WO2017150034A1 - ゲートウェイ装置、無線通信装置、課金制御方法、データ送信方法、及びコンピュータ可読媒体 - Google Patents

ゲートウェイ装置、無線通信装置、課金制御方法、データ送信方法、及びコンピュータ可読媒体 Download PDF

Info

Publication number
WO2017150034A1
WO2017150034A1 PCT/JP2017/003127 JP2017003127W WO2017150034A1 WO 2017150034 A1 WO2017150034 A1 WO 2017150034A1 JP 2017003127 W JP2017003127 W JP 2017003127W WO 2017150034 A1 WO2017150034 A1 WO 2017150034A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
bearer
wireless communication
wireless
performs
Prior art date
Application number
PCT/JP2017/003127
Other languages
English (en)
French (fr)
Inventor
田村 利之
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to KR1020207009559A priority Critical patent/KR102487924B1/ko
Priority to RU2018134172A priority patent/RU2693855C1/ru
Priority to CA3016402A priority patent/CA3016402C/en
Priority to ES17759505T priority patent/ES2858798T3/es
Priority to JP2018502598A priority patent/JP6597878B2/ja
Priority to EP17759505.5A priority patent/EP3425940B1/en
Priority to EP20211114.2A priority patent/EP3800907A1/en
Priority to KR1020187027946A priority patent/KR20180119631A/ko
Priority to US16/081,746 priority patent/US20200169853A1/en
Publication of WO2017150034A1 publication Critical patent/WO2017150034A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/24Accounting or billing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/1403Architecture for metering, charging or billing
    • H04L12/1407Policy-and-charging control [PCC] architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00692Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using simultaneous multiple data streams, e.g. cooperative multipoint [CoMP], carrier aggregation [CA] or multiple input multiple output [MIMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00698Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using different RATs

Definitions

  • the present disclosure relates to a gateway device, a wireless communication device, a charging control method, a data transmission method, and a program, and particularly to a gateway device, a wireless communication device, a charging control method, a data transmission method, and a program that use a plurality of wireless access technologies.
  • Dual Connectivity As a technology for communication terminals UE (User Equipment) to perform broadband and low-delay communication. Dual Connectivity is, for example, connected with a first base station MeNB (Master evolved NodeB) and a second base station SeNB (Secondary eNB) where the UE performs LTE (Long Term Evolution) communication, and the UE is connected to the SeNB in addition to the MeNB.
  • MeNB Master evolved NodeB
  • SeNB Servicedary eNB
  • LTE Long Term Evolution
  • Dual Connectivity can also be applied to communications that simultaneously use a frequency band that a telecommunications carrier is permitted to use in business and a frequency band that does not require use permission (unlicensed spectrum).
  • a technology is also defined in which a UE provides LTE communication and WLAN communication simultaneously by connecting a base station eNB (evolved Node B) to a wireless LAN (WLAN (Wireless LAN) communication device).
  • Non-Patent Document 1 a flow of processing for newly adding an SeNB as an eNB that communicates with the UE in a state where the UE is connected to the MeNB is shown as a Dual Connectivity procedure. ing.
  • the UE connects to the eNB that performs mobile communication and the access point WT (Wireless LAN Termination) that performs wireless LAN communication by applying Dual Connectivity technology, and the UE communicates with the WT in addition to the eNB.
  • WT Wireless LAN Termination
  • Non-Patent Document 2 shows the configuration of a policy-and-charging-control (PCC) -architecture for executing policy control and charging control.
  • PCC policy-and-charging-control
  • Non-Patent Document 3 shows that a gateway device PGW (Packet Date Network Gateway) manages RAT type as a parameter relating to charging for each UE.
  • RAT type is a parameter indicating the RAT currently used by the UE.
  • Non-Patent Document 1 When executing Dual Connectivity described in Section 10.1.2.8 of Non-Patent Document 1, the UE performs communication using one RAT simultaneously with the MeNB and SeNB. In this case, as described in Non-Patent Document 3, there is no problem in managing RAT type as a charging parameter for each UE. However, Section 5.7 of Non-Patent Document 1 applies Dual Connectivity to communications that simultaneously use a frequency band that carriers are allowed to use in business and a frequency band that does not require use (unlicensed spectrum). The technology is described as LAA (Licensed-Assisted Access). When communication is performed in this form, both communication technologies are LTE, and the same RAT type is used.
  • LAA Licensed-Assisted Access
  • Non-Patent Document 1 when the UE performs communication using both LTE and WT RATs, the UE performs communication using two types of RATs simultaneously. Therefore, when the PGW manages RAT type in units of UE as in Non-Patent Document 3, there is a possibility that the RAT type managed by the PGW and the RAT actually used by the UE are different. As a result, when the UE performs communication using two types of RATs, there is a problem that it is not possible to perform appropriate charging control according to actual communication (applying a charging rate).
  • An object of the present disclosure is to provide a gateway device, a wireless communication device, and charging control capable of performing charging control according to the RAT used by the UE even when the UE is performing communication using different RATs at the same time.
  • a method, a data transmission method, and a program are provided.
  • the communication terminal performs the first wireless communication using the first wireless access technology and simultaneously with the second wireless communication using the second wireless access technology.
  • a management unit that associates and manages at least one bearer assigned to the communication terminal and information indicating the first and second radio access technologies when performing communication; and the first and second radios
  • a charging system communication unit that transmits information indicating an access technology to at least one charging control apparatus that performs charging control.
  • a wireless communication device is a wireless communication device that performs first wireless communication using a first wireless access technology with a communication terminal, and the communication terminal performs first wireless communication. And at least one bearer assigned to the communication terminal and information indicating the first and second radio access technologies when performing simultaneous communication with the second radio communication using the second radio access technology Is transmitted to the network device that manages the bearer.
  • a communication aggregation may be formed by a radio communication device.
  • the charging control method includes a communication terminal that performs first wireless communication using the first wireless access technology and second wireless communication using the second wireless access technology.
  • a communication terminal that performs first wireless communication using the first wireless access technology and second wireless communication using the second wireless access technology.
  • at least one bearer assigned to the communication terminal and information indicating the first and second radio access technologies are associated and managed, and the first and second radio access technologies Is transmitted to at least one charging control apparatus that performs charging control.
  • a communication aggregation may be formed by a radio communication device.
  • a data transmission method is a data transmission method used in a wireless communication apparatus that performs first wireless communication with a communication terminal using a first wireless access technology.
  • a wireless communication apparatus that performs first wireless communication with a communication terminal using a first wireless access technology.
  • at least one bearer assigned to the communication terminal, and the first and second Information associated with information indicating a radio access technology is transmitted to a network device that manages the bearer.
  • a communication aggregation may be formed by a radio communication device.
  • a program includes a communication terminal that performs first wireless communication using a first wireless access technology and simultaneously communicates with second wireless communication using a second wireless access technology. And managing at least one bearer assigned to the communication terminal and information indicating the first and second radio access technologies in association with each other, indicating the first and second radio access technologies
  • the computer is caused to transmit information to at least one charging control apparatus that performs charging control.
  • a communication aggregation may be formed by a radio communication device.
  • a gateway device a wireless communication device, a charging control method, and the like that can perform charging control according to the RAT used by the UE, A data transmission method and program can be provided.
  • FIG. 1 is a configuration diagram of a communication system according to a first exemplary embodiment
  • 1 is a configuration diagram of a communication system according to a first exemplary embodiment
  • FIG. 3 is a configuration diagram of a communication system according to a second exemplary embodiment.
  • FIG. 3 is a configuration diagram of a communication system according to a second exemplary embodiment.
  • It is a block diagram of the charging system concerning Embodiment 2.
  • FIG. It is a block diagram of PGW concerning Embodiment 2.
  • FIG. It is a figure which shows the parameter which PGW concerning Embodiment 2 manages.
  • It is a block diagram of eNB concerning Embodiment 2.
  • FIG. It is a block diagram of UE concerning Embodiment 2.
  • FIG. 10 is a diagram illustrating a flow of transmission processing of RAT type according to the second exemplary embodiment; It is a figure which shows the parameter information set to E-RAB
  • FIG. It is a figure which shows the parameter information set to the Modify
  • FIG. It is a figure which shows the parameter information set to the Create * Session * Request message concerning Embodiment 2.
  • FIG. It is a figure which shows the parameter information set to the Bearer
  • FIG. It is a figure which shows the parameter information set to the Modify
  • FIG. 6 is a configuration diagram of a communication system according to a third exemplary embodiment. It is a figure explaining the value of RAT
  • FIG. 6 is a configuration diagram of a communication system according to a third exemplary embodiment. It is a figure explaining the value of RAT
  • FIG. It is a figure explaining the value of RAT
  • FIG. It is a figure which shows the parameter information set to the E-RAB
  • FIG. It is a block diagram of the radio
  • 1A includes a communication terminal 10, a wireless communication device 21, a wireless communication device 22, a gateway device 30, and a policy charging control device 40.
  • the communication terminal 10 may be a mobile phone terminal, a smartphone, a tablet terminal, or the like. Further, the communication terminal 10 may be referred to as a UE used as a generic name of the communication terminal in 3GPP.
  • the communication terminal 10 includes 2G (second generation mobile phone) radio access technology, 3G (third generation mobile phone) radio access technology, LTE radio access technology, 4G / 5G (fourth generation / fifth generation mobile phone). It may be a terminal that communicates using a radio access technology or a radio access technology dedicated to CIoT (Cellular IoT (Internet of Things)).
  • the communication terminal 10 is a terminal that can simultaneously perform communication (dual connection) using a plurality of different radio access technologies.
  • the communication terminal 10 may be a terminal that simultaneously performs mobile communication using wireless access technology defined in 3GPP and wireless LAN communication. Further, the communication terminal 10 may be a terminal that simultaneously performs the LTE radio access technology and the 5G radio access technology.
  • the wireless communication device 21 and the wireless communication device 22 perform wireless communication with the communication terminal 10 using a predetermined radio access technology (RAT).
  • the communication terminal 10 performs wireless communication with the wireless communication device 22 using a RAT different from the RAT used for wireless communication with the wireless communication device 21.
  • the wireless communication device 21 and the wireless communication device 22 transmit from the gateway device 30 to the communication terminal 10.
  • the distributed communication data may be divided and distributed to different RATs, or the communication data transmitted from the communication terminal 10 to the gateway device 30 using different RATs may be combined. This operation is called communication aggregation, hybrid dual connectivity, or the like.
  • simultaneous communication may be, for example, LTE in which a communication standard is defined in 3GPP, and a communication standard will be defined in 3GPP in the future. It may be a wireless communication technology. It may be referred to as 5G, for example.
  • the other RAT used in the simultaneous communication may be a wireless LAN.
  • the policy charging control device 40 is a device that executes control related to a service policy related to the communication terminal 10 and processing related to charging.
  • the gateway device 30 is a gateway device used when the communication terminal 10 communicates with a network that provides a service or an external network via a network including the wireless communication device 21 and the wireless communication device 22. Further, the gateway device 30 transmits a charging parameter related to the communication terminal 10 to the policy charging control device 40.
  • the gateway device 30 may be a computer device that operates when a processor executes a program stored in a memory.
  • the gateway device 30 includes a management unit 31 and a billing system communication unit (note that the communication unit may be referred to as a transmission and reception unit) 32.
  • the constituent elements of the gateway device 30 including the management unit 31 and the billing system communication unit 32 may be software or modules that execute processing when the processor executes a program stored in the memory.
  • the component which comprises the gateway apparatus 30 may be software, such as a circuit or a chip
  • the management unit 31 includes at least one bearer assigned to the communication terminal 10 and the wireless communication device
  • the RAT used for communication with 21 and the information indicating the RAT used for communication with the wireless communication apparatus 22 are associated and managed.
  • the management unit 31 The RAT is managed in one-to-one correspondence.
  • the management unit 31 Two RATs are managed in association with one bearer. Note that three or more RATs may be associated with one bearer.
  • the charging system communication unit 32 transmits information related to the RAT managed by the management unit 31 in units of bearers to the policy charging control device 40.
  • the gateway device 30 manages the RAT used by the communication terminal 10 in association with the bearer unit, thereby managing the RAT used by the communication terminal 10 to the policy charging control device 40 for each bearer. Can be notified.
  • the policy charging control apparatus 40 can accurately grasp the RAT actually used by the communication terminal 10, and can therefore perform charging control according to the RAT.
  • FIG. 1B shows a configuration in which the wireless communication device 22 is directly connected to the gateway device 30, whereas FIG. 1B shows a configuration in which the wireless communication device 22 is connected to the gateway device 30 via the wireless communication device 21. Show.
  • FIG. 2A a configuration example of the communication system according to the second embodiment of the present disclosure will be described using FIG. 2A.
  • FIG. 2A a configuration example of a communication system configured by nodes defined in 3GPP will be described.
  • the charging system is omitted, and will be described later with reference to FIG.
  • PCRF 110 Policy Control Control and Charging Rules
  • the UE 50 corresponds to the communication terminal 10 of FIG. 1A.
  • the eNB 60 corresponds to the wireless communication device 21 in FIG. 1A.
  • the different RAT communication device 70 corresponds to the wireless communication device 22 of FIG. 1A.
  • the PGW 100 corresponds to the gateway device 30 in FIG. 1A.
  • the PCRF 110 corresponds to the policy charging control device 40 of FIG. 1A.
  • the different RAT communication device 70 may be a base station that supports a 5G wireless communication system that is a next-generation wireless communication system defined in 3GPP in the future. Further, the different RAT communication device 70 may be a WT (Wireless LAN Termination) that performs wireless LAN communication. Also, the different RAT communication device 70 may be a base station that supports a 5G wireless communication system using a frequency band (unlicensed spectrum) that does not require use permission.
  • the next generation wireless communication method or wireless access technology is referred to as 5G, but the name is not limited to 5G.
  • the UE 50 is assumed to be a terminal that supports both LTE and 5G wireless communication systems.
  • the MME 80 is a device that mainly issues a movement management of the UE 50 and a request / instruction for setting / deleting a bearer.
  • the SGW 90 and the PGW 100 are gateway devices that relay user data (packets) transmitted or received by the UE 50.
  • the SGW 90 accommodates a radio access system, and the PGW 100 connects to an external network (PDN: PacketPackData Network or the like).
  • the PCRF 110 determines a policy (charging system) such as QoS control or charging control in the SGW 90 and the PGW 100.
  • the eNB 60 and the MME 80 are defined as an S1-MME interface.
  • the eNB 60 and the SGW 90 are defined as an S1-U interface.
  • the S11 interface is defined between the MME 80 and the SGW 90.
  • Between the SGW 90 and the PGW 100 is defined as an S5 interface.
  • the Gx interface is defined between the PGW 100 and the PCRF 110. Note that the term interface may be replaced with a reference point.
  • an interface corresponding to an X2 interface defined as an interface between eNBs in 3GPP may be defined.
  • an interface corresponding to the Xw interface defined as an interface between the eNB and the WT in 3GPP may be defined between the eNB 60 and the different RAT communication device 70.
  • an interface corresponding to the S1-U interface may be defined between the different RAT communication device 70 and the SGW 90.
  • 5G base station 70 can transmit / receive data with SGW90 via eNB60.
  • FIG. 2A shows that the UE 50 performs LTE communication with the eNB 60 and 5G wireless communication with the different RAT communication device 70 to form communication using LTE and 5G.
  • the bearer when the UE 50 performs communication via the eNB 60 is different from the bearer when the UE 50 performs communication via the different RAT communication device 70.
  • FIG. 2B shows that the different RAT communication device 70 is connected via the eNB 60. The structure connected with SGW90 is shown.
  • PGW 100 a configuration example of the charging system will be described with reference to FIG. 3 is described as PGW 100, PCRF 110, AF (Application Function) entity 120 (hereinafter referred to as AF 120), OCS (Online Charging System) 130, TDF (Traffic Detection Function) entity 140 (hereinafter referred to as TDF 140). ), And OFCS (Offline Charging System) 150.
  • the PGW 100 may have a PCEF (Policy and Charging Enforcement Function) and communicate with each device constituting the charging system using the PCEF.
  • PCEF Policy and Charging Enforcement Function
  • the AF 120 is an application server, and controls application services provided to the UE 50.
  • the TDF 140 detects the service type for each flow through the PCRF 110 for the data transmitted or received by the PGW 100.
  • the OCS 130 and OFCS 150 perform charging control according to the charging contract of the UE 50. For example, in the case of a billing contract such as a prepaid service, the OCS 130 having the ability to constantly monitor the communication amount performs billing processing. On the other hand, in the case of a monthly billing contract, the OFCS 150 performs billing processing.
  • the Gx interface is defined between the PGW 100 and the PCRF 110. Between the PGW 100 and the OCS 130 is defined as a Gy interface. Between the PGW 100 and the OFCS 150 is defined as a Gz interface. The space between the TDF 140 and the OCS 130 is defined as Gyn. Between TDF 140 and OFCS 150 is defined as Gzn. Between the TDF 140 and the PCRF 110 is defined as an Sd interface. The Sy interface is defined between the PCRF 110 and the OCS 130. The PCRF 110 and the AF 120 are defined as an Rx interface.
  • the PGW 100 transmits the RAT type managed for each bearer to each device via the Gx, Gy, and Gz interfaces. Further, the PCRF 110 transmits the RAT type managed for each bearer to each device via the Rx and Sd interfaces.
  • the PGW 100 includes a core network communication unit 101, a management unit 102, and a PCC (Policy and Charging Control) communication unit 103.
  • PCEF Policy and Charging Control
  • the core network communication unit 101 transmits or receives user data related to the UE 50 with the SGW 90. Further, the core network communication unit 101 receives, from the SGW 90, the RAT type used for each bearer assigned to the UE 50. The core network communication unit 101 outputs information regarding the received RAT type to the management unit 102.
  • the management unit 102 manages RAT type in association with the bearer assigned to the UE 50.
  • EPS EvolvedvolvePacket System
  • EPS Bearer is a bearer set between the UE 50 and the PGW 100.
  • FIG. 5 shows that the parameter managed in EPS Bearer ID unit includes RATRtype (shown at the bottom).
  • the management unit 102 of the PGW 100 manages the RAT type and the EPS type Bearer ID in association with each other.
  • the PCC communication unit 103 transmits the RAT type managed by the management unit 102 in units of EPS Bearer IDs to the PCRF 110, the OCS 130, and the OFCS 150.
  • the PCC communication unit 103 gives priority to the RAT type managed for each EPS Bearer ID unit of FIG. , OCS 130 and OFCS 150.
  • the eNB 60 includes a radio communication unit 61, a different RAT communication unit 62, and a core network communication unit 63.
  • the component that configures the eNB 60 may be software, a module, or the like that is processed by a processor executing a program stored in a memory.
  • the component which comprises eNB60 may be software, such as a circuit or a chip
  • the wireless communication unit 61 performs LTE communication with the UE 50.
  • the different RAT communication unit 62 communicates with another wireless communication device that supports a wireless communication method different from LTE.
  • the different RAT communication unit 62 communicates with the different RAT communication device 70.
  • the core network communication unit 63 transmits or receives control data to / from the MME 80.
  • the control data may be referred to as C (Control) -Plane data, for example.
  • the core network communication unit 63 transmits or receives user data to / from the SGW 90.
  • the user data may be referred to as U (User) -Plane data, for example.
  • U User
  • the core network communication unit 63 transmits or receives control data and user data.
  • a communication unit that transmits or receives control data is different from a communication unit that transmits or receives user data. It may be a functional block or a different interface.
  • the different RAT communication unit 62 executes a process of adding the different RAT communication device 70 as a device that forms simultaneous communication using LTE and 5G when the eNB 60 performs LTE communication with the UE 50.
  • the UE 50 includes an LTE communication unit 51 and a different RAT communication unit 52.
  • the LTE communication unit 51 performs LTE communication with the eNB 60.
  • the different RAT communication unit 52 performs 5G communication with the different RAT communication device 70.
  • the UE 50 forms simultaneous communication with the eNB 60 and the different RAT communication device 70 using the LTE communication unit 51 and the different RAT communication unit 52.
  • the UE 50 is a terminal that can simultaneously perform communication (dual connection) using a plurality of different radio access technologies.
  • FIG. 8 refers to 3GPPGPTS23.401 V13.1.0 (2014-12) Figure 5.4.7-1.
  • FIG. 8 illustrates the flow of processing related to E-UTRAN (Evolved Universal Terrestrial Radio Access Network) initiated E-RAB (EPS-Radio Access Access Bearer) modification procedure.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • E-RAB EPS-Radio Access Access Bearer
  • FIG. 8 illustrates the transmission of RAT type when a different RAT communication device 70 is added as a device that forms simultaneous communication between LTE and 5G when the UE 50 and the eNB 60 are performing LTE communication. The flow of processing is shown.
  • a process of adding the different RAT communication device 70 is executed between the UE 50, the eNB 60, and the different RAT communication device 70 (SCG (Secondary Cell Group) Modification) (S11).
  • SCG indicates an added base station (service cell thereby) in forming simultaneous communication between LTE and 5G.
  • the different RAT communication device 70 corresponds to SCG.
  • the eNB 60 with which the UE 50 initially communicated corresponds to an MCG (Master Cell Group).
  • user data is transferred between the eNB 60 and the different RAT communication device 70 (Forwarding data of data) (S12).
  • the eNB 60 transmits an E-RAB Modification Indication message to the MME 80 in order to update the bearer information when the different RAT communication device 70 is added as the SCG (S13).
  • the bearer information to be updated is E-RAB (E-UTRAN Radio Access Bearer).
  • the E-RAB is a bearer set between the UE 50 and the SGW 90.
  • the E-RAB has a one-to-one correspondence with an EPS bearer that is set between the UE 50 and the PGW 100.
  • FIG. 9 refers to 3GPP TS 36.413 V13.0.0 (2015-06) 9.1.3.8.
  • the parameter information set in the E-RAB Modification Indication message is described under IE / Group Name.
  • E-RAB to Modified List parameters related to the different RAT communication device 70 added to form simultaneous communication between LTE and 5G are set.
  • E-RAB to ⁇ ⁇ ⁇ Modified Item IEs Information Elements
  • E-RAB ID that identifies an E-RAB assigned when the UE 50 communicates with the different RAT communication device 70.
  • RAT type (5G) indicating the RAT used by the UE 50 for communication with the different RAT communication device 70 is set.
  • information indicating 5G may be set in RAT type that is set in E-RAB to be Modified Item IEs.
  • the bearer set between the UE 50 and the SGW 90 via the different RAT communication device 70 may use a name different from the E-RAB.
  • the bearer set between the UE 50 and the SGW 90 via the different RAT communication device 70 is described as E-RAB.
  • the names of E-RAB to Modified List, E-RAB to be Modified Item IEs, and E-RAB ⁇ ID are the names of bearers set between the UE 50 and the SGW 90 via the different RAT communication device 70. It may be changed accordingly.
  • E-RAB not to be Modified Item IEs is set with an E-RAB ID that identifies an E-RAB assigned when the UE 50 communicates with the eNB 60.
  • RAT type (LTE) indicating the RAT used by the UE 50 for communication with the eNB 60 is set.
  • LTE Long Term Evolution
  • information indicating LTE may be set in RAT type set in E-RAB not to be Modified Item IEs.
  • ENB 60 transmits to the MME 80 an E-RAB Modification Indication message including the RAT type associated with the E-RAB ID.
  • the MME 80 when the MME 80 receives the E-RAB Modification Indication message, the MME 80 transmits a Modify Bearer request message in which the RAT type associated with the E-RAB ID is set to the SGW 90 (S14). Further, the SGW 90 transmits a Modify Bearer Request message in which the RAT type associated with the E-RAB ID is set to the PGW 100 (S15).
  • FIG. 10 refers to 3GPP TS 29.274 V13.2.0 (2015-06) Table 7.2.7-2.
  • RAT type is set in the ModifyModBearer Request message together with EPS Bearer ID.
  • a plurality of Bearer Context IE Type is set in the Modify Bearer Request message, and RAT type is set for each EPS Bearer ID.
  • type can also be set for every Modify
  • the RAT type set in the Modify ⁇ Bearer Request message means that it is valid for all EPS Bearers.
  • the RAT type set in EPS Bearer ID may be preferentially processed.
  • the PGW 100 transmits a ModifyModBearer Response message to the SGW 90 as a response to the Modify Bearer Request message (S16). Further, the SGW 90 transmits a Modify Bearer Response message to the MME 80 (S17). After step S17, the SGW 90 can transmit user data destined for the UE 50 to the eNB 60 and the different RAT communication device 70. Further, after step S17, the SGW 90 can receive the user data transmitted from the UE 50 via the eNB 60 or the different RAT communication device 70.
  • the RAT type associated with the E-RAB ID or EPS Bearer ID is set in the E-RAB Modification Indication message and the Modify Bearer Request message.
  • RAT type associated with the bearer may be set.
  • FIG. 11 shows that a RAT type is set for each EPS Bearer ID in a Create Session Request message used in ATTACH processing or Tracking Area Update processing.
  • FIG. 11 refers to 3GPP TS 29.274 V13.2.0 (2015-06) Table 7.2.1-2.
  • the MME 80 transmits a Create Session Request message set as such to the SGW 90.
  • RAT type can also be set for each Create Session request message.
  • RAT type can be set for each UE in the Create Session request message.
  • the RAT type set in the Create Session request message means that it is valid for all EPS Bearers.
  • the SGW 90 transmits (transfers) the Create Session Request message thus set to the PGW 100.
  • FIG. 12 when the UE 50 adds another RAT communication device 70 to form simultaneous communication between LTE and 5G, a bearer allocation is requested, or a bearer modification is requested.
  • the RAT type is set for each EPS type Bearer ID in the Bearer Resource command message used in this case.
  • FIG. 12 refers to 3GPP TS 29.274 V13.2.0 (2015-06) Table 7.2.5-2.
  • the MME 80 transmits the Bearer Resource Command message thus set to the SGW 90.
  • RATRtype can also be set for each Bearer Resource Command message. In other words, RAT type can be set for each UE in the Bearer Resource Command message.
  • the RAT type set in the Bearer Resource command message is valid for all EPS Bearers.
  • the RAT type set in EPS Bearer ID may be processed with priority. Further, the SGW 90 transmits (transfers) the Bearer Resource Command message thus set to the PGW 100.
  • FIG. 13 shows that a RAT type is set for each EPS Bearer ID in a Modify Access Bearers Request message used in a handover process or the like in which no change of the SGW 90 occurs.
  • FIG. 13 refers to 3GPP TS 29.274 V13.2.0 (2015-06) Table 7.2.24-2.
  • the MME 80 transmits the Modify Access Bearers Request message set as such to the SGW 90.
  • type can be set for every Modify
  • RAT type can be set for each UE in the Modify Access Bearers Request message.
  • Request message means that it is valid for all EPS
  • the RAT type set in EPS Bearer ID may be preferentially processed.
  • FIG. 14 also shows that RAT type is set for each EPS Bearer ID in the Context Request message used in Tracking Area Update processing or the like.
  • FIG. 14 refers to 3GPP TS 29.274 V13.2.0 (2015-06) Table 7.3.5-1.
  • the Context Request message is transmitted between the MME after the change and the MME before the change when the UE 50 moves to a place with the change of the MME.
  • RAT type can be set for each Context Request message.
  • RAT type can be set for each UE in the Context Request message. In this case, it means that the RAT type set in the Context Request message is valid for all EPS Bearers.
  • the RAT type set in EPS Bearer ID may be preferentially processed.
  • FIG. 15 also shows that RAT type is set for each EPS Bearer ID in the Change Notification Request message transmitted from the MME 80 to the SGW 90.
  • FIG. 15 refers to 3GPP TS 29.274 V13.2.0 (2015-06) Table 7.3.14-1.
  • RAT type can be set for each Change Notification Request message.
  • RAT type can be set for each UE in the Change Notification Request message.
  • RAT type set in the Change Notification Request message means that it is valid for all EPS Bearers.
  • the RAT type set in the EPS Bearer ID may be preferentially processed.
  • the PGW 100 When the UE 50 forms simultaneous communication between the eNB 60 and the different RAT communication device 70 and LTE and 5G, the PGW 100 notifies the PCRF 110 that an IP-CAN (IP-Connectivity Access Network) Session has been established. Specifically, the PGW 100 transmits a Diameter CCR (Credit Control Request) message to the PCRF 110 (S21). The PGW 100 sets the RAT type associated with the EPS bearer in the Diameter CCR message. The PCRF 110 can grasp the RAT type associated with the EPS bearer by receiving the Diameter CCR message. Also, RAT type can be set for each Diameter CCR message. In other words, RAT type can be set for each UE in the Diameter CCR message.
  • IP-CAN IP-Connectivity Access Network
  • the RAT type set in the Diameter CCR message means that it is valid for all EPS bearers.
  • the RAT type set in EPS Bearer ID may be preferentially processed.
  • the PCRF 110 transmits a DiameterTTSR (TDF Session Request) message in which an ADC (Application Detection and Control) rule for extracting a specific packet flow is extracted from user data traffic related to the UE 50 to the TDF 140 (S31).
  • the PCRF 110 sets the RAT type associated with the EPS bearer in the Diameter TSR message.
  • RAT type can be set for each Diameter TSR message.
  • RAT type can be set for each UE in the Diameter TSR message.
  • the RAT type set in the Diameter TSR message means that it is valid for all EPS bearers.
  • the RAT type set in the EPS bearer may be preferentially processed.
  • the TDF 140 transmits a Diameter TSA (TDF Session Answer) message to the PCRF 110 as a response message (S32).
  • Diameter TSA TDF Session Answer
  • the RAT type associated with the EPS bearer is transmitted to the AF 120, the OCS 130, and the OFCS 150 using a Diameter message.
  • RATRtype can also be set for each Diameter TSA message.
  • RAT type can be set for each UE in the Diameter TSA message.
  • the RAT type set in the EPS bearer may be preferentially processed.
  • Values 0 to 7 shown in FIG. 18 are defined as values indicating RAT type.
  • Value 3 indicates a wireless LAN (WLAN)
  • Value 6 indicates EUTRAN (LTE).
  • FIG. 18 shows that 8 is newly added as the value of RAT type indicating 5G. Accordingly, in various messages, 6 can be set when indicating LTE as RAT type, and 8 can be set when indicating 5G.
  • the RAT type associated with the E-RAB ID or EPS Bearer ID is set in various messages defined in 3GPP and transmitted to related nodes including the PGW 100.
  • PGW100 can grasp
  • PGW100 can perform the charge of the bearer unit according to RAT
  • the communication system of FIG. 19 uses an access point WT 160 that performs wireless LAN communication instead of the different RAT communication device 70 of FIG. 2B. Moreover, an interface is not set between WT160 and SGW90, and WT160 presupposes transmitting or receiving the user data regarding UE50 via eNB60. Between the eNB 60 and the WT 160 is defined as an Xw interface.
  • the WT 160 may be, for example, an AP (Access Point) or WiFi router used as a base unit or base station in wireless LAN communication.
  • the UE 50 performs LTE communication with the eNB 60 and performs wireless LAN communication with the WT 160 to form simultaneous communication using LTE and the wireless LAN.
  • the eNB 60 assumes that the bearer used for LTE communication with the UE 50 and the bearer used for wireless LAN communication via the WT 160 are one bearer. That is, the eNB 60 forms simultaneous communication between the LTE and the wireless LAN with the UE 50 by setting two different RATs as one bearer.
  • Values 0 to 7 shown in FIG. 20 are defined as values indicating RAT type.
  • Value 3 indicates a wireless LAN (WLAN)
  • Value 6 indicates EUTRAN (LTE).
  • the RAT type can be expressed by adding a new Value value to the RAT type. Further, different Value values may be added to the 5G wireless technology using a frequency of 6 GHz or less and the 5G wireless technology using a frequency of 6 GHz or more, respectively. Similarly, for the radio technology dedicated to CIoT, different Value values may be added to the technology using the control signal for data transfer and the technology using the dedicated bearer for data transfer.
  • a pre-defined Value value may be set for each bearer.
  • a single bearer includes a plurality of RATs.
  • the RAT type of Value 8 may be defined as indicating EUTRAN + WLAN. That is, each node shown in FIG. 19 can determine that the UE 50 forms LTE-WT aggregation when Value 8 is set in RAT type.
  • the value may be written together as Value 6 + 3 to indicate that the UE 50 forms the LTE-WT aggregation.
  • FIG. 21 refers to 3GPPGPTS 29.274 V13.2.0 (2015-06) Table 8.17-1.
  • the usage rate in each RAT of user data transmitted in one bearer may be defined together.
  • Value 8 may be defined as EUTRAN (30%) + WLAN (70%), and Value 9 may be defined as EUTRAN (50%) + WLAN (50%). 30% in EUTRAN (30%) indicates that 30% of user data transmitted in one bearer is transmitted by LTE communication.
  • the usage rate of LTE communication and WLAN communication may be defined by defining as Value 6 (30%) + 3 (70%) or the like.
  • E-RAB Modification Indication message when the UE 50 forms simultaneous communication between LTE and 5G, the eNB 60 and the different RAT communication device 70 are identified by different E-RAB IDs. It is assumed that E-RAB is used. Therefore, in FIG. 9, the E-RABRAto be Modified List and E-RAB not to be Modified List are included in the E-RAB Modification Indication message.
  • E-RAB to Modified List RAT type is set in association with the E-RAB ID.
  • a value indicating that RAT types indicates EUTRAN + WLAN in FIG. 20 or 21 is set in the RAT type in FIG.
  • the name of the bearer for which LTE communication and wireless LAN communication are set may be different from the name of E-RAB, and is not limited to the name of E-RAB.
  • RAT type As described above, by defining RAT type as in the third embodiment of the present disclosure, even when a plurality of RAT types are set in one bearer, RAT type set in one bearer is changed. Accurately grasp.
  • the usage rate for each RAT type is determined, so that even in the charging control, the UE 50 is charged according to the usage rate of the RAT type. Can do.
  • the carrier is using a frequency band that is allowed to be used in the business or a frequency band that is not required to be used (unlicensed spectrum). By doing so, it is possible to charge according to the use of the frequency band that the communication carrier is permitted to use in the business.
  • the previously defined Value 6 is defined as EUTRAN (LTE) using a frequency band that is allowed to be used in the business by carriers, and LAA EUTRAN (Licensed-Assisted Access EUTRAN) as a new Value Also good.
  • LAA EUTRAN Licensed-Assisted Access EUTRAN
  • simultaneous communication between LTE and 5G in the second embodiment may be realized using one bearer as described in the third embodiment.
  • simultaneous communication between LTE and the wireless LAN in the third embodiment may be realized using two bearers as described in the second embodiment.
  • present disclosure may be implemented by appropriately combining the first to third embodiments.
  • FIG. 23 is a block diagram illustrating a configuration example of the wireless communication device 21 and the wireless communication device 22.
  • the wireless communication device 21 and the wireless communication device 22 include an RF transceiver 1001, a network interface 1003, a processor 1004, and a memory 1005.
  • the RF transceiver 1001 performs analog RF signal processing to communicate with UEs.
  • the RF transceiver 1001 may include multiple transceivers.
  • RF transceiver 1001 is coupled to antenna 1002 and processor 1004.
  • the RF transceiver 1001 receives modulation symbol data (or OFDM symbol data) from the processor 1004, generates a transmission RF signal, and supplies the transmission RF signal to the antenna 1002. Further, the RF transceiver 1001 generates a baseband received signal based on the received RF signal received by the antenna 1002, and supplies this to the processor 1004.
  • the network interface 1003 is used to communicate with the network node (e.g., the gateway device 30).
  • the network interface 1003 may include, for example, a network interface card (NIC) compliant with IEEE 802.3 series.
  • NIC network interface card
  • the processor 1004 performs data plane processing including digital baseband signal processing for wireless communication and control plane processing.
  • the digital baseband signal processing by the processor 1004 may include MAC layer and PHY layer signal processing.
  • the processor 1004 may include a plurality of processors.
  • the processor 1004 may include a modem processor (e.g., DSP) that performs digital baseband signal processing, and a protocol stack processor (e.g., CPU or MPU) that performs control plane processing.
  • DSP digital baseband signal processing
  • protocol stack processor e.g., CPU or MPU
  • the memory 1005 is configured by a combination of a volatile memory and a nonvolatile memory.
  • the memory 1005 may include a plurality of physically independent memory devices.
  • the volatile memory is, for example, Static Random Access Memory (SRAM), Dynamic RAM (DRAM), or a combination thereof.
  • the non-volatile memory is a mask Read Only Memory (MROM), Electrically Erasable Programmable ROM (EEPROM), flash memory, hard disk drive, or any combination thereof.
  • Memory 1005 may include storage located remotely from processor 1004. In this case, the processor 1004 may access the memory 1005 via the network interface 1003 or an I / O interface not shown.
  • the memory 1005 may store a software module (computer program) including an instruction group and data for performing processing by the wireless communication device 21 and the wireless communication device 22 described in the plurality of embodiments.
  • the processor 1004 may be configured to perform the processing of the remote node 10 described in the above-described embodiment by reading the software module from the memory 1005 and executing the software module.
  • FIG. 24 is a block diagram illustrating a configuration example of the communication terminal 10.
  • the radio frequency (RF) transceiver 1101 performs analog RF signal processing to communicate with the wireless communication device 21 and the wireless communication device 22. Analog RF signal processing performed by the RF transceiver 1101 includes frequency up-conversion, frequency down-conversion, and amplification.
  • RF transceiver 1101 is coupled with antenna 1102 and baseband processor 1103. That is, the RF transceiver 1101 receives modulation symbol data (or OFDM symbol data) from the baseband processor 1103, generates a transmission RF signal, and supplies the transmission RF signal to the antenna 1102. Further, the RF transceiver 1101 generates a baseband received signal based on the received RF signal received by the antenna 1102 and supplies this to the baseband processor 1103.
  • modulation symbol data or OFDM symbol data
  • the baseband processor 1103 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • Digital baseband signal processing consists of (a) data compression / decompression, (b) data segmentation / concatenation, (c) ⁇ transmission format (transmission frame) generation / decomposition, and (d) transmission path encoding / decoding.
  • E modulation (symbol mapping) / demodulation
  • IFFT Inverse Fast Fourier Transform
  • control plane processing includes layer 1 (eg, transmission power control), layer 2 (eg, radio resource management, hybrid automatic repeat request (HARQ) processing), and layer 3 (eg, attach, mobility, and call management). Communication management).
  • the digital baseband signal processing by the baseband processor 1103 includes signal processing of Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, MAC layer, and PHY layer. But you can. Further, the control plane processing by the baseband processor 1103 may include Non-Access Stratum (NAS) protocol, RRC protocol, and MAC ⁇ CE processing.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Stratum
  • PHY Packet Data Convergence Protocol
  • the control plane processing by the baseband processor 1103 may include Non-Access Stratum (NAS) protocol, RRC protocol, and MAC ⁇ CE processing.
  • NAS Non-Access Stratum
  • the baseband processor 1103 includes a modem processor (eg, Digital Signal Processor (DSP)) that performs digital baseband signal processing and a protocol stack processor (eg, Central Processing Unit (CPU) that performs control plane processing, or Micro Processing Unit. (MPU)).
  • DSP Digital Signal Processor
  • protocol stack processor eg, Central Processing Unit (CPU) that performs control plane processing, or Micro Processing Unit. (MPU)
  • CPU Central Processing Unit
  • MPU Micro Processing Unit.
  • a protocol stack processor that performs control plane processing may be shared with an application processor 1104 described later.
  • the application processor 1104 is also called a CPU, MPU, microprocessor, or processor core.
  • the application processor 1104 may include a plurality of processors (a plurality of processor cores).
  • the application processor 1104 is a system software program (Operating System (OS)) read from the memory 1106 or a memory (not shown) and various application programs (for example, a call application, a web browser, a mailer, a camera operation application, music playback)
  • OS Operating System
  • the baseband processor 1103 and application processor 1104 may be integrated on a single chip, as shown by the dashed line (1105) in FIG.
  • the baseband processor 1103 and the application processor 1104 may be implemented as one System on Chip (SoC) device 1105.
  • SoC System on Chip
  • An SoC device is sometimes called a system Large Scale Integration (LSI) or chipset.
  • the memory 1106 is a volatile memory, a nonvolatile memory, or a combination thereof.
  • the memory 1106 may include a plurality of physically independent memory devices.
  • the volatile memory is, for example, Static Random Access Memory (SRAM), Dynamic RAM (DRAM), or a combination thereof.
  • the non-volatile memory is a mask Read Only Memory (MROM), Electrically Erasable Programmable ROM (EEPROM), flash memory, hard disk drive, or any combination thereof.
  • the memory 1106 may include an external memory device accessible from the baseband processor 1103, the application processor 1104, and the SoC 1105.
  • Memory 1106 may include an embedded memory device integrated within baseband processor 1103, application processor 1104, or SoC 1105.
  • the memory 1106 may include a memory in a Universal Integrated Circuit Card (UICC).
  • UICC Universal Integrated Circuit Card
  • the memory 1106 may store a software module (computer program) including an instruction group and data for performing processing by the communication terminal 10 described in the above embodiments.
  • the baseband processor 1103 or the application processor 1104 may be configured to perform the processing of the communication terminal described in the above-described embodiment by reading the software module from the memory 1106 and executing the software module. .
  • FIG. 25 is a block diagram illustrating a configuration example of the gateway device 30.
  • the gateway device 30 includes a network interface 1201, a processor 1202, and a memory 1203.
  • the network interface 1201 is used to communicate with a network node (e.g., wireless communication device 21).
  • the network interface 1201 may include, for example, a network interface card (NIC) compliant with IEEE 802.3 series.
  • NIC network interface card
  • the processor 1202 reads the software (computer program) from the memory 1203 and executes it to perform the processing of the gateway device 30 described using the sequence diagram and the flowchart in the above-described embodiment.
  • the processor 1202 may be, for example, a microprocessor, MPU, or CPU.
  • the processor 1202 may include a plurality of processors.
  • the processor 1202 performs data plane processing and control plane processing including digital baseband signal processing for wireless communication.
  • the digital baseband signal processing by the processor 1004 may include PDCP layer, RLC layer, and MAC layer signal processing.
  • the signal processing by the processor 1202 may include GTP-U • UDP / IP layer signal processing at the X2-U interface and the S1-U interface.
  • the control plane processing by the processor 1004 may include processing of the X2AP protocol, the S1-MME protocol, and the RRC protocol.
  • the processor 1202 may include a plurality of processors.
  • the processor 1004 includes a modem processor (eg, DSP) that performs digital baseband signal processing, a processor that performs signal processing of the GTP-U / UDP / IP layer in the X2-U interface and the S1-U interface (eg, DSP) and a protocol stack processor (eg, CPU or MPU) that performs control plane processing may be included.
  • DSP modem processor
  • a processor that performs signal processing of the GTP-U / UDP / IP layer in the X2-U interface and the S1-U interface eg, DSP
  • a protocol stack processor eg, CPU or MPU
  • the memory 1203 is configured by a combination of a volatile memory and a nonvolatile memory.
  • Memory 1203 may include storage located remotely from processor 1202. In this case, the processor 1202 may access the memory 1203 via an I / O interface not shown.
  • the memory 1203 is used for storing software module groups.
  • the processor 1202 can perform the processing of the gateway device 30 described in the above-described embodiment by reading these software module groups from the memory 1203 and executing them.
  • each of the processors included in the communication terminal 10, the wireless communication device 21, the wireless communication device 22, and the gateway device 30 in the above-described embodiment has been described with reference to the drawings.
  • One or more programs including instructions for causing the computer to execute the algorithm are executed.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (Random Access Memory)) are included.
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • the communication terminal is assigned to the communication terminal when performing the first wireless communication using the first wireless access technology and performing the simultaneous communication with the second wireless communication using the second wireless access technology.
  • a management unit that associates and manages at least one bearer and information indicating the first and second radio access technologies;
  • a gateway apparatus comprising: a charging system communication unit that transmits information indicating the first and second radio access technologies to at least one charging control apparatus that performs charging control.
  • Appendix 2 The billing system communication unit The gateway apparatus according to appendix 1, wherein a Diameter message in which information indicating the radio access technology is set is transmitted to at least one charging control apparatus.
  • the management unit When the first bearer is assigned to the first radio communication and the second bearer is assigned to the second radio communication, The management unit The first bearer and first type information indicating the first radio access technology are associated with each other and managed, and the second bearer and second type information indicating the second radio access technology are associated with each other.
  • the gateway device according to Supplementary Note 1 or 2, wherein (Appendix 4)
  • the management unit further includes: The first bearer and the first type information are managed in association with the second bearer and the second type information, and the communication terminal and the first type information are managed in association with each other.
  • the billing system communication unit The first type information associated with the first bearer and the second type information associated with the second bearer have priority over the first type information associated with the communication terminal.
  • the gateway device which is transmitted to the charging control device.
  • the management unit The gateway device according to appendix 1 or 2, which manages the third bearer and the third type information indicating the first radio access technology and the second radio access technology in association with each other.
  • the management unit further includes: Managing the third bearer and the third type information in association with each other, managing the communication terminal in association with the first type information indicating the first radio access technology,
  • the billing system communication unit The gateway apparatus according to appendix 5, wherein the third type information associated with the third bearer is transmitted to the charging control apparatus in preference to the first type information associated with the communication terminal. .
  • Appendix 7 A network device that performs control related to transmission of user data between the first wireless communication device that performs the first wireless communication, the second wireless communication device that performs the second wireless communication, and the gateway device; Any one of appendices 1 to 6, further comprising a core network communication unit that receives a control message in which at least one bearer allocated to the communication terminal is associated with information on the first and second radio access technologies
  • the gateway device according to item.
  • the control message is The gateway apparatus according to appendix 7, including at least one of a Create Session Request message, a Bearer Resource Command message, a Modify Bearer Request message, a Modify Access Bearers Request message, a Context Request message, and a Change Notification Request message.
  • a wireless communication device that performs first wireless communication with a communication terminal using a first wireless access technology, When the communication terminal performs the first wireless communication and performs the simultaneous communication with the second wireless communication using the second wireless access technology, at least one bearer assigned to the communication terminal; And a wireless communication device that transmits information associated with information indicating the second wireless access technology to a network device that manages the bearer.
  • the communication terminal is assigned to the communication terminal when performing the first wireless communication using the first wireless access technology and performing the simultaneous communication with the second wireless communication using the second wireless access technology.
  • Appendix 11 A data transmission method used in a wireless communication apparatus that performs first wireless communication with a communication terminal using a first wireless access technology, When the communication terminal performs the first wireless communication and performs the simultaneous communication with the second wireless communication using the second wireless access technology, at least one bearer assigned to the communication terminal; And a data transmission method of transmitting information associated with information indicating the second radio access technology to a network device that manages the bearer.
  • the communication terminal is assigned to the communication terminal when performing the first wireless communication using the first wireless access technology and performing the simultaneous communication with the second wireless communication using the second wireless access technology.
  • Appendix 13 A program to be executed by a computer that performs first wireless communication using a communication terminal and a first wireless access technology, When the communication terminal performs the first wireless communication and performs the simultaneous communication with the second wireless communication using the second wireless access technology, at least one bearer assigned to the communication terminal; And a program for causing a computer to transmit information associated with information indicating the second radio access technology to a network device that manages the bearer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

UEが、同時に異なるRATを用いて通信を行っている場合においても、UEが使用しているRATに応じた課金制御を行うことができるゲートウェイ装置を提供することを目的とする。本発明にかかるゲートウェイ装置(30)は、通信端末(10)が第1の無線アクセス技術を用いた第1の無線通信を行うとともに、第2の無線アクセス技術を用いた第2の無線通信を行う際に、通信端末(10)に割り当てられた少なくとも1つのベアラと、第1及び第2の無線アクセス技術を示す情報とを関連づけて管理する管理部(31)と第1及び第2の無線アクセス技術を示す情報を、課金制御を行う少なくとも1つのポリシィ課金制御装置(40)へ送信する課金システム通信部(32)と、を備える。

Description

ゲートウェイ装置、無線通信装置、課金制御方法、データ送信方法、及びコンピュータ可読媒体
 本開示はゲートウェイ装置、無線通信装置、課金制御方法、データ送信方法、及びプログラムに関し、特に複数の無線アクセス技術を用いるゲートウェイ装置、無線通信装置、課金制御方法、データ送信方法、及びプログラムに関する。
 移動体通信システムの標準規格3GPP(3rd Generation Partnership Project)において、通信端末UE(User Equipment)が広帯域かつ低遅延な通信を実行するための技術として、Dual Connectivityがある。Dual Connectivityとは、例えば、UEがLTE(Long Term Evolution)通信を行う第1基地局MeNB(Master evolved NodeB)及び第2基地局SeNB(Secondary eNB)と共に接続し、UEがMeNBに加えてSeNBとも通信を行う技術である。これにより、通信のスループットを向上することが可能となる。また、Dual Connectivityは、通信事業者が事業で用いる事の許可されている周波数帯と使用許可の不要な周波数帯(unlicensed spectrum)とを同時に用いた通信にも適用する事ができる。更に、基地局eNB(evolved NodeB)が無線LAN(WLAN(Wireless LAN))通信装置と接続される事によって、UEがLTE通信とWLAN通信を同時に提供する技術も規定されている。
 非特許文献1の0.1.2.8節には、Dual Connectivityの手順として、UEが、MeNBと接続している状態において、UEと通信を行うeNBとして新たにSeNBを追加する処理の流れ等が示されている。
 また、移動体通信システムに比べてカバーするエリアは狭いが、高速通信を可能とする無線LAN(Local Area Network)通信において、近年、その利用可能なエリアが拡充されてきている。そのため、UEが、Dual Connectivityの技術を応用して、モバイル通信を行うeNBと、無線LAN通信を行うアクセスポイントWT(Wireless LAN Termination)と共に接続し、UEがeNBに加えてWTとも通信を行うことも可能である。具体的には、非特許文献1の22A節に示されている。
 ここで、UEに適用される課金レートは、UEが使用している無線アクセス技術(Radio Access Technology:RAT)を基準に決定される。例えば、UEが、Dual ConnectivityにおいてMeNB及びSeNBとLTE通信を行っている場合、LTE通信時に定められる課金レートがUEに適用される。非特許文献2には、ポリシー制御及び課金制御を実行するためのPCC(Policy and Charging Control) Architectureの構成が示されている。
 非特許文献3には、ゲートウェイ装置PGW(Packet Date Network Gateway)が、課金に関するパラメータとして、UE単位にRAT typeを管理することが示されている。RAT typeは、UEが現在使用しているRATを示すパラメータである。
3GPP TS 36.300 V13.2.0 (2015-12) 3GPP TS 23.203 V13.4.0 (2015-06) 5節,A.4.2節 3GPP TS 23.401 V13.5.0 (2015-12) 5.7.4節
 非特許文献1の10.1.2.8節に記載されているDual Connectivityを実行する場合、UEは、MeNB及びSeNBと同時に1つのRATを用いて通信を行う。この場合、非特許文献3に記載されているように、課金パラメータとしてのRAT typeをUE単位に管理することに問題はない。ただし、非特許文献1の5.7節には、Dual Connectivityを通信事業者が事業で用いる事の許可されている周波数帯と使用許可の不要な周波数帯(unlicensed spectrum)を同時に用いた通信に適用する技術が、LAA(Licensed-Assisted Access)として記述されている。この形態で通信を行った場合、どちらの通信技術もLTEでありRAT typeとしては同一である。しかし、課金は通知に対するコストが反映されているという観点で考察すると、許可されている周波数帯を用いたのか使用許可の不要な周波数帯(unlicensed spectrum)を用いたのかを正確に管理する必要がある。更に、非特許文献1の22A節に記載されるように、UEが、LTEとWTとの両方のRATを用いて通信を行う場合、UEは、同時に2種類のRATを用いて通信を行う。そのため、非特許文献3のようにPGWが、RAT typeをUE単位に管理する場合、PGWが、管理するRAT typeと、UEが実際に使用しているRATとが異なる可能性がある。その結果、UEが2種類のRATを用いて通信を行う場合は、実際の通信に応じた適正な課金制御を行う(課金レートを適用する)ことができないという問題がある。
 本開示の目的は、UEが、同時に異なるRATを用いて通信を行っている場合においても、UEが使用しているRATに応じた課金制御を行うことができるゲートウェイ装置、無線通信装置、課金制御方法、データ送信方法、及びプログラムを提供することにある。
 本開示の第1の態様にかかるゲートウェイ装置は、通信端末が第1の無線アクセス技術を用いた第1の無線通信を行うとともに、第2の無線アクセス技術を用いた第2の無線通信と同時通信を行う際に、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術を示す情報とを関連づけて管理する管理部と、前記第1及び第2の無線アクセス技術を示す情報を、課金制御を行う少なくとも1つの課金制御装置へ送信する課金システム通信部と、を備えるものである。前記通信端末が、前記第1及び第2の無線アクセス技術を同時に用いて通信を行う場合にあっては、無線通信装置によって通信アグリゲーションを形成してもよい。
 本開示の第2の態様にかかる無線通信装置は、通信端末と第1の無線アクセス技術を用いて第1の無線通信を行う無線通信装置であって、前記通信端末が第1の無線通信を行うとともに第2の無線アクセス技術を用いた第2の無線通信と同時通信を行う際に、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術を示す情報とを関連づけた情報を、前記ベアラを管理するネットワーク装置へ送信するものである。前記通信端末が、前記第1及び第2の無線アクセス技術を同時に用いて通信を行う場合にあっては、無線通信装置によって通信アグリゲーションを形成してもよい。
 本開示の第3の態様にかかる課金制御方法は、通信端末が第1の無線アクセス技術を用いた第1の無線通信を行うとともに、第2の無線アクセス技術を用いた第2の無線通信と同時通信を行う際に、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術を示す情報とを関連づけて管理し、前記第1及び第2の無線アクセス技術を示す情報を、課金制御を行う少なくとも1つの課金制御装置へ送信するものである。前記通信端末が、前記第1及び第2の無線アクセス技術を同時に用いて通信を行う場合にあっては、無線通信装置によって通信アグリゲーションを形成してもよい。
 本開示の第4の態様にかかるデータ送信方法は、通信端末と第1の無線アクセス技術を用いて第1の無線通信を行う無線通信装置において用いられるデータ送信方法であって、前記通信端末が第1の無線通信を行うとともに第2の無線アクセス技術を用いた第2の無線通信と同時通信を行う際に、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術を示す情報とを関連づけた情報を、前記ベアラを管理するネットワーク装置へ送信するものである。前記通信端末が、前記第1及び第2の無線アクセス技術を同時に用いて通信を行う場合にあっては、無線通信装置によって通信アグリゲーションを形成してもよい。
 本開示の第5の態様にかかるプログラムは、通信端末が第1の無線アクセス技術を用いた第1の無線通信を行うとともに、第2の無線アクセス技術を用いた第2の無線通信と同時通信を行う際に、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術を示す情報とを関連づけて管理し、前記第1及び第2の無線アクセス技術を示す情報を、課金制御を行う少なくとも1つの課金制御装置へ送信することをコンピュータに実行させるものである。前記通信端末が、前記第1及び第2の無線アクセス技術を同時に用いて通信を行う場合にあっては、無線通信装置によって通信アグリゲーションを形成してもよい。
 本開示により、UEが、同時に異なるRATを用いて通信を行っている場合においても、UEが使用しているRATに応じた課金制御を行うことができるゲートウェイ装置、無線通信装置、課金制御方法、データ送信方法、及びプログラムを提供することができる。
実施の形態1にかかる通信システムの構成図である。 実施の形態1にかかる通信システムの構成図である。 実施の形態2にかかる通信システムの構成図である。 実施の形態2にかかる通信システムの構成図である。 実施の形態2にかかる課金システムの構成図である。 実施の形態2にかかるPGWの構成図である。 実施の形態2にかかるPGWが管理するパラメータを示す図である。 実施の形態2にかかるeNBの構成図である。 実施の形態2にかかるUEの構成図である。 実施の形態2にかかるRAT typeの送信処理の流れを示す図である。 実施の形態2にかかるE-RAB Modification Indicationメッセージに設定されるパラメータ情報を示す図である。 実施の形態2にかかるModify Bearer Requestメッセージに設定されるパラメータ情報を示す図である。 実施の形態2にかかるCreate Session Requestメッセージに設定されるパラメータ情報を示す図である。 実施の形態2にかかるBearer Resource Commandメッセージに設定されるパラメータ情報を示す図である。 実施の形態2にかかるModify Access Bearers Requestメッセージに設定されるパラメータ情報を示す図である。 実施の形態2にかかるContext Requestメッセージに設定されるパラメータ情報を示す図である。 実施の形態2にかかるChange Notification Requestメッセージに設定されるパラメータ情報を示す図である。 実施の形態2にかかるPGWがPCRFへRAT typeを送信する処理の流れを示す図である。 実施の形態2にかかるPCRFとTDFとの間のDiameterメッセージの伝送処理の流れを示す図である。 実施の形態2にかかるRAT typeの値を説明する図である。 実施の形態3にかかる通信システムの構成図である。 実施の形態3にかかるRAT typeの値を説明する図である。 実施の形態3にかかるRAT typeの値を説明する図である。 実施の形態3にかかるE-RAB Modification Indicationメッセージに設定されるパラメータ情報を示す図である。 各実施の形態にかかる無線通信装置の構成図である。 各実施の形態にかかる通信端末の構成図である。 各実施の形態にかかるゲートウェイ装置の構成図である。
 (実施の形態1)
 以下、図面を参照して本開示の実施の形態について説明する。図1Aを用いて本開示の実施の形態1にかかる通信システムの構成例について説明する。
 図1Aの通信システムは、通信端末10、無線通信装置21、無線通信装置22、ゲートウェイ装置30、及びポリシィ課金制御装置40を有している。
 通信端末10は、携帯電話端末、スマートフォン、もしくはタブレット型端末等であってもよい。また、通信端末10は、3GPPにおいて通信端末の総称として用いられるUEと称されてもよい。また、通信端末10は、2G(第2世代携帯電話)無線アクセス技術、3G(第3世代携帯電話)無線アクセス技術、LTE無線アクセス技術、4G/5G(第4世代/第5世代携帯電話)無線アクセス技術またはCIoT(Cellular IoT(Internet of Things))専用の無線アクセス技術を用いて通信する端末であってもよい。また、通信端末10は、異なる複数の無線アクセス技術を用いて同時に通信(デュアル接続)を行える端末である。例えば、通信端末10は、3GPPにおいて規定されている無線アクセス技術を用いた移動体通信と、無線LAN通信とを同時に行う端末であってもよい。また、通信端末10は、LTE無線アクセス技術と、5G無線アクセス技術とを同時に行う端末であってもよい。
 無線通信装置21及び無線通信装置22は、予め定められた無線アクセス技術(RAT)を用いて通信端末10と無線通信を行う。通信端末10は、無線通信装置21との無線通信に用いるRATと異なるRATを用いて無線通信装置22と無線通信を行う。通信端末10が、異なるRATを同時に用いて無線通信装置21及び無線通信装置22と無線通信を行った場合、無線通信装置21及び無線通信装置22は、ゲートウェイ装置30から通信端末10に向けて送信された通信データを別々のRATに向けて分割配信する事や通信端末10から別々のRATを用いてゲートウェイ装置30向けに送信された通信データを合成することを行っても良い。この動作を通信アグリゲーションやハイブリッドなDual Connectivityなどと称する。
 異なるRATを同時に用いた通信(以下、同時通信と称する)で用いられる一方のRATは、例えば、3GPPにおいて通信規格が定められているLTEであってもよく、将来的に3GPPにおいて通信規格が定められる無線通信技術であってもよい。それは、例えば、5G等と称されてもよい。同時通信で用いられるもう一方のRATは、無線LANであってもよい。
 ポリシィ課金制御装置40は、通信端末10に関するサービスポリシィに関する制御、及び課金関連の処理を実行する装置である。
 ゲートウェイ装置30は、通信端末10が無線通信装置21及び無線通信装置22を含むネットワークを介して、サービスを提供するネットワークまたは外部ネットワークと通信を行う際に用いられるゲートウェイ装置である。また、ゲートウェイ装置30は、通信端末10に関する課金パラメータをポリシィ課金制御装置40へ送信する。
 続いて、ゲートウェイ装置30の構成例について説明する。ゲートウェイ装置30は、プロセッサがメモリに格納されたプログラムを実行することによって動作するコンピュータ装置であってもよい。
 ゲートウェイ装置30は、管理部31及び課金システム通信部(なお、通信部は送信及び受信部と言い換えてもよい)32を有している。管理部31及び課金システム通信部32等を備えるゲートウェイ装置30を構成する構成要素は、プロセッサがメモリに格納されたプログラムを実行することによって処理が実行されるソフトウェアもしくはモジュール等であってもよい。もしくは、ゲートウェイ装置30を構成する構成要素は、回路もしくはチップ等のソフトウェアであってもよい。
 管理部31は、通信端末10が無線通信装置21とともに無線通信装置22と無線通信を行い、通信アグリゲーションを形成している際に、通信端末10に割り当てられた少なくとも1つのベアラと、無線通信装置21との通信に用いるRAT及び無線通信装置22との通信に用いるRATを示す情報とを関連付けて管理する。例えば、通信端末10が無線通信装置21を介して通信するために割り当てられたベアラと、無線通信装置22を介して通信するために割り当てられたベアラとが異なる場合、管理部31は、ベアラとRATとを1対1に対応付けて管理する。
 もしくは、通信端末10に1つのベアラが割り当てられ、1つのベアラにおいて無線通信装置21との通信に用いるRATと、無線通信装置22との通信に用いるRATとが含まれる場合、管理部31は、1つのベアラに対して2つのRATを対応付けて管理する。なお、1つのベアラに対して3つ以上のRATが対応付けられてもよい。
 課金システム通信部32は、管理部31においてベアラ単位に管理されているRATに関する情報をポリシィ課金制御装置40へ送信する。
 以上説明したように、ゲートウェイ装置30は、通信端末10が使用しているRATをベアラ単位に関連付けて管理することによって、ポリシィ課金制御装置40へ、通信端末10が使用しているRATをベアラ毎に通知することができる。これにより、ポリシィ課金制御装置40は、通信端末10が実際に使用しているRATを正確に把握することができるため、RATに応じた課金制御を行うことができる。また、図1Bを用いて、図1Aと異なる通信システムの構成について説明する。図1Aは、無線通信装置22が直接ゲートウェイ装置30と接続する構成を示しているのに対して、図1Bは、無線通信装置22が無線通信装置21を介してゲートウェイ装置30と接続する構成を示している。
 (実施の形態2)
 続いて、図2Aを用いて本開示の実施の形態2にかかる通信システムの構成例について説明する。図2Aにおいては、3GPPにおいて規定されているノードによって構成された通信システムの構成例について説明する。なお、図2Aでは課金システムは省略しており、図3で後述する。
 図2Aの通信システムは、UE50、LTE向け基地局eNB60、異RAT通信装置70、移動管理ノードMME(Mobility Management Entity)80、SGW(Serving Gateway)90、PGW100、及びPCRF(Policy Control and Charging Rules)エンティティ110(以下、PCRF110と記載する)を有している。
 UE50は、図1Aの通信端末10に相当する。eNB60は、図1Aの無線通信装置21に相当する。異RAT通信装置70は、図1Aの無線通信装置22に相当する。PGW100は、図1Aのゲートウェイ装置30に相当する。PCRF110は、図1Aのポリシィ課金制御装置40に相当する。
 異RAT通信装置70は、将来的に3GPPにおいて規定される次世代の無線通信方式である5G無線通信方式をサポートする基地局であっても良い。また、異RAT通信装置70は、無線LAN通信を行うWT(Wireless LAN Termination)であっても良い。また、異RAT通信装置70は、使用許可の不要な周波数帯(unlicensed spectrum)を用いた5G無線通信方式をサポートする基地局であっても良い。ここでは、説明を容易にするために、次世代の無線通信方式もしくは無線アクセス技術を5Gと称しているが、その名称は5Gに制限されない。また、ここでは、説明を容易にするために、UE50は、LTE及び5G無線通信方式の両方をサポートする端末とする。
 MME80は、主にUE50の移動管理やベアラの設定/削除の要求や指示を行う装置である。SGW90及びPGW100は、UE50において送信または受信されるユーザデータ(パケット)を中継するゲートウェイ装置である。SGW90は無線アクセスシステムを収容し、またPGW100は外部ネットワーク(PDN:Packet Data Networkなど)への接続を行う。PCRF110は、SGW90及びPGW100におけるQoS制御もしくは課金制御等のポリシー(課金体系)を決定する。
 次に、3GPPにおける各装置間のインタフェースを説明する。eNB60とMME80との間は、S1-MMEインタフェースとして規定されている。eNB60とSGW90との間は、S1-Uインタフェースとして規定されている。MME80とSGW90との間は、S11インタフェースとして規定されている。SGW90とPGW100との間は、S5インタフェースとして規定されている。PGW100とPCRF110との間は、Gxインタフェースとして規定されている。なお、インタフェースとの用語は、リファレンスポイントと置き換えられてもよい。
 eNB60と異RAT通信装置70との間は、3GPPにおいてeNB間のインタフェースとして定められているX2インタフェースに相当するインタフェースが規定されてもよい。また、eNB60と異RAT通信装置70との間は、3GPPにおいてeNBとWTの間のインタフェースとして定められているXwインタフェースに相当するインタフェースが規定されてもよい。また、異RAT通信装置70とSGW90との間は、S1-Uインタフェースに相当するインタフェースが規定されてもよい。なお、5G基地局70とSGW90との間にインタフェースが設定されない場合は、5G基地局70は、eNB60を介して、SGW90とデータの送受信を行うことができる。
 図2Aの通信システムは、UE50が、eNB60とLTE通信を行うとともに異RAT通信装置70と5G無線通信を行い、LTE及び5Gを用いた通信を形成していることを示している。UE50がeNB60を介した通信を行う際のベアラは、UE50が異RAT通信装置70を介した通信を行う際のベアラと異なるとする。また、図2Bを用いて、図2Aとは異なる通信システムの構成例について説明する。図2Aは、異RAT通信装置70が直接SGW90とS1-Uインタフェースに相当するインタフェースを用いて接続する構成を示しているのに対して、図2Bは、異RAT通信装置70がeNB60を介してSGW90と接続する構成を示している。
 続いて、図3を用いて、課金システムの構成例について説明する。図3の課金システムは、PGW100、PCRF110、AF(Application Function)エンティティ120(以下、AF120と記載する)、OCS(Online Charging System)130、TDF(Traffic Detection Function)エンティティ140(以下、TDF140と記載する)、及びOFCS(Offline Charging System)150を有している。図3の課金システムにおいては、PGW100は、PCEF(Policy and Charging Enforcement Function)を有し、PCEFを用いて課金システムを構成する各装置と通信を行ってもよい。
 AF120は、アプリケーションサーバであり、UE50に対して提供するアプリケーションサービスに関する制御を行う。TDF140は、PGW100が送信または受信するデータについて、PCRF110を通じてフロー単位のサービス種別を検出する。OCS130及びOFCS150は、UE50の課金契約に応じて課金制御等を行う。例えば、プリペイドサービスなどの課金契約の場合、常時通信量をモニタする能力を持つOCS130が課金処理を行う。一方、月極めの課金契約などの場合はOFCS150が課金処理を行う。
 次に、3GPPにおける各装置間のインタフェースを説明する。PGW100とPCRF110との間は、Gxインタフェースとして規定されている。PGW100とOCS130との間は、Gyインタフェースとして規定されている。PGW100とOFCS150との間は、Gzインタフェースとして規定されている。TDF140とOCS130との間は、Gynとして規定されている。TDF140とOFCS150との間は、Gznとして規定されている。TDF140とPCRF110との間は、Sdインタフェースとして規定されている。PCRF110とOCS130との間は、Syインタフェースとして規定されている。PCRF110とAF120との間は、Rxインタフェースとして規定されている。
 PGW100は、ベアラ毎に管理しているRAT typeを、Gx、Gy、及びGzインタフェースを介して各装置へ送信する。さらに、PCRF110は、ベアラ毎に管理しているRAT typeをRx及びSdインタフェースを介して各装置へ送信する。
 続いて、図4を用いて本開示の実施の形態2にかかるPGW100の構成例について説明する。PGW100は、コアネットワーク通信部101、管理部102、及びPCC(Policy and Charging Control)通信部103を有している。PCEFは、管理部102及びPCC通信部103によって実行される。
 コアネットワーク通信部101は、SGW90との間においてUE50に関するユーザデータを送信または受信する。また、コアネットワーク通信部101は、UE50に割り当てられたベアラ毎に用いられているRAT typeをSGW90から受信する。コアネットワーク通信部101は、受信したRAT typeに関する情報を管理部102へ出力する。
 管理部102は、RAT typeをUE50に割り当てられたベアラと関連付けて管理する。ここで、図5を用いて、3GPP TS23.401 V13.1.0 (2014-12) Table 5.7.4-1:P-GW contextにおいて規定されているPGW100が管理するパラメータ一覧に、ベアラと関連付けられRAT typeが追加された例について説明する。
 図5に記載されているFieldには、PGW100が、ベアラ毎に管理しているパラメータが記載されている。図5のFieldには、EPS(Evolved Packet System) Bearer IDが設定されている。図5のEPS Bearer IDの下に記載されているFieldには、EPS Bearer ID単位に管理されているパラメータが示されている。EPS Bearerは、UE50とPGW100との間において設定されているベアラである。
 図5は、EPS Bearer ID単位に管理されているパラメータに、RAT type(最下部に図示)が含まれていることを示している。このようにして、PGW100の管理部102は、RAT typeと、EPS Bearer IDとを関連付けて管理している。
 図4に戻り、PCC通信部103は、管理部102においてEPS Bearer ID単位に管理されているRAT typeを、PCRF110、OCS130、及びOFCS150へ送信する。
 なお、UE50単位にRAT typeが管理されている場合も、PCC通信部103は、UE50単位に管理されているRATに優先して、図5のEPS Bearer ID単位に管理されているRAT typeをPCRF110、OCS130、及びOFCS150へ送信する。
 続いて、図6を用いて本開示の実施の形態2にかかるeNB60の構成例について説明する。eNB60は、無線通信部61、異RAT通信部62、及びコアネットワーク通信部63を有している。eNB60を構成する構成要素は、プロセッサがメモリに格納されたプログラムを実行することによって処理が実行されるソフトウェアもしくはモジュール等であってもよい。もしくは、eNB60を構成する構成要素は、回路もしくはチップ等のソフトウェアであってもよい。
 無線通信部61は、UE50とLTE通信を行う。異RAT通信部62は、LTEと異なる無線通信方式をサポートする他の無線通信装置と通信を行う。ここでは、異RAT通信部62は、異RAT通信装置70と通信を行う。コアネットワーク通信部63は、MME80との間において、制御データを送信または受信する。制御データは、例えば、C(Control)-Planeデータと称されてもよい。また、コアネットワーク通信部63は、SGW90との間において、ユーザデータを送信または受信する。ユーザデータは、例えば、U(User)-Planeデータと称されてもよい。ここでは、コアネットワーク通信部63が、制御データ及びユーザデータを送信または受信することを示しているが、制御データを送信または受信する通信部と、ユーザデータを送信または受信する通信部とが異なる機能ブロックもしくは異なるインタフェースであってもよい。
 異RAT通信部62は、eNB60がUE50とLTE通信を行っている際に、LTEと、5Gとを用いた同時通信を形成する装置として、異RAT通信装置70を追加する処理を実行する。
 続いて、図7を用いてUE50の構成例について説明する。UE50は、LTE通信部51及び異RAT通信部52を有している。LTE通信部51は、eNB60とLTE通信を行う。異RAT通信部52は、異RAT通信装置70と5G通信を行う。UE50は、LTE通信部51及び異RAT通信部52を用いて、eNB60及び異RAT通信装置70と同時通信を形成する。また、UE50は、異なる複数の無線アクセス技術を用いて同時に通信(デュアル接続)を行える端末である。
 続いて、図8を用いて本開示の実施の形態2にかかる3GPPにおけるRAT typeの送信処理の流れについて説明する。なお、図8は、3GPP TS23.401 V13.1.0 (2014-12) Figure 5.4.7-1を参照している。図8は、E-UTRAN(Evolved Universal Terrestrial Radio Access Network) initiated E-RAB(EPS-Radio Access Bearer) modification procedureに関する処理の流れを説明している。具体的には、図8は、UE50とeNB60とがLTE通信を行っている際に、LTEと5Gとの同時通信を形成する装置として、異RAT通信装置70を追加した場合におけるRAT typeの送信処理の流れを示している。
 はじめに、UE50、eNB60、及び異RAT通信装置70の間において、異RAT通信装置70を追加する処理を実行する(SCG(Secondary Cell Group) Modification)(S11)。SCGは、LTEと5Gとの同時通信を形成するにあたり、追加された基地局(それによるサービスセル)を示す。具体的には、図8においては、異RAT通信装置70が、SCGに相当する。一方、UE50が最初に通信をしていたeNB60は、MCG(Master Cell Group)に相当する。
 次に、eNB60と異RAT通信装置70との間において、ユーザデータの転送が行われる(Forwarding of data)(S12)。
 次に、eNB60は、異RAT通信装置70をSCGとして追加したことに伴いベアラ情報を更新するために、E-RAB Modification IndicationメッセージをMME80へ送信する(S13)。更新する対象のベアラ情報は、E-RAB(E-UTRAN Radio Access Bearer)である。E-RABは、UE50とSGW90との間に設定されるベアラである。また、E-RABは、UE50とPGW100との間に設定されるEPSベアラ(EPS Bearer)と一対一に対応する。
 ここで、図9を用いて、E-RAB Modification Indicationメッセージに設定されるパラメータ情報について説明する。なお、図9は、3GPP TS 36.413 V13.0.0 (2015-06) 9.1.3.8節を参照している。IE/Group Nameの下に、E-RAB Modification Indicationメッセージに設定されるパラメータ情報が記載されている。
 E-RAB to be Modified Listには、LTEと5Gとの同時通信を形成するために追加した異RAT通信装置70に関するパラメータが設定される。例えば、E-RAB to be Modified Item IEs(Information Elements)には、UE50が異RAT通信装置70と通信を行う際に割り当てられるE-RABを識別するE-RAB IDが設定される。さらに、E-RAB to be Modified Item IEsには、UE50が異RAT通信装置70との通信に用いているRATを示すRAT type(5G)が設定されている。例えば、E-RAB to be Modified Item IEsに設定されるRAT typeには、5Gを示す情報が設定されてもよい。
 ここで、異RAT通信装置70を介してUE50とSGW90との間に設定されるベアラは、E-RABと異なる名称が用いられてもよい。図9においては、説明を容易にするために、異RAT通信装置70を介してUE50とSGW90との間に設定されるベアラをE-RABとして説明している。また、E-RAB to be Modified List、E-RAB to be Modified Item IEs、E-RAB IDとの名称は、異RAT通信装置70を介してUE50とSGW90との間に設定されるベアラの名称に応じて変更されてもよい。
 E-RAB not to be Modified Listには、UE50が最初に通信を行っていたeNB60に関するパラメータが設定される。例えば、E-RAB not to be Modified Item IEsには、UE50がeNB60と通信を行う際に割り当てられるE-RABを識別するE-RAB IDが設定される。さらに、E-RAB not to be Modified Item IEsには、UE50がeNB60との通信に用いているRATを示すRAT type(LTE)が設定されている。例えば、E-RAB not to be Modified Item IEsに設定されるRAT typeには、LTEを示す情報が設定されてもよい。
 eNB60は、E-RAB IDに関連付けられたRAT typeを含むE-RAB Modification IndicationメッセージをMME80へ送信する。
 図8に戻り、MME80は、E-RAB Modification Indicationメッセージを受信すると、E-RAB IDに関連付けられたRAT typeを設定したModify Bearer RequestメッセージをSGW90へ送信する(S14)。さらに、SGW90は、E-RAB IDに関連づけられたRAT typeを設定したModify Bearer RequestメッセージをPGW100へ送信する(S15)。
 ここで、図10を用いて、Modify Bearer Requestメッセージに設定されるパラメータ情報について説明する。なお、図10は、3GPP TS 29.274 V13.2.0 (2015-06) Table 7.2.7-2を参照している。図10に示すように、Modify Bearer Requestメッセージには、EPS Bearer IDとともにRAT typeが設定されている。また、図9に示す例のように、E-RAB IDが複数存在する場合、複数のBearer Context IE TypeがModify Bearer Requestメッセージに設定され、EPS Bearer ID毎に、RAT typeが設定される。また、RAT typeは、Modify Bearer Requestメッセージ毎にも設定可能である。言い換えると、RAT typeは、Modify Bearer Requestメッセージにおいて、UE毎に設定可能である。この場合、Modify Bearer Requestメッセージに設定されたRAT typeは全てのEPS Bearerに対して有効である事を意味する。ただし、Modify Bearer Requestメッセージ、およびEPS Bearer IDに、それぞれRAT typeが設定された場合は、EPS Bearer IDに設定されたRAT typeを優先して処理してもよい。
 図8に戻り、PGW100は、Modify Bearer Requestメッセージに対する応答として、Modify Bearer ResponseメッセージをSGW90へ送信する(S16)。さらに、SGW90は、Modify Bearer ResponseメッセージをMME80へ送信する(S17)。ステップS17以降、SGW90は、UE50を宛先とするユーザデータをeNB60及び異RAT通信装置70へ送信することができる。また、ステップS17以降、SGW90は、UE50から送信されたユーザデータを、eNB60もしくは異RAT通信装置70を介して受信することができる。
 図8の処理の流れにおいては、E-RAB Modification Indicationメッセージ及びModify Bearer Requestメッセージに、E-RAB IDもしくはEPS Bearer IDに対応付けられたRAT typeを設定することについて説明したが、これら以外の他のメッセージにおいて、ベアラに対応付けられたRAT typeを設定してもよい。
 例えば、図11には、ATTACH処理もしくはTracking Area Update処理等において用いられるCreate Session Requestメッセージに、EPS Bearer IDごとにRAT typeが設定されることを示している。なお、図11は、3GPP TS 29.274 V13.2.0 (2015-06) Table 7.2.1-2を参照している。MME80が、そのように設定されたCreate Session RequestメッセージをSGW90へ送信する。また、RAT typeは、Create Session Requestメッセージ毎にも設定可能である。言い換えると、RAT typeはCreate Session Requestメッセージにおいて、UE毎に設定可能である。この場合、Create Session Requestメッセージに設定されたRAT typeは全てのEPS Bearerに対して有効である事を意味する。ただし、Create Session Requestメッセージ、およびEPS Bearer IDに、それぞれRAT typeが設定された場合は、EPS Bearer IDに設定されたRAT typeを優先して処理してもよい。更に、SGW90が、そのように設定されたCreate Session RequestメッセージをPGW100へ送信(転送)する。
 また、図12には、UE50が異RAT通信装置70を追加してLTEと5Gとの同時通信を形成することに伴いベアラの割当を要求する場合、もしくは、ベアラの変更(modify)を要求する場合に用いられるBearer Resource CommandメッセージにEPS Bearer IDごとにRAT typeが設定されることを示している。なお、図12は、3GPP TS 29.274 V13.2.0 (2015-06) Table 7.2.5-2を参照している。MME80が、そのように設定されたBearer Resource CommandメッセージをSGW90へ送信する。また、RAT typeは、Bearer Resource Commandメッセージ毎にも設定可能である。言い換えると、RAT typeはBearer Resource Commandメッセージにおいて、UE毎に設定可能である。この場合、Bearer Resource Commandメッセージに設定されたRAT typeは全てのEPS Bearerに対して有効である事を意味する。ただし、Bearer Resource Commandメッセージ、およびEPS Bearer IDに、それぞれRAT typeが設定された場合は、EPS Bearer IDに設定されたRAT typeを優先して処理してもよい。さらに、SGW90が、そのように設定されたBearer Resource CommandメッセージをPGW100へ送信(転送)する。
 また、図13には、SGW90の変更が生じないハンドオーバ処理等において用いられるModify Access Bearers RequestメッセージにEPS Bearer IDごとにRAT typeが設定されることを示している。なお、図13は、3GPP TS 29.274 V13.2.0 (2015-06) Table 7.2.24-2を参照している。MME80が、そのように設定されたModify Access Bearers RequestメッセージをSGW90へ送信する。また、RAT typeは、Modify Access Bearers Requestメッセージ毎にも設定可能である。言い換えると、RAT typeはModify Access Bearers Requestメッセージにおいて、UE毎に設定可能である。この場合、Modify Access Bearers Requestメッセージに設定されたRAT typeは全てのEPS Bearerに対して有効である事を意味する。ただし、Modify Access Bearers Requestメッセージ、およびEPS Bearer IDに、それぞれRAT typeが設定された場合は、EPS Bearer IDに設定されたRAT typeを優先して処理してもよい。
 また、図14には、Tracking Area Update処理等において用いられるContext Requestメッセージに、EPS Bearer IDごとにRAT typeが設定されることを示している。なお、図14は、3GPP TS 29.274 V13.2.0 (2015-06) Table 7.3.5-1を参照している。Context Requestメッセージは、UE50が、MMEの変更を伴う場所に移動した場合に、変更後のMMEと変更前のMMEとの間において伝送される。また、RAT typeは、Context Requestメッセージ毎にも設定可能である。言い換えると、RAT typeはContext Requestメッセージにおいて、UE毎に設定可能である。この場合、Context Requestメッセージに設定されたRAT typeは全てのEPS Bearerに対して有効である事を意味する。ただし、Context Requestメッセージ、およびEPS Bearer IDに、それぞれRAT typeが設定された場合は、EPS Bearer IDに設定されたRAT typeを優先して処理してもよい。
 また、図15には、MME80からSGW90へ送信されるChange Notification Requestメッセージに、EPS Bearer IDごとにRAT typeが設定されることを示している。なお、図15は、3GPP TS 29.274 V13.2.0 (2015-06) Table 7.3.14-1を参照している。また、RAT typeは、Change Notification Requestメッセージ毎にも設定可能である。言い換えると、RAT typeはChange Notification Requestメッセージにおいて、UE毎に設定可能である。この場合、Change Notification Requestメッセージに設定されたRAT typeは全てのEPS Bearerに対して有効である事を意味する。ただし、Change Notification Requestメッセージ、およびEPS Bearer IDに、それぞれRAT typeが設定された場合は、EPS Bearer IDに設定されたRAT typeを優先して処理してもよい。
 続いて、図16を用いて、PGW100がPCRF110へRAT typeを送信する処理の流れについて説明する。
 PGW100は、UE50が、eNB60及び異RAT通信装置70と、LTEと5Gとの同時通信を形成すると、IP-CAN(IP-Connectivity Access Network) Sessionが確立したことをPCRF110へ通知する。具体的には、PGW100は、Diameter CCR(Credit Control Request)メッセージをPCRF110へ送信する(S21)。PGW100は、Diameter CCRメッセージに、EPSベアラと関連付けられたRAT typeを設定する。PCRF110は、Diameter CCRメッセージを受信することによって、EPSベアラと関連付けられたRAT typeを把握することができる。また、RAT typeは、Diameter CCRメッセージ毎にも設定可能である。言い換えると、RAT typeはDiameter CCRメッセージにおいて、UE毎に設定可能である。この場合、Diameter CCRメッセージに設定されたRAT typeは全てのEPSベアラに対して有効である事を意味する。ただし、Diameter CCRメッセージ、およびEPSベアラに、それぞれRAT typeが設定された場合は、EPS Bearer IDに設定されたRAT typeを優先して処理してもよい。
 続いて、図17を用いてPCRF110とTDF140との間のDiameterメッセージの伝送処理について説明する。PCRF110は、UE50に関するユーザーデータトラヒックの中から、特定のパケットフローを抽出するためのADC(Application Detection and Control)ルールを設定したDiameter TSR(TDF Session Request)メッセージをTDF140へ送信する(S31)。PCRF110は、Diameter TSRメッセージに、EPSベアラと関連付けられたRAT typeを設定する。また、RAT typeは、Diameter TSRメッセージ毎にも設定可能である。言い換えると、RAT typeはDiameter TSRメッセージにおいて、UE毎に設定可能である。この場合、Diameter TSRメッセージに設定されたRAT typeは全てのEPSベアラに対して有効である事を意味する。ただし、Diameter TSRメッセージ、およびEPSベアラに、それぞれRAT typeが設定された場合は、EPSベアラに設定されたRAT typeを優先して処理してもよい。
 次に、TDF140は、応答メッセージとして、Diameter TSA(TDF Session Answer)メッセージをPCRF110へ送信する(S32)。
 図16及び図17において示した以外にも、EPSベアラと関連付けられたRAT typeは、Diameterメッセージを用いて、AF120、OCS130、及びOFCS150へ送信される。また、RAT typeは、Diameter TSAメッセージ毎にも設定可能である。言い換えると、RAT typeはDiameter TSAメッセージにおいて、UE毎に設定可能である。この場合、Diameter TSAメッセージに設定されたRAT typeは全てのEPSベアラに対して有効である事を意味する。ただし、Diameter TSAメッセージ、およびEPSベアラに、それぞれRAT typeが設定された場合は、EPSベアラに設定されたRAT typeを優先して処理してもよい。
 ここで、各種メッセージに設定されるRAT typeの値について説明する。現状、3GPP TS 29.274 V13.2.0 (2015-06) Table 8.17-1においては、図18に示すValues0~7までが、RAT typeを示す値として規定されている。例えば、Value3は、無線LAN(WLAN)を示し、Value6は、EUTRAN(LTE)を示す。ここで、図18においては、5Gを示すRAT typeの値として、8が新たに追加されていることを示している。これより、各種メッセージにおいて、RAT typeとしてLTEを示す場合、6を設定し、5Gを示す場合、8を設定することができる。
 以上説明したように、E-RAB IDもしくはEPS Bearer IDと関連付けられたRAT typeは、3GPPにおいて規定されている各種メッセージに設定され、PGW100を含む関連ノードへ送信される。これにより、PGW100は、UE50がLTEと5Gとの同時通信を形成している場合に、UE50単位ではなく、UE50が使用しているベアラ単位のRAT typeを把握することができる。これにより、PGW100は、LTEと5Gとの同時通信を形成しているUE50に対して、RAT typeに応じたベアラ単位の課金を実行することができる。
 (実施の形態3)
 続いて、図19を用いて本開示の実施の形態3にかかる通信システムの構成例について説明する。図19の通信システムは、図2Bの異RAT通信装置70の替わりに無線LAN通信を行うアクセスポイントWT160を用いている。また、WT160とSGW90との間にインタフェースは設定されず、WT160は、eNB60を介してUE50に関するユーザデータを送信または受信することを前提とする。eNB60とWT160との間は、Xwインタフェースとして規定されている。WT160は、例えば、無線LAN通信における親機や基地局として用いられるAP(Access Point)やWiFiルータであってもよい。
 図19の通信システムは、UE50が、eNB60とLTE通信を行うとともにWT160と無線LAN通信を行い、LTEと無線LANとを用いた同時通信を形成していることを示している。eNB60は、UE50とのLTE通信に用いるベアラ及びWT160を介した無線LAN通信に用いるベアラを一つのベアラとすることを前提とする。つまり、eNB60は、異なる2つのRATを1つのベアラに設定することによって、UE50との間にLTEと無線LANとの同時通信を形成する。
 ここで、3GPPにおいて規定されている各種メッセージに設定するRAT typeの値について説明する。現状、3GPP TS 29.274 V13.2.0 (2015-06) Table 8.17-1においては、図20に示すValues0~7までが、RAT typeを示す値として規定されている。例えば、Value3は、無線LAN(WLAN)を示し、Value6は、EUTRAN(LTE)を示す。
 5G無線技術やCIoT(Cellular IoT(Internet of Things))専用の無線技術などの新たなRATについても、RAT typeに新しいValue値を追加する事でRATの種別を表現する事ができる。また、6GHz以下の周波数を用いた5G無線技術と6GHz以上の周波数を用いた5G無線技術にそれぞれ別なValue値を追加してもかまわない。同様に、CIoT専用の無線技術についても、制御信号をデータ転送に用いる技術と専用ベアラをデータ転送に用いる技術にそれぞれ別なValue値を追加してもかまわない。
 実施の形態2においては、UE50がLTE-5Gアグリゲーションを形成している場合、ベアラ毎に、予め定義されたValueの値を設定すればよい。しかし、実施の形態3のようにUE50がLTE-WTアグリゲーションを形成する場合、一つのベアラに複数のRATを含むこととなる。このような場合、例えば、図20に示すように、Value8のRAT typeは、EUTRAN+WLANを示すと定義してもよい。つまり、図19に示されている各ノードは、RAT typeにValue8が設定されている場合、UE50は、LTE-WTアグリゲーションを形成していると判定することができる。
 もしくは、図21に示すように、Value6+3として、値を併記して示すことによって、UE50がLTE-WTアグリゲーションを形成していることを示してもよい。なお、図21は、3GPP TS 29.274 V13.2.0 (2015-06) Table 8.17-1を参照している。
 さらに、図20及び図21において、UE50がLTE-WTアグリゲーション形成している際に、1つのベアラにおいて伝送されているユーザデータのそれぞれのRATにおける使用率も併せて定義してもよい。
 例えば、図20において、Value8を、EUTRAN(30%)+WLAN(70%)と定義し、Value9をEUTRAN(50%)+WLAN(50%)等と定義してもよい。EUTRAN(30%)における30%は、1つのベアラにおいて伝送されているユーザデータのうち30%が、LTE通信によって伝送されていることを示している。
 また、図21において、Value6(30%)+3(70%)等と定義して、LTE通信及びWLAN通信の使用率を定義してもよい。
 続いて、図22を用いて本開示の実施の形態3にかかるE-RAB Modification Indicationメッセージに設定されるパラメータ情報について説明する。前述したように、実施の形態2では、図9において、UE50が、LTEと5Gとの同時通信を形成する際に、eNB60と異RAT通信装置70とにおいて、異なるE-RAB IDによって識別されるE-RABを用いることを前提としている。そのため、図9においては、E-RAB Modification Indicationメッセージ内に、E-RAB to be Modified List及びE-RAB not to be Modified Listが含まれている。
 一方、図22においては、UE50がLTEと無線LANとの同時通信を形成する際に、eNB60及びWT160において、同じE-RABを用いることを前提とする。そのため、E-RAB Modification Indicationメッセージ内に、E-RAB to be Modified Listのみが含まれている。E-RAB to be Modified Listにおいて、E-RAB IDと対応付けてRAT typeを設定している。UE50が、LTEと無線LANとの同時通信を形成している場合、図22のRAT typeには、図20又は図21においてRAT typesがEUTRAN+WLANを示すValueが設定される。
 また、LTE通信及び無線LAN通信を設定したベアラの名称は、E-RABと異なる名称であってもよく、E-RABとの名称に限定されない。
 以上説明したように、本開示の実施の形態3のようにRAT typeを定義することによって、1つのベアラに複数のRAT typeを設定する場合においても、1つのベアラにおいて設定されているRAT typeを正確に把握することができる。
 さらに1つのベアラにおいて複数のRAT typeが設定されている場合に、RAT type毎の使用率を定めることによって、課金制御においても、UE50に対して、RAT typeの使用率に応じた課金を行うことができる。
 また、RAT type毎に、通信事業者が事業で用いる事の許可されている周波数帯を使用しているのか使用許可の不要な周波数帯(unlicensed spectrum)を使用しているかを区別する情報を付加する事で、通信事業者が事業で用いる事の許可されている周波数帯の使用に応じた課金を行うことができる。例えば、既に定義されているValue6を、通信事業者が事業で用いる事の許可されている周波数帯を用いたEUTRAN(LTE)と定義し、新たなValueとしてLAA EUTRAN(Licensed-Assisted Access EUTRAN)としても良い。あるいは、各RAT typeとは別に、通信事業者が事業で用いる事の許可されている周波数帯を使用しているのか使用許可の不要な周波数帯(unlicensed spectrum)を使用しているかを区別する新たなパラメータを規定して、RAT typeと組み合わせる事で課金を行っても良い。
 なお、本開示は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、実施の形態2におけるLTEと5Gとの同時通信が、実施の形態3において説明したように1つのベアラを用いて実現されてもよい。また、実施の形態3におけるLTEと無線LANとの同時通信が、実施の形態2において説明したように2つのベアラを用いて実現されてもよい。また、本開示は、実施の形態1~3を適宜組み合わせて実施されてもよい。
 続いて以下では、上述の複数の実施形態で説明された、通信端末10、無線通信装置21、無線通信装置22、及びゲートウェイ装置30の構成例について説明する。図23は、無線通信装置21及び無線通信装置22の構成例を示すブロック図である。図23を参照すると、無線通信装置21及び無線通信装置22は、RFトランシーバ1001、ネットワークインターフェース1003、プロセッサ1004、及びメモリ1005を含む。RFトランシーバ1001は、UEsと通信するためにアナログRF信号処理を行う。RFトランシーバ1001は、複数のトランシーバを含んでもよい。RFトランシーバ1001は、アンテナ1002及びプロセッサ1004と結合される。RFトランシーバ1001は、変調シンボルデータ(又はOFDMシンボルデータ)をプロセッサ1004から受信し、送信RF信号を生成し、送信RF信号をアンテナ1002に供給する。また、RFトランシーバ1001は、アンテナ1002によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをプロセッサ1004に供給する。
 ネットワークインターフェース1003は、ネットワークノード(e.g., ゲートウェイ装置30)と通信するために使用される。ネットワークインターフェース1003は、例えば、IEEE 802.3 seriesに準拠したネットワークインターフェースカード(NIC)を含んでもよい。
 プロセッサ1004は、無線通信のためのデジタルベースバンド信号処理を含むデータプレーン処理とコントロールプレーン処理を行う。例えば、LTEおよびLTE-Advancedの場合、プロセッサ1004によるデジタルベースバンド信号処理は、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。
 プロセッサ1004は、複数のプロセッサを含んでもよい。例えば、プロセッサ1004は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., DSP)、及びコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., CPU又はMPU)を含んでもよい。
 メモリ1005は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。メモリ1005は、物理的に独立した複数のメモリデバイスを含んでもよい。揮発性メモリは、例えば、Static Random Access Memory(SRAM)若しくはDynamic RAM(DRAM)又はこれらの組み合わせである。不揮発性メモリは、マスクRead Only Memory(MROM)、Electrically Erasable Programmable ROM(EEPROM)、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。メモリ1005は、プロセッサ1004から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1004は、ネットワークインターフェース1003又は図示されていないI/Oインタフェースを介してメモリ1005にアクセスしてもよい。
 メモリ1005は、上述の複数の実施形態で説明された無線通信装置21及び無線通信装置22による処理を行うための命令群およびデータを含むソフトウェアモジュール(コンピュータプログラム)を格納してもよい。いくつかの実装において、プロセッサ1004は、当該ソフトウェアモジュールをメモリ1005から読み出して実行することで、上述の実施形態で説明されたリモートノード10の処理を行うよう構成されてもよい。
 図24は、通信端末10の構成例を示すブロック図である。Radio Frequency(RF)トランシーバ1101は、無線通信装置21及び無線通信装置22と通信するためにアナログRF信号処理を行う。RFトランシーバ1101により行われるアナログRF信号処理は、周波数アップコンバージョン、周波数ダウンコンバージョン、及び増幅を含む。RFトランシーバ1101は、アンテナ1102及びベースバンドプロセッサ1103と結合される。すなわち、RFトランシーバ1101は、変調シンボルデータ(又はOFDMシンボルデータ)をベースバンドプロセッサ1103から受信し、送信RF信号を生成し、送信RF信号をアンテナ1102に供給する。また、RFトランシーバ1101は、アンテナ1102によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをベースバンドプロセッサ1103に供給する。
 ベースバンドプロセッサ1103は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。デジタルベースバンド信号処理は、(a) データ圧縮/復元、(b) データのセグメンテーション/コンカテネーション、(c) 伝送フォーマット(伝送フレーム)の生成/分解、(d) 伝送路符号化/復号化、(e) 変調(シンボルマッピング)/復調、及び(f) Inverse Fast Fourier Transform(IFFT)によるOFDMシンボルデータ(ベースバンドOFDM信号)の生成などを含む。一方、コントロールプレーン処理は、レイヤ1(e.g., 送信電力制御)、レイヤ2(e.g., 無線リソース管理、及びhybrid automatic repeat request(HARQ)処理)、及びレイヤ3(e.g., アタッチ、モビリティ、及び通話管理に関するシグナリング)の通信管理を含む。
 例えば、LTEおよびLTE-Advancedの場合、ベースバンドプロセッサ1103によるデジタルベースバンド信号処理は、Packet Data Convergence Protocol(PDCP)レイヤ、Radio Link Control(RLC)レイヤ、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。また、ベースバンドプロセッサ1103によるコントロールプレーン処理は、Non-Access Stratum(NAS)プロトコル、RRCプロトコル、及びMAC CEの処理を含んでもよい。
 ベースバンドプロセッサ1103は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., Digital Signal Processor(DSP))とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., Central Processing Unit(CPU)、又はMicro Processing Unit(MPU))を含んでもよい。この場合、コントロールプレーン処理を行うプロトコルスタック・プロセッサは、後述するアプリケーションプロセッサ1104と共通化されてもよい。
 アプリケーションプロセッサ1104は、CPU、MPU、マイクロプロセッサ、又はプロセッサコアとも呼ばれる。アプリケーションプロセッサ1104は、複数のプロセッサ(複数のプロセッサコア)を含んでもよい。アプリケーションプロセッサ1104は、メモリ1106又は図示されていないメモリから読み出されたシステムソフトウェアプログラム(Operating System(OS))及び様々なアプリケーションプログラム(例えば、通話アプリケーション、WEBブラウザ、メーラ、カメラ操作アプリケーション、音楽再生アプリケーション)を実行することによって、通信端末10の各種機能を実現する。
 いくつかの実装において、図24に破線(1105)で示されているように、ベースバンドプロセッサ1103及びアプリケーションプロセッサ1104は、1つのチップ上に集積されてもよい。言い換えると、ベースバンドプロセッサ1103及びアプリケーションプロセッサ1104は、1つのSystem on Chip(SoC)デバイス1105として実装されてもよい。SoCデバイスは、システムLarge Scale Integration(LSI)またはチップセットと呼ばれることもある。
 メモリ1106は、揮発性メモリ若しくは不揮発性メモリ又はこれらの組合せである。メモリ1106は、物理的に独立した複数のメモリデバイスを含んでもよい。揮発性メモリは、例えば、Static Random Access Memory(SRAM)若しくはDynamic RAM(DRAM)又はこれらの組み合わせである。不揮発性メモリは、マスクRead Only Memory(MROM)、Electrically Erasable Programmable ROM(EEPROM)、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。例えば、メモリ1106は、ベースバンドプロセッサ1103、アプリケーションプロセッサ1104、及びSoC1105からアクセス可能な外部メモリデバイスを含んでもよい。メモリ1106は、ベースバンドプロセッサ1103内、アプリケーションプロセッサ1104内、又はSoC1105内に集積された内蔵メモリデバイスを含んでもよい。さらに、メモリ1106は、Universal Integrated Circuit Card(UICC)内のメモリを含んでもよい。
 メモリ1106は、上述の複数の実施形態で説明された通信端末10による処理を行うための命令群およびデータを含むソフトウェアモジュール(コンピュータプログラム)を格納してもよい。いくつかの実装において、ベースバンドプロセッサ1103又はアプリケーションプロセッサ1104は、当該ソフトウェアモジュールをメモリ1106から読み出して実行することで、上述の実施形態で説明された通信端末の処理を行うよう構成されてもよい。
 図25は、ゲートウェイ装置30の構成例を示すブロック図である。図25を参照すると、ゲートウェイ装置30は、ネットワークインターフェース1201、プロセッサ1202、及びメモリ1203を含む。ネットワークインターフェース1201は、ネットワークノード(e.g., 無線通信装置21)と通信するために使用される。ネットワークインターフェース1201は、例えば、IEEE 802.3 seriesに準拠したネットワークインタフェースカード(NIC)を含んでもよい。
 プロセッサ1202は、メモリ1203からソフトウェア(コンピュータプログラム)を読み出して実行することで、上述の実施形態においてシーケンス図及びフローチャートを用いて説明されたゲートウェイ装置30の処理を行う。プロセッサ1202は、例えば、マイクロプロセッサ、MPU、又はCPUであってもよい。プロセッサ1202は、複数のプロセッサを含んでもよい。
 プロセッサ1202は、無線通信のためのデジタルベースバンド信号処理を含むデータプレーン処理とコントロールプレーン処理を行う。例えば、LTEおよびLTE-Advancedの場合、プロセッサ1004によるデジタルベースバンド信号処理は、PDCPレイヤ、RLCレイヤ、およびMACレイヤの信号処理を含んでもよい。さらに、プロセッサ1202による信号処理は、X2-Uインタフェース及びS1-UインタフェースでのGTP-U・UDP/IPレイヤの信号処理を含んでもよい。また、プロセッサ1004によるコントロールプレーン処理は、X2APプロトコル、S1-MMEプロトコルおよびRRCプロトコルの処理を含んでもよい。
 プロセッサ1202は、複数のプロセッサを含んでもよい。例えば、プロセッサ1004は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., DSP)、X2-Uインタフェース及びS1-UインタフェースでのGTP-U・UDP/IPレイヤの信号処理を行うプロセッサ(e.g., DSP)、及びコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., CPU又はMPU)を含んでもよい。
 メモリ1203は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。メモリ1203は、プロセッサ1202から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1202は、図示されていないI/Oインタフェースを介してメモリ1203にアクセスしてもよい。
 図25の例では、メモリ1203は、ソフトウェアモジュール群を格納するために使用される。プロセッサ1202は、これらのソフトウェアモジュール群をメモリ1203から読み出して実行することで、上述の実施形態において説明されたゲートウェイ装置30の処理を行うことができる。
 図23~図25を用いて説明したように、上述の実施形態における通信端末10、無線通信装置21、無線通信装置22、及びゲートウェイ装置30が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。
 上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 以上、実施の形態を参照して本願開示を説明したが、本願開示は上記によって限定されるものではない。本願開示の構成や詳細には、開示のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2016年3月1日に出願された日本出願特願2016-038830を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 通信端末が第1の無線アクセス技術を用いた第1の無線通信を行うとともに、第2の無線アクセス技術を用いた第2の無線通信と同時通信を行う際に、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術を示す情報とを関連づけて管理する管理部と、
 前記第1及び第2の無線アクセス技術を示す情報を、課金制御を行う少なくとも1つの課金制御装置へ送信する課金システム通信部と、を備える、ゲートウェイ装置。
 (付記2)
 前記課金システム通信部は、
 前記無線アクセス技術を示す情報を設定したDiameterメッセージを少なくとも1つの前記課金制御装置へ送信する、付記1に記載のゲートウェイ装置。
 (付記3)
 第1の無線通信に第1のベアラが割り当てられ、第2の無線通信に第2のベアラが割り当てられている場合、
 前記管理部は、
 前記第1のベアラと前記第1の無線アクセス技術を示す第1の種別情報とを関連づけて管理し、前記第2のベアラと前記第2の無線アクセス技術を示す第2の種別情報とを関連づけて管理する、付記1又は2に記載のゲートウェイ装置。
 (付記4)
 前記管理部はさらに、
 前記第1のベアラ及び前記第1の種別情報と、前記第2のベアラ及び前記第2の種別情報とを関連付けて管理するとともに、前記通信端末と、前記第1の種別情報とを関連付けて管理し、
 前記課金システム通信部は、
 前記第1のベアラに関連付けられた前記第1の種別情報及び前記第2のベアラに関連付けられた前記第2の種別情報を、前記通信端末に関連付けられた前記第1の種別情報に優先して、前記課金制御装置へ送信する、付記3に記載のゲートウェイ装置。
 (付記5)
 前記第1及び第2の無線通信に第3のベアラが割り当てられている場合、
 前記管理部は、
 前記第3のベアラと、前記第1の無線アクセス技術及び前記第2の無線アクセス技術を示す第3の種別情報とを関連付けて管理する、付記1又は2に記載のゲートウェイ装置。
 (付記6)
 前記管理部はさらに、
 前記第3のベアラ及び前記第3の種別情報とを関連付けて管理するとともに、前記通信端末と、前記第1の無線アクセス技術を示す第1の種別情報とを関連付けて管理し、
 前記課金システム通信部は、
 前記第3のベアラに関連付けられた前記第3の種別情報を、前記通信端末に関連付けられた前記第1の種別情報に優先して、前記課金制御装置へ送信する、付記5に記載のゲートウェイ装置。
 (付記7)
 前記第1の無線通信を行う第1の無線通信装置及び前記第2の無線通信を行う第2の無線通信装置と、前記ゲートウェイ装置との間におけるユーザデータの伝送に関する制御を行うネットワーク装置から、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術に関する情報とを関連づけた制御メッセージを受信するコアネットワーク通信部をさらに備える、付記1乃至6のいずれか1項に記載のゲートウェイ装置。
 (付記8)
 前記制御メッセージは、
 Create Session Requestメッセージ、Bearer Resource Commandメッセージ、Modify Bearer Requestメッセージ、Modify Access Bearers Requestメッセージ、Context Requestメッセージ、及びChange Notification Requestメッセージの少なくとも1つを含む、付記7に記載のゲートウェイ装置。
 (付記9)
 通信端末と第1の無線アクセス技術を用いて第1の無線通信を行う無線通信装置であって、
 前記通信端末が第1の無線通信を行うとともに第2の無線アクセス技術を用いた第2の無線通信と同時通信を行う際に、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術を示す情報とを関連づけた情報を、前記ベアラを管理するネットワーク装置へ送信する、無線通信装置。
 (付記10)
 通信端末が第1の無線アクセス技術を用いた第1の無線通信を行うとともに、第2の無線アクセス技術を用いた第2の無線通信と同時通信を行う際に、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術を示す情報とを関連づけて管理し、
 前記第1及び第2の無線アクセス技術を示す情報を、課金制御を行う少なくとも1つの課金制御装置へ送信する課金制御方法。
 (付記11)
 通信端末と第1の無線アクセス技術を用いて第1の無線通信を行う無線通信装置において用いられるデータ送信方法であって、
 前記通信端末が第1の無線通信を行うとともに第2の無線アクセス技術を用いた第2の無線通信と同時通信を行う際に、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術を示す情報とを関連づけた情報を、前記ベアラを管理するネットワーク装置へ送信する、データ送信方法。
 (付記12)
 通信端末が第1の無線アクセス技術を用いた第1の無線通信を行うとともに、第2の無線アクセス技術を用いた第2の無線通信と同時通信を行う際に、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術を示す情報とを関連づけて管理し、
 前記第1及び第2の無線アクセス技術を示す情報を、課金制御を行う少なくとも1つの課金制御装置へ送信することをコンピュータに実行させるプログラム。
 (付記13)
 通信端末と第1の無線アクセス技術を用いて第1の無線通信を行うコンピュータに実行させるプログラムであって、
 前記通信端末が第1の無線通信を行うとともに第2の無線アクセス技術を用いた第2の無線通信と同時通信を行う際に、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術を示す情報とを関連づけた情報を、前記ベアラを管理するネットワーク装置へ送信することをコンピュータに実行させるプログラム。
 10 通信端末
 21 無線通信装置
 22 無線通信装置
 30 ゲートウェイ装置
 31 管理部
 32 課金システム通信部
 40 ポリシィ課金制御装置
 50 UE
 51 LTE通信部
 52 異RAT通信装置部
 60 eNB
 61 無線通信部
 62 異RAT通信部
 63 コアネットワーク通信部
 70 異RAT通信装置
 80 MME
 90 SGW
 100 PGW
 101 コアネットワーク通信部
 102 管理部
 103 PCC通信部
 110 PCRF
 120 AF
 130 OCS
 140 TDF
 150 OFCS
 160 WT

Claims (13)

  1.  通信端末が第1の無線アクセス技術を用いた第1の無線通信を行うとともに、第2の無線アクセス技術を用いた第2の無線通信と同時通信を行う際に、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術を示す情報とを関連づけて管理する管理手段と、
     前記第1及び第2の無線アクセス技術を示す情報を、課金制御を行う少なくとも1つの課金制御装置へ送信する課金システム通信手段と、を備える、ゲートウェイ装置。
  2.  前記課金システム通信手段は、
     前記無線アクセス技術を示す情報を設定したDiameterメッセージを少なくとも1つの前記課金制御装置へ送信する、請求項1に記載のゲートウェイ装置。
  3.  第1の無線通信に第1のベアラが割り当てられ、第2の無線通信に第2のベアラが割り当てられている場合、
     前記管理手段は、
     前記第1のベアラと前記第1の無線アクセス技術を示す第1の種別情報とを関連づけて管理し、前記第2のベアラと前記第2の無線アクセス技術を示す第2の種別情報とを関連づけて管理する、請求項1又は2に記載のゲートウェイ装置。
  4.  前記管理手段はさらに、
     前記第1のベアラ及び前記第1の種別情報と、前記第2のベアラ及び前記第2の種別情報とを関連付けて管理するとともに、前記通信端末と、前記第1の種別情報とを関連付けて管理し、
     前記課金システム通信手段は、
     前記第1のベアラに関連付けられた前記第1の種別情報及び前記第2のベアラに関連付けられた前記第2の種別情報を、前記通信端末に関連付けられた前記第1の種別情報に優先して、前記課金制御装置へ送信する、請求項3に記載のゲートウェイ装置。
  5.  前記第1及び第2の無線通信に第3のベアラが割り当てられている場合、
     前記管理手段は、
     前記第3のベアラと、前記第1の無線アクセス技術及び前記第2の無線アクセス技術を示す第3の種別情報とを関連付けて管理する、請求項1又は2に記載のゲートウェイ装置。
  6.  前記管理手段はさらに、
     前記第3のベアラ及び前記第3の種別情報とを関連付けて管理するとともに、前記通信端末と、前記第1の無線アクセス技術を示す第1の種別情報とを関連付けて管理し、
     前記課金システム通信手段は、
     前記第3のベアラに関連付けられた前記第3の種別情報を、前記通信端末に関連付けられた前記第1の種別情報に優先して、前記課金制御装置へ送信する、請求項5に記載のゲートウェイ装置。
  7.  前記第1の無線通信を行う第1の無線通信装置及び前記第2の無線通信を行う第2の無線通信装置と、前記ゲートウェイ装置との間におけるユーザデータの伝送に関する制御を行うネットワーク装置から、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術に関する情報とを関連づけた制御メッセージを受信するコアネットワーク通信手段をさらに備える、請求項1乃至6のいずれか1項に記載のゲートウェイ装置。
  8.  前記制御メッセージは、
     Create Session Requestメッセージ、Bearer Resource Commandメッセージ、Modify Bearer Requestメッセージ、Modify Access Bearers Requestメッセージ、Context Requestメッセージ、及びChange Notification Requestメッセージの少なくとも1つを含む、請求項7に記載のゲートウェイ装置。
  9.  通信端末と第1の無線アクセス技術を用いて第1の無線通信を行う無線通信装置であって、
     前記通信端末が第1の無線通信を行うとともに第2の無線アクセス技術を用いた第2の無線通信と同時通信を行う際に、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術を示す情報とを関連づけた情報を、前記ベアラを管理するネットワーク装置へ送信する、無線通信装置。
  10.  通信端末が第1の無線アクセス技術を用いた第1の無線通信を行うとともに、第2の無線アクセス技術を用いた第2の無線通信と同時通信を行う際に、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術を示す情報とを関連づけて管理し、
     前記第1及び第2の無線アクセス技術を示す情報を、課金制御を行う少なくとも1つの課金制御装置へ送信する課金制御方法。
  11.  通信端末と第1の無線アクセス技術を用いて第1の無線通信を行う無線通信装置において用いられるデータ送信方法であって、
     前記通信端末が第1の無線通信を行うとともに第2の無線アクセス技術を用いた第2の無線通信と同時通信を行う際に、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術を示す情報とを関連づけた情報を、前記ベアラを管理するネットワーク装置へ送信する、データ送信方法。
  12.  通信端末が第1の無線アクセス技術を用いた第1の無線通信を行うとともに、第2の無線アクセス技術を用いた第2の無線通信と同時通信を行う際に、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術を示す情報とを関連づけて管理し、
     前記第1及び第2の無線アクセス技術を示す情報を、課金制御を行う少なくとも1つの課金制御装置へ送信することをコンピュータに実行させるプログラム。
  13.  通信端末と第1の無線アクセス技術を用いて第1の無線通信を行うコンピュータに実行させるプログラムであって、
     前記通信端末が第1の無線通信を行うとともに第2の無線アクセス技術を用いた第2の無線通信と同時通信を行う際に、前記通信端末に割り当てられた少なくとも1つのベアラと、前記第1及び第2の無線アクセス技術を示す情報とを関連づけた情報を、前記ベアラを管理するネットワーク装置へ送信することをコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体。
PCT/JP2017/003127 2016-03-01 2017-01-30 ゲートウェイ装置、無線通信装置、課金制御方法、データ送信方法、及びコンピュータ可読媒体 WO2017150034A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020207009559A KR102487924B1 (ko) 2016-03-01 2017-01-30 게이트웨이 장치, 무선 통신 장치, 과금 제어 방법, 데이터 송신 방법, 및 컴퓨터 판독가능 매체
RU2018134172A RU2693855C1 (ru) 2016-03-01 2017-01-30 Шлюзовое устройство, устройство радиосвязи, способ управления тарификацией, способ передачи данных, и машиночитаемый носитель информации
CA3016402A CA3016402C (en) 2016-03-01 2017-01-30 Gateway device, radio communication device, charging control method, data transmission method, and computer readable medium
ES17759505T ES2858798T3 (es) 2016-03-01 2017-01-30 Método de comunicación y estación base para conectividad dual que usa un espectro sin licencia
JP2018502598A JP6597878B2 (ja) 2016-03-01 2017-01-30 通信方法、基地局、及び移動管理装置
EP17759505.5A EP3425940B1 (en) 2016-03-01 2017-01-30 Communication method and base station for dual connectivity using an unlicensed spectrum
EP20211114.2A EP3800907A1 (en) 2016-03-01 2017-01-30 Mobility management apparatus and method
KR1020187027946A KR20180119631A (ko) 2016-03-01 2017-01-30 게이트웨이 장치, 무선 통신 장치, 과금 제어 방법, 데이터 송신 방법, 및 컴퓨터 판독가능 매체
US16/081,746 US20200169853A1 (en) 2016-03-01 2017-01-30 Gateway device, radio communication device, charging control method, data transmission method, and computer readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-038830 2016-03-01
JP2016038830 2016-03-01

Publications (1)

Publication Number Publication Date
WO2017150034A1 true WO2017150034A1 (ja) 2017-09-08

Family

ID=59743753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003127 WO2017150034A1 (ja) 2016-03-01 2017-01-30 ゲートウェイ装置、無線通信装置、課金制御方法、データ送信方法、及びコンピュータ可読媒体

Country Status (8)

Country Link
US (1) US20200169853A1 (ja)
EP (2) EP3800907A1 (ja)
JP (3) JP6597878B2 (ja)
KR (2) KR20180119631A (ja)
CA (1) CA3016402C (ja)
ES (1) ES2858798T3 (ja)
RU (1) RU2693855C1 (ja)
WO (1) WO2017150034A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190133984A (ko) * 2018-05-24 2019-12-04 에스케이텔레콤 주식회사 과금 처리 장치 및 그 제어방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6799584B2 (ja) * 2016-04-01 2020-12-16 株式会社Nttドコモ 接続制御方法及び接続制御装置
KR102371810B1 (ko) * 2017-10-20 2022-03-10 삼성전자주식회사 다중 무선 접속 기술(Multi-Radio Access Technology)을 지원하는 무선 접속 시스템에서 단말이 데이터를 송수신하기 위한 방법 및 장치.
US20220295580A1 (en) * 2019-09-09 2022-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Methods of and Devices for Enabling a Core Network of a Mobile Communication Network to Perform Mobility Actions based on a Radio Access Technology, RAT, with which a User Equipment, UE, Connects to Said Core Network
JPWO2023053202A1 (ja) * 2021-09-28 2023-04-06

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022388A1 (ja) * 2015-07-31 2017-02-09 株式会社Nttドコモ 基地局、データ通信量管理装置、データ通信量報告方法、及びデータ通信量取得方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006646B (zh) * 2009-08-28 2012-08-08 华为终端有限公司 一种切换方法和切换设备
TW201330569A (zh) * 2011-10-07 2013-07-16 Interdigital Patent Holdings 整合使用載波聚集不同無線電存取技術方法及裝置
US10021600B2 (en) * 2013-01-02 2018-07-10 Qualcomm Incorporated Backhaul traffic reliability in unlicensed bands using spectrum sensing and channel reservation
US10206147B2 (en) * 2013-12-19 2019-02-12 Qualcomm Incorporated Serving gateway relocation and secondary node eligibility for dual connectivity
US9774429B2 (en) * 2014-03-12 2017-09-26 Qualcomm Incorporated Techniques for transmitting positioning reference signals in an unlicensed radio frequency spectrum band
CN106416373B (zh) * 2014-03-28 2019-12-06 诺基亚技术有限公司 用于封闭订户群组信息传输的方法和装置
WO2016013591A1 (ja) * 2014-07-24 2016-01-28 京セラ株式会社 ユーザ端末及び基地局
JP6490188B2 (ja) * 2014-07-31 2019-03-27 華為技術有限公司Huawei Technologies Co.,Ltd. データ送信方法および通信デバイス
JP6520010B2 (ja) 2014-08-11 2019-05-29 大日本印刷株式会社 安否情報配信装置及びプログラム
US20160057687A1 (en) * 2014-08-19 2016-02-25 Qualcomm Incorporated Inter/intra radio access technology mobility and user-plane split measurement configuration
US10727983B2 (en) * 2014-10-29 2020-07-28 Qualcomm Incorporated Variable length transmission time intervals (TTI)
US10412759B2 (en) * 2015-03-12 2019-09-10 Lg Electronics Inc. Method for transmitting downlink in unlicensed band
CN108605242B (zh) * 2016-01-28 2021-08-17 Lg 电子株式会社 数据传输方法、基站、数据传输方法和核心节点
US10524277B2 (en) * 2016-08-13 2019-12-31 Qualcomm Incorporated Method and apparatus for secondary base station mobility
US10750424B2 (en) * 2017-08-25 2020-08-18 Qualcomm Incorporated Preemptive indication of inter-rat mobility
US20210037411A1 (en) * 2018-01-29 2021-02-04 Nec Corporation Terminal apparatus, base station, core network node, method, program, and non-transitory computer readable recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022388A1 (ja) * 2015-07-31 2017-02-09 株式会社Nttドコモ 基地局、データ通信量管理装置、データ通信量報告方法、及びデータ通信量取得方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED ET AL.: "Differentiated charging of traffic when using unlicensed spectrum", 3GPP TSG-SA WG1 MEETING #72 SL-154136, 10 November 2015 (2015-11-10), XP051034107 *
QUALCOMM INCORPORATED: "LWA and LWI Issues for SA groups", 3GPP TSG-RAN WG2 MEETING #91BIS R2- 154841, 26 September 2015 (2015-09-26), XP051024023 *
See also references of EP3425940A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190133984A (ko) * 2018-05-24 2019-12-04 에스케이텔레콤 주식회사 과금 처리 장치 및 그 제어방법
KR102482312B1 (ko) * 2018-05-24 2022-12-28 에스케이텔레콤 주식회사 과금 처리 장치 및 그 제어방법

Also Published As

Publication number Publication date
JPWO2017150034A1 (ja) 2018-12-20
JP6597878B2 (ja) 2019-10-30
JP2020074510A (ja) 2020-05-14
CA3016402A1 (en) 2017-09-08
RU2693855C1 (ru) 2019-07-05
EP3800907A1 (en) 2021-04-07
CA3016402C (en) 2021-07-13
ES2858798T3 (es) 2021-09-30
JP6801759B2 (ja) 2020-12-16
JP2021044830A (ja) 2021-03-18
US20200169853A1 (en) 2020-05-28
EP3425940A1 (en) 2019-01-09
KR20180119631A (ko) 2018-11-02
KR20200039805A (ko) 2020-04-16
JP7081648B2 (ja) 2022-06-07
KR102487924B1 (ko) 2023-01-11
EP3425940A4 (en) 2019-07-31
EP3425940B1 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
JP7127670B2 (ja) 通信方法、及び第1の基地局
JP6930540B2 (ja) 無線アクセスネットワークノード、無線端末、コアネットワークノード、及びこれらの方法
JP6801759B2 (ja) 通信制御方法
US10764945B2 (en) Radio base station, edge server, and methods therein

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018502598

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3016402

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187027946

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017759505

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759505

Country of ref document: EP

Effective date: 20181001

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759505

Country of ref document: EP

Kind code of ref document: A1