UE holds information on the correspondence relationship, and determines RA preamble resource based on the correspondence relationship and CCCH SDU size of Message 3 to be transmitted.
  • ENB holds the correspondence between CCCH SDU size and RA preamble resource, and based on RA preamble resource received from UE, it can grasp CCCH SDU size that the UE intends to transmit in Message 3. Thereby, the allocation of TBS according to CCCH SDU size can be performed by RA response.
  • the UE starts a random access procedure when, for example, it wishes to transmit the above-mentioned message for resuming connection to the eNB as Message 3.
  • step S301 for example, the UE recognizes that the RA-Preamble has not been explicitly signaled from the eNB, and starts the RA-preamble selection process in the MAC layer.
  • step S302 the UE determines whether the CCCH SDU size of Message 3 to be transmitted is equal to the predetermined message size reported in the system information or individual RRC signaling. That is, it is determined whether or not there is a message size equal to CCCH SDU size in the list of message size in the above correspondence relationship notified in the system information or individual RRC signaling.
  • step S302 determines whether the transmission result in step S302 is Yes.
  • the process proceeds to step S303, and the UE regards the PRACH resource (generally having a plurality of PRACH resources) corresponding to the message size equal to the CCCH size SDU size as a usable PRACH resource.
  • step S305 the UE selects an RA-preamble resource from the available PRACH-resources, and transmits the RA-preamble.
  • step S302 determines whether the determination result in step S302 is No. If the determination result in step S302 is No, the process proceeds to step S304, the conventional PRACH resource notified by the system information or individual RRC signaling is regarded as a usable PRACH resource, and the process proceeds to step S305.
  • FIG. 20 shows a description example (excerpt) of specifications (3GPP TS 36.321, 5.1.1) corresponding to the operation of the UE of the third embodiment.
  • the changed part from Non-Patent Document 2 is underlined.
  • the UE knows a set of usable PRACH resources that are associated with each message size of Message3. This is indicated by prach-ConfigIndex.
  • FIG. 21 shows a description example (extract) of specifications (3GPPGPTS 36.321, 5.1.2) corresponding to the operation of the UE of the third embodiment.
  • 3GPPGPTS 36.321, 5.1.2 specifications
  • changes from Non-Patent Document 2 are underlined.
  • the UE PRACH-ParametersMsgSize is considered a usable PRACH resources. Otherwise, the resource indicated by PRACH-ConfigSIB or PRACH-Config is regarded as usable PRACH resources.
  • FIG. 22 shows a description example (extract) of the specification (3GPP TS 36.331) corresponding to the operation of the UE of the third embodiment.
  • the changed part from Non-Patent Document 5 is underlined.
  • the above MessageSizePrachInfoList, PRACH-ParametersMsgSize, and the like are added to PRACH-Config-information elements. These pieces of information correspond to the information on the correspondence relationship between CCCH SDU size and RA preamble resource described above.
  • Example 4 Next, Example 4 will be described.
  • the UE when the UE resumes the RRC connection (eg, steps S56 to S59 in FIG. 4 and step S80 in FIG. 5), the UE requests a message for resuming at the RRC layer (conventional Msg).
  • a conventional RRC Connection request message (or RRC Connection reestablishment request message) of Msg.3 size (56 bits TBS) is also created.
  • the UE then sends both messages to the lower layer.
  • the UE sends a message requesting resumption of a size larger than that of the conventional Msg.3 according to the allocated TBS, or the conventional Msg.3 size RRCRRconnection request message (or RRC Connection reestablishment request) message).
  • the UE when the UE starts RRC connection resumption in step S56, the UE creates RRC connection request message and RRC connection request message. Then, in the MAC layer, the UE determines whether to transmit either RRC connection resume request message or RRC Connection request message according to the TBS assigned by UL grant received in step S58. For example, when the TBS has a size that allows transmission of RRC connection, resume request, and message, RRC connection, resume request, and message are transmitted. In this case, the procedure shown in FIG. 4 is performed thereafter. On the other hand, when the TBS is not of a size that can transmit RRC connection, request, message, RRC connection, request request message (or RRC connection request request message). In this case, the same procedure as that at the time of transmitting the conventional RRC Connection request message (or RRC Connection reestablishment request message) is subsequently executed.
  • RRC connection resume request message is used as a message for resuming the RRC connection. This may be considered as a new message in FIG. 4 or an extension of an existing message (for example, a message used in step S80 in FIG. 5).
  • step S401 the UE creates an RRC connection request message in the RRC layer and also creates an existing RRC connection request message.
  • step S ⁇ b> 402 the UE determines whether or not it is possible to transmit RRC connection resume request using the TBS assigned to Message 3.
  • step S402 If the determination result in step S402 is Yes, RRC connection resume request message is transmitted in step S403. In the case of No, it is assumed that the TBS is 56 bits, and an existing RRC connection request message is transmitted in step S404.
  • the radio quality is good, a large TBS allocation can be expected, and in that case, an RRC connection connection request message can be transmitted. Even when receiving normal TBS allocation, RRC connection request message can be transmitted. That is, in the RA procedure, it is possible to avoid that the UE cannot transmit the control message due to a lack of uplink resources allocated from the eNB.
  • RRC connection request message and RRC connection resume request message are created at the same time, but a plurality of messages of different sizes are created at the same time, and if large messages can be sent, they are sent.
  • the process is applicable not only to RRC connection request message and RRC connection request request message.
  • Embodiments 1 to 4 can be implemented in combination as long as no contradiction occurs.
  • Each device may have all the functions of the first to fourth embodiments, or may have the function of any one of the first to fourth embodiments or the function of a modified example. Alternatively, any one of the functions of the first to fourth embodiments may be provided. In the following description, each device is assumed to have the functions of the first to fourth embodiments.
  • FIG. 24 shows a functional configuration diagram of the UE.
  • the UE includes a DL signal reception unit 51, a UL signal transmission unit 52, a preamble selection unit 53, an RRC processing unit 54, and a UE context management unit 55.
  • FIG. 24 shows only functional units particularly relevant to the present invention in the UE, and the UE also has a function (not shown) for performing an operation based on LTE.
  • the DL signal receiving unit 51 includes a function of receiving various downlink signals from the base station eNB and acquiring higher layer information from the received physical layer signal, and the UL signal transmitting unit 52 is transmitted from the UE 50. It includes a function of generating various signals of the physical layer from information on higher layers to be transmitted and transmitting the signals to the base station eNB.
  • the preamble selection unit 53 selects a preamble in the MAC layer using the logic described in the first and second embodiments.
  • the preamble selection unit 53 may be provided in the UL signal transmission unit 52. Also, the preamble selection unit 53 performs resource selection for RA preamble transmission in the third embodiment.
  • the RRC processing unit 54 generates and transmits an RRC message (transmission is performed via the UL signal transmission unit 52), interprets the RRC message received by the DL signal reception unit 51, and the like. In the third embodiment, the RRC processing unit 54 acquires / holds correspondence information. In the fourth embodiment, the RRC processing unit 54 simultaneously creates RRC connection request message and RRC connection resume request message. In the fourth embodiment, the UL signal transmission unit 52 includes a function for determining which of RRC connection request message and RRC connection resume request message is to be transmitted based on TBS.
  • the UE context management unit 55 includes storage means such as a memory, and holds the UE context in the RRC hold state / RRC idle state.
  • the configuration of the UE shown in FIG. 24 may be entirely realized by a hardware circuit (eg, one or a plurality of IC chips), or a part is constituted by a hardware circuit, and the other part is a CPU and a program. And may be realized.
  • a hardware circuit eg, one or a plurality of IC chips
  • a part is constituted by a hardware circuit, and the other part is a CPU and a program. And may be realized.
  • FIG. 25 is a diagram illustrating an example of a hardware (HW) configuration of the UE.
  • FIG. 25 shows a configuration closer to the mounting example than FIG.
  • the UE controls a radio equipment (RE) module 151 that performs processing related to a radio signal, a base band (BB) processing module 152 that performs baseband signal processing, and device control that performs processing such as an upper layer.
  • RE radio equipment
  • BB base band
  • device control that performs processing such as an upper layer.
  • It has a module 153 and a USIM slot 154 which is an interface for accessing a USIM card.
  • the RE module 151 should transmit from the antenna by performing digital-to-analog (D / A) conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB processing module 152 Generate a radio signal.
  • a digital baseband signal is generated by performing frequency conversion, analog to digital (A / D) conversion, demodulation, and the like on the received wireless signal, and the digital baseband signal is passed to the BB processing module 152.
  • the RE module 151 includes functions such as a physical layer in the DL signal receiving unit 51 and the UL signal transmitting unit 52 in FIG. 24, for example.
  • the BB processing module 152 performs processing for mutually converting an IP packet and a digital baseband signal.
  • the digital signal processor (DSP) 162 is a processor that performs signal processing in the BB processing module 152.
  • the memory 172 is used as a work area for the DSP 162.
  • the BB processing module 152 includes, for example, functions such as layer 2 in the DL signal reception unit 51 and the UL signal transmission unit 52 in FIG. 24, a preamble selection unit 53, an RRC processing unit 54, and a UE context management unit 54. Note that all or some of the functions of the preamble selection unit 53, the RRC processing unit 54, and the UE context management unit 54 may be included in the device control module 153.
  • the device control module 153 performs IP layer protocol processing, various application processing, and the like.
  • the processor 163 is a processor that performs processing performed by the device control module 153.
  • the memory 173 is used as a work area for the processor 163.
  • the processor 163 reads and writes data with the USIM through the USIM slot 154.
  • FIG. 26 shows a functional configuration diagram of the eNB.
  • the eNB includes a DL signal transmission unit 11, a UL signal reception unit 12, an RRC processing unit 13, a UE context management unit 14, and an NW communication unit 15.
  • FIG. 26 shows only functional units particularly related to the embodiment of the present invention in the eNB, and the eNB also has a function (not shown) for performing an operation based on at least the LTE scheme.
  • the DL signal transmission unit 11 includes a function of generating and transmitting various physical layer signals from higher layer information to be transmitted from the eNB.
  • the UL signal receiving unit 12 includes a function of receiving various uplink signals from the UE and acquiring higher layer information from the received physical layer signals.
  • the RRC processing unit 13 performs generation / transmission of RRC messages and system information (transmission is transmission via the DL signal transmission unit 11), interpretation of RRC messages received by the UL signal reception unit 12, operation, and the like.
  • the RRC processing unit 13 also includes a function of resuming RRC connection using the UE context held in the UE context management unit 14.
  • the UE context management unit 14 includes storage means such as a memory and holds the UE context in the RRC hold state / RRC idle state.
  • the NW communication unit 15 transmits / receives a control signal to / from the MME through the S1-MME interface, a function to transmit / receive data to / from the S-GW through the S1-U interface, and a function of transmitting a connection maintenance instruction signal , A transmission function for transmitting RRC connection establishment completion, and the like.
  • the configuration of the eNB shown in FIG. 26 may be realized entirely by a hardware circuit (eg, one or a plurality of IC chips), or a part may be configured by a hardware circuit, and the other part may be a CPU and a program. And may be realized.
  • a hardware circuit eg, one or a plurality of IC chips
  • a part may be configured by a hardware circuit, and the other part may be a CPU and a program. And may be realized.
  • FIG. 27 is a diagram illustrating an example of a hardware (HW) configuration of the eNB.
  • HW hardware
  • FIG. 27 shows a configuration closer to the mounting example than FIG.
  • the eNB is connected to the network by an RE module 251 that performs processing related to a radio signal, a BB processing module 252 that performs baseband signal processing, a device control module 253 that performs processing such as an upper layer, and the like.
  • a communication IF 254 which is an interface for the
  • the RE module 251 generates a radio signal to be transmitted from the antenna by performing D / A conversion, modulation, frequency conversion, power amplification, and the like on the digital baseband signal received from the BB processing module 252.
  • a digital baseband signal is generated by performing frequency conversion, A / D conversion, demodulation, and the like on the received radio signal, and passed to the BB processing module 252.
  • the RE module 251 includes functions such as a physical layer in the DL signal transmission unit 11 and the UL signal reception unit 12 in FIG. 26, for example.
  • the BB processing module 252 performs processing for mutually converting an IP packet and a digital baseband signal.
  • the DSP 262 is a processor that performs signal processing in the BB processing module 252.
  • the memory 272 is used as a work area for the DSP 252.
  • the BB processing module 252 includes, for example, functions such as layer 2 in the DL signal transmission unit 11 and the UL signal reception unit 12 in FIG. 25, an RRC processing unit 13, and a UE context management unit 14. Note that all or part of the functions of the RRC processing unit 13 and the UE context management unit 14 may be included in the device control module 253.
  • the device control module 253 performs IP layer protocol processing, OAM processing, and the like.
  • the processor 263 is a processor that performs processing performed by the device control module 253.
  • the memory 273 is used as a work area for the processor 263.
  • the auxiliary storage device 283 is an HDD, for example, and stores various setting information for the base station eNB itself to operate.
  • the configuration (functional category) of the apparatus shown in FIGS. 24 to 27 is merely an example of a configuration that realizes the processing described in the present embodiment.
  • the mounting method (specific arrangement of functional units, names, and the like) is not limited to a specific mounting method.
  • the size of a message transmitted on a predetermined logical channel in the user apparatus that communicates with the base station in a wireless communication system including the base station and the user apparatus. And selecting a random access signal group from a plurality of random access signal groups and selecting a random access signal from the random access signal group, and selecting by the selection unit.
  • a user equipment characterized by transmitting on a channel is provided.
  • the base station can grasp the size of the message to be transmitted by the user apparatus before transmitting the RA response, and can allocate an appropriate TBS with the UL response grant. Therefore, it is possible to prevent the user apparatus from being unable to transmit a control message due to a shortage of uplink resources allocated from the base station.
  • the selection unit may select a random access signal group corresponding to the predetermined threshold from two random access signal groups. With this configuration, for example, it is possible to notify the base station that the user apparatus uses a new CCCH SDU size using the existing Group B.
  • the selection unit may select a random access signal group corresponding to the predetermined threshold from a plurality of random access signal groups.
  • a random access signal group corresponding to the predetermined threshold is, for example, messageSizeGroupC.
  • the selection unit selects the predetermined value from a plurality of random access signal groups. It is also possible to select a predetermined random access signal group different from the random access signal group corresponding to the threshold value. With this configuration, for example, it is possible to notify the base station that the user apparatus uses a message larger than messageSizeGroupC using the existing Group B.
  • the selection unit determines whether or not a first condition that a size of the message is larger than the predetermined threshold and a path loss is smaller than a predetermined value is satisfied, and the first condition is not satisfied And determining whether or not a second condition that the size of the message is equal to the predetermined threshold is satisfied, and selecting the random access signal group corresponding to the predetermined threshold when the second condition is satisfied It is good to do.
  • a first condition that a size of the message is larger than the predetermined threshold and a path loss is smaller than a predetermined value is satisfied and the first condition is not satisfied
  • determining whether or not a second condition that the size of the message is equal to the predetermined threshold is satisfied and selecting the random access signal group corresponding to the predetermined threshold when the second condition is satisfied It is good to do.
  • the selection unit when the second condition is not satisfied, the selection unit, the size of the message is smaller than the predetermined threshold, and the size of the message is larger than a predetermined second threshold, it is determined whether or not a third condition that a path loss is smaller than a predetermined value is satisfied, and when the third condition is satisfied, the selection unit determines that the predetermined second threshold value and the predetermined value Selecting a random access signal group corresponding to a size between the threshold and the selection unit selecting a random access signal group corresponding to the predetermined second threshold when the third condition is not satisfied; It is good.
  • the message size can be divided into a plurality of patterns, and notification to the base station can be performed for each pattern.
  • the user apparatus in the radio communication system including a base station and a user apparatus, the user apparatus that communicates with the base station, the size of a message transmitted on a predetermined logical channel, and a random access signal
  • a receiving unit that receives information on a correspondence relationship between the resource and the resource from the base station, and a selection unit that selects a resource corresponding to the size of a message transmitted on the predetermined logical channel from the correspondence information.
  • a user apparatus comprising: a transmission unit that transmits a random access signal to the base station using the selected resource is provided.
  • the base station can grasp the size of the message to be transmitted by the user apparatus before transmitting the RA response, and can allocate an appropriate TBS with the UL response grant. Therefore, it is possible to prevent the user apparatus from being unable to transmit a control message due to a shortage of uplink resources allocated from the base station.
  • the resource is, for example, a random access signal sequence or a resource of time and frequency used for transmission of the random access signal.
  • the resource is, for example, a random access signal sequence or a resource of time and frequency used for transmission of the random access signal.
  • a random access method executed by the user apparatus that communicates with the base station in a wireless communication system including the base station and the user apparatus, and a message transmitted on a predetermined logical channel.
  • a random access signal group from a plurality of random access signal groups by comparing the size and a predetermined threshold, and selecting a random access signal from the random access signal group; and A transmitting step of transmitting the selected random access signal to the base station; and a transmitting step of transmitting the message on the predetermined logical channel using a resource allocated by a response from the base station to the random access signal. Random access with Scan method is provided.
  • a random access method executed by the user apparatus that communicates with the base station in a wireless communication system including the base station and the user apparatus, and a message transmitted on a predetermined logical channel.
  • a random access method comprising a selection step of selecting from the above and a transmission step of transmitting a random access signal to the base station using the selected resource.
  • the user apparatus that communicates with the base station in a wireless communication system including a base station and a user apparatus, the first message and a size smaller than the first message A generating unit that generates a second message, and the first message when the first message can be transmitted according to the amount of resources allocated by a response from the base station to the random access signal transmitted to the base station.
  • a user apparatus comprising: a transmission unit that transmits one message to the base station and transmits the second message to the base station when the first message cannot be transmitted.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • each device has been described using a functional block diagram. However, such a device may be implemented in hardware, software, or a combination thereof.
  • Software that is operated by the processor of the apparatus according to the embodiment of the present invention includes random access memory (RAM), flash memory, read only memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD It may be stored in any suitable storage medium such as ROM, database, server, etc.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (for example, RRC signaling, MAC signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB))), other signals, or a combination thereof.
  • the RRC message may be referred to as RRC signaling.
  • the RRC message may be, for example, an RRC connection setup (RRCRRConnection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • each aspect / embodiment described in this specification includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4G, 5G, Future Radio Access (FRA), W -CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Ultra-WideBand (UWB) ), Bluetooth (registered trademark), other appropriate systems, and / or next-generation systems extended based on these systems.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G Fifth Generation
  • FAA Future Radio Access
  • W -CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Ultra-Wide
  • the determination or determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true value (Boolean: true or false), or may be performed by comparing numerical values (for example, (Comparison with a predetermined value).
  • the channel and / or symbol may be a signal.
  • the signal may be a message.
  • UE is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal by those skilled in the art , Remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • determining may encompass a wide variety of actions.
  • “Judgment”, “decision” can be, for example, calculating, computing, processing, deriving, investigating, looking up (eg, table, database or another (Searching in the data structure), and confirming (ascertaining) what has been confirmed may be considered as “determining” or “determining”.
  • “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as “determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • the input / output information or the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the notification of the predetermined information is not limited to explicitly performed, and may be performed implicitly (for example, notification of the predetermined information is not performed). .
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by an index.
  • the names used for the parameters described above are not limiting in any way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置において、所定の論理チャネルで送信されるメッセージのサイズと所定の閾値とを比較することにより、複数のランダムアクセス信号グループの中から、ランダムアクセス信号グループを選択し、当該ランダムアクセス信号グループからランダムアクセス信号を選択する選択部と、前記選択部により選択されたランダムアクセス信号を前記基地局に送信する送信部と、を備え、前記送信部は、前記ランダムアクセス信号に対する前記基地局からの応答により割り当てられるリソースを用いて、前記メッセージを前記所定の論理チャネルで送信する。

Description

ユーザ装置、及びランダムアクセス方法
 本発明は、無線通信システムにおいてユーザ装置(以下、UE)と基地局(以下、eNB)との間で実行されるランダムアクセス手順に関連するものである。
 LTE等の無線通信システムでは、UEがeNBとの接続を確立する場合や、再接続(再同期)を行う場合等にランダムアクセス(以下、RAと略記する場合がある)手順が実行される。RA手順には、衝突型RA手順と、非衝突側RA手順がある。衝突型RA手順は、全ての目的に使用でき、非衝突側RA手順はハンドオーバ等の特定の目的に使用される。ここでは、衝突型RA手順を対象とする。
 RA手順では、UEがeNBにRA preambleを送信し、eNBがUEにRA responseを返す。そして、UEは、RA responseの中のUL grantで割り当てられた上りリソースを用いて制御メッセージをeNBに送信する。この制御メッセージはMessage 3(メッセージ3)と呼ばれる(非特許文献1)。
 Message 3では、接続時にはRRCConnectionRequest messageが、再接続時にはRRCConnectionReestablishmentRequest messageが、logical channel(論理チャネル)であるCCCH(Common Control Channel、共通制御チャネル)で送られる。
 RRCConnectionRequest message、RRCConnectionReestablishementRequest messageは、標準仕様上、総称してCCCH Service Data Unit(SDU)とも呼ばれる。RRCConnectionRequest message、RRCConnectionReestablishmentRequest messageのサイズは共に48ビットであり、これにMAC headerの8ビットが付加され、MAC PDUとしては56ビットになる。すなわち、56ビットのデータが、物理レイヤ(PHY)で送信可能な1つのTransport Block(トランスポートブロック)となり、そのサイズ(56ビット)がTransport Block Size (TBS)となる。
3GPP TS 36.300 V12.8.0 (2015-12) 3GPP TS 36.321 V12.8.0 (2015-12) 3GPP TR 23.720 V1.2.0(2015-11) 3GPP R2-161745 3GPP TS 36.331 V12.8.0 (2015-12)
 Message 3のTBSとして56ビットよりも大きな値を割り当てることもできる。この場合、例えばPadding Buffer Status Report(Padding BSR)などがデータに付加される。LTEでは、RA preambleをグルーピングし、グループの中から選択されたRA preambleを用いてUEがRA手順を行うことが規定されている(非特許文献2)。eNBは、送信されたRA preambleが属するグループにより、Message 3のサイズが大きくなるか否かを判定し、該当TBSをRA responseでUEに通知することができる。
 具体的には、非特許文献2に記載されているように、Preamble group A/Bが設けられる。そして、Preamble group Bが存在し、システム情報で設定されたmessage size(messageSizeGroupA in RACH-ConfigCommon)よりもMessage 3のsizeが大きく、かつパスロスが所定の値以下である場合にPreamble group Bの中からRA preambleが選択される。そうでない場合は、Preamble group Aの中からRA preambleが選択される。
 ところで、UEがアイドル状態にあるときにeNB/UEでUEコンテクストを保存しておき、接続状態に遷移する際に、保存したUEコンテクストを用いることで、接続のためのシグナリング量を削減する仕組みが検討されている。例えば、非特許文献3にはsolution 18として、その例が記載されている。
 本仕組みにおいて、保存したUEコンテクストを用いてRRC connectionを再開するために、UEがMessage 3で再開要求メッセージを送信する。このメッセージには、接続を再開するために用いるIDや認証情報が加えられるため、メッセージサイズが、既存のCCCH SDUのTBSの56ビットを超える可能性がある(例えば、非特許文献4)。
 従って、メッセージサイズの異なる複数のCCCH SDUが規定される可能性がある。メッセージサイズの異なる複数のCCCH SDUが規定される場合、UEは、手順に応じて、異なるサイズのCCCH SDUをeNBに送信する。例として、UEは、通常のRRC connection requestを56ビットのTBSで送信し、RRC connection resumeを64ビットのTBSで送信するといったことが想定される。
 従来はCCCH SDUのメッセージサイズは1つ(TBS:56ビット)であったが、メッセージサイズが異なるCCCH SDUが規定されると、eNBは、RA responseでMessage 3のUL grantを割当てるまでに、CCCH SDUのサイズを考慮してUL grantで割り当てるTBSを決める必要がある。しかし、従来の仕組みでは、eNBがCCCH SDUのメッセージサイズをRA responseの送信前に知ることができないため、CCCH SDUのサイズを考慮してUL grantで割り当てるTBSを決めることができない。このため、例えば、UEが、再開要求メッセージを送信しようとしても、TBSが不足して、送信できないといったことが発生し得る。
 なお、上記のような課題は、再開要求メッセージ以外の制御メッセージを送信する場合にも生じ得る課題である。
 本発明は上記の点に鑑みてなされたものであり、ランダムアクセス手順において、ユーザ装置が、基地局から割り当てられる上りリソースの不足により制御メッセージの送信ができなくなることを回避する技術を提供することを目的とする。
 本発明の実施の形態によれば、基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置であって、
 所定の論理チャネルで送信されるメッセージのサイズと所定の閾値とを比較することにより、複数のランダムアクセス信号グループの中から、ランダムアクセス信号グループを選択し、当該ランダムアクセス信号グループからランダムアクセス信号を選択する選択部と、
 前記選択部により選択されたランダムアクセス信号を前記基地局に送信する送信部と、を備え、
 前記送信部は、前記ランダムアクセス信号に対する前記基地局からの応答により割り当てられるリソースを用いて、前記メッセージを前記所定の論理チャネルで送信する
 ことを特徴とするユーザ装置が提供される。
 また、本発明の実施の形態によれば、基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置であって、
 所定の論理チャネルで送信されるメッセージのサイズと、ランダムアクセス信号のリソースとの間の対応関係の情報を前記基地局から受信する受信部と、
 前記所定の論理チャネルで送信されるメッセージのサイズに対応するリソースを、前記対応関係の情報から選択する選択部と、
 前記選択されたリソースを用いて、ランダムアクセス信号を前記基地局に送信する送信部と
 を備えることを特徴とするユーザ装置が提供される。
 本発明の実施の形態によれば、ランダムアクセス手順において、ユーザ装置が、基地局から割り当てられる上りリソースの不足により制御メッセージの送信ができなくなることを回避する技術が提供される。
本発明の実施の形態における通信システムの構成図である。 ランダムアクセス手順を示す図である。 コンテクスト保持方式例1の処理シーケンスを示す図である。 コンテクスト保持方式例1の処理シーケンスを示す図である。 コンテクスト保持方式例2の処理シーケンスを示す図である。 実施例1における仕様変更例を示す図である。 実施例1における仕様変更例を示す図である。 実施例2における処理手順を示すフローチャートである。 実施例2における仕様変更例を示す図である。 実施例2における仕様変更例を示す図である。 実施例2における仕様変更例を示す図である。 実施例2における仕様変更例を示す図である。 実施例2の変形例を説明するための図である。 実施例2の変形例における処理手順を示すフローチャートである。 実施例2の変形例における仕様変更例を示す図である。 実施例2の変形例における仕様変更例を示す図である。 実施例2の変形例における仕様変更例を示す図である。 実施例2の変形例における仕様変更例を示す図である。 実施例3における処理手順を示すフローチャートである。 実施例3における仕様変更例を示す図である。 実施例3における仕様変更例を示す図である。 実施例3における仕様変更例を示す図である。 実施例4における処理手順を示すフローチャートである。 UEの構成図である。 UEのHW構成図である。 eNBの構成図である。 eNBのHW構成図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。例えば、本実施の形態では、LTEのシステムを対象としているが、本発明はLTEに限らずに適用可能である。また、本明細書及び特許請求の範囲では、特に断らない限り、「LTE」の用語は3GPPの特定のRel(リリース)に限定されない。また、「LTE」は「5G」を含むこととする。また、本実施の形態で説明する処理において、「以下」と「より小さい」は実質的に同じであり、どちらを用いても良い。
 (システム全体構成)
 図1は、本発明の実施の形態における通信システムの構成例を示す図である。図1に示すように、本実施の形態の通信システムは、eNB10、eNB20、MME30、Serving Gateway(S-GW)40、UE50を含む。
 UE50は携帯電話機等のユーザ装置である。eNB10、20はそれぞれ基地局である。MME30は、eNBを収容し、位置登録、ページング、ハンドオーバ等のモビリティ制御、ベアラ確立/削除等を行うノード装置である。S-GW40は、ユーザデータ(U-Planeデータ)の中継を行うノード装置である。なお、MME30とS-GW40からなるシステムを通信制御装置と呼ぶ。また、MME30とS-GW40を1つの装置で構成し、それを通信制御装置と呼ぶこととしてもよい。
 図1に示すように、MME30とeNB10、20間はS1-MMEインターフェースで接続され、S-GW40とeNB10、20間はS1-Uインターフェースで接続される。点線の接続線は制御信号インターフェースを示し、実線の接続線はユーザデータ転送のインターフェースを示す。
 本発明に係る技術は、前述したUEコンテクスト保持方式における接続再開時のランダムアクセスに限らずに適用可能であるが、本実施の形態では、本発明の適用例の1つとして、UEコンテクスト保持方式を用いている。
 本実施の形態では、UEコンテクスト保持方式の例として、非特許文献3に記載されている方式であるRRC-Suspended(及びECM-Suspended)という新しいRRCの状態を定義する方式(コンテクスト保持方式1)と、新たなRRCの状態を定義することなくUEコンテクストの再利用を行う方式(コンテクスト保持方式2)を説明している。これらのシーケンスの例は後述する。
 (ランダムアクセス手順について)
 本実施の形態では、ユーザ装置(UEと呼ぶ)と基地局eNB(eNBと呼ぶ)との間のランダムアクセス手順を対象としていることから、まず、ランダムアクセス手順の基本的な処理を説明する。
 ランダムアクセス(以下、RA)は、UEが、発信時等において、eNBと接続を確立する場合に行われ、その主な目的は上り同期を確立することである。既に説明したように、RA手順には、衝突型RA手順と、非衝突側RA手順がある。衝突型RA手順は、全ての目的に使用でき、非衝突側RA手順はハンドオーバ等の特定の目的に使用される。本実施の形態では、衝突型RA手順を対象とする。
 図2を参照して衝突型RA手順を説明する。UEは、所定数のRA preamble(系列)の中から1つの系列を使用して、Physical Random Access Channel(PRACH)により、RA preamble(選択した系列)を送信する(ステップS1)。同時刻に同系列を使用してランダムアクセスを行う他のUEが存在しなければ衝突は生じない。
 ステップS2において、eNBは、DL-SCH(下り共有チャネル)を利用して、UEの送信タイミングを調整するためのTA(timing advance)コマンド、検出したRA preambleのインデックス、上りリソース割り当て情報(UL grant)等を含むRA response(レスポンス)をUEに送信する。
 RA responseを受信したUEは、上りのタイミングを調整し、割り当てられたリソースを用いてCCCHにより、RRC connection request等の制御メッセージをeNBに送信する(ステップS3)。
 RA preambleを送信したUEが、RA responseを受信できなかった場合については(ランダムアクセス試行が失敗した場合)、UEは、1回失敗するたびに、所定のステップサイズだけ送信電力を上げてPRACHを送信する。このような動作はPower Rampingと呼ばれる。
 ステップS4において、eNBは、contention resolution(競合解決メッセージ)を送信する。contention resolutionを受信したUEは、自分のID(例:TC-RNTI、ステップS3でスクランブルに使用したもの)が含まれていることを確認することで、ランダムアクセス処理を完了し、以降、データの送受信を行う。
 (コンテクスト保持方式のシーケンス例について)
 次に、本実施の形態におけるシステムの動作例として、前述したコンテクスト保持方式に係る動作を説明する。以下では、コンテクスト保持方式1とコンテクスト保持方式2を説明する。
 <コンテクスト保持方式1>
 まず、コンテクスト保持方式1について説明する。コンテクスト保持方式1では、従来のRRC-Idle(RRCアイドル状態)とRRC-Connected(RRC接続状態)に加えて、RRC-Suspended(RRC保留状態と呼ぶ)という状態が追加されている。RRC保留状態において、UEとeNBはそれぞれ、RRC保留状態になる前のRRC接続状態で接続に使用したUEコンテクストを保持する。そして、RRC保留状態からRRC接続状態に遷移するときに、当該保持したUEコンテクストを使用してRRC接続確立をする。
 まず、コンテクスト保持方式1における通信システム全体のシーケンス例として、UE50が、RRCアイドル状態からRRC保留状態(及びECM保留状態)に遷移する場合の処理シーケンスを図3を参照して説明する。
 ステップS11において、eNB10は、RRC接続を保留することを決定する。ステップS12において、eNB10は、UE50のRRC接続が保留されたことを示すメッセージをMME30に送信する。MME10とeNB30はUEコンテクストを保持する。
 ステップS13、S14でのメッセージを経て、ステップS15において、MME30はステップS12に対するAckを返す。ステップS16で、MME30はECM-SUSPENDEDの状態に入る。
 ステップS17では、eNB10はUE50にRRC connection suspendメッセージを送信し、UE50をRRC保留状態にする(ステップS18)。RRC connection suspendメッセージには、Resume ID(再開ID)が含まれる。Resume IDは、次にRRC接続を再開する場合に使用される識別子である。RRC保留状態において、UE50とeNB10はそれぞれ、UEコンテクストを格納する。
 ここで、本実施の形態において、UE50とeNB10のそれぞれで保持されるUEコンテクストは、例えば、RRCコンフィギュレーション(RRC configuration)、ベアラコンフィギュレーション(bearer configuration: RoHC state information等を含む)、ASセキュリティコンテクスト(Access Stratum Security Context)、L2/L1パラメータ(MAC、PHYのコンフィギュレーション等)等である。
 UE10とeNB10はそれぞれUEコンテクストとして上記のような情報を保持することで、RRC保留状態からRRC接続状態に遷移する際に、RRC Connection Setup Complete、RRC Security Mode Command、RRC Security Mode Complete、RRC Connection Reconfiguration、RRC Connection Reconfiguration Complete、等のメッセージの送受信を行うことなくRRC接続確立を行うことができる。
 次に、UE50が、RRC保留状態からRRC接続状態に遷移する場合のシーケンス例を図4を参照して説明する。図4は、RRC保留状態(ステップS51)にあるUE50が着信を受ける(ステップS52~S55)ケースを示しているが、これは例であり、RRC保留状態にあるUE50が発信をする場合も、UEコンテクストの再利用に関しては同様の処理が行われる。
 eNB10からページングを受信したUEにおいて、ステップS56では、EMMレイヤから、RRC再開手順(resume procedure)が起動される。ステップS57にてRandom Access PreambleがUE50からeNB10に送信され、ステップS58にて、Random Access ResponseがeNB10からUE10に返される。
 ステップS59では、メッセージ3として、UE50は、RRC Connection Resume RequestメッセージをeNB10に送信する。
 当該RRC Connection Resume Requestメッセージには、UE50がUEコンテクストを保持することを示す情報であるResume Id(再開ID)、認証情報等が含まれる。RRC Connection Resume Requestメッセージを受信したeNB10は、当該メッセージに含まれるResume Idに対応付けて格納されている、UE50のUEコンテクストを取得し、UEコンテクストの情報に基づき、ベアラの再開等を行う。ステップS60では、eNB10は、UE50に対してResume Idを含むRRC Connection Resume Completeメッセージを送信する。
 ステップS61では、UE50とeNB10は、格納したセキュリティコンテクストを再開する。そして、ステップS62~S65において、MME30に対するUE50の状態変更の通知等が行われる。
 <コンテクスト保持方式2>
 次に、コンテクスト保持方式2について説明する。前述したとおり、コンテクスト保持方式2は、RRC-Suspendedのような新しい状態を定義することなく、RRCアイドル状態において、UEとeNBがUEコンテクストを保持し、RRC接続状態に遷移する際に、保持したUEコンテクストを再利用することで、シグナリング数削減を可能とする方式である。
 コンテクスト保持方式2における通信システム全体のシーケンス例として、RRCアイドル状態のUE50に対する着信がある場合に、MME30からページングを行う方式について説明する。より具体的には、UE50がeNB10に接続してRRC接続状態となり、eNB10の配下のセルでRRCアイドル状態となり、同一セルで、その後に着信を受ける場合の処理シーケンスを図5を参照して説明する。
 図5の処理の前提として、UE50はeNB10のセルにおいてRRC接続状態にあり、UE50に関するS1-C/Uのコネクションが確立されている状態とする。図5において、S1-Cコネクションは、eNB10とMME30との間のコネクションとMME30とS-GW40間のコネクションを含み、S1-Uコネクションは、eNB10とS-GW40間のコネクションを含む。コネクションが確立されている場合、コネクション確立信号等のコネクションセットアップのための手順を実行することなく、該当ノード装置間でUE50に係る信号(データ)を送受信できる。
 図5の手順の説明に入る前に、UE50が最初にeNB10に接続する際の手順の一例の概要を説明しておく。なお、この最初の接続に係る手順は、コンテクスト保持方式1にも適用できる。UE50のランダムアクセス時に、eNB10は、RRC Connection SetupをUE50に送信し、UE50をRRC接続状態とし、UE50からRRC Connection Setup Completeを受信する。その後、eNB10は、MME30からInitial Context Setup Requestを受信し、UE50に対してRRC Security Mode Commandを送信し、UE50からRRC Security Mode Completeを受信し、また、UE50に対してRRC Connection Reconfigurationを送信し、UE50からRRC Connection Reconfiguration Completeを受信し、MME30に対してInitial Context Setup Responseを送信する。このような手順を経て、UE50とeNB10におけるUEコンテクストの確立、保持等がなされる。
 図5に示すように、RRC接続状態において、eNB10はMME30に対してコネクション維持指示信号を送信する(ステップS71)。また、MME30はコネクション維持指示信号をS-GW40に送信する(ステップS72)。
 コネクション維持指示信号は、当該UE50に関するS1-C/Uコネクションを維持しながら、UE50への着信時に下りデータをS-GW40に保留して、MME30からページングを行うことを指示する信号である。
 コネクション維持指示信号を受信したS-GW40は、指示を確認したことを示す確認応答をMME30に送信し(ステップS73)、MME30は、確認応答をeNB10に送信する(ステップS74)。
 UE50に関するeNB10からMME30へのコネクション維持指示信号の送信は、例えば、eNB10において、UE50をRRCアイドル状態に遷移させる事象が発生したことをトリガーとして行ってもよいし、UE50が最初にeNB10の配下でRRC接続状態になり、当該UE50に関するS1-C/Uコネクションが確立された直後に行うこととしてもよい。
 上記のRRCアイドル状態に遷移させる事象とは、例えば、所定のタイマ(例:UE Inactivity Timer)の満了によって、UE50との通信(上り下りのユーザデータ通信)が一定時間発生しないことを検知した場合であるが、これに限られるわけではない。
 図5は、UE50との通信(上り下りのユーザデータ通信)が一定時間発生しないことを検知したことをトリガーとする場合を想定しており、ステップS71~S74の後に、RRC接続解放(RRC Connection Release)をUE50に送信し、UE50をRRCアイドル状態に遷移させる(ステップS75)。UE50が、RRCアイドル状態に遷移する場合でも、UE50とeNB10のそれぞれにおいて、RRC接続時に確立したUEコンテクストは保持される。
 その後、UE50向けの下りデータが発生し、当該下りデータがS-GW40に到着する(ステップS76)。ここでは、S1-Uコネクションは確立済みであるが、ステップS72で受信したコネクション維持指示信号に基づき、S-GW40は、当該下りデータをeNB10に転送せずにバッファに保留しておく。
 S-GW40は、下りデータ着信通知をMME30に送信し(ステップS77)、MME30はUE50向けのS1-APページングの信号をeNB10に送信する(ステップS78)。このページング自体は、既存のページングと同様であり、UE50のトラッキングエリアの各eNBに送信されるが、図5ではeNB10への送信を示している。
 S1-APページングの信号を受信したeNB10は、配下のUE50にRRCページングの信号を送信する(ステップS79)。
 RRCページング信号を受信したUE50は、RRC接続確立手順を実行し、RRC接続を確立させる(ステップS80)。その後、eNB10は、RRC接続の確立が完了したことを示す信号であるRRC接続確立完了をMME30に送信する(ステップS81)。
 MME30はRRC接続確立完了の信号をS-GW40に送信する(ステップS82)。これにより、S-GW40はUE50とeNB10間のRRC接続が確立したと判断し、既に確立されているUE50に係るS1-Uコネクションを利用して、保留していた下りデータのeNB10への転送を開始する(ステップS83)。当該下りデータはeNB10からUE50に届く(ステップS84)。このようにしてUE50への下りデータの伝送が開始される。
 図5のステップS80のRRC接続確立手順では、UE50とeNB10のそれぞれで保持しておいたUEコンテクストが利用されるので、従来は必要であった、RRC Security Mode Command、RRC Security Mode Complete、RRC Connection Reconfiguration、RRC Connection Reconfiguration Complete、等のメッセージの送受信を行うことなくRRC接続確立を行うことができる。
 以下、前述したランダムアクセス手順における課題を解決する方式として、実施例1~4を説明する。つまり、UEが、Message 3を送信しようとしても、TBSが不足して、送信できないといったことを回避する方式の例として、実施例1~4を説明する。以下の各実施例における全体のランダムアクセス手順は図2に示したとおりの手順である。また、以下では、ユーザ装置をUEと呼び、基地局をeNBと呼ぶことにする。
 (実施例1)
 まず、実施例1を説明する。実施例1では、UEは、ランダムアクセス手順において、RA preamble group A/Bの中からRA preamble groupを選択する際に、既存のRA preamble group Bを選択する条件に外れる場合でも、CCCH SDUのサイズ(MACヘッダを加えたサイズ)が、messageSizeGroupAよりも大きい場合には、RA preamble group Bを選択し、RA preamble group Bの中からRA preambleを選択して送信する。
 上記の手順はRA preamble group Bが存在する場合に行われる。つまり、UEがeNBからSIB2メッセージ(又はRRC個別メッセージ)を受信し、当該メッセージの中のRACH-ConfigCommonにおいて、sizeOfRA-PreamblesGroupA(GroupAのプリアンブル数)がnumberOfRA-Preambles(全プリアンブル数)と等しくなければ、UEは、RA preamble group Bが存在すると判定する。messageSizeGroupAは、RACH-ConfigCommonの中のパラメータであり、RA preamble group A/Bの選択判定における、メッセージサイズ(Message 3のサイズ)との比較対象となる閾値である。
 図6に、実施例1のUEの動作に対応する仕様書(3GPP TS 36.321)の記載例(抜粋)を示す。図6において、非特許文献2からの変更箇所に下線が引かれている。
 図6に記載のとおりRA preamble group A/Bのいずれかを選択する判定条件において、RA preamble group Bを判定する条件の中に、CCCH SDU sizeがmessageSizeGroupAより大きい場合という条件をORで付け加えている。
 すなわち、この仕様書に準拠する実施例1のUEは、図2に示したステップS1を行う前に、まず、RA preamble group Bが存在するかどうかを判定し、存在する場合に、以下の処理を行う。
 まず、UEは、Message 3として送信しようとするメッセージ(ULデータ+MACヘッダ、必要に応じて、+MAC CE)のサイズがmessageSizeGroupAより大きく、かつ、パスロスが所定の値以下であるかどうかを判定し、判定結果がYesであれば、RA preamble group Bを選択する。
 また、UEは、CCCH SDU size(MAC PDUとしてのサイズ)が、messageSizeGroupAよりも大きいか否かを判定し、判定結果がYesであれば、RA preamble group Bを選択する。なお、本実施の形態(実施例1~4)におけるCCCH SDU sizeは、MAC header を加えたサイズであることを明示的に記載しない場合でも、MAC headerを加えたサイズを意味する。ただし、これに代えて、MAC headerを含まないCCCH SDUのサイズを用いてもよい。
 上記のいずれの判定結果もNoであれば、UEは、RA preamble group Aを選択する。
 そして、UEは、選択したグループの中のRA preambleからランダムに1つのRA preambleを選択してeNBに送信する(図2のステップS1)。
 eNBでは、例えば、RA preamble group BのRA preambleを受信したことを判別すると、RA preamble group AのRA preambleを受信する場合よりも大きなTBSをULリソースとして割り当てて、UL grantを含むRA responseをUEに送信する(図2のステップS2)。これにより、UEは、例えば、56ビットよりも大きなMessage 3をeNBに送信することができる。
 図7は、実施例1のUEの動作に対応する仕様書(3GPP TS 36.321)の記載(抜粋)の他の例を示す。図7に示す例は、messageSizeGroupAと比較するサイズが、「CCCH SDU size+MAC header」のサイズであることを明確に記載した例である。すなわち、当該仕様書の動作を実行するUEは、"ランダムアクセス手順がCCCH論理チャネルに対して開始され、かつ、「CCCH SDU size+MAC header」が、messageSizeGroupAよりも大きい"か否かを判定し、判定結果がYesであれば、RA preamble group Bを選択する。この部分以外は、図6と同じである。なお、「ランダムアクセス手順がCCCH論理チャネルに対して開始される」とは、例えば、RRCConnectionRequest message、RRCConnectionReestablishmentRequest message、RRC connection resume message等の送信のためにランダムアクセス手順が開始される(initiated)ことに相当する。
 なお、実施例1において、eNBからUEに通知するmessageSizeGroupAの値は特定の値に限定されないが、例えば、56ビットである。
 実施例1は、現行の56ビットのTBSに加えて、1つだけ追加のCCCH SDU sizeが規定される場合に、特に適している。ただし、2つ以上の追加のCCCH SDU sizeが規定される場合でも、実施例1の技術を使用することは可能である。
 (実施例2)
 次に、実施例2を説明する。実施例2では、新たに追加されるCCCH SDU size用に新しくRA preamble groupを設けることとしている。例えば、1つだけCCCH SDU sizeを追加する場合、Group Cを新しく追加する。つまり、この場合、UEがランダムに選択可能な複数プリアンブル(例:64個、RACH-ConfigCommonのnumberOfRA-Preamblesで通知される値)が3つのグループ(Group C、Group B、Group C)に分けられる。
 実施例2におけるUEのRA preamble選択の動作例(図2のステップS1の直前の動作)を図8のフローチャートを参照して説明する。このフローチャートの前提として、UEは、SIB2メッセージ(又はRRC個別メッセージ)を受信し、当該メッセージの中のRACH-ConfigCommonにより、閾値等の各パラメータを取得、保持しているものとする。また、UEは、パラメータにより、Group CとGroup Bが存在することを把握しているとする。また、以下の「Group Cのmessage size」は、eNBからUEに通知されるパラメータの1つである。
 UEは、例えば、前述した接続再開のためのメッセージをMessage 3としてeNBに送信したい場合において、ランダムアクセス手順を開始する。
 ステップS101において、例えば、UEは、RA PreambleがeNBからexplicitly にシグナリングされていないことを把握して、MACレイヤでのRA preamble選択処理を開始する。
 ステップS102において、UEは、送信しようとするmessage size (CCCH SDU + MAC header)がGroup Cのmessage sizeと等しいかどうかを判定する。判定結果がYesであれば、ステップS104に進み、Group Cを選択し、Group Cの中からRA preambleを選択する。
 ステップS102での判定結果がNoである場合にはステップS103に進む。ステップS103において、UEは、Potential message size(ULデータ+MACヘッダ、必要に応じて、+MAC CE)がGroup Cのmessage sizeより大きく、かつ、パスロスが所定の値以下であるかどうかを判定する。判定結果がYesであれば、ステップS105に進み、Group Bを選択し、Group Bの中からRA preambleを選択する。なお、Potential message sizeは、Message 3として送信予定のメッセージのサイズである。
 ステップS103での判定結果がNoである場合にはステップS106に進み、Group Aを選択し、Group Aの中からRA preambleを選択する。
 例えば、新たなCCCH SDU + MAC headerが64ビットであるとした場合、eNBは、Group CのRA preambleをUEから受信した場合において、64ビットのTBSをUEに割り当てる。また、この場合、eNBは、Group BのRA preambleをUEから受信した場合において、64ビットよりも大きなTBS(例:80ビット)をUEに割り当てる。また、Group AのRA preambleをUEから受信した場合において、64ビットよりも小さなTBS(例:56ビット)をUEに割り当てる。
 図9に、実施例2のUEの動作に対応する仕様書(3GPP TS 36.321, 5.1.1)の記載例(抜粋)を示す。図9において、非特許文献2からの変更箇所に下線が引かれている。
 図9に示すように、RA Preambles group A、RA Preambles group B、及びRA Preambles group Cに含まれるプリアンブルは、numberOfRA-Preambles、sizeOfRA-PreamblesGroupA、及びsizeOfRA-PreamblesGroupCのパラメータから計算されることが規定されている。また、RA Preambles Group Cが存在する場合に、RA Preamble Group Cのプリアンブルは、sizeOfRA-PreamblesGroupAからnumberOfRA-PreamblesC - 1 までであり、RA Preamble Group Bのプリアンブルは、sizeOfRA-PreamblesGroupCからnumberOfRA-Preambles - 1までであることが規定されている。
 図10に、実施例2のUEの動作に対応する仕様書(3GPP TS 36.321、5.1.2)の記載例(抜粋)を示す。図10において、非特許文献2からの変更箇所に下線が引かれている。
 図10に示す記載例は、図8に示したフローチャートの内容に対応する。なお、図10に示すように、Group Cが存在しない場合には、従来と同様に、potential message sizeがGroup Aのmessage size以上かつパスロスが所定の値以下でGroup Bが選択される。
 図11、図12は、実施例2のUEの動作に対応する仕様書(3GPP TS 36.331)の記載例(抜粋)を示す。図11、図12において、非特許文献5からの変更箇所に下線が引かれている。
 図11に示すように、RACH-ConfigCommon information elementにおいて、sizeOfRA-PreamblesGroupC、messageSizeGroupC、messagePowerOffsetGroupB等のパラメータが追加されている。messageSizeGroupCは、判定で使用される閾値(GroupCのmessage size)である。図12に示すように、sizeOfRA-PreamblesGroupCは、GroupCのサイズ(プリアンブル数)である。
 なお、実施例2では、1つのグループが新たに追加される場合を例に説明したが、2つ以上のグループが新たに追加される場合でも同様の処理を実現できる。その場合は、図8のフローにおいて、message size (CCCH SDU + MAC header)とパラメータ(Group Cのmessage size等)とが等しいかどうかの判定が追加グループ毎に行われる。
 (実施例2の変形例)
 次に、実施例2の変形例を説明する。実施例2の変形例では、図13に示す5つのパターンに分けられるように、4つのRA preamble groupを設けることとしている。なお、この例では、RA preamble group Aのmessage sizeを56ビットとし、RA preamble group Cのmessage sizeを80ビットとしているが、これは一例である。これらの値は、RACH-ConfigCommonによりパラメータとしてeNBからUEに通知される。本例では、UEがランダムに選択可能な複数プリアンブルが4つのグループ(Group D、Group C、Group B、Group C)に分けられる。
 実施例2の変形例におけるUEのRA preamble選択の動作例(図2のステップS1の直前の動作)を図14のフローチャートを参照して説明する。このフローチャートの前提として、UEは、SIB2メッセージ(又はRRC個別メッセージ)を受信し、当該メッセージの中のRACH-ConfigCommonにより、閾値等の各パラメータを取得、保持しているものとする。また、UEは、パラメータにより、Group CとGroup Bが存在することを把握しているとする。
 UEは、例えば、前述した接続再開のためのメッセージをMessage 3としてeNBに送信したい場合において、ランダムアクセス手順を開始する。
 ステップS201において、例えば、UEは、RA PreambleがeNBからexplicitly にシグナリングされていないことを把握して、MACレイヤでのRA preamble選択処理を開始する。
 ステップS202において、UEは、Potential message size(ULデータ+MACヘッダ、必要に応じて、+MAC CE)がGroup Cのmessage sizeより大きく、かつ、パスロスが所定の値以下であるかどうかを判定する。判定結果がYesであれば、ステップS204に進み、Group Bを選択し、Group Bの中からRA preambleを選択する。
 ステップS202での判定結果がNoである場合にはステップS203に進む。ステップS203において、UEは、送信しようとするMessage 3のmessage size (CCCH SDU + MAC header)がGroup Cのmessage size(例:80ビット)と等しいかどうかを判定する。判定結果がYesであれば、ステップS205に進み、Group Cを選択し、Group Cの中からRA preambleを選択する。
 ステップS203での判定結果がNoである場合にはステップS206に進む。ステップS206において、UEは、「Potential message size(ULデータ+MACヘッダ、必要に応じて、+MAC CE)がGroup Cのmessage sizeより小さく、かつ、Potential message size(ULデータ+MACヘッダ、必要に応じて、+MAC CE)がGroup Aのmessage size(例:56ビット)より大きく、かつ、パスロスが所定の値以下」であるかどうかを判定する。判定結果がYesであれば、ステップS207に進み、Group Dを選択し、Group Dの中からRA preambleを選択する。判定結果がNoであれば、ステップS208に進み、Group Aを選択し、Group Aの中からRA preambleを選択する。
 例えば、新たなCCCH SDU + MAC headerが80ビットであり、既存の(Group A)のメッセージサイズが56ビットであるとした場合、eNBは、Group CのRA preambleをUEから受信した場合において、80ビットのTBSをUEに割り当てることが考えられる。また、eNBは、Group BのRA preambleをUEから受信した場合において、80ビットよりも大きなTBSをUEに割り当てる。また、Group AのRA preambleをUEから受信した場合において、56ビットのTBSをUEに割り当てる。また、Group DのRA preambleをUEから受信した場合において、56ビットよりも大きく、80ビットよりも小さなTBS(例:64ビット)をUEに割り当てる。
 図15に、実施例2の変形例のUEの動作に対応する仕様書(3GPP TS 36.321, 5.1.1)の記載例(抜粋)を示す。図15において、非特許文献2からの変更箇所に下線が引かれている。
 図15に示すように、RA Preambles group A、RA Preambles group B、RA Preambles group C、及びRA Preambles group Dに含まれるプリアンブルは、numberOfRA-Preambles、sizeOfRA-PreamblesGroupA、及びsizeOfRA-PreamblesGroupCのパラメータから計算されることが規定されている。また、RA Preambles Group C、RA Preambles Group Dが存在する場合に、RA Preamble Group Cのプリアンブルは、sizeOfRA-PreamblesGroupAからnumberOfRA-PreamblesC - 1 までであり、RA Preamble Group Dのプリアンブルは、sizeOfRA-PreamblesGroupCからnumberOfRA-PreamblesD - 1までであり、RA Preamble Group Bのプリアンブルは、sizeOfRA-PreamblesGroupDからnumberOfRA-Preambles - 1までであることが規定されている。
 図16に、実施例2の変形例のUEの動作に対応する仕様書(3GPP TS 36.321、5.1.2)の記載例(抜粋)を示す。図16において、非特許文献2からの変更箇所に下線が引かれている。
 図16に示す記載例は、図14に示したフローチャートの内容に対応する。なお、図16に示すように、Group Cが存在しない場合には、従来と同様に、potential message sizeがGroup Aのmessage size以上かつパスロスが所定の値以下でGroup Bが選択される。
 図17、図18は、実施例2の変形例のUEの動作に対応する仕様書(3GPP TS 36.331)の記載例(抜粋)を示す。図17、図18において、非特許文献5からの変更箇所に下線が引かれている。
 図17に示すように、RACH-ConfigCommon information elementにおいて、sizeOfRA-PreamblesGroupC、messageSizeGroupC、messagePowerOffsetGroupB、sizeOfRA-PreamblesGroupD等のパラメータが追加されている。messageSizeGroupCは、判定で使用される閾値(GroupCのmessage size)である。図18に示すように、sizeOfRA-PreamblesGroupCは、GroupCのサイズ(プリアンブル数)である。
 なお、実施例2の変形例では、2つのグループが新たに追加される場合を例に説明したが、3つ以上のグループが新たに追加される場合でも同様の処理を実現できる。
 (実施例3)
 次に、実施例3を説明する。実施例3では、CCCH SDU size毎に異なる64個のRA preamble resource(PRACH resource)が用意される。64個は例である。UEは、その個数を、eNBからのシステム情報又はRRC個別シグナリングに基づいて決定することができる。以下では、64個であるとして説明する。なお、CCCH SDU sizeとRA preamble resourceとは1対1に対応している必要はなく、例えば、1対N(Nは2以上の整数)の対応であってもよい。
 UEは、Zadoff-chu系列からRA preamble系列を生成する。UEは、そのRA preamble系列を上記のRA preamble resourceと見なすことができる。この場合、異なる64個のRA preamble系列がそれぞれ、CCCH SDUのサイズに対応する。例えば、UEは、72ビットのCCCH SDUのメッセージを送信する場合に、80ビットに対応するRA preamble系列1を送信し、56ビットのCCCH SDUのメッセージを送信する場合に、56ビットに対応するRA preamble系列2を送信する。
 また、例えば、RA preamble系列は、CCCH SDU sizeに拠らずに同一として、RA preamble系列を送信する周波数・時間リソースをCCCH SDU sizeに対応付けることとしてもよい。この場合は、当該周波数・時間リソースが上記のRA preamble resourceに相当する。この場合、例えば、UEは、80ビットのCCCH SDUのメッセージを送信する場合に、80ビットに対応する周波数・時間リソース1でRA preambleを送信し、56ビットのCCCH SDUのメッセージを送信する場合に、56ビットに対応する周波数・時間リソース2でRA preambleを送信する。
 CCCH SDU sizeとRA preamble resourceとの対応関係の情報は、eNBからUEに対して、システム情報又はRRC個別シグナリングにより通知される。UEは当該対応関係の情報を保持し、当該対応関係と、送信しようとするMessage 3のCCCH SDU sizeとに基づいて、RA preamble resourceを決定する。
 eNBは、CCCH SDU sizeとRA preamble resourceとの対応関係を保持しており、UEから受信するRA preamble resourceに基づき、Message 3でUEが送信しようとしているCCCH SDU sizeを把握できる。これにより、CCCH SDU sizeに応じたTBSの割り当てをRA responseで行うことができる。
 実施例3におけるUEのRA preamble選択の動作例(図2のステップS1の直前の動作)を図19のフローチャートを参照して説明する。このフローチャートの前提として、UEは、eNBから受信したシステム情報(又はRRC個別メッセージ)から、CCCH SDU sizeとRA preamble resourceとの対応関係の情報を取得し、保持しているとする。
 UEは、例えば、前述した接続再開のためのメッセージをMessage 3としてeNBに送信したい場合において、ランダムアクセス手順を開始する。
 ステップS301において、例えば、UEは、RA PreambleがeNBからexplicitly にシグナリングされていないことを把握して、MACレイヤでのRA preamble選択処理を開始する。
 ステップS302において、UEは、送信しようとするMessage 3のCCCH SDU sizeが、システム情報又は個別のRRCシグナリング内で通知された所定のmessage sizeと等しいかどうかを判定する。つまり、システム情報又は個別のRRCシグナリング内で通知された上記の対応関係の中のmessage sizeのリストの中に、CCCH SDU sizeと等しいmessage sizeがあるか否かを判定する。
 ステップS302の判定結果がYesの場合、ステップS303に進み、UEは、CCCH SDU sizeと等しいmessage sizeに対応するPRACH resource(一般には複数のPRACH resourceがある)を使用可能なPRACH resourceとみなす。そして、ステップS305において、UEは、使用可能なPRACH resourceの中からRA preambleのリソースを選択して、RA preambleを送信する。
 ステップS302での判定結果がNoの場合、ステップS304に進み、システム情報若しくは個別のRRCシグナリングで通知された従来のPRACH resourceを使用可能なPRACH resourceとみなして、ステップS305に進む。
 図20に、実施例3のUEの動作に対応する仕様書(3GPP TS 36.321, 5.1.1)の記載例(抜粋)を示す。図20において、非特許文献2からの変更箇所に下線が引かれている。
 図20に示すように、RA手順の開始にあたって、UEは、Message 3の各message sizeに対応付けられた使用可能なPRACH resourceのセットを把握している。これは、prach-ConfigIndexにより示される。
 図21に、実施例3のUEの動作に対応する仕様書(3GPP TS 36.321, 5.1.2)の記載例(抜粋)を示す。図21において、非特許文献2からの変更箇所に下線が引かれている。
 図21に示すように、Message 3にCCCH SDUが含まれ、CCCH SDU sizeがMessageSizePrachInfoList(所定のサイズのリスト)の中のMessageSizeOfMsg3に示されている場合に、UEは、そのサイズに対応するリソース(PRACH-ParametersMsgSize) を使用可能なPRACH resourcesと見なす。そうでなければ、PRACH-ConfigSIB又はPRACH-Configで示されるリソースを使用可能なPRACH resourcesと見なす。
 図22は、実施例3のUEの動作に対応する仕様書(3GPP TS 36.331)の記載例(抜粋)を示す。図22において、非特許文献5からの変更箇所に下線が引かれている。図22に示すように、上記のMessageSizePrachInfoList、PRACH-ParametersMsgSize等がPRACH-Config information elementsに追加されている。これらの情報が、前述したCCCH SDU sizeとRA preamble resourceとの対応関係の情報に相当する。
 (実施例4)
 次に、実施例4を説明する。実施例4では、UEが、RRC connectionを再開(resume)する場合(例:図4のステップS56~S59、図5のステップS80)、UEは、RRCレイヤで再開を要求するメッセージ(従来のMsg.3より大きいサイズ)と同時に従来のMsg.3 size (56 bits TBS)のRRC Connection request message(もしくはRRC Connection reestablishment request message)も作成する。そして、UEは、両方のメッセージを下位レイヤに送り出す。
 UEは、MACレイヤにおいて、割り当てられたTBSに応じて、従来のMsg.3より大きいサイズの再開を要求するメッセージを送るか、従来のMsg.3 sizeのRRC connection request message(もしくはRRC Connection reestablishment request message)を送るかを選択する。
 例えば、図4のケースでは、ステップS56で、UEがRRC接続再開を開始すると、UEは、RRC connection resume request messageを作成するとともに、RRC Connection request messageも作成する。そして、UEは、MACレイヤにおいて、ステップS58で受信するUL grantで割り当てられたTBSに応じて、RRC connection resume request messageかRRC Connection request messageのいずれかを送信するかを判断する。例えば、TBSが、RRC connection resume request messageを送信することができるサイズである場合に、RRC connection resume request messageを送信する。この場合は、以降、図4に示す手順が行われる。一方、TBSが、RRC connection resume request messageを送信することができるサイズではない場合に、RRC Connection request message(もしくはRRC Connection reestablishment request message)を送信する。この場合は、以降、従来のRRC Connection request message(もしくはRRC Connection reestablishment request message)送信時の手順と同様の手順が実行される。
 実施例4におけるUEのRRC接続再開時の動作例を図23のフローチャートを参照して説明する。なお、図23は、RRC接続再開のためのメッセージとしてRRC connection resume request messageを使用する。これは、図4での新規メッセージであると考えてもよいし、既存のメッセージを拡張したもの(例:図5のステップS80で使用するメッセージ)であると考えてもよい。
 ステップS401において、UEは、RRCレイヤでRRC connection resume request messageを作成すると同時に、既存のRRC connection request messageも作成する。ステップS402において、UEは、Message 3に割り当てられたTBSでRRC connection resume requestを送信可能か否かを判定する。
 ステップS402での判定結果がYesであれば、ステップS403でRRC connection resume request messageを送信する。Noである場合、TBSは56ビットであることが想定され、ステップS404で既存のRRC connection request messageを送信する。
 実施例4では、例えば、無線品質が良い場合であれば、大きなTBSの割り当てを期待でき、その場合はRRC connection resume request messageを送信できる。また、通常のTBSの割り当てを受ける場合でも、RRC connection request messageを送信することができる。すなわち、RA手順において、UEが、eNBから割り当てられる上りリソースの不足により制御メッセージの送信ができなくなることを回避することができる。
 実施例4では、RRC connection request messageとRRC connection resume request messageを同時に作成する例を示したが、このようなサイズの異なる複数のメッセージを同時に作成し、大きなメッセージ送信可能であればそれを送信する処理は、RRC connection request messageとRRC connection resume request messageに限らずに適用可能である。
 実施例1~実施例4(実施例2の変形例を含む、以下同様)の全部又はいずれか複数は矛盾の生じない限り組み合わせて実施することができる。
 (装置構成例)
 次に、本発明の実施の形態におけるUEとeNBの装置構成例を説明する。以下で説明する各装置の構成は、発明の実施の形態に特に関連する機能部のみを示すものであり、少なくともLTEに準拠した通信システムにおける装置として動作するための図示しない機能も有するものである。また、各図に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分や機能部の名称はどのようなものでもよい。
 各装置は、実施例1~実施例4の全ての機能を備えてもよいし、実施例1~実施例4のうちのいずれか1つの実施例の機能又は変形例の機能を備えることとしてもよいし、実施例1~実施例4のうちのいずれか複数の機能を備えることとしてもよい。以下の説明では、各装置は実施例1~実施例4の機能を備えるものとする。
  <ユーザ装置UE>
 図24に、UEの機能構成図を示す。図24に示すように、UEは、DL信号受信部51、UL信号送信部52、プリアンブル選択部53、RRC処理部54、UEコンテクスト管理部55を備える。なお、図24は、UEにおいて本発明に特に関連する機能部のみを示すものであり、UEは、少なくともLTEに準拠した動作を行うための図示しない機能も有するものである。
 DL信号受信部51は、基地局eNBから各種の下り信号を受信し、受信した物理レイヤの信号からより上位のレイヤの情報を取得する機能を含み、UL信号送信部52は、UE50から送信されるべき上位のレイヤの情報から、物理レイヤの各種信号を生成し、基地局eNBに対して送信する機能を含む。
 プリアンブル選択部53は、実施例1~2で説明したロジックでMACレイヤでのプリアンブルの選択を行う。なお、プリアンブル選択部53は、UL信号送信部52の中に備えられていてもよい。また、プリアンブル選択部53は、実施例3におけるRA preamble送信のためのリソース選択を行う。
 RRC処理部54は、RRCメッセージの生成・送信(送信はUL信号送信部52を介した送信)、DL信号受信部51により受信したRRCメッセージの解釈等を行う。実施例3において、RRC処理部54は、対応関係の情報を取得・保持する。実施例4において、RRC処理部54は、RRC connection request messageとRRC connection resume request messageを同時に作成する。また、実施例4において、TBSに基づき、RRC connection request messageとRRC connection resume request messageのいずれを送信するかを判定する機能は、UL信号送信部52に含まれている。
 UEコンテクスト管理部55は、メモリ等の記憶手段を含み、RRC保留状態/RRCアイドル状態においてUEコンテクストを保持する。
 図24に示すUEの構成は、全体をハードウェア回路(例:1つ又は複数のICチップ)で実現してもよいし、一部をハードウェア回路で構成し、その他の部分をCPUとプログラムとで実現してもよい。
 図25は、UEのハードウェア(HW)構成の例を示す図である。図25は、図24よりも実装例に近い構成を示している。図25に示すように、UEは、無線信号に関する処理を行うRadio Equipment(RE)モジュール151と、ベースバンド信号処理を行うBase Band(BB)処理モジュール152と、上位レイヤ等の処理を行う装置制御モジュール153と、USIMカードにアクセスするインタフェースであるUSIMスロット154とを有する。
 REモジュール151は、BB処理モジュール152から受信したデジタルベースバンド信号に対して、Digital-to-Analog(D/A)変換、変調、周波数変換、及び電力増幅等を行うことでアンテナから送信すべき無線信号を生成する。また、受信した無線信号に対して、周波数変換、Analog to Digital(A/D)変換、復調等を行うことでデジタルベースバンド信号を生成し、BB処理モジュール152に渡す。REモジュール151は、例えば、図24のDL信号受信部51及びUL信号送信部52における物理レイヤ等の機能を含む。
 BB処理モジュール152は、IPパケットとデジタルベースバンド信号とを相互に変換する処理を行う。Digital Signal Processor(DSP)162は、BB処理モジュール152における信号処理を行うプロセッサである。メモリ172は、DSP162のワークエリアとして使用される。BB処理モジュール152は、例えば、図24のDL信号受信部51及びUL信号送信部52におけるレイヤ2等の機能、プリアンブル選択部53、RRC処理部54及びUEコンテクスト管理部54を含む。なお、プリアンブル選択部53、RRC処理部54及びUEコンテクスト管理部54の機能の全部又は一部を装置制御モジュール153に含めることとしてもよい。
 装置制御モジュール153は、IPレイヤのプロトコル処理、各種アプリケーションの処理等を行う。プロセッサ163は、装置制御モジュール153が行う処理を行うプロセッサである。メモリ173は、プロセッサ163のワークエリアとして使用される。また、プロセッサ163は、USIMスロット154を介してUSIMとの間でデータの読出し及び書込みを行う。
  <基地局eNB>
 図26に、eNBの機能構成図を示す。図26に示すように、eNBは、DL信号送信部11、UL信号受信部12、RRC処理部13、UEコンテクスト管理部14、NW通信部15を備える。なお、図26は、eNBにおいて本発明の実施の形態に特に関連する機能部のみを示すものであり、eNBは、少なくともLTE方式に準拠した動作を行うための図示しない機能も有するものである。
 DL信号送信部11は、eNBから送信されるべき上位のレイヤの情報から、物理レイヤの各種信号を生成し、送信する機能を含む。UL信号受信部12は、UEから各種の上り信号を受信し、受信した物理レイヤの信号からより上位のレイヤの情報を取得する機能を含む。
 RRC処理部13は、RRCメッセージ及びシステム情報の生成・送信(送信はDL信号送信部11を介した送信)、UL信号受信部12により受信したRRCメッセージの解釈、動作等を行う。またRRC処理部13は、UEコンテクスト管理部14に保持しておいたUEコンテクストを利用してRRC接続を再開する機能等も含む。
 UEコンテクスト管理部14は、メモリ等の記憶手段を含み、RRC保留状態/RRCアイドル状態においてUEコンテクストを保持する。
 NW通信部15は、S1-MMEインターフェースでMMEとの間で制御信号を送受信する機能、及び、S1-UインターフェースでS-GWとの間でデータを送受信する機能、コネクション維持指示信号の送信機能、RRC接続確立完了の送信の送信機能等を含む。
 図26に示すeNBの構成は、全体をハードウェア回路(例:1つ又は複数のICチップ)で実現してもよいし、一部をハードウェア回路で構成し、その他の部分をCPUとプログラムとで実現してもよい。
 図27は、eNBのハードウェア(HW)構成の例を示す図である。図27は、図26よりも実装例に近い構成を示している。図27に示すように、eNBは、無線信号に関する処理を行うREモジュール251と、ベースバンド信号処理を行うBB処理モジュール252と、上位レイヤ等の処理を行う装置制御モジュール253と、ネットワークと接続するためのインタフェースである通信IF254とを有する。
 REモジュール251は、BB処理モジュール252から受信したデジタルベースバンド信号に対して、D/A変換、変調、周波数変換、及び電力増幅等を行うことでアンテナから送信すべき無線信号を生成する。また、受信した無線信号に対して、周波数変換、A/D変換、復調等を行うことでデジタルベースバンド信号を生成し、BB処理モジュール252に渡す。REモジュール251は、例えば、図26のDL信号送信部11及びUL信号受信部12における物理レイヤ等の機能を含む。
 BB処理モジュール252は、IPパケットとデジタルベースバンド信号とを相互に変換する処理を行う。DSP262は、BB処理モジュール252における信号処理を行うプロセッサである。メモリ272は、DSP252のワークエリアとして使用される。BB処理モジュール252は、例えば、図25のDL信号送信部11及びUL信号受信部12におけるレイヤ2等の機能、RRC処理部13、UEコンテクスト管理部14を含む。なお、RRC処理部13、UEコンテクスト管理部14の機能の全部又は一部を装置制御モジュール253に含めることとしてもよい。
 装置制御モジュール253は、IPレイヤのプロトコル処理、OAM処理等を行う。プロセッサ263は、装置制御モジュール253が行う処理を行うプロセッサである。メモリ273は、プロセッサ263のワークエリアとして使用される。補助記憶装置283は、例えばHDD等であり、基地局eNB自身が動作するための各種設定情報等が格納される。
 なお、図24~図27に示す装置の構成(機能区分)は、本実施の形態で説明する処理を実現する構成の一例に過ぎない。本実施の形態で説明する処理を実現できるのであれば、その実装方法(具体的な機能部の配置、名称等)は、特定の実装方法に限定されない。
 (実施の形態のまとめ)
 以上、説明したように、本実施の形態により、基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置であって、所定の論理チャネルで送信されるメッセージのサイズと所定の閾値とを比較することにより、複数のランダムアクセス信号グループの中から、ランダムアクセス信号グループを選択し、当該ランダムアクセス信号グループからランダムアクセス信号を選択する選択部と、前記選択部により選択されたランダムアクセス信号を前記基地局に送信する送信部と、を備え、前記送信部は、前記ランダムアクセス信号に対する前記基地局からの応答により割り当てられるリソースを用いて、前記メッセージを前記所定の論理チャネルで送信することを特徴とするユーザ装置が提供される。
 上記の構成により、例えば、基地局は、ユーザ装置が送信しようとするメッセージのサイズをRA responseを送信する前に把握することができ、適切なTBSをRA responseのUL grantで割り当てることができる。従って、ユーザ装置において、基地局から割り当てられる上りリソースの不足により制御メッセージの送信ができなくなることを回避することができる。
 前記メッセージのサイズが前記所定の閾値よりも大きい場合に、前記選択部は、2つのランダムアクセス信号グループのうち、前記所定の閾値に対応するランダムアクセス信号グループを選択することとしてもよい。この構成により、例えば、既存のGroup Bを用いて、ユーザ装置が新たなCCCH SDU sizeを使用することを基地局に通知できる。
 また、前記メッセージのサイズが前記所定の閾値と等しい場合に、前記選択部は、複数のランダムアクセス信号グループの中から、前記所定の閾値に対応するランダムアクセス信号グループを選択することとしてもよい。この構成により、例えば、新たなGroupであるGroup Cを用いて、ユーザ装置が新たなCCCH SDU sizeを使用することを基地局に通知できる。前記所定の閾値に対応するランダムアクセス信号グループは、例えば、messageSizeGroupCである。
 また、上記の例において、前記メッセージのサイズが前記所定の閾値よりも大きく、かつ、パスロスが所定の値よりも小さい場合に、前記選択部は、複数のランダムアクセス信号グループの中から、前記所定の閾値に対応するランダムアクセス信号グループとは異なる所定のランダムアクセス信号グループを選択することとしてもよい。この構成により、例えば、既存のGroup Bを用いて、ユーザ装置がmessageSizeGroupCよりも大きなメッセージを使用することを基地局に通知できる。
 前記選択部は、前記メッセージのサイズが前記所定の閾値よりも大きく、かつ、パスロスが所定の値よりも小さいという第1条件が満たされるか否かを判定し、前記第1条件が満たされない場合に、前記メッセージのサイズが前記所定の閾値と等しいという第2条件が満たされるか否かを判定し、当該第2条件が満たされる場合に、前記所定の閾値に対応するランダムアクセス信号グループを選択することとしてもよい。この構成により、例えば、新たなGroupであるGroup Cを用いて、ユーザ装置が新たなCCCH SDU sizeを使用することを基地局に通知できる。
 上記の例において、前記第2条件が満たされない場合に、前記選択部は、前記メッセージのサイズが前記所定の閾値よりも小さく、かつ、前記メッセージのサイズが所定の第2の閾値よりも大きく、かつ、パスロスが所定の値よりも小さいという第3条件が満たされるか否かを判定し、前記第3条件が満たされる場合に、前記選択部は、前記所定の第2の閾値と前記所定の閾値との間のサイズに対応するランダムアクセス信号グループを選択し、前記第3条件が満たされない場合に、前記選択部は、前記所定の第2の閾値に対応するランダムアクセス信号グループを選択することとしてもよい。この構成により、例えば、図12に示したように、メッセージサイズを複数パターンに分けて、パターン毎に基地局への通知を行うことができる。
 また、本実施の形態により、基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置であって、所定の論理チャネルで送信されるメッセージのサイズと、ランダムアクセス信号のリソースとの間の対応関係の情報を前記基地局から受信する受信部と、前記所定の論理チャネルで送信されるメッセージのサイズに対応するリソースを、前記対応関係の情報から選択する選択部と、前記選択されたリソースを用いて、ランダムアクセス信号を前記基地局に送信する送信部とを備えるユーザ装置が提供される。
 上記の構成により、例えば、基地局は、ユーザ装置が送信しようとするメッセージのサイズをRA responseを送信する前に把握することができ、適切なTBSをRA responseのUL grantで割り当てることができる。従って、ユーザ装置において、基地局から割り当てられる上りリソースの不足により制御メッセージの送信ができなくなることを回避することができる。
 前記リソースは、例えば、ランダムアクセス信号の系列、又はランダムアクセス信号の送信に使用する時間と周波数のリソースである。このように、リソースとして種々の情報を使用することで、柔軟なリソース制御が可能となる。
 また、本実施の形態により、基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置が実行するランダムアクセス方法であって、所定の論理チャネルで送信されるメッセージのサイズと所定の閾値とを比較することにより、複数のランダムアクセス信号グループの中から、ランダムアクセス信号グループを選択し、当該ランダムアクセス信号グループからランダムアクセス信号を選択する選択ステップと、前記選択ステップにより選択されたランダムアクセス信号を前記基地局に送信する送信ステップと、前記ランダムアクセス信号に対する前記基地局からの応答により割り当てられるリソースを用いて、前記メッセージを前記所定の論理チャネルで送信する送信ステップとを備えるランダムアクセス方法が提供される。
 また、本実施の形態により、基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置が実行するランダムアクセス方法であって、所定の論理チャネルで送信されるメッセージのサイズと、ランダムアクセス信号のリソースとの間の対応関係の情報を前記基地局から受信する受信ステップと、前記所定の論理チャネルで送信されるメッセージのサイズに対応するリソースを、前記対応関係の情報から選択する選択ステップと、前記選択されたリソースを用いて、ランダムアクセス信号を前記基地局に送信する送信ステップとを備えるランダムアクセス方法が提供される。
 また、本実施の形態により、基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置であって、第1のメッセージと、当該第1のメッセージよりもサイズの小さい第2のメッセージを生成する生成部と、前記基地局に送信されたランダムアクセス信号に対する当該基地局からの応答により割り当てられるリソースの量に応じて、前記第1のメッセージを送信できる場合に当該第1のメッセージを前記基地局に送信し、前記第1のメッセージを送信できない場合に前記第2のメッセージを前記基地局に送信する送信部とを備えるユーザ装置が提供される。
 上記の構成により、ユーザ装置において、基地局から割り当てられる上りリソースの不足により制御メッセージの送信ができなくなることを回避することができる。
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。説明の便宜上、各装置は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って当該装置が有するプロセッサにより動作するソフトウェアは、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI))、上位レイヤシグナリング(例えば、RRCシグナリング、MACシグナリング、ブロードキャスト情報(Master Information Block(MIB)、System Information Block(SIB)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCメッセージは、RRCシグナリングと呼ばれてもよい。また、RRCメッセージは、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 また、本明細書で説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4G、5G、Future Radio Access(FRA)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 判定又は判断は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。
 UEは、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 また、本明細書で説明した各実施例/変形例の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。上述したパラメータに使用する名称はいかなる点においても限定的なものではない。
 本発明は上記実施形態に限定されず、本発明の精神から逸脱することなく、様々な変形例、修正例、代替例、置換例等が本発明に包含される。
 本国際特許出願は2016年3月4日に出願した日本国特許出願第2016-042819号及び2016年5月26日に出願した日本国特許出願2016-105565号に基づきその優先権を主張するものであり、日本国特許出願第2016-042819号及び日本国特許出願第2016-105565号の全内容を本願に援用する。
10、20 eNB
11 DL信号送信部
12 UL信号受信部
13 RRC処理部
14 UEコンテクスト管理部
15 NW通信部
30 MME
40 S-GW
50 UE
51 DL信号受信部
52 UL信号送信部
53 プリアンブル選択部
54 RRC処理部
55 UEコンテクスト管理部
151 REモジュール
152 BB処理モジュール
153 装置制御モジュール
154 USIMスロット
251 REモジュール
252 BB処理モジュール
253 装置制御モジュール
254 通信IF

Claims (9)

  1.  基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置であって、
     所定の論理チャネルで送信されるメッセージのサイズと所定の閾値とを比較することにより、複数のランダムアクセス信号グループの中から、ランダムアクセス信号グループを選択し、当該ランダムアクセス信号グループからランダムアクセス信号を選択する選択部と、
     前記選択部により選択されたランダムアクセス信号を前記基地局に送信する送信部と、を備え、
     前記送信部は、前記ランダムアクセス信号に対する前記基地局からの応答により割り当てられるリソースを用いて、前記メッセージを前記所定の論理チャネルで送信する
     ことを特徴とするユーザ装置。
  2.  前記メッセージのサイズが前記所定の閾値よりも大きい場合に、前記選択部は、2つのランダムアクセス信号グループのうち、前記所定の閾値に対応するランダムアクセス信号グループを選択する
     ことを特徴とする請求項1に記載のユーザ装置。
  3.  前記メッセージのサイズが前記所定の閾値と等しい場合に、前記選択部は、複数のランダムアクセス信号グループの中から、前記所定の閾値に対応するランダムアクセス信号グループを選択する
     ことを特徴とする請求項1に記載のユーザ装置。
  4.  前記メッセージのサイズが前記所定の閾値よりも大きく、かつ、パスロスが所定の値よりも小さい場合に、前記選択部は、複数のランダムアクセス信号グループの中から、前記所定の閾値に対応するランダムアクセス信号グループとは異なる所定のランダムアクセス信号グループを選択する
     ことを特徴とする請求項3に記載のユーザ装置。
  5.  前記選択部は、
     前記メッセージのサイズが前記所定の閾値よりも大きく、かつ、パスロスが所定の値よりも小さいという第1条件が満たされるか否かを判定し、
     前記第1条件が満たされない場合に、前記メッセージのサイズが前記所定の閾値と等しいという第2条件が満たされるか否かを判定し、当該第2条件が満たされる場合に、前記所定の閾値に対応するランダムアクセス信号グループを選択する
     ことを特徴とする請求項1に記載のユーザ装置。
  6.  前記第2条件が満たされない場合に、前記選択部は、前記メッセージのサイズが前記所定の閾値よりも小さく、かつ、前記メッセージのサイズが所定の第2の閾値よりも大きく、かつ、パスロスが所定の値よりも小さいという第3条件が満たされるか否かを判定し、
     前記第3条件が満たされる場合に、前記選択部は、前記所定の第2の閾値と前記所定の閾値との間のサイズに対応するランダムアクセス信号グループを選択し、前記第3条件が満たされない場合に、前記選択部は、前記所定の第2の閾値に対応するランダムアクセス信号グループを選択する
     ことを特徴とする請求項5に記載のユーザ装置。
  7.  基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置であって、
     所定の論理チャネルで送信されるメッセージのサイズと、ランダムアクセス信号のリソースとの間の対応関係の情報を前記基地局から受信する受信部と、
     前記所定の論理チャネルで送信されるメッセージのサイズに対応するリソースを、前記対応関係の情報から選択する選択部と、
     前記選択されたリソースを用いて、ランダムアクセス信号を前記基地局に送信する送信部と
     を備えることを特徴とするユーザ装置。
  8.  基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置が実行するランダムアクセス方法であって、
     所定の論理チャネルで送信されるメッセージのサイズと所定の閾値とを比較することにより、複数のランダムアクセス信号グループの中から、ランダムアクセス信号グループを選択し、当該ランダムアクセス信号グループからランダムアクセス信号を選択する選択ステップと、
     前記選択ステップにより選択されたランダムアクセス信号を前記基地局に送信する送信ステップと、
     前記ランダムアクセス信号に対する前記基地局からの応答により割り当てられるリソースを用いて、前記メッセージを前記所定の論理チャネルで送信する送信ステップと
     を備えることを特徴とするランダムアクセス方法。
  9.  基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置が実行するランダムアクセス方法であって、
     所定の論理チャネルで送信されるメッセージのサイズと、ランダムアクセス信号のリソースとの間の対応関係の情報を前記基地局から受信する受信ステップと、
     前記所定の論理チャネルで送信されるメッセージのサイズに対応するリソースを、前記対応関係の情報から選択する選択ステップと、
     前記選択されたリソースを用いて、ランダムアクセス信号を前記基地局に送信する送信ステップと
     を備えることを特徴とするランダムアクセス方法。
PCT/JP2017/008083 2016-03-04 2017-03-01 ユーザ装置、及びランダムアクセス方法 WO2017150601A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/767,300 US10660135B2 (en) 2016-03-04 2017-03-01 User equipment and random access method
CN201780003687.6A CN108141890B (zh) 2016-03-04 2017-03-01 用户装置、以及随机接入方法
EP17760065.7A EP3425989B1 (en) 2016-03-04 2017-03-01 User equipment and random access method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-042819 2016-03-04
JP2016042819 2016-03-04
JP2016105565A JP2017163519A (ja) 2016-03-04 2016-05-26 ユーザ装置、及びランダムアクセス方法
JP2016-105565 2016-05-26

Publications (1)

Publication Number Publication Date
WO2017150601A1 true WO2017150601A1 (ja) 2017-09-08

Family

ID=59742969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008083 WO2017150601A1 (ja) 2016-03-04 2017-03-01 ユーザ装置、及びランダムアクセス方法

Country Status (1)

Country Link
WO (1) WO2017150601A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702762A (zh) * 2018-05-18 2018-10-23 北京小米移动软件有限公司 消息发送方法、装置和资源分配方法、装置
CN113767705A (zh) * 2019-05-02 2021-12-07 株式会社Ntt都科摩 用户装置及基站装置
US11737145B2 (en) * 2017-11-28 2023-08-22 Nokia Technologies Oy Early data transmission determinations using an uplink grant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525083A (ja) * 2009-04-23 2012-10-18 インターデイジタル パテント ホールディングス インコーポレイテッド マルチキャリアワイヤレス通信におけるランダムアクセスのための方法および機器
WO2013129374A1 (ja) * 2012-03-02 2013-09-06 シャープ株式会社 移動局装置、基地局装置、通信方法、集積回路および無線通信システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525083A (ja) * 2009-04-23 2012-10-18 インターデイジタル パテント ホールディングス インコーポレイテッド マルチキャリアワイヤレス通信におけるランダムアクセスのための方法および機器
WO2013129374A1 (ja) * 2012-03-02 2013-09-06 シャープ株式会社 移動局装置、基地局装置、通信方法、集積回路および無線通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "RA preamble partitioning for multiple CCCH SDU sizes", 3GPP TSG-RAN WG2 #94 R2-163368, 13 May 2016 (2016-05-13), XP051095810 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11737145B2 (en) * 2017-11-28 2023-08-22 Nokia Technologies Oy Early data transmission determinations using an uplink grant
CN108702762A (zh) * 2018-05-18 2018-10-23 北京小米移动软件有限公司 消息发送方法、装置和资源分配方法、装置
CN113767705A (zh) * 2019-05-02 2021-12-07 株式会社Ntt都科摩 用户装置及基站装置

Similar Documents

Publication Publication Date Title
JP7025386B2 (ja) ユーザ装置、及びランダムアクセス方法
US10931423B2 (en) Telecommunications apparatus and methods
JP7066736B2 (ja) 無線アクセスネットワーク更新手順に参加するユーザ機器および基地局
CN108353444B (zh) 用户装置、基站、连接建立方法、以及上下文信息获取方法
CN107251642B (zh) 用户装置、基站以及连接建立方法
JP6208296B1 (ja) ユーザ装置、基地局、及び接続確立方法
JP5345618B2 (ja) 無線基地局装置、無線中継局装置、及び無線端末装置
EP3337285B1 (en) Base station, user apparatus, and capability information transmission methods
EP3484224B1 (en) Method, device, and system for v2x message transmission
WO2017195398A1 (ja) 無線端末、基地局、及びこれらの方法
WO2017117807A1 (en) User plane optimization for narrowband internet of things
WO2018137553A1 (zh) 传输模式切换方法及装置
US20220030489A1 (en) Communications device, infrastructure equipment and methods
EP2712262A1 (en) Network joining method and apparatus thereof for relay node
WO2017150601A1 (ja) ユーザ装置、及びランダムアクセス方法
WO2017078140A1 (ja) ユーザ装置、基地局、及び接続確立方法
EP3477999B1 (en) Network access method, access device and terminal device
WO2017077979A1 (ja) ユーザ装置、基地局、及び接続確立方法
WO2013113240A1 (zh) 一种传输rn信息、寻呼ue的方法及装置
WO2020019329A1 (zh) 一种寻呼消息处理方法及装置
CN111901899A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15767300

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760065

Country of ref document: EP

Kind code of ref document: A1