WO2017148201A1 - 移相全桥充电机控制***及控制方法 - Google Patents

移相全桥充电机控制***及控制方法 Download PDF

Info

Publication number
WO2017148201A1
WO2017148201A1 PCT/CN2016/109409 CN2016109409W WO2017148201A1 WO 2017148201 A1 WO2017148201 A1 WO 2017148201A1 CN 2016109409 W CN2016109409 W CN 2016109409W WO 2017148201 A1 WO2017148201 A1 WO 2017148201A1
Authority
WO
WIPO (PCT)
Prior art keywords
charger
control unit
current
value
total
Prior art date
Application number
PCT/CN2016/109409
Other languages
English (en)
French (fr)
Inventor
林显琦
张利军
赵许强
孙世英
Original Assignee
中车青岛四方车辆研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车青岛四方车辆研究所有限公司 filed Critical 中车青岛四方车辆研究所有限公司
Priority to RU2017142829A priority Critical patent/RU2678318C1/ru
Priority to EP16892379.5A priority patent/EP3291405B1/en
Priority to JP2017564427A priority patent/JP6462905B2/ja
Priority to US15/737,714 priority patent/US10097024B2/en
Publication of WO2017148201A1 publication Critical patent/WO2017148201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of charger control, and relates to a multi-operation mode phase shift full bridge charger control system and a control method thereof.
  • the train charger is used to power the vehicle's DC load and charge the battery. According to the different working conditions of the train, the charger has multiple working modes, including three modes: constant voltage, charging current limiting and total current and current. In order to ensure the stable operation of the charger, each working mode corresponds to different control strategies, namely three control strategies of constant voltage control, charging current limiting control and total current limiting current control.
  • the phase-shifted full-bridge charger is a charger that uses a phase-shifted full-bridge converter as a soft-switch for the charger.
  • the structure of the phase shift full-bridge charger includes a phase-shifted full-bridge circuit, a high-frequency transformer and a rectifier circuit, wherein the phase-shifted full-bridge circuit includes a supporting capacitor and a charging resistor; and an output terminal of the rectifier circuit is respectively connected to the battery and the load. Charge the battery and drive the load to run.
  • the phase-shifting full-bridge charger also needs to switch frequently between the three working modes.
  • the phase-shifting full-bridge charger control system needs to respond to the switching mode of the working mode in time, and replace the three control strategies in time.
  • all three control strategies use proportional integral control. If three sets of the same proportional and integral parameters are used, the individuality of each working mode cannot be satisfied, and the control technical conditions of voltage and current at steady state cannot be satisfied at the same time; If three different sets of proportional and integral parameters are used, when the two control strategies are switched, the proportional and integral parameters need to be switched quickly, which will lead to overshoot of voltage and current during dynamic adjustment of the system, and damage to the device in extreme cases. .
  • the object of the present invention is to provide a smooth switching control system and control method for different working modes applied to a phase-shifted full-bridge charger according to the prior art in which the train charger is switched.
  • a phase shift full bridge charger control system includes a sampling system and a charger controller; the sampling system includes an input voltage acquisition device for collecting an input voltage installed at an input end of the charger, and installing A total output voltage collecting device for collecting the total output voltage at the output of the charger, a total output current collecting device for collecting the total output current, and a charging current collecting device for collecting the charging current installed at the input end of the battery.
  • the charger controller includes:
  • Start running judgment unit for receiving the total output voltage signal, the total output current signal, the charging current signal and the duty ratio, and determining whether the charger operates in a waiting state, a pre-charging state, a soft-start state or an operating state, and generates corresponding a status signal;
  • the operating state includes a constant voltage operating state, a total current limiting operating state, and a charging current limiting operating state;
  • Soft start control unit used to control the charger during the soft start of the charger
  • Operation control unit used to control the charger in the running state of the charger and judge the operation mode of the charger
  • the operation control unit includes:
  • the mode judging unit receiving the total output voltage value, the total output current value, and the charging current value, determining which operating state the charger is operating, and generating a charging machine operating state signal;
  • Constant voltage control unit used to control the charger when the charger is operating under constant voltage operation
  • Total current limit current control unit used to control the charger when the charger is working in the total current limit operation state
  • Charge current limiting control unit used to control the charger when the charger is working in the charging current limiting operation state
  • the charger controller further includes a smooth switching control unit: a charging machine operating state signal fed back by the receiving mode determining unit, and a soft start running signal fed back by the operation determining unit, when the charger switches between the soft start and the running state, and When switching between different operating states, the control system smoothly switches to the control unit corresponding to the operating state to implement control of the phase shifting full bridge circuit of the charger.
  • the charger control method includes the following steps:
  • the mode judging unit receives the total output voltage value, the total output current value, the charging current value, the total output current current limit value, and configures the set charging current value, the total output current current limit value, and the charging current current limit value for the mode judging unit. And the total output voltage setting reference value; determining the operating state of the charger according to the above received value and the set value, and feeding back the charging machine running state command to the smooth switching control unit;
  • the smooth switching control when And When entering the total current limiting operation state, the smooth switching control is switched to the total current limiting control unit; otherwise, when And When entering the charging current limiting operation state, the smooth switching control unit controls to switch to the charging current limiting control unit; otherwise, it is still in the constant voltage operating state;
  • the charging current limiting control algorithm is adopted, but:
  • the smooth switching control unit controls to switch to the constant voltage control control unit; otherwise, when And Entering the total current limiting operation state, the smooth switching control unit controls to switch to the total current limiting current control unit; otherwise, it still operates in the charging current limiting operation state;
  • the total current limit control algorithm is used, but:
  • the smooth switching control unit controls to switch to the constant voltage control control unit; otherwise, when And Entering the charging current limiting operation state, the smooth switching control unit controls to switch to the charging current limiting control unit; otherwise, it still operates in the total current limiting current running state;
  • V out is the total output voltage value
  • V out-ref is the total output voltage limit value
  • I out is the total output current value
  • I out-ref is the total output current current limit value
  • I bat is the charging current.
  • I bat-ref is the charge current limit value
  • V ref is the reference value of the total output voltage.
  • the input terminal of the phase-shifted full-bridge circuit is provided with a supporting capacitor, and it is judged whether the pre-charging is ended by judging the relationship between the voltage on the supporting capacitor in the phase-shifted full-bridge circuit of the charger and the input voltage of the charger.
  • the method for determining whether the soft start of the charger is finished is: when the condition 1 or the condition 2 or the condition 3 or the condition 4 is satisfied, it is judged that the soft start of the charger is ended, wherein:
  • Condition 2 the output voltage V out is greater than the output voltage set value V os ;
  • V os 0.98V ref
  • I os 0.98I out-ref
  • I bs 0.98I bat-ref.
  • the constant voltage control algorithm, the total current current limiting control algorithm and the charging current limiting control algorithm all adopt a PI control algorithm, and adopt three different sets of PI parameters:
  • T is the sampling frequency
  • the present invention provides a multi-control unit charger control system and control method, which are divided into a soft start control unit, a charge current limiting control unit, a total current limit current control unit and a constant voltage control unit, and three control units are adopted. Different control parameters can achieve the steady state optimal effect in each operating state or working mode.
  • the controller of the present invention further comprises a smooth switching control unit, which can realize smooth switching of control parameters of each control unit, that is, a control method when the charger switches between different working modes or operating states, and the overshooting amount is small, and the corresponding time is fast. , achieving good steady state performance and dynamic performance.
  • Figure 1 is a block diagram of the system structure
  • Figure 2 is a flow chart of the start and control of the charger
  • Figure 3 is a flow chart of controller control
  • Figure 4 is a waveform diagram of the total output voltage and total output current of the charger when the charger is switched between the constant voltage operation state and the charging current limiting operation state;
  • Figure 5 is a waveform diagram of the total output voltage and total output current of the charger when the charger enters the charging current limiting operation state at the end of the soft start;
  • Figure 6 is a waveform diagram of the total output voltage and total output current of the charger when the charger enters the constant voltage operation state from the charging current limiting operation mode.
  • the structure of the phase shift full-bridge charger includes a phase-shifted full-bridge circuit, a high-frequency transformer, and a rectifier circuit that are sequentially connected, wherein the output ends of the rectifier circuit are respectively connected to the battery and the load, and the battery is charged and driven.
  • the load is running.
  • chargers described in the embodiments all refer to phase-shifted full-bridge chargers.
  • phase shift full bridge charger The working principle of the phase shift full bridge charger is as follows:
  • the phase-shifting full-bridge circuit of the charger adopts a phase-shifted full-bridge zero-voltage PWM converter to realize voltage conversion.
  • the phase-shifted full-bridge circuit inputs a higher DC voltage and outputs a stable and adjustable lower DC voltage.
  • the normal operation process of the charger firstly, the input DC voltage is detected, and after the start condition is satisfied, the input side support capacitor is precharged by the precharge resistor. At the end of pre-charging of the supporting capacitor, the resistor is removed and the soft start is entered. During the soft start process, the phase shift angle is increased by a fixed duty cycle, so that the output voltage and current of the charger are increased. When the condition is met, the charger enters the operation phase, and different control strategies are adopted according to different working conditions of the charger. Mode switching and operation.
  • pre-charging after a period of pre-charging contactor closing (pre-charging time), closing the soft-start contactor and entering the lower soft-start phase;
  • the operating state including constant voltage running state, charging current limiting running state and total current limiting running state, judging the working mode of the charger, and then selecting to execute the corresponding PI controller for closed loop control.
  • phase-shifted full-bridge charger control system was designed.
  • the phase shifting full bridge charger control system includes a sampling system and a charger controller; the sampling system includes an input voltage collecting device for collecting an input voltage installed at the input end of the charger, and being installed at the output end of the charger.
  • the total output voltage collecting device for collecting the total output voltage and the total output current collecting device for collecting the total output current, and the charging current collecting device for collecting the charging current installed at the input end of the battery.
  • the sampling system can adopt corresponding current sensors and voltage sensors to perform current and voltage acquisition operations, and can also design corresponding current sampling circuits or voltage sampling circuits.
  • the input voltage is the input voltage of the phase-shifted full-bridge circuit; the total output voltage is the output voltage of the full-wave rectifier circuit, and the total output voltage is divided into two paths, one driving the load, one charging the battery, and the charging current is the current charged by the battery.
  • the input voltage collecting device is used for sampling the input voltage, and is installed at the front end of the phase-shifted full-bridge circuit, that is, the input end of the phase-shifted full-bridge circuit;
  • the total output voltage collecting device is used for sampling the total output voltage, and is installed at The output of the full-wave rectifying circuit;
  • the total output current collecting device is used for sampling the total output current, and is also installed at the output end of the full-wave rectifying circuit;
  • the charging current sampling device is used for sampling the charging current of the battery and is installed at the input end of the battery .
  • the charger controller is a device that comprehensively controls the startup and operation of the charger, and the charger controller includes:
  • Start running judgment unit for receiving the total output voltage signal, the total output current signal, the charging current signal and the duty ratio, and determining whether the charger operates in a waiting state, a pre-charging state, a soft-start state or an operating state, and generates corresponding
  • the operating state includes a constant voltage running state, a total current limiting running state, and a charging current limiting running state; when the charger is powered on, the operating state is in a waiting state, and the starting operation determining unit feeds back the waiting state signal, and then enters the pre-charging state.
  • the start running judgment unit feeds back the precharge state signal, enters the soft start state after the precharge ends, feeds back the soft start operation signal, and then enters the running state; the soft start operation signal determines whether the charger is still working in the soft start mode or has completed the soft state. start. Regardless of the state in which the charger operates, if the signal received by the startup operation judging unit reacts to the charger failure, or the operating conditions do not satisfy the operational requirements, such as overcurrent, overvoltage, etc., the charger returns to the waiting state.
  • Soft start control unit used to control the charger during the soft start of the charger. Specifically, the soft start control unit will receive a signal to start the operation determination unit for determining whether the charger is operating in the soft start state.
  • Operation control unit used to control the charger in the running state of the charger and judge different operating modes of the charger;
  • the operation control unit includes the following unit modules:
  • Mode judgment unit receiving total output voltage value (total output voltage sampling signal), total output current value (total output current sampling signal), charging current value (charging current sampling signal), and judging what kind of phase-shifting full-bridge charger works Operating state, producing a charger operating state signal;
  • Constant voltage control unit used to control the charger when the charger is operating under constant voltage operation
  • Total current limiting control unit used to control the charger when the charger is operating in the total current limiting operation state
  • Charge current limiting control unit used to control the charger when the charger is operating in the charging current limiting operation state
  • the charger controller further includes a smooth switching control unit: the charger operating state signal fed back by the receiving mode judging unit, and the soft start state signal fed back by the operation judging unit.
  • the charger switches between soft start and running state, and switches between different operating states
  • the control switches to the control unit corresponding to the operating state, and the connection between the corresponding control unit and the phase-shifted full-bridge circuit of the charger is turned on.
  • the feedback of the startup operation judging unit may be a charger waiting state signal, a pre-charging state signal, a soft-start state signal or an operating state signal, and only when the startup operation judging unit feeds back to the smooth switching control unit is a soft-start state.
  • the smooth switching control unit performs the work only when the signal and the operating status signal are present. When the phase shift full bridge charger operates in the waiting state or the precharge state, the smooth switching control unit does not perform the work.
  • the charger controller when the charger switches between the soft start and the constant voltage operation mode, the charger controller is smoothly switched to the constant voltage control unit; when the charger is switched from the constant voltage operation mode to the total current limit operation mode, Switch the charger controller from the constant voltage control unit to the total current limit control unit. Similarly, when the charger switches between different working modes, the controller controller is controlled to smoothly switch to the control unit that matches the working mode.
  • the charger control method includes the following steps:
  • the leading bridge arm and the lag bridge arm of the phase shift full bridge current are respectively controlled by a 50% duty cycle PWM wave; during the soft start process, the PWM wave of the lag bridge arm lags behind the leading bridge arm (1-DUTY) cycles; During the process, the hysteresis bridge arm PWM wave lags the lead bridge arm (1-DUTY) cycles.
  • DUTY is equal to Duty0 during soft start
  • DUTY is equal to Duty1 or Duty2 or Duty3 during operation.
  • Duty0 is the calculated value of the soft start control algorithm duty cycle
  • Duty2 is the total current current limit control algorithm duty cycle calculation value
  • Duty3 is the charge current limit control algorithm duty cycle calculation value.
  • the charger After the charger is started, it will be precharged first. It is judged whether the charger is pre-charged, and if so, the soft start is entered, and the soft start control unit controls the operation of the charger.
  • the startup operation judging unit judges whether the pre-charging is finished.
  • the input end of the phase shift full-bridge control circuit is provided with a supporting capacitor, and it is judged whether the pre-charging is ended by judging the relationship between the voltage on the supporting capacitor of the front end of the phase shifting full-bridge circuit of the charger and the input voltage of the charger.
  • the precharge time is calculated:
  • R is the pre-charging resistor
  • C is the supporting capacitor
  • V 1 is the input DC voltage, which can be obtained by sampling
  • V 0 is the initial voltage on the supporting capacitor (generally taken as 0)
  • V t is the pre-charging end, the supporting capacitor The voltage on C (generally 0.9*V 1 ).
  • the charger When the precharge time is over, the charger enters the soft start process.
  • the startup operation judging unit judges whether the soft start of the charger is finished: when the condition 1 or the condition 2 or the condition 3 or the condition 4 is satisfied, Determine the end of the soft start of the charger, where:
  • Condition 2 the output voltage V out is greater than the output voltage set value V os ; wherein the output voltage set value V os is a value selected according to experience;
  • Condition 3 the total output current I out is greater than the total output current set value I os , wherein the total output current set value I os is a value selected empirically;
  • the charging current I bat is greater than the charging current set value I bs , wherein the charging current set value I bs is a value selected empirically.
  • V os 0.98V ref
  • I os 0.98I out-ref
  • I bs 0.98I bat-ref.
  • the above values are empirical values. In practice, the values of V os , I os , and I bs are not limited to the above values.
  • the mode determination unit does not perform the judgment of the operation state of the charger, and the operation control unit uses the constant voltage control unit to control the charger by default, but the constant voltage control unit does not necessarily correspond to the charger.
  • the running state is matched, and the next mode judgment unit is required to judge the running state of the charger, and then the adjustment of the control unit is quickly performed.
  • the mode judging unit receives the total output voltage value, the total output current value, the charging current value, the total output current current limit value, and configures the set charging current value, the total output current current limit value, and the charging current current limit value for the mode judging unit. And the total output voltage is set to a reference value; the charging machine operating state is calculated according to the above received value and the set reference value, and the charger operating state command is fed back to the smooth switching control unit.
  • the control unit After the soft start is over, the control unit enters the constant voltage operation state by default, and starts the constant voltage control unit. Under constant voltage operation, the constant voltage control algorithm is used, and the constant voltage control unit works, but:
  • the smooth switching control unit controls to switch to the total current limiting control unit, and the total current limiting control unit operates to switch to the total current limiting control algorithm; otherwise, when And When entering the charging current limiting operation state, the smooth switching control unit controls to switch to the charging current limiting control unit, and the charging current limiting control unit operates to switch to the charging current limiting control algorithm; otherwise, it is still in the constant voltage operating state;
  • the charging current limiting control algorithm is used, and the charging current limiting control unit works, but:
  • the smooth switching control unit controls to switch to the constant voltage control control unit, the constant voltage control unit works, and switches to the constant voltage control algorithm; otherwise, when And Entering the total current limiting operation state, the smooth switching control unit controls to switch to the total current limiting current control unit, and the total current limiting current control unit operates to switch to the total current limiting current control algorithm; otherwise, it still operates in the charging current limiting operation state;
  • the total current control algorithm In the total current limit operation state, the total current control algorithm is used, and the total current limit control unit works, but:
  • the smooth switching control unit control switches to the constant voltage control control unit, the constant voltage control unit works, and switches to the constant voltage control algorithm; otherwise, when And Entering the charging current limiting operation state, the charging current limiting control unit operates, and the smooth switching control unit controls to switch to the charging current limiting control unit to switch to the charging current limiting control algorithm; otherwise, it still operates in the total current limiting current running state.
  • V out is the total output voltage value
  • I out is the total output current value
  • I out-ref is the total output current current limit value
  • I bat is the charging current value
  • I bat-ref is the charging current current limiting value
  • V ref is the total output voltage reference value
  • the constant voltage control algorithm, the total current limit control algorithm and the charge current limit control algorithm all adopt the PI control algorithm, and adopt three sets of different PI parameters to select the K P and K I parameters that meet the requirements of the self-steady control.
  • the selection of the PI parameters is well known in the prior art and will not be described here.
  • the design method of the PI controller is as follows:
  • the s domain transfer function of the PI controller is:
  • K P is the proportional coefficient
  • K I is the integral coefficient
  • the z domain transfer function of the PI controller is:
  • T in the above two equations is the output sampling frequency
  • V out (k) is the current sampled value of the charger output voltage.
  • I out (k) is the current sampled value of the total output current of the charger.
  • I bat (k) is the current sampled value of the charging current.
  • the soft start control of the charger uses open loop control.
  • duty(t) represents the real-time value of the duty cycle at time t
  • ⁇ duty represents the change value of the duty cycle
  • V ref is less than the set value.
  • the set value is the target value of the total output voltage of the charger, that is, V out , and the voltage reference value V ref changes with time; if V ref is less than the set value Then, V ref is accumulated in a fixed step and gradually approaches the set value of V out , so that the total output voltage is gradually brought closer to the set value; if not, V ref is equal to the set value, and then constant voltage control is performed.
  • the constant voltage control unit output u(k) is switched as the u(k-1) of the charging current limiting control unit, and the first calculation is performed.
  • the e(k) of the charge current limiting control unit similarly, when the charger is switched from the constant voltage operation mode to the total current limit operation mode, the constant voltage control unit output u(k) is switched as the total current limit current. Control unit u(k-1) and calculate the first total current limit control unit e(k).
  • the total current limit control unit When the charger switches from the total current limit operation mode to the charge current limit operation mode or the constant voltage operation mode, the total current limit control unit outputs u(k).
  • the charging current limiting control unit and the constant voltage control unit are respectively given as u(k-1), and the primary charging current limiting control unit and the constant voltage control unit e(k) are calculated;
  • the charging current limiting control unit When the charging device is switched from the charging current limiting current limiting operation mode to the total current limiting current working mode or the constant voltage working mode, the charging current limiting control unit outputs u ( k)
  • the constant current control unit of the total current limiting control unit is respectively assigned as u(k-1), and the total current limiting control unit or the constant voltage control unit e(k) is calculated once.
  • control system and the control method of the present invention are used to control the simulation of the charger, and the output waveform is observed by an oscilloscope, and FIG. 4, FIG. 5 and FIG. 6 are obtained.
  • FIG. 6 is a waveform diagram of the output of the charger when the charger is switched from the charging current limiting operation state to the constant voltage operation state.
  • the output voltage reference value V ref 120 V
  • the total output voltage of the charger V out 119 V
  • the current limit value of the charging current I bat-ref 54 A
  • the charging current I bat 54 A.
  • the I bat value gradually decreases as the battery load gradually increases.
  • the mode switching is correspondingly rapid (about 0.2 s or less), and the overshoot is small (about 5%).
  • the output voltage and current of the charger are stable. Accurate ( ⁇ 1% fluctuation, ⁇ 1% accuracy), less fluctuation, can achieve smooth switching of the charger control between various working modes.
  • Charger input voltage real-time sampling value of the input voltage collecting device of the charger
  • the total output voltage of the charger the real-time sampling value of the total output voltage acquisition device
  • the total output current of the charger using the real-time sampling value of the total output current acquisition device
  • x(k) is the current sampling value of the charging current and y(k) is the filtered charging current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

移相全桥充电机控制***及控制方法,其中控制***包括采样***和充电机控制器;该充电机控制器包括:启动运行判断单元、软起动控制单元、运行控制单元和平滑切换单元,其中运行控制单元包括模式判断单元、恒压控制单元、总电流限流控制单元和充电限流控制单元。充电机工作过程中,软起动结束后,会根据工况的不同在恒压运行状态、总电流限流运行状态和充电限流运行状态间切换,平滑切换单元将根据充电机运行状态的不同,使控制器在运行状态间切换,实现充电机的控制方法的平滑过渡,具有较高的稳态性能和动态性能。

Description

移相全桥充电机控制***及控制方法 技术领域
本发明属于充电机控制技术领域,涉及一种多工作模式移相全桥充电机控制***及其控制方法。
背景技术
列车充电机用于为整车直流负载供电,并为蓄电池充电。根据列车工况的不同,充电机有多种工作模式,具体包括恒压、充电限流和总电流电流三种模式。为保证充电机稳定工作,每种工作模式对应不同的控制策略,分别为恒压控制、充电限流控制和总电流限流控制三种控制策略。
移相全桥充电机是采用移相全桥变换器作为充电机软开关的充电机。移相全桥充电机的结构包括顺次连接的移相全桥电路、高频变压器及整流电路,其中移相全桥电路包括支撑电容及充电电阻;整流电路的输出端分别连接蓄电池和负载,为蓄电池充电,且驱动负载运行。
列车行驶过程中,移相全桥充电机也需要在三种工作模式间频繁切换,相应的,移相全桥充电机控制***需及时响应工作模式的切换状态,及时更换三种控制策略。通常情况下,三种控制策略均采用比例积分控制,若采用三组相同的比例参数和积分参数,无法满足每种工作模式的个性,无法同时满足稳态时电压和电流的控制技术条件要求;若采用三组不同的比例参数和积分参数,当在两种控制策略切换的瞬间,需迅速切换比例参数和积分参数,会导致***动态调节时的电压电流超调,极端情况下会造成器件损坏。
目前,尚没有一种控制方法,可保证列车移相全桥充电机在不同工作模式间平滑切换,且保证移相全桥充电机在不同工作状态切换瞬间及切换后都可稳定工作。
发明内容
本发明的目的在于根据现有技术中列车充电机在切换工作状态,提供了一种应用于移相全桥充电机的不同工作模式间平滑切换控制***和控制方法。
为实现以上目的,本发明提供以下技术方案:移相全桥充电机控制***包括采样***和充电机控制器;采样***包括安装在充电机输入端的用于采集输入电压的输入电压采集装置、安装在充电机输出端的用于采集总输出电压的总输出电压采集装置及用于采集总输出电流的总输出电流采集装置,以及安装在蓄电池输入端的用于采集充电电流的充电电流采集装置。
更具体的说,充电机控制器包括:
启动运行判断单元:用于接收总输出电压信号、总输出电流信号、充电电流信号和占空比,并判断充电机工作在等待状态、预充电状态、软起动状态或运行状态,并生成相应的状态信号;所述运行状态包括恒压运行状态、总电流限流运行状态和充电限流运行状态;
软起动控制单元:用于在充电机软起动过程中对充电机进行控制;
运行控制单元:用于在充电机运行状态中对充电机进行控制及对充电机运行模式进行判断;
运行控制单元包括:
模式判断单元:接收总输出电压值、总输出电流值、充电电流值,判断充电机工作在何种运行状态,生产充电机运行状态信号;
恒压控制单元:用于当充电机工作在恒压运行状态下,对充电机控制;
总电流限流控制单元:用于在充电机工作在总电流限流运行状态下,对充电机控制;
充电限流控制单元:用于在充电机工作在充电限流运行状态下,对充电机控制;
充电机控制器还包括平滑切换控制单元:接收模式判断单元反馈的充电机运行状态信号,以及启动运行判断单元反馈的软起动运行信号,当充电机在软起动与运行状态之间切换,以及在不同的运行状态之间切换时,控制***平滑地切换到与运行状态相对应的控制单元,实现对充电机移相全桥电路的控制。
充电机控制方法,包括以下步骤:
判断充电机是否预充电结束,若是,则进入软起动,软起动控制单元控制充电机工作;
判断充电机软起动是否结束,若是,则进入运行工作模式,运行控制单元工作,平滑切换控制单元默认控制切换到恒压控制单元;
模式判断单元接收总输出电压值、总输出电流值、充电电流值,总输出电流限流值,并为模式判断单元配置设定的充电电流值,总输出电流限流值、充电电流限流值和总输出电压设定参考值;根据以上接收值和设定值计算判断充电机运行状态,并将充电机运行状态指令反馈到平滑切换控制单元;
恒压运行状态下,采用恒压控制算法,但:
Figure PCTCN2016109409-appb-000001
Figure PCTCN2016109409-appb-000002
时,进入总电流限流运行状态,平滑切换控制切换到总电流限流控制单元;否则,当
Figure PCTCN2016109409-appb-000003
Figure PCTCN2016109409-appb-000004
时,进入充电限流运行状态,平滑切 换控制单元控制切换到充电限流控制单元;否则,仍为恒压运行状态;
充电限流运行状态下,采用充电限流控制算法,但:
Figure PCTCN2016109409-appb-000005
Figure PCTCN2016109409-appb-000006
时,进入恒压运行状态,平滑切换控制单元控制切换到恒压控制控制单元;否则,当
Figure PCTCN2016109409-appb-000007
Figure PCTCN2016109409-appb-000008
进入总电流限流运行状态,平滑切换控制单元控制切换到总电流限流控制单元;否则,仍工作在充电限流运行状态;
总电流限流运行状态下,采用总电流限流控制算法,但:
Figure PCTCN2016109409-appb-000009
Figure PCTCN2016109409-appb-000010
时,进入恒压运行状态,平滑切换控制单元控制切换到恒压控制控制单元;否则,当
Figure PCTCN2016109409-appb-000011
Figure PCTCN2016109409-appb-000012
进入充电限流运行状态,平滑切换控制单元控制切换到充电限流控制单元;否则,仍工作在总电流限流运行状态;
以上各式中,Vout为总输出电压值,Vout-ref为总输出电压限压值,Iout为总输出电流值,Iout-ref为总输出电流限流值,Ibat为充电电流值,Ibat-ref为充电电流限流值,Vref为总输出电压设定参考值。
优选的是:移相全桥电路输入端设置有支撑电容,通过判断充电机移相全桥电路中支撑电容上的电压与充电机输入电压的关系,判断预充电是否结束。
优选的是:判断充电机软起动是否结束的方法为:当满足条件1或条件2或条件3或条件4时,判断充电机软起动结束,其中:
条件1:当累加的占空比大于占空比设定值;
Figure PCTCN2016109409-appb-000013
其中duty为占空比设定值,V1为输入电压采样值,N为充电机变压器变比;
条件2:输出电压Vout大于输出电压设定值Vos
条件3:总输出电流Iout大于总输出电流设定值Ios
条件4:充电电流Ibat大于充电电流设定值Ibs
优选的是:Vos=0.98Vref,Ios=0.98Iout-ref,Ibs=0.98Ibat-ref
优选的是:恒压控制算法、总电流限流控制算法和充电限流控制算法均采用PI控制算法,采用三组不同的PI参数:
Figure PCTCN2016109409-appb-000014
其中T为采样频率;
对于恒压控制算法:
Figure PCTCN2016109409-appb-000015
对于总电流限流控制算法:
Figure PCTCN2016109409-appb-000016
对于充电限流控制算法:
Figure PCTCN2016109409-appb-000017
软起动结束时,将当前累加得占空比DUTY值作为恒压控制单元、总电流限流控制单元和充电限流控制单元的输入;其中,DUTY=duty(t)+Δduty。
本发明的有益效果为:
(1)本发明提供了一种多控制单元充电机控制***及控制方法,分为软起动控制单元、充电限流控制单元、总电流限流控制单元和恒压控制单元,三个控制单元采用不同的控制参数,可实现各运行状态或工作模式下的稳态最优效果。
(2)本发明控制器还包括平滑切换控制单元,当充电机在不同工作模式或运行状态间切换时,可实现各个控制单元控制参数即控制方法的平稳切换,超调量小,相应时间快,实现了良好的稳态性能和动态性能。
附图说明
图1为***结构框图;
图2为充电机启动及控制流程图;
图3为控制器控制流程图;
图4为充电机在恒压运行状态和充电限流运行状态间切换时,充电机总输出电压和总输出电流波形图;
图5为充电机在软起动结束进入充电限流运行状态时,充电机总输出电压和总输出电流波形图;
图6为充电机在由充电限流工作模式进入恒压运行状态时,充电机总输出电压和总输出电流波形图。
具体实施方式
以下结合附图对本发明的具体实施方式进行进一步的描述。
如图1所示,移相全桥充电机的结构包括顺次连接的移相全桥电路、高频变压器及整流电路,其中整流电路的输出端分别连接蓄电池和负载,为蓄电池充电,且驱动负载运行。
需要说明的是,本实施方式所述的充电机均指移相全桥充电机。
移相全桥充电机的工作原理如下:
1、充电机移相全桥电路采用移相全桥零电压PWM变换器实现电压变换,移相全桥电路输入较高直流电压,输出稳定可调的较低直流电压。
2、充电机正常运行流程:首先检测输入直流电压,满足启动条件后,通过预充电电阻对输入侧支撑电容进行预充电。支撑电容预充电结束时切除电阻,进入软起动。软起动过程中以固定占空比增加移相角,使充电机输出电压和电流增大,当满足条件时,充电机进入运行阶段,并根据充电机工况的不同,采用不同控制策略,实现模式切换和运行。
如图2所示,为移相全桥充电机正常工作时的起动流程图,
1、等待,检测输入直流电压,达到启动最低限值进入下阶段;
2、预充电,预充电接触器闭合后过一段时间(预充电时间),闭合软起动接触器,并进入下软起动阶段;
3、软起动,以固定占空比累加,使控制器输出具有一定移相角的PWM波,控制功率模块,逐渐增加输出电压和电流,达到运行条件,进入下一阶段;
4、运行工作状态,包括恒压运行状态、充电限流运行状态和总电流限流运行状态,判断充电机工作模式,然后选择执行相应的PI控制器,进行闭环控制。
结合移相全桥充电机的工作原理及起动流程,设计了以下移相全桥充电机控制***。
继续结合图1,移相全桥充电机控制***,包括采样***和充电机控制器;采样***包括安装在充电机输入端的用于采集输入电压的输入电压采集装置、安装在充电机输出端的用于采集总输出电压的总输出电压采集装置及用于采集总输出电流的总输出电流采集装置,以及安装在蓄电池输入端的用于采集充电电流的充电电流采集装置。采样***可采取相应的电流传感器、电压传感器来执行电流、电压的采集动作;也可设计相应的电流采样电路或电压采样电路等。
其中输入电压为移相全桥电路的输入电压;总输出电压为全波整流电路的输出电压,总输出电压分两路,一路驱动负载,一路为蓄电池充电,充电电流为蓄电池充电的电流。
具体的说,输入电压采集装置用于输入电压的采样,安装在移相全桥电路的前端,即移相全桥电路的输入端;总输出电压采集装置用于总输出电压的采样,安装在全波整流电路的输出端;总输出电流采集装置用于总输出电流的采样,同样安装在全波整流电路的输出端;充电电流采样装置用于蓄电池充电电流的采样,安装在蓄电池的输入端。
充电机控制器是综合控制充电机启动、运行的装置,充电机控制器包括:
启动运行判断单元:用于接收总输出电压信号、总输出电流信号、充电电流信号和占空比,并判断充电机工作在等待状态、预充电状态、软起动状态或运行状态,并生成相应的状态信号;所述运行状态包括恒压运行状态、总电流限流运行状态和充电限流运行状态;充电机通电之初,运行于等待状态,启动运行判断单元反馈等待状态信号,随后进入预充电状态,启动运行判断单元反馈预充电状态信号,预充电结束后进入软起动状态,反馈软起动运行信号,随后进入运行状态;软起动运行信号反应充电机是否还工作在软起动模式或已完成软起动。而不管充电机工作在何种状态,若启动运行判断单元接收到的信号反应充电机故障,或运行条件不满足运行要求,例如:过流、过压等,则充电机返回等待状态。
软起动控制单元:用于在充电机软起动过程中对充电机进行控制。具体的说,软起动控制单元将接收启动运行判断单元的信号,用于判断充电机是否工作在软起动状态。
软起动结束后,充电机将进入运行状态。运行控制单元:用于在充电机运行状态中对充电机进行控制及对充电机不同运行模式进行判断;
具体的说,运行控制单元包括以下单元模块:
模式判断单元:接收总输出电压值(总输出电压采样信号)、总输出电流值(总输出电流采样信号)、充电电流值(充电电流采样信号),判断移相全桥充电机工作在何种运行状态,生产充电机运行状态信号;
恒压控制单元:用于当充电机工作在恒压运行状态下,对充电机控制;
总电流限流控制单元:用于当充电机工作在总电流限流运行状态下,对充电机控制;
充电限流控制单元:用于当充电机工作在充电限流运行状态下,对充电机控制;
除启动运行判断单元、软起动控制单元和运行控制单元外,充电机控制器还包括平滑切换控制单元:接收模式判断单元反馈的充电机运行状态信号,以及启动运行判断单元反馈的软起动状态信号,当充电机在软起动与运行状态之间切换,以及在不同的运行状态之间切换 时,控制切换到与运行状态相对应的控制单元,接通相应控制单元与充电机移相全桥电路之间的连接。
需要说明的是,启动运行判断单元反馈的可能为充电机等待状态信号、预充电状态信号、软起动状态信号或运行状态信号,只有当启动运行判断单元反馈到平滑切换控制单元的为软起动状态信号及运行状态信号时,平滑切换控制单元才执行工作。而当移相全桥充电机工作在等待状态或预充电状态时,平滑切换控制单元不执行工作。
具体的说,当充电机在软起动到恒压工作模式间切换时,将充电机控制器平滑切换到恒压控制单元;当充电机从恒压工作模式切换到总电流限流工作模式时,将充电机控制器从恒压控制单元切换到总电流限流控制单元。同理,充电机在不同的工作模式间切换时,控制充电机控制器平滑切换到与工作模式匹配的控制单元。
如图3所示,充电机控制方法,包括以下步骤:
移相全桥电流的超前桥臂和滞后桥臂分别采用50%占空比的PWM波进行控制;软起动过程中,滞后桥臂PWM波滞后于超前桥臂(1-DUTY)个周期;运行过程中,滞后桥臂PWM波滞后于超前桥臂(1-DUTY)个周期。
如图3所示,其中,软起动过程中DUTY等于Duty0,运行过程中DUTY等于Duty1或Duty2或Duty3。Duty0是软起动控制算法占空比的计算值,Duty1恒压控制算法占空比的计算值,Duty2为总电流限流控制算法占空比计算值,Duty3为充电限流控制算法占空比计算值。
充电机启动后,首先会进行预充电。判断充电机是否预充电结束,若是,则进入软起动,软起动控制单元控制充电机工作。
具体的说,根据启动运行判断单元反馈的信号判断充电机是否预充电结束,是否进入软起动状态。其中启动运行判断单元判断预充电是否结束的具体算法如下:
移相全桥控制电路输入端设置有支撑电容,通过判断充电机移相全桥电路前端支撑电容上的电压与充电机输入电压的关系,判断预充电是否结束。
具体的说,预充电时间计算:
Figure PCTCN2016109409-appb-000018
其中,R为预充电电阻,C为支撑电容,V1为输入直流电压,可通过采样获得,V0为支撑电容上的初始电压(一般取0),Vt为预充电结束时,支撑电容C上的电压(一般取0.9*V1)。
预充电时间结束,则充电机进入软起动流程。
判断充电机软起动是否结束,若是,则进入运行工作模式,运行控制单元工作。某一时刻,充电机只能工作在一种工作模式下。
具体的说,根据启动运行判断单元反馈的信号判断充电机是软起动结束,启动运行判断单元判断充电机软起动是否结束的方法为:当满足条件1或条件2或条件3或条件4时,判断充电机软起动结束,其中:
条件1:启动运行判断单元累加其采集的占空比,当累加的占空比DUTY大于占空比设定值;其中:
Figure PCTCN2016109409-appb-000019
其中duty为占空比设定值,V1为输入电压采样值,N为充电机变压器变比;Vref为总输出电压设定参考值。DUTY=duty(t)+Δduty。
条件2:输出电压Vout大于输出电压设定值Vos;其中输出电压设定值Vos为根据经验选取的值;
条件3:总输出电流Iout大于总输出电流设定值Ios,其中总输出电流设定值Ios为根据经验选取的值;
条件4:充电电流Ibat大于充电电流设定值Ibs,其中充电电流设定值Ibs为根据经验选取的值。
其中,Vos、Ios和Ibs可以采取以下取值,Vos=0.98Vref,Ios=0.98Iout-ref,Ibs=0.98Ibat-ref。以上的取值为经验值,实际中,Vos、Ios和Ibs的取值不限于以上取值。
判断充电机软起动是否结束,若是,则进入运行工作模式,运行控制单元工作,平滑切换控制单元默认控制切换到恒压控制单元。
也就是说,充电机软起动结束后,模式判断单元未进行充电机运行状态判断的前提下,运行控制单元默认采用恒压控制单元对充电机进行控制,但恒压控制单元不一定与充电机的运行状态相匹配,需要下一步模式判断单元进行充电机运行状态判断,再迅速做控制单元的调整。
模式判断单元接收总输出电压值、总输出电流值、充电电流值,总输出电流限流值,并为模式判断单元配置设定的充电电流值,总输出电流限流值、充电电流限流值和总输出电压设定参考值;根据以上接收值和设定参考值计算判断充电机运行状态,并将充电机运行状态指令反馈到平滑切换控制单元。
软起动结束后,控制单元默认充电机进入恒压运行状态,启动恒压控制单元。恒压运行状态下,采用恒压控制算法,恒压控制单元工作,但:
Figure PCTCN2016109409-appb-000020
Figure PCTCN2016109409-appb-000021
时,进入总电流限流运行状态,平滑切换控制单元控制切换到总电流限流控制单元,总电流限流控制单元工作,切换到总电流限流控制算法;否则,当
Figure PCTCN2016109409-appb-000022
Figure PCTCN2016109409-appb-000023
时,进入充电限流运行状态,平滑切换控制单元控制切换到充电限流控制单元,充电限流控制单元工作,切换到充电限流控制算法;否则,仍为恒压运行状态;
充电限流运行状态下,采用充电限流控制算法,充电限流控制单元工作,但:
Figure PCTCN2016109409-appb-000024
Figure PCTCN2016109409-appb-000025
时,进入恒压运行状态,平滑切换控制单元控制切换到恒压控制控制单元,恒压控制单元工作,切换到恒压控制算法;否则,当
Figure PCTCN2016109409-appb-000026
Figure PCTCN2016109409-appb-000027
进入总电流限流运行状态,平滑切换控制单元控制切换到总电流限流控制单元,总电流限流控制单元工作,切换到总电流限流控制算法;否则,仍工作在充电限流运行状态;
总电流限流运行状态下,采用总电流控制算法,总电流限流控制单元工作,但:
当,
Figure PCTCN2016109409-appb-000028
Figure PCTCN2016109409-appb-000029
时,进入恒压控制运行状态,平滑切换控制单元控制切换到恒压控制控制单元,恒压控制单元工作,切换到恒压控制算法;否则,当
Figure PCTCN2016109409-appb-000030
Figure PCTCN2016109409-appb-000031
进入充电限流运行状态,充电限流控制单元工作,平滑切换控制单元控制切换到充电限流控制单元,切换到充电限流控制算法;否则,仍工作在总电流限流运行状态。
以上各式中,Vout为总输出电压值,Iout为总输出电流值,Iout-ref为总输出电流限流值,Ibat为充电电流值,Ibat-ref为充电电流限流值,Vref为总输出电压参考值。
恒压控制算法、总电流限流控制算法和充电限流控制算法均采用PI控制算法,采用三组不同的PI参数,分别选取满足自稳态控制要求的KP和KI参数。而关于PI参数的选取,为现 有技术公知,此处不再赘述。
PI控制器的设计方法如下:
PI控制器的s域传递函数为:
Figure PCTCN2016109409-appb-000032
其中KP为比例系数,KI为积分系数。
PI控制器的z域传递函数为:
Figure PCTCN2016109409-appb-000033
进而得到易于变成实现的PI控制器的差分方程:
Figure PCTCN2016109409-appb-000034
以上两式中的T为输出采样频率;
对于恒压控制算法:
Figure PCTCN2016109409-appb-000035
其中Vout(k)为充电机输出电压当前采样值。
对于总电流限流控制算法:
Figure PCTCN2016109409-appb-000036
其中Iout(k)为充电机总输出电流当前采样值。
对于充电限流控制算法:
Figure PCTCN2016109409-appb-000037
其中Ibat(k)为充电电流当前采样值。
软起动结束时,将当前累加得占空比DUTY值作为恒压控制单元、总电流限流控制单元和充电限流控制单元的输入;作为三种控制算法中的u(k-1),其中,DUTY=duty(t)+Δduty。充电机的软起动控制采用的是开环控制。
其中duty(t)表示t时刻占空比实时值,Δduty表示占空比的变化值。
进入恒压模式,首先判断Vref是否小于设定值,设定值是充电机总输出电压即Vout的目标值,电压参考值值Vref随时间变化;若Vref小于设定设定值,则Vref以固定步长累加,逐步靠近Vout的设定值,从而也使总输出电压逐步靠近设定的设定值;若否,则Vref等于设定值,然后进行恒压控制。当充电机工作状态由恒压工作模式向充电限流工作模式切换时,将切换时 刻恒压控制单元输出u(k),作为充电限流控制单元的u(k-1),计算第一次充电限流控制单元的e(k);同理,当充电机由恒压工作模式向总电流限流工作模式转换时,将切换时刻恒压控制单元输出u(k),作为总电流限流控制单元u(k-1),并计算第一次总电流限流控制单元e(k)。
进入总电流限流模式,直接进行总电流限流控制,当充电机由总电流限流工作模式向充电限流工作模式或恒压工作模式切换时,将总电流限流控制单元输出u(k)分别赋予充电限流控制单元和恒压控制单元,作为u(k-1),并计算一次充电限流控制单元和恒压控制单元e(k);
进入充电限流模式,直接进行总电流限流控制,当充电机由充电限流限流工作模式向总电流限流工作模式或恒压工作模式切换时,然后将充电限流控制单元输出u(k)分别赋予总电流限流控制单元恒压控制单元,作为u(k-1),并计算一次总电流限流控制单元或恒压控制单元e(k)。
采用本发明控制***及控制方法对充电机进行控制模拟实验,采用示波器观察输出波形,得到图4、图5和图6。
图4所示,为充电机在恒压运行状态和总电流限流运行状态切换时,充电机输出波形图。从图4可见,充电机工作在恒压模式时,设定输出电压参考值Vref=120V,充电机总输出电压Vout=120V,总输出电流Iout=30A。在T1时刻,充电机由恒压运行状态进入总电流限流运行状态时,充电机总输出电压Vout=114V,可实现输出电压的平滑切换。同样,在T2时刻,充电机由总电流限流运行状态切换到恒压运行状态时,总输出电压迅速且平滑的作出反应,未发生较大波动,表明控制算法可平稳切换。
图5所示,为充电机工作在软起动结束后,进入充电限流运行状态时,充电机输出波形图。从图5可见,充电机工作在软起动模式时,设定输出电压参考值Vref=120V,充电电流限流值Ibat-ref=54A,充电机总输出电压Vout=120V,充电电流Ibat=30A。在T3时刻,充电机软起动结束,由软起动模式向充电限流运行状态切换,充电机总输出电压Vout=116V,Ibat=54A,可实现输出电压的平滑切换,表明充电机控制***平滑切换了运行状态,较好的控制了超调量。
图6所示,为充电机由充电限流运行状态向恒压运行状态切换时,充电机输出波形图。 从图6可见,设定输出电压参考值Vref=120V,充电机总输出电压Vout=119V,充电电流限流值Ibat-ref=54A,充电电流Ibat=54A。在T4时刻,充电机由充电限流运行状态向恒压运行状态切换,充电机总输出电压Vout=120V,可实现输出电压的平滑切换。切换到恒压模式后,由于蓄电池载荷逐渐增加,Ibat值逐渐降低。
由图4、图5和图6可见,采用本发明技术方案,模式间切换相应迅速(约0.2s以内),超调较小(约5%),各个模式中,充电机输出电压、电流平稳精确(波动为±1%,精度为±1%),波动较小,可实现充电机在各个工作模式间控制的平稳切换。
***工作过程中,采取以下方法选取采样数据:
1、充电机输入电压:采用充电机输入电压采集装置的实时采样值;
2、充电机总输出电压:采用总输出电压采集装置的实时采样值;
3、充电机输出总电流:采用总输出电流采集装置的实时采样值;
4、蓄电池充电电流,当还是采样值Ibat(k)大于Ibat-ref时,采用实时采样值;否则对采样的充电电流进行一阶低通滤波处理:
y(k)=y(k-1)+0.05*(x(k)-y(k-1))
其中,x(k)为充电电流当前采样值,y(k)为滤波后充电电流。

Claims (6)

  1. 移相全桥充电机控制***,其特征在于:包括采样***和充电机控制器;所述采样***包括安装在充电机输入端的用于采集输入电压的输入电压采集装置、安装在充电机输出端的用于采集总输出电压的总输出电压采集装置及用于采集总输出电流的总输出电流采集装置,以及安装在蓄电池输入端的用于采集充电电流的充电电流采集装置;
    所述充电机控制器包括:
    启动运行判断单元:用于接收总输出电压信号、总输出电流信号、充电电流信号和占空比,并判断充电机工作在等待状态、预充电状态、软起动状态或运行状态,并生成相应的状态信号;所述运行状态包括恒压运行状态、总电流限流运行状态和充电限流运行状态;
    软起动控制单元:用于在充电机软起动过程中对充电机进行控制;
    运行控制单元:用于在充电机运行状态中对充电机进行控制及对充电机运行模式进行判断;
    所述运行控制单元包括:
    模式判断单元:接收总输出电压值、总输出电流值、充电电流值,判断充电机工作在何种运行状态,生成充电机运行状态信号;
    恒压控制单元:用于当充电机工作在恒压运行状态下,对充电机控制;
    总电流限流控制单元:用于在充电机工作在总电流限流运行状态下,对充电机控制;
    充电限流控制单元:用于在充电机工作在充电限流运行状态下,对充电机控制;
    所述充电机控制器还包括平滑切换控制单元:接收模式判断单元反馈的充电机运行状态信号,以及启动运行判断单元反馈的软起动运行信号,当充电机在软起动与运行状态之间切换,以及在不同的运行状态之间切换时,控制***平滑地切换到与运行状态相对应的控制单元,接通相应控制单元与实现对充电机移相全桥电路之间的连接的控制。
  2. 采用权利要求1所述的移相全桥充电机控制***进行充电机控制的方法,其特征在于,包括以下步骤:
    判断充电机是否预充电结束,若是,则进入软起动,软起动控制单元控制充电机工作;
    判断充电机软起动是否结束,若是,则进入运行工作模式,运行控制单元工作,平滑切换控制单元默认控制切换到恒压控制单元;
    模式判断单元接收总输出电压值、总输出电流值、充电电流值,总输出电流限流值,并为模式判断单元配置设定的充电电流值,总输出电流限流值、充电电流限流值和总输出电压设定参考值;根据以上接收值和设定值计算判断充电机运行状态,并将充电机运行状态指令反馈到平滑切换控制单元;
    恒压运行状态下,恒压控制单元工作,但:
    Figure PCTCN2016109409-appb-100001
    Figure PCTCN2016109409-appb-100002
    时,进入总电流限流运行状态,平滑切换控制切换到总电流限流控制单元;否则,当
    Figure PCTCN2016109409-appb-100003
    Figure PCTCN2016109409-appb-100004
    时,进入充电限流运行状态,平滑切换控制单元控制切换到充电限流控制单元;否则,仍工作在恒压运行状态;
    充电限流运行状态下,充电限流控制单元工作,但:
    Figure PCTCN2016109409-appb-100005
    Figure PCTCN2016109409-appb-100006
    时,进入恒压运行状态,平滑切换控制单元控制切换到恒压控制控制单元;否则,当
    Figure PCTCN2016109409-appb-100007
    Figure PCTCN2016109409-appb-100008
    进入总电流限流运行状态,平滑切换控制单元控制切换到总电流限流控制单元;否则,仍工作在充电限流运行状态;
    总电流限流运行状态下,总电流限流控制单元工作,但:
    Figure PCTCN2016109409-appb-100009
    Figure PCTCN2016109409-appb-100010
    时,进入恒压运行状态,平滑切换控制单元控制切换到恒压控制控制单元;否则,当
    Figure PCTCN2016109409-appb-100011
    Figure PCTCN2016109409-appb-100012
    进入充电限流运行状态,平滑切换控制单元控制切换到充电限流控制单元;否则,仍工作在总电流限流运行状态;
    以上各式中,Vout为总输出电压值,Iout为总输出电流值,Iout-ref为总输出电流限流值, Ibat为充电电流值,Ibat-ref为充电电流限流值,Vref为总输出电压参考值。
  3. 如权利要求2所述的充电机控制方法,其特征在于:移相全桥电路输入端设置有支撑电容,通过判断充电机移相全桥电路中支撑电容上的电压与充电机输入电压的关系,判断预充电是否结束。
  4. 如权利要求2或3所述的充电机控制方法,其特征在于:所述判断充电机软起动是否结束的方法为:当满足条件1或条件2或条件3或条件4时,判断充电机软起动结束,其中:
    条件1:当累加的占空比大于占空比设定值;
    Figure PCTCN2016109409-appb-100013
    其中duty为占空比设定值,V1为输入电压采样值,N为充电机变压器变比;
    条件2:输出电压Vout大于设定值Vos
    条件3:总输出电流Iout大于设定值Ios
    条件4:充电电流Ibat大于设定值Ibs
  5. 如权利要求4所述的充电机控制方法,其特征在于:所述Vos=0.98Vref,所述Ios=0.98Iout-ref,所述Ibs=0.98Ibat-ref
  6. 如权利要求2所述的充电机控制方法,其特征在于:恒压控制算法单元、总电流限流控制单元和充电限流控制单元均采用PI控制算法,且采用三组不同的PI参数:
    Figure PCTCN2016109409-appb-100014
    其中T为采样频率;
    对于恒压控制单元:
    Figure PCTCN2016109409-appb-100015
    其中Vout(k)为充电机输出电压当前采样值;
    对于总电流限流控制单元:
    Figure PCTCN2016109409-appb-100016
    其中Iout(k)为充电机总输出电流当前采样值。
    对于充电限流控制单元:
    Figure PCTCN2016109409-appb-100017
    其中Ibat(k)为充电电流当前采样值。
    软起动结束时,将当前累加得占空比DUTY值作为恒压控制单元、总电流限流控制单元和充电限流控制单元的输入;其中,DUTY=duty(t)+Δduty。
PCT/CN2016/109409 2016-08-17 2016-12-12 移相全桥充电机控制***及控制方法 WO2017148201A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2017142829A RU2678318C1 (ru) 2016-08-17 2016-12-12 Система управления и способ управления зарядным устройством на основе мостового преобразователя с фазовым сдвигом
EP16892379.5A EP3291405B1 (en) 2016-08-17 2016-12-12 Phase shifted full bridge charger control system and control method
JP2017564427A JP6462905B2 (ja) 2016-08-17 2016-12-12 位相シフトフルブリッジ充電器の制御システムおよび制御方法
US15/737,714 US10097024B2 (en) 2016-08-17 2016-12-12 Control system and control method for a phase shifted full bidge charger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610688741.2A CN106208238B (zh) 2016-08-17 2016-08-17 移相全桥充电机控制***及控制方法
CN201610688741.2 2016-08-17

Publications (1)

Publication Number Publication Date
WO2017148201A1 true WO2017148201A1 (zh) 2017-09-08

Family

ID=57523051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109409 WO2017148201A1 (zh) 2016-08-17 2016-12-12 移相全桥充电机控制***及控制方法

Country Status (7)

Country Link
US (1) US10097024B2 (zh)
EP (1) EP3291405B1 (zh)
JP (1) JP6462905B2 (zh)
CN (1) CN106208238B (zh)
PT (1) PT3291405T (zh)
RU (1) RU2678318C1 (zh)
WO (1) WO2017148201A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208238B (zh) * 2016-08-17 2018-09-14 中车青岛四方车辆研究所有限公司 移相全桥充电机控制***及控制方法
CN108599600A (zh) * 2018-05-24 2018-09-28 中车青岛四方车辆研究所有限公司 单相整流器双环控制参数计算方法及计算***
CN111600366B (zh) * 2019-02-20 2023-06-16 联合汽车电子有限公司 车辆充电机软启动方法
CN110401337B (zh) * 2019-07-25 2021-07-23 上海科世达-华阳汽车电器有限公司 一种移相全桥变换器及其软启动方法与装置
CN114649988B (zh) * 2020-12-18 2024-07-09 山东新松工业软件研究院股份有限公司 一种实时调节电机运行效果的方法及***
CN112953193B (zh) * 2021-03-12 2024-04-26 联合汽车电子有限公司 三相pfc软启动电流冲击抑制方法、装置、充电机及介质
CN112821375B (zh) * 2021-03-19 2024-03-22 中车青岛四方车辆研究所有限公司 基于复合控制的充电机输出电压谐波抑制方法及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201234156Y (zh) * 2008-07-21 2009-05-06 上海广为美线电源电器有限公司 带有充电机的应急电源
CN101557121A (zh) * 2008-04-11 2009-10-14 中国北车集团大同电力机车有限责任公司 一种机车充电机的控制装置及方法
US20130127415A1 (en) * 2011-11-18 2013-05-23 Fuji Jukogyo Kabushiki Kaisha Electric charging system and electric charger
CN203423529U (zh) * 2013-09-12 2014-02-05 河北博联通讯科技有限责任公司 一种新能源汽车锂电池智能车载充电机
CN106208238A (zh) * 2016-08-17 2016-12-07 中车青岛四方车辆研究所有限公司 移相全桥充电机控制***及控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3509021B2 (ja) * 2002-04-26 2004-03-22 東芝テック株式会社 充電装置
RU2293415C1 (ru) * 2005-08-03 2007-02-10 Общество с ограниченной ответственностью "Конструкторское Бюро Пожарной Автоматики" Устройство управления зарядом аккумулятора
JP4367391B2 (ja) * 2005-09-01 2009-11-18 トヨタ自動車株式会社 充電制御装置および電動車両
US7656121B2 (en) * 2007-02-22 2010-02-02 Atmel Corporation Soft transition from constant-current to a constant-voltage mode in a battery charger
KR101000870B1 (ko) * 2009-05-29 2010-12-13 주호걸 전기차량용 충전기
CN102340165B (zh) * 2010-07-26 2015-02-11 *** 电动力汽车电源管理***
JP2014007872A (ja) * 2012-06-25 2014-01-16 Omron Automotive Electronics Co Ltd 充電装置
CN203368107U (zh) * 2013-08-09 2013-12-25 向智勇 具有过压过流保护的充电器
CN103618366B (zh) * 2013-11-22 2016-01-13 镇江赛尔尼柯自动化有限公司 一种智能船舶充电机及充电方法
CN105305828A (zh) * 2014-06-26 2016-02-03 株洲南车时代电气股份有限公司 一种适应多工作模式的智能车载直流电源
CN104578341B (zh) * 2014-12-29 2017-01-25 东南大学 一种基于移相全桥电路死区时间可调的车载充电机
CN204633441U (zh) * 2015-05-30 2015-09-09 盐城工学院 一种电动汽车智能充电***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101557121A (zh) * 2008-04-11 2009-10-14 中国北车集团大同电力机车有限责任公司 一种机车充电机的控制装置及方法
CN201234156Y (zh) * 2008-07-21 2009-05-06 上海广为美线电源电器有限公司 带有充电机的应急电源
US20130127415A1 (en) * 2011-11-18 2013-05-23 Fuji Jukogyo Kabushiki Kaisha Electric charging system and electric charger
CN203423529U (zh) * 2013-09-12 2014-02-05 河北博联通讯科技有限责任公司 一种新能源汽车锂电池智能车载充电机
CN106208238A (zh) * 2016-08-17 2016-12-07 中车青岛四方车辆研究所有限公司 移相全桥充电机控制***及控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3291405A4 *

Also Published As

Publication number Publication date
JP6462905B2 (ja) 2019-01-30
CN106208238B (zh) 2018-09-14
PT3291405T (pt) 2019-11-04
EP3291405A1 (en) 2018-03-07
EP3291405A4 (en) 2018-10-10
RU2678318C1 (ru) 2019-01-28
JP2018529300A (ja) 2018-10-04
US20180183244A1 (en) 2018-06-28
EP3291405B1 (en) 2019-09-18
US10097024B2 (en) 2018-10-09
CN106208238A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2017148201A1 (zh) 移相全桥充电机控制***及控制方法
CN106655783B (zh) 一种数字电源控制电路及方法
US9065327B2 (en) Efficiency optimized power converter with dual voltage power factor correction
CN108377094B (zh) 一种适用于双有源桥软启动的死区调节控制方法
WO2019129270A1 (zh) 一种提高同步整流原边反馈反激式电源动态性能的方法
CN103326587A (zh) Llc谐振变换器轻负载控制方法及装置
JP2014007937A (ja) 車載充電制御装置
JP2010517493A (ja) Pfc−pwmパワーコンバータのための制御構成
MX2011009361A (es) Cargador de bateria que utiliza circuito convertidor continuo doble por dezplazamiento de fase.
CN109378881B (zh) 一种动力电池组双向自适应均衡控制方法
CN116667681B (zh) 一种基于锂电池充放电的两级式变换器控制方法及***
CN110112913A (zh) 一种基于Fal函数滤波器的直流变换器模型预测控制算法
CN113014106A (zh) 一种基于单神经元pid的移相全桥电路及其控制方法
WO2023082598A1 (zh) 车载充电器工作模式切换控制方法、装置及车载充电器
WO2011135657A1 (ja) 系統連系形インバータ
CN100384052C (zh) 电池充电器的充电控制方法及其电路
CN103840668B (zh) 基于功率分配控制的多路输出反激变换器设计方法
CN107204705B (zh) Dc-dc调节器及其软启动的控制方法、控制器
US10491018B2 (en) Power output management apparatus of battery and managment method thereof
CN113422441A (zh) 一种电动汽车高效率稳压无线充电***及其设计方法
CN111600366B (zh) 车辆充电机软启动方法
CN112217226A (zh) 一种适用于双向dc-dc变换器的改进无模型预测控制方法
WO2022217857A1 (zh) 充电控制方法和***
EP3203620A1 (en) Dc-dc converter including dynamically adjusted duty cycle limit
CN112260539B (zh) 一种dc-dc变换器的输出响应快速调节方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017142829

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2017564427

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15737714

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE