WO2017150368A1 - Ultrasonic diagnostic device and ultrasonic information processing method - Google Patents

Ultrasonic diagnostic device and ultrasonic information processing method Download PDF

Info

Publication number
WO2017150368A1
WO2017150368A1 PCT/JP2017/007055 JP2017007055W WO2017150368A1 WO 2017150368 A1 WO2017150368 A1 WO 2017150368A1 JP 2017007055 W JP2017007055 W JP 2017007055W WO 2017150368 A1 WO2017150368 A1 WO 2017150368A1
Authority
WO
WIPO (PCT)
Prior art keywords
balance
strain
distortion
information
distribution
Prior art date
Application number
PCT/JP2017/007055
Other languages
French (fr)
Japanese (ja)
Inventor
一也 高木
義浩 武田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201780013168.8A priority Critical patent/CN108697405A/en
Priority to JP2018503098A priority patent/JP6662448B2/en
Publication of WO2017150368A1 publication Critical patent/WO2017150368A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus and an ultrasonic information processing method.
  • an ultrasonic diagnostic apparatus that can observe tissue structure and properties by irradiating an ultrasonic wave inside a subject, receiving the reflected wave, and imaging or analyzing it.
  • ultrasonic diagnosis a subject can be examined non-destructively and non-invasively.
  • a strain elastography technique for imaging a strain distribution generated by applying pressure to a subject of an object using an ultrasonic probe is known.
  • the hardness of an object can be evaluated from the difference in relative distortion between the object (for example, a tumor) and a reference (for example, fat).
  • JP 2005-13283 A Japanese Patent No. 4981023 Japanese Patent No. 5536300 Japanese Patent No. 5441493
  • the conventional automatic compression mechanism and stabilizer described above lead to an increase in the cost of the ultrasonic probe (ultrasound diagnostic apparatus). Further, the ultrasonic probe is bulky, and it is necessary to attach and detach the ultrasonic probe, which is troublesome.
  • An object of the present invention is to promote uniform pressure on a subject without attaching an additional part to the ultrasonic probe.
  • an ultrasonic diagnostic apparatus comprises: An ultrasonic diagnostic apparatus that applies pressure to an object by an ultrasonic probe that transmits and receives ultrasonic waves, transmits and receives ultrasonic waves to the object of the object, and measures distortion of the object, A transmitter for supplying a drive signal to the ultrasonic probe; A reception unit for processing a reception signal output from the ultrasonic probe; A strain information calculation unit that calculates strain information as elasticity information of the subject generated by the compression based on the processed received signal; A strain balance calculating unit that calculates a horizontal strain distribution of the subject from the strain information calculated by the strain information calculating unit, and calculates a balance of the horizontal strain distribution from the horizontal strain distribution; A distortion information generation unit that generates balance display information indicating a balance of the distortion distribution in the horizontal direction.
  • the invention according to claim 2 is the ultrasonic diagnostic apparatus according to claim 1,
  • the strain information calculation unit is an elastic image generation unit that generates elastic image data indicating a two-dimensional strain distribution based on the processed reception signal.
  • the strain balance calculation unit calculates a balance of strain distribution in the horizontal direction from the generated elasticity image data.
  • the invention according to claim 3 is the ultrasonic diagnostic apparatus according to claim 2,
  • the strain balance calculation unit calculates a balance of strain distribution in the horizontal direction using an elastic image on the body surface side from a predetermined vertical position in the generated elastic image data.
  • the invention according to claim 4 is the ultrasonic diagnostic apparatus according to claim 2 or 3,
  • the distortion information generation unit generates the balance display information including a regression line indicating the balance of the calculated horizontal distortion distribution and a reference display element indicating an allowable range of inclination of the regression line.
  • the invention according to claim 5 is the ultrasonic diagnostic apparatus according to claim 4,
  • the distortion information generation unit changes a color of the regression line according to an evaluation result of an allowable range of the slope of the regression line with respect to the reference display element.
  • the invention according to claim 6 is the ultrasonic diagnostic apparatus according to claim 1,
  • the strain information calculation unit is an elastic image generation unit that generates elastic image data indicating a two-dimensional strain distribution based on the processed reception signal.
  • the strain balance calculation unit calculates a two-dimensional strain cumulative distribution indicating a cumulative amount of strain in the vertical direction from the generated elasticity image data,
  • the strain information generation unit generates a two-dimensional isoline distribution from the two-dimensional strain cumulative distribution.
  • the invention according to claim 7 is the ultrasonic diagnostic apparatus according to claim 6,
  • the distortion information generation unit determines a color of a line of the two-dimensional isoline distribution from the shape of the line.
  • the invention according to claim 8 is the ultrasonic diagnostic apparatus according to claim 6,
  • the distortion information generation unit generates only the isoline on the superficial side in the two-dimensional isoline distribution.
  • the invention according to claim 9 is the ultrasonic diagnostic apparatus according to any one of claims 1 to 8,
  • generated balance display information on a display part is provided.
  • the invention according to claim 10 is the ultrasonic diagnostic apparatus according to claim 9,
  • the display control unit increases the amount of display information in the cine mode than in the live mode.
  • the invention according to claim 11 is the ultrasonic diagnostic apparatus according to any one of claims 1 to 10,
  • Display information to be displayed together with the balance display information includes a balance score of the horizontal distortion distribution, a distortion amount, a reliability value based on the received signal, and the horizontal direction of at least one frame before and after the current frame. It includes at least one of the balance lines of the strain distribution.
  • the invention according to claim 12 An ultrasonic information processing method for applying pressure to an object by an ultrasonic probe that transmits and receives ultrasonic waves and transmitting and receiving ultrasonic waves to the object of the object and measuring distortion of the object, Supplying a driving signal to the ultrasonic probe; Processing the received signal output from the ultrasound probe; Calculating strain information as elasticity information of the subject caused by the compression based on the processed received signal; Calculating a horizontal strain distribution of the subject from the calculated strain information, and calculating a balance of the horizontal strain distribution from the horizontal strain distribution; Generating balance display information indicating the balance of the horizontal strain distribution.
  • 1 is an external view of an ultrasonic diagnostic apparatus according to a first embodiment of the present invention. It is a block diagram which shows the function structure of the ultrasound diagnosing device of 1st Embodiment. It is a figure which shows an elasticity image. It is a figure which shows the regression line of the strain distribution of an elastic image, and strain distribution. It is a figure which shows the 1st distortion balance display column with uniform distortion distribution. It is a figure which shows the 1st distortion balance display column with nonuniform distortion distribution. It is a figure which shows an elastic image and a boundary line. It is a block diagram which shows the function structure of the ultrasonic diagnosing device of 2nd Embodiment. It is a figure which shows the 1st distortion balance display column in live mode.
  • FIG. 1 is an external view of an ultrasonic diagnostic apparatus 100 according to the present embodiment.
  • FIG. 2 is a block diagram showing a functional configuration of the ultrasonic diagnostic apparatus 100.
  • the ultrasonic diagnostic apparatus 100 is an apparatus that displays and outputs an ultrasonic image of a state of a living body tissue of a subject such as a living body of a patient. That is, the ultrasonic diagnostic apparatus 100 transmits ultrasonic waves (transmission ultrasonic waves) to the inside of a subject such as a living body, and transmits reflected ultrasonic waves (reflected ultrasonic waves: echoes) reflected within the subject. Receive. The ultrasound diagnostic apparatus 100 converts the received reflected ultrasound into an electrical signal, and generates ultrasound image data based on this. The ultrasonic diagnostic apparatus 100 displays the internal state in the subject as an ultrasonic image based on the generated ultrasonic image data. Further, the ultrasonic diagnostic apparatus 100 has a strain elastography function and displays an elastic image showing a strain distribution inside the subject to which compression is applied.
  • the ultrasonic diagnostic apparatus 100 includes an ultrasonic diagnostic apparatus main body 1 having an operation input unit 11 and a display unit 20, an ultrasonic probe 2, and a cable 3.
  • the ultrasonic probe 2 transmits transmission ultrasonic waves to the inside of the subject and receives reflected ultrasonic waves from the inside of the subject.
  • the ultrasonic diagnostic apparatus main body 1 is connected to the ultrasonic probe 2 via the cable 3, and transmits an electric signal drive signal to the ultrasonic probe 2 so that the ultrasonic probe 2 is connected to the inside of the subject.
  • the ultrasonic diagnostic apparatus main body 1 also receives a reception signal that is an electrical signal generated by the ultrasonic probe 2 in response to the reflected ultrasonic wave from the subject received by the ultrasonic probe 2. Then, ultrasonic image data is generated and displayed using the received signal.
  • the ultrasonic probe 2 includes a transducer 2a (see FIG. 2) made of a piezoelectric element.
  • a transducer 2a made of a piezoelectric element.
  • a plurality of the transducers 2a are arranged in a one-dimensional array in the azimuth direction (scanning direction).
  • the ultrasonic probe 2 including 192 transducers 2a is used.
  • the vibrators 2a may be arranged in a two-dimensional array.
  • the number of vibrators 2a can be set arbitrarily.
  • a linear electronic scanning probe is used as the ultrasonic probe 2 to perform ultrasonic scanning by the linear scanning method.
  • either the sector scanning method or the convex scanning method is used. It can also be adopted.
  • Communication between the ultrasonic diagnostic apparatus main body 1 and the ultrasonic probe 2 may be performed by wireless communication such as UWB (Ultra Wide Band) instead of wired communication via the cable 3.
  • UWB Ultra Wide Band
  • the ultrasonic diagnostic apparatus main body 1 includes, for example, an operation input unit 11, a transmission unit 12, a reception unit 13, a B-mode image generation unit 14, a storage unit 14a, and a distortion information calculation unit.
  • an elastic image generation unit 15 a storage unit 15a, an elastic image synthesis unit 16, a strain balance calculation unit 17, a strain information generation unit 18, a display image generation unit 19 as a display control unit, and a display unit 20 And a control unit 21.
  • the operation input unit 11 includes, for example, various switches, buttons, a trackball, a mouse, and a keyboard for an inspector such as a doctor or an engineer to input data such as a command for instructing the start of examination or personal information of the subject. Etc., and outputs an operation signal to the control unit 21.
  • the transmission unit 12 is a circuit that supplies a drive signal, which is an electrical signal, to the ultrasonic probe 2 via the cable 3 according to the control of the control unit 21 and causes the ultrasonic probe 2 to generate transmission ultrasonic waves.
  • the transmission unit 12 includes, for example, a clock generation circuit, a delay circuit, a time and voltage setting unit, and a pulse generation circuit.
  • the clock generation circuit is a circuit that generates a clock signal that determines the transmission timing and transmission frequency of the drive signal.
  • the delay circuit sets a delay time for each individual path corresponding to each transducer corresponding to the transmission timing of the drive signal, delays the transmission of the drive signal by the set delay time, and transmits the transmission beam constituted by the transmission ultrasonic waves. This is a circuit for focusing.
  • the time and voltage setting unit is a circuit that sets the voltage of the pulse width of the pulse signal generated from the pulse generation circuit and the voltage of the amplitude.
  • the pulse generation circuit is a circuit for generating a pulse signal as a drive signal in accordance with the time and voltage set by the time and voltage setting unit.
  • the transmitter 12 configured as described above drives, for example, a continuous part (for example, 64) of a plurality (for example, 192) of the transducers 2a arranged in the ultrasound probe 2. Then, transmit ultrasonic waves are generated. Then, the transmission unit 12 performs scanning (scanning) by shifting the driven vibrator in the azimuth direction each time transmission ultrasonic waves are generated.
  • the receiving unit 13 is a circuit that receives a reception signal, which is an electrical signal, from the ultrasound probe 2 via the cable 3 under the control of the control unit 21 and generates sound ray data by performing signal processing on the reception signal. .
  • the receiving unit 13 includes, for example, an amplifier, an A / D conversion circuit, and a phasing addition circuit.
  • the amplifier is a circuit for amplifying a received signal with a preset amplification factor for each individual path corresponding to each transducer.
  • the A / D conversion circuit is a circuit for A / D converting the amplified received signal.
  • the phasing addition circuit adjusts the time phase by giving a delay time to each individual path corresponding to each transducer with respect to the A / D converted received signal, and adds these (phasing addition) to generate a sound ray. It is a circuit for generating data.
  • the B-mode image generation unit 14 Under the control of the control unit 21, the B-mode image generation unit 14 performs envelope detection processing, logarithmic amplification, and the like on the sound ray data from the reception unit 13, and adjusts the dynamic range and gain to perform luminance conversion.
  • B (Brightness) mode ultrasonic image data (B-mode image data) is generated as tomographic image data.
  • the B-mode image data represents the intensity of the received signal by luminance.
  • the storage unit 14a is a storage unit configured by a semiconductor memory such as DRAM (Dynamic Random Access Memory).
  • the B mode image generation unit 14 stores the generated B mode image data in the storage unit 14a in units of frames.
  • the B-mode image generation unit 14 appropriately reads out the B-mode image data stored in the storage unit 14 a and outputs it to the elastic image synthesis unit 16.
  • the elastic image generation unit 15 performs a calculation on the sound ray data from the reception unit 13 according to the control of the control unit 21, has a distortion information calculation function for calculating information as elasticity information, and performs color mapping. Thus, elastic image data is generated.
  • the size of the image of the elasticity image data generated by the elasticity image generation unit 15 is the size of the ROI (Region Of : Interest: region of interest) designated and input by the examiner via the operation input unit 11. It is not limited, and it may be the same as the image size of the B-mode image data.
  • the storage unit 15a is a storage unit configured by a semiconductor memory such as a DRAM.
  • the examiner grasps the ultrasonic probe 2 and applies pressure to the body surface of the subject.
  • the force applied to the subject from the ultrasonic probe 2 changes due to the vibration of the examiner himself or the breathing of the subject.
  • the upper end of an object such as a tumor is located at a distance xr in the depth direction (X direction) from the body surface in contact with the ultrasound probe 2 in the subject before the pressure is applied.
  • the width of the object in the depth direction is L.
  • the elastic image generation unit 15 appropriately stores and reads the sound ray data from the reception unit 13 in the storage unit 15a for each frame.
  • sound ray data of two frames that are temporally continuous is acquired.
  • the pressurized state of the subject corresponding to the first signal waveform of the sound ray data of the first frame is set as the first pressurized state, and the second signal waveform of the sound ray data of the second frame is handled.
  • the pressurized state of the subject to be performed is the second pressurized state.
  • the elastic image generation unit 15 extracts a phase difference component at each time between the first signal waveform and the second signal waveform, and according to a correlation between each time and the phase difference component at each time. Then, the distortion difference and the initial phase difference relating to the frequency difference between the first signal waveform and the second signal waveform are calculated, and the distortion amount is calculated based on the distortion difference. The elastic image generation unit 15 calculates the distortion amount for all the pixels, and generates image data including the distortion amount pixels.
  • the elastic image generation unit 15 generates elastic image data by coloring the image data of the distortion amount by color mapping in which the distortion amount increases in the order of blue ⁇ green ⁇ yellow ⁇ red, for example.
  • the amount of distortion increases in the order of black ⁇ white in the elastic image.
  • the elastic image synthesis unit 16 synthesizes the B-mode image data generated by the B-mode image generation unit 14 and the elastic image data generated at the same time generated by the elastic image generation unit 15 according to the control of the control unit 21. Elastic image data is generated.
  • the strain balance calculation unit 17 uses the elastic image data generated by the elastic image generation unit 15 in the horizontal direction of the elastic image (scanning direction, direction parallel to the body surface, depth direction (X direction)). A regression line of the distribution of the distortion amount of the pixel in the Y direction (vertical Y direction) (distortion distribution in the horizontal direction) is calculated.
  • FIG. 3A is a diagram showing an elastic image 201.
  • FIG. 3B is a diagram illustrating a strain distribution 202 of the elastic image 201 and a regression line 203 of the strain distribution 202.
  • FIG. 3A shows an elasticity image 201 of elasticity image data generated by the elasticity image generation unit 15.
  • the strain balance calculation unit 17 calculates the sum of strain values for each pixel column in the X direction along the Y direction of the elastic image 201 to calculate a strain distribution 202 as shown in FIG. 3B.
  • the distortion balance calculation part 17 calculates the regression line 203 of the distortion distribution 202 by the least square method etc., for example.
  • the distortion information generation unit 18 generates, as distortion information, a distortion balance display field having a balance line based on the regression line using the regression line of the distortion distribution generated by the distortion balance calculation unit 17 according to the control of the control unit 21. To do.
  • FIG. 4A is a diagram showing a strain balance display field 300 having a uniform strain distribution.
  • FIG. 4B is a diagram showing a strain balance display field 300 in which the strain distribution is not uniform.
  • the distortion balance display field 300 includes a center point 311, a balance line 312, a reference line 313, and a reference region 314.
  • the center point 311 is a mark indicating the center of the strain balance display field 300, and indicates the center of the elastic image 201 in the horizontal direction, for example.
  • the balance line 312 is a straight line that passes through the center point 311 and has the slope of the regression line of the calculated strain distribution.
  • the reference line 313 is a horizontal straight line passing through the center point 311.
  • the reference area 314 is a reference area that indicates an allowable range of inclination of the balance line 312 in order to determine whether or not the balance line 312 is uneven, and has a predetermined width that is set in advance above and below the reference line 313.
  • the balance straight line 312 overlaps the reference line 313, and the strain distribution is uniform.
  • the distortion balance display column 300 in FIG. 4B indicates that the balance line 312 does not overlap the reference line 313 but protrudes from the reference region 314, and the distortion distribution is non-uniform.
  • the tolerance of the inclination of the balance line 312 with respect to the reference area 314 is displayed so that the balance line 312 in the reference area 314 including the uniform distortion distribution is displayed in blue and the balance line 312 having the non-uniform distortion distribution is displayed in red. It is preferable to change the color of the balance line 312 according to the evaluation result of the range.
  • the display image generation unit 19 combines the combined elasticity image data generated by the elasticity image synthesis unit 16 and the strain balance display field generated by the strain information generation unit 18 according to the control of the control unit 21 to display the display image. Data is generated, and the display image data is converted into an image signal for the display unit 20 and output to the display unit 20.
  • the display unit 20 may be a display device such as an LCD (Liquid Crystal Display), a CRT (Cathode-Ray Tube) display, an organic EL (Electronic Luminescence) display, an inorganic EL display, or a plasma display.
  • the display unit 20 displays an image on the display screen according to the image signal output from the display image generation unit 19.
  • the control unit 21 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory), and reads various processing programs such as a system program stored in the ROM to read the RAM.
  • the operation of each part of the ultrasonic diagnostic apparatus 100 is centrally controlled according to the developed program.
  • the ROM is configured by a non-volatile memory such as a semiconductor, and stores a system program corresponding to the ultrasonic diagnostic apparatus 100, a program executable on the system program, various data such as a gamma table, and the like. These programs are stored in the form of computer-readable program code, and the CPU sequentially executes operations according to the program code.
  • the RAM forms a work area for temporarily storing various programs executed by the CPU and data related to these programs. In order to prevent the diagram from becoming complicated, some control lines from the control unit 21 to each unit are omitted in FIG.
  • each functional block can be realized as a hardware circuit such as an integrated circuit.
  • the integrated circuit is, for example, an LSI (Large Scale Integration), and the LSI may be referred to as an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, but may be realized by a dedicated circuit or a general-purpose processor, and the connection and setting of FPGA (Field Programmable Gate Array) and circuit cells inside LSI can be reconfigured.
  • a reconfigurable processor may be used.
  • some or all of the functions of each function block may be executed by software.
  • the software is stored in one or more storage media such as a ROM, an optical disk, or a hard disk, and the software is executed by the arithmetic processor.
  • the ultrasonic probe 2 is first contacted with the subject, B-mode image data is generated, and a B-mode image is displayed.
  • the elastic image ROI is appropriately input via the operation input unit 11 and the ultrasonic probe 2 applies pressure to the body surface around the subject of the subject.
  • ultrasonic transmission / reception from the ultrasonic probe 2 is performed by the transmission unit 12 and the reception unit 13.
  • B-mode image data generation by the B-mode image generation unit 14, elasticity image data generation by the elasticity image generation unit 15, and synthesis elasticity image data generation by the elasticity image synthesis unit 16 are performed.
  • the regression line generation of the horizontal strain distribution by the strain balance calculation unit 17 and the strain balance display column by the strain information generation unit 18 are generated, and the display including the synthetic elasticity image data and the strain balance display column by the display image generation unit 19 is generated.
  • Image data is generated and displayed on the display unit 20.
  • the composite elastic image and the strain balance display column are arranged so that the centers thereof coincide.
  • the inspector can correct the bias of the compression via the ultrasonic probe 2 by visually observing the distortion balance display field on the display image displayed on the display unit 20. More specifically, the inspector may operate the ultrasound probe 2 so that the balance straight line in the distortion balance display field matches the reference line. The examiner can more accurately diagnose the hardness of an object such as a tumor in the synthetic elastic image by visually observing the synthetic elastic image when the balance straight line is aligned with the reference line.
  • the ultrasonic diagnostic apparatus 100 compresses the subject with the ultrasonic probe 2 and transmits / receives ultrasonic waves to / from the subject of the subject to measure the distortion of the subject.
  • the ultrasonic diagnostic apparatus 100 supplies a drive signal to the ultrasonic probe 2, processes a reception signal output from the ultrasonic probe 2, and based on the processed reception signal, a subject generated by compression Calculate strain information to calculate strain information as elasticity information, calculate the horizontal strain distribution of the subject from the calculated strain information, and calculate the balance of the horizontal strain distribution from the horizontal strain distribution
  • a distortion balance display field is generated as balance display information indicating the balance of the distortion distribution in the horizontal direction.
  • the balance line and balance display information generated and displayed here do not simply indicate the pressing direction or angle when the ultrasonic probe 2 is pressed against the body surface of the subject. Since the hardness of the tissue in the subject is reflected in addition to the pressing direction and angle information, it is an index for performing more accurate elastic image display.
  • the examiner is encouraged to apply uniform pressure to the subject so that the strain balance is uniform. it can.
  • the ultrasound diagnostic apparatus 100 generates elastic image data as a two-dimensional strain distribution based on the processed received signal, and a horizontal strain distribution balance (regression line) from the generated elastic image data. Is calculated. For this reason, it is possible to easily calculate the regression line of the strain distribution in the horizontal direction by effectively using the elastic image data to be displayed.
  • the ultrasonic diagnostic apparatus 100 generates a distortion balance display column including a horizontal distortion balance line (regression line) based on the balance and a reference display area indicating an allowable range of the balance line inclination. Therefore, by displaying the distortion balance display field, the horizontal distortion balance line can be easily visually recognized by the horizontal distortion balance line, and the balance of the compression to the subject can be balanced by the balance straight line with respect to the reference display area. The inspector can easily visually check whether the tolerance is acceptable.
  • the ultrasound diagnostic apparatus 100 changes the color of the balance line according to the evaluation result of the allowable range of the balance line inclination with respect to the reference display area. For this reason, by displaying the distortion balance display field, the examiner can easily visually recognize whether the balance of the pressure on the subject is within the allowable range by the color of the balance line.
  • the ultrasonic diagnostic apparatus 100 displays the generated strain balance display field on the display unit 20. For this reason, it is possible to visually encourage the examiner to uniformly press the subject so as to make the balance of distortion uniform.
  • FIG. 5 is a diagram illustrating the elasticity image 205 and the boundary line 206.
  • the ultrasonic diagnostic apparatus 100 according to the first embodiment is used, and different parts of the operation are mainly described, and description of the same parts is omitted.
  • the pressure applied to the subject is attenuated and reduced as the depth increases, and the amount of distortion also decreases. For this reason, in this modification, in order to generate a strain distribution in the horizontal direction, the strain amount only in the shallow region on the body surface side of the elastic image data is used.
  • the strain balance calculation unit 17 includes an image of a region 205a that is greater than or equal to the boundary line 206 in the Y direction in the elasticity image data of the elasticity image 205 illustrated in FIG. 5 generated by the elasticity image generation unit 15.
  • a distortion distribution in the horizontal direction is generated using the distortion amount of each pixel of the data, and a regression line of the distortion distribution is generated.
  • the position of the boundary line 206 is focused by, for example, a predetermined position such as a middle position in the X direction of the elastic image of the elastic image data, or by an inspector's position input via the operation input unit 11 before scanning.
  • the user-set position or the like such as the set position.
  • the focus position is a position where the sound pressure of the ultrasonic wave is highest.
  • the ultrasound diagnostic apparatus 100 uses the elastic image data on the body surface side that is greater than or equal to the horizontal boundary line among the generated elastic image data, and the regression line of the strain distribution in the horizontal direction. Is calculated. For this reason, it is possible to improve the sensitivity of the horizontal distortion balance line based on the regression line.
  • FIG. 6 is a block diagram showing a functional configuration of the ultrasonic diagnostic apparatus 100A of the present embodiment.
  • ultrasonic diagnostic apparatus 100A of the present embodiment parts that are different from the ultrasonic diagnostic apparatus 100 of the first embodiment will be mainly described, and the same reference numerals are given to the same parts, and the description thereof will be omitted.
  • the ultrasonic diagnostic apparatus 100A includes an ultrasonic diagnostic apparatus main body 1A, an ultrasonic probe 2, and a cable 3.
  • the ultrasonic diagnostic apparatus main body 1A includes, for example, an operation input unit 11, a transmission unit 12, a reception unit 13, a B-mode image generation unit 14, a storage unit 14a, an elastic image generation unit 15, and a storage unit 15a.
  • An elastic image composition unit 16, a strain balance calculation unit 17, a strain information generation unit 18A as a display information generation unit, a display image generation unit 19A, a storage unit 19a, a display unit 20, a control unit 21, A distortion amount calculation unit 22 and a state management unit 23 are provided.
  • the distortion amount calculation unit 22 calculates the total amount of pixel distortion amount distribution (horizontal strain distribution) in the horizontal direction (Y direction) from the elastic image data generated by the elastic image generation unit 15. calculate.
  • the state management unit 23 is a live mode in which ultrasonic image data obtained by scanning the subject is displayed in real time in accordance with an operation input from the examiner via the operation input unit 11 according to the control of the control unit 21 or in the past. It manages state information as to whether it is a cine mode for displaying (reproducing) ultrasonic image data (cine) stored in the live mode, and outputs the state information to the distortion information generation unit 18A.
  • scanned ultrasonic image data synthetic elastic image data
  • the distortion information generation unit 18A uses the regression line of the distortion distribution generated by the distortion balance calculation unit 17, and sets the horizontal as a predetermined perfect score (for example, 100 points), so that the inclination of the regression line is large.
  • the score at which the percentage of deductions becomes larger is calculated, a distortion balance display field having a balance line based on the regression line is generated, the distortion amount of the center point input from the distortion amount calculation unit 22, and the score and distortion balance display
  • the column and the distortion information are output to the display image generation unit 19A together with the state information input from the state management unit 23.
  • the display image generation unit 19A and the composite elasticity image data generated by the elasticity image synthesis unit 16 and the strain information are displayed.
  • the distortion balance display field generated by the generation unit 18 is synthesized to generate display image data, and the display image data is converted into an image signal for the display unit 20 and output to the display unit 20 for live image display
  • the composite elastic image data, the strain balance display column, the score, and the strain amount are stored as cine image data in the storage unit 19a for each frame.
  • the storage unit 19a is a nonvolatile memory capable of writing and reading information, such as a flash memory.
  • the display image generation unit 19A responds to the frame designation input of the cine image (synthetic elastic image data) to be reproduced via the operation input unit 11 when the state information input from the distortion information generation unit 18A is the cine mode. Then, the cine image data (synthetic elastic image data, strain balance display column, score and strain amount) of the target frame is read from the storage unit 19a, and has the read elastic image data, strain balance display column, score and strain amount. Display image data is generated, converted into an image signal, and output to the display unit 20 to display a cine image.
  • the B-mode image generation unit 14 stores B-mode image data as cine image data in the storage unit 14a
  • the elastic image generation unit 15 stores elastic image data as cine image data in the storage unit 15a.
  • the B-mode image generation unit 14 reads out the B-mode image data of the frame designated by the examiner via the operation input unit 11 from the storage unit 14a, and the elastic image generation unit 15 is designated.
  • the elastic image data of the frame is read from the storage unit 15a, and the elastic image synthesis unit 16 synthesizes the read B-mode image data and the elastic image data to output the synthesized elastic image data to the display image generation unit 19,
  • the display image generation unit 19A reads the strain balance display column, the score, and the distortion amount of the designated frame from the storage unit 19a and displays them on the display unit 20 together with the input synthetic elastic image data.
  • FIG. 7A is a diagram showing a distortion balance display field 300 in the live mode.
  • FIG. 7B is a diagram showing a distortion balance display field 300A in the cine mode.
  • the distortion balance display field 300 in the live mode is displayed as a balance display field similar to FIGS. 4A and 4B.
  • the distortion balance display column 300A in the cine mode includes a center point 311, a balance line 312, a reference line 313, a reference region 314, a score 315, and a total distortion amount 316.
  • the score 315 is a score based on the score calculated by the distortion information generation unit 18 ⁇ / b> A, with the slope at which the balance line 312 matches the reference line 313 being a perfect score.
  • the total distortion amount 316 is the total amount of distortion calculated by the distortion amount calculation unit 22.
  • the ultrasonic diagnostic apparatus 100A increases the amount of display information in the cine mode than in the live mode. For this reason, display flicker in the distortion balance display field can be reduced in the live mode in which the display information amount is suppressed, and in the cine mode in which the display information amount is large, the examiner can assist the selection of each frame used for diagnosis. .
  • the ultrasonic diagnostic apparatus 100A displays a horizontal distribution score of distortion as distortion information. For this reason, the examiner can quantitatively confirm the uniformity of the pressure on the subject.
  • the ultrasonic diagnostic apparatus 100A generates and displays the total amount of distortion as distortion information to be displayed together with the distortion balance display field. For this reason, the examiner can simultaneously confirm the uniformity of compression and the amount of compression.
  • FIG. 8 is a diagram showing a distortion balance display field 300B.
  • the ultrasonic diagnostic apparatus 100A according to the second embodiment is used, and mainly the parts with different operations are described, and the description of the same parts is omitted.
  • the display image generation unit 19A When the state information input from the distortion information generation unit 18A is in the cine mode, the display image generation unit 19A responds to the designation input of the frame of the cine image (synthetic elastic image data) to be reproduced via the operation input unit 11,
  • the cine image data synthetic elastic image data, strain balance display column, score and distortion amount
  • the read elasticity Display image data having image data, a distortion balance display field, a score, and a distortion amount is generated and output to the display unit 20 to display a cine image.
  • the distortion balance display column displayed in the cine mode will be described.
  • the distortion balance display field 300B in the cine mode includes a center point 311, a balance line 312, a reference line 313, a reference area 314, a score 315, a total distortion amount 316, a balance line 317, 318.
  • the balance straight line 312 is a balance straight line corresponding to the current frame of the composite elastic image displayed at the same time, and is displayed, for example, as a solid thick line.
  • the balance straight line 317 is a balance straight line corresponding to the frame one frame before the composite elastic image to be displayed, and is displayed, for example, as a thin line with a one-dot chain line.
  • the balance straight line 318 is a balance straight line corresponding to a frame one frame after the composite elastic image to be displayed, and is displayed as a thin dotted line, for example.
  • the distortion distribution is non-uniform, and therefore, for example, the balance straight lines 312, 317, and 318 are displayed in red different from blue where the distortion distribution is uniform.
  • the balance straight line in the distortion balance display column displayed in the cine mode is not limited to three corresponding to the current frame and the frames before and after the current frame, but at least one of the current frame and at least one before and after this. It is good also as at least 1 corresponding to a flame
  • the distortion balance display field displayed in the live mode also displays at least one balance line at least one frame in addition to the balance line of the current frame corresponding to the currently displayed composite elastic image. Also good.
  • the ultrasonic diagnostic apparatus 100A generates and displays a balance line of at least one frame before and after the current frame as distortion information to be displayed together with the distortion balance display field. For this reason, the continuity of uniform compression can be confirmed by visual recognition of the strain balance display column and the balance straight lines of the front and rear frames.
  • FIG. 9A is a diagram showing a distortion balance display field 300C when the amount of distortion is small.
  • FIG. 9B is a diagram showing a distortion balance display field 300C when the amount of distortion is large.
  • the ultrasonic diagnostic apparatus 100A according to the second embodiment is used, and mainly the parts with different operations are described, and the description of the same parts is omitted.
  • the distortion information generation unit 18A uses the regression line of the distortion distribution generated by the distortion balance calculation unit 17 and sets the horizontal as a predetermined perfect score, and the percentage of deduction points increases as the regression line increases in inclination.
  • a score to be increased is calculated, and a distortion balance display field including a total distortion amount input from the distortion amount calculation unit 22 and a balance line based on the regression line is generated, and the score and the distortion balance display field are used as distortion information.
  • the information is output to the display image generation unit 19A.
  • a distortion balance display field 300C shown in FIGS. 9A and 9B is generated.
  • the distortion balance display field 300C includes a balance line 312, a reference line 313, a reference region 314, and a center circle 319.
  • the center circle 319 is a circular mark indicating the center of the strain balance display field 300C.
  • the center circle 319 indicates the center in the Y direction of the elastic image and has a radius (diameter) corresponding to the total strain amount input from the strain amount calculation unit 22. ).
  • the balance straight line 312 and the reference line 313 are arranged so as to pass through the center of the central circle 319.
  • the distortion balance display column 300C is information displayed in both the live mode and the cine mode.
  • the ultrasound diagnostic apparatus 100A generates and displays a center circle indicating the total strain amount in the strain balance display field as the strain information to be displayed together with the strain balance display field. Therefore, the visual inspection of the strain balance display field and the central circle indicating the total amount of distortion allows the examiner to easily achieve uniform compression on the subject, and the visual inspection of the central circle indicating the total amount of distortion allows the examiner to Can easily confirm whether or not there is appropriate pressure on the subject. Moreover, it is good also as a structure which displays a standard
  • FIG. 10A is a diagram illustrating a signal waveform of sound ray data of two consecutive frames.
  • FIG. 10B is a diagram showing a distortion balance display field 300D.
  • the ultrasonic diagnostic apparatus 100A according to the second embodiment is used, and mainly the parts with different operations are described, and the description of the same parts is omitted.
  • the elastic image generation unit 15 generates elastic image data using time-sequential two frames of sound ray data from the reception unit 13 and the storage unit 15a according to the control of the control unit 21, and the elastic image data time
  • the correlation value (restoration rate) of the signal waveform is calculated using the sound ray data of two consecutive frames, and the calculated correlation value is used as the reliability value of the measurement result, and the distortion information generation unit is connected via the distortion balance calculation unit 17. Output to 18A.
  • the signal waveform f (x) of the sound ray data of the first frame the signal waveform g (x) of the sound ray data of the second frame temporally next to the first frame,
  • the correlation value AutoCorr (f (x), g (x + ⁇ x)) is calculated.
  • the strain information generation unit 18A calculates a score using the regression line of the strain balance generated by the strain balance calculation unit 17 according to the control of the control unit 21, and trusts the elasticity image input from the strain balance calculation unit 17.
  • a distortion balance display field having a value and the regression line is generated, and the score and the total distortion amount input from the distortion amount calculation unit 22 are used as distortion information, along with the state information input from the state management unit 23, The image is output to the display image generation unit 19A.
  • a distortion balance display field 300D shown in FIG. 10B is generated.
  • the distortion balance display field 300D includes a balance line 312, a reference line 313, a reference region 314, and a center circle 320.
  • the center circle 320 is a circular mark indicating the center of the strain balance display field 300D.
  • the center circle 320 indicates the center of the elastic image in the Y direction, and the reliability value of the elastic image of the elastic image data calculated by the elastic image generating unit 15.
  • the confidence value is high ( ⁇ 1) when no pressure is applied to the subject, and the confidence value decreases as the pressure increases, and the confidence value decreases and the correlation disappears when the pressure is excessive. For this reason, it is preferable to confirm appropriate compression according to reliability.
  • the ultrasonic diagnostic apparatus 100A displays the center circle indicating the reliability value of the ROI distortion in the distortion balance display column as the distortion information. For this reason, it is possible for the examiner to easily realize uniform compression on the subject by visualizing the strain balance display field, and for the examiner to appropriately compress the subject on the subject by visualizing the central circle indicating the reliability value. It can be easily confirmed whether or not there is. Moreover, it is good also as a structure which displays standard
  • FIG. 11 is a diagram showing an elasticity image 330 and an isoline 331.
  • FIG. 12 is a diagram showing a B-mode image 340 on which isolines 331 are superimposed.
  • the ultrasonic diagnostic apparatus 100 according to the first embodiment is used, and different parts of the operation are mainly described, and description of the same parts is omitted.
  • the regression line of the strain distribution in the Y direction (horizontal direction) as the balance line in the first embodiment generally indicates that the slope is pressed if the inside of the scan portion of the subject is uniform.
  • the right side of the medium is harder than the left side, even if the right side is pushed in, distortion does not occur, and an inclination indicating the pressing cannot be obtained.
  • a horizontal isoline of the cumulative distribution of strain values in the X direction (vertical direction) is displayed as balance display information.
  • the isoline is a line in which the accumulated strain value becomes equal from the shallow part of the subject, and is a display element that is an image of a pressing isobaric line. If the contour line is dense, it indicates that there is a lot of distortion (the pressure is strong or the medium is soft).
  • the strain balance calculation unit 17 uses the strain amount of each pixel of the elasticity image data of the elasticity image 330 illustrated in FIG. 11 generated by the elasticity image generation unit 15 to use the strain distribution in the Y direction. And a two-dimensional strain cumulative distribution indicating a Y-direction distribution of the cumulative amount of strain in the X direction.
  • the distortion information generation unit 18 generates a distortion balance display column including a balance line (regression line) based on the regression line of the distortion distribution in the Y direction generated by the distortion balance calculation unit 17, and the distortion balance calculation unit 17 Image data of a two-dimensional isoline distribution to be superimposed on the B-mode image of the B-mode image data is generated from the generated two-dimensional strain cumulative distribution.
  • the distortion information generation unit 18 may be configured to change the color of each line of the isoline distribution according to the shape of the isoline (for example, the horizontal level of the line). For example, in the isoline 331 shown in FIG. 11, the color of the isoline 331a having a high level of horizontal and the isoline 331b having a low level of horizontal is changed.
  • the isoline 331a is displayed as, for example, a light blue solid line
  • the isoline 331b is displayed as, for example, an orange solid line.
  • the display image generating unit 19 converts the B mode image data generated by the B mode image generating unit 14 (the elastic image data is not combined by the elastic image combining unit 16) into the ROI (elastic image portion) of the B mode image.
  • the strain balance display field and the two-dimensional isoline distribution as the balance display information, for example, the balance straight line is inclined, but the isolines are equidistant in shallow areas, so there is no bias
  • the examiner can determine that the subject is being pushed.
  • it is good also as a structure which displays only two-dimensional isoline distribution as balance display information.
  • the distortion information generation unit 18 displays only the surface side of the isoline (for example, only the isoline 331a). It is good also as a structure which produces
  • the display image generation unit 19 generates display image data by combining the combined elasticity image data generated by the elasticity image combining unit 16 with the image data of the isoline superimposed on the ROI of the combined elasticity image. It is good also as a structure displayed on the part 20.
  • the display image generation unit 19 generates a composite image of the composite elastic image data generated by the elastic image combination unit 16 and B of the B mode image data generated by the B mode image generation unit 14 for the same part of the subject.
  • the mode image and the two-dimensional isoline distribution may be displayed side by side.
  • the elastic image generation unit 15 generates elastic image data indicating a two-dimensional strain distribution based on the reception signal processed by the reception unit 13.
  • the strain balance calculation unit 17 calculates a two-dimensional strain cumulative distribution indicating the cumulative amount of strain in the vertical direction from the generated elasticity image data.
  • the strain information generation unit 18 generates a two-dimensional isoline distribution from the two-dimensional strain cumulative distribution. For this reason, by displaying the isolines, it is possible to indicate the strength of the press according to the density of the isolines and the softness of the medium, and to the subject uniformly so as to make the balance of distortion uniform. The examiner can be urged to press.
  • the distortion information generation unit 18 determines the line color of the two-dimensional isoline distribution from the shape of the line. For this reason, the inspector can easily visually recognize the degree of horizontality based on the shape of each line of the two-dimensional contour distribution from the color.
  • the distortion information generation unit 18 generates only the superficial side isoline in the two-dimensional isoline distribution. For this reason, it is possible to improve the visibility of the B-mode image or the composite elastic image on which the two-dimensional isoline distribution is superimposed.
  • the distortion balance display field as balance display information is displayed on the display unit 20, but the present invention is not limited to this.
  • An LED Light ⁇ Emitting (Diode) as a display unit provided in a diagnostic apparatus (for example, the ultrasound probe 2) may be turned on, blinked, changed in lighting color, or the like.
  • the sum of the distortion amounts of the pixels in each vertical line in the horizontal direction (azimuth direction) of the elastic image data is calculated to calculate the horizontal distortion distribution.
  • the horizontal distortion distribution may be calculated by calculating a median value, an average value, and the like of the distortion of the pixels of each vertical line in the horizontal direction of the elastic image data.
  • the ultrasonic diagnostic apparatus and ultrasonic information processing method of the present invention can be applied to ultrasonic diagnosis using elastic images.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

An ultrasonic diagnostic device 100 that applies pressure to a subject, transmits/receives ultrasonic waves to/from a target on the subject, and measures the distortion of the target by means of an ultrasonic probe 2 that transmits and receives ultrasonic waves. The ultrasonic diagnostic device 100 comprises: a transmission unit 12 that supplies drive signals to the ultrasonic probe 2; a reception unit 13 that processes received signals outputted from the ultrasonic probe 2; an elasticity image generation unit 15 that, on the basis of the processed received signals, calculates, as elasticity information for the subject, distortion information generated by means of pressure; a distortion balance calculation unit 17 that calculates the horizontal-direction distortion of the subject from the distortion information calculated by the elasticity image generation unit 15 and calculates the balance of a horizontal-direction distortion distribution from the horizontal-direction distortion; and a distortion information generation unit 18 that generates balance display information that shows the balance of the horizontal-direction distortion distribution.

Description

超音波診断装置及び超音波情報処理方法Ultrasonic diagnostic apparatus and ultrasonic information processing method
 本発明は、超音波診断装置及び超音波情報処理方法に関する。 The present invention relates to an ultrasonic diagnostic apparatus and an ultrasonic information processing method.
 従来、超音波を被検体内部に照射し、その反射波を受信して画像化または解析することにより組織構造や性状を観察できる超音波診断装置がある。超音波診断では、被検体を非破壊、非侵襲で調べることが出来る。 2. Description of the Related Art Conventionally, there is an ultrasonic diagnostic apparatus that can observe tissue structure and properties by irradiating an ultrasonic wave inside a subject, receiving the reflected wave, and imaging or analyzing it. In ultrasonic diagnosis, a subject can be examined non-destructively and non-invasively.
 また、超音波診断装置において、超音波探触子を用いて被検体の対象に圧迫を加えることで生じる歪み分布を画像化するストレインエラストグラフィ(Strain Elastography)の技術が知られている。ストレインエラストグラフィでは、対象(例えば腫瘍)とリファレンス(例えば脂肪)との相対的な歪みの差から対象の硬さを評価できる。 Also, in the ultrasonic diagnostic apparatus, a strain elastography technique for imaging a strain distribution generated by applying pressure to a subject of an object using an ultrasonic probe is known. In strain elastography, the hardness of an object can be evaluated from the difference in relative distortion between the object (for example, a tumor) and a reference (for example, fat).
 硬さの確かな評価には、被検体への均一な圧迫が求められる。均一な圧迫を実現する手段として、自動的に被検体を圧迫する自動圧迫機構が知られている(特許文献1、2参照)。また、均一な圧迫を実現する手段として、超音波探触子に装着して使うスタビライザが知られている(特許文献3、4参照)。 For reliable evaluation of hardness, uniform pressure on the subject is required. As a means for realizing uniform compression, an automatic compression mechanism that automatically compresses a subject is known (see Patent Documents 1 and 2). Further, as means for realizing uniform compression, a stabilizer used by being attached to an ultrasonic probe is known (see Patent Documents 3 and 4).
特開2005-13283号公報JP 2005-13283 A 特許第4981023号公報Japanese Patent No. 4981023 特許第5536300号公報Japanese Patent No. 5536300 特許第5441493号公報Japanese Patent No. 5441493
 しかし、上記従来の自動圧迫機構やスタビライザは、超音波探触子(超音波診断装置)のコストアップにつながる。また、超音波探触子がかさばり、さらに超音波探触子からの着脱が必要となり、手間である。 However, the conventional automatic compression mechanism and stabilizer described above lead to an increase in the cost of the ultrasonic probe (ultrasound diagnostic apparatus). Further, the ultrasonic probe is bulky, and it is necessary to attach and detach the ultrasonic probe, which is troublesome.
 本発明の課題は、超音波探触子に追加部品を取り付けることなく、被検体への均一な圧迫を促すことである。 An object of the present invention is to promote uniform pressure on a subject without attaching an additional part to the ultrasonic probe.
 上記課題を解決するため、請求項1に記載の発明の超音波診断装置は、
 超音波を送受信する超音波探触子により被検体に圧迫を加え当該被検体の対象に超音波を送受信し当該対象の歪みを測定する超音波診断装置であって、
 前記超音波探触子に駆動信号を供給する送信部と、
 前記超音波探触子から出力された受信信号を処理する受信部と、
 前記処理された受信信号に基づいて、前記圧迫によって生じた前記被検体の弾性情報としての歪み情報を算出する歪み情報算出部と、
 前記歪み情報算出部で算出された歪み情報から前記被検体の水平方向の歪み分布を算出し、当該水平方向の歪み分布から水平方向の歪み分布のバランスを算出する歪みバランス算出部と、
 前記水平方向の歪み分布のバランスを示すバランス表示情報を生成する歪み情報生成部と、を備える。
In order to solve the above-described problem, an ultrasonic diagnostic apparatus according to claim 1 comprises:
An ultrasonic diagnostic apparatus that applies pressure to an object by an ultrasonic probe that transmits and receives ultrasonic waves, transmits and receives ultrasonic waves to the object of the object, and measures distortion of the object,
A transmitter for supplying a drive signal to the ultrasonic probe;
A reception unit for processing a reception signal output from the ultrasonic probe;
A strain information calculation unit that calculates strain information as elasticity information of the subject generated by the compression based on the processed received signal;
A strain balance calculating unit that calculates a horizontal strain distribution of the subject from the strain information calculated by the strain information calculating unit, and calculates a balance of the horizontal strain distribution from the horizontal strain distribution;
A distortion information generation unit that generates balance display information indicating a balance of the distortion distribution in the horizontal direction.
 請求項2に記載の発明は、請求項1に記載の超音波診断装置において、
 前記歪み情報算出部は、前記処理された受信信号に基づいて、2次元の歪み分布を示す弾性画像データを生成する弾性画像生成部であり、
 前記歪みバランス算出部は、前記生成された弾性画像データから水平方向の歪み分布のバランスを算出する。
The invention according to claim 2 is the ultrasonic diagnostic apparatus according to claim 1,
The strain information calculation unit is an elastic image generation unit that generates elastic image data indicating a two-dimensional strain distribution based on the processed reception signal.
The strain balance calculation unit calculates a balance of strain distribution in the horizontal direction from the generated elasticity image data.
 請求項3に記載の発明は、請求項2に記載の超音波診断装置において、
 前記歪みバランス算出部は、前記生成された弾性画像データのうち、所定の垂直位置より体表側の弾性画像を用いて、水平方向の歪み分布のバランスを算出する。
The invention according to claim 3 is the ultrasonic diagnostic apparatus according to claim 2,
The strain balance calculation unit calculates a balance of strain distribution in the horizontal direction using an elastic image on the body surface side from a predetermined vertical position in the generated elastic image data.
 請求項4に記載の発明は、請求項2又は3に記載の超音波診断装置において、
 前記歪み情報生成部は、前記算出された水平方向の歪み分布のバランスを示す回帰直線と、当該回帰直線の傾きの許容範囲を示す基準表示要素と、を含む前記バランス表示情報を生成する。
The invention according to claim 4 is the ultrasonic diagnostic apparatus according to claim 2 or 3,
The distortion information generation unit generates the balance display information including a regression line indicating the balance of the calculated horizontal distortion distribution and a reference display element indicating an allowable range of inclination of the regression line.
 請求項5に記載の発明は、請求項4に記載の超音波診断装置において、
 前記歪み情報生成部は、前記基準表示要素に対する前記回帰直線の傾きの許容範囲の評価結果により前記回帰直線の色を変更する。
The invention according to claim 5 is the ultrasonic diagnostic apparatus according to claim 4,
The distortion information generation unit changes a color of the regression line according to an evaluation result of an allowable range of the slope of the regression line with respect to the reference display element.
 請求項6に記載の発明は、請求項1に記載の超音波診断装置において、
 前記歪み情報算出部は、前記処理された受信信号に基づいて、2次元の歪み分布を示す弾性画像データを生成する弾性画像生成部であり、
 前記歪みバランス算出部は、前記生成された弾性画像データから垂直方向の歪みの累積量を示す2次元の歪み累積分布を算出し、
 前記歪み情報生成部は、前記2次元の歪み累積分布から2次元の等値線分布を生成する。
The invention according to claim 6 is the ultrasonic diagnostic apparatus according to claim 1,
The strain information calculation unit is an elastic image generation unit that generates elastic image data indicating a two-dimensional strain distribution based on the processed reception signal.
The strain balance calculation unit calculates a two-dimensional strain cumulative distribution indicating a cumulative amount of strain in the vertical direction from the generated elasticity image data,
The strain information generation unit generates a two-dimensional isoline distribution from the two-dimensional strain cumulative distribution.
 請求項7に記載の発明は、請求項6に記載の超音波診断装置において、
 前記歪み情報生成部は、前記2次元の等値線分布の線の色を当該線の形状から決定する。
The invention according to claim 7 is the ultrasonic diagnostic apparatus according to claim 6,
The distortion information generation unit determines a color of a line of the two-dimensional isoline distribution from the shape of the line.
 請求項8に記載の発明は、請求項6に記載の超音波診断装置において、
 前記歪み情報生成部は、前記2次元の等値線分布のうち、表在側の等値線のみを生成する。
The invention according to claim 8 is the ultrasonic diagnostic apparatus according to claim 6,
The distortion information generation unit generates only the isoline on the superficial side in the two-dimensional isoline distribution.
 請求項9に記載の発明は、請求項1から8のいずれか一項に記載の超音波診断装置において、
 前記生成されたバランス表示情報を表示部に表示する表示制御部を備える。
The invention according to claim 9 is the ultrasonic diagnostic apparatus according to any one of claims 1 to 8,
The display control part which displays the produced | generated balance display information on a display part is provided.
 請求項10に記載の発明は、請求項9に記載の超音波診断装置において、
 前記表示制御部は、ライブモードよりもシネモードにおいて表示情報量を増やす。
The invention according to claim 10 is the ultrasonic diagnostic apparatus according to claim 9,
The display control unit increases the amount of display information in the cine mode than in the live mode.
 請求項11に記載の発明は、請求項1から10のいずれか一項に記載の超音波診断装置において、
 前記バランス表示情報とともに表示する表示情報を生成する表示情報生成部を備え、
 前記バランス表示情報とともに表示する表示情報は、前記水平方向の歪み分布のバランスのスコア、歪み量、前記受信信号に基づく信頼値、現フレームの前及び後の少なくとも1方のフレームの前記水平方向の歪み分布のバランス直線の少なくとも1つを含む。
The invention according to claim 11 is the ultrasonic diagnostic apparatus according to any one of claims 1 to 10,
A display information generation unit for generating display information to be displayed together with the balance display information;
Display information to be displayed together with the balance display information includes a balance score of the horizontal distortion distribution, a distortion amount, a reliability value based on the received signal, and the horizontal direction of at least one frame before and after the current frame. It includes at least one of the balance lines of the strain distribution.
 請求項12に記載の発明は、
 超音波を送受信する超音波探触子により被検体に圧迫を加え当該被検体の対象に超音波を送受信し当該対象の歪みを測定する超音波情報処理方法であって、
 前記超音波探触子に駆動信号を供給する工程と、
 前記超音波探触子から出力された受信信号を処理する工程と、
 前記処理された受信信号に基づいて、前記圧迫によって生じた前記被検体の弾性情報としての歪み情報を算出する工程と、
 前記算出された歪み情報から前記被検体の水平方向の歪み分布を算出し、当該水平方向の歪み分布から水平方向の歪み分布のバランスを算出する工程と、
 前記水平方向の歪み分布のバランスを示すバランス表示情報を生成する工程と、を含む。
The invention according to claim 12
An ultrasonic information processing method for applying pressure to an object by an ultrasonic probe that transmits and receives ultrasonic waves and transmitting and receiving ultrasonic waves to the object of the object and measuring distortion of the object,
Supplying a driving signal to the ultrasonic probe;
Processing the received signal output from the ultrasound probe;
Calculating strain information as elasticity information of the subject caused by the compression based on the processed received signal;
Calculating a horizontal strain distribution of the subject from the calculated strain information, and calculating a balance of the horizontal strain distribution from the horizontal strain distribution;
Generating balance display information indicating the balance of the horizontal strain distribution.
 本発明によれば、超音波探触子に追加部品を取り付けることなく、被検体への均一な圧迫を促すことができる。 According to the present invention, it is possible to promote uniform pressure on the subject without attaching additional parts to the ultrasonic probe.
本発明の第1の実施の形態の超音波診断装置の外観図である。1 is an external view of an ultrasonic diagnostic apparatus according to a first embodiment of the present invention. 第1の実施の形態の超音波診断装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the ultrasound diagnosing device of 1st Embodiment. 弾性画像を示す図である。It is a figure which shows an elasticity image. 弾性画像の歪み分布及び歪み分布の回帰直線を示す図である。It is a figure which shows the regression line of the strain distribution of an elastic image, and strain distribution. 歪み分布が均一の第1の歪みバランス表示欄を示す図である。It is a figure which shows the 1st distortion balance display column with uniform distortion distribution. 歪み分布が不均一の第1の歪みバランス表示欄を示す図である。It is a figure which shows the 1st distortion balance display column with nonuniform distortion distribution. 弾性画像及び境界線を示す図である。It is a figure which shows an elastic image and a boundary line. 第2の実施の形態の超音波診断装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the ultrasonic diagnosing device of 2nd Embodiment. ライブモードにおける第1の歪みバランス表示欄を示す図である。It is a figure which shows the 1st distortion balance display column in live mode. シネモードにおける第2の歪みバランス表示欄を示す図である。It is a figure which shows the 2nd distortion balance display column in a cine mode. 第3の歪みバランス表示欄を示す図である。It is a figure which shows the 3rd distortion balance display column. 歪み量が小さい場合の第4の歪みバランス表示欄を示す図である。It is a figure which shows the 4th distortion balance display column in case distortion amount is small. 歪み量が大きい場合の第4の歪みバランス表示欄を示す図である。It is a figure which shows the 4th distortion balance display column in case distortion amount is large. 連続する2フレームの音線データの信号波形を示す図である。It is a figure which shows the signal waveform of the sound ray data of 2 continuous frames. 第5の歪みバランス表示欄を示す図である。It is a figure which shows the 5th distortion balance display column. 弾性画像及び等値線を示す図である。It is a figure which shows an elastic image and an isoline. 等値線が重畳されたBモード画像を示す図である。It is a figure which shows the B mode image on which the isoline was superimposed.
 添付図面を参照して本発明の一例に係る第1、第2の実施の形態及び変形例を詳細に説明する。なお、本発明は、図示例に限定されるものではない。 The first and second embodiments and modifications according to an example of the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the illustrated example.
 (第1の実施の形態)
 図1~図4Bを参照して、本発明に係る第1の実施の形態を説明する。先ず、図1及び図2を参照して、本実施の形態の超音波診断装置100の装置構成を説明する。図1は、本実施の形態の超音波診断装置100の外観図である。図2は、超音波診断装置100の機能構成を示すブロック図である。
(First embodiment)
A first embodiment according to the present invention will be described with reference to FIGS. 1 to 4B. First, with reference to FIG.1 and FIG.2, the apparatus structure of the ultrasound diagnosing device 100 of this Embodiment is demonstrated. FIG. 1 is an external view of an ultrasonic diagnostic apparatus 100 according to the present embodiment. FIG. 2 is a block diagram showing a functional configuration of the ultrasonic diagnostic apparatus 100.
 超音波診断装置100は、患者の生体等の被検体の生体内部組織の状態を超音波画像にして表示出力する装置である。すなわち、超音波診断装置100は、生体等の被検体内に対して超音波(送信超音波)を送信するとともに、この被検体内で反射した超音波の反射波(反射超音波:エコー)を受信する。超音波診断装置100は、受信した反射超音波を電気信号に変換し、これに基づいて超音波画像データを生成する。超音波診断装置100は、生成した超音波画像データに基づき、被検体内の内部状態を超音波画像として表示する。また、超音波診断装置100は、ストレインエラストグラフィの機能を備え、圧迫を加えた被検体内部の歪み分布を示す弾性画像を表示する。 The ultrasonic diagnostic apparatus 100 is an apparatus that displays and outputs an ultrasonic image of a state of a living body tissue of a subject such as a living body of a patient. That is, the ultrasonic diagnostic apparatus 100 transmits ultrasonic waves (transmission ultrasonic waves) to the inside of a subject such as a living body, and transmits reflected ultrasonic waves (reflected ultrasonic waves: echoes) reflected within the subject. Receive. The ultrasound diagnostic apparatus 100 converts the received reflected ultrasound into an electrical signal, and generates ultrasound image data based on this. The ultrasonic diagnostic apparatus 100 displays the internal state in the subject as an ultrasonic image based on the generated ultrasonic image data. Further, the ultrasonic diagnostic apparatus 100 has a strain elastography function and displays an elastic image showing a strain distribution inside the subject to which compression is applied.
 図1に示すように、超音波診断装置100は、操作入力部11、表示部20を有する超音波診断装置本体1と、超音波探触子2と、ケーブル3と、を備える。超音波探触子2は、被検体内に対して送信超音波を送信するとともに、被検体内からの反射超音波を受信する。超音波診断装置本体1は、超音波探触子2とケーブル3を介して接続され、超音波探触子2に電気信号の駆動信号を送信することによって超音波探触子2に被検体内に対して送信超音波を送信させる。また、超音波診断装置本体1は、超音波探触子2にて受信した被検体内からの反射超音波に応じて超音波探触子2で生成された電気信号である受信信号を受信し、受信信号を用いて超音波画像データを生成し表示する。 As shown in FIG. 1, the ultrasonic diagnostic apparatus 100 includes an ultrasonic diagnostic apparatus main body 1 having an operation input unit 11 and a display unit 20, an ultrasonic probe 2, and a cable 3. The ultrasonic probe 2 transmits transmission ultrasonic waves to the inside of the subject and receives reflected ultrasonic waves from the inside of the subject. The ultrasonic diagnostic apparatus main body 1 is connected to the ultrasonic probe 2 via the cable 3, and transmits an electric signal drive signal to the ultrasonic probe 2 so that the ultrasonic probe 2 is connected to the inside of the subject. To transmit ultrasonic waves. The ultrasonic diagnostic apparatus main body 1 also receives a reception signal that is an electrical signal generated by the ultrasonic probe 2 in response to the reflected ultrasonic wave from the subject received by the ultrasonic probe 2. Then, ultrasonic image data is generated and displayed using the received signal.
 超音波探触子2は、圧電素子からなる振動子2a(図2参照)を備えており、この振動子2aは、例えば、方位方向(走査方向)に一次元アレイ状に複数配列されている。本実施の形態では、例えば、192個の振動子2aを備えた超音波探触子2を用いている。なお、振動子2aは、二次元アレイ状に配列されたものであってもよい。また、振動子2aの個数は、任意に設定することができる。また、本実施の形態では、超音波探触子2としてリニア電子スキャンプローブを用いて、リニア走査方式による超音波の走査を行うものとするが、セクタ走査方式あるいはコンベックス走査方式の何れの方式を採用することもできる。超音波診断装置本体1と超音波探触子2との通信は、ケーブル3を介する有線通信に代えて、UWB(Ultra Wide Band)等の無線通信により行うこととしてもよい。 The ultrasonic probe 2 includes a transducer 2a (see FIG. 2) made of a piezoelectric element. For example, a plurality of the transducers 2a are arranged in a one-dimensional array in the azimuth direction (scanning direction). . In the present embodiment, for example, the ultrasonic probe 2 including 192 transducers 2a is used. Note that the vibrators 2a may be arranged in a two-dimensional array. The number of vibrators 2a can be set arbitrarily. In this embodiment, a linear electronic scanning probe is used as the ultrasonic probe 2 to perform ultrasonic scanning by the linear scanning method. However, either the sector scanning method or the convex scanning method is used. It can also be adopted. Communication between the ultrasonic diagnostic apparatus main body 1 and the ultrasonic probe 2 may be performed by wireless communication such as UWB (Ultra Wide Band) instead of wired communication via the cable 3.
 図2に示すように、超音波診断装置本体1は、例えば、操作入力部11と、送信部12と、受信部13と、Bモード画像生成部14と、記憶部14aと、歪み情報算出部としての弾性画像生成部15と、記憶部15aと、弾性画像合成部16と、歪みバランス算出部17と、歪み情報生成部18と、表示制御部としての表示画像生成部19と、表示部20と、制御部21と、を備える。 As shown in FIG. 2, the ultrasonic diagnostic apparatus main body 1 includes, for example, an operation input unit 11, a transmission unit 12, a reception unit 13, a B-mode image generation unit 14, a storage unit 14a, and a distortion information calculation unit. As an elastic image generation unit 15, a storage unit 15a, an elastic image synthesis unit 16, a strain balance calculation unit 17, a strain information generation unit 18, a display image generation unit 19 as a display control unit, and a display unit 20 And a control unit 21.
 操作入力部11は、例えば、医師、技師等の検査者が、検査開始を指示するコマンドや被検体の個人情報等のデータの入力などを行うための各種スイッチ、ボタン、トラックボール、マウス、キーボード等を備えており、操作信号を制御部21に出力する。 The operation input unit 11 includes, for example, various switches, buttons, a trackball, a mouse, and a keyboard for an inspector such as a doctor or an engineer to input data such as a command for instructing the start of examination or personal information of the subject. Etc., and outputs an operation signal to the control unit 21.
 送信部12は、制御部21の制御に従って、超音波探触子2にケーブル3を介して電気信号である駆動信号を供給して超音波探触子2に送信超音波を発生させる回路である。また、送信部12は、例えば、クロック発生回路、遅延回路、時間及び電圧設定部、パルス発生回路を備えている。クロック発生回路は、駆動信号の送信タイミングや送信周波数を決定するクロック信号を発生させる回路である。遅延回路は、駆動信号の送信タイミングを振動子毎に対応した個別経路毎に遅延時間を設定し、設定された遅延時間だけ駆動信号の送信を遅延させて送信超音波によって構成される送信ビームの集束を行うための回路である。時間及び電圧設定部は、パルス発生回路から発生されるパルス信号のパルス幅の時間及び振幅の電圧を設定する回路である。パルス発生回路は、時間及び電圧設定部により設定された時間及び電圧に応じて、駆動信号としてのパルス信号を発生させるための回路である。上述のように構成された送信部12は、例えば、超音波探触子2に配列された複数(例えば、192個)の振動子2aのうちの連続する一部(例えば、64個)を駆動して送信超音波を発生させる。そして、送信部12は、送信超音波を発生させる毎に駆動する振動子を方位方向にずらすことで走査(スキャン)を行う。 The transmission unit 12 is a circuit that supplies a drive signal, which is an electrical signal, to the ultrasonic probe 2 via the cable 3 according to the control of the control unit 21 and causes the ultrasonic probe 2 to generate transmission ultrasonic waves. . The transmission unit 12 includes, for example, a clock generation circuit, a delay circuit, a time and voltage setting unit, and a pulse generation circuit. The clock generation circuit is a circuit that generates a clock signal that determines the transmission timing and transmission frequency of the drive signal. The delay circuit sets a delay time for each individual path corresponding to each transducer corresponding to the transmission timing of the drive signal, delays the transmission of the drive signal by the set delay time, and transmits the transmission beam constituted by the transmission ultrasonic waves. This is a circuit for focusing. The time and voltage setting unit is a circuit that sets the voltage of the pulse width of the pulse signal generated from the pulse generation circuit and the voltage of the amplitude. The pulse generation circuit is a circuit for generating a pulse signal as a drive signal in accordance with the time and voltage set by the time and voltage setting unit. The transmitter 12 configured as described above drives, for example, a continuous part (for example, 64) of a plurality (for example, 192) of the transducers 2a arranged in the ultrasound probe 2. Then, transmit ultrasonic waves are generated. Then, the transmission unit 12 performs scanning (scanning) by shifting the driven vibrator in the azimuth direction each time transmission ultrasonic waves are generated.
 受信部13は、制御部21の制御に従って、超音波探触子2からケーブル3を介して電気信号である受信信号を受信し、受信信号を信号処理して音線データを生成する回路である。受信部13は、例えば、増幅器、A/D変換回路、整相加算回路を備えている。増幅器は、受信信号を、振動子毎に対応した個別経路毎に、予め設定された増幅率で増幅させるための回路である。A/D変換回路は、増幅された受信信号をA/D変換するための回路である。整相加算回路は、A/D変換された受信信号に対して、振動子毎に対応した個別経路毎に遅延時間を与えて時相を整え、これらを加算(整相加算)して音線データを生成するための回路である。 The receiving unit 13 is a circuit that receives a reception signal, which is an electrical signal, from the ultrasound probe 2 via the cable 3 under the control of the control unit 21 and generates sound ray data by performing signal processing on the reception signal. . The receiving unit 13 includes, for example, an amplifier, an A / D conversion circuit, and a phasing addition circuit. The amplifier is a circuit for amplifying a received signal with a preset amplification factor for each individual path corresponding to each transducer. The A / D conversion circuit is a circuit for A / D converting the amplified received signal. The phasing addition circuit adjusts the time phase by giving a delay time to each individual path corresponding to each transducer with respect to the A / D converted received signal, and adds these (phasing addition) to generate a sound ray. It is a circuit for generating data.
 Bモード画像生成部14は、制御部21の制御に従って、受信部13からの音線データに対して包絡線検波処理や対数増幅などを実施し、ダイナミックレンジやゲインの調整を行って輝度変換することにより、断層画像データとしてのB(Brightness)モードの超音波画像データ(Bモード画像データ)を生成する。すなわち、Bモード画像データは、受信信号の強さを輝度によって表したものである。 Under the control of the control unit 21, the B-mode image generation unit 14 performs envelope detection processing, logarithmic amplification, and the like on the sound ray data from the reception unit 13, and adjusts the dynamic range and gain to perform luminance conversion. Thus, B (Brightness) mode ultrasonic image data (B-mode image data) is generated as tomographic image data. In other words, the B-mode image data represents the intensity of the received signal by luminance.
 記憶部14aは、DRAM(Dynamic Random Access Memory)などの半導体メモリーによって構成された記憶部である。Bモード画像生成部14は、生成したBモード画像データをフレーム単位で記憶部14aに記憶する。Bモード画像生成部14は、記憶部14aに記憶したBモード画像データを適宜読み出して弾性画像合成部16に出力する。 The storage unit 14a is a storage unit configured by a semiconductor memory such as DRAM (Dynamic Random Access Memory). The B mode image generation unit 14 stores the generated B mode image data in the storage unit 14a in units of frames. The B-mode image generation unit 14 appropriately reads out the B-mode image data stored in the storage unit 14 a and outputs it to the elastic image synthesis unit 16.
 弾性画像生成部15は、制御部21の制御に従って、受信部13からの音線データに対して演算を実施し、弾性情報としての情報を算出する歪み情報算出機能を持つとともに、カラーマッピングすることにより、弾性画像データを生成する。弾性画像生成部15により生成される弾性画像データの画像の大きさは、操作入力部11を介して検査者から指定入力されたROI(Region Of Interest:関心領域)の大きさとするが、これに限定されるものではなく、Bモード画像データの画像の大きさと同じとしてもよい。記憶部15aは、DRAMなどの半導体メモリーによって構成された記憶部である。 The elastic image generation unit 15 performs a calculation on the sound ray data from the reception unit 13 according to the control of the control unit 21, has a distortion information calculation function for calculating information as elasticity information, and performs color mapping. Thus, elastic image data is generated. The size of the image of the elasticity image data generated by the elasticity image generation unit 15 is the size of the ROI (Region Of : Interest: region of interest) designated and input by the examiner via the operation input unit 11. It is not limited, and it may be the same as the image size of the B-mode image data. The storage unit 15a is a storage unit configured by a semiconductor memory such as a DRAM.
 ここで、歪み量について説明する。検査者は、超音波探触子2を把持して被検体の体表に圧迫を加える。このとき、検査者自身の振動や、被検体の呼吸により、超音波探触子2から被検体に加わる力が変化する。例えば、圧迫が加わる前の被検体内には、超音波探触子2と接触する体表から深さ方向(X方向)へ距離xrの位置に腫瘍等の対象物の上端があるものとする。また、この対象物の深さ方向の幅がLであるものとする。被検体に圧迫ρ(応力)が加えられた状態で、対象物にも同様に圧迫ρがかかるとすると、この対象物の上端位置が深さ方向へ距離xsと変化し、対象物の深さ方向の幅がL-ΔLとなるように変化するものとする。すると、これら2つの状態における対象物を計測することで、歪み量ε=ΔL/Lが求められる。 Here, the amount of distortion will be described. The examiner grasps the ultrasonic probe 2 and applies pressure to the body surface of the subject. At this time, the force applied to the subject from the ultrasonic probe 2 changes due to the vibration of the examiner himself or the breathing of the subject. For example, it is assumed that the upper end of an object such as a tumor is located at a distance xr in the depth direction (X direction) from the body surface in contact with the ultrasound probe 2 in the subject before the pressure is applied. . Further, it is assumed that the width of the object in the depth direction is L. If compression ρ (stress) is applied to the subject and the object is similarly subjected to compression ρ, the upper end position of the object changes to the distance xs in the depth direction, and the depth of the object. It is assumed that the width of the direction changes so as to be L−ΔL. Then, the distortion amount ε = ΔL / L is obtained by measuring the object in these two states.
 より具体的には、例えば、特開2015-211733号公報に記載のように、弾性画像生成部15は、受信部13からの音線データをフレーム毎に記憶部15aに適宜記憶及び読み出しすることにより、時間的に連続する2フレームの音線データを取得する。この2つのフレームのうち、第1フレームの音線データの第1信号波形に対応する被検体の加圧状態を第1加圧状態とし、第2フレームの音線データの第2信号波形に対応する被検体の加圧状態を第2加圧状態とする。そして、弾性画像生成部15は、第1信号波形と第2信号波形との間での各時間における位相差成分を抽出し、各時間と当該各時間における位相差成分との相関関係に応じて、第1信号波形と第2信号波形との間の各周波数の差分に係る歪み差及び初期位相差を算出し、当該歪み差に基づいて歪み量を算出する。弾性画像生成部15は、この歪み量の算出を全ての画素について行い、歪み量の画素からなる画像データを生成する。 More specifically, for example, as described in JP-A-2015- 211733, the elastic image generation unit 15 appropriately stores and reads the sound ray data from the reception unit 13 in the storage unit 15a for each frame. Thus, sound ray data of two frames that are temporally continuous is acquired. Of these two frames, the pressurized state of the subject corresponding to the first signal waveform of the sound ray data of the first frame is set as the first pressurized state, and the second signal waveform of the sound ray data of the second frame is handled. The pressurized state of the subject to be performed is the second pressurized state. Then, the elastic image generation unit 15 extracts a phase difference component at each time between the first signal waveform and the second signal waveform, and according to a correlation between each time and the phase difference component at each time. Then, the distortion difference and the initial phase difference relating to the frequency difference between the first signal waveform and the second signal waveform are calculated, and the distortion amount is calculated based on the distortion difference. The elastic image generation unit 15 calculates the distortion amount for all the pixels, and generates image data including the distortion amount pixels.
 そして、弾性画像生成部15は、例えば、青→緑→黄→赤の順に歪み量が高くなるカラーマッピングにより歪み量の画像データに色付けを行い弾性画像データを生成する。但し、図3A等の図面上では、弾性画像において、黒→白の順に歪み量が高くなる表現としている。 Then, the elastic image generation unit 15 generates elastic image data by coloring the image data of the distortion amount by color mapping in which the distortion amount increases in the order of blue → green → yellow → red, for example. However, in the drawings such as FIG. 3A, the amount of distortion increases in the order of black → white in the elastic image.
 弾性画像合成部16は、制御部21の制御に従って、Bモード画像生成部14で生成されたBモード画像データと弾性画像生成部15で生成された同時刻の弾性画像データとを合成して合成弾性画像データを生成する。 The elastic image synthesis unit 16 synthesizes the B-mode image data generated by the B-mode image generation unit 14 and the elastic image data generated at the same time generated by the elastic image generation unit 15 according to the control of the control unit 21. Elastic image data is generated.
 歪みバランス算出部17は、制御部21の制御に従って、弾性画像生成部15で生成された弾性画像データから弾性画像の水平方向(走査方向、体表に平行な方向、深さ方向(X方向)に垂直なY方向)の画素の歪み量の分布(水平方向の歪み分布)の回帰直線を算出する。 Under the control of the control unit 21, the strain balance calculation unit 17 uses the elastic image data generated by the elastic image generation unit 15 in the horizontal direction of the elastic image (scanning direction, direction parallel to the body surface, depth direction (X direction)). A regression line of the distribution of the distortion amount of the pixel in the Y direction (vertical Y direction) (distortion distribution in the horizontal direction) is calculated.
 ここで、図3A、図3Bを参照して、歪みバランス算出部17の歪みバランスの回帰直線の算出を説明する。図3Aは、弾性画像201を示す図である。図3Bは、弾性画像201の歪み分布202及び歪み分布202の回帰直線203を示す図である。 Here, with reference to FIG. 3A and FIG. 3B, calculation of the strain balance regression line of the strain balance calculation unit 17 will be described. FIG. 3A is a diagram showing an elastic image 201. FIG. 3B is a diagram illustrating a strain distribution 202 of the elastic image 201 and a regression line 203 of the strain distribution 202.
 図3Aに、弾性画像生成部15により生成された弾性画像データの弾性画像201が示される。歪みバランス算出部17は、弾性画像201のY方向に沿ったX方向の画素列毎の歪み値の和を算出して、図3Bに示すような歪み分布202を算出する。そして、歪みバランス算出部17は、例えば最小二乗法等により、歪み分布202の回帰直線203を算出する。 FIG. 3A shows an elasticity image 201 of elasticity image data generated by the elasticity image generation unit 15. The strain balance calculation unit 17 calculates the sum of strain values for each pixel column in the X direction along the Y direction of the elastic image 201 to calculate a strain distribution 202 as shown in FIG. 3B. And the distortion balance calculation part 17 calculates the regression line 203 of the distortion distribution 202 by the least square method etc., for example.
 歪み情報生成部18は、制御部21の制御に従って、歪みバランス算出部17で生成された歪み分布の回帰直線を用いて、当該回帰直線に基づくバランス直線を有する歪みバランス表示欄を歪み情報として生成する。 The distortion information generation unit 18 generates, as distortion information, a distortion balance display field having a balance line based on the regression line using the regression line of the distortion distribution generated by the distortion balance calculation unit 17 according to the control of the control unit 21. To do.
 ここで、図4A、図4Bを参照して、歪み情報生成部18の歪みバランス表示欄の生成を説明する。図4Aは、歪み分布が均一の歪みバランス表示欄300を示す図である。図4Bは、歪み分布が不均一の歪みバランス表示欄300を示す図である。 Here, with reference to FIG. 4A and FIG. 4B, generation of the distortion balance display column of the distortion information generation unit 18 will be described. FIG. 4A is a diagram showing a strain balance display field 300 having a uniform strain distribution. FIG. 4B is a diagram showing a strain balance display field 300 in which the strain distribution is not uniform.
 図4A、図4Bに示すように、歪みバランス表示欄300は、中心点311と、バランス直線312と、基準線313と、基準領域314と、を有する。中心点311は、歪みバランス表示欄300の中心を示すマークであり、例えば弾性画像201の水平方向の中心を示す。バランス直線312は、中心点311を通り、算出された歪み分布の回帰直線の傾きを有する直線である。基準線313は、中心点311を通る水平方向の直線である。基準領域314は、バランス直線312が不均一か否かを判断するため、バランス直線312の傾きの許容範囲を示す基準領域であり、基準線313の上下に予め設定された所定幅を有する。 4A and 4B, the distortion balance display field 300 includes a center point 311, a balance line 312, a reference line 313, and a reference region 314. The center point 311 is a mark indicating the center of the strain balance display field 300, and indicates the center of the elastic image 201 in the horizontal direction, for example. The balance line 312 is a straight line that passes through the center point 311 and has the slope of the regression line of the calculated strain distribution. The reference line 313 is a horizontal straight line passing through the center point 311. The reference area 314 is a reference area that indicates an allowable range of inclination of the balance line 312 in order to determine whether or not the balance line 312 is uneven, and has a predetermined width that is set in advance above and below the reference line 313.
 図4Aの歪みバランス表示欄300は、バランス直線312が基準線313に重なっており、歪み分布が均一である。図4Bの歪みバランス表示欄300は、バランス直線312が基準線313に重ならず、基準領域314からもはみ出して、歪み分布が不均一であることを示す。例えば、歪み分布が均一を含む基準領域314内のバランス直線312を青で表示し、歪み分布が不均一のバランス直線312を赤で表示するように、基準領域314に対するバランス直線312の傾きの許容範囲の評価結果に応じてバランス直線312の色を変化させることが好ましい。 In the strain balance display field 300 of FIG. 4A, the balance straight line 312 overlaps the reference line 313, and the strain distribution is uniform. The distortion balance display column 300 in FIG. 4B indicates that the balance line 312 does not overlap the reference line 313 but protrudes from the reference region 314, and the distortion distribution is non-uniform. For example, the tolerance of the inclination of the balance line 312 with respect to the reference area 314 is displayed so that the balance line 312 in the reference area 314 including the uniform distortion distribution is displayed in blue and the balance line 312 having the non-uniform distortion distribution is displayed in red. It is preferable to change the color of the balance line 312 according to the evaluation result of the range.
 表示画像生成部19は、制御部21の制御に従って、弾性画像合成部16で生成された合成弾性画像データと、歪み情報生成部18で生成された歪みバランス表示欄と、を合成して表示画像データを生成し、当該表示画像データを表示部20用の画像信号に変換して表示部20に出力する。 The display image generation unit 19 combines the combined elasticity image data generated by the elasticity image synthesis unit 16 and the strain balance display field generated by the strain information generation unit 18 according to the control of the control unit 21 to display the display image. Data is generated, and the display image data is converted into an image signal for the display unit 20 and output to the display unit 20.
 表示部20は、LCD(Liquid Crystal Display)、CRT(Cathode-Ray Tube)ディスプレイ、有機EL(Electronic Luminescence)ディスプレイ、無機ELティスプレイ及びプラズマディスプレイ等の表示装置が適用可能である。表示部20は、表示画像生成部19から出力された画像信号に従って表示画面上に画像の表示を行う。 The display unit 20 may be a display device such as an LCD (Liquid Crystal Display), a CRT (Cathode-Ray Tube) display, an organic EL (Electronic Luminescence) display, an inorganic EL display, or a plasma display. The display unit 20 displays an image on the display screen according to the image signal output from the display image generation unit 19.
 制御部21は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)を備えて構成され、ROMに記憶されているシステムプログラム等の各種処理プログラムを読み出してRAMに展開し、展開したプログラムに従って超音波診断装置100の各部の動作を集中制御する。ROMは、半導体等の不揮発メモリー等により構成され、超音波診断装置100に対応するシステムプログラム及び該システムプログラム上で実行可能なプログラムや、ガンマテーブル等の各種データ等を記憶する。これらのプログラムは、コンピューターが読み取り可能なプログラムコードの形態で格納され、CPUは、当該プログラムコードに従った動作を逐次実行する。RAMは、CPUにより実行される各種プログラム及びこれらプログラムに係るデータを一時的に記憶するワークエリアを形成する。なお、図が複雑になるのを防ぐため、図2上で、制御部21から各部への制御線は、一部省略されている。 The control unit 21 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory), and reads various processing programs such as a system program stored in the ROM to read the RAM. The operation of each part of the ultrasonic diagnostic apparatus 100 is centrally controlled according to the developed program. The ROM is configured by a non-volatile memory such as a semiconductor, and stores a system program corresponding to the ultrasonic diagnostic apparatus 100, a program executable on the system program, various data such as a gamma table, and the like. These programs are stored in the form of computer-readable program code, and the CPU sequentially executes operations according to the program code. The RAM forms a work area for temporarily storing various programs executed by the CPU and data related to these programs. In order to prevent the diagram from becoming complicated, some control lines from the control unit 21 to each unit are omitted in FIG.
 超音波診断装置100が備える各部について、各々の機能ブロックの一部又は全部の機能は、集積回路などのハードウェア回路として実現することができる。集積回路とは、例えばLSI(Large Scale Integration)であり、LSIは集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよいし、FPGA(Field Programmable Gate Array)やLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。また、各々の機能ブロックの一部又は全部の機能をソフトウェアにより実行するようにしてもよい。この場合、このソフトウェアは一つ又はそれ以上のROMなどの記憶媒体、光ディスク、又はハードディスクなどに記憶されており、このソフトウェアが演算処理器により実行される。これらの事項は、他の実施の形態及び変形例で用いる超音波診断装置でも同様である。 For each unit included in the ultrasonic diagnostic apparatus 100, some or all of the functions of each functional block can be realized as a hardware circuit such as an integrated circuit. The integrated circuit is, for example, an LSI (Large Scale Integration), and the LSI may be referred to as an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration. Further, the method of circuit integration is not limited to LSI, but may be realized by a dedicated circuit or a general-purpose processor, and the connection and setting of FPGA (Field Programmable Gate Array) and circuit cells inside LSI can be reconfigured. A reconfigurable processor may be used. Further, some or all of the functions of each function block may be executed by software. In this case, the software is stored in one or more storage media such as a ROM, an optical disk, or a hard disk, and the software is executed by the arithmetic processor. These matters are also the same in the ultrasonic diagnostic apparatus used in other embodiments and modifications.
 超音波診断装置100を用いたストレインエラストグラフィによる被検体の診断において、例えば、先ず被検体に超音波探触子2が接触されBモード画像データが生成されBモード画像が表示され、検査者により、操作入力部11を介して、適宜弾性画像のROIの指定入力がなされ、超音波探触子2により被検体の対象周辺の体表への圧迫が加えられる。そして、超音波診断装置100において、送信部12及び受信部13により超音波探触子2からの超音波送受信が行われる。そして、Bモード画像生成部14によるBモード画像データ生成、弾性画像生成部15による弾性画像データ生成、弾性画像合成部16による合成弾性画像データ生成が行われる。そして、歪みバランス算出部17による水平方向の歪み分布の回帰直線生成、歪み情報生成部18による歪みバランス表示欄が生成され、表示画像生成部19により合成弾性画像データ及び歪みバランス表示欄を含む表示画像データが生成され表示部20に表示される。表示画像において、合成弾性画像と歪みバランス表示欄との中心が一致するように配置されることが好ましい。 In the diagnosis of a subject by strain elastography using the ultrasonic diagnostic apparatus 100, for example, the ultrasonic probe 2 is first contacted with the subject, B-mode image data is generated, and a B-mode image is displayed. The elastic image ROI is appropriately input via the operation input unit 11 and the ultrasonic probe 2 applies pressure to the body surface around the subject of the subject. In the ultrasonic diagnostic apparatus 100, ultrasonic transmission / reception from the ultrasonic probe 2 is performed by the transmission unit 12 and the reception unit 13. Then, B-mode image data generation by the B-mode image generation unit 14, elasticity image data generation by the elasticity image generation unit 15, and synthesis elasticity image data generation by the elasticity image synthesis unit 16 are performed. Then, the regression line generation of the horizontal strain distribution by the strain balance calculation unit 17 and the strain balance display column by the strain information generation unit 18 are generated, and the display including the synthetic elasticity image data and the strain balance display column by the display image generation unit 19 is generated. Image data is generated and displayed on the display unit 20. In the display image, it is preferable that the composite elastic image and the strain balance display column are arranged so that the centers thereof coincide.
 検査者は、表示部20に表示された表示画像上の歪みバランス表示欄を目視することにより、超音波探触子2を介する圧迫の偏りを修正できる。より具体的には、検査者は、歪みバランス表示欄のバランス直線を基準線に合せるように、超音波探触子2を操作すればよい。検査者は、バランス直線を基準線に合せた際の合成弾性画像を目視することにより、合成弾性画像内の腫瘍等の対象物の硬さをより正確に診断できる。 The inspector can correct the bias of the compression via the ultrasonic probe 2 by visually observing the distortion balance display field on the display image displayed on the display unit 20. More specifically, the inspector may operate the ultrasound probe 2 so that the balance straight line in the distortion balance display field matches the reference line. The examiner can more accurately diagnose the hardness of an object such as a tumor in the synthetic elastic image by visually observing the synthetic elastic image when the balance straight line is aligned with the reference line.
 以上、本実施の形態によれば、超音波診断装置100は、超音波探触子2により被検体に圧迫を加え当該被検体の対象に超音波を送受信し当該対象の歪みを測定する。超音波診断装置100は、超音波探触子2に駆動信号を供給し超音波探触子2から出力された受信信号を処理し、処理された受信信号に基づいて、圧迫によって生じた被検体の弾性情報としての歪み情報を算出する歪み情報を算出し、算出された歪み情報から被検体の水平方向の歪み分布を算出し、水平方向の歪み分布から水平方向の歪み分布のバランスを算出し、水平方向の歪み分布のバランスを示すバランス表示情報としての歪みバランス表示欄を生成する。ここで生成、表示するバランス直線やバランス表示情報は、超音波探触子2を被検体の体表に押し付けたときの押圧方向や角度を単に示したものではなく、超音波探触子2の押圧方向や角度情報に加えて、被検体内の組織の硬さも反映されたものであるので、より精度の高い弾性画像表示を行うための指標となる。 As described above, according to the present embodiment, the ultrasonic diagnostic apparatus 100 compresses the subject with the ultrasonic probe 2 and transmits / receives ultrasonic waves to / from the subject of the subject to measure the distortion of the subject. The ultrasonic diagnostic apparatus 100 supplies a drive signal to the ultrasonic probe 2, processes a reception signal output from the ultrasonic probe 2, and based on the processed reception signal, a subject generated by compression Calculate strain information to calculate strain information as elasticity information, calculate the horizontal strain distribution of the subject from the calculated strain information, and calculate the balance of the horizontal strain distribution from the horizontal strain distribution A distortion balance display field is generated as balance display information indicating the balance of the distortion distribution in the horizontal direction. The balance line and balance display information generated and displayed here do not simply indicate the pressing direction or angle when the ultrasonic probe 2 is pressed against the body surface of the subject. Since the hardness of the tissue in the subject is reflected in addition to the pressing direction and angle information, it is an index for performing more accurate elastic image display.
 このため、超音波探触子2に追加部品を取り付けることなく、歪みバランス表示欄を表示することで、歪みのバランスを均一にするように被検体への均一な圧迫を検査者に促すことができる。 Therefore, by displaying the strain balance display field without attaching additional parts to the ultrasound probe 2, the examiner is encouraged to apply uniform pressure to the subject so that the strain balance is uniform. it can.
 また、超音波診断装置100は、処理された受信信号に基づいて、2次元の歪み分布としての弾性画像データを生成し、生成された弾性画像データから水平方向の歪み分布のバランス(回帰直線)を算出する。このため、表示する弾性画像データを有効利用して、水平方向の歪み分布の回帰直線を容易に算出できる。 Further, the ultrasound diagnostic apparatus 100 generates elastic image data as a two-dimensional strain distribution based on the processed received signal, and a horizontal strain distribution balance (regression line) from the generated elastic image data. Is calculated. For this reason, it is possible to easily calculate the regression line of the strain distribution in the horizontal direction by effectively using the elastic image data to be displayed.
 また、超音波診断装置100は、バランスに基づく水平方向の歪みのバランス直線(回帰直線)と、バランス直線の傾きの許容範囲を示す基準表示領域と、を含む歪みバランス表示欄を生成する。このため、歪みバランス表示欄を表示することで、水平方向の歪みのバランス直線により、水平方向の歪みのバランスを容易に視認でき、基準表示領域に対するバランス直線により、被検体への圧迫のバランスが許容範囲か否かを検査者が容易に視認できる。 Also, the ultrasonic diagnostic apparatus 100 generates a distortion balance display column including a horizontal distortion balance line (regression line) based on the balance and a reference display area indicating an allowable range of the balance line inclination. Therefore, by displaying the distortion balance display field, the horizontal distortion balance line can be easily visually recognized by the horizontal distortion balance line, and the balance of the compression to the subject can be balanced by the balance straight line with respect to the reference display area. The inspector can easily visually check whether the tolerance is acceptable.
 また、超音波診断装置100は、基準表示領域に対するバランス直線の傾きの許容範囲の評価結果によりバランス直線の色を変更する。このため、歪みバランス表示欄を表示することで、バランス直線の色により、被検体への圧迫のバランスが許容範囲か否かを検査者が容易に視認できる。 Also, the ultrasound diagnostic apparatus 100 changes the color of the balance line according to the evaluation result of the allowable range of the balance line inclination with respect to the reference display area. For this reason, by displaying the distortion balance display field, the examiner can easily visually recognize whether the balance of the pressure on the subject is within the allowable range by the color of the balance line.
 また、超音波診断装置100は、生成された歪みバランス表示欄を表示部20に表示する。このため、歪みのバランスを均一にするように被検体への均一な圧迫を視覚的に検査者に促すことができる。 Further, the ultrasonic diagnostic apparatus 100 displays the generated strain balance display field on the display unit 20. For this reason, it is possible to visually encourage the examiner to uniformly press the subject so as to make the balance of distortion uniform.
 (第1の変形例)
 図5を参照して、第1の実施の形態の変形例(第1の変形例)を説明する。図5は、弾性画像205及び境界線206を示す図である。
(First modification)
A modified example (first modified example) of the first embodiment will be described with reference to FIG. FIG. 5 is a diagram illustrating the elasticity image 205 and the boundary line 206.
 本変形例では、第1の実施の形態の超音波診断装置100を用い、動作が異なる部分を主として説明し、同じ部分の説明を省略する。 In this modification, the ultrasonic diagnostic apparatus 100 according to the first embodiment is used, and different parts of the operation are mainly described, and description of the same parts is omitted.
 ストレインエラストグラフィにおいて被検体に加える圧迫は、深さが大きくなるにつれて減衰されて小さくなり、その歪み量も小さくなる。このため、本変形例では、水平方向の歪み分布の生成のため、弾性画像データの体表側の浅い領域のみの歪み量を用いるものとする。 In the strain elastography, the pressure applied to the subject is attenuated and reduced as the depth increases, and the amount of distortion also decreases. For this reason, in this modification, in order to generate a strain distribution in the horizontal direction, the strain amount only in the shallow region on the body surface side of the elastic image data is used.
 より具体的には、例えば、歪みバランス算出部17は、弾性画像生成部15により生成された図5に示す弾性画像205の弾性画像データのうち、Y方向の境界線206以上の領域205aの画像データの各画素の歪み量を用いて水平方向の歪み分布を生成して歪み分布の回帰直線を生成する。境界線206の位置は、例えば、弾性画像データの弾性画像のX方向の真ん中の位置等の予め定められた所定位置や、スキャン前に操作入力部11を介する検査者の位置入力によりフォーカスがあてられた位置等のユーザー設定位置等とされる。フォーカス位置は、超音波の音圧が一番高くなる位置となる。 More specifically, for example, the strain balance calculation unit 17 includes an image of a region 205a that is greater than or equal to the boundary line 206 in the Y direction in the elasticity image data of the elasticity image 205 illustrated in FIG. 5 generated by the elasticity image generation unit 15. A distortion distribution in the horizontal direction is generated using the distortion amount of each pixel of the data, and a regression line of the distortion distribution is generated. The position of the boundary line 206 is focused by, for example, a predetermined position such as a middle position in the X direction of the elastic image of the elastic image data, or by an inspector's position input via the operation input unit 11 before scanning. The user-set position or the like such as the set position. The focus position is a position where the sound pressure of the ultrasonic wave is highest.
 以上、本変形例によれば、超音波診断装置100は、生成された弾性画像データのうち、水平方向の境界線以上の体表側の弾性画像データを用いて、水平方向の歪み分布の回帰直線を算出する。このため、回帰直線に基づく水平方向の歪みのバランス直線の感度を向上できる。 As described above, according to the present modification, the ultrasound diagnostic apparatus 100 uses the elastic image data on the body surface side that is greater than or equal to the horizontal boundary line among the generated elastic image data, and the regression line of the strain distribution in the horizontal direction. Is calculated. For this reason, it is possible to improve the sensitivity of the horizontal distortion balance line based on the regression line.
 (第2の実施の形態)
 図6~図7Bを参照して、本発明に係る第2の実施の形態を説明する。先ず、図6を参照して、本実施の形態の超音波診断装置100Aの装置構成を説明する。図6は、本実施の形態の超音波診断装置100Aの機能構成を示すブロック図である。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to FIGS. 6 to 7B. First, the apparatus configuration of the ultrasonic diagnostic apparatus 100A of the present embodiment will be described with reference to FIG. FIG. 6 is a block diagram showing a functional configuration of the ultrasonic diagnostic apparatus 100A of the present embodiment.
 本実施の形態の超音波診断装置100Aのうち、第1の実施御形態の超音波診断装置100と異なる部分を主として説明し、同様な部分に同じ符号を付してその説明を省略する。 Of the ultrasonic diagnostic apparatus 100A of the present embodiment, parts that are different from the ultrasonic diagnostic apparatus 100 of the first embodiment will be mainly described, and the same reference numerals are given to the same parts, and the description thereof will be omitted.
 超音波診断装置100Aは、超音波診断装置本体1Aと、超音波探触子2と、ケーブル3と、を備える。超音波診断装置本体1Aは、例えば、操作入力部11と、送信部12と、受信部13と、Bモード画像生成部14と、記憶部14aと、弾性画像生成部15と、記憶部15aと、弾性画像合成部16と、歪みバランス算出部17と、表示情報生成部としての歪み情報生成部18Aと、表示画像生成部19Aと、記憶部19aと、表示部20と、制御部21と、歪み量算出部22と、状態管理部23と、を備える。 The ultrasonic diagnostic apparatus 100A includes an ultrasonic diagnostic apparatus main body 1A, an ultrasonic probe 2, and a cable 3. The ultrasonic diagnostic apparatus main body 1A includes, for example, an operation input unit 11, a transmission unit 12, a reception unit 13, a B-mode image generation unit 14, a storage unit 14a, an elastic image generation unit 15, and a storage unit 15a. An elastic image composition unit 16, a strain balance calculation unit 17, a strain information generation unit 18A as a display information generation unit, a display image generation unit 19A, a storage unit 19a, a display unit 20, a control unit 21, A distortion amount calculation unit 22 and a state management unit 23 are provided.
 歪み量算出部22は、制御部21の制御に従って、弾性画像生成部15で生成された弾性画像データから水平方向(Y方向)の画素の歪み量の分布(水平方向の歪み分布)の総量を算出する。 Under the control of the control unit 21, the distortion amount calculation unit 22 calculates the total amount of pixel distortion amount distribution (horizontal strain distribution) in the horizontal direction (Y direction) from the elastic image data generated by the elastic image generation unit 15. calculate.
 状態管理部23は、制御部21の制御に従って、操作入力部11を介する検査者からの操作入力に応じて、被検体をスキャンした超音波画像データをリアルタイム表示するライブモードであるか、過去のライブモードで記憶した超音波画像データ(シネ)を表示(再生)するシネモードであるかの状態情報を管理し、その状態情報を歪み情報生成部18Aに出力する。ライブモードでは、スキャンされた超音波画像データ(合成弾性画像データ)が自動的に記憶部19aに記憶されていく The state management unit 23 is a live mode in which ultrasonic image data obtained by scanning the subject is displayed in real time in accordance with an operation input from the examiner via the operation input unit 11 according to the control of the control unit 21 or in the past. It manages state information as to whether it is a cine mode for displaying (reproducing) ultrasonic image data (cine) stored in the live mode, and outputs the state information to the distortion information generation unit 18A. In the live mode, scanned ultrasonic image data (synthetic elastic image data) is automatically stored in the storage unit 19a.
 歪み情報生成部18Aは、制御部21の制御に従って、歪みバランス算出部17で生成された歪み分布の回帰直線を用いて、水平を所定の満点(例えば100点)として、回帰直線の傾きが大きくなるほど減点の割合が大きくなるスコアを算出し、当該回帰直線に基づくバランス直線を有する歪みバランス表示欄を生成し、歪み量算出部22から入力された中心点の歪み量と、スコア及び歪みバランス表示欄とを歪み情報として、状態管理部23から入力された状態情報とともに、表示画像生成部19Aに出力する。 Under the control of the control unit 21, the distortion information generation unit 18A uses the regression line of the distortion distribution generated by the distortion balance calculation unit 17, and sets the horizontal as a predetermined perfect score (for example, 100 points), so that the inclination of the regression line is large. The score at which the percentage of deductions becomes larger is calculated, a distortion balance display field having a balance line based on the regression line is generated, the distortion amount of the center point input from the distortion amount calculation unit 22, and the score and distortion balance display The column and the distortion information are output to the display image generation unit 19A together with the state information input from the state management unit 23.
 表示画像生成部19Aは、制御部21の制御に従って、歪み情報生成部18Aから入力された状態情報がライブモードである場合に、弾性画像合成部16で生成された合成弾性画像データと、歪み情報生成部18で生成された歪みバランス表示欄と、を合成して表示画像データを生成し、当該表示画像データを表示部20用の画像信号に変換して表示部20に出力してライブ画像表示させるとともに、合成弾性画像データ、歪みバランス表示欄、スコア及び歪み量をフレーム毎に記憶部19aにシネ画像データとして記憶する。記憶部19aは、例えば、フラッシュメモリー等の情報の書き込み及び読み出しが可能な不揮発性のメモリーである。 When the state information input from the strain information generation unit 18A is in the live mode according to the control of the control unit 21, the display image generation unit 19A and the composite elasticity image data generated by the elasticity image synthesis unit 16 and the strain information are displayed. The distortion balance display field generated by the generation unit 18 is synthesized to generate display image data, and the display image data is converted into an image signal for the display unit 20 and output to the display unit 20 for live image display In addition, the composite elastic image data, the strain balance display column, the score, and the strain amount are stored as cine image data in the storage unit 19a for each frame. The storage unit 19a is a nonvolatile memory capable of writing and reading information, such as a flash memory.
 また、表示画像生成部19Aは、歪み情報生成部18Aから入力された状態情報がシネモードである場合に、操作入力部11を介する再生するシネ画像(合成弾性画像データ)のフレームの指定入力に応じて、対象のフレームのシネ画像データ(合成弾性画像データ、歪みバランス表示欄、スコア及び歪み量)を記憶部19aから読み出して、読み出した弾性画像データ、歪みバランス表示欄、スコア及び歪み量を有する表示画像データを生成し画像信号に変換して表示部20に出力しシネ画像を表示させる。なお、ライブモード時に、Bモード画像生成部14が、シネ画像データとしてBモード画像データを記憶部14aに記憶し、弾性画像生成部15が、シネ画像データとして弾性画像データを記憶部15aに記憶する構成としてもよい。この構成では、シネモード時に、Bモード画像生成部14が、操作入力部11を介して検査者から指定されたフレームのBモード画像データを記憶部14aから読み出し、弾性画像生成部15が、指定されたフレームの弾性画像データを記憶部15aから読み出し、弾性画像合成部16が、読み出されたBモード画像データ及び弾性画像データを合成して合成弾性画像データを表示画像生成部19に出力し、表示画像生成部19Aが、指定されたフレームの歪みバランス表示欄、スコア及び歪み量を記憶部19aから読み出し、入力された合成弾性画像データとともに表示部20に表示する。 Further, the display image generation unit 19A responds to the frame designation input of the cine image (synthetic elastic image data) to be reproduced via the operation input unit 11 when the state information input from the distortion information generation unit 18A is the cine mode. Then, the cine image data (synthetic elastic image data, strain balance display column, score and strain amount) of the target frame is read from the storage unit 19a, and has the read elastic image data, strain balance display column, score and strain amount. Display image data is generated, converted into an image signal, and output to the display unit 20 to display a cine image. In the live mode, the B-mode image generation unit 14 stores B-mode image data as cine image data in the storage unit 14a, and the elastic image generation unit 15 stores elastic image data as cine image data in the storage unit 15a. It is good also as composition to do. In this configuration, in the cine mode, the B-mode image generation unit 14 reads out the B-mode image data of the frame designated by the examiner via the operation input unit 11 from the storage unit 14a, and the elastic image generation unit 15 is designated. The elastic image data of the frame is read from the storage unit 15a, and the elastic image synthesis unit 16 synthesizes the read B-mode image data and the elastic image data to output the synthesized elastic image data to the display image generation unit 19, The display image generation unit 19A reads the strain balance display column, the score, and the distortion amount of the designated frame from the storage unit 19a and displays them on the display unit 20 together with the input synthetic elastic image data.
 図7A、図7Bを参照して、ライブモード及びシネモードで表示される歪みバランス表示欄を説明する。図7Aは、ライブモードにおける歪みバランス表示欄300を示す図である。図7Bは、シネモードにおける歪みバランス表示欄300Aを示す図である。 Referring to FIGS. 7A and 7B, the distortion balance display fields displayed in the live mode and the cine mode will be described. FIG. 7A is a diagram showing a distortion balance display field 300 in the live mode. FIG. 7B is a diagram showing a distortion balance display field 300A in the cine mode.
 図7Aに示すように、ライブモードにおける歪みバランス表示欄300は、図4A、図4Bと同様のバランス表示欄として表示される。図7Bに示すように、シネモードにおける歪みバランス表示欄300Aは、中心点311と、バランス直線312と、基準線313と、基準領域314と、スコア315と、総歪み量316と、を有する。スコア315は、歪み情報生成部18Aにより算出されたスコアに基づき、バランス直線312が基準線313に一致する傾きを100点満点としたスコアである。総歪み量316は、歪み量算出部22により算出された歪みの総量である。 As shown in FIG. 7A, the distortion balance display field 300 in the live mode is displayed as a balance display field similar to FIGS. 4A and 4B. As shown in FIG. 7B, the distortion balance display column 300A in the cine mode includes a center point 311, a balance line 312, a reference line 313, a reference region 314, a score 315, and a total distortion amount 316. The score 315 is a score based on the score calculated by the distortion information generation unit 18 </ b> A, with the slope at which the balance line 312 matches the reference line 313 being a perfect score. The total distortion amount 316 is the total amount of distortion calculated by the distortion amount calculation unit 22.
 以上、本実施の形態によれば、超音波診断装置100Aは、ライブモードよりもシネモードにおいて表示情報量を増やす。このため、表示情報量を抑えたライブモード時では、歪みバランス表示欄の表示チラつきを低減でき、表示情報量の多いシネモード時では、検査者が診断に使うフレーム1枚1枚の選択をアシストできる。 As described above, according to the present embodiment, the ultrasonic diagnostic apparatus 100A increases the amount of display information in the cine mode than in the live mode. For this reason, display flicker in the distortion balance display field can be reduced in the live mode in which the display information amount is suppressed, and in the cine mode in which the display information amount is large, the examiner can assist the selection of each frame used for diagnosis. .
 また、超音波診断装置100Aは、歪み情報として、水平方向の歪み分布のバランスのスコアを表示する。このため、検査者が被検体への圧迫の均一性を定量的に確認できる。 Also, the ultrasonic diagnostic apparatus 100A displays a horizontal distribution score of distortion as distortion information. For this reason, the examiner can quantitatively confirm the uniformity of the pressure on the subject.
 また、超音波診断装置100Aは、歪みバランス表示欄とともに表示する歪み情報として、歪みの総量を生成し表示する。このため、検査者が圧迫の均一性と圧迫量を同時に確認できる。 Also, the ultrasonic diagnostic apparatus 100A generates and displays the total amount of distortion as distortion information to be displayed together with the distortion balance display field. For this reason, the examiner can simultaneously confirm the uniformity of compression and the amount of compression.
 (第2の変形例)
 図8を参照して、第2の実施の形態の変形例(第2の変形例)を説明する。図8は、歪みバランス表示欄300Bを示す図である。
(Second modification)
A modification (second modification) of the second embodiment will be described with reference to FIG. FIG. 8 is a diagram showing a distortion balance display field 300B.
 本変形例では、第2の実施の形態の超音波診断装置100Aを用い、動作が異なる部分を主として説明し、同じ部分の説明を省略する。 In this modification, the ultrasonic diagnostic apparatus 100A according to the second embodiment is used, and mainly the parts with different operations are described, and the description of the same parts is omitted.
 表示画像生成部19Aは、歪み情報生成部18Aから入力された状態情報がシネモードである場合に、操作入力部11を介する再生するシネ画像(合成弾性画像データ)のフレームの指定入力に応じて、対象のフレームのシネ画像データ(合成弾性画像データ、歪みバランス表示欄、スコア及び歪み量)と、対象のフレームの前後のフレームの歪みバランス表示欄と、を記憶部19aから読み出して、読み出した弾性画像データ、歪みバランス表示欄、スコア及び歪み量を有する表示画像データを生成して表示部20に出力しシネ画像を表示させる。 When the state information input from the distortion information generation unit 18A is in the cine mode, the display image generation unit 19A responds to the designation input of the frame of the cine image (synthetic elastic image data) to be reproduced via the operation input unit 11, The cine image data (synthetic elastic image data, strain balance display column, score and distortion amount) of the target frame and the strain balance display column of the frames before and after the target frame are read from the storage unit 19a, and the read elasticity Display image data having image data, a distortion balance display field, a score, and a distortion amount is generated and output to the display unit 20 to display a cine image.
 図8を参照して、シネモードで表示される歪みバランス表示欄を説明する。図8に示すように、シネモードにおける歪みバランス表示欄300Bは、中心点311と、バランス直線312と、基準線313と、基準領域314と、スコア315と、総歪み量316と、バランス直線317,318と、を有する。バランス直線312は、同時に表示する合成弾性画像の現フレームに対応するバランス直線であり、例えば実線の太線で表示される。バランス直線317は、表示する合成弾性画像の1フレーム前のフレームに対応するバランス直線であり、例えば一点鎖線の細線で表示される。バランス直線318は、表示する合成弾性画像の1フレーム後のフレームに対応するバランス直線であり、例えば点線の細線で表示される。バランス直線312,317,318は、基準領域314からはみ出ると、歪み分布が不均一であるため、例えば歪み分布が均一である青色と異なる赤で表示される。 Referring to FIG. 8, the distortion balance display column displayed in the cine mode will be described. As shown in FIG. 8, the distortion balance display field 300B in the cine mode includes a center point 311, a balance line 312, a reference line 313, a reference area 314, a score 315, a total distortion amount 316, a balance line 317, 318. The balance straight line 312 is a balance straight line corresponding to the current frame of the composite elastic image displayed at the same time, and is displayed, for example, as a solid thick line. The balance straight line 317 is a balance straight line corresponding to the frame one frame before the composite elastic image to be displayed, and is displayed, for example, as a thin line with a one-dot chain line. The balance straight line 318 is a balance straight line corresponding to a frame one frame after the composite elastic image to be displayed, and is displayed as a thin dotted line, for example. When the balance straight lines 312, 317, and 318 protrude from the reference region 314, the distortion distribution is non-uniform, and therefore, for example, the balance straight lines 312, 317, and 318 are displayed in red different from blue where the distortion distribution is uniform.
 なお、シネモードで表示される歪みバランス表示欄のバランス直線は、現フレーム及びその前後のフレームに対応する3本に限定されるものではなく、現フレームとこの前及び後の少なくとも一方の少なくとも1つのフレームに対応する少なくとも1本としてもよい。また、ライブモードで表示される歪みバランス表示欄についても、現在表示中の合成弾性画像に対応する現フレームのバランス直線の他に、少なくとも1フレーム前の少なくとも1本のバランス直線を表示する構成としてもよい。 Note that the balance straight line in the distortion balance display column displayed in the cine mode is not limited to three corresponding to the current frame and the frames before and after the current frame, but at least one of the current frame and at least one before and after this. It is good also as at least 1 corresponding to a flame | frame. The distortion balance display field displayed in the live mode also displays at least one balance line at least one frame in addition to the balance line of the current frame corresponding to the currently displayed composite elastic image. Also good.
 以上、本変形例によれば、超音波診断装置100Aは、歪みバランス表示欄とともに表示する歪み情報として、現フレームの前及び後の少なくとも一方のフレームのバランス直線を生成して表示する。このため、歪みバランス表示欄と前及び後のフレームのバランス直線、との視認により、均一な圧迫の連続性を確認できる。 As described above, according to this modification, the ultrasonic diagnostic apparatus 100A generates and displays a balance line of at least one frame before and after the current frame as distortion information to be displayed together with the distortion balance display field. For this reason, the continuity of uniform compression can be confirmed by visual recognition of the strain balance display column and the balance straight lines of the front and rear frames.
 (第3の変形例)
 図9A、図9Bを参照して、第2の実施の形態の変形例(第3の変形例)を説明する。図9Aは、歪み量が小さい場合の歪みバランス表示欄300Cを示す図である。図9Bは、歪み量が大きい場合の歪みバランス表示欄300Cを示す図である。
(Third Modification)
With reference to FIG. 9A and FIG. 9B, the modification (3rd modification) of 2nd Embodiment is demonstrated. FIG. 9A is a diagram showing a distortion balance display field 300C when the amount of distortion is small. FIG. 9B is a diagram showing a distortion balance display field 300C when the amount of distortion is large.
 本変形例では、第2の実施の形態の超音波診断装置100Aを用い、動作が異なる部分を主として説明し、同じ部分の説明を省略する。 In this modification, the ultrasonic diagnostic apparatus 100A according to the second embodiment is used, and mainly the parts with different operations are described, and the description of the same parts is omitted.
 歪み情報生成部18Aは、制御部21の制御に従って、歪みバランス算出部17で生成された歪み分布の回帰直線を用いて、水平を所定の満点として、回帰直線の傾きが大きくなるほど減点の割合が大きくなるスコアを算出し、歪み量算出部22から入力された総歪み量と当該回帰直線に基づくバランス直線とを有する歪みバランス表示欄を生成し、当該スコア及び歪みバランス表示欄を歪み情報として、状態管理部23から入力された状態情報とともに、表示画像生成部19Aに出力する。 Under the control of the control unit 21, the distortion information generation unit 18A uses the regression line of the distortion distribution generated by the distortion balance calculation unit 17 and sets the horizontal as a predetermined perfect score, and the percentage of deduction points increases as the regression line increases in inclination. A score to be increased is calculated, and a distortion balance display field including a total distortion amount input from the distortion amount calculation unit 22 and a balance line based on the regression line is generated, and the score and the distortion balance display field are used as distortion information. Together with the state information input from the state management unit 23, the information is output to the display image generation unit 19A.
 歪み情報生成部18Aでは、例えば図9A、図9Bに示す歪みバランス表示欄300Cが生成される。歪みバランス表示欄300Cは、バランス直線312と、基準線313と、基準領域314と、中心円319と、を有する。中心円319は、歪みバランス表示欄300Cの中心を示す円形のマークであり、例えば弾性画像のY方向の中心を示すとともに、歪み量算出部22から入力された総歪み量に対応する半径(直径)を有する。バランス直線312及び基準線313は、中心円319の中心を通るように配置されている。総歪み量が小さい場合に、図9Aに示す半径の小さい中心円319となる。総歪み量が大きい場合に、図9Bに示す半径の大きい中心円319となる。 In the distortion information generation unit 18A, for example, a distortion balance display field 300C shown in FIGS. 9A and 9B is generated. The distortion balance display field 300C includes a balance line 312, a reference line 313, a reference region 314, and a center circle 319. The center circle 319 is a circular mark indicating the center of the strain balance display field 300C. For example, the center circle 319 indicates the center in the Y direction of the elastic image and has a radius (diameter) corresponding to the total strain amount input from the strain amount calculation unit 22. ). The balance straight line 312 and the reference line 313 are arranged so as to pass through the center of the central circle 319. When the total distortion amount is small, a center circle 319 having a small radius shown in FIG. 9A is obtained. When the total distortion amount is large, a center circle 319 having a large radius shown in FIG. 9B is obtained.
 歪みバランス表示欄300Cは、ライブモード、シネモードのいずれでも表示される情報となる。 The distortion balance display column 300C is information displayed in both the live mode and the cine mode.
 以上、本変形例によれば、超音波診断装置100Aは、歪みバランス表示欄とともに表示する歪み情報として、歪みバランス表示欄の総歪み量を示す中心円を生成して表示する。このため、歪みバランス表示欄と総歪み量を示す中心円との視認により、検査者が被検体への均一な圧迫を容易に実現できるとともに、総歪み量を示す中心円の視認により、検査者が被検体の対象への適度な圧迫があるか否かを容易に確認できる。また、中心円319とともに、被検体の対象への適度な圧迫があるか否かを判別するための円環等の目安を表示させる構成としてもよい。 As described above, according to this modification, the ultrasound diagnostic apparatus 100A generates and displays a center circle indicating the total strain amount in the strain balance display field as the strain information to be displayed together with the strain balance display field. Therefore, the visual inspection of the strain balance display field and the central circle indicating the total amount of distortion allows the examiner to easily achieve uniform compression on the subject, and the visual inspection of the central circle indicating the total amount of distortion allows the examiner to Can easily confirm whether or not there is appropriate pressure on the subject. Moreover, it is good also as a structure which displays a standard | standard, such as a ring for discriminating whether there exists moderate pressure to the object of a subject with the center circle 319. FIG.
 (第4の変形例)
 図10A、図10Bを参照して、第2の実施の形態の変形例(第4の変形例)を説明する。図10Aは、連続する2フレームの音線データの信号波形を示す図である。図10Bは、歪みバランス表示欄300Dを示す図である。
(Fourth modification)
A modified example (fourth modified example) of the second embodiment will be described with reference to FIGS. 10A and 10B. FIG. 10A is a diagram illustrating a signal waveform of sound ray data of two consecutive frames. FIG. 10B is a diagram showing a distortion balance display field 300D.
 本変形例では、第2の実施の形態の超音波診断装置100Aを用い、動作が異なる部分を主として説明し、同じ部分の説明を省略する。 In this modification, the ultrasonic diagnostic apparatus 100A according to the second embodiment is used, and mainly the parts with different operations are described, and the description of the same parts is omitted.
 弾性画像生成部15は、制御部21の制御に従って、受信部13及び記憶部15aからの時間的に連続する2フレームの音線データを用いて弾性画像データを生成するとともに、弾性画像データの時間的に連続する2フレームの音線データを用いて信号波形の相関値(復元率)を算出し、算出した相関値を測定結果の信頼値とし、歪みバランス算出部17を介して歪み情報生成部18Aに出力する。 The elastic image generation unit 15 generates elastic image data using time-sequential two frames of sound ray data from the reception unit 13 and the storage unit 15a according to the control of the control unit 21, and the elastic image data time The correlation value (restoration rate) of the signal waveform is calculated using the sound ray data of two consecutive frames, and the calculated correlation value is used as the reliability value of the measurement result, and the distortion information generation unit is connected via the distortion balance calculation unit 17. Output to 18A.
 例えば、図10Aに示すように、第1フレームの音線データの信号波形f(x)と、第1フレームの時間的に次の第2フレームの音線データの信号波形g(x)と、の相関値AutoCorr(f(x),g(x+Δx))が算出される。 For example, as shown in FIG. 10A, the signal waveform f (x) of the sound ray data of the first frame, the signal waveform g (x) of the sound ray data of the second frame temporally next to the first frame, The correlation value AutoCorr (f (x), g (x + Δx)) is calculated.
 歪み情報生成部18Aは、制御部21の制御に従って、歪みバランス算出部17で生成された歪みバランスの回帰直線を用いて、スコアを算出し、歪みバランス算出部17から入力された弾性画像の信頼値と、当該回帰直線とを有する歪みバランス表示欄を生成し、当該スコアと歪み量算出部22から入力された総歪み量とを歪み情報として、状態管理部23から入力された状態情報とともに、表示画像生成部19Aに出力する。 The strain information generation unit 18A calculates a score using the regression line of the strain balance generated by the strain balance calculation unit 17 according to the control of the control unit 21, and trusts the elasticity image input from the strain balance calculation unit 17. A distortion balance display field having a value and the regression line is generated, and the score and the total distortion amount input from the distortion amount calculation unit 22 are used as distortion information, along with the state information input from the state management unit 23, The image is output to the display image generation unit 19A.
 歪み情報生成部18Aでは、例えば図10Bに示す歪みバランス表示欄300Dが生成される。歪みバランス表示欄300Dは、バランス直線312と、基準線313と、基準領域314と、中心円320と、を有する。中心円320は、歪みバランス表示欄300Dの中心を示す円形のマークであり、例えば弾性画像のY方向の中心を示すとともに、弾性画像生成部15で算出された弾性画像データの弾性画像の信頼値に対応する半径(直径)を有する。つまり、弾性画像の信頼値が高くなるほど、中心円320の半径が大きくなる。被検体に圧迫が加わっていない状態で信頼値は高く(≒1)なり、圧迫が上がっていくと信頼値も低くなっていき、押し過ぎの状態で信頼値も低くなり相関もなくなる。このため、信頼度に応じて適度な圧迫を確認することが好ましい。 In the distortion information generation unit 18A, for example, a distortion balance display field 300D shown in FIG. 10B is generated. The distortion balance display field 300D includes a balance line 312, a reference line 313, a reference region 314, and a center circle 320. The center circle 320 is a circular mark indicating the center of the strain balance display field 300D. For example, the center circle 320 indicates the center of the elastic image in the Y direction, and the reliability value of the elastic image of the elastic image data calculated by the elastic image generating unit 15. Has a radius (diameter) corresponding to. That is, the higher the reliability value of the elastic image, the larger the radius of the center circle 320. The confidence value is high (≈1) when no pressure is applied to the subject, and the confidence value decreases as the pressure increases, and the confidence value decreases and the correlation disappears when the pressure is excessive. For this reason, it is preferable to confirm appropriate compression according to reliability.
 以上、本変形例によれば、超音波診断装置100Aは、歪み情報として、歪みバランス表示欄のROIの歪みの信頼値を示す中心円を表示する。このため、歪みバランス表示欄の視認により、検査者が被検体への均一な圧迫を容易に実現できるとともに、信頼値を示す中心円の視認により、検査者が被検体の対象への適度な圧迫があるか否かを容易に確認できる。また、中心円320とともに、被検体の対象への適度な圧迫があるか否かを判別するための円環等の目安を表示させる構成としてもよい。 As described above, according to the present modification, the ultrasonic diagnostic apparatus 100A displays the center circle indicating the reliability value of the ROI distortion in the distortion balance display column as the distortion information. For this reason, it is possible for the examiner to easily realize uniform compression on the subject by visualizing the strain balance display field, and for the examiner to appropriately compress the subject on the subject by visualizing the central circle indicating the reliability value. It can be easily confirmed whether or not there is. Moreover, it is good also as a structure which displays standard | standards, such as a ring for discriminating whether there exists appropriate pressure to the object of a subject with the center circle 320. FIG.
 (第5の変形例)
 図11、図12を参照して、第1の実施の形態の変形例(第5の変形例)を説明する。図11は、弾性画像330及び等値線331を示す図である。図12は、等値線331が重畳されたBモード画像340を示す図である。
(Fifth modification)
A modified example (fifth modified example) of the first embodiment will be described with reference to FIGS. FIG. 11 is a diagram showing an elasticity image 330 and an isoline 331. FIG. 12 is a diagram showing a B-mode image 340 on which isolines 331 are superimposed.
 本変形例では、第1の実施の形態の超音波診断装置100を用い、動作が異なる部分を主として説明し、同じ部分の説明を省略する。 In this modification, the ultrasonic diagnostic apparatus 100 according to the first embodiment is used, and different parts of the operation are mainly described, and description of the same parts is omitted.
 第1の実施の形態のバランス直線としてのY方向(水平方向)の歪み分布の回帰直線は、被検体のスキャン部分の内部が一様な媒体であれば、概ね、傾きが押圧を示す。しかし、例えば、媒体の右側が左側より硬い場合、右側を押し込んでも歪みが生じないため、押圧を示す傾きは得られない。 The regression line of the strain distribution in the Y direction (horizontal direction) as the balance line in the first embodiment generally indicates that the slope is pressed if the inside of the scan portion of the subject is uniform. However, for example, when the right side of the medium is harder than the left side, even if the right side is pushed in, distortion does not occur, and an inclination indicating the pressing cannot be obtained.
 このため、本変形例では、歪み分布の回帰直線とともに、バランス表示情報としてX方向(垂直方向)の歪み値の累積分布の水平方向の等値線を表示する。等値線は、被検体の浅部から歪みの累積値が等しくなる線で、押圧の等圧線をイメージした表示要素である。等値線が密であれば、歪みが多い(押圧が強い又は媒体が軟らかい)ことを示す。 For this reason, in this modified example, along with the regression line of the strain distribution, a horizontal isoline of the cumulative distribution of strain values in the X direction (vertical direction) is displayed as balance display information. The isoline is a line in which the accumulated strain value becomes equal from the shallow part of the subject, and is a display element that is an image of a pressing isobaric line. If the contour line is dense, it indicates that there is a lot of distortion (the pressure is strong or the medium is soft).
 より具体的には、例えば、歪みバランス算出部17は、弾性画像生成部15により生成された図11に示す弾性画像330の弾性画像データの各画素の歪み量を用いて、Y方向の歪み分布の回帰直線と、X方向の歪みの累積量のY方向の分布を示す2次元の歪み累積分布と、を生成する。 More specifically, for example, the strain balance calculation unit 17 uses the strain amount of each pixel of the elasticity image data of the elasticity image 330 illustrated in FIG. 11 generated by the elasticity image generation unit 15 to use the strain distribution in the Y direction. And a two-dimensional strain cumulative distribution indicating a Y-direction distribution of the cumulative amount of strain in the X direction.
 歪み情報生成部18は、歪みバランス算出部17で生成されたY方向の歪み分布の回帰直線に基づいて、バランス直線(回帰直線)を含む歪みバランス表示欄を生成し、歪みバランス算出部17で生成された2次元の歪み累積分布から、Bモード画像データのBモード画像に重畳するための2次元の等値線分布のイメージデータを生成する。 The distortion information generation unit 18 generates a distortion balance display column including a balance line (regression line) based on the regression line of the distortion distribution in the Y direction generated by the distortion balance calculation unit 17, and the distortion balance calculation unit 17 Image data of a two-dimensional isoline distribution to be superimposed on the B-mode image of the B-mode image data is generated from the generated two-dimensional strain cumulative distribution.
 歪み情報生成部18は、等値線の線の形状(例えば線の水平度合い)に応じて、等値線分布の各線の色を変える構成としてもよい。例えば、図11に示す等値線331において、水平度合いが高い等値線331aと、水平度合いが低い等値線331bとの色が変えられる。等値線331aが例えば水色の実線として表示され、等値線331bが例えばオレンジ色の実線として表示される。 The distortion information generation unit 18 may be configured to change the color of each line of the isoline distribution according to the shape of the isoline (for example, the horizontal level of the line). For example, in the isoline 331 shown in FIG. 11, the color of the isoline 331a having a high level of horizontal and the isoline 331b having a low level of horizontal is changed. The isoline 331a is displayed as, for example, a light blue solid line, and the isoline 331b is displayed as, for example, an orange solid line.
 表示画像生成部19は、Bモード画像生成部14により生成されたBモード画像データ(弾性画像合成部16により弾性画像データが合成されていない)に、Bモード画像のROI(弾性画像部分)に重畳する等値線のイメージデータを合成し、2次元の等値線分布を含むBモード画像と、歪み情報生成部18により生成されたバランス直線を含む歪みバランス表示欄とを有する表示画像データを生成して表示部20に表示する。例えば、図12に示すように、等値線331が重畳されたBモード画像340と、歪みバランス表示欄と、が表示される。但し、図12ではBモード画像340の画像内容は省略している。 The display image generating unit 19 converts the B mode image data generated by the B mode image generating unit 14 (the elastic image data is not combined by the elastic image combining unit 16) into the ROI (elastic image portion) of the B mode image. Display image data having a B-mode image including a two-dimensional isoline distribution and a distortion balance display field including a balance line generated by the distortion information generation unit 18 by combining image data of the isoline to be superimposed. Generated and displayed on the display unit 20. For example, as shown in FIG. 12, a B-mode image 340 on which an isoline 331 is superimposed and a distortion balance display field are displayed. However, the image content of the B-mode image 340 is omitted in FIG.
 バランス表示情報として、歪みバランス表示欄と、2次元の等値線分布と、を同時に表示することで、例えば、バランス直線は傾いているが、浅いところは等値線が等間隔なので、偏りなく被検体を押せていると検査者が判断できる。なお、バランス表示情報として、2次元の等値線分布のみを表示させる構成としてもよい。 By displaying simultaneously the strain balance display field and the two-dimensional isoline distribution as the balance display information, for example, the balance straight line is inclined, but the isolines are equidistant in shallow areas, so there is no bias The examiner can determine that the subject is being pushed. In addition, it is good also as a structure which displays only two-dimensional isoline distribution as balance display information.
 また、Bモード画像のROI全体に等値線を重ねて表示すると視認性が低下するため、歪み情報生成部18は、等値線の表在側のみ(例えば、等値線331aのみ)を表示用として生成し、表示画像生成部19に表示させる構成としてもよい。 In addition, since the visibility decreases when the isoline is displayed over the entire ROI of the B-mode image, the distortion information generation unit 18 displays only the surface side of the isoline (for example, only the isoline 331a). It is good also as a structure which produces | generates for use and displays on the display image generation part 19. FIG.
 なお、表示画像生成部19は、弾性画像合成部16により生成された合成弾性画像データに、合成弾性画像のROIに重畳する等値線のイメージデータを合成して表示画像データを生成して表示部20に表示する構成としてもよい。また、表示画像生成部19は、被検体の同じ部位について、弾性画像合成部16により生成された合成弾性画像データの合成画像と、Bモード画像生成部14により生成されたBモード画像データのBモード画像及び2次元の等値線分布とを、左右に並べて表示する構成としてもよい。 The display image generation unit 19 generates display image data by combining the combined elasticity image data generated by the elasticity image combining unit 16 with the image data of the isoline superimposed on the ROI of the combined elasticity image. It is good also as a structure displayed on the part 20. FIG. In addition, the display image generation unit 19 generates a composite image of the composite elastic image data generated by the elastic image combination unit 16 and B of the B mode image data generated by the B mode image generation unit 14 for the same part of the subject. The mode image and the two-dimensional isoline distribution may be displayed side by side.
 以上、本変形例によれば、弾性画像生成部15は、受信部13により処理された受信信号に基づいて、2次元の歪み分布を示す弾性画像データを生成する。歪みバランス算出部17は、生成された弾性画像データから垂直方向の歪みの累積量を示す2次元の歪み累積分布を算出する。歪み情報生成部18は、2次元の歪み累積分布から2次元の等値線分布を生成する。このため、等値線を表示することで、等値線の疎密に応じた押圧の強さ及び媒体の軟らかさを示すことができ、歪みのバランスを均一にするように被検体への均一な圧迫を検査者に促すことができる。 As described above, according to this modification, the elastic image generation unit 15 generates elastic image data indicating a two-dimensional strain distribution based on the reception signal processed by the reception unit 13. The strain balance calculation unit 17 calculates a two-dimensional strain cumulative distribution indicating the cumulative amount of strain in the vertical direction from the generated elasticity image data. The strain information generation unit 18 generates a two-dimensional isoline distribution from the two-dimensional strain cumulative distribution. For this reason, by displaying the isolines, it is possible to indicate the strength of the press according to the density of the isolines and the softness of the medium, and to the subject uniformly so as to make the balance of distortion uniform. The examiner can be urged to press.
 また、歪み情報生成部18は、2次元の等値線分布の線の色を当該線の形状から決定する。このため、検査者が2次元の等直線分布の各線の形状に基づく水平度合いなどを色から容易に視認できる。 Also, the distortion information generation unit 18 determines the line color of the two-dimensional isoline distribution from the shape of the line. For this reason, the inspector can easily visually recognize the degree of horizontality based on the shape of each line of the two-dimensional contour distribution from the color.
 また、歪み情報生成部18は、2次元の等値線分布のうち、表在側の等値線のみを生成する。このため、2次元の等値線分布を重畳するBモード画像又は合成弾性画像の視認性を向上できる。 Also, the distortion information generation unit 18 generates only the superficial side isoline in the two-dimensional isoline distribution. For this reason, it is possible to improve the visibility of the B-mode image or the composite elastic image on which the two-dimensional isoline distribution is superimposed.
 なお、上記実施の形態及び変形例における記述は、本発明に係る好適な超音波診断装置及び超音波情報処理方法の一例であり、これに限定されるものではない。例えば、上記実施の形態及び変形例のうち、少なくとも2つを適宜組み合わせる構成としてもよい。 Note that the descriptions in the above-described embodiments and modifications are examples of the preferred ultrasonic diagnostic apparatus and ultrasonic information processing method according to the present invention, and the present invention is not limited to this. For example, it is good also as a structure which combines at least 2 suitably among the said embodiment and modification.
 また、上記第1の実施の形態では、バランス表示情報としての歪みバランス表示欄を表示部20に表示する構成としたが、これに限定されるものではない。例えば、バランス表示情報としての水平方向の歪み分布の回帰直線に基づくバランス直線が均一か否か、不均一か否か、中心点から見て左右どちらの圧迫が高いか等に応じて、超音波診断装置(例えば超音波探触子2)に設けられた表示部としてのLED(Light Emitting Diode)を点灯、点滅、点灯色の変更等させる構成としてもよい。 In the first embodiment, the distortion balance display field as balance display information is displayed on the display unit 20, but the present invention is not limited to this. For example, depending on whether the balance straight line based on the regression line of the horizontal strain distribution as balance display information is uniform or non-uniform, whether the left or right pressure is higher when viewed from the center point, etc. An LED (Light 構成 Emitting (Diode) as a display unit provided in a diagnostic apparatus (for example, the ultrasound probe 2) may be turned on, blinked, changed in lighting color, or the like.
 例えば、上記実施の形態及び変形例では、弾性画像データの水平方向(方位方向)の各垂直ラインの画素の歪み量の和を算出して、水平方向の歪み分布を算出したが、これに限定されるものではない。例えば、弾性画像データの水平方向の各垂直ラインの画素の歪みの中央値、平均値等を算出して、水平方向の歪み分布を算出する構成としてもよい。 For example, in the above-described embodiment and modification, the sum of the distortion amounts of the pixels in each vertical line in the horizontal direction (azimuth direction) of the elastic image data is calculated to calculate the horizontal distortion distribution. Is not to be done. For example, the horizontal distortion distribution may be calculated by calculating a median value, an average value, and the like of the distortion of the pixels of each vertical line in the horizontal direction of the elastic image data.
 また、以上の実施の形態における超音波診断装置100,100Aを構成する各部の細部構成及び細部動作に関して本発明の趣旨を逸脱することのない範囲で適宜変更可能である。 Further, the detailed configuration and detailed operation of each part constituting the ultrasonic diagnostic apparatus 100, 100A in the above embodiment can be appropriately changed without departing from the gist of the present invention.
 以上のように、本発明の超音波診断装置及び超音波情報処理方法は、弾性画像を用いた超音波診断に適用できる。 As described above, the ultrasonic diagnostic apparatus and ultrasonic information processing method of the present invention can be applied to ultrasonic diagnosis using elastic images.
100,100A 超音波診断装置
1,1A 超音波診断装置本体
11 操作入力部
12 送信部
13 受信部
14 Bモード画像生成部
14a,15a,19a 記憶部
15 弾性画像生成部
16 弾性画像合成部
17 歪みバランス算出部
18,18A 歪み情報生成部
19,19A 表示画像生成部
20 表示部
21 制御部
22 歪み量算出部
23 状態管理部
2 超音波探触子
2a 振動子
3 ケーブル
DESCRIPTION OF SYMBOLS 100,100A Ultrasonic diagnostic apparatus 1,1A Ultrasonic diagnostic apparatus main body 11 Operation input part 12 Transmission part 13 Reception part 14 B mode image generation part 14a, 15a, 19a Storage part 15 Elastic image generation part 16 Elastic image composition part 17 Distortion Balance calculation unit 18, 18A Strain information generation unit 19, 19A Display image generation unit 20 Display unit 21 Control unit 22 Strain amount calculation unit 23 State management unit 2 Ultrasonic probe 2a Transducer 3 Cable

Claims (12)

  1.  超音波を送受信する超音波探触子により被検体に圧迫を加え当該被検体の対象に超音波を送受信し当該対象の歪みを測定する超音波診断装置であって、
     前記超音波探触子に駆動信号を供給する送信部と、
     前記超音波探触子から出力された受信信号を処理する受信部と、
     前記処理された受信信号に基づいて、前記圧迫によって生じた前記被検体の弾性情報としての歪み情報を算出する歪み情報算出部と、
     前記歪み情報算出部で算出された歪み情報から前記被検体の水平方向の歪み分布を算出し、当該水平方向の歪み分布から水平方向の歪み分布のバランスを算出する歪みバランス算出部と、
     前記水平方向の歪み分布のバランスを示すバランス表示情報を生成する歪み情報生成部と、を備える超音波診断装置。
    An ultrasonic diagnostic apparatus that applies pressure to an object by an ultrasonic probe that transmits and receives ultrasonic waves, transmits and receives ultrasonic waves to the object of the object, and measures distortion of the object,
    A transmitter for supplying a drive signal to the ultrasonic probe;
    A reception unit for processing a reception signal output from the ultrasonic probe;
    A strain information calculation unit that calculates strain information as elasticity information of the subject generated by the compression based on the processed received signal;
    A strain balance calculating unit that calculates a horizontal strain distribution of the subject from the strain information calculated by the strain information calculating unit, and calculates a balance of the horizontal strain distribution from the horizontal strain distribution;
    An ultrasonic diagnostic apparatus comprising: a distortion information generation unit that generates balance display information indicating a balance of the horizontal distortion distribution.
  2.  前記歪み情報算出部は、前記処理された受信信号に基づいて、2次元の歪み分布を示す弾性画像データを生成する弾性画像生成部であり、
     前記歪みバランス算出部は、前記生成された弾性画像データから水平方向の歪み分布のバランスを算出する請求項1に記載の超音波診断装置。
    The strain information calculation unit is an elastic image generation unit that generates elastic image data indicating a two-dimensional strain distribution based on the processed reception signal.
    The ultrasonic diagnostic apparatus according to claim 1, wherein the strain balance calculation unit calculates a balance of strain distribution in a horizontal direction from the generated elasticity image data.
  3.  前記歪みバランス算出部は、前記生成された弾性画像データのうち、所定の垂直位置より体表側の弾性画像を用いて、水平方向の歪み分布のバランスを算出する請求項2に記載の超音波診断装置。 The ultrasonic diagnosis according to claim 2, wherein the strain balance calculation unit calculates a balance of strain distribution in a horizontal direction using an elastic image on the body surface side from a predetermined vertical position in the generated elastic image data. apparatus.
  4.  前記歪み情報生成部は、前記算出された水平方向の歪み分布のバランスを示す回帰直線と、当該回帰直線の傾きの許容範囲を示す基準表示要素と、を含む前記バランス表示情報を生成する請求項2又は3に記載の超音波診断装置。 The distortion information generation unit generates the balance display information including a regression line indicating a balance of the calculated horizontal distortion distribution and a reference display element indicating an allowable range of inclination of the regression line. The ultrasonic diagnostic apparatus according to 2 or 3.
  5.  前記歪み情報生成部は、前記基準表示要素に対する前記回帰直線の傾きの許容範囲の評価結果により前記回帰直線の色を変更する請求項4に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 4, wherein the distortion information generation unit changes the color of the regression line according to an evaluation result of an allowable range of an inclination of the regression line with respect to the reference display element.
  6.  前記歪み情報算出部は、前記処理された受信信号に基づいて、2次元の歪み分布を示す弾性画像データを生成する弾性画像生成部であり、
     前記歪みバランス算出部は、前記生成された弾性画像データから垂直方向の歪みの累積量を示す2次元の歪み累積分布を算出し、
     前記歪み情報生成部は、前記2次元の歪み累積分布から2次元の等値線分布を生成する請求項1に記載の超音波診断装置。
    The strain information calculation unit is an elastic image generation unit that generates elastic image data indicating a two-dimensional strain distribution based on the processed reception signal.
    The strain balance calculation unit calculates a two-dimensional strain cumulative distribution indicating a cumulative amount of strain in the vertical direction from the generated elasticity image data,
    The ultrasonic diagnostic apparatus according to claim 1, wherein the strain information generation unit generates a two-dimensional isoline distribution from the two-dimensional strain cumulative distribution.
  7.  前記歪み情報生成部は、前記2次元の等値線分布の線の色を当該線の形状から決定する請求項6に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 6, wherein the distortion information generation unit determines a color of the line of the two-dimensional isoline distribution from a shape of the line.
  8.  前記歪み情報生成部は、前記2次元の等値線分布のうち、表在側の等値線のみを生成する請求項6に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 6, wherein the distortion information generation unit generates only a superficial isoline in the two-dimensional isoline distribution.
  9.  前記生成されたバランス表示情報を表示部に表示する表示制御部を備える請求項1から8のいずれか一項に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to any one of claims 1 to 8, further comprising a display control unit that displays the generated balance display information on a display unit.
  10.  前記表示制御部は、ライブモードよりもシネモードにおいて表示情報量を増やす請求項9に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 9, wherein the display control unit increases a display information amount in the cine mode than in the live mode.
  11.  前記バランス表示情報とともに表示する表示情報を生成する表示情報生成部を備え、
     前記バランス表示情報とともに表示する表示情報は、前記水平方向の歪み分布のバランスのスコア、歪み量、前記受信信号に基づく信頼値、現フレームの前及び後の少なくとも1方のフレームの前記水平方向の歪み分布のバランス直線の少なくとも1つを含む請求項1から10のいずれか一項に記載の超音波診断装置。
    A display information generation unit for generating display information to be displayed together with the balance display information;
    Display information to be displayed together with the balance display information includes a balance score of the horizontal distortion distribution, a distortion amount, a reliability value based on the received signal, and the horizontal direction of at least one frame before and after the current frame. The ultrasonic diagnostic apparatus according to claim 1, comprising at least one balance line of strain distribution.
  12.  超音波を送受信する超音波探触子により被検体に圧迫を加え当該被検体の対象に超音波を送受信し当該対象の歪みを測定する超音波情報処理方法であって、
     前記超音波探触子に駆動信号を供給する工程と、
     前記超音波探触子から出力された受信信号を処理する工程と、
     前記処理された受信信号に基づいて、前記圧迫によって生じた前記被検体の弾性情報としての歪み情報を算出する工程と、
     前記算出された歪み情報から前記被検体の水平方向の歪み分布を算出し、当該水平方向の歪み分布から水平方向の歪み分布のバランスを算出する工程と、
     前記水平方向の歪み分布のバランスを示すバランス表示情報を生成する工程と、を含む超音波情報処理方法。
     
    An ultrasonic information processing method for applying pressure to an object by an ultrasonic probe that transmits and receives ultrasonic waves and transmitting and receiving ultrasonic waves to the object of the object and measuring distortion of the object,
    Supplying a driving signal to the ultrasonic probe;
    Processing the received signal output from the ultrasound probe;
    Calculating strain information as elasticity information of the subject caused by the compression based on the processed received signal;
    Calculating a horizontal strain distribution of the subject from the calculated strain information, and calculating a balance of the horizontal strain distribution from the horizontal strain distribution;
    Generating balance display information indicating the balance of the horizontal strain distribution.
PCT/JP2017/007055 2016-02-29 2017-02-24 Ultrasonic diagnostic device and ultrasonic information processing method WO2017150368A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780013168.8A CN108697405A (en) 2016-02-29 2017-02-24 Diagnostic ultrasound equipment and ultrasound information processing method
JP2018503098A JP6662448B2 (en) 2016-02-29 2017-02-24 Ultrasonic diagnostic apparatus and operation method of ultrasonic diagnostic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-037133 2016-02-29
JP2016037133 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017150368A1 true WO2017150368A1 (en) 2017-09-08

Family

ID=59744141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007055 WO2017150368A1 (en) 2016-02-29 2017-02-24 Ultrasonic diagnostic device and ultrasonic information processing method

Country Status (3)

Country Link
JP (1) JP6662448B2 (en)
CN (1) CN108697405A (en)
WO (1) WO2017150368A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005120358A1 (en) * 2004-06-09 2005-12-22 Hitachi Medical Corporation Elastic image display method and ultrasonographic device
WO2005122907A1 (en) * 2004-06-22 2005-12-29 Hitachi Medical Corporation Ultrasonograph and elasticity image display method
WO2006040967A1 (en) * 2004-10-08 2006-04-20 Hitachi Medical Corporation Ultrasonic diagnosis device
WO2009104657A1 (en) * 2008-02-21 2009-08-27 株式会社 日立メディコ Ultrasonographic device, ultrasonic image processing method, and ultrasonic image processing program
JP2010246909A (en) * 2009-04-10 2010-11-04 Medison Co Ltd Ultrasonic system and method for providing pressure information

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101065067B (en) * 2004-08-05 2011-09-07 株式会社日立医药 Method for displaying elastic image and ultrasonograph
WO2006041050A1 (en) * 2004-10-12 2006-04-20 Hitachi Medical Corporation Ultrasonic probe of type to be inserted in body, and ultrasonic imaging device
EP2623035B1 (en) * 2010-09-29 2016-11-23 Hitachi, Ltd. Ultrasound diagnostic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005120358A1 (en) * 2004-06-09 2005-12-22 Hitachi Medical Corporation Elastic image display method and ultrasonographic device
WO2005122907A1 (en) * 2004-06-22 2005-12-29 Hitachi Medical Corporation Ultrasonograph and elasticity image display method
WO2006040967A1 (en) * 2004-10-08 2006-04-20 Hitachi Medical Corporation Ultrasonic diagnosis device
WO2009104657A1 (en) * 2008-02-21 2009-08-27 株式会社 日立メディコ Ultrasonographic device, ultrasonic image processing method, and ultrasonic image processing program
JP2010246909A (en) * 2009-04-10 2010-11-04 Medison Co Ltd Ultrasonic system and method for providing pressure information

Also Published As

Publication number Publication date
CN108697405A (en) 2018-10-23
JPWO2017150368A1 (en) 2018-12-20
JP6662448B2 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
US10342514B2 (en) Ultrasonic diagnostic apparatus and method of ultrasonic imaging
JP5303147B2 (en) Ultrasonic diagnostic device for generating elastic images
JP4897492B2 (en) Ultrasonic diagnostic equipment
US8475382B2 (en) Ultrasound diagnostic apparatus and method for tracing movement of tissue
JP5479353B2 (en) Ultrasonic diagnostic equipment
CN103648400B (en) Diagnostic ultrasound equipment and method
US8394024B2 (en) Ultrasound diagnostic apparatus and method for tracing movement of tissue
US8915851B2 (en) Ultrasound imaging apparatus and method of displaying ultrasound image
US8333699B2 (en) Ultrasonograph
US20120108972A1 (en) Ultrasound diagnostic apparatus and method for tracing movement of tissue
US20160074015A1 (en) Ultrasonic observation apparatus, method for operating ultrasonic observation apparatus, and computer readable recording medium
CN108697406B (en) Ultrasonic diagnostic apparatus and ultrasonic information processing method
JP5166154B2 (en) Ultrasonic diagnostic equipment
JP5113322B2 (en) Ultrasonic diagnostic equipment
JP2008154626A (en) Ultrasonic diagnostic system
JP2017148367A (en) Ultrasound diagnostic apparatus, method of controlling ultrasound diagnostic apparatus, and program
JP6662448B2 (en) Ultrasonic diagnostic apparatus and operation method of ultrasonic diagnostic apparatus
JP5623609B2 (en) Ultrasonic diagnostic equipment
JP5128149B2 (en) Ultrasonic diagnostic equipment
JP6728767B2 (en) Ultrasonic diagnostic device and ultrasonic information processing method
JP5638641B2 (en) Ultrasonic diagnostic equipment
JP2013244136A (en) Ultrasonic diagnostic equipment and ultrasonic diagnostic image generation method
JP2018051040A (en) Ultrasound diagnostic apparatus and image synthesis method
JP6939425B2 (en) Ultrasonic diagnostic equipment and resonance information acquisition method
JP2013244137A (en) Ultrasonic diagnostic equipment and ultrasonic diagnostic image generation method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018503098

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759834

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759834

Country of ref document: EP

Kind code of ref document: A1