WO2017150187A1 - Chemically strengthened glass and method for producing chemically strengthened glass - Google Patents

Chemically strengthened glass and method for producing chemically strengthened glass Download PDF

Info

Publication number
WO2017150187A1
WO2017150187A1 PCT/JP2017/005452 JP2017005452W WO2017150187A1 WO 2017150187 A1 WO2017150187 A1 WO 2017150187A1 JP 2017005452 W JP2017005452 W JP 2017005452W WO 2017150187 A1 WO2017150187 A1 WO 2017150187A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
chemically strengthened
strengthened glass
dol
compressive stress
Prior art date
Application number
PCT/JP2017/005452
Other languages
French (fr)
Japanese (ja)
Inventor
茂輝 澤村
林 英明
公章 赤塚
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2017150187A1 publication Critical patent/WO2017150187A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a chemically strengthened glass and a method for producing the chemically strengthened glass.
  • a cover glass is disposed on the front surface of the display in order to enhance display protection and aesthetics.
  • Such panel display devices are required to be light and thin, and the cover glass is also required to be thin.
  • Patent Document 1 has a problem that the glass is warped as the glass becomes thinner although the impact resistance is increased.
  • the present invention is to provide a chemically strengthened glass in which warpage is suppressed as much as possible and a method for producing the chemically strengthened glass.
  • the DOL 1 is preferably 15 ⁇ m or more.
  • the relative dielectric constant is preferably 7.5 or more.
  • the thickness is preferably less than 400 ⁇ m.
  • the chemically tempered glass of the present invention is a chemically tempered glass having two main surfaces, and has a thickness of 300 ⁇ m or less, and the position in the surface direction and the thickness direction of the two main surfaces in a sectional view in the thickness direction.
  • the absolute value a of the quadratic term coefficient of the quadratic function is 1.0 ⁇ 10 ⁇ 7 ⁇ m ⁇ 1 or less.
  • the sensor unit of the present invention includes a sensor and the above-described chemically tempered glass.
  • the portable device of the present invention includes the sensor unit described above.
  • the method for producing chemically strengthened glass of the present invention includes the following steps (I) to (III) in sequence, and the depth DOL 1 of the compressive stress layer on one main surface side of the obtained chemically strengthened glass is 15 ⁇ m or more. , compressive stress CS 0 the one main surface outermost layer is not less than 500 MPa, and a thickness is equal to or less than 1000 .mu.m.
  • First chemical strengthening step for forming a compressive stress layer on the glass surface by subjecting the glass to ion exchange treatment (II) Heating step for heating the glass at a temperature lower by 50 ° C. or more than the glass transition point
  • the ion exchange treatment in steps (I) and (III) is preferably treatment at a temperature lower by 50 ° C. or more than the glass transition point.
  • the method for producing chemically tempered glass of the present invention is such that the compressive stress layer depth DOL corresponding to a position which is half of the compressive stress layer depth DOL 1 of the obtained chemically tempered glass and the compressive stress CS 0 of the outermost surface of the main surface. It is preferable that HM satisfies the following formula (2). 0.05 ⁇ DOL HM / DOL 1 ⁇ 0.4 (2)
  • FIG. 1 is a diagram showing the relationship between the compressive stress depth and compressive stress of chemically strengthened glass.
  • 2A and 2B are views showing a portable device having a sensor unit using the chemically strengthened glass (cover member) according to this embodiment, and FIG. 2A is a perspective view, FIG. (B) is a sectional view.
  • 3A to 3C are views showing the glass after chemical strengthening, in which FIG. 3A is a perspective view, and FIG. 3B is a cross-sectional view taken along line BB in FIG. 3A.
  • FIG. 3C is another example of a cross-sectional view taken along the line BB in FIG.
  • FIG. 4 is a diagram showing the relationship between ⁇ S / t 2 and the absolute value a of the quadratic term coefficient when the cross-sectional shape of the chemically strengthened glass is approximated by a quadratic function.
  • the chemically strengthened glass of the present embodiment is a plate-shaped chemically strengthened glass having two main surfaces, and the thickness of the chemically strengthened glass is less than 1000 ⁇ m, and satisfies the following formulas (1) and (2): .
  • the thickness of the chemically strengthened glass satisfying the above conditions is 300 ⁇ m or less
  • the relation between the position in the surface direction of the two main surfaces and the displacement in the thickness direction is approximated by a quadratic function in a sectional view in the thickness direction
  • the absolute value a of the quadratic term coefficient of the quadratic function is 1.0 ⁇ 10 ⁇ 7 ⁇ m ⁇ 1 or less.
  • the area of the region surrounded by the vertical axis, the horizontal axis, and the curve A, that is, the integrated value of the curve A is considered to be correlated with the sum of the compressive stress values stored on one main surface of the chemically strengthened glass. It is done.
  • the area S in FIG. 1 is a trapezoidal area with the coordinates (0, 0), (DOL HM , 0), (DOL HM , HM_CS 0 ), and (0, CS 0 ) as vertices. ).
  • the compressive stress values of the two main surfaces of the chemically strengthened glass usually have a difference of about 1.5% due to slight composition fluctuations and cooling rate differences caused by the manufacturing process. Therefore, the difference S of S between the two main surfaces is expressed by the above formula (3).
  • ⁇ S / t 2 in equation (1) varies depending on which of the two principal surfaces is used to calculate S in equation (4), but one of the two principal surfaces satisfies equation (1). Even if not, it is included in the present invention if the other satisfies the formula (1).
  • ⁇ S / t 2 is preferably 3.5 ⁇ 10 ⁇ 3 (MPa / ⁇ m) or less, and more preferably 3 ⁇ 10 ⁇ 3 (MPa / ⁇ m) or less.
  • DOL HM / DOL 1 in Formula (2) is preferably 0.35 or less, and more preferably 0.3 or less.
  • the lower limit value of the compressive stress (maximum value of compressive stress) CS 0 of the outermost surface of the main surface is preferably 500 MPa, more preferably 550 MPa, and further preferably 600 MPa. This is to improve the surface strength of the glass.
  • the upper limit of CS 0 is preferably 1300 MPa, more preferably 1200 MPa, and even more preferably 1100 MPa. This is to prevent so-called “self-destructive cracking” of the glass.
  • the depth DOL 1 of the principal surface compressive stress layer is preferably 15 ⁇ m or more. This is because a larger value of DOL 1 is preferable from the viewpoint of enhancing the impact resistance of the glass surface.
  • DOL 1 is more preferably 20 ⁇ m or more, further preferably 25 ⁇ m or more, and particularly preferably 30 ⁇ m or more.
  • the upper limit of DOL 1 is preferably 100 ⁇ m, more preferably 90 ⁇ m, further preferably 85 ⁇ m, and particularly preferably 80 ⁇ m, although it depends on the thickness of the chemically strengthened glass. This is to prevent stress relaxation resulting from a long strengthening time.
  • the relative dielectric constant is preferably 7.5 or more.
  • the relative dielectric constant is preferably 7.5 or more, it is possible to provide a chemically strengthened glass in which warpage is suppressed as much as possible and sufficient sensing sensitivity can be obtained even when provided on the sensor.
  • the relative dielectric constant is more preferably 7.8 or more, and further preferably 8 or more.
  • the specific dielectric constant of chemically tempered glass decreases due to chemical strengthening.
  • the chemically tempered glass of the present embodiment satisfies the following formula (5). ( ⁇ 2 ⁇ 0 ) / ⁇ 2 ⁇ 0.05 (5) ⁇ 2 : relative permittivity of unstrengthened region of chemically strengthened glass ⁇ 0 : relative permittivity of the entire chemically strengthened glass
  • the relative dielectric constant ⁇ is a value at a frequency of 1 MHz, and can be obtained by measuring the capacitance of a capacitor configured by providing electrodes on both surfaces of chemically strengthened glass.
  • the relative dielectric constant of the glass before chemical strengthening may be used as the relative dielectric constant of the unstrengthened region.
  • the chemically tempered glass of this embodiment preferably has a thickness of less than 400 ⁇ m.
  • the thickness is less than 400 ⁇ m, it is possible to reduce the weight of units and equipment in which chemically strengthened glass is used.
  • the raw materials of each component constituting the glass before chemical strengthening are prepared so as to have a desired composition, and heated and melted in a glass melting kiln.
  • the glass is homogenized by bubbling, stirring, adding a clarifying agent, etc., formed into a glass plate having a predetermined thickness (before chemical strengthening) by a conventionally known forming method, and slowly cooled.
  • the molded glass is ground and polished as necessary, subjected to chemical strengthening treatment at least twice, washed and dried after each chemical strengthening treatment.
  • the alkali metal ion for example, a molten salt (for example, potassium salt or sodium salt) containing an alkali metal ion having an ionic radius larger than that of sodium ion or lithium ion is contacted in a temperature range not exceeding the glass transition temperature.
  • a molten salt for example, potassium salt or sodium salt
  • an alkali metal ion in the glass and an alkali metal salt having a large ion radius of the alkali metal salt are ion-exchanged, and a compressive stress is generated on the glass surface due to a difference in the area occupied by the alkali metal ion to form a compressive stress layer.
  • the temperature range which makes glass contact with molten salt should just be a temperature range which does not exceed the transition temperature of glass, it is preferable that it is 50 degrees C or less from a glass transition point. Thereby, stress relaxation of the glass can be prevented.
  • the treatment temperature and treatment time for bringing the glass into contact with the molten salt containing alkali metal ions can be appropriately adjusted according to the composition of the glass and the molten salt.
  • the heating temperature of the molten salt is usually preferably 350 ° C or higher and more preferably 370 ° C or higher. Moreover, 500 degrees C or less is preferable normally, and 450 degrees C or less is more preferable.
  • the heating temperature of the molten salt By setting the heating temperature of the molten salt to 350 ° C. or higher, it is possible to prevent chemical strengthening from becoming difficult due to a decrease in ion exchange rate. Moreover, decomposition
  • the treatment time for bringing the glass into contact with the molten salt is usually preferably 10 minutes or more and more preferably 15 minutes or more in order to give sufficient compressive stress per time. Moreover, in long-time ion exchange, while productivity falls and a compressive-stress value falls by relaxation, it is 20 hours or less normally, and 16 hours or less are preferable.
  • step (II) Heating step In the heating step in which the glass is heat-treated at a temperature lower by 50 ° C. or more than the glass transition point, the surface of the glass obtained by forming a compressive stress layer on the glass surface obtained in step (I) is heat-treated. Larger alkali metal ions, such as potassium ions, present in the compressive stress layer of the glass are moved from the surface of the glass into the glass.
  • the temperature at which the glass is heat-treated is 50 ° C. or more, preferably 70 ° C. or more, more preferably 100 ° C. or more below the glass transition point. Thereby, stress relaxation of the glass can be prevented and the loss of chemical strengthening can be suppressed.
  • the glass heat treatment time is appropriately adjusted depending on the heat treatment temperature, but is usually preferably 30 minutes to 2000 minutes, more preferably 30 minutes to 300 minutes.
  • the ion exchange treatment in step (III) may be performed by the same method as the ion exchange treatment in step (I), or may be another method. Another molten salt may be used.
  • Steps (I) to (III) in the present invention may be carried out sequentially with a continuous process, for example, with a glass ribbon that moves continuously in a glass plate production process, or may be carried out discontinuously on-line. Good.
  • the chemically tempered glass of the present invention may be used in a smartphone as a portable device provided with a capacitive fingerprint authentication sensor as a sensor.
  • the smartphone 30 includes a housing 32 that is open on one side, and a cover member 33 that is provided so as to close the opening of the housing 32.
  • a sensor 34 such as a fingerprint authentication sensor and a display element (not shown) are arranged at a position facing the cover member 33 in the housing 32.
  • the cover member 33 is made of the chemically tempered glass of the present invention, and when the finger F approaches or comes into contact, the capacitance of the part changes locally.
  • the fingerprint authentication sensor 34 includes a substrate 35 and a plurality of electrodes 36 provided on the substrate 35 at a predetermined interval. Detect fingerprints from changes in capacity.
  • the cover member 33 is provided on the electrode 36 of the fingerprint authentication sensor 34, whereby a fingerprint authentication sensor unit 31 as a sensor unit is configured.
  • a plurality of electrodes 36 are provided at a predetermined interval on the substrate 35 also in a direction perpendicular to the paper surface.
  • the charge amount at each point generated in this way is measured and converted into an image, whereby the shape of the fingerprint is detected as an image.
  • the capacitance of the cover member 33 may be changed, and the finger F may be in contact with the cover member 33 or may be non-contact.
  • a fingerprint authentication sensor has been exemplified as the sensor of the present invention
  • a capacitive touch sensor or an ultrasonic sensor may be used.
  • a mobile device such as a smartphone has been exemplified as a device provided with the sensor unit of the present invention, an automatic teller machine of a bank, a door lock or a start switch of a transport device such as an automobile, an interior member for a vehicle (for example, a dashboard, Center consoles, combiner-type head-up displays, non-opening parts such as covers used for dashboards, rear, side, and ceiling displays), devices such as personal authentication devices for entrance management in buildings, etc. It may be.
  • the fingerprint authentication sensor can be suitably used particularly for portable devices such as smartphones, mobile phones, and tablet personal computers.
  • the chemically tempered glass of the present invention may be used as a sensor cover member as a sensor cover member.
  • it may be applied as a cover member, a building material, a decorative member, a scratch-resistant cover member, or the like of a device that does not have a sensor.
  • at least one main surface of the chemically strengthened glass may be subjected to surface treatment such as an antiglare layer (AG layer), an antireflection layer (AR layer), and an anti-fingerprint layer (AFP layer).
  • AG layer antiglare layer
  • AR layer antireflection layer
  • AFP layer anti-fingerprint layer
  • the surface roughness of the cover member is important.
  • the arithmetic average roughness Ra is preferably 1000 nm or less.
  • the lower limit of Ra is not particularly limited.
  • the printing layer and resin layer for decoration or concealment may be formed in one main surface of chemically strengthened glass.
  • the thickness t of the chemically strengthened glass shown in FIG. 2B is less than 1.0 mm (1000 ⁇ m), preferably less than 0.4 mm (400 ⁇ m). 0.3 mm (300 ⁇ m) or less is more preferable.
  • the chemically tempered glass of the present invention is a chemically tempered glass having strength and realizing weight reduction, and can be used as a cover glass having good sensing sensitivity that combines strength and weight reduction.
  • a glass containing an alkali ion having a small ionic radius for example, an alkali metal ion having an ionic radius smaller than potassium or an alkali metal ion smaller than sodium
  • an alkali ion having a small ionic radius for example, an alkali metal ion having an ionic radius smaller than potassium or an alkali metal ion smaller than sodium
  • such glass has SiO 2 , Al 2 O 3 , Na 2 O and MgO, or SiO 2 , preferably contains al 2 O 3, Li 2 O and MgO.
  • SiO 2 is an essential component for forming a glass skeleton.
  • Na 2 O is a component that chemically strengthens the glass by being mainly replaced with potassium ions in the ion exchange treatment, controls the thermal expansion coefficient, and lowers the high-temperature viscosity of the glass to increase the meltability and formability. .
  • Li 2 O is a component that chemically strengthens the glass by being mainly replaced with sodium ions in the ion exchange treatment, controls the thermal expansion coefficient, and lowers the high-temperature viscosity of the glass to increase the meltability and formability.
  • Li 2 O is preferably contained in an amount of 0.5 mol% or more based on the oxide.
  • Al 2 O 3 is a component that has an effect of increasing the glass transition point Tg, weather resistance, and Young's modulus, and further improves the ion exchange performance of the glass surface.
  • MgO is a component that makes the glass difficult to damage and improves the solubility of the glass.
  • ZrO 2 is a component that improves the Young's modulus and improves the chemical durability and hardness of the glass, and it may be preferably contained.
  • glass used for the chemical strengthening treatment for example, glass having the following composition can be used. Since these compositions have characteristics suitable for the chemical strengthening conditions of the present invention, they can be suitably used.
  • the composition expressed in mol% on the basis of oxide is 50 to 80% for SiO 2 , 2 to 25% for Al 2 O 3 , 0 to 10% for Li 2 O, and 2 to 18% for Na 2 O.
  • a composition represented by mol% based on oxide of glass (ii) containing 0 to 10% of K 2 O, 0 to 15% of MgO, 0 to 5% of CaO and 0 to 5% of ZrO 2 is SiO 2 2 to 50 to 74%, Al 2 O 3 to 1 to 10%, Na 2 O to 6 to 14%, K 2 O to 3 to 11%, MgO to 2 to 15%, CaO to 0 to 6% and ZrO 2 to 5%, the total content of SiO 2 and Al 2 O 3 is 75% or less, the total content of Na 2 O and K 2 O is 12 to 25%, the content of MgO and CaO composition total is displayed in mole percent of glass (iii) an oxide basis from 7 to 15%, SiO 2 68 80%, the Al 2 O 3 4 ⁇ 10% , Na 2 O 5-15% of K 2 O 0 to 1%, glass (iv 4 ⁇ 15% and the ZrO 2 and MgO containing 0 to 1% )
  • composition expressed in terms of mol% on the basis of glass (vi) oxide is that SiO 2 is 61 to 72%, Al 2 O 3 to 8 to 17%, Li 2 O to 6 to 18%, Na 2 O to 2 to 15%, K 2 O to 0 to 8%, MgO to 0 to 6%, CaO to 0 to 6%, TiO 2 0-4% of ZrO 2 containing 0 ⁇ 2.5%, Li 2 O , the total content R 2 O of Na 2 O and K 2 O 15 to 25% and the Li 2 O content Glass with R 2 O ratio Li 2 O / R 2 O of 0.35 to 0.8 and the total content of MgO and CaO is 0 to 9%
  • Examples of the glass forming method as described above include a float method, a press method, a fusion method, a downdraw method, and a rollout method.
  • a float method suitable for mass production is suitable.
  • continuous molding methods other than the float method, that is, the fusion method and the downdraw method are also suitable.
  • a rollout method may be optimal.
  • the glass used for the chemical strengthening treatment may be subjected to a forming step for providing a bent portion.
  • the molding method used in the molding step may be selected from a self-weight molding method, a vacuum molding method, a press molding method, and the like according to the shape of the glass after molding.
  • the warp can be suppressed and the desired design shape can be maintained by implementing the chemical strengthening conditions according to the present invention.
  • the ion exchange treatment is not particularly limited as long as it is twice or more, but is preferably 3 times or less and more preferably 2 times from the viewpoint of shortening the tact time.
  • molten salt for performing the ion exchange treatment it is preferable to use a treated salt containing at least potassium ions or sodium ions.
  • a treated salt for example, potassium nitrate or sodium nitrate is preferably mentioned.
  • These treated salts may be added with water vapor, carbon dioxide, or the like.
  • the mixed molten salt may contain other components.
  • other components include alkali carbonates such as potassium carbonate, alkali sulfates such as sodium sulfate and potassium sulfate, and alkali chlorides such as sodium chloride and potassium chloride.
  • alkali carbonates such as potassium carbonate
  • alkali sulfates such as sodium sulfate and potassium sulfate
  • alkali chlorides such as sodium chloride and potassium chloride.
  • a molten salt obtained by mixing 1 to 10% by mass of potassium carbonate with potassium nitrate can be used. In this case, it may be used in the first chemical strengthening step, or may be used after the second chemical strengthening step.
  • the glass used for producing the chemically strengthened glass of the present invention may be a glass washed after being treated with a molten salt in which sodium nitrate and potassium nitrate are mixed.
  • the glass before or after chemical strengthening may be etched with acid or alkali.
  • acid etching an aqueous solution containing halogen, nitric acid, sulfuric acid, a mixed aqueous solution thereof or the like can be used.
  • an aqueous solution containing halogen can be used, and an aqueous hydrogen fluoride solution is preferable. It is preferable to remove about 1 to 20 ⁇ m from one surface of the glass surface by etching. In consideration of this etching amount, the thickness of the glass before chemical strengthening may be determined.
  • the surface roughness of the chemically tempered glass is preferably 0.3 nm to 10 ⁇ m from the viewpoint of slipperiness that the root mean square roughness Rq is rough as an index other than the arithmetic average roughness Ra.
  • the maximum height roughness Rz is preferably 0.5 nm to 10 ⁇ m from the viewpoint of slipperiness, which is rough. From the viewpoint of slipperiness that the maximum cross-sectional height roughness Rt is rough, 0.5 nm to 5 ⁇ m is preferable.
  • the maximum peak height roughness Rp is preferably 0.3 nm to 5 ⁇ m from the viewpoint of slipperiness.
  • the maximum valley depth roughness Rv is preferably 0.3 nm to 5 ⁇ m from the viewpoint of slipperiness, which is rough.
  • the average length roughness Rsm is preferably 0.3 nm to 10 ⁇ m from the viewpoint of slipperiness.
  • the kurtosis roughness Rku is preferably 1 or more and 30 or less from the viewpoint of touch.
  • the skewness roughness Rsk is preferably ⁇ 1 or more and 1 or less from the viewpoint of uniformity such as visibility and touch.
  • the Vickers hardness is preferably 3500 N / mm 2 or more and 10,000 N / mm 2 or less.
  • the Vickers hardness is 3500 N / mm 2 or more, the chemically strengthened glass is hardly damaged.
  • the Vickers hardness is 10000 N / mm 2 or less, both the high hardness of the chemically strengthened glass and the ease of processing can be achieved, and the surface accuracy can be ensured when the area is increased.
  • 3750N / mm 2 or more 9000 N / mm 2 more preferably less, 4000 N / mm 2 or more 8500N / mm 2 or less is particularly preferred.
  • the Vickers hardness can be measured by a Vickers hardness test described in, for example, Japanese Industrial Standards JIS Z 2244 (2009).
  • the Young's modulus is preferably 40 GPa or more and 150 GPa or less.
  • the Young's modulus is 40 GPa or more, sufficient strength can be secured.
  • the Young's modulus is set to 150 GPa or less, both strength and glass workability (particularly polishing workability) can be achieved.
  • the Young's modulus is more preferably 45 GPa or more and 140 GPa or less, and particularly preferably 50 GPa or more and 130 GPa or less.
  • chemically tempered glass of the present invention is used as a cover member for fingerprint authentication sensor, it is preferable area of the region facing the sensing portion of the fingerprint authentication sensor is 60 mm 2 or more 41000Mm 2 or less.
  • sensing part facing area is, for example, the area of the cover member 33 as shown in FIG. 2A, and the sensing part facing area is 60 mm 2 or more. By doing so, erroneous recognition due to the small sensor area can be suppressed.
  • sensing area facing area is 41000 mm 2 or less, it is possible to suppress the sensing sensitivity from decreasing due to the parasitic capacitance in the area where the finger is not in contact, and to easily align the surface accuracy, thereby reducing misrecognition during sensing. Can do.
  • sensing portion facing area is more preferably 80 mm 2 or more 40500Mm 2 or less, particularly preferably 100 mm 2 or more 40000 mm 2 or less.
  • the value A s / E obtained by dividing the sensing portion opposing area A s Young's modulus E is, 1.5 ⁇ 10 -7 m 2 / GPa to 1.4 It is preferably not more than ⁇ 10 ⁇ 2 m 2 / GPa.
  • a s / E 1.5 ⁇ 10 -7 m 2 / GPa or more, edge chipping is improved workability is less likely to occur.
  • a s / E is set to 1.4 ⁇ 10 ⁇ 2 m 2 / GPa or less, it is possible to prevent deterioration of mechanical characteristics and ensure strength.
  • a s / E is, 5.0 ⁇ 10 -7 m, more preferably at 2 / GPa or more 1.0 ⁇ 10 -2 m 2 / GPa or less, 1.0 ⁇ 10 -6 m 2 / GPa It is particularly preferably 5.0 ⁇ 10 ⁇ 3 m 2 / GPa or less.
  • the chemically strengthened glass of the present invention may be a film-bonded chemically strengthened glass by sticking a resin film on at least one surface.
  • the present invention is a thin chemically strengthened glass with a small warp, it is assumed that the glass is broken depending on the application. In that case, by sticking the resin film, it is possible to obtain effects such as preventing the broken glass pieces from being scattered and preventing the glass from being damaged in the first place.
  • a resin having functionality anti-scattering property, antifouling property, adhesiveness
  • optical properties antiglare property, antireflection property, polarizing property
  • the chemically strengthened glass of the present invention Since the chemically strengthened glass of the present invention has strength and is thin, it can be used in place of the thick glass used in the conventional laminated glass to reduce the weight of the laminated glass. Thereby, for example, when it is included in the interior member for a vehicle, the effect of reducing the load on the vehicle and improving the fuel efficiency can be obtained. Moreover, since the chemically strengthened glass of the present invention has a small warpage, it is difficult to produce defects such as voids when producing laminated glass, and laminated glass can be produced efficiently.
  • both surfaces of this glass plate were mirror-finished so that the thickness was 100 ⁇ m, 150 ⁇ m, 200 ⁇ m, 250 ⁇ m, and 300 ⁇ m.
  • Examples 1 to 5 are examples, and examples 6 to 9 are comparative examples.
  • Example 1 The first chemically strengthened treatment and the second chemically strengthened treatment were performed on the prepared glass plates having a thickness of 100 ⁇ m to obtain the chemically strengthened glass of Example 1.
  • potassium nitrate and sodium nitrate were used. It adjusted to the cup made from SUS so that potassium nitrate might be 60% by mass, and it heated to 450 degreeC with the mantle heater, and prepared the molten salt of potassium nitrate. And after pre-heating the 100-micrometer-thick plate glass to 400 degreeC, it immersed in molten salt for 15 hours, ion exchange was implemented, and the 1st chemical strengthening process was performed by cooling to room temperature vicinity. The obtained chemically strengthened glass was washed with water and dried.
  • potassium nitrate KNO 3
  • KNO 3 potassium nitrate
  • the plate glass subjected to the first chemical strengthening treatment was preheated to 350 ° C., then immersed in a molten salt for 10 minutes to perform ion exchange, and then cooled to near room temperature, thereby performing the second chemical strengthening treatment.
  • the obtained chemically strengthened glass was washed with water and dried.
  • Example 2 to 5 glass plates having thicknesses of 150 ⁇ m, 200 ⁇ m, 250 ⁇ m, and 300 ⁇ m were processed in the same procedure and conditions as in Example 1 to obtain chemically strengthened glass.
  • Example 6 to 9 the glass plates having thicknesses of 100 ⁇ m, 150 ⁇ m, 200 ⁇ m, and 250 ⁇ m were immersed in molten salt at 425 ° C. for 24 hours in the first chemical strengthening treatment, and then continuously increased to 450 ° C.
  • a chemically tempered glass was obtained by carrying out the treatment in the same procedure as in Example 1 except that it was further heated for 4 hours and not subjected to the second chemical tempering treatment.
  • the stress value (unit: MPa) when the glass depth from the outermost surface was 0 ⁇ m was defined as the compressive stress (CS 0 ) of the outermost layer on one main surface of the chemically strengthened glass. Further, the glass depth (unit: ⁇ m) at which the stress value becomes 0 MPa in the glass was defined as the depth (DOL 1 ) of the compressive stress layer on the one main surface side. Furthermore, a half value (HM_CS 0 , unit is MPa) of the stress value corresponding to CS 0 was obtained, and the glass depth corresponding to HM_CS 0 was defined as DOL HM (unit: ⁇ m).
  • a BB cross section was selected as a position for evaluating warpage.
  • the BB cross section is not limited to a specific position, but here it is a cross section passing through the center of gravity of the glass.
  • an upward convex shape as shown in FIG. 3B or a downward convex shape as shown in FIG. 3C is obtained.
  • any surface of the glass substrate was placed on the holding portion as the lower surface, and cross-sectional shape data was obtained using a laser displacement meter.
  • the point where the sign of the slope of the tangent changes is the origin O
  • the unit of y and x is ⁇ m
  • the unit of the secondary term coefficient a is ⁇ m ⁇ 1 .
  • the average composite capacity C 1 in the 50 ⁇ m chemically strengthened region has the following relationship when the composite capacity in the unstrengthened region is C 2 and the composite capacity of the entire chemically strengthened glass is C 0 .
  • C 0 C 1 ⁇ C 2 / (C 1 + C 2 ) (X)
  • the relative dielectric constant ⁇ has the following relationship with respect to the combined capacitance C and the thickness t.
  • ⁇ k C k / t k (Y)
  • k 0, 1, 2
  • the formula (X), formula (Y) reference example Based on S, CS of Examples 1-9, DOL, CS 0 , DOL 1 , S, and the dielectric constant ⁇ 0 of Examples 1-9 and ⁇ ( ⁇ 2 ⁇ 0 ) / ⁇ 2 ⁇ ⁇ 100
  • the reduction rate (%) of the relative dielectric constant was calculated.
  • FIG. 4 shows the result of creating a logarithmic graph by plotting ⁇ S / t 2 in Table 1 on the horizontal axis and the quadratic coefficient a on the vertical axis.
  • ⁇ S / t 2 was 4 ⁇ 10 ⁇ 3 MPa / ⁇ m or less, and the secondary term coefficient a was 1.0 ⁇ 10 ⁇ 7 ⁇ m ⁇ 1 or less. It was found that warping was suppressed even after strengthening. On the other hand, in Examples 6 to 9, ⁇ S / t 2 exceeded 4 ⁇ 10 ⁇ 3 MPa / ⁇ m, the second-order coefficient a exceeded 1.0 ⁇ 10 ⁇ 7 ⁇ m ⁇ 1, and it was found that warpage was not suppressed. .
  • DOL HM / DOL 1 was 0.05 or more and 0.4 or less, but in Examples 6 to 9, DOL HM / DOL 1 did not satisfy the above conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

The present invention provides a chemically strengthened glass the warpage of which is suppressed as much as possible. The chemically strengthened glass according to the present invention is characterized in that the thickness thereof is smaller than 1000 µm and that a compressive stress, the depth of a compressive stress layer, and the thickness of the chemically strengthened glass satisfy a specific relational expression.

Description

化学強化ガラスおよび化学強化ガラスの製造方法Chemically tempered glass and method for producing chemically tempered glass
 本発明は、化学強化ガラスおよび化学強化ガラスの製造方法に関する。 The present invention relates to a chemically strengthened glass and a method for producing the chemically strengthened glass.
 近年、携帯電話や携帯情報端末(Personal Digital Assistant、PDA)等のパネルディスプレイ装置において、ディスプレイの保護や美観を高めるために、カバーガラスがディスプレイの前面に配置されている。このようなパネルディスプレイ装置に対しては、軽量化および薄型化が要求されており、カバーガラスも薄くすることが要求されている。 In recent years, in a panel display device such as a mobile phone or a personal digital assistant (Personal Digital Assistant, PDA), a cover glass is disposed on the front surface of the display in order to enhance display protection and aesthetics. Such panel display devices are required to be light and thin, and the cover glass is also required to be thin.
 しかしながら、カバーガラスを薄くすると、強度が低下し、使用中や携帯中の落下等による衝撃でカバーガラス自身が割れてしまうことがあり、ディスプレイを保護するという本来の役割を果たせなくなるという問題があった。このため従来のカバーガラスでは、ガラス板を化学強化し表面に圧縮応力層を形成して耐衝撃性を高めていた(特許文献1)。 However, if the cover glass is made thinner, the strength decreases, and the cover glass itself may break due to an impact caused by dropping while in use or while being carried, so that the original function of protecting the display cannot be performed. It was. For this reason, in the conventional cover glass, the glass plate was chemically strengthened and the compression stress layer was formed on the surface, and the impact resistance was improved (patent document 1).
国際公開第2012/043482号International Publication No. 2012/043482
 しかしながら、特許文献1に記載の化学強化の方法では、耐衝撃性は高くなるものの薄いガラスほどガラスが反ることが課題となっている。 However, the chemical strengthening method described in Patent Document 1 has a problem that the glass is warped as the glass becomes thinner although the impact resistance is increased.
 本発明は、反りが極力抑制された化学強化ガラスおよび化学強化ガラスの製造方法を提供することにある。 The present invention is to provide a chemically strengthened glass in which warpage is suppressed as much as possible and a method for producing the chemically strengthened glass.
 本発明の化学強化ガラスは、2つの主面を有する化学強化ガラスであって、前記化学強化ガラスの厚さが1000μm未満であり、以下の式(1)および式(2)を満たすことを特徴とする。
  ΔS/t≦4×10-3(MPa/μm)…(1)
  0.05≦DOLHM/DOL≦0.4…(2)
 ここで、
  ΔS=S×0.015(MPa・μm)…(3)
  S=(CS+HM_CS)×DOLHM×0.5(MPa・μm)…(4)
   CS:一方の主面における最表層の圧縮応力(MPa)
   HM_CS:CSの半分の圧縮応力(MPa)
   DOL:前記一方の主面側の圧縮応力層の深さ(μm)
   DOLHM:HM_CSに対応する圧縮応力層の深さ(μm)
   t:化学強化ガラスの厚さ(μm)
The chemically tempered glass of the present invention is a chemically tempered glass having two main surfaces, wherein the chemically tempered glass has a thickness of less than 1000 μm and satisfies the following formulas (1) and (2): And
ΔS / t 2 ≦ 4 × 10 −3 (MPa / μm) (1)
0.05 ≦ DOL HM / DOL 1 ≦ 0.4 (2)
here,
ΔS = S × 0.015 (MPa · μm) (3)
S = (CS 0 + HM_CS 0 ) × DOL HM × 0.5 (MPa · μm) (4)
CS 0 : compressive stress (MPa) of the outermost layer on one main surface
HM_CS 0 : half the compressive stress of CS 0 (MPa)
DOL 1 : depth (μm) of the compressive stress layer on the one main surface side
DOL HM : Depth of compressive stress layer corresponding to HM_CS 0 (μm)
t: thickness of chemically strengthened glass (μm)
 本発明の化学強化ガラスでは、前記DOLが15μm以上であることが好ましい。 In the chemically strengthened glass of the present invention, the DOL 1 is preferably 15 μm or more.
 本発明の化学強化ガラスでは、比誘電率が7.5以上であることが好ましい。 In the chemically strengthened glass of the present invention, the relative dielectric constant is preferably 7.5 or more.
 本発明の化学強化ガラスでは、以下の式(5)を満たすことが好ましい。
  (ε-ε)/ε≦0.05…(5)
   ε:化学強化ガラスの未強化領域の比誘電率
   ε:化学強化ガラス全体の比誘電率
In the chemically strengthened glass of the present invention, it is preferable to satisfy the following formula (5).
2 −ε 0 ) / ε 2 ≦ 0.05 (5)
ε 2 : relative permittivity of unstrengthened region of chemically strengthened glass ε 0 : relative permittivity of the entire chemically strengthened glass
 本発明の化学強化ガラスでは、厚さが400μm未満であることが好ましい。 In the chemically strengthened glass of the present invention, the thickness is preferably less than 400 μm.
 本発明の化学強化ガラスは、2つの主面を有する化学強化ガラスであって、厚さが300μm以下であり、厚さ方向断面視で前記2つの主面の面方向の位置と厚さ方向の変位との関係を二次関数で近似した際、前記二次関数の二次項係数の絶対値aが1.0×10-7μm-1以下となることを特徴とする。 The chemically tempered glass of the present invention is a chemically tempered glass having two main surfaces, and has a thickness of 300 μm or less, and the position in the surface direction and the thickness direction of the two main surfaces in a sectional view in the thickness direction. When the relationship with the displacement is approximated by a quadratic function, the absolute value a of the quadratic term coefficient of the quadratic function is 1.0 × 10 −7 μm −1 or less.
 本発明のセンサユニットは、センサと、上述の化学強化ガラスとを備えている。 The sensor unit of the present invention includes a sensor and the above-described chemically tempered glass.
 本発明の携帯機器は、上述のセンサユニットを備えている。 The portable device of the present invention includes the sensor unit described above.
 本発明の化学強化ガラスの製造方法は、以下の工程(I)~(III)を順次含み、得られる化学強化ガラスの一方の主面側の圧縮応力層の深さDOLが15μm以上であり、一方の主面最表層の圧縮応力CSが500MPa以上であり、かつ厚さが1000μm未満であることを特徴とする。
(I)ガラスをイオン交換処理することにより、ガラス表面に圧縮応力層を形成する第1の化学強化工程
(II)ガラスをガラス転移点より50℃以上低い温度で加熱処理する加熱工程
(III)ガラスをイオン交換処理することにより、ガラス表面に圧縮応力層をさらに形成する第2の化学強化工程
The method for producing chemically strengthened glass of the present invention includes the following steps (I) to (III) in sequence, and the depth DOL 1 of the compressive stress layer on one main surface side of the obtained chemically strengthened glass is 15 μm or more. , compressive stress CS 0 the one main surface outermost layer is not less than 500 MPa, and a thickness is equal to or less than 1000 .mu.m.
(I) First chemical strengthening step for forming a compressive stress layer on the glass surface by subjecting the glass to ion exchange treatment (II) Heating step for heating the glass at a temperature lower by 50 ° C. or more than the glass transition point (III) Second chemical strengthening step of further forming a compressive stress layer on the glass surface by subjecting the glass to ion exchange treatment
 本発明の化学強化ガラスの製造方法は、工程(I)および(III)におけるイオン交換処理が、ガラス転移点より50℃以上低い温度における処理であることが好ましい。 In the method for producing chemically strengthened glass of the present invention, the ion exchange treatment in steps (I) and (III) is preferably treatment at a temperature lower by 50 ° C. or more than the glass transition point.
 本発明の化学強化ガラスの製造方法は、得られる化学強化ガラスの圧縮応力層の深さDOLおよび主面最表層の圧縮応力CSの半分である位置に対応する圧縮応力層の深さDOLHMが下記式(2)を満たすことが好ましい。
  0.05≦DOLHM/DOL≦0.4…(2)
The method for producing chemically tempered glass of the present invention is such that the compressive stress layer depth DOL corresponding to a position which is half of the compressive stress layer depth DOL 1 of the obtained chemically tempered glass and the compressive stress CS 0 of the outermost surface of the main surface. It is preferable that HM satisfies the following formula (2).
0.05 ≦ DOL HM / DOL 1 ≦ 0.4 (2)
 本発明によれば、反りが極力抑制された化学強化ガラスを提供できる。 According to the present invention, it is possible to provide a chemically strengthened glass in which warpage is suppressed as much as possible.
図1は、化学強化ガラスの圧縮応力深さと圧縮応力の関係を示す図である。FIG. 1 is a diagram showing the relationship between the compressive stress depth and compressive stress of chemically strengthened glass. 図2(A)および(B)は、本実施形態に係る化学強化ガラス(カバー部材)を用いたセンサユニットを有する携帯機器を示す図であって、図2(A)は斜視図、図2(B)は断面図である。2A and 2B are views showing a portable device having a sensor unit using the chemically strengthened glass (cover member) according to this embodiment, and FIG. 2A is a perspective view, FIG. (B) is a sectional view. 図3(A)~(C)は、化学強化後のガラスを示す図であって、図3(A)は斜視図、図3(B)は図3(A)のB-B断面図の一例、図3(C)は図3(A)のB-B断面図の他の例である。3A to 3C are views showing the glass after chemical strengthening, in which FIG. 3A is a perspective view, and FIG. 3B is a cross-sectional view taken along line BB in FIG. 3A. For example, FIG. 3C is another example of a cross-sectional view taken along the line BB in FIG. 図4は、ΔS/tと、化学強化ガラスの断面形状を二次関数で近似した場合の二次項係数の絶対値aとの関係を示す図である。FIG. 4 is a diagram showing the relationship between ΔS / t 2 and the absolute value a of the quadratic term coefficient when the cross-sectional shape of the chemically strengthened glass is approximated by a quadratic function.
[実施形態]
 以下、本発明の実施形態について図面を参照して説明する。なお、本明細書において「~」とはその下限の値以上、その上限の値以下であることを意味する。
[Embodiment]
Embodiments of the present invention will be described below with reference to the drawings. In the present specification, “to” means not less than the lower limit value and not more than the upper limit value.
〔化学強化ガラスの構成〕
 まず、化学強化ガラスの構成について説明する。本実施形態の化学強化ガラスは、2つの主面を有する板状の化学強化ガラスであって、化学強化ガラスの厚さが1000μm未満であり、以下の式(1)および式(2)を満たす。
  ΔS/t≦4×10-3(MPa/μm)…(1)
  0.05≦DOLHM/DOL≦0.4…(2)
 ここで、
  ΔS=S×0.015(MPa・μm)…(3)
  S=(CS+HM_CS)×DOLHM×0.5(MPa・μm)…(4)
   CS:一方の主面における最表層の圧縮応力(MPa)
   HM_CS:CSの半分の圧縮応力(MPa)
   DOL:前記一方の主面側の圧縮応力層の深さ(μm)
   DOLHM:HM_CSに対応する圧縮応力層の深さ(μm)
   t:化学強化ガラスの厚さ(μm)
[Composition of chemically strengthened glass]
First, the structure of chemically strengthened glass will be described. The chemically strengthened glass of the present embodiment is a plate-shaped chemically strengthened glass having two main surfaces, and the thickness of the chemically strengthened glass is less than 1000 μm, and satisfies the following formulas (1) and (2): .
ΔS / t 2 ≦ 4 × 10 −3 (MPa / μm) (1)
0.05 ≦ DOL HM / DOL 1 ≦ 0.4 (2)
here,
ΔS = S × 0.015 (MPa · μm) (3)
S = (CS 0 + HM_CS 0 ) × DOL HM × 0.5 (MPa · μm) (4)
CS 0 : compressive stress (MPa) of the outermost layer on one main surface
HM_CS 0 : half the compressive stress of CS 0 (MPa)
DOL 1 : depth (μm) of the compressive stress layer on the one main surface side
DOL HM : Depth of compressive stress layer corresponding to HM_CS 0 (μm)
t: thickness of chemically strengthened glass (μm)
 上記条件を満たす化学強化ガラスは、厚さが300μm以下の場合、厚さ方向断面視で2つの主面の面方向の位置と、厚さ方向の変位との関係を二次関数で近似した際、前記二次関数の二次項係数の絶対値aが1.0×10-7μm-1以下となる。 When the thickness of the chemically strengthened glass satisfying the above conditions is 300 μm or less, when the relation between the position in the surface direction of the two main surfaces and the displacement in the thickness direction is approximated by a quadratic function in a sectional view in the thickness direction The absolute value a of the quadratic term coefficient of the quadratic function is 1.0 × 10 −7 μm −1 or less.
 以下、式(1)および式(2)の技術的意義について、図1を参照して説明する。 Hereinafter, the technical significance of the equations (1) and (2) will be described with reference to FIG.
 化学強化ガラスの表面には圧縮応力層が形成されているため、圧縮応力深さDOL(Depth Of Layer)を横軸に、DOLに対応する圧縮応力値CS(Compressive Stress)を縦軸にとると、DOLとCSの関係は図1に示す曲線Aのようになる。 Since a compressive stress layer is formed on the surface of the chemically strengthened glass, the compressive stress depth DOL (Depth Of Layer) is plotted on the horizontal axis, and the compressive stress value CS (Compressive Stress) corresponding to DOL is plotted on the vertical axis. The relationship between DOL and CS is as shown by curve A in FIG.
 図1において、縦軸、横軸および曲線Aで囲まれた領域の面積、即ち曲線Aの積分値は化学強化ガラスの一方の主面に蓄えられた圧縮応力値の総和と相関があると考えられる。 In FIG. 1, the area of the region surrounded by the vertical axis, the horizontal axis, and the curve A, that is, the integrated value of the curve A is considered to be correlated with the sum of the compressive stress values stored on one main surface of the chemically strengthened glass. It is done.
 化学強化ガラスが反る原因の一つは、2つの主面間の圧縮応力値が異なることである。そこで、一方の主面最表層の圧縮応力(圧縮応力の最大値)をCSとした場合に、CSの半分の圧縮応力をHM_CSとし、一方の主面最表層からHM_CSに対応する深さDOLHMまでの積分値(図1の面積S)を、一方の主面の表面近傍の圧縮応力値として用いた。ただし、この際、図1の曲線Aを直線で近似した。 One cause of chemically tempered glass warping is that the compressive stress values between the two principal surfaces are different. Therefore, one major surface outermost layer of compressive stress (maximum value of compressive stress) when a CS 0, half of compressive stress CS 0 and HM_CS 0, corresponds from one main surface outermost layer to HM_CS 0 The integrated value up to the depth DOL HM (area S in FIG. 1) was used as the compressive stress value near the surface of one main surface. At this time, however, the curve A in FIG. 1 was approximated by a straight line.
 以上より図1の面積Sは、座標(0,0)、(DOLHM,0)、(DOLHM,HM_CS)、(0,CS)を頂点とする台形の面積となり、上記式(4)で求められる。 From the above, the area S in FIG. 1 is a trapezoidal area with the coordinates (0, 0), (DOL HM , 0), (DOL HM , HM_CS 0 ), and (0, CS 0 ) as vertices. ).
 次に、化学強化ガラスの2つの主面の圧縮応力値は、製造プロセス起因で生じる僅かな組成変動や冷却速度差等に起因して、通常1.5%程度の差を生じる。そのため、2つの主面間のSの差ΔSは、上記式(3)のように表される。 Next, the compressive stress values of the two main surfaces of the chemically strengthened glass usually have a difference of about 1.5% due to slight composition fluctuations and cooling rate differences caused by the manufacturing process. Therefore, the difference S of S between the two main surfaces is expressed by the above formula (3).
 また、化学強化ガラスの反り易さはガラス全体の厚さtにも影響を受けることを考慮に入れ、ΔSをtで除した値ΔS/tを規定した。このΔS/tが4×10-3(MPa/μm)以下である場合に、化学強化ガラスの反りが抑制される。 Further, warpage easily the chemically tempered glass into account also be affected to the thickness t of the entire glass was defined the value [Delta] S / t 2 divided by t 2 and [Delta] S. When ΔS / t 2 is 4 × 10 −3 (MPa / μm) or less, warpage of the chemically strengthened glass is suppressed.
 以上が式(1)の根拠である。 The above is the basis of Equation (1).
 なお、式(1)のΔS/tは、2つの主面のどちらを用いて式(4)のSを計算するかによって異なるが、2つの主面のうち一方が式(1)を満たしていなくても、他方が式(1)を満たしていれば本発明に含まれる。化学強化ガラスの反りをさらに抑制するにはΔS/tが3.5×10-3(MPa/μm)以下が好ましく、3×10-3(MPa/μm)以下がより好ましい。 Note that ΔS / t 2 in equation (1) varies depending on which of the two principal surfaces is used to calculate S in equation (4), but one of the two principal surfaces satisfies equation (1). Even if not, it is included in the present invention if the other satisfies the formula (1). In order to further suppress the warp of the chemically strengthened glass, ΔS / t 2 is preferably 3.5 × 10 −3 (MPa / μm) or less, and more preferably 3 × 10 −3 (MPa / μm) or less.
 また、式(1)を満たすためにはSを小さくすることが好ましい。しかし、特許文献1のように、1段階の化学強化のみを行う場合、CS、DOLをなるべく大きくしようとすると、曲線aのような特性となり、Sが大きくなってしまう。 In order to satisfy the formula (1), it is preferable to reduce S. However, as in Patent Document 1, when performing only the chemical strengthening of one step, CS, when you try to as large as possible DOL, it becomes a characteristic such as curve a 1, S is increased.
 また、Sを小さく、かつDOLを大きくしようとすると、曲線aのような特性となり、CSが小さくなってしまう。また、Sを小さく、かつCSを大きくしようとすると、曲線aのような特性となり、DOLが小さくなってしまう。 Further, if S is made small and DOL is made large, the characteristic becomes a curve a 2 and CS becomes small. Also, small S, and when trying to enlarge the CS, it becomes a characteristic such as curve a 3, DOL is reduced.
 そこで、検討を行った結果、(2)の式を満たすように2段階以上の化学強化を行い、原点側に屈曲した曲線Aのような特性とすることで、1段階の化学強化の場合よりCS、DOLを維持しつつ、Sを小さくできることを知見した。これにより化学強化ガラスの反りが抑制される。 Therefore, as a result of the examination, by performing chemical strengthening in two or more stages so as to satisfy the expression (2), and by making the characteristic like the curve A bent toward the origin side, it is more than in the case of one-step chemical strengthening. It was found that S can be reduced while maintaining CS and DOL. Thereby, the curvature of chemically strengthened glass is suppressed.
 以上が式(2)の根拠である。 The above is the basis for Equation (2).
 なお、CS、DOLを維持しつつSをなるべく小さくするという観点からは、式(2)におけるDOLHM/DOLは好ましくは0.35以下、より好ましくは0.3以下である。 In addition, from the viewpoint of making S as small as possible while maintaining CS and DOL, DOL HM / DOL 1 in Formula (2) is preferably 0.35 or less, and more preferably 0.3 or less.
 主面最表層の圧縮応力(圧縮応力の最大値)CSの下限値は、500MPaであることが好ましく、550MPaがより好ましく、600MPaがさらに好ましい。これはガラスの面強度向上のためである。CSの上限値は、1300MPaであることが好ましく、1200MPaがより好ましく、1100MPaがさらに好ましい。これはいわゆるガラスの「自爆割れ」を防ぐためである。 The lower limit value of the compressive stress (maximum value of compressive stress) CS 0 of the outermost surface of the main surface is preferably 500 MPa, more preferably 550 MPa, and further preferably 600 MPa. This is to improve the surface strength of the glass. The upper limit of CS 0 is preferably 1300 MPa, more preferably 1200 MPa, and even more preferably 1100 MPa. This is to prevent so-called “self-destructive cracking” of the glass.
 本実施形態の化学強化ガラスでは、主面圧縮応力層の深さDOLは、15μm以上であることが好ましい。これはガラス表面の耐衝撃性を高める観点からDOLの値が大きい方が好ましいためである。DOLは、20μm以上がより好ましく、25μm以上がさらに好ましく、30μm以上が特に好ましい。 In the chemically strengthened glass of the present embodiment, the depth DOL 1 of the principal surface compressive stress layer is preferably 15 μm or more. This is because a larger value of DOL 1 is preferable from the viewpoint of enhancing the impact resistance of the glass surface. DOL 1 is more preferably 20 μm or more, further preferably 25 μm or more, and particularly preferably 30 μm or more.
 DOLの上限値は、化学強化ガラスの厚さによるが100μmであることが好ましく、90μmがより好ましく、85μmがさらに好ましく、80μmが特に好ましい。これは強化時間が長くなることに起因する応力緩和を防ぐためである。 The upper limit of DOL 1 is preferably 100 μm, more preferably 90 μm, further preferably 85 μm, and particularly preferably 80 μm, although it depends on the thickness of the chemically strengthened glass. This is to prevent stress relaxation resulting from a long strengthening time.
 本実施形態の化学強化ガラスでは、比誘電率が7.5以上であることが好ましい。比誘電率が7.5以上であることにより、反りが極力抑制され、かつ、センサ上に設けられた場合でも十分なセンシング感度が得られる化学強化ガラスを提供できる。比誘電率は、7.8以上がより好ましく、8以上がさらに好ましい。 In the chemically tempered glass of the present embodiment, the relative dielectric constant is preferably 7.5 or more. When the relative dielectric constant is 7.5 or more, it is possible to provide a chemically strengthened glass in which warpage is suppressed as much as possible and sufficient sensing sensitivity can be obtained even when provided on the sensor. The relative dielectric constant is more preferably 7.8 or more, and further preferably 8 or more.
 また、化学強化ガラスは、化学強化により比誘電率が低下してしまう。上記のように十分なセンシング感度を得るためには、比誘電率の低下を抑制することが好ましい。そこで、本実施形態の化学強化ガラスでは、以下の式(5)を満たすことが好ましい。
  (ε-ε)/ε≦0.05…(5)
   ε:化学強化ガラスの未強化領域の比誘電率
   ε:化学強化ガラス全体の比誘電率
In addition, the specific dielectric constant of chemically tempered glass decreases due to chemical strengthening. In order to obtain sufficient sensing sensitivity as described above, it is preferable to suppress a decrease in relative dielectric constant. Therefore, it is preferable that the chemically tempered glass of the present embodiment satisfies the following formula (5).
2 −ε 0 ) / ε 2 ≦ 0.05 (5)
ε 2 : relative permittivity of unstrengthened region of chemically strengthened glass ε 0 : relative permittivity of the entire chemically strengthened glass
 前記式(5)を満たすことにより、化学強化による比誘電率の低下が抑制された化学強化ガラスを提供できる。なお、比誘電率εは、1MHzの周波数における値であり、化学強化ガラスの両面に電極を設けて構成したコンデンサの静電容量を測定することによって得られる。ここで、未強化領域の比誘電率として化学強化前のガラスの比誘電率を用いてもよい。 By satisfying the formula (5), it is possible to provide a chemically tempered glass in which a decrease in the dielectric constant due to chemical strengthening is suppressed. The relative dielectric constant ε is a value at a frequency of 1 MHz, and can be obtained by measuring the capacitance of a capacitor configured by providing electrodes on both surfaces of chemically strengthened glass. Here, the relative dielectric constant of the glass before chemical strengthening may be used as the relative dielectric constant of the unstrengthened region.
 本実施形態の化学強化ガラスでは、厚さが400μm未満であることが好ましい。厚さが400μm未満であることにより、化学強化ガラスが用いられるユニットや機器の軽量化を図れる。 The chemically tempered glass of this embodiment preferably has a thickness of less than 400 μm. When the thickness is less than 400 μm, it is possible to reduce the weight of units and equipment in which chemically strengthened glass is used.
〔化学強化ガラスの製造方法〕
 次に、本実施形態の化学強化ガラスの製造方法について説明する。
[Method for producing chemically strengthened glass]
Next, the manufacturing method of the chemically strengthened glass of this embodiment is demonstrated.
 概略的には、まずガラスを準備し、図1に示すような曲線aに示す関係が得られる条件でまず化学強化を行い[(I)第1の化学強化工程]、次にガラスをガラス転移点より50℃以上低い温度で加熱処理する加熱工程[(II)加熱工程]の後、曲線aに示す関係が得られる条件で化学強化を行う[(III)第2の化学強化工程]ことが挙げられる。このような製法により、曲線aと曲線aとを重畳した曲線に相当する曲線Aのような関係の化学強化ガラスが得られる。 Schematically, firstly prepare the glass performs first chemical strengthening in the conditions is shown by the curve a 2 as shown in FIG. 1 is obtained [(I) the first chemical strengthening process, then glass Glass heating step of heating at a temperature lower 50 ° C. or more above the transition point after [(II) heating step, under the conditions relationship shown by the curve a 3 is obtained performing chemical strengthening [(III) the second chemical strengthening process] Can be mentioned. By such a manufacturing method, a chemically strengthened glass having a relationship like a curve A corresponding to a curve obtained by superimposing the curve a 2 and the curve a 3 is obtained.
 まず、使用する化学強化前のガラスの作製法を示す。化学強化前のガラスを構成する各成分の原料を所望の組成となるように調合し、ガラス溶融窯で加熱溶融する。次に、バブリング、撹拌、清澄剤の添加等によりガラスを均質化し、従来公知の成形法により所定の厚さのガラス板(化学強化前)に成形し、徐冷する。その後、成形したガラスを必要に応じて研削および研磨処理し、少なくとも2回の化学強化処理を行い、各化学強化処理後に洗浄して乾燥する。 First, the method for producing the glass before chemical strengthening to be used will be described. The raw materials of each component constituting the glass before chemical strengthening are prepared so as to have a desired composition, and heated and melted in a glass melting kiln. Next, the glass is homogenized by bubbling, stirring, adding a clarifying agent, etc., formed into a glass plate having a predetermined thickness (before chemical strengthening) by a conventionally known forming method, and slowly cooled. Thereafter, the molded glass is ground and polished as necessary, subjected to chemical strengthening treatment at least twice, washed and dried after each chemical strengthening treatment.
 (I)第1の化学強化工程
 ガラスをイオン交換処理することにより、ガラス表面に圧縮応力層を形成する第1の化学強化工程では、処理に供するガラスをそのガラス中に含まれるアルカリ金属イオン(例えば、ナトリウムイオン、または、リチウムイオン)よりイオン半径の大きなアルカリ金属イオンを含む溶融塩(例えば、カリウム塩、または、ナトリウム塩)とガラスの転移温度を超えない温度域で接触させる。
(I) 1st chemical strengthening process In the 1st chemical strengthening process of forming a compressive-stress layer in the glass surface by ion-exchange-treating glass, the alkali metal ion ( For example, a molten salt (for example, potassium salt or sodium salt) containing an alkali metal ion having an ionic radius larger than that of sodium ion or lithium ion is contacted in a temperature range not exceeding the glass transition temperature.
 そしてガラス中のアルカリ金属イオンとアルカリ金属塩のイオン半径の大きなアルカリ金属塩とをイオン交換させ、アルカリ金属イオンの占有面積の差によりガラス表面に圧縮応力を発生させ圧縮応力層を形成する。ガラスを溶融塩と接触させる温度域はガラスの転移温度を超えない温度域であればよいが、ガラス転移点より50℃以下であることが好ましい。これによりガラスの応力緩和を防げる。 Then, an alkali metal ion in the glass and an alkali metal salt having a large ion radius of the alkali metal salt are ion-exchanged, and a compressive stress is generated on the glass surface due to a difference in the area occupied by the alkali metal ion to form a compressive stress layer. Although the temperature range which makes glass contact with molten salt should just be a temperature range which does not exceed the transition temperature of glass, it is preferable that it is 50 degrees C or less from a glass transition point. Thereby, stress relaxation of the glass can be prevented.
 化学強化処理において、ガラスとアルカリ金属イオンを含む溶融塩とを接触させる処理温度および処理時間は、ガラスおよび溶融塩の組成に応じて適宜調整できる。溶融塩の加熱温度は、通常350℃以上が好ましく、370℃以上がより好ましい。また、通常500℃以下が好ましく、450℃以下がより好ましい。 In the chemical strengthening treatment, the treatment temperature and treatment time for bringing the glass into contact with the molten salt containing alkali metal ions can be appropriately adjusted according to the composition of the glass and the molten salt. The heating temperature of the molten salt is usually preferably 350 ° C or higher and more preferably 370 ° C or higher. Moreover, 500 degrees C or less is preferable normally, and 450 degrees C or less is more preferable.
 溶融塩の加熱温度を350℃以上とすることにより、イオン交換速度の低下により化学強化が入りにくくなるのを防ぐ。また、500℃以下とすることにより溶融塩の分解・劣化を抑制できる。 By setting the heating temperature of the molten salt to 350 ° C. or higher, it is possible to prevent chemical strengthening from becoming difficult due to a decrease in ion exchange rate. Moreover, decomposition | disassembly and deterioration of molten salt can be suppressed by setting it as 500 degrees C or less.
 ガラスを溶融塩に接触させる処理時間は1回あたり、十分な圧縮応力を付与するためには、通常10分以上が好ましく、15分以上がより好ましい。また、長時間のイオン交換では、生産性が落ちるとともに、緩和により圧縮応力値が低下するため、通常20時間以下であり、16時間以下が好ましい。 The treatment time for bringing the glass into contact with the molten salt is usually preferably 10 minutes or more and more preferably 15 minutes or more in order to give sufficient compressive stress per time. Moreover, in long-time ion exchange, while productivity falls and a compressive-stress value falls by relaxation, it is 20 hours or less normally, and 16 hours or less are preferable.
 (II)加熱工程
 ガラスをガラス転移点より50℃以上低い温度で加熱処理する加熱工程では、工程(I)で得られたガラス表面に圧縮応力層を形成したガラスを加熱処理することにより、表面の圧縮応力層に存在するより大きなアルカリ金属イオン、例えば、カリウムイオンをガラスの表面からガラス内部に移動させる。
(II) Heating step In the heating step in which the glass is heat-treated at a temperature lower by 50 ° C. or more than the glass transition point, the surface of the glass obtained by forming a compressive stress layer on the glass surface obtained in step (I) is heat-treated. Larger alkali metal ions, such as potassium ions, present in the compressive stress layer of the glass are moved from the surface of the glass into the glass.
 ガラスを加熱処理する温度はガラス転移点より50℃以上、好ましくは70℃以上、より好ましくは100℃以上低い温度とする。これによりガラスの応力緩和を防げ、化学強化の抜けを抑制できる。 The temperature at which the glass is heat-treated is 50 ° C. or more, preferably 70 ° C. or more, more preferably 100 ° C. or more below the glass transition point. Thereby, stress relaxation of the glass can be prevented and the loss of chemical strengthening can be suppressed.
 ガラスの加熱処理時間は、加熱処理温度により適宜調整するが、通常30分~2000分であることが好ましく、30~300分であることがより好ましい。 The glass heat treatment time is appropriately adjusted depending on the heat treatment temperature, but is usually preferably 30 minutes to 2000 minutes, more preferably 30 minutes to 300 minutes.
 (III)第2の化学強化工程
 ガラスをイオン交換処理することにより、ガラス表面に圧縮応力層をさらに形成する第2の化学強化工程は、工程(II)で得られたガラスをイオン交換することにより、ガラス表面に圧縮応力層をさらに形成する工程である。工程(III)において再度イオン交換し、ガラス表面およびその内部に圧縮応力層を形成できる。
(III) 2nd chemical strengthening process The 2nd chemical strengthening process which forms further a compressive-stress layer in the glass surface by ion-exchange-treating glass ion-exchanges the glass obtained by process (II). This is a step of further forming a compressive stress layer on the glass surface. In the step (III), ion exchange can be performed again to form a compressive stress layer on the glass surface and inside thereof.
 工程(III)のイオン交換処理は工程(I)におけるイオン交換処理と同様の方法により実施してもよく、別の方法であってもよい。また別の溶融塩を使用してよい。 The ion exchange treatment in step (III) may be performed by the same method as the ion exchange treatment in step (I), or may be another method. Another molten salt may be used.
 本発明における工程(I)~(III)は、連続的な工程、例えばガラス板製造工程において連続的に移動するガラスリボンで順次実施してもよく、また非連続的にオンラインで実施してもよい。 Steps (I) to (III) in the present invention may be carried out sequentially with a continuous process, for example, with a glass ribbon that moves continuously in a glass plate production process, or may be carried out discontinuously on-line. Good.
 以上の方法により、上述の特性を有する化学強化ガラスを製造する。 By the above method, chemically strengthened glass having the above-mentioned characteristics is produced.
〔化学強化ガラスの作用効果〕
 化学強化ガラスを上記式(1)および式(2)を満たすように構成しているため、反りが極力抑制された化学強化ガラスを提供できる。
[Effects of chemically strengthened glass]
Since the chemically strengthened glass is configured to satisfy the above formulas (1) and (2), it is possible to provide a chemically strengthened glass in which the warpage is suppressed as much as possible.
〔化学強化ガラスを使用した携帯機器〕
 本発明の化学強化ガラスを、図2(A)および(B)に示すように、センサとしての静電容量方式の指紋認証用センサを備える携帯機器としてのスマートフォンに用いてもよい。
[Portable equipment using chemically strengthened glass]
As shown in FIGS. 2A and 2B, the chemically tempered glass of the present invention may be used in a smartphone as a portable device provided with a capacitive fingerprint authentication sensor as a sensor.
 図2(A)に示すように、スマートフォン30は、一面が開口した筐体32と、筐体32の開口部を塞ぐように設けられたカバー部材33とを備えている。筐体32内のカバー部材33に対向する位置には、指紋認証用センサなどのセンサ34と、図示しない表示素子とが配置されている。 As shown in FIG. 2 (A), the smartphone 30 includes a housing 32 that is open on one side, and a cover member 33 that is provided so as to close the opening of the housing 32. A sensor 34 such as a fingerprint authentication sensor and a display element (not shown) are arranged at a position facing the cover member 33 in the housing 32.
 カバー部材33は、本発明の化学強化ガラスにより構成されており、指Fが接近、または、接触することにより、その部位の静電容量が局所的に変化する。 The cover member 33 is made of the chemically tempered glass of the present invention, and when the finger F approaches or comes into contact, the capacitance of the part changes locally.
 指紋認証用センサ34は、図2(B)に示すように、基板35と、この基板35の上に所定の間隔を隔てて設けられた複数の電極36とを備え、カバー部材33の静電容量の変化から指紋を検出する。そして、この指紋認証用センサ34の電極36上にカバー部材33が設けられることで、センサユニットとしての指紋認証用センサユニット31が構成されている。なお、図2(B)には示されていないが、紙面に垂直な方向においても、基板35の上に複数の電極36が所定の間隔を隔てて設けられている。 As shown in FIG. 2B, the fingerprint authentication sensor 34 includes a substrate 35 and a plurality of electrodes 36 provided on the substrate 35 at a predetermined interval. Detect fingerprints from changes in capacity. The cover member 33 is provided on the electrode 36 of the fingerprint authentication sensor 34, whereby a fingerprint authentication sensor unit 31 as a sensor unit is configured. Although not shown in FIG. 2B, a plurality of electrodes 36 are provided at a predetermined interval on the substrate 35 also in a direction perpendicular to the paper surface.
 このようなセンサユニット31では、カバー部材33の上に指Fが接触すると、指Fの指紋の凹凸に応じて、指Fと電極36の間に電荷がたまる。ここで、指Fと電極36の間の距離が大きくなるほど、静電容量が小さくなり、たまる電荷量が少なくなる。したがって、指Fの谷(凹部)F1においては、その谷(凹部)F1と電極36の間の距離が大きいため、たまる電荷量は少なくなる。一方、指Fの山(凸部)F2においては、その山(凸部)F2と電極36の間の距離が小さいため、たまる電荷量は多くなる。 In such a sensor unit 31, when the finger F comes into contact with the cover member 33, electric charge is accumulated between the finger F and the electrode 36 according to the unevenness of the fingerprint of the finger F. Here, as the distance between the finger F and the electrode 36 increases, the capacitance decreases and the amount of accumulated charge decreases. Therefore, in the valley (concave portion) F1 of the finger F, the distance between the trough (concave portion) F1 and the electrode 36 is large, so that the amount of accumulated charge is small. On the other hand, in the peak (convex part) F2 of the finger F, the distance between the peak (convex part) F2 and the electrode 36 is small, so the amount of accumulated charge increases.
 このようにして発生する各点における電荷量を測定し、画像に変換することで、指紋の形状が画像として検出される。なお、検出にあたっては、カバー部材33の静電容量が変化すればよく、指Fがカバー部材33に接触しても、非接触であっても構わない。 The charge amount at each point generated in this way is measured and converted into an image, whereby the shape of the fingerprint is detected as an image. For detection, the capacitance of the cover member 33 may be changed, and the finger F may be in contact with the cover member 33 or may be non-contact.
 本発明のセンサとして、指紋認証用センサを例示したが、静電容量式のタッチセンサや超音波方式のセンサなどであってもよい。 Although a fingerprint authentication sensor has been exemplified as the sensor of the present invention, a capacitive touch sensor or an ultrasonic sensor may be used.
 本発明のセンサユニットを備えた機器としてスマートフォン等の携帯機器を例示したが、銀行の現金自動預け払い機、自動車などの輸送機のドアロックや起動スイッチ、車内用内装部材(例えば、ダッシュボード、センターコンソール、コンバイナ型ヘッドアップディスプレイ、ダッシュボードやリア、サイド、天井に設けられるディスプレイに使用するカバー部材といった非開口部に使用される部材)、建物内への入場管理等の個人認証装置といった装置であってもよい。ただし、指紋認証用センサは、特にスマートフォンや携帯電話、タブレット型パーソナルコンピュータ等の携帯機器類に好適に使用できる。 Although a mobile device such as a smartphone has been exemplified as a device provided with the sensor unit of the present invention, an automatic teller machine of a bank, a door lock or a start switch of a transport device such as an automobile, an interior member for a vehicle (for example, a dashboard, Center consoles, combiner-type head-up displays, non-opening parts such as covers used for dashboards, rear, side, and ceiling displays), devices such as personal authentication devices for entrance management in buildings, etc. It may be. However, the fingerprint authentication sensor can be suitably used particularly for portable devices such as smartphones, mobile phones, and tablet personal computers.
 本発明の化学強化ガラスをセンサのカバー部材として用いた場合を例示したが、センサを有さない機器のカバー部材や建材、加飾部材、耐擦傷用カバー部材などとして適用してもよい。さらに化学強化ガラスの少なくとも一方の主面に防眩層(AG層)、反射防止層(AR層)、耐指紋層(AFP層)などの表面処理などがなされていてもよい。 Although the case where the chemically tempered glass of the present invention is used as a sensor cover member is exemplified, it may be applied as a cover member, a building material, a decorative member, a scratch-resistant cover member, or the like of a device that does not have a sensor. Further, at least one main surface of the chemically strengthened glass may be subjected to surface treatment such as an antiglare layer (AG layer), an antireflection layer (AR layer), and an anti-fingerprint layer (AFP layer).
 本発明の化学強化ガラスをセンサ用カバー部材として使用する場合には、カバー部材の表面粗さが重要となるため、例えば算術平均粗さRaが1000nm以下であることが好ましい。Raの下限値は特に制限はない。また化学強化ガラスの一方の主面に加飾や隠蔽のための印刷層や樹脂層が形成されていてもよい。 When the chemically tempered glass of the present invention is used as a sensor cover member, the surface roughness of the cover member is important. For example, the arithmetic average roughness Ra is preferably 1000 nm or less. The lower limit of Ra is not particularly limited. Moreover, the printing layer and resin layer for decoration or concealment may be formed in one main surface of chemically strengthened glass.
 本発明の化学強化ガラスがセンサのカバー部材として用いられる場合、図2(B)に示す化学強化ガラスの厚さtは1.0mm(1000μm)未満であり、0.4mm(400μm)未満が好ましく、0.3mm(300μm)以下がより好ましい。本発明の化学強化ガラスは、強度を有しつつ軽量化を実現した化学強化ガラスであり、強度と軽量化とを兼ねたセンシング感度の良好なカバーガラスとして使用できる。 When the chemically strengthened glass of the present invention is used as a cover member for a sensor, the thickness t of the chemically strengthened glass shown in FIG. 2B is less than 1.0 mm (1000 μm), preferably less than 0.4 mm (400 μm). 0.3 mm (300 μm) or less is more preferable. The chemically tempered glass of the present invention is a chemically tempered glass having strength and realizing weight reduction, and can be used as a cover glass having good sensing sensitivity that combines strength and weight reduction.
[変形例]
 なお、本発明は上記実施形態にのみ限定されず、本発明の要旨を逸脱しない範囲内において種々の改良ならびに設計の変更等が可能であり、その他、本発明の実施の際の具体的な手順、及び構造等は本発明の目的を達成できる範囲で他の構造等としてもよい。
[Modification]
The present invention is not limited to the above embodiment, and various improvements and design changes can be made without departing from the gist of the present invention. Other specific procedures for implementing the present invention are also possible. The structure and the like may be other structures as long as the object of the present invention can be achieved.
 例えば、化学強化処理に供するガラスとしては、イオン半径の小さなアルカリイオン(例えば、イオン半径がカリウムより小さいアルカリ金属イオン、またはナトリウムより小さいアルカリ金属イオン)を含有するガラスを使用できる。このようなガラスは、表面圧縮応力を十分付与するとともに、圧縮応力層を短時間で深くできるようにするという観点から、SiO、Al、NaOおよびMgO、または、SiO、Al、LiOおよびMgOを含むことが好ましい。 For example, as the glass used for the chemical strengthening treatment, a glass containing an alkali ion having a small ionic radius (for example, an alkali metal ion having an ionic radius smaller than potassium or an alkali metal ion smaller than sodium) can be used. From the viewpoint of imparting sufficient surface compressive stress and allowing the compressive stress layer to be deepened in a short time, such glass has SiO 2 , Al 2 O 3 , Na 2 O and MgO, or SiO 2 , preferably contains al 2 O 3, Li 2 O and MgO.
 SiOは、ガラス骨格を形成する必須成分である。 SiO 2 is an essential component for forming a glass skeleton.
 NaOは、イオン交換処理において主としてカリウムイオンと置換されることによってガラスを化学強化するとともに、熱膨張係数を制御し、ガラスの高温粘度を低下させて溶融性や成形性を高める成分である。 Na 2 O is a component that chemically strengthens the glass by being mainly replaced with potassium ions in the ion exchange treatment, controls the thermal expansion coefficient, and lowers the high-temperature viscosity of the glass to increase the meltability and formability. .
 LiOは、イオン交換処理において主としてナトリウムイオンと置換されることによってガラスを化学強化するとともに、熱膨張係数を制御し、ガラスの高温粘度を低下させて溶融性や成形性を高める成分である。この場合、LiOは、酸化物基準で0.5モル%以上含むことが好ましい。 Li 2 O is a component that chemically strengthens the glass by being mainly replaced with sodium ions in the ion exchange treatment, controls the thermal expansion coefficient, and lowers the high-temperature viscosity of the glass to increase the meltability and formability. . In this case, Li 2 O is preferably contained in an amount of 0.5 mol% or more based on the oxide.
 Alは、ガラス転移点Tg、耐候性、ヤング率を高くする効果を有し、さらにガラス表面のイオン交換性能を向上させる成分である。 Al 2 O 3 is a component that has an effect of increasing the glass transition point Tg, weather resistance, and Young's modulus, and further improves the ion exchange performance of the glass surface.
 MgOは、ガラスを傷つきにくくするとともに、ガラスの溶解性を向上させる成分である。 MgO is a component that makes the glass difficult to damage and improves the solubility of the glass.
 ZrOは、ヤング率を向上させ、ガラスの化学的耐久性や硬さを向上させる成分であり、含有した方が好ましい場合がある。 ZrO 2 is a component that improves the Young's modulus and improves the chemical durability and hardness of the glass, and it may be preferably contained.
 化学強化処理に供するガラスとしては、例えば、以下の組成のガラスを使用できる。これらの組成は、本発明の化学強化条件に適した特性を有するため、好適に使用できる。
(i)酸化物基準のモル%で表示した組成が、SiOを50~80%、Alを2~25%、LiOを0~10%、NaOを2~18%、KOを0~10%、MgOを0~15%、CaOを0~5%およびZrOを0~5%を含むガラス
(ii)酸化物基準のモル%で表示した組成が、SiOを50~74%、Alを1~10%、NaOを6~14%、KOを3~11%、MgOを2~15%、CaOを0~6%およびZrOを0~5%含有し、SiOおよびAlの含有量の合計が75%以下、NaOおよびKOの含有量の合計が12~25%、MgOおよびCaOの含有量の合計が7~15%であるガラス
(iii)酸化物基準のモル%で表示した組成が、SiOを68~80%、Alを4~10%、NaOを5~15%、KOを0~1%、MgOを4~15%およびZrOを0~1%含有するガラス
(iv)酸化物基準のモル%で表示した組成が、SiOを67~75%、Alを0~4%、NaOを7~15%、KOを1~9%、MgOを6~14%およびZrOを0~1.5%含有し、SiOおよびAlの含有量の合計が71~75%、NaOおよびKOの含有量の合計が12~20%であり、CaOを含有する場合その含有量が1%未満であるガラス
(v)酸化物基準のモル%で表示した組成が、SiOを60~75%、Alを5~15%、MgOを0~12%、CaOを0~3%、ZrOを0~3%、LiOを10~20%、NaOを0~8%、KOを0~5%含有し、LiO、NaOおよびKOの含有量の合計ROが25%以下、LiOの含有量とROの比LiO/ROが0.5~1.0であるガラス
(vi)酸化物基準のモル%で表示した組成が、SiOを61~72%、Alを8~17%、LiOを6~18%、NaOを2~15%、KOを0~8%、MgOを0~6%、CaOを0~6%、TiOを0~4%、ZrOを0~2.5%含有し、LiO、NaOおよびKOの含有量の合計ROが15~25%、LiOの含有量とROの比LiO/ROが0.35~0.8、MgOおよびCaOの含有量の合計が0~9%であるガラス
As glass used for the chemical strengthening treatment, for example, glass having the following composition can be used. Since these compositions have characteristics suitable for the chemical strengthening conditions of the present invention, they can be suitably used.
(I) The composition expressed in mol% on the basis of oxide is 50 to 80% for SiO 2 , 2 to 25% for Al 2 O 3 , 0 to 10% for Li 2 O, and 2 to 18% for Na 2 O. A composition represented by mol% based on oxide of glass (ii) containing 0 to 10% of K 2 O, 0 to 15% of MgO, 0 to 5% of CaO and 0 to 5% of ZrO 2 is SiO 2 2 to 50 to 74%, Al 2 O 3 to 1 to 10%, Na 2 O to 6 to 14%, K 2 O to 3 to 11%, MgO to 2 to 15%, CaO to 0 to 6% and ZrO 2 to 5%, the total content of SiO 2 and Al 2 O 3 is 75% or less, the total content of Na 2 O and K 2 O is 12 to 25%, the content of MgO and CaO composition total is displayed in mole percent of glass (iii) an oxide basis from 7 to 15%, SiO 2 68 80%, the Al 2 O 3 4 ~ 10% , Na 2 O 5-15% of K 2 O 0 to 1%, glass (iv 4 ~ 15% and the ZrO 2 and MgO containing 0 to 1% ) The composition expressed in mol% on the oxide basis is SiO 2 67-75%, Al 2 O 3 0-4%, Na 2 O 7-15%, K 2 O 1-9%, MgO 6-14% and ZrO 2 0-1.5%, the total content of SiO 2 and Al 2 O 3 is 71-75%, the total content of Na 2 O and K 2 O is 12 When the content of CaO is 20% and the content of CaO is less than 1%, the composition expressed in terms of mol% based on the glass (v) oxide is 60 to 75% for SiO 2 and 5 for Al 2 O 3 . ~ 15%, the MgO 0 - 12% of CaO 0 - 3% of ZrO 2 0 - 3% of Li 2 O 10 ~ 20% The Na 2 O 0 ~ 8%, the K 2 O containing 0 ~ 5%, Li 2 O , the total content R 2 O of Na 2 O and K 2 O is 25 percent or less, the content of Li 2 O And the ratio of R 2 O to Li 2 O / R 2 O is 0.5 to 1.0. The composition expressed in terms of mol% on the basis of glass (vi) oxide is that SiO 2 is 61 to 72%, Al 2 O 3 to 8 to 17%, Li 2 O to 6 to 18%, Na 2 O to 2 to 15%, K 2 O to 0 to 8%, MgO to 0 to 6%, CaO to 0 to 6%, TiO 2 0-4% of ZrO 2 containing 0 ~ 2.5%, Li 2 O , the total content R 2 O of Na 2 O and K 2 O 15 to 25% and the Li 2 O content Glass with R 2 O ratio Li 2 O / R 2 O of 0.35 to 0.8 and the total content of MgO and CaO is 0 to 9%
 上述のようなガラスの成形法としては、例えば、フロート法、プレス法、フュージョン法、ダウンドロー法およびロールアウト法が挙げられる。特に、大量生産に適したフロート法が好適である。また、フロート法以外の連続成形法、すなわち、フュージョン法およびダウンドロー法も好適である。また、着色ガラスを成形する場合は、ロールアウト法が最適な場合がある。 Examples of the glass forming method as described above include a float method, a press method, a fusion method, a downdraw method, and a rollout method. In particular, a float method suitable for mass production is suitable. Further, continuous molding methods other than the float method, that is, the fusion method and the downdraw method are also suitable. Moreover, when shape | molding colored glass, a rollout method may be optimal.
 化学強化処理に供するガラスは、屈曲部を付与する成形工程を実施してよい。成形工程で使用する成形方法は、自重成形法、真空成形法、プレス成形法などから、成形後のガラスの形状に応じて所望の成形法を選択すればよい。なお、屈曲部を有するガラスでも、本発明にかかる化学強化条件を実施することで、反りを抑制でき、所望のデザイン形状を維持できる。 The glass used for the chemical strengthening treatment may be subjected to a forming step for providing a bent portion. The molding method used in the molding step may be selected from a self-weight molding method, a vacuum molding method, a press molding method, and the like according to the shape of the glass after molding. In addition, even if the glass has a bent portion, the warp can be suppressed and the desired design shape can be maintained by implementing the chemical strengthening conditions according to the present invention.
 化学強化工程において、イオン交換処理は2回以上であれば特に制限はないが、タクトタイムの短縮化の観点から3回以下が好ましく、2回がより好ましい。 In the chemical strengthening step, the ion exchange treatment is not particularly limited as long as it is twice or more, but is preferably 3 times or less and more preferably 2 times from the viewpoint of shortening the tact time.
 イオン交換処理を行うための溶融塩は、少なくともカリウムイオン、または、ナトリウムイオンを含む処理塩を用いることが好ましい。このような処理塩としては、例えば、硝酸カリウム、または、硝酸ナトリウムが好適に挙げられる。これらの処理塩に水蒸気添加、二酸化炭素添加などを行ってもよい。 As the molten salt for performing the ion exchange treatment, it is preferable to use a treated salt containing at least potassium ions or sodium ions. As such a treated salt, for example, potassium nitrate or sodium nitrate is preferably mentioned. These treated salts may be added with water vapor, carbon dioxide, or the like.
 また、混合溶融塩には、その他の成分を含有してもよい。その他の成分としては、例えば、炭酸カリウム等のアルカリ炭酸塩、硫酸ナトリウムおよび硫酸カリウム等のアルカリ硫酸塩、並びに塩化ナトリウムおよび塩化カリウム等のアルカリ塩化塩等が挙げられる。特に硝酸カリウムに炭酸カリウムを1~10質量%混合した溶融塩を使用できる。この場合は、第1の化学強化工程で使用してもよく、第2の化学強化工程以降に使用してもよい。 In addition, the mixed molten salt may contain other components. Examples of other components include alkali carbonates such as potassium carbonate, alkali sulfates such as sodium sulfate and potassium sulfate, and alkali chlorides such as sodium chloride and potassium chloride. In particular, a molten salt obtained by mixing 1 to 10% by mass of potassium carbonate with potassium nitrate can be used. In this case, it may be used in the first chemical strengthening step, or may be used after the second chemical strengthening step.
 また、本発明の化学強化ガラスを作製するガラスに、硝酸ナトリウムと硝酸カリウムを混合した溶融塩用いて処理した後に洗浄したガラスを使用してもよい。 Further, the glass used for producing the chemically strengthened glass of the present invention may be a glass washed after being treated with a molten salt in which sodium nitrate and potassium nitrate are mixed.
 また化学強化前もしくは化学強化後のガラスを酸またはアルカリによるエッチングを行ってもよい。酸エッチングでは、ハロゲンを含む水溶液、硝酸、硫酸、これらの混合水溶液などを使用でき、例えばハロゲンを含む水溶液を使用できフッ化水素水溶液が好ましい。エッチングにより片面、ガラス表面から1~20μm程度除去するのが好ましい。このエッチング量を考慮し、化学強化前のガラスの厚さを決定すればよい。 Further, the glass before or after chemical strengthening may be etched with acid or alkali. In the acid etching, an aqueous solution containing halogen, nitric acid, sulfuric acid, a mixed aqueous solution thereof or the like can be used. For example, an aqueous solution containing halogen can be used, and an aqueous hydrogen fluoride solution is preferable. It is preferable to remove about 1 to 20 μm from one surface of the glass surface by etching. In consideration of this etching amount, the thickness of the glass before chemical strengthening may be determined.
 化学強化ガラスの表面粗さは算術平均粗さRa以外の指標として、二乗平均平方根粗さRqがざらつきと指すべり性の観点から0.3nm~10μmが好ましい。最大高さ粗さRzがざらつきと指すべり性の観点から0.5nm~10μmが好ましい。最大断面高さ粗さRtがざらつきと指すべり性の観点から0.5nm~5μmが好ましい。最大山高さ粗さRpがざらつきと指すべり性の観点から0.3nm~5μmが好ましい。最大谷深さ粗さRvがざらつきと指すべり性の観点から0.3nm~5μmが好ましい。平均長さ粗さRsmがざらつきと指すべり性の観点から0.3nm~10μmが好ましい。クルトシス粗さRkuが触感の観点で1以上30以下が好ましい。スキューネス粗さRskが視認性、触感などの均一性の観点から-1以上1以下が好ましい。これらは粗さ曲線Rを元にした粗さであるが、これに相関して生じるうねりWや断面曲線Pで規定してもよく、特に制限はない。 The surface roughness of the chemically tempered glass is preferably 0.3 nm to 10 μm from the viewpoint of slipperiness that the root mean square roughness Rq is rough as an index other than the arithmetic average roughness Ra. The maximum height roughness Rz is preferably 0.5 nm to 10 μm from the viewpoint of slipperiness, which is rough. From the viewpoint of slipperiness that the maximum cross-sectional height roughness Rt is rough, 0.5 nm to 5 μm is preferable. The maximum peak height roughness Rp is preferably 0.3 nm to 5 μm from the viewpoint of slipperiness. The maximum valley depth roughness Rv is preferably 0.3 nm to 5 μm from the viewpoint of slipperiness, which is rough. The average length roughness Rsm is preferably 0.3 nm to 10 μm from the viewpoint of slipperiness. The kurtosis roughness Rku is preferably 1 or more and 30 or less from the viewpoint of touch. The skewness roughness Rsk is preferably −1 or more and 1 or less from the viewpoint of uniformity such as visibility and touch. These are roughness values based on the roughness curve R, but may be defined by the undulation W or the sectional curve P generated in correlation with the roughness curve R, and there is no particular limitation.
 本発明の化学強化ガラスでは、ビッカース硬度が3500N/mm以上、10000N/mm以下であることが好ましい。ビッカース硬度を3500N/mm以上とすると、化学強化ガラスが傷付き難くなる。また、ビッカース硬度を10000N/mm以下とすると、化学強化ガラスの高硬度化と加工の容易性を両立でき、大面積化する際に面精度を担保できる。また、ビッカース硬度として、3750N/mm以上9000N/mm以下がより好ましく、4000N/mm以上8500N/mm以下が特に好ましい。 In the chemically strengthened glass of the present invention, the Vickers hardness is preferably 3500 N / mm 2 or more and 10,000 N / mm 2 or less. When the Vickers hardness is 3500 N / mm 2 or more, the chemically strengthened glass is hardly damaged. Further, when the Vickers hardness is 10000 N / mm 2 or less, both the high hardness of the chemically strengthened glass and the ease of processing can be achieved, and the surface accuracy can be ensured when the area is increased. Further, as a Vickers hardness, 3750N / mm 2 or more 9000 N / mm 2 more preferably less, 4000 N / mm 2 or more 8500N / mm 2 or less is particularly preferred.
 なお、ビッカース硬度は、例えば日本工業規格JIS Z 2244(2009年)に記載される、ビッカース硬さ試験により測定できる。 The Vickers hardness can be measured by a Vickers hardness test described in, for example, Japanese Industrial Standards JIS Z 2244 (2009).
 本発明の化学強化ガラスでは、ヤング率が40GPa以上150GPa以下であることが好ましい。ヤング率を40GPa以上とすると、十分な強度を確保できる。ヤング率を150GPa以下にすると、強度とガラスの加工性(特に研磨加工の加工性)を両立できる。また、ヤング率として、45GPa以上140GPa以下がより好ましく、50GPa以上130GPa以下が特に好ましい。 In the chemically strengthened glass of the present invention, the Young's modulus is preferably 40 GPa or more and 150 GPa or less. When the Young's modulus is 40 GPa or more, sufficient strength can be secured. When the Young's modulus is set to 150 GPa or less, both strength and glass workability (particularly polishing workability) can be achieved. The Young's modulus is more preferably 45 GPa or more and 140 GPa or less, and particularly preferably 50 GPa or more and 130 GPa or less.
 本発明の化学強化ガラスが指紋認証用センサのカバー部材として用いられる場合、指紋認証用センサのセンシング部位に対向する領域の面積が60mm以上41000mm以下であることが好ましい。 If chemically tempered glass of the present invention is used as a cover member for fingerprint authentication sensor, it is preferable area of the region facing the sensing portion of the fingerprint authentication sensor is 60 mm 2 or more 41000Mm 2 or less.
 指紋認証用センサのセンシング部位に対向する領域の面積(センシング部位対向面積)とは、例えば図2(A)に示すようなカバー部材33の面積であり、このセンシング部位対向面積を60mm以上とすることにより、センサ面積が小さいことによる誤認識を抑制することができる。一方、センシング部位対向面積を41000mm以下とすることにより、指が接触していない領域が寄生容量となりセンシング感度が落ちるのを抑制し、面精度を揃え易くなりセンシング時の誤認識を低減することができる。また、センシング部位対向面積は、80mm以上40500mm以下がより好ましく、100mm以上40000mm以下が特に好ましい。 The area of the region facing the sensing part of the fingerprint authentication sensor (sensing part facing area) is, for example, the area of the cover member 33 as shown in FIG. 2A, and the sensing part facing area is 60 mm 2 or more. By doing so, erroneous recognition due to the small sensor area can be suppressed. On the other hand, when the sensing area facing area is 41000 mm 2 or less, it is possible to suppress the sensing sensitivity from decreasing due to the parasitic capacitance in the area where the finger is not in contact, and to easily align the surface accuracy, thereby reducing misrecognition during sensing. Can do. Further, sensing portion facing area is more preferably 80 mm 2 or more 40500Mm 2 or less, particularly preferably 100 mm 2 or more 40000 mm 2 or less.
 本発明の化学強化ガラスが用カバー部材として用いられる場合、センシング部位対向面積Aをヤング率Eで除した値A/Eが、1.5×10-7/GPa以上1.4×10-2/GPa以下であることが好ましい。 If chemically tempered glass of the present invention is used as the use covering member, the value A s / E obtained by dividing the sensing portion opposing area A s Young's modulus E is, 1.5 × 10 -7 m 2 / GPa to 1.4 It is preferably not more than × 10 −2 m 2 / GPa.
 A/Eを1.5×10-7/GPa以上とすることにより、加工性が向上しエッジのチッピングが発生しにくくなる。一方、A/Eを1.4×10-2/GPa以下とすることにより、機械的特性が悪化するのを防ぎ強度を担保することができる。また、A/Eは、5.0×10-7/GPa以上1.0×10-2/GPa以下であることがより好ましく、1.0×10-6/GPa以上5.0×10-3/GPa以下であることが特に好ましい。 With the A s / E 1.5 × 10 -7 m 2 / GPa or more, edge chipping is improved workability is less likely to occur. On the other hand, when A s / E is set to 1.4 × 10 −2 m 2 / GPa or less, it is possible to prevent deterioration of mechanical characteristics and ensure strength. Also, A s / E is, 5.0 × 10 -7 m, more preferably at 2 / GPa or more 1.0 × 10 -2 m 2 / GPa or less, 1.0 × 10 -6 m 2 / GPa It is particularly preferably 5.0 × 10 −3 m 2 / GPa or less.
 本発明の化学強化ガラスは、少なくとも一面に樹脂フィルムを貼着してフィルム貼着化学強化ガラスとしてよい。本発明は、反りの小さな薄い化学強化ガラスであるが、用途により破損することが想定される。その場合、樹脂フィルムを貼着することで、破損したガラス片を散乱させないようにする、そもそもガラスを破損させないようにする、などの効果が得られる。 The chemically strengthened glass of the present invention may be a film-bonded chemically strengthened glass by sticking a resin film on at least one surface. Although the present invention is a thin chemically strengthened glass with a small warp, it is assumed that the glass is broken depending on the application. In that case, by sticking the resin film, it is possible to obtain effects such as preventing the broken glass pieces from being scattered and preventing the glass from being damaged in the first place.
 本発明の化学強化ガラスを1枚以上含む合わせガラスとしてもよい。本発明の化学強化ガラスを含めた2枚以上のガラスの間に、機能性(飛散防止性、防汚性、接着性)や光学特性(防眩性、防反射性、偏光性)を備える樹脂を挟み込み、加熱下で圧着するなどにより得られる。 合 わ せ Laminated glass containing one or more chemically strengthened glasses of the present invention may be used. A resin having functionality (anti-scattering property, antifouling property, adhesiveness) and optical properties (antiglare property, antireflection property, polarizing property) between two or more glasses including the chemically strengthened glass of the present invention Can be obtained by, for example, sandwiching and pressing with heating.
 本発明の化学強化ガラスは、強度を有しつつも厚さが薄いため、従来の合わせガラスに使用されていた厚いガラスの代わりに使用することで、合わせガラスとしての重量を低減できる。これにより、例えば、車内用内装部材に含む場合、車両への負荷が小さくなり燃費が改善されるなどの効果が得られる。また、本発明の化学強化ガラスは、反りが小さいため、合わせガラスを作製する際に空隙が生じる等の欠点ができにくく、効率的に合わせガラスを作製できる。 Since the chemically strengthened glass of the present invention has strength and is thin, it can be used in place of the thick glass used in the conventional laminated glass to reduce the weight of the laminated glass. Thereby, for example, when it is included in the interior member for a vehicle, the effect of reducing the load on the vehicle and improving the fuel efficiency can be obtained. Moreover, since the chemically strengthened glass of the present invention has a small warpage, it is difficult to produce defects such as voids when producing laminated glass, and laminated glass can be produced efficiently.
 次に、本発明の実施例について説明する。ただし、本発明は以下の実施例に限定されるものではない。 Next, examples of the present invention will be described. However, the present invention is not limited to the following examples.
[事前準備]
 まず、厚さ2mm(2000μm)で主面が四角形のアルミノシリケートガラス[化学強化後の商品名:ドラゴントレイルX(登録商標)、旭硝子社製]で化学強化をしていないものを準備した。次に、このガラス板を厚さが100μm、150μm、200μm、250μm、300μmとなるように両面を鏡面加工した。
[Advance preparation]
First, an aluminosilicate glass having a thickness of 2 mm (2000 μm) and a square main surface [trade name after chemical strengthening: Dragon Trail X (registered trademark), manufactured by Asahi Glass Co., Ltd.], which was not chemically strengthened, was prepared. Next, both surfaces of this glass plate were mirror-finished so that the thickness was 100 μm, 150 μm, 200 μm, 250 μm, and 300 μm.
[化学強化ガラスの製造方法]
 例1~5は実施例であり、例6~9は比較例である。
〔例1〕
 準備したガラス板のうち、厚さが100μmのものに、第1の化学強化処理、第2の化学強化処理を行い、例1の化学強化ガラスを得た。
[Method for producing chemically strengthened glass]
Examples 1 to 5 are examples, and examples 6 to 9 are comparative examples.
[Example 1]
The first chemically strengthened treatment and the second chemically strengthened treatment were performed on the prepared glass plates having a thickness of 100 μm to obtain the chemically strengthened glass of Example 1.
 第1の化学強化処理では、硝酸カリウムおよび硝酸ナトリウムを使用した。硝酸カリウムが質量%で60%となるようにSUS製のカップに調整し、マントルヒータで450℃まで加熱して、硝酸カリウムの溶融塩を調製した。そして、厚さ100μmの板ガラスを400℃まで予熱した後、溶融塩に15時間浸漬してイオン交換を実施し、室温付近まで冷却することにより第1の化学強化処理を行った。得られた化学強化ガラスは、水洗いし乾燥させた。 In the first chemical strengthening treatment, potassium nitrate and sodium nitrate were used. It adjusted to the cup made from SUS so that potassium nitrate might be 60% by mass, and it heated to 450 degreeC with the mantle heater, and prepared the molten salt of potassium nitrate. And after pre-heating the 100-micrometer-thick plate glass to 400 degreeC, it immersed in molten salt for 15 hours, ion exchange was implemented, and the 1st chemical strengthening process was performed by cooling to room temperature vicinity. The obtained chemically strengthened glass was washed with water and dried.
 第2の化学強化処理では、SUS製のカップに硝酸カリウム(KNO)を加え、マントルヒータで400℃まで加熱して、硝酸カリウムの溶融塩を調製した。第1の化学強化処理が行われた板ガラスを350℃まで予熱した後、溶融塩に10分間浸漬してイオン交換を実施し、室温付近まで冷却することにより第2の化学強化処理を行った。得られた化学強化ガラスは、水洗いし乾燥させた。 In the second chemical strengthening treatment, potassium nitrate (KNO 3 ) was added to a SUS cup and heated to 400 ° C. with a mantle heater to prepare a molten salt of potassium nitrate. The plate glass subjected to the first chemical strengthening treatment was preheated to 350 ° C., then immersed in a molten salt for 10 minutes to perform ion exchange, and then cooled to near room temperature, thereby performing the second chemical strengthening treatment. The obtained chemically strengthened glass was washed with water and dried.
〔例2~5〕
 例2~5では、それぞれ厚さが150μm、200μm、250μm、300μmのガラス板に、例1と同様の手順および条件で処理を行い、化学強化ガラスを得た。
[Examples 2 to 5]
In Examples 2 to 5, glass plates having thicknesses of 150 μm, 200 μm, 250 μm, and 300 μm were processed in the same procedure and conditions as in Example 1 to obtain chemically strengthened glass.
〔例6~9〕
 例6~9では、それぞれ厚さが100μm、150μm、200μm、250μmのガラス板に、上記第1の化学強化処理において、425℃の溶融塩に24時間浸漬し、その後連続して450℃に昇温してさらに4時間浸漬したことと、上記第2の化学強化処理を行わなかったこと以外は、例1と同様の手順で処理を行い化学強化ガラスを得た。
[Examples 6 to 9]
In Examples 6 to 9, the glass plates having thicknesses of 100 μm, 150 μm, 200 μm, and 250 μm were immersed in molten salt at 425 ° C. for 24 hours in the first chemical strengthening treatment, and then continuously increased to 450 ° C. A chemically tempered glass was obtained by carrying out the treatment in the same procedure as in Example 1 except that it was further heated for 4 hours and not subjected to the second chemical tempering treatment.
[評価方法]
 各種評価は以下に示す分析方法により行った。
〔ガラスの評価:表面圧縮応力(CS)及び表面圧縮応力層の深さ(DOL)〕
 化学強化ガラスの表面圧縮応力(CS)及び表面圧縮応力層の深さ(DOL)(以降、応力分布と記載)は、折原製作所社製のガラス表面応力計装置(FSM-6000LE)により測定した。
[Evaluation methods]
Various evaluations were performed by the analysis methods shown below.
[Evaluation of Glass: Surface Compressive Stress (CS) and Depth of Surface Compressive Stress Layer (DOL)]
The surface compressive stress (CS) of the chemically strengthened glass and the depth (DOL) of the surface compressive stress layer (hereinafter referred to as stress distribution) were measured by a glass surface stress meter device (FSM-6000LE) manufactured by Orihara Seisakusho.
 この算出した応力分布において、最表面からのガラス深さが0μmにおける応力値(単位はMPa)を、化学強化ガラスの一方の主面における最表層の圧縮応力(CS)とした。また、ガラス内部において応力値が0MPaとなるガラス深さ(単位はμm)を、前記一方の主面側の圧縮応力層の深さ(DOL)とした。さらに、CSに対応する応力値の半分の値(HM_CS、単位はMPa)を求め、このHM_CSに相当するガラス深さを、DOLHM(単位はμm)とした。 In this calculated stress distribution, the stress value (unit: MPa) when the glass depth from the outermost surface was 0 μm was defined as the compressive stress (CS 0 ) of the outermost layer on one main surface of the chemically strengthened glass. Further, the glass depth (unit: μm) at which the stress value becomes 0 MPa in the glass was defined as the depth (DOL 1 ) of the compressive stress layer on the one main surface side. Furthermore, a half value (HM_CS 0 , unit is MPa) of the stress value corresponding to CS 0 was obtained, and the glass depth corresponding to HM_CS 0 was defined as DOL HM (unit: μm).
 これらのデータと上記式(1)に基づいて、DOLHM/DOL、応力プロファイル積分値(図1の面積S)を算出した。また、化学強化ガラスの表と裏の圧縮応力は製造プロセス起因で生じる僅かな組成変動、冷却速度差に起因して1.5%程差が付くため、ΔS=S×0.015として表面と裏面の応力プロファイル積分値差ΔSを求め、ガラス板の厚さtからΔS/tを算出した。これらの結果を表1に示す。 Based on these data and the above formula (1), DOL HM / DOL 1 and the stress profile integral value (area S in FIG. 1) were calculated. In addition, the compressive stress between the front and back of the chemically strengthened glass has a difference of about 1.5% due to slight composition fluctuations and cooling rate differences caused by the manufacturing process, so ΔS = S × 0.015 The difference ΔS of stress profile integral values on the back surface was obtained, and ΔS / t 2 was calculated from the thickness t of the glass plate. These results are shown in Table 1.
(ガラスの評価:反り評価)
 ガラスの反り評価は、KEYENCE製のレーザー変位計LT-9030Mを用いて以下の手順で行った。
(Evaluation of glass: Warpage evaluation)
Evaluation of the warpage of the glass was performed by the following procedure using a laser displacement meter LT-9030M manufactured by KEYENCE.
 まず、図3(A)に示すような化学強化後のガラスにおいて、反りを評価する位置として、B-B断面を選択した。なお、B-B断面は特定の位置に限定されないが、ここではガラスの重心を通る断面とした。B-B断面を図示すると図3(B)に示すような上に凸の形状、あるいは図3(C)に示す下に凸の形状となる。 First, in the glass after chemical strengthening as shown in FIG. 3A, a BB cross section was selected as a position for evaluating warpage. The BB cross section is not limited to a specific position, but here it is a cross section passing through the center of gravity of the glass. When the BB cross section is illustrated, an upward convex shape as shown in FIG. 3B or a downward convex shape as shown in FIG. 3C is obtained.
 次に、ガラス基板のいずれかの面を下面として保持部に配置し、レーザー変位計を用いて断面の形状データを取得した。この得られた形状データにおいて、接線の傾きの符号が変化する点を原点Oとし、断面形状を反り方向yと板幅方向xとして二次関数y=axで近似した。ここでのy、xの単位はそれぞれμmであり、二次項係数aの単位はμm-1である。 Next, any surface of the glass substrate was placed on the holding portion as the lower surface, and cross-sectional shape data was obtained using a laser displacement meter. In the obtained shape data, the point where the sign of the slope of the tangent changes is the origin O, and the cross-sectional shape is approximated by a quadratic function y = ax 2 with the warp direction y and the plate width direction x. Here, the unit of y and x is μm, and the unit of the secondary term coefficient a is μm −1 .
 最後に、二次関数の二次項係数aを求め、この二次項係数aを基に反り評価を行った。これらの結果を表1に示す。なお、反り評価の「○」は二次項係数aが1×10-7μm-1以下の場合を示し、反り評価の「×」は二次項係数aが1×10-7μm-1を超える場合を示す。 Finally, a quadratic term coefficient a of a quadratic function was obtained, and warpage was evaluated based on the quadratic term coefficient a. These results are shown in Table 1. In addition, “◯” in the warp evaluation indicates a case where the secondary term coefficient a is 1 × 10 −7 μm −1 or less, and “×” in the warp evaluation indicates that the secondary term coefficient a exceeds 1 × 10 −7 μm −1 . Show the case.
(ガラスの評価:比誘電率)
 ガラスの比誘電率は、以下のように簡易的に見積もった。まず、参考例として1MHzの比誘電率が8.3の0.55mmの厚さのアルミノシリケートガラス[未強化のドラゴントレイルX(登録商標)、旭硝子社製]の表面、裏面それぞれにCS=1100MPa、DOL=25μmの化学強化を施し、比誘電率を再測定したところ8.1であった。また、参考例のSは13750MPa・μmであった。
(Evaluation of glass: dielectric constant)
The relative dielectric constant of the glass was simply estimated as follows. First, as a reference example, CS = 1100 MPa on the front and back surfaces of an aluminosilicate glass [unreinforced Dragon Trail X (registered trademark), manufactured by Asahi Glass Co., Ltd.] having a relative dielectric constant of 1 MHz and a thickness of 0.55 mm. Then, chemical strengthening of DOL = 25 μm was performed, and the relative dielectric constant was measured again to be 8.1. Moreover, S of the reference example was 13750 MPa · μm.
 化学強化された50μmの領域の平均合成容量Cは、未強化領域の合成容量をC、化学強化されたガラス全体の合成容量をCとしたとき以下の関係がある。
  C=C×C/(C+C)…(X)
 また、比誘電率εは、合成容量Cと厚さtに対して以下の関係がある。
  ε=C/t…(Y)
  ただし、k=0、1、2
The average composite capacity C 1 in the 50 μm chemically strengthened region has the following relationship when the composite capacity in the unstrengthened region is C 2 and the composite capacity of the entire chemically strengthened glass is C 0 .
C 0 = C 1 × C 2 / (C 1 + C 2 ) (X)
Further, the relative dielectric constant ε has the following relationship with respect to the combined capacitance C and the thickness t.
ε k = C k / t k (Y)
However, k = 0, 1, 2
 ε=8.1、ε=8.3、t=550、t=50、t=500として、式(X)および式(Y)の関係から化学強化された50μmの領域の比誘電率εを見積もったところ、ε=6.5であった。 As for ε 0 = 8.1, ε 2 = 8.3, t 0 = 550, t 1 = 50, t 2 = 500, the region of 50 μm chemically strengthened from the relationship of formula (X) and formula (Y) When the relative dielectric constant ε 1 was estimated, ε 1 = 6.5.
 以降、化学強化されたガラスの強化領域の比誘電率をε=6.5、未強化領域の比誘電率をε=8.3とし、式(X)、式(Y)、参考例のS、例1~9のCS、DOL、CS、DOL、Sに基づいて例1~9の比誘電率εおよび{(ε-ε)/ε}×100で示される比誘電率の低下率(%)を計算した。 Thereafter, the relative permittivity of the tempered region of the chemically strengthened glass is ε 1 = 6.5, the relative permittivity of the unstrengthened region is ε 2 = 8.3, and the formula (X), formula (Y), reference example Based on S, CS of Examples 1-9, DOL, CS 0 , DOL 1 , S, and the dielectric constant ε 0 of Examples 1-9 and {(ε 2 −ε 0 ) / ε 2 } × 100 The reduction rate (%) of the relative dielectric constant was calculated.
 以上の結果を表1に示す。なお、表1において比誘電率の低下率評価の「○」は比誘電率の低下率が5%以下の場合[(ε-ε)/ε≦0.05]を、「×」は比誘電率の低下率が5%を超える場合を示す。 The results are shown in Table 1. In Table 1, “O” in the evaluation of the rate of decrease in relative permittivity indicates “(× 2 −ε 0 ) / ε 2 ≦ 0.05” when the rate of decrease in relative permittivity is 5% or less. Indicates a case where the reduction rate of the relative dielectric constant exceeds 5%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 さらに、表1中のΔS/tを横軸に、二次項係数aを縦軸にプロットして対数グラフを作成した結果を図4に示す。 Furthermore, FIG. 4 shows the result of creating a logarithmic graph by plotting ΔS / t 2 in Table 1 on the horizontal axis and the quadratic coefficient a on the vertical axis.
 表1および図4に示すように、例1~5では、ΔS/tが4×10-3MPa/μm以下、二次項係数aが1.0×10-7μm-1以下となり、化学強化後でも反りが抑制されることが分かった。一方、例6~9では、ΔS/tが4×10-3MPa/μmを超え、二次項係数aが1.0×10-7μm-1を超え、反りが抑制されないことが分かった。 As shown in Table 1 and FIG. 4, in Examples 1 to 5, ΔS / t 2 was 4 × 10 −3 MPa / μm or less, and the secondary term coefficient a was 1.0 × 10 −7 μm −1 or less. It was found that warping was suppressed even after strengthening. On the other hand, in Examples 6 to 9, ΔS / t 2 exceeded 4 × 10 −3 MPa / μm, the second-order coefficient a exceeded 1.0 × 10 −7 μm −1, and it was found that warpage was not suppressed. .
 また、例1~5では、DOLHM/DOLが0.05以上0.4以下となるが、例6~9では、DOLHM/DOLが上記条件を満たさなかった。 In Examples 1 to 5, DOL HM / DOL 1 was 0.05 or more and 0.4 or less, but in Examples 6 to 9, DOL HM / DOL 1 did not satisfy the above conditions.
 以上のことから、化学強化ガラスにおいて反りを極力抑制するためには、上記式(1)および式(2)を満たせばよいことが分かった。また、このような化学強化ガラスを製造するためには、2段階の化学強化が有効であることが分かった。さらに、例1~5においては、比誘電率の低下を例6~9よりも抑制できることも分かった。 From the above, it was found that the above formulas (1) and (2) should be satisfied in order to suppress the warpage in the chemically strengthened glass as much as possible. Moreover, in order to manufacture such a chemically strengthened glass, it turned out that two steps of chemical strengthening are effective. Furthermore, in Examples 1 to 5, it was also found that the decrease in relative permittivity can be suppressed more than in Examples 6 to 9.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2016年3月1日付けで出願された日本特許出願(特願2016-39327)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。 Although the present invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The present application is based on a Japanese patent application (Japanese Patent Application No. 2016-39327) filed on March 1, 2016, and is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
 30…スマートフォン(携帯機器)、31…指紋認証用センサユニット(センサユニット)、33…カバー部材(化学強化ガラス)、34…指紋認証用センサ(センサ)、35…基板、36…電極。 30 ... Smartphone (mobile device), 31 ... Fingerprint authentication sensor unit (sensor unit), 33 ... Cover member (chemically tempered glass), 34 ... Fingerprint authentication sensor (sensor), 35 ... Substrate, 36 ... Electrode.

Claims (17)

  1.  2つの主面を有する化学強化ガラスであって、
     前記化学強化ガラスの厚さが1000μm未満であり、以下の式(1)および式(2)を満たすことを特徴とする化学強化ガラス。
      ΔS/t≦4×10-3(MPa/μm)…(1)
      0.05≦DOLHM/DOL≦0.4…(2)
     ここで、
      ΔS=S×0.015(MPa・μm)…(3)
      S=(CS+HM_CS)×DOLHM×0.5(MPa・μm)…(4)
       CS:一方の主面における最表層の圧縮応力(MPa)
       HM_CS:CSの半分の圧縮応力(MPa)
       DOL:前記一方の主面側の圧縮応力層の深さ(μm)
       DOLHM:HM_CSに対応する圧縮応力層の深さ(μm)
       t:化学強化ガラスの厚さ(μm)
    A chemically strengthened glass having two main surfaces,
    The chemically strengthened glass, wherein the chemically strengthened glass has a thickness of less than 1000 μm and satisfies the following formulas (1) and (2).
    ΔS / t 2 ≦ 4 × 10 −3 (MPa / μm) (1)
    0.05 ≦ DOL HM / DOL 1 ≦ 0.4 (2)
    here,
    ΔS = S × 0.015 (MPa · μm) (3)
    S = (CS 0 + HM_CS 0 ) × DOL HM × 0.5 (MPa · μm) (4)
    CS 0 : compressive stress (MPa) of the outermost layer on one main surface
    HM_CS 0 : half the compressive stress of CS 0 (MPa)
    DOL 1 : depth (μm) of the compressive stress layer on the one main surface side
    DOL HM : Depth of compressive stress layer corresponding to HM_CS 0 (μm)
    t: thickness of chemically strengthened glass (μm)
  2.  DOLが15μm以上である請求項1に記載の化学強化ガラス。 DOL 1 is 15 micrometers or more, The chemically strengthened glass of Claim 1.
  3.  比誘電率が7.5以上である請求項1または2に記載の化学強化ガラス。 The chemically tempered glass according to claim 1 or 2, wherein the relative dielectric constant is 7.5 or more.
  4.  以下の式(5)を満たす請求項1~3のいずれか1項に記載の化学強化ガラス。
      (ε-ε)/ε≦0.05…(5)
       ε:化学強化ガラスの未強化領域の比誘電率
       ε:化学強化ガラス全体の比誘電率
    The chemically strengthened glass according to any one of claims 1 to 3, which satisfies the following formula (5):
    2 −ε 0 ) / ε 2 ≦ 0.05 (5)
    ε 2 : relative permittivity of unstrengthened region of chemically strengthened glass ε 0 : relative permittivity of the entire chemically strengthened glass
  5.  厚さが400μm未満である請求項1~4のいずれか1項に記載の化学強化ガラス。 The chemically strengthened glass according to any one of claims 1 to 4, wherein the thickness is less than 400 µm.
  6.  2つの主面を有する化学強化ガラスであって、
     厚さが300μm以下であり、
     厚さ方向断面視で、前記2つの主面の面方向の位置と厚さ方向の変位との関係を二次関数で近似した際、前記二次関数の二次項係数の絶対値aが1.0×10-7μm-1以下となることを特徴とする化学強化ガラス。
    A chemically strengthened glass having two main surfaces,
    The thickness is 300 μm or less,
    When the relation between the position in the surface direction of the two principal surfaces and the displacement in the thickness direction is approximated by a quadratic function in a sectional view in the thickness direction, the absolute value a of the quadratic term coefficient of the quadratic function is 1. A chemically tempered glass characterized by being 0 × 10 −7 μm −1 or less.
  7.  前記化学強化ガラスの組成が、酸化物基準のモル%表示で、SiOを50~80%、Alを2~25%、LiOを0~10%、NaOを2~18%、KOを0~10%、MgOを0~15%、CaOを0~5%およびZrOを0~5%である請求項1~6のいずれか1項に記載の化学強化ガラス。 The composition of the chemically tempered glass is expressed in mol% on the basis of oxide, SiO 2 is 50 to 80%, Al 2 O 3 is 2 to 25%, Li 2 O is 0 to 10%, Na 2 O is 2 to 2 %. The chemical strengthening according to any one of claims 1 to 6, wherein 18%, K 2 O is 0 to 10%, MgO is 0 to 15%, CaO is 0 to 5%, and ZrO 2 is 0 to 5%. Glass.
  8.  前記主面の少なくとも一部に屈曲部を備える、請求項1~7のいずれか1項に記載の化学強化ガラス。 The chemically tempered glass according to any one of claims 1 to 7, wherein a bent portion is provided on at least a part of the main surface.
  9.  請求項1~8のいずれか1項に記載の化学強化ガラスの少なくとも一面に樹脂フィルムが貼着されているフィルム貼着化学強化ガラス。 A film-bonded chemically tempered glass in which a resin film is bonded to at least one surface of the chemically tempered glass according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか1項に記載の化学強化ガラスを含む合わせガラス。 Laminated glass comprising the chemically strengthened glass according to any one of claims 1 to 8.
  11.  請求項1~8のいずれか1項に記載の化学強化ガラスを含む車内用内装部材。 An interior member for a vehicle including the chemically tempered glass according to any one of claims 1 to 8.
  12.  センサと、
     請求項1~8のいずれか1項に記載の化学強化ガラスとを備えているセンサユニット。
    A sensor,
    A sensor unit comprising the chemically strengthened glass according to any one of claims 1 to 8.
  13.  請求項12に記載のセンサユニットを備えている携帯機器。 A portable device comprising the sensor unit according to claim 12.
  14.  請求項12に記載のセンサユニットを備えている車内用内装部材。 An interior member for a vehicle comprising the sensor unit according to claim 12.
  15.  以下の工程(I)~(III)を順次含み、得られる化学強化ガラスの一方の主面側の圧縮応力層の深さDOLが15μm以上であり、一方の主面最表層の圧縮応力CSが500MPa以上であり、かつ厚さが1000μm未満であることを特徴とする化学強化ガラスの製造方法。
    (I)ガラスをイオン交換処理することにより、ガラス表面に圧縮応力層を形成する第1の化学強化工程
    (II)ガラスをガラス転移点より50℃以上低い温度で加熱処理する加熱工程
    (III)ガラスをイオン交換処理することにより、ガラス表面に圧縮応力層をさらに形成する第2の化学強化工程
    The following steps (I) to (III) are sequentially included, and the depth DOL 1 of the compressive stress layer on one main surface side of the chemically strengthened glass to be obtained is 15 μm or more, and the compressive stress CS of one main surface outermost layer A method for producing chemically tempered glass, wherein 0 is 500 MPa or more and the thickness is less than 1000 μm.
    (I) First chemical strengthening step for forming a compressive stress layer on the glass surface by subjecting the glass to ion exchange treatment (II) Heating step for heating the glass at a temperature lower by 50 ° C. or more than the glass transition point (III) Second chemical strengthening step of further forming a compressive stress layer on the glass surface by subjecting the glass to ion exchange treatment
  16.  工程(I)および(III)におけるイオン交換処理が、ガラス転移点より50℃以上低い温度における処理である請求項15に記載の化学強化ガラスの製造方法。 The method for producing chemically strengthened glass according to claim 15, wherein the ion exchange treatment in steps (I) and (III) is treatment at a temperature lower by 50 ° C or more than the glass transition point.
  17.  得られる化学強化ガラスの圧縮応力層の深さDOLおよび主面最表層の圧縮応力CSの半分である位置に対応する圧縮応力層の深さDOLHMが下記式(2)を満たす請求項15または16に記載の化学強化ガラスの製造方法。
      0.05≦DOLHM/DOL≦0.4…(2)
    The depth DOL HM of the compressive stress layer corresponding to a position that is half of the compressive stress layer depth DOL 1 of the obtained chemically strengthened glass and the compressive stress CS 0 of the outermost surface of the main surface satisfies the following formula (2): The method for producing chemically strengthened glass according to 15 or 16.
    0.05 ≦ DOL HM / DOL 1 ≦ 0.4 (2)
PCT/JP2017/005452 2016-03-01 2017-02-15 Chemically strengthened glass and method for producing chemically strengthened glass WO2017150187A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016039327A JP2019069861A (en) 2016-03-01 2016-03-01 Chemically strengthened glass, sensor unit, portable device and method for producing chemically strengthened glass
JP2016-039327 2016-03-01

Publications (1)

Publication Number Publication Date
WO2017150187A1 true WO2017150187A1 (en) 2017-09-08

Family

ID=59744111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005452 WO2017150187A1 (en) 2016-03-01 2017-02-15 Chemically strengthened glass and method for producing chemically strengthened glass

Country Status (2)

Country Link
JP (1) JP2019069861A (en)
WO (1) WO2017150187A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203931A (en) * 2018-05-21 2019-11-28 株式会社ダイセル Anti-glare film, and manufacturing method and application of the same
JP2019207381A (en) * 2018-05-30 2019-12-05 株式会社ダイセル Anti-glare laminate and manufacturing method and application for the same
JPWO2020009081A1 (en) * 2018-07-04 2021-08-02 Agc株式会社 Glass plate, glass plate with antireflection layer, and method of manufacturing glass plate
CN115716714A (en) * 2018-07-03 2023-02-28 Agc株式会社 Chemically strengthened glass and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088856A1 (en) * 2011-12-16 2013-06-20 旭硝子株式会社 Display cover glass and display cover glass fabrication method
WO2014130515A1 (en) * 2013-02-25 2014-08-28 Corning Incorporated Methods for measuring the asymmetry of a glass-sheet manufacturing process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088856A1 (en) * 2011-12-16 2013-06-20 旭硝子株式会社 Display cover glass and display cover glass fabrication method
WO2014130515A1 (en) * 2013-02-25 2014-08-28 Corning Incorporated Methods for measuring the asymmetry of a glass-sheet manufacturing process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203931A (en) * 2018-05-21 2019-11-28 株式会社ダイセル Anti-glare film, and manufacturing method and application of the same
JP2019207381A (en) * 2018-05-30 2019-12-05 株式会社ダイセル Anti-glare laminate and manufacturing method and application for the same
CN115716714A (en) * 2018-07-03 2023-02-28 Agc株式会社 Chemically strengthened glass and method for producing same
CN115716714B (en) * 2018-07-03 2024-02-13 Agc株式会社 Chemically strengthened glass and method for producing same
JPWO2020009081A1 (en) * 2018-07-04 2021-08-02 Agc株式会社 Glass plate, glass plate with antireflection layer, and method of manufacturing glass plate
JP7156377B2 (en) 2018-07-04 2022-10-19 Agc株式会社 Glass plate, glass plate with antireflection layer, and method for manufacturing glass plate

Also Published As

Publication number Publication date
JP2019069861A (en) 2019-05-09

Similar Documents

Publication Publication Date Title
US10928561B2 (en) Enclosures having an improved tactile surface
KR102182662B1 (en) An electronic device structure and an ultra-thin glass sheet used therein
EP3144283B1 (en) Glass article
TWI798892B (en) Enclosures having an anti-fingerprint surface
US20170183255A1 (en) Coated chemically strengthened flexible thin glass
US8187987B2 (en) Durable glass housings/enclosures for electronic devices
JP7067648B2 (en) A cover member, a portable information terminal and a display device having the cover member, and an ultrasonic device.
WO2017150187A1 (en) Chemically strengthened glass and method for producing chemically strengthened glass
US11028014B2 (en) Coated glass-based articles with engineered stress profiles
CN111727178A (en) Cover glass and embedded liquid crystal display device
US11940685B2 (en) Antiglare transparent substrate and display device provided with same
JP2016145968A (en) Cover member, portable information terminal having the same, display device, and method for producing cover glass
JP7184791B2 (en) Flexible ultra-thin glass with high contact resistance
WO2017026267A1 (en) Chemically strengthened glass
JP6991230B2 (en) Flexible ultra-thin glass with high contact resistance
US11161782B2 (en) Method of increasing IOX processability on glass articles with multiple thicknesses
CN112979159A (en) Tempered glass and glass for tempering
TW202019840A (en) Enhanced strength of glass by combining redraw and chemical thinning processes
CN111727177A (en) Cover glass and in-cell liquid crystal display device
JP2019512449A (en) Precompressed glass articles
CN114057410A (en) Chemical ion exchange glass

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759658

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP