WO2017145880A1 - Circuit switching device and switch driving device - Google Patents

Circuit switching device and switch driving device Download PDF

Info

Publication number
WO2017145880A1
WO2017145880A1 PCT/JP2017/005396 JP2017005396W WO2017145880A1 WO 2017145880 A1 WO2017145880 A1 WO 2017145880A1 JP 2017005396 W JP2017005396 W JP 2017005396W WO 2017145880 A1 WO2017145880 A1 WO 2017145880A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
coil antenna
power supply
switch
communication
Prior art date
Application number
PCT/JP2017/005396
Other languages
French (fr)
Japanese (ja)
Inventor
英晃 小林
末定 剛
市川 敬一
博宣 高橋
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018501611A priority Critical patent/JP6390812B2/en
Publication of WO2017145880A1 publication Critical patent/WO2017145880A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers

Definitions

  • the present invention relates to a circuit switching device and a switch driving circuit that electrically connect or disconnect between circuits.
  • Non-contact transmission device described in Patent Document 1 as a conventional antenna device.
  • this non-contact transmission device one end of the first winding portion is connected to a common terminal and the other end is connected to a non-contact communication terminal.
  • one end of the second winding portion is connected to a contactless communication terminal, and the other end is connected to a contactless power supply terminal.
  • the first winding portion is used as a non-contact communication coil.
  • the first winding portion and the second winding portion are used as non-contact power supply coils.
  • the first winding is shared for non-contact communication and non-contact power feeding.
  • the contactless communication may be delayed because the contactless communication circuit is affected by the contactless power receiving circuit.
  • a microcomputer or the like for switching the switch is required, which may make it difficult to reduce costs.
  • an object of the present invention is to provide a circuit switching device and a switch driving circuit that can switch circuits without using an auxiliary power source.
  • a circuit switching device includes a first coil antenna, a power receiving circuit for a non-contact power supply system connected to the first coil antenna, and short-range wireless communication connected to the first coil antenna.
  • a detection circuit that detects a signal of a specific frequency, outputs a control voltage to the first control terminal, and directly drives the first switch element.
  • the circuit switching device having the above configuration does not require a signal processing circuit (such as a microcomputer) for switching the first switch element and a power source (constant voltage circuit) for the signal processing circuit. Thereby, a circuit switching device capable of switching circuits without using an auxiliary power source can be realized.
  • the circuit switching device includes a first coil antenna, a power receiving circuit for a non-contact power supply system connected to the first coil antenna, and a second coil magnetically coupled to the first coil antenna.
  • a signal having a specific frequency is detected, and a control voltage is output to the first control terminal to directly drive the first switch element.
  • a detection circuit is included in the signals received by the first switch element and the first coil antenna.
  • the circuit can be switched without using an auxiliary power source.
  • the influence of the circuit on the communication circuit can be suppressed.
  • the detection circuit may have a double resonance circuit.
  • the multi-resonance circuit may have an insulating transformer.
  • a signal with a specific frequency can be detected without being affected by the common mode signal (noise).
  • the first switch element can be controlled in a floating state (can be turned on and off without being directly connected to the reference potential).
  • the communication circuit may have a second control terminal, and may include a second switch element that cuts off or connects power supply from the first or second coil antenna to the communication circuit.
  • This configuration can cut off the power supply to the communication circuit when the circuit switching device receives the operating frequency of the non-contact power supply system. As a result, the communication IC of the communication circuit can be protected from overvoltage caused by non-contact power supply.
  • the second switch element may have the second control terminal connected to the output side of the detection circuit.
  • the first and second switch elements can be controlled by one detection circuit, and a small circuit switching device can be realized by providing a signal processing circuit for each.
  • the switch drive circuit includes an input unit that inputs an AC voltage from a power supply line, a filter circuit that passes a voltage of a specific frequency among the voltages input from the input unit, and the filter circuit. And a rectifier circuit that rectifies the voltage and outputs the rectified voltage to a control terminal of a switch element that electrically cuts off or connects the power supply line.
  • the switch element that cuts off the power supply line is turned on. That is, the switch element can be turned on without using a separate signal processing circuit (such as a microcomputer). And since the voltage of an electric power supply line is utilized, the switch drive circuit which can switch a switch element without using an auxiliary power supply is realizable.
  • the circuit can be switched without using a signal processing circuit such as a microcomputer for switching the switching element and an auxiliary power source for the signal processing circuit.
  • a signal processing circuit such as a microcomputer for switching the switching element and an auxiliary power source for the signal processing circuit.
  • FIG. 1 is a block diagram of a power supply system according to the first embodiment.
  • FIG. 2 is a diagram illustrating experimental results according to the first embodiment.
  • FIG. 3 is a circuit diagram of the power receiving device according to the first embodiment.
  • FIG. 4 is a block diagram of a power receiving device in which the arrangement of the switch circuit is changed.
  • FIG. 5 is a diagram illustrating an example of frequency characteristics of the output voltage of the switch drive circuit.
  • FIG. 6 is a diagram showing a switch drive circuit made into one chip.
  • FIG. 7 is a circuit diagram of the power receiving device in which the connection point of the switch drive circuit is changed.
  • FIG. 8 is a circuit diagram of a power receiving device having a single-ended switch drive circuit.
  • FIG. 1 is a block diagram of a power supply system according to the first embodiment.
  • FIG. 2 is a diagram illustrating experimental results according to the first embodiment.
  • FIG. 3 is a circuit diagram of the power receiving device according to the first embodiment.
  • FIG. 4
  • FIG. 9 is a block diagram of a power receiving device in which the communication circuit includes individual coil antennas.
  • FIG. 10 is a circuit diagram of the power receiving device according to the second embodiment.
  • FIG. 11 is a circuit diagram of a power receiving device according to the third embodiment.
  • FIG. 12 is a block diagram of a power receiving device according to the fourth embodiment.
  • FIG. 13 is a block diagram of a power receiving device in which the communication circuit according to the fourth embodiment includes individual coil antennas.
  • FIG. 14 is a block diagram of a power receiving device in which the switch circuit is arranged to short-circuit between the power supply lines.
  • FIG. 1 is a block diagram of a power supply system 100 according to the first embodiment.
  • the power supply system 100 includes a power receiving device 10 and a power feeding device 20 or a communication device.
  • the power supply system 100 operates as a contactless power supply system or a short-range wireless communication system.
  • the power receiving device 10 When operating as a non-contact power supply system, the power receiving device 10 is supplied with power from the power supply device 20.
  • the power receiving device 10 When operating as a short-range wireless communication system, the power receiving device 10 communicates with the communication device 30.
  • the non-contact power supply system is, for example, a non-contact power supply system using magnetic field coupling in the near field, and includes an electromagnetic induction type power supply system and a magnetic field resonance type power supply system.
  • HF High Frequency
  • power having a frequency in the vicinity of 6.78 MHz is transmitted from the power feeding device 20 to the power receiving device 10.
  • the near field communication system is, for example, a system using NFC (Near Field Communication).
  • NFC Near Field Communication
  • NFC is short-range wireless communication using magnetic field coupling in the near field, and does not include short-range wireless communication using electromagnetic waves such as Bluetooth (registered trademark).
  • Bluetooth registered trademark
  • a signal having a frequency in the HF band, particularly around 13.56 MHz is transmitted from the communication device 30 to the power receiving device 10 (or vice versa).
  • the power feeding device 20 includes a coil antenna 21 and a power feeding circuit 22.
  • An AC voltage is applied to the coil antenna 21 by the power feeding circuit 22.
  • the coil antenna 21 forms a resonance circuit with a capacitor (not shown), and is magnetically coupled to a coil antenna (first coil antenna) 11 described later included in the power receiving device 10.
  • first coil antenna first coil antenna
  • the power supply circuit 22 includes a DC-AC inverter.
  • the DC-AC inverter generates a high-frequency AC voltage or AC current.
  • the power feeding circuit 22 applies a 6.78 MHz AC voltage to the coil antenna 21.
  • the communication device 30 includes a coil antenna 31 and a communication circuit 32. Then, similarly to the power feeding device 20, the coil antennas 31 and 11 are magnetically coupled, whereby the communication circuit 17 of the power receiving device 10 and the communication device 30 communicate wirelessly.
  • the communication circuit 32 includes a transmission / reception circuit. The communication circuit 32 operates at 13.56 MHz.
  • the power receiving device 10 includes a coil antenna 11, a matching circuit 12, a rectifier circuit 13, a switch circuit 14, a load circuit 15, a switch drive circuit 16, and a communication circuit 17.
  • the power receiving device 10 is an example of the “circuit switching device” according to the present invention.
  • the switch drive circuit 16 is an example of the “detection circuit” according to the present invention.
  • the load circuit 15 includes, for example, a charging circuit and a secondary battery.
  • the load circuit 15 charges the secondary battery with the power supplied from the power supply device 20 during the operation of the non-contact power supply system.
  • the load circuit 15 is an example of the “power receiving circuit for a non-contact power supply system” according to the present invention.
  • the communication circuit 17 is used for a short-range wireless communication system.
  • the communication circuit 17 is an example embodiment that corresponds to the “communication circuit for near field communication system” according to the present invention.
  • the matching circuit 12 of the power receiving circuit is connected to the coil antenna 11.
  • the matching circuit 12 includes a coil antenna 11 and a resonance capacitor (not shown) that forms a resonance circuit.
  • a resonance circuit including coil antennas 21 and 31 is configured on the power feeding device 20 and the communication device 30 side.
  • the resonance frequency of the resonance circuit including the coil antenna 11 and the communication circuit 17 is set near the frequency of the non-contact power supply system.
  • the rectifier circuit 13 is connected to the matching circuit 12 by two power supply lines 101A and 102A through which an AC signal flows.
  • the rectifier circuit 13 rectifies the voltage induced in the coil antenna 11 that is magnetically coupled to the coil antenna 21 of the power feeding device 20.
  • the switch circuit 14 is connected to the rectifier circuit 13.
  • a smoothing capacitor Co and a load circuit 15 are connected to the switch circuit 14.
  • the switch circuit 14 When the switch circuit 14 is on, the rectifier circuit 13, the load circuit 15 and the smoothing capacitor Co are electrically connected.
  • the switch circuit 14 When the switch circuit 14 is off, the rectifier circuit 13, the load circuit 15 and the smoothing capacitor Co are electrically disconnected. That is, the switch circuit 14 switches between power supply to the load circuit 15 and interruption of the power supply.
  • the switch circuit 14 is off and is turned on by a switch drive circuit 16 described later.
  • the switch drive circuit 16 is connected to the power supply lines 101A and 102A.
  • the switch drive circuit 16 When the voltage between the power supply lines 101A and 102A has a specific frequency, the switch drive circuit 16 outputs a control voltage to the switch circuit 14 and turns on the switch circuit 14.
  • the switch drive circuit 16 directly drives the switch circuit 14.
  • the specific frequency is 6.78 MHz. That is, the switch drive circuit 16 turns on the switch circuit 14 during the operation of the non-contact power supply system.
  • the switch drive circuit 16 maintains the off state without turning on the switch circuit 14.
  • the case where the output voltage is not a specific frequency is, for example, a case where the frequency is 13.56 MHz. That is, the switch drive circuit 16 does not turn on the switch circuit 14 during the operation of the short-range wireless communication system.
  • the communication circuit 17 is connected to the power supply lines 101A and 102A.
  • the communication circuit 17 receives a signal voltage induced in the coil antenna 11 that is magnetically coupled to the coil antenna 31 of the communication device 30. In this case, the communication circuit 17 becomes a receiving circuit.
  • the switch circuit 14 is off, and the received 13.56 MHz signal (carrier wave + modulation component) is blocked by the switch circuit 14. That is, during operation of the short-range wireless communication system, unnecessary power supply to the load circuit 15 and the smoothing capacitor Co due to the communication signal voltage is suppressed, and the signal is efficiently transmitted to the communication circuit 17. Therefore, the communication circuit 17 operates without being affected by unnecessary power supply to the load circuit 15 and the smoothing capacitor Co.
  • the communication circuit 17 When a communication signal is transmitted from the power receiving device 10 to the communication device 30, the communication circuit 17 becomes a transmission circuit and applies a communication signal voltage to the coil antenna 11. In this case, the switch circuit 14 is off, and power supply to the load circuit 15 and the smoothing capacitor Co is cut off. Therefore, the communication circuit 17 operates without being affected by the power supply to the load circuit 15.
  • FIG. 2 shows the result of measuring the detection distance of the non-contact IC card by operating the NFC system in this embodiment.
  • the communication circuit 17 was set to Reader / Writer mode, the non-contact IC card was brought close to the coil antenna 11, and the distance at which the non-contact IC card was recognized was measured. Also, the detection distance was confirmed for four types of representative cards. Card 1 uses Topaz, Card 2 uses Mifare UL, Card 3 uses Octpus, and Card 4 uses Mifare desfire. Mifare is a registered trademark.
  • the configuration of the present application is a power receiving device 10 in which the communication device 30 is realized by a non-contact IC card and the short-range wireless communication system is realized by an NFC system.
  • the configuration of Comparative Example 1 is a configuration in which a frequency detector 161 described later is excluded from the configuration of the present application.
  • the configuration of Comparative Example 2 is an NFC system including a communication device 30 and a communication circuit 17 realized by a non-contact IC card.
  • the detection distance is greatly reduced by connecting the load circuit 15 for power transmission to the communication circuit 17 (see the results in the configurations of Comparative Example 1 and Comparative Example 2).
  • the influence of the load circuit 15 and the smoothing capacitor Co can be reduced, the communication distance can be suppressed, and communication can be performed more reliably (results in the configuration of the present application and the configuration of Comparative Example 1). reference).
  • FIG. 3 is a circuit diagram of the power receiving device 10 according to the first embodiment.
  • the matching circuit 12 of the power receiving circuit has capacitors C21 and C22.
  • the capacitors C21 and C22 and the coil antenna 11 constitute a resonance circuit.
  • the communication circuit 17 includes capacitors C31, C32, C33, C34, C35, C36, inductors L31, L32, and a communication IC 171.
  • the capacitors C31 to C34 constitute a communication circuit matching circuit between the communication IC 171 and the coil antenna 11, and are connected to the power supply lines 101A and 102A.
  • the capacitor C35 and the inductor L31, and the capacitor C36 and the inductor L32 constitute a low-pass filter, and are provided between the communication circuit matching circuit and the communication IC 171.
  • the low-pass filter removes harmonic components of a frequency used when the communication circuit 17 operates as a transmission circuit.
  • the low-pass filter can be used as a part of a communication circuit matching circuit between the communication IC 171 and the coil antenna 11.
  • the rectifier circuit 13 is a diode bridge circuit.
  • the switch circuit 14 includes a switch element (first switch element) Q1 and a gate resistor R1.
  • the switch element Q1 is an n-type MOS-FET.
  • the switch element Q1 is connected in series to a power supply line (hot line) 101B that connects the rectifier circuit 13 and the load circuit 15.
  • the switch element Q1 is off because no voltage is applied between the switch drive circuit 16 and the gate-source.
  • the rectifier circuit 13, the load circuit 15, and the smoothing capacitor Co are electrically disconnected. Further, when a voltage is applied between the gate and the source by the switch drive circuit 16, the switch is turned on.
  • the rectifier circuit 13, the load circuit 15, and the smoothing capacitor Co are electrically connected.
  • the switch circuit 14 may be connected between the smoothing capacitor Co and the load circuit 15, and in that case, signal inflow to the load circuit 15 can be reduced.
  • the switch element Q1 and the gate resistor R1 of the switch circuit 14 may be connected in series to a reference potential line (cold line) 102B that connects the rectifier circuit 13 and the load circuit 15.
  • a switch circuit 14 ⁇ / b> C composed of a bidirectional switch circuit is connected in series between the rectifier circuit 13 and the connection CP where the switch drive circuit 16 is connected to the power supply lines 101 ⁇ / b> A and 102 ⁇ / b> A. It may be connected.
  • the switch circuit 14C is configured by a bidirectional switch circuit as described above.
  • the bidirectional switch circuit is a circuit in which two switch elements such as FETs are used so as to be opposite to each other. At this time, the influence of the capacitance component of the rectifier circuit 13 can be reduced by using an element having a small parasitic capacitance for the switch circuit 14C. Therefore, the influence of the parasitic capacitance on the communication circuit 17 can be further reduced.
  • the switch drive circuit 16 has input parts In1 and In2 and output parts Out1 and Out2.
  • the input unit In1 is connected to the power supply line 101A via the capacitor C41.
  • the input unit In2 is connected to the power supply line 102A via the capacitor C42.
  • Capacitors C41 and C42 have the same capacitance. Capacitors C41 and C42 form a voltage dividing circuit with C11 described later, and divide the voltage between the power supply lines 101A and 102A. Therefore, the voltage between the power supply lines 101A and 102A is divided and input by the capacitors C41, C42 and C11 to the switch drive circuit 16.
  • the output units Out1 and Out2 are connected to the gate and source (control terminal, first control terminal) of the switch element Q1 of the switch circuit 14.
  • the switch drive circuit 16 includes a frequency detector 161 and a rectifying / smoothing circuit 162.
  • the frequency detector 161 is an example of the “filter circuit” according to the present invention.
  • the rectifying / smoothing circuit 162 is an example embodiment that corresponds to the “rectifying circuit” according to the present invention.
  • the rectifying / smoothing circuit 162 is connected to the frequency detector 161.
  • the rectifying / smoothing circuit 162 includes a diode D1 and a capacitor C13, and rectifies and smoothes the voltage output from the frequency detector 161.
  • the voltage rectified and smoothed by the rectifying and smoothing circuit 162 is output from the output units Out1 and Out2, and is applied between the gate and source of the switch element Q1.
  • the rectifying / smoothing circuit 162 may not include the capacitor C13. Further, instead of the capacitor C13, the input capacitance of the switch element Q1 may be used.
  • the frequency detector 161 includes capacitors C11 and C12 and an insulating transformer T.
  • the capacitor C11 is connected between the input parts In1 and In2.
  • the primary coil L11 of the insulation transformer T is connected in parallel to the capacitor C11.
  • a capacitor C12 is connected in parallel to the secondary coil L12 of the insulation transformer T. By connecting in parallel, the voltage across the coil can be taken out as the drive voltage.
  • the capacitor C11 and the primary coil L11 of the insulating transformer T constitute a resonance circuit.
  • the capacitor C12 and the primary coil L11 of the insulating transformer T also form a resonance circuit.
  • the resonance circuit constitutes a parallel resonance circuit, but may be a series resonance circuit or a combination thereof. Further, in the parallel resonance circuit and the series resonance circuit, the parallel resonance circuit is preferable because the parallel resonance circuit can easily obtain a higher voltage.
  • FIG. 5 shows the output voltage frequency characteristics of the switch drive circuit 16 in this embodiment.
  • the specific frequency is 6.78 MHz.
  • the output voltage frequency characteristic of the switch drive circuit 16 has a peak at a specific frequency of 6.78 MHz.
  • the input voltage to the switch drive circuit 16 passes through the frequency detector 161 and is rectified and smoothed by the rectifying and smoothing circuit 162.
  • the voltage is applied between the gate and source of the switch element Q1, and the switch element Q1 is turned on. That is, when operating in a non-contact power supply system with a drive frequency of 6.78 MHz, the switch drive circuit 16 turns on the switch element Q1 and supplies power to the load circuit 15.
  • the switch drive circuit 16 when the voltage between the power supply lines 101A and 102A is different from 6.78 MHz, for example, 13.56 MHz, the input voltage to the switch drive circuit 16 is blocked by the frequency detector 161. Therefore, no voltage is output from the frequency detector 161, and the switch element Q1 is not turned on. That is, when operating in a short-range wireless communication system with a drive frequency of 13.56 MHz, the switch drive circuit 16 does not turn on the switch element Q1, and unnecessary power supply to the load circuit 15 by the communication signal voltage is cut off.
  • the load circuit is cut only when unnecessary power supply to the load circuit 15 by the communication signal voltage is cut off and magnetically coupled to the power feeding device 20. 15 can be supplied with power.
  • the power receiving apparatus 10 can perform non-contact power supply or short-range wireless communication using the common coil antenna 11.
  • the common antenna can be used, the degree of freedom in arranging the antenna to the power receiving device can be increased and the number of connection portions between the antenna and the circuit can be reduced.
  • the switch drive circuit 16 applies a voltage between the rectified and smoothed power supply lines 101A and 102A between the gate and the source of the switch element Q1 to turn on the switch element Q1. Therefore, the switch driving circuit 16 does not require a complicated signal processing circuit (such as a microcomputer for performing complicated processing) and can be realized with a simple circuit configuration. In addition, since a power source for the switch drive circuit 16 is not required, downsizing of the power receiving device 10 is not hindered. Further, when the secondary battery of the power receiving device 10 is discharged and the signal processing circuit mounted with the power receiving device 10 on the electronic device or the like is not activated, the switch driving circuit 16 receives the high frequency power of 6.78 MHz. Operates and can be charged and charged.
  • the switch drive circuit 16 is connected in parallel to the power supply lines 101A and 102A. For this reason, a loss can be reduced compared with the case where the switch drive circuit 16 is provided in the middle of the power supply lines 101A and 102A.
  • the frequency detector 161 of the switch drive circuit 16 uses double resonance to detect (pass) an alternating voltage having a specific frequency.
  • double resonance there are two resonance points.
  • the sensitivity of the frequency detector 161 can be made substantially constant. For this reason, if this frequency band is used, even if the frequency of the AC voltage to be detected varies, the AC voltage can be detected stably and the switch circuit 14 can be turned on.
  • the frequency detector 161 is composed of the insulation transformer T, the influence of the common mode signal (noise) can be reduced. Furthermore, the switch element Q1 can be controlled in a floating state. That is, the switch element Q1 can be controlled without being directly connected to the ground potential. Note that the frequency detector 161 may be an LC filter that is set to a constant so that an AC voltage of a specific frequency passes. Alternatively, a low-pass filter, a high-pass filter, or a band rejection filter may be used.
  • the switch drive circuit 16 may be configured by mounting each element on a circuit board, or may be formed as a single chip.
  • FIG. 6 is a diagram showing the switch drive circuit 16 made into one chip.
  • the switch drive circuit 16 includes a laminate 160 in which a plurality of insulator layers such as ferrite are laminated and sintered.
  • coils 160A and 160B are formed by a conductor pattern printed on an insulator layer.
  • the coils 160A and 160B are formed to be magnetically coupled, for example, with the same winding axis.
  • the coil 160A corresponds to the primary coil L11 of the insulation transformer T shown in FIG. 3, and the coil 160B corresponds to the secondary coil L12 of the insulation transformer T.
  • elements constituting the switch drive circuit 16 such as capacitors C11 and C12 and a diode D1 are mounted on one main surface of the multilayer body 160. Each element is wired by a via conductor and a conductor pattern (not shown).
  • the switch drive circuit 16 by occupying the switch drive circuit 16 on one chip, the occupied area on the substrate on which the switch drive circuit 16 is mounted can be reduced. For this reason, the freedom degree of the layout at the time of design improves. Further, the nonlinearity of the magnetic material can be used to give the output voltage nonlinearity.
  • the input / output voltage ratio responds linearly, and when the input level is high, the input / output voltage ratio is set to decrease. Thereby, overvoltage of the output voltage can be prevented, and the range of the input voltage can be expanded.
  • connection point of the switch drive circuit 16 may not be provided between the matching circuit 12 and the rectifier circuit 13.
  • FIG. 7 shows a power receiving device 10D in which connection points are set so that the matching circuit 12D is divided in capacity.
  • Matching circuit 12D includes capacitors C21 to C24. Connection points of the switch drive circuit 16 are provided between the capacitor C21 and the capacitor C23 and between the capacitor C22 and the capacitor C24. In this configuration, the voltage input to the switch drive circuit 16 can be increased without increasing the capacitances of the capacitors C41 and C42.
  • the circuit configuration of the switch drive circuit may be a single-ended configuration.
  • FIG. 8 shows a power receiving device 10E including a switch driving circuit 16E having a single end configuration.
  • the switch drive circuit 16E has a frequency detector 161E including a transformer TE to which a primary coil L11 and a secondary coil L12 are connected.
  • a transformer TE to which a primary coil L11 and a secondary coil L12 are connected.
  • FIG. 9 shows a power receiving device 10F provided with individual coil antennas 11 and 11F.
  • a coil antenna (second coil antenna) 11 ⁇ / b> F is connected to the communication circuit matching circuit 172 of the communication circuit 17.
  • the communication circuit matching circuit 172 includes capacitors C31 to C34 (see FIG. 3).
  • the low-pass filter 173 includes capacitors C35 and 36 and inductors L31 and L32 (see FIG. 3).
  • both coil antennas 11 and 11F When both coil antennas 11 and 11F have to be disposed close to each other due to restrictions such as a space of a housing that houses the power receiving device 10F, magnetic field coupling occurs between the coil antennas 11 and 11F. Since both coil antennas 11 and 11F are coupled to each other, the power transmission circuit (load circuit 15 and smoothing capacitor Co) affects the communication characteristics of the communication circuit 17 in the same manner as when the common coil antenna is provided. May give. Therefore, by adding the switch drive circuit 16 and the switch circuit 14 to the power transmission circuit, unnecessary power supply to the load circuit 15 and the smoothing capacitor Co is cut off, and the power supply device 20 (see FIG. 1) is magnetically coupled. Only when the power is supplied to the load circuit 15, the influence of the load circuit 15 and the smoothing capacitor Co can be suppressed.
  • the power receiving device is different from the first embodiment in the configuration of a switch circuit that switches between supplying power to the load circuit and shutting off the power.
  • FIG. 10 is a circuit diagram of the power receiving device 10A according to the second embodiment.
  • An EMI filter 18 is provided between the matching circuit 12 and the rectifier circuit 13.
  • the switch circuit 14A has switch elements Q2 and Q3.
  • the switch element Q2 is a p-type MOS-FET.
  • the switch element Q2 is provided on the power supply line 101B.
  • the switch element Q3 is an n-type MOS-FET.
  • the drain of the switch element Q3 is connected to the gate of the switch element Q2.
  • the source of the switch element Q3 is connected to the reference potential.
  • the gate of the switch element Q3 is connected to the output unit Out1 of the switch drive circuit 16.
  • the input portions In1 and In2 of the switch drive circuit 16 are connected between the coil antenna 11 and the matching circuit 12. That is, a voltage induced in the coil antenna 11 is input to the switch drive circuit 16 without passing through the matching circuit 12. As a result, a higher voltage is input to the switch drive circuit 16.
  • the output part Out1 of the switch drive circuit 16 is connected to the gate of the switch element Q3.
  • the output unit Out2 is connected to the reference potential.
  • the switch drive circuit 16 rectifies and smoothes the voltage when the voltage between the power supply lines 101A and 102A is 6.78 MHz. Then, the switch drive circuit 16 applies the rectified and smoothed voltage between the gate and the source of the switch element Q3. The switch element Q3 is turned on, the gate of the switch element Q2 is connected to the reference potential, and the switch element Q2 is turned on. As a result, the rectifier circuit 13 and the load circuit 15 are electrically connected, and power is supplied to the load circuit 15.
  • the output end (output unit Out2 side) of the frequency detector 161 since the output end (output unit Out2 side) of the frequency detector 161 is connected to the reference potential, the reference potential of the signal processing circuit can be shared. If the output end (output unit Out1 side) of the frequency detector 161 is connected to a signal processing circuit (a voltage dividing circuit or the like is inserted as appropriate), the arrival state of power at a specific frequency can be monitored.
  • a signal processing circuit a voltage dividing circuit or the like is inserted as appropriate
  • the power receiving device 10A when the power receiving device 10A operates in the short-range wireless communication system, the power receiving device 10A blocks unnecessary power supply to the load circuit 15 by the communication signal voltage and operates in the non-contact power supply system. Only when this is done, power can be supplied to the load circuit 15.
  • the switch drive circuit 16 does not require a signal processing circuit (such as a microcomputer) that requires power supply and performs complicated processing, and can be realized with a simple circuit configuration.
  • a power source for the switch drive circuit 16 since a power source for the switch drive circuit 16 is not required, downsizing of the power receiving device 10A is not hindered. Further, even when the secondary battery of the power receiving device 10A is discharged and the signal processing circuit is not activated, when the high frequency power of 6.78 MHz is received, the switch driving circuit operates and can be fed and charged.
  • the power receiving device is different from the first embodiment in the configuration of a switch circuit that switches between power supply to the load circuit and interruption thereof.
  • FIG. 11 is a circuit diagram of the power receiving device 10B according to the third embodiment.
  • the switch circuit 14B included in the power receiving device 10B includes a switch element Q4.
  • the switch element Q4 is an n-type MOS-FET.
  • the drain of the switch element Q4 is connected to the power supply line 101B via the capacitor C5.
  • the source of the switch element Q4 is connected to the reference potential line 102B.
  • the gate of the switch element Q4 is connected to the output unit Out1 of the switch drive circuit 16.
  • the switch drive circuit 16 rectifies and smoothes the voltage when the AC voltage between the power supply lines 101A and 102A is 6.78 MHz, as in the first embodiment. Then, the switch drive circuit 16 applies the rectified and smoothed voltage to the gate of the switch element Q4. When the switch element Q4 is turned on, the capacitor C5 is connected between the power supply lines 101A and 102A. As a result, the voltage supplied to the load circuit 15 is charged and smoothed by charging the capacitor C5, so that stable power supply to the load circuit 15 can be achieved. Conversely, when the AC voltage has a frequency other than 6.78 MHz, the switch element Q4 does not conduct, and thus the capacitor C5 is disconnected from the rectifier circuit 13. As a result, when operating in the short-range wireless communication system, the communication circuit 17 operates while reducing the influence of unnecessary power supply to the capacitor C5. Therefore, a decrease in communication distance can be suppressed and communication can be performed more reliably.
  • the switch drive circuit 16 rectifies and smoothes the AC voltage between the power supply lines 101A and 102A, applies it to the gate of the switch element Q4, and turns on the switch element Q4. For this reason, the switch drive circuit 16 does not require a signal processing circuit (such as a microcomputer) for performing complicated processing, and can be realized with a simple circuit configuration. In addition, since a power source for the switch drive circuit 16 is not required, downsizing of the power receiving device 10B is not hindered. Further, even when the secondary battery of the power receiving device 10B is discharged and the signal processing circuit is not activated, when the high frequency power of 6.78 MHz is received, the switch driving circuit 16 operates to supply and charge.
  • a signal processing circuit such as a microcomputer
  • the power receiving device is different from the first embodiment in the configuration of the communication circuit and the connection between the switch drive circuit and the communication circuit.
  • FIG. 12 is a circuit diagram of the power receiving device 10G according to the fourth embodiment.
  • the communication circuit 17G included in the power receiving device 10G includes a switch circuit 14G.
  • the switch circuit 14G is disposed between the communication circuit matching circuit 172 and the low-pass filter 173, and electrically disconnects the communication circuit matching circuit 172, the low-pass filter 173, and the communication IC 171 in order to protect the communication IC 171.
  • the switch circuit 14G operates by the voltage output from the switch drive circuit 16.
  • the switch circuit 14G includes a switch element having a control terminal, and is configured by, for example, a bidirectional switch circuit.
  • the switch element is an example of a “second switch element” according to the present invention, and the control terminal is an example of a “second control terminal” according to the present invention.
  • the switch circuit 14G when the power receiving device 10G is not receiving high-frequency power at the operating frequency of the non-contact power supply system, the switch circuit 14G is off, and when the high-frequency power at the operating frequency of the non-contact power supply system is received, The circuit 14G is turned on, and the line before the low-pass filter 173 is configured to be short-circuited. In this configuration, the communication IC 171 can be protected from overvoltage caused by non-contact power supply.
  • the switch circuit 14G may be disposed between the low-pass filter 173 and the communication IC 171 or may be built in the communication IC 171.
  • the power receiving device may not include a common coil antenna in the non-contact power supply system and the short-range wireless communication system, and may include an individual coil antenna.
  • FIG. 13 shows a receiving apparatus 10H provided with individual coil antennas 11 and 11F. A coil antenna 11F is connected to the communication circuit matching circuit 172. Even with this circuit configuration, unnecessary power supply to the load circuit 15 and the smoothing capacitor Co can be cut off by the switch drive circuit 16 and the switch circuit 14. Thus, power is supplied to the load circuit 15 only when magnetically coupled to the power supply device 20 (see FIG. 1), and the influence of the load circuit 15 and the smoothing capacitor Co on the communication circuit 17G can be suppressed. Further, the switch driving circuit 16 and the switch circuit 14G can protect the communication IC 171 from overvoltage caused by non-contact power supply.
  • the power receiving device is described as a device that operates in the non-contact power supply system and the short-range wireless communication system.
  • the short-range wireless communication system using different frequency bands operates. It may be a device that performs.
  • the power receiving apparatus includes a communication circuit that performs communication using the first frequency and a communication circuit that performs communication using the second frequency. Then, the switch circuit is switched according to the frequency of the signal received by the power receiving device by the switch drive circuit described above.
  • the power receiving device may be a device in which a non-contact power supply system using different frequency bands operates.
  • the rectifier circuit, the load circuit, and the smoothing capacitor are disconnected during the operation of the short-range wireless communication system, but this is not restrictive. It is sufficient that at least the coil antenna, the load circuit and the smoothing capacitor are electrically disconnected, and the switch circuit may be provided between the coil antenna and the rectifier circuit.
  • the rectifier circuit, the load circuit, and the smoothing capacitor are arranged so that no current flows between the rectifier circuit, the load circuit, and the smoothing capacitor during the operation of the short-range wireless communication system. It has been described that the current path between is disconnected, but this is not the case.
  • the stage before the load circuit and the smoothing capacitor, or the rectifier circuit In the preceding stage power may be prevented from being supplied to the load circuit and the smoothing capacitor by short-circuiting the two power supply lines so that no voltage is applied to the load circuit and the smoothing capacitor.
  • FIG. 14 shows a power receiving device 10I in which a switch circuit 14I is connected between a power supply line 101B and a reference potential line 102B.
  • the switch circuit 14I is configured to be turned on when no control voltage is applied (that is, the output of the rectifier circuit 13 is short-circuited).
  • the switch circuit 14I is turned off when a voltage is applied between the gate and the source by the switch drive circuit 16.
  • the switch drive circuit 16 inputs a voltage across the coil antenna 11, and the communication circuit 17 divides the resonance capacitors (capacitors C21 to C24) of the matching circuit 12D of the power transmission system, not the both ends of the coil antenna 11. Connect to the point. With this configuration, the influence of the parasitic capacitance of the rectifying unit can be eliminated.
  • Power receiving device DESCRIPTION OF SYMBOLS 11, 11F ... Coil antenna 12, 12D ... Matching circuit 13 ... Rectifier circuit 14, 14A, 14B, 14C, 14G, 14I ... Switch circuit 15 ... Load circuit 16, 16E ... Switch drive circuit 17, 17G ... Communication circuit 18 ... EMI Filter 20 ... Feeding device 21 ... Coil antenna 22 ... Feeding circuit 30 ... Communication device 31 ... Coil antenna 32 ... Communication circuit 100 ... Power supply system 101A, 102A ... Power supply line 102A ... Power supply line 102B ... Line for reference potential 160 ... Laminates 160A, 160B ... Coils 161, 161E ... Frequency detector (filter circuit) 162 ... Rectifier smoothing circuit (rectifier circuit)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Near-Field Transmission Systems (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

In the present invention, a power receiving device (10) is provided with: a coil antenna (11); a load circuit (15) connected to the coil antenna (11); a communication circuit (17) connected to the coil antenna (11); a switch element (Q1) that normally cuts off the supply of power from the coil antenna (11) to the load circuit (15); and a switch driving circuit (16) that allows a signal of a specific frequency, from among signals received by the coil antenna (11), to pass through and that applies voltage to a drive terminal of the switch element (Q1).

Description

回路切替装置及びスイッチ駆動回路Circuit switching device and switch drive circuit
 本発明は、回路間を電気的に接続し、又は遮断する回路切替装置及びスイッチ駆動回路に関する。 The present invention relates to a circuit switching device and a switch driving circuit that electrically connect or disconnect between circuits.
 従来のアンテナ装置として特許文献1に記載の非接触伝送デバイスがある。この非接触伝送デバイスでは、第1の巻線部の一端が共通端子、他端が非接触通信用端子に接続されている。また、第2の巻線部の一端が非接触通信用端子、他端が非接触給電用端子に接続されている。第1の巻線部は非接触通信用コイルとして使用される。第1の巻線部及び第2の巻線部は非接触給電用コイルとして使用される。 There is a non-contact transmission device described in Patent Document 1 as a conventional antenna device. In this non-contact transmission device, one end of the first winding portion is connected to a common terminal and the other end is connected to a non-contact communication terminal. Further, one end of the second winding portion is connected to a contactless communication terminal, and the other end is connected to a contactless power supply terminal. The first winding portion is used as a non-contact communication coil. The first winding portion and the second winding portion are used as non-contact power supply coils.
特開2013-93429号公報JP 2013-93429 A
 特許文献1の非接触伝送デバイスでは、第1の巻線部が非接触通信及び非接触給電に共用される。この場合、非接触通信用の通信回路が非接触給電用の受電回路から影響を受けることで、非接触通信の反応が遅くなるおそれがある。このため、第1の巻線部が、受電回路又は通信回路の一方に接続されるように、スイッチを設けて切り替える必要がある。このような場合、スイッチを切り替えるためのマイコン等が必要となり、コストを抑えることが難しくなるおそれがある。また、マイコンを設ける場合、マイコン用の電力源(補助電源)を備える必要がある。このため、装置の小型化が阻害される。 In the non-contact transmission device of Patent Document 1, the first winding is shared for non-contact communication and non-contact power feeding. In this case, the contactless communication may be delayed because the contactless communication circuit is affected by the contactless power receiving circuit. For this reason, it is necessary to provide a switch so that the first winding portion is connected to one of the power receiving circuit or the communication circuit. In such a case, a microcomputer or the like for switching the switch is required, which may make it difficult to reduce costs. Moreover, when providing a microcomputer, it is necessary to provide the power source (auxiliary power supply) for microcomputers. For this reason, downsizing of the apparatus is hindered.
 そこで、本発明の目的は、補助電源を用いずに回路を切り替えることができる回路切替装置及びスイッチ駆動回路を提供することにある。 Therefore, an object of the present invention is to provide a circuit switching device and a switch driving circuit that can switch circuits without using an auxiliary power source.
 本発明に係る回路切替装置は、第1のコイルアンテナと、前記第1のコイルアンテナに接続される非接触電力供給システム用受電回路と、前記第1のコイルアンテナに接続される近距離無線通信システム用通信回路と、第1の制御端子を有し、前記第1のコイルアンテナから前記受電回路への電力供給を遮断する第1のスイッチ素子と、前記第1のコイルアンテナが受信する信号のうち、特定周波数の信号を検波して、前記第1の制御端子へ制御電圧を出力して前記第1のスイッチ素子を直接駆動する検波回路と、を備えることを特徴とする。 A circuit switching device according to the present invention includes a first coil antenna, a power receiving circuit for a non-contact power supply system connected to the first coil antenna, and short-range wireless communication connected to the first coil antenna. A communication circuit for a system; a first switch element having a first control terminal; and cutting off power supply from the first coil antenna to the power receiving circuit; and a signal received by the first coil antenna A detection circuit that detects a signal of a specific frequency, outputs a control voltage to the first control terminal, and directly drives the first switch element.
 この構成では、第1のコイルアンテナが受信する信号が特定周波数である場合、その信号を検波して、第1のスイッチ素子の第1の制御端子へ制御電圧を出力する。そして、通常は第1のコイルアンテナから受電回路への電力供給を遮断する第1のスイッチ素子がオンされ、受電回路(負荷回路)への電力供給が可能となる。すなわち、マイコン等の信号処理回路を用いずに、第1のスイッチ素子をオンできる。したがって、前記構成の回路切替装置は、第1のスイッチ素子を切り替えるための信号処理回路(マイコンなど)、その信号処理回路用の電源(定電圧回路)を必要としない。これにより、補助電源を用いずに回路を切り替えることができる回路切替装置を実現できる。 In this configuration, when a signal received by the first coil antenna has a specific frequency, the signal is detected and a control voltage is output to the first control terminal of the first switch element. Then, normally, the first switch element that cuts off the power supply from the first coil antenna to the power reception circuit is turned on, and the power supply to the power reception circuit (load circuit) becomes possible. That is, the first switch element can be turned on without using a signal processing circuit such as a microcomputer. Therefore, the circuit switching device having the above configuration does not require a signal processing circuit (such as a microcomputer) for switching the first switch element and a power source (constant voltage circuit) for the signal processing circuit. Thereby, a circuit switching device capable of switching circuits without using an auxiliary power source can be realized.
 本発明に係る回路切替装置は、第1のコイルアンテナと、前記第1のコイルアンテナに接続される非接触電力供給システム用受電回路と、前記第1のコイルアンテナと磁界結合する第2のコイルアンテナと、前記第2のコイルアンテナに接続される近距離無線通信システム用通信回路と、第1の制御端子を有し、前記第1のコイルアンテナから前記受電回路への電力供給を遮断する第1のスイッチ素子と、前記第1のコイルアンテナが受信する信号のうち、特定周波数の信号を検波して、前記第1の制御端子へ制御電圧を出力して前記第1のスイッチ素子を直接駆動する検波回路と、を備えていてもよい。 The circuit switching device according to the present invention includes a first coil antenna, a power receiving circuit for a non-contact power supply system connected to the first coil antenna, and a second coil magnetically coupled to the first coil antenna. An antenna, a communication circuit for a short-range wireless communication system connected to the second coil antenna, and a first control terminal, wherein a power supply from the first coil antenna to the power receiving circuit is cut off. Among the signals received by the first switch element and the first coil antenna, a signal having a specific frequency is detected, and a control voltage is output to the first control terminal to directly drive the first switch element. And a detection circuit.
 この構成では、回路切替装置を収める筐体のスペースなどの制約により、両方のコイルアンテナを近接して配置せざるを得ない場合にも、補助電源を用いずに回路を切り替えることができ、受電回路が通信回路へ与える影響を抑えることができる。 In this configuration, even if both coil antennas must be placed close to each other due to restrictions such as the space of the housing that houses the circuit switching device, the circuit can be switched without using an auxiliary power source. The influence of the circuit on the communication circuit can be suppressed.
 前記検波回路は複共振回路を有してもよい。 The detection circuit may have a double resonance circuit.
 複共振させた場合、2つの共振点が存在する。この2つの共振点の間の周波数帯域では感度は略一定である。このため、この周波数帯域を利用して、第1のコイルアンテナが受信する信号の周波数が変動する場合であっても、特定周波数近傍の周波数特性を平坦化できる。これにより、安定して信号を検出して、第1のスイッチ素子をオンできる。 When there are multiple resonances, there are two resonance points. Sensitivity is substantially constant in the frequency band between the two resonance points. For this reason, even if the frequency of the signal received by the first coil antenna fluctuates using this frequency band, the frequency characteristics near the specific frequency can be flattened. Thereby, a signal can be detected stably and the first switch element can be turned on.
 前記複共振回路は絶縁トランスを有してもよい。 The multi-resonance circuit may have an insulating transformer.
 この構成では、コモンモード信号(ノイズ)の影響を受けずに特定周波数の信号を検出できる。そして、第1のスイッチ素子をフローティング状態で制御できる(基準電位に直接接続することなくオン、オフできる)。 In this configuration, a signal with a specific frequency can be detected without being affected by the common mode signal (noise). The first switch element can be controlled in a floating state (can be turned on and off without being directly connected to the reference potential).
 前記通信回路は、第2の制御端子を有し、前記第1または第2のコイルアンテナから前記通信回路への電力供給を遮断または接続する第2のスイッチ素子を備えてもよい。 The communication circuit may have a second control terminal, and may include a second switch element that cuts off or connects power supply from the first or second coil antenna to the communication circuit.
 この構成では、回路切替装置が非接触電力供給システムの動作周波数を受電した場合に、通信回路への電力供給を遮断できる。これにより、通信回路の通信用ICを非接触電力供給に起因する過電圧から保護することができる。 This configuration can cut off the power supply to the communication circuit when the circuit switching device receives the operating frequency of the non-contact power supply system. As a result, the communication IC of the communication circuit can be protected from overvoltage caused by non-contact power supply.
 前記第2のスイッチ素子は、前記第2の制御端子が前記検波回路の出力側に接続されてもよい。 The second switch element may have the second control terminal connected to the output side of the detection circuit.
 この構成では、第1、第2のスイッチ素子を1つの検波回路で制御可能であり、各々に信号処理回路を設けるより、小型な回路切替装置を実現できる。 In this configuration, the first and second switch elements can be controlled by one detection circuit, and a small circuit switching device can be realized by providing a signal processing circuit for each.
 本発明に係るスイッチ駆動回路は、電力供給ラインから交流電圧を入力する入力部と、前記入力部から入力される電圧のうち、特定周波数の電圧を通過させるフィルタ回路と、前記フィルタ回路を通過する電圧を整流し、電力供給ラインを電気的に遮断又は接続するスイッチ素子の制御端子へ出力する整流回路と、を備えることを特徴とする。 The switch drive circuit according to the present invention includes an input unit that inputs an AC voltage from a power supply line, a filter circuit that passes a voltage of a specific frequency among the voltages input from the input unit, and the filter circuit. And a rectifier circuit that rectifies the voltage and outputs the rectified voltage to a control terminal of a switch element that electrically cuts off or connects the power supply line.
 この構成では、入力される交流電圧が特定周波数である場合、その電圧はフィルタ回路を通過し、整流回路で整流されてスイッチ素子の制御端子へ出力される。そして、通常は電力供給ラインを遮断するスイッチ素子がオンされる。すなわち、別途、信号処理回路(マイコン等)を用いずに、スイッチ素子をオンできる。そして、電力供給ラインの電圧を利用するため、補助電源を用いずにスイッチ素子を切り替えることができるスイッチ駆動回路を実現できる。 In this configuration, when the input AC voltage has a specific frequency, the voltage passes through the filter circuit, is rectified by the rectifier circuit, and is output to the control terminal of the switch element. Normally, the switch element that cuts off the power supply line is turned on. That is, the switch element can be turned on without using a separate signal processing circuit (such as a microcomputer). And since the voltage of an electric power supply line is utilized, the switch drive circuit which can switch a switch element without using an auxiliary power supply is realizable.
 本発明によれば、スイッチ素子を切り替えるためのマイコン等の信号処理回路、及び信号処理回路用の補助電源を用いずに回路を切り替えることができる。 According to the present invention, the circuit can be switched without using a signal processing circuit such as a microcomputer for switching the switching element and an auxiliary power source for the signal processing circuit.
図1は、実施形態1に係る電力供給システムのブロック図である。FIG. 1 is a block diagram of a power supply system according to the first embodiment. 図2は実施形態1に係る実験結果を示す図である。FIG. 2 is a diagram illustrating experimental results according to the first embodiment. 図3は、実施形態1に係る受電装置の回路図である。FIG. 3 is a circuit diagram of the power receiving device according to the first embodiment. 図4は、スイッチ回路の配置を変更した受電装置のブロック図である。FIG. 4 is a block diagram of a power receiving device in which the arrangement of the switch circuit is changed. 図5は、スイッチ駆動回路の出力電圧の周波数特性例を示す図である。FIG. 5 is a diagram illustrating an example of frequency characteristics of the output voltage of the switch drive circuit. 図6は、1チップ化したスイッチ駆動回路を示す図である。FIG. 6 is a diagram showing a switch drive circuit made into one chip. 図7は、スイッチ駆動回路の接続点を変更した受電装置の回路図である。FIG. 7 is a circuit diagram of the power receiving device in which the connection point of the switch drive circuit is changed. 図8は、スイッチ駆動回路をシングルエンド構成とした受電装置の回路図である。FIG. 8 is a circuit diagram of a power receiving device having a single-ended switch drive circuit. 図9は、通信回路が個別のコイルアンテナを備えた受電装置のブロック図である。FIG. 9 is a block diagram of a power receiving device in which the communication circuit includes individual coil antennas. 図10は、実施形態2に係る受電装置の回路図である。FIG. 10 is a circuit diagram of the power receiving device according to the second embodiment. 図11は、実施形態3に係る受電装置の回路図である。FIG. 11 is a circuit diagram of a power receiving device according to the third embodiment. 図12は、実施形態4に係る受電装置のブロック図である。FIG. 12 is a block diagram of a power receiving device according to the fourth embodiment. 図13は、実施形態4に係る通信回路が個別のコイルアンテナを備えた受電装置のブロック図である。FIG. 13 is a block diagram of a power receiving device in which the communication circuit according to the fourth embodiment includes individual coil antennas. 図14は、スイッチ回路が電力供給ラインの間を短絡するよう配置された受電装置のブロック図である。FIG. 14 is a block diagram of a power receiving device in which the switch circuit is arranged to short-circuit between the power supply lines.
 図1は、実施形態1に係る電力供給システム100のブロック図である。 FIG. 1 is a block diagram of a power supply system 100 according to the first embodiment.
 電力供給システム100は、受電装置10と、給電装置20又は通信装置とを備えている。電力供給システム100は、非接触電力供給システム又は近距離無線通信システムとして動作する。非接触電力供給システムとして動作する場合、受電装置10は給電装置20から電力が給電される。近距離無線通信システムとして動作する場合、受電装置10は、通信装置30との間で通信を行う。 The power supply system 100 includes a power receiving device 10 and a power feeding device 20 or a communication device. The power supply system 100 operates as a contactless power supply system or a short-range wireless communication system. When operating as a non-contact power supply system, the power receiving device 10 is supplied with power from the power supply device 20. When operating as a short-range wireless communication system, the power receiving device 10 communicates with the communication device 30.
 非接触電力供給システムは、例えば、近傍界において磁界結合を利用した非接触電力供給システムであり、電磁誘導型電力供給システム、磁界共鳴型電力供給システムを含む。非接触電力供給システムでは、例えば、HF(High Frequency)帯、特に6.78MHz付近の周波数の電力が、給電装置20から受電装置10へ伝送される。 The non-contact power supply system is, for example, a non-contact power supply system using magnetic field coupling in the near field, and includes an electromagnetic induction type power supply system and a magnetic field resonance type power supply system. In the non-contact power supply system, for example, HF (High Frequency) band, in particular, power having a frequency in the vicinity of 6.78 MHz is transmitted from the power feeding device 20 to the power receiving device 10.
 近距離無線通信システムは、例えば、NFC(Near FieldCommunication)を用いたシステムである。NFCは、近傍界において磁界結合を利用した近距離無線通信であり、Bluetooth(登録商標)等の電磁波を利用した近距離無線通信を含まない。近距離無線通信システムでは、例えば、HF帯、特に13.56MHz付近の周波数の信号が、通信装置30から受電装置10へ(又はその逆へ)送信される。 The near field communication system is, for example, a system using NFC (Near Field Communication). NFC is short-range wireless communication using magnetic field coupling in the near field, and does not include short-range wireless communication using electromagnetic waves such as Bluetooth (registered trademark). In the short-range wireless communication system, for example, a signal having a frequency in the HF band, particularly around 13.56 MHz is transmitted from the communication device 30 to the power receiving device 10 (or vice versa).
 給電装置20は、コイルアンテナ21及び給電回路22を有している。コイルアンテナ21は、給電回路22により交流電圧が印加される。コイルアンテナ21は、不図示のキャパシタと共振回路を構成し、受電装置10が有する後述のコイルアンテナ(第1のコイルアンテナ)11と磁界結合する。コイルアンテナ11,21が磁界結合することで、給電装置20から受電装置10へ非接触電力供給が行われる。 The power feeding device 20 includes a coil antenna 21 and a power feeding circuit 22. An AC voltage is applied to the coil antenna 21 by the power feeding circuit 22. The coil antenna 21 forms a resonance circuit with a capacitor (not shown), and is magnetically coupled to a coil antenna (first coil antenna) 11 described later included in the power receiving device 10. When the coil antennas 11 and 21 are magnetically coupled, non-contact power is supplied from the power feeding device 20 to the power receiving device 10.
 給電回路22はDC-ACインバータを含む。DC-ACインバータは高周波の交流電圧、又は交流電流を発生させる。そして、給電回路22は、コイルアンテナ21へ6.78MHzの交流電圧を印加する。 The power supply circuit 22 includes a DC-AC inverter. The DC-AC inverter generates a high-frequency AC voltage or AC current. The power feeding circuit 22 applies a 6.78 MHz AC voltage to the coil antenna 21.
 通信装置30は、コイルアンテナ31及び通信回路32を有している。そして、給電装置20と同様に、コイルアンテナ31,11が磁界結合することで、受電装置10の通信回路17と通信装置30とが無線通信する。通信回路32は送受信回路を含む。そして、通信回路32は、13.56MHzで動作する。 The communication device 30 includes a coil antenna 31 and a communication circuit 32. Then, similarly to the power feeding device 20, the coil antennas 31 and 11 are magnetically coupled, whereby the communication circuit 17 of the power receiving device 10 and the communication device 30 communicate wirelessly. The communication circuit 32 includes a transmission / reception circuit. The communication circuit 32 operates at 13.56 MHz.
 受電装置10は、コイルアンテナ11、整合回路12、整流回路13、スイッチ回路14、負荷回路15、スイッチ駆動回路16、及び通信回路17を備えている。受電装置10は、本発明に係る「回路切替装置」の一例である。スイッチ駆動回路16は、本発明に係る「検波回路」の一例である。 The power receiving device 10 includes a coil antenna 11, a matching circuit 12, a rectifier circuit 13, a switch circuit 14, a load circuit 15, a switch drive circuit 16, and a communication circuit 17. The power receiving device 10 is an example of the “circuit switching device” according to the present invention. The switch drive circuit 16 is an example of the “detection circuit” according to the present invention.
 負荷回路15は、例えば充電回路及び二次電池を含む。負荷回路15は、非接触電力供給システムの動作時に、給電装置20から供給される電力を二次電池に充電する。負荷回路15は、本発明に係る「非接触電力供給システム用受電回路」の一例である。通信回路17は、近距離無線通信システムに使用される。通信回路17は、本発明に係る「近距離無線通信システム用通信回路」の一例である。 The load circuit 15 includes, for example, a charging circuit and a secondary battery. The load circuit 15 charges the secondary battery with the power supplied from the power supply device 20 during the operation of the non-contact power supply system. The load circuit 15 is an example of the “power receiving circuit for a non-contact power supply system” according to the present invention. The communication circuit 17 is used for a short-range wireless communication system. The communication circuit 17 is an example embodiment that corresponds to the “communication circuit for near field communication system” according to the present invention.
 受電回路の整合回路12はコイルアンテナ11に接続される。整合回路12は、コイルアンテナ11と共振回路を構成する共振キャパシタ(不図示)を含む。給電装置20、及び通信装置30側では、コイルアンテナ21,31を含む共振回路が構成されている。整合回路12において、コイルアンテナ11及び通信回路17を含む共振回路の共振周波数は、非接触電力供給システムの周波数付近に設定されている。 The matching circuit 12 of the power receiving circuit is connected to the coil antenna 11. The matching circuit 12 includes a coil antenna 11 and a resonance capacitor (not shown) that forms a resonance circuit. A resonance circuit including coil antennas 21 and 31 is configured on the power feeding device 20 and the communication device 30 side. In the matching circuit 12, the resonance frequency of the resonance circuit including the coil antenna 11 and the communication circuit 17 is set near the frequency of the non-contact power supply system.
 整流回路13は、交流信号が流れる2本の電力供給ライン101A,102Aにより、整合回路12に接続されている。整流回路13は、給電装置20のコイルアンテナ21と磁界結合するコイルアンテナ11に誘起される電圧を整流する。 The rectifier circuit 13 is connected to the matching circuit 12 by two power supply lines 101A and 102A through which an AC signal flows. The rectifier circuit 13 rectifies the voltage induced in the coil antenna 11 that is magnetically coupled to the coil antenna 21 of the power feeding device 20.
 スイッチ回路14は整流回路13に接続されている。スイッチ回路14には平滑キャパシタCo及び負荷回路15が接続されている。スイッチ回路14がオンのとき、整流回路13と負荷回路15及び平滑キャパシタCoとを電気的に接続し、オフのとき、整流回路13と負荷回路15及び平滑キャパシタCoとを電気的に切断する。つまり、スイッチ回路14は、負荷回路15への電力供給と、その電力供給の遮断とを切り替える。なお、制御電圧を印加していないとき、スイッチ回路14は、オフであり、後述のスイッチ駆動回路16によりオンされる。 The switch circuit 14 is connected to the rectifier circuit 13. A smoothing capacitor Co and a load circuit 15 are connected to the switch circuit 14. When the switch circuit 14 is on, the rectifier circuit 13, the load circuit 15 and the smoothing capacitor Co are electrically connected. When the switch circuit 14 is off, the rectifier circuit 13, the load circuit 15 and the smoothing capacitor Co are electrically disconnected. That is, the switch circuit 14 switches between power supply to the load circuit 15 and interruption of the power supply. When the control voltage is not applied, the switch circuit 14 is off and is turned on by a switch drive circuit 16 described later.
 スイッチ駆動回路16は、電力供給ライン101A,102Aに接続される。電力供給ライン101A,102A間の電圧が特定周波数である場合、スイッチ駆動回路16は、制御電圧をスイッチ回路14へ出力し、スイッチ回路14をオンする。スイッチ駆動回路16は、スイッチ回路14を直接駆動する。本実施形態では、特定周波数は6.78MHzである。すなわち、スイッチ駆動回路16は、非接触電力供給システムの動作時に、スイッチ回路14をオンする。整合回路12からの出力電圧が特定周波数でない場合、スイッチ駆動回路16はスイッチ回路14をオンせずにオフ状態を維持する。出力電圧が特定周波数でない場合とは、例えば、周波数が13.56MHzである場合である。つまり、近距離無線通信システムの動作時、スイッチ駆動回路16はスイッチ回路14をオンしない。 The switch drive circuit 16 is connected to the power supply lines 101A and 102A. When the voltage between the power supply lines 101A and 102A has a specific frequency, the switch drive circuit 16 outputs a control voltage to the switch circuit 14 and turns on the switch circuit 14. The switch drive circuit 16 directly drives the switch circuit 14. In this embodiment, the specific frequency is 6.78 MHz. That is, the switch drive circuit 16 turns on the switch circuit 14 during the operation of the non-contact power supply system. When the output voltage from the matching circuit 12 is not a specific frequency, the switch drive circuit 16 maintains the off state without turning on the switch circuit 14. The case where the output voltage is not a specific frequency is, for example, a case where the frequency is 13.56 MHz. That is, the switch drive circuit 16 does not turn on the switch circuit 14 during the operation of the short-range wireless communication system.
 通信回路17は、電力供給ライン101A,102Aに接続される。通信回路17は、通信装置30のコイルアンテナ31と磁界結合するコイルアンテナ11に誘起される信号電圧が入力される。この場合、通信回路17は受信回路になる。前記のように、近距離無線通信システムの動作時には、スイッチ回路14はオフであり、受信した13.56MHzの信号(搬送波+変調成分)は、スイッチ回路14で遮断される。つまり、近距離無線通信システムの動作時には、通信用信号電圧による負荷回路15及び平滑キャパシタCoへの不要な給電が抑制され、通信回路17に効率よく信号伝送される。したがって、通信回路17は、負荷回路15及び平滑キャパシタCoへの不要な電力供給による影響を受けることなく動作する。 The communication circuit 17 is connected to the power supply lines 101A and 102A. The communication circuit 17 receives a signal voltage induced in the coil antenna 11 that is magnetically coupled to the coil antenna 31 of the communication device 30. In this case, the communication circuit 17 becomes a receiving circuit. As described above, during the operation of the short-range wireless communication system, the switch circuit 14 is off, and the received 13.56 MHz signal (carrier wave + modulation component) is blocked by the switch circuit 14. That is, during operation of the short-range wireless communication system, unnecessary power supply to the load circuit 15 and the smoothing capacitor Co due to the communication signal voltage is suppressed, and the signal is efficiently transmitted to the communication circuit 17. Therefore, the communication circuit 17 operates without being affected by unnecessary power supply to the load circuit 15 and the smoothing capacitor Co.
 なお、受電装置10から通信装置30へ通信信号が送信される場合には、通信回路17は送信回路になり、コイルアンテナ11へ通信用信号電圧を印加する。この場合、スイッチ回路14はオフであり、負荷回路15及び平滑キャパシタCoへの電力供給は遮断される。したがって、通信回路17は、負荷回路15への電力供給の影響を受けることなく動作する。 When a communication signal is transmitted from the power receiving device 10 to the communication device 30, the communication circuit 17 becomes a transmission circuit and applies a communication signal voltage to the coil antenna 11. In this case, the switch circuit 14 is off, and power supply to the load circuit 15 and the smoothing capacitor Co is cut off. Therefore, the communication circuit 17 operates without being affected by the power supply to the load circuit 15.
 図2に本実施形態におけるNFCシステムを動作させて非接触ICカードの検出距離を測定した結果を示す。ここで、通信回路17をReader/Writerモードにして、非接触ICカードをコイルアンテナ11に近づけていき、非接触ICカードを認識した距離を測定した。また、代表的なカード4種類について検出距離を確認した。カード1はTopazを、カード2はMifare ULを、カード3はOctpusを、カード4はMifare desfireをそれぞれ採用したものである。Mifareは登録商標である。図2において、本願構成は、通信装置30が非接触ICカードで実現され、近距離無線通信システムがNFCシステムで実現された受電装置10である。比較例1の構成は、本願構成から後述の周波数ディテクタ161を除いた構成である。比較例2の構成は、非接触ICカードで実現された通信装置30と通信回路17とで構成されるNFCシステムである。図2からわかるように、通信回路17に電力伝送の負荷回路15を接続することによって、検出距離は大幅に低下するが(比較例1及び比較例2の構成における結果を参照)、本実施形態を適用することで、負荷回路15と平滑キャパシタCoの影響を軽減することができ、通信距離の低下を抑制し、より確実に通信できるようになる(本願構成及び比較例1の構成における結果を参照)。 FIG. 2 shows the result of measuring the detection distance of the non-contact IC card by operating the NFC system in this embodiment. Here, the communication circuit 17 was set to Reader / Writer mode, the non-contact IC card was brought close to the coil antenna 11, and the distance at which the non-contact IC card was recognized was measured. Also, the detection distance was confirmed for four types of representative cards. Card 1 uses Topaz, Card 2 uses Mifare UL, Card 3 uses Octpus, and Card 4 uses Mifare desfire. Mifare is a registered trademark. In FIG. 2, the configuration of the present application is a power receiving device 10 in which the communication device 30 is realized by a non-contact IC card and the short-range wireless communication system is realized by an NFC system. The configuration of Comparative Example 1 is a configuration in which a frequency detector 161 described later is excluded from the configuration of the present application. The configuration of Comparative Example 2 is an NFC system including a communication device 30 and a communication circuit 17 realized by a non-contact IC card. As can be seen from FIG. 2, the detection distance is greatly reduced by connecting the load circuit 15 for power transmission to the communication circuit 17 (see the results in the configurations of Comparative Example 1 and Comparative Example 2). , The influence of the load circuit 15 and the smoothing capacitor Co can be reduced, the communication distance can be suppressed, and communication can be performed more reliably (results in the configuration of the present application and the configuration of Comparative Example 1). reference).
 図3は、実施形態1に係る受電装置10の回路図である。 FIG. 3 is a circuit diagram of the power receiving device 10 according to the first embodiment.
 受電回路の整合回路12はキャパシタC21,C22を有している。キャパシタC21,C22とコイルアンテナ11とは共振回路を構成している。 The matching circuit 12 of the power receiving circuit has capacitors C21 and C22. The capacitors C21 and C22 and the coil antenna 11 constitute a resonance circuit.
 通信回路17は、キャパシタC31,C32,C33,C34,C35,C36,インダクタL31,L32及び通信用IC171から構成される。キャパシタC31~C34は通信用IC171とコイルアンテナ11間の通信回路用整合回路を構成し、電力供給ライン101A,102Aに接続される。キャパシタC35及びインダクタL31、並びに、キャパシタC36及びインダクタL32は、ローパスフィルタを構成し、通信回路用整合回路と通信用IC171との間に設けられる。ローパスフィルタは、通信回路17が送信回路として動作する際に使用される周波数の高調波成分を除去する。なお、このローパスフィルタは、通信用IC171とコイルアンテナ11間の通信回路用整合回路の一部として利用することができる。 The communication circuit 17 includes capacitors C31, C32, C33, C34, C35, C36, inductors L31, L32, and a communication IC 171. The capacitors C31 to C34 constitute a communication circuit matching circuit between the communication IC 171 and the coil antenna 11, and are connected to the power supply lines 101A and 102A. The capacitor C35 and the inductor L31, and the capacitor C36 and the inductor L32 constitute a low-pass filter, and are provided between the communication circuit matching circuit and the communication IC 171. The low-pass filter removes harmonic components of a frequency used when the communication circuit 17 operates as a transmission circuit. The low-pass filter can be used as a part of a communication circuit matching circuit between the communication IC 171 and the coil antenna 11.
 整流回路13はダイオードブリッジ回路である。 The rectifier circuit 13 is a diode bridge circuit.
 スイッチ回路14は、スイッチ素子(第1のスイッチ素子)Q1及びゲート抵抗R1を備える。スイッチ素子Q1はn型MOS-FETである。スイッチ素子Q1は、整流回路13と負荷回路15とを接続する電源用ライン(ホットライン)101Bに直列に接続されている。スイッチ素子Q1は、非接触電力供給システムの動作周波数の高周波電力を受電していない場合、スイッチ駆動回路16からゲート-ソース間に電圧が印加されないため、オフである。そして、整流回路13と負荷回路15、及び、平滑キャパシタCoとは電気的に遮断される。また、スイッチ駆動回路16によって、ゲート-ソース間に電圧を印加するとオンになる。そして、整流回路13と負荷回路15及び平滑キャパシタCoとは電気的に接続される。 The switch circuit 14 includes a switch element (first switch element) Q1 and a gate resistor R1. The switch element Q1 is an n-type MOS-FET. The switch element Q1 is connected in series to a power supply line (hot line) 101B that connects the rectifier circuit 13 and the load circuit 15. When the switch element Q1 is not receiving high-frequency power at the operating frequency of the non-contact power supply system, the switch element Q1 is off because no voltage is applied between the switch drive circuit 16 and the gate-source. The rectifier circuit 13, the load circuit 15, and the smoothing capacitor Co are electrically disconnected. Further, when a voltage is applied between the gate and the source by the switch drive circuit 16, the switch is turned on. The rectifier circuit 13, the load circuit 15, and the smoothing capacitor Co are electrically connected.
 なお、スイッチ回路14は、平滑キャパシタCoと負荷回路15との間に接続されていてもよく、その場合、負荷回路15への信号流入を軽減できる。また、スイッチ回路14のスイッチ素子Q1及びゲート抵抗R1は、整流回路13と負荷回路15とを接続する基準電位用ライン(コールドライン)102Bに直列に接続されてもよい。さらに、スイッチ回路14に代えて、双方向スイッチ回路で構成されるスイッチ回路14Cが、電力供給ライン101A,102Aにスイッチ駆動回路16が接続される接続部CPと整流回路13との間に直列に接続されてもよい。図4にスイッチ回路14Cを電力供給ライン101A,102Aに接続した受電装置10Cを示す。この構成において、接続部CPと整流回路13との間にEMI(ElectroMagnetic Interference)フィルタ18が接続され、接続部CPとEMIフィルタ18との間にスイッチ回路14Cが接続される。スイッチ回路14Cは、交流電流を遮断する必要があるため、上述のように双方向スイッチ回路で構成される。双方向スイッチ回路は、FETなどのスイッチ素子を2つ用いて互いに逆方向になるように配置した回路である。このとき、スイッチ回路14Cに寄生容量の小さい素子を用いることで、整流回路13の容量成分の影響を低減することができる。よって、寄生容量が通信回路17へ与える影響をさらに低減することができる。 Note that the switch circuit 14 may be connected between the smoothing capacitor Co and the load circuit 15, and in that case, signal inflow to the load circuit 15 can be reduced. The switch element Q1 and the gate resistor R1 of the switch circuit 14 may be connected in series to a reference potential line (cold line) 102B that connects the rectifier circuit 13 and the load circuit 15. Further, instead of the switch circuit 14, a switch circuit 14 </ b> C composed of a bidirectional switch circuit is connected in series between the rectifier circuit 13 and the connection CP where the switch drive circuit 16 is connected to the power supply lines 101 </ b> A and 102 </ b> A. It may be connected. FIG. 4 shows a power receiving device 10C in which the switch circuit 14C is connected to the power supply lines 101A and 102A. In this configuration, an EMI (ElectroMagnetic Interference) filter 18 is connected between the connection portion CP and the rectifier circuit 13, and a switch circuit 14 </ b> C is connected between the connection portion CP and the EMI filter 18. Since the switch circuit 14C needs to cut off the alternating current, the switch circuit 14C is configured by a bidirectional switch circuit as described above. The bidirectional switch circuit is a circuit in which two switch elements such as FETs are used so as to be opposite to each other. At this time, the influence of the capacitance component of the rectifier circuit 13 can be reduced by using an element having a small parasitic capacitance for the switch circuit 14C. Therefore, the influence of the parasitic capacitance on the communication circuit 17 can be further reduced.
 図3に示すように、スイッチ駆動回路16は、入力部In1,In2と出力部Out1,Out2とを有している。入力部In1は、キャパシタC41を介して、電力供給ライン101Aに接続されている。入力部In2は、キャパシタC42を介して、電力供給ライン102Aに接続されている。キャパシタC41,C42のキャパシタンスは同じである。キャパシタC41,C42は、後述のC11とで分圧回路を構成し、電力供給ライン101A,102A間の電圧を分圧する。このため、スイッチ駆動回路16には、電力供給ライン101A,102A間の電圧がキャパシタC41,C42,C11により分圧されて入力される。出力部Out1,Out2は、スイッチ回路14のスイッチ素子Q1のゲート、ソース(制御端子、第1の制御端子)に接続される。 As shown in FIG. 3, the switch drive circuit 16 has input parts In1 and In2 and output parts Out1 and Out2. The input unit In1 is connected to the power supply line 101A via the capacitor C41. The input unit In2 is connected to the power supply line 102A via the capacitor C42. Capacitors C41 and C42 have the same capacitance. Capacitors C41 and C42 form a voltage dividing circuit with C11 described later, and divide the voltage between the power supply lines 101A and 102A. Therefore, the voltage between the power supply lines 101A and 102A is divided and input by the capacitors C41, C42 and C11 to the switch drive circuit 16. The output units Out1 and Out2 are connected to the gate and source (control terminal, first control terminal) of the switch element Q1 of the switch circuit 14.
 スイッチ駆動回路16は、周波数ディテクタ161と、整流平滑回路162とを有している。周波数ディテクタ161は、本発明に係る「フィルタ回路」の一例である。整流平滑回路162は、本発明に係る「整流回路」の一例である。 The switch drive circuit 16 includes a frequency detector 161 and a rectifying / smoothing circuit 162. The frequency detector 161 is an example of the “filter circuit” according to the present invention. The rectifying / smoothing circuit 162 is an example embodiment that corresponds to the “rectifying circuit” according to the present invention.
 整流平滑回路162は周波数ディテクタ161に接続されている。整流平滑回路162は、ダイオードD1及びキャパシタC13を有し、周波数ディテクタ161から出力される電圧を整流・平滑する。整流平滑回路162により整流平滑された電圧は、出力部Out1,Out2から出力され、スイッチ素子Q1のゲート、ソース間に印加される。なお、整流平滑回路162はキャパシタC13を有しなくてもよい。また、キャパシタC13に変えて、スイッチ素子Q1の入力容量を利用してもよい。 The rectifying / smoothing circuit 162 is connected to the frequency detector 161. The rectifying / smoothing circuit 162 includes a diode D1 and a capacitor C13, and rectifies and smoothes the voltage output from the frequency detector 161. The voltage rectified and smoothed by the rectifying and smoothing circuit 162 is output from the output units Out1 and Out2, and is applied between the gate and source of the switch element Q1. Note that the rectifying / smoothing circuit 162 may not include the capacitor C13. Further, instead of the capacitor C13, the input capacitance of the switch element Q1 may be used.
 周波数ディテクタ161は、キャパシタC11,C12と絶縁トランスTとを有する。キャパシタC11は、入力部In1,In2の間に接続される。絶縁トランスTの1次コイルL11は、キャパシタC11に並列接続される。絶縁トランスTの2次コイルL12には、キャパシタC12が並列接続される。並列接続することで、コイル両端の電圧を駆動電圧として取り出せる。そして、キャパシタC11と絶縁トランスTの1次コイルL11とは、共振回路を構成する。また、キャパシタC12と絶縁トランスTの1次コイルL11とも、共振回路を構成する。 The frequency detector 161 includes capacitors C11 and C12 and an insulating transformer T. The capacitor C11 is connected between the input parts In1 and In2. The primary coil L11 of the insulation transformer T is connected in parallel to the capacitor C11. A capacitor C12 is connected in parallel to the secondary coil L12 of the insulation transformer T. By connecting in parallel, the voltage across the coil can be taken out as the drive voltage. The capacitor C11 and the primary coil L11 of the insulating transformer T constitute a resonance circuit. The capacitor C12 and the primary coil L11 of the insulating transformer T also form a resonance circuit.
 なお、本実施形態において、共振回路は並列共振回路を構成しているが、直列共振回路でも良く、それらの組み合わせでも良い。また、並列共振回路と直列共振回路では、並列共振回路のほうが高い電圧を得やすいため、並列共振回路が好ましい。 In this embodiment, the resonance circuit constitutes a parallel resonance circuit, but may be a series resonance circuit or a combination thereof. Further, in the parallel resonance circuit and the series resonance circuit, the parallel resonance circuit is preferable because the parallel resonance circuit can easily obtain a higher voltage.
 この2つの並列共振回路は、電力供給ライン101A,102Aを流れる信号の特定周波数と一致するように定数設定されていて、相互結合した複共振回路を構成する。図5に本実施形態におけるスイッチ駆動回路16の出力電圧周波数特性を示す。本実施形態では、特定周波数は6.78MHzである。スイッチ駆動回路16の出力電圧周波数特性は、特定周波数である6.78MHzにピークを有する。 These two parallel resonant circuits are set to have a constant value so as to coincide with the specific frequency of the signal flowing through the power supply lines 101A and 102A, and constitute a mutually coupled multiple resonant circuit. FIG. 5 shows the output voltage frequency characteristics of the switch drive circuit 16 in this embodiment. In this embodiment, the specific frequency is 6.78 MHz. The output voltage frequency characteristic of the switch drive circuit 16 has a peak at a specific frequency of 6.78 MHz.
 電力供給ライン101A,102A間の電圧が6.78MHzである場合、スイッチ駆動回路16への入力電圧は周波数ディテクタ161を通過し、整流平滑回路162により整流平滑される。そして、スイッチ素子Q1のゲート、ソース間に印加され、スイッチ素子Q1はオンする。つまり、駆動周波数が6.78MHzである非接触電力供給システムで動作するときには、スイッチ駆動回路16はスイッチ素子Q1をオンして、負荷回路15へ電力を供給する。 When the voltage between the power supply lines 101 </ b> A and 102 </ b> A is 6.78 MHz, the input voltage to the switch drive circuit 16 passes through the frequency detector 161 and is rectified and smoothed by the rectifying and smoothing circuit 162. The voltage is applied between the gate and source of the switch element Q1, and the switch element Q1 is turned on. That is, when operating in a non-contact power supply system with a drive frequency of 6.78 MHz, the switch drive circuit 16 turns on the switch element Q1 and supplies power to the load circuit 15.
 一方、電力供給ライン101A,102A間の電圧が6.78MHzと異なる場合、例えば、13.56MHzである場合、スイッチ駆動回路16への入力電圧は周波数ディテクタ161で遮断される。このため、周波数ディテクタ161からは電圧が出力されず、スイッチ素子Q1はオンしない。つまり、駆動周波数が13.56MHzである近距離無線通信システムで動作するときには、スイッチ駆動回路16はスイッチ素子Q1をオンさせず、通信用信号電圧による負荷回路15への不要な電力供給は遮断される。 On the other hand, when the voltage between the power supply lines 101A and 102A is different from 6.78 MHz, for example, 13.56 MHz, the input voltage to the switch drive circuit 16 is blocked by the frequency detector 161. Therefore, no voltage is output from the frequency detector 161, and the switch element Q1 is not turned on. That is, when operating in a short-range wireless communication system with a drive frequency of 13.56 MHz, the switch drive circuit 16 does not turn on the switch element Q1, and unnecessary power supply to the load circuit 15 by the communication signal voltage is cut off. The
 このように、受電装置10は、通信装置30と磁界結合するときは、通信用信号電圧による負荷回路15への不要な電力供給を遮断し、給電装置20と磁界結合するときにのみ、負荷回路15への電力供給を行うことができる。これにより、受電装置10は、共通のコイルアンテナ11を用いて、非接触電力供給、又は、近距離無線通信を行える。また、共通アンテナを利用できるので、受電デバイスへのアンテナの配置自由度を高められるとともに、アンテナと回路との接続部の数を少なくすることができる。 As described above, when the power receiving device 10 is magnetically coupled to the communication device 30, the load circuit is cut only when unnecessary power supply to the load circuit 15 by the communication signal voltage is cut off and magnetically coupled to the power feeding device 20. 15 can be supplied with power. Thereby, the power receiving apparatus 10 can perform non-contact power supply or short-range wireless communication using the common coil antenna 11. In addition, since the common antenna can be used, the degree of freedom in arranging the antenna to the power receiving device can be increased and the number of connection portions between the antenna and the circuit can be reduced.
 なお、受電装置10と給電装置20とが磁界結合する場合、通信回路17にも電力が供給される。しかしながら、非接触電力供給システムで動作する場合には、通信回路17のインピーダンスは受電回路のインピーダンスに対して高いため、通信回路17に流入する電流は小さく、通信回路17での電力損失は少ない。つまり、通信回路17への電力供給が、負荷回路15への電力供給に与える影響は小さい。 Note that when the power receiving device 10 and the power feeding device 20 are magnetically coupled, power is also supplied to the communication circuit 17. However, when operating in a non-contact power supply system, since the impedance of the communication circuit 17 is higher than the impedance of the power receiving circuit, the current flowing into the communication circuit 17 is small and the power loss in the communication circuit 17 is small. That is, the influence of the power supply to the communication circuit 17 on the power supply to the load circuit 15 is small.
 スイッチ駆動回路16は、整流平滑した電力供給ライン101A,102A間の電圧を、スイッチ素子Q1のゲート、ソース間に印加して、スイッチ素子Q1をオンする。このため、スイッチ駆動回路16は、複雑な信号処理回路(複雑な処理を行うマイコン等)を必要とせず、簡単な回路構成で実現できる。また、スイッチ駆動回路16用の電力源も必要としないため、受電装置10の小型化は阻害されない。さらに、受電装置10の二次電池が放電してしまい、電子機器等に受電装置10とともに実装される信号処理回路が起動しない状態であっても6.78MHzの高周波電力を受電するとスイッチ駆動回路16が動作して給電・充電できる。 The switch drive circuit 16 applies a voltage between the rectified and smoothed power supply lines 101A and 102A between the gate and the source of the switch element Q1 to turn on the switch element Q1. Therefore, the switch driving circuit 16 does not require a complicated signal processing circuit (such as a microcomputer for performing complicated processing) and can be realized with a simple circuit configuration. In addition, since a power source for the switch drive circuit 16 is not required, downsizing of the power receiving device 10 is not hindered. Further, when the secondary battery of the power receiving device 10 is discharged and the signal processing circuit mounted with the power receiving device 10 on the electronic device or the like is not activated, the switch driving circuit 16 receives the high frequency power of 6.78 MHz. Operates and can be charged and charged.
 さらに、スイッチ駆動回路16は、電力供給ライン101A,102Aに対し並列に接続されている。このため、スイッチ駆動回路16を電力供給ライン101A,102Aの途中に設ける場合と比べて、損失を低減できる。 Furthermore, the switch drive circuit 16 is connected in parallel to the power supply lines 101A and 102A. For this reason, a loss can be reduced compared with the case where the switch drive circuit 16 is provided in the middle of the power supply lines 101A and 102A.
 また、スイッチ駆動回路16の周波数ディテクタ161は、特定周波数の交流電圧を検波する(通過させる)ために複共振を利用している。複共振させた場合、2つの共振点が存在する。この2つの共振点の間の周波数帯域では周波数ディテクタ161の感度は略一定にできる。このため、この周波数帯域を利用すれば、検出する交流電圧の周波数が変動する場合であっても、安定して交流電圧を検波して、スイッチ回路14をオンできる。 Further, the frequency detector 161 of the switch drive circuit 16 uses double resonance to detect (pass) an alternating voltage having a specific frequency. In the case of double resonance, there are two resonance points. In the frequency band between the two resonance points, the sensitivity of the frequency detector 161 can be made substantially constant. For this reason, if this frequency band is used, even if the frequency of the AC voltage to be detected varies, the AC voltage can be detected stably and the switch circuit 14 can be turned on.
 さらに、周波数ディテクタ161は絶縁トランスTで構成しているため、コモンモード信号(ノイズ)の影響を軽減できる。さらに、スイッチ素子Q1をフローティング状態で制御できる。つまり、スイッチ素子Q1をグランド電位に直接接続することなく制御できる。なお、周波数ディテクタ161は、特定周波数の交流電圧が通過するよう定数設定したLCフィルタであってもよい。あるいは、ローパスフィルタ、ハイパスフィルタ、帯域阻止フィルタでもよい。 Furthermore, since the frequency detector 161 is composed of the insulation transformer T, the influence of the common mode signal (noise) can be reduced. Furthermore, the switch element Q1 can be controlled in a floating state. That is, the switch element Q1 can be controlled without being directly connected to the ground potential. Note that the frequency detector 161 may be an LC filter that is set to a constant so that an AC voltage of a specific frequency passes. Alternatively, a low-pass filter, a high-pass filter, or a band rejection filter may be used.
 スイッチ駆動回路16は、回路基板に、各素子を実装して構成してもよいし、1チップ化してもよい。 The switch drive circuit 16 may be configured by mounting each element on a circuit board, or may be formed as a single chip.
 図6は、1チップ化したスイッチ駆動回路16を示す図である。 FIG. 6 is a diagram showing the switch drive circuit 16 made into one chip.
 スイッチ駆動回路16は、複数のフェライト等の絶縁体層が積層され、焼結された積層体160を備える。積層体160内には、絶縁体層に印刷された導体パターンによりコイル160A,160Bが形成されている。コイル160A,160Bは、例えば巻回軸を同じにして、磁界結合するよう形成されている。コイル160Aは、図3に示す、絶縁トランスTの1次コイルL11に相当し、コイル160Bは、絶縁トランスTの2次コイルL12に相当する。積層体160の一方主面には、キャパシタC11,C12、ダイオードD1等、スイッチ駆動回路16を構成する各素子が実装されている。そして、各素子は、図示しないビア導体、導体パターンにより、配線されている。 The switch drive circuit 16 includes a laminate 160 in which a plurality of insulator layers such as ferrite are laminated and sintered. In the laminate 160, coils 160A and 160B are formed by a conductor pattern printed on an insulator layer. The coils 160A and 160B are formed to be magnetically coupled, for example, with the same winding axis. The coil 160A corresponds to the primary coil L11 of the insulation transformer T shown in FIG. 3, and the coil 160B corresponds to the secondary coil L12 of the insulation transformer T. On one main surface of the multilayer body 160, elements constituting the switch drive circuit 16, such as capacitors C11 and C12 and a diode D1, are mounted. Each element is wired by a via conductor and a conductor pattern (not shown).
 このように、スイッチ駆動回路16を1チップ化することで、スイッチ駆動回路16を実装する基板上の占有面積を削減できる。このため、設計時のレイアウトの自由度が向上する。また、磁性体の非線形性を利用して、出力電圧に非線形性を与えることができる。 Thus, by occupying the switch drive circuit 16 on one chip, the occupied area on the substrate on which the switch drive circuit 16 is mounted can be reduced. For this reason, the freedom degree of the layout at the time of design improves. Further, the nonlinearity of the magnetic material can be used to give the output voltage nonlinearity.
 つまり、入力レベルが低い場合には、入出力電圧の比率は線形に応答し、入力レベルが高い場合には、入出力電圧の比率が低下するように設定する。これにより、出力電圧の過電圧を防止でき、入力電圧の範囲を拡大することができる。 That is, when the input level is low, the input / output voltage ratio responds linearly, and when the input level is high, the input / output voltage ratio is set to decrease. Thereby, overvoltage of the output voltage can be prevented, and the range of the input voltage can be expanded.
 スイッチ駆動回路16の接続点は、整合回路12と整流回路13の間に設けなくとも良い。図7に整合回路12Dを容量分圧するように、接続点を設定した受電装置10Dを示す。整合回路12DはキャパシタC21~C24を含む。スイッチ駆動回路16の接続点は、キャパシタC21とキャパシタC23との間、及び、キャパシタC22とキャパシタC24との間に設けられる。この構成では、キャパシタC41,C42の容量を大きくすることなく、スイッチ駆動回路16へ入力される電圧を高くすることができる。 The connection point of the switch drive circuit 16 may not be provided between the matching circuit 12 and the rectifier circuit 13. FIG. 7 shows a power receiving device 10D in which connection points are set so that the matching circuit 12D is divided in capacity. Matching circuit 12D includes capacitors C21 to C24. Connection points of the switch drive circuit 16 are provided between the capacitor C21 and the capacitor C23 and between the capacitor C22 and the capacitor C24. In this configuration, the voltage input to the switch drive circuit 16 can be increased without increasing the capacitances of the capacitors C41 and C42.
 また、スイッチ駆動回路の回路構成はシングルエンド構成であっても良い。図8にシングルエンド構成のスイッチ駆動回路16Eを備える受電装置10Eを示す。スイッチ駆動回路16Eは、1次コイルL11と2次コイルL12とが接続されたトランスTEを含む周波数ディテクタ161Eを有する。シングルエンド構成では、絶縁トランスを用いる必要がなく、回路の小型化、簡略化することができる。 In addition, the circuit configuration of the switch drive circuit may be a single-ended configuration. FIG. 8 shows a power receiving device 10E including a switch driving circuit 16E having a single end configuration. The switch drive circuit 16E has a frequency detector 161E including a transformer TE to which a primary coil L11 and a secondary coil L12 are connected. In the single-ended configuration, it is not necessary to use an isolation transformer, and the circuit can be reduced in size and simplified.
 非接触電力供給システムと近距離無線通信システムは共通のコイルアンテナを用いているが、個別のコイルアンテナを備えていてもよい。図9に個別のコイルアンテナ11,11Fを備えた受電装置10Fを示す。通信回路17の通信回路用整合回路172にはコイルアンテナ(第2のコイルアンテナ)11Fが接続される。なお、通信回路用整合回路172はキャパシタC31~C34(図3参照)で構成されている。ローパスフィルタ173はキャパシタC35,36及びインダクタL31,L32(図3参照)で構成されている。 The contactless power supply system and the short-range wireless communication system use a common coil antenna, but may include individual coil antennas. FIG. 9 shows a power receiving device 10F provided with individual coil antennas 11 and 11F. A coil antenna (second coil antenna) 11 </ b> F is connected to the communication circuit matching circuit 172 of the communication circuit 17. The communication circuit matching circuit 172 includes capacitors C31 to C34 (see FIG. 3). The low-pass filter 173 includes capacitors C35 and 36 and inductors L31 and L32 (see FIG. 3).
 受電装置10Fを収める筐体のスペースなどの制約により、両方のコイルアンテナ11,11Fを近接して配置せざるを得ない場合、コイルアンテナ11,11F間に磁界結合が生じる。両方のコイルアンテナ11,11Fが相互結合することにより、共通のコイルアンテナを備えていた場合と同様に電力伝送用の回路(負荷回路15、平滑キャパシタCo)が通信回路17の通信特性に影響を与える場合がある。そのため、電力伝送用の回路にスイッチ駆動回路16とスイッチ回路14を追加することで、負荷回路15及び平滑キャパシタCoへの不要な電力供給を遮断し、給電装置20(図1参照)と磁界結合するときにのみ、負荷回路15への電力供給を行い、負荷回路15と平滑キャパシタCoの影響を抑えることができる。 When both coil antennas 11 and 11F have to be disposed close to each other due to restrictions such as a space of a housing that houses the power receiving device 10F, magnetic field coupling occurs between the coil antennas 11 and 11F. Since both coil antennas 11 and 11F are coupled to each other, the power transmission circuit (load circuit 15 and smoothing capacitor Co) affects the communication characteristics of the communication circuit 17 in the same manner as when the common coil antenna is provided. May give. Therefore, by adding the switch drive circuit 16 and the switch circuit 14 to the power transmission circuit, unnecessary power supply to the load circuit 15 and the smoothing capacitor Co is cut off, and the power supply device 20 (see FIG. 1) is magnetically coupled. Only when the power is supplied to the load circuit 15, the influence of the load circuit 15 and the smoothing capacitor Co can be suppressed.
(実施形態2)
 実施形態2に係る受電装置は、負荷回路への電力供給と、その遮断とを切り替えるスイッチ回路の構成が、実施形態1と相違している。
(Embodiment 2)
The power receiving device according to the second embodiment is different from the first embodiment in the configuration of a switch circuit that switches between supplying power to the load circuit and shutting off the power.
 図10は、実施形態2に係る受電装置10Aの回路図である。 FIG. 10 is a circuit diagram of the power receiving device 10A according to the second embodiment.
 整合回路12と整流回路13との間には、EMIフィルタ18が設けられている。 An EMI filter 18 is provided between the matching circuit 12 and the rectifier circuit 13.
 スイッチ回路14Aは、スイッチ素子Q2,Q3を有している。スイッチ素子Q2はp型MOS-FETである。スイッチ素子Q2は、電源用ライン101B上に設けられている。スイッチ素子Q3はn型MOS-FETである。スイッチ素子Q3のドレインはスイッチ素子Q2のゲートに接続されている。スイッチ素子Q3のソースは基準電位に接続されている。スイッチ素子Q3のゲートは、スイッチ駆動回路16の出力部Out1に接続されている。 The switch circuit 14A has switch elements Q2 and Q3. The switch element Q2 is a p-type MOS-FET. The switch element Q2 is provided on the power supply line 101B. The switch element Q3 is an n-type MOS-FET. The drain of the switch element Q3 is connected to the gate of the switch element Q2. The source of the switch element Q3 is connected to the reference potential. The gate of the switch element Q3 is connected to the output unit Out1 of the switch drive circuit 16.
 スイッチ駆動回路16の入力部In1,In2は、コイルアンテナ11と整合回路12との間に接続されている。すなわち、スイッチ駆動回路16には、整合回路12を介すことなく、コイルアンテナ11に誘起される電圧が入力される。これにより、スイッチ駆動回路16にはより高い電圧が入力される。スイッチ駆動回路16の出力部Out1はスイッチ素子Q3のゲートに接続されている。出力部Out2は基準電位に接続されている。 The input portions In1 and In2 of the switch drive circuit 16 are connected between the coil antenna 11 and the matching circuit 12. That is, a voltage induced in the coil antenna 11 is input to the switch drive circuit 16 without passing through the matching circuit 12. As a result, a higher voltage is input to the switch drive circuit 16. The output part Out1 of the switch drive circuit 16 is connected to the gate of the switch element Q3. The output unit Out2 is connected to the reference potential.
 スイッチ駆動回路16は、実施形態1と同様に、電力供給ライン101A,102A間の電圧が6.78MHzである場合、その電圧を整流平滑する。そして、スイッチ駆動回路16は、整流平滑した電圧をスイッチ素子Q3のゲート-ソース間に印加する。スイッチ素子Q3はオンし、スイッチ素子Q2のゲートは基準電位に接続され、スイッチ素子Q2がオンする。これにより、整流回路13と負荷回路15とが電気的に接続され、負荷回路15への電力供給が行われる。 As in the first embodiment, the switch drive circuit 16 rectifies and smoothes the voltage when the voltage between the power supply lines 101A and 102A is 6.78 MHz. Then, the switch drive circuit 16 applies the rectified and smoothed voltage between the gate and the source of the switch element Q3. The switch element Q3 is turned on, the gate of the switch element Q2 is connected to the reference potential, and the switch element Q2 is turned on. As a result, the rectifier circuit 13 and the load circuit 15 are electrically connected, and power is supplied to the load circuit 15.
 この構成では、周波数ディテクタ161の出力端(出力部Out2側)が基準電位に接続されているので、信号処理回路の基準電位を共用することができる。周波数ディテクタ161の出力端(出力部Out1側)を信号処理回路と接続すれば(適宜、分圧回路などを挿入)、特定周波数の電力の到来状況をモニタすることができる。 In this configuration, since the output end (output unit Out2 side) of the frequency detector 161 is connected to the reference potential, the reference potential of the signal processing circuit can be shared. If the output end (output unit Out1 side) of the frequency detector 161 is connected to a signal processing circuit (a voltage dividing circuit or the like is inserted as appropriate), the arrival state of power at a specific frequency can be monitored.
 また、この構成であっても、受電装置10Aは、近距離無線通信システムで動作するときは、通信用信号電圧による負荷回路15への不要な電力供給を遮断し、非接触電力供給システムで動作するときにのみ、負荷回路15への電力供給を行うことができる。そして、スイッチ駆動回路16は、電源供給が必要で複雑な処理を行う信号処理回路(マイコンなど)を必要とせず、簡単な回路構成で実現できる。また、スイッチ駆動回路16用の電力源も必要としないため、受電装置10Aの小型化は阻害されない。また、受電装置10Aの二次電池が放電してしまい、信号処理回路が起動しない状態であっても6.78MHzの高周波電力を受電するとスイッチ駆動回路が動作して給電・充電できる。 Even in this configuration, when the power receiving device 10A operates in the short-range wireless communication system, the power receiving device 10A blocks unnecessary power supply to the load circuit 15 by the communication signal voltage and operates in the non-contact power supply system. Only when this is done, power can be supplied to the load circuit 15. The switch drive circuit 16 does not require a signal processing circuit (such as a microcomputer) that requires power supply and performs complicated processing, and can be realized with a simple circuit configuration. In addition, since a power source for the switch drive circuit 16 is not required, downsizing of the power receiving device 10A is not hindered. Further, even when the secondary battery of the power receiving device 10A is discharged and the signal processing circuit is not activated, when the high frequency power of 6.78 MHz is received, the switch driving circuit operates and can be fed and charged.
(実施形態3)
 実施形態3に係る受電装置は、負荷回路への電力供給と、その遮断とを切り替えるスイッチ回路の構成が、実施形態1と相違している。
(Embodiment 3)
The power receiving device according to the third embodiment is different from the first embodiment in the configuration of a switch circuit that switches between power supply to the load circuit and interruption thereof.
 図11は、実施形態3に係る受電装置10Bの回路図である。 FIG. 11 is a circuit diagram of the power receiving device 10B according to the third embodiment.
 受電装置10Bが備えるスイッチ回路14Bは、スイッチ素子Q4を有する。スイッチ素子Q4はn型MOS-FETである。スイッチ素子Q4のドレインは、キャパシタC5を介して電源用ライン101Bに接続されている。スイッチ素子Q4のソースは基準電位用ライン102Bに接続されている。スイッチ素子Q4のゲートは、スイッチ駆動回路16の出力部Out1に接続されている。 The switch circuit 14B included in the power receiving device 10B includes a switch element Q4. The switch element Q4 is an n-type MOS-FET. The drain of the switch element Q4 is connected to the power supply line 101B via the capacitor C5. The source of the switch element Q4 is connected to the reference potential line 102B. The gate of the switch element Q4 is connected to the output unit Out1 of the switch drive circuit 16.
 スイッチ駆動回路16は、実施形態1と同様に、電力供給ライン101A,102A間の交流電圧が6.78MHzである場合、その電圧を整流平滑する。そして、スイッチ駆動回路16は、整流平滑した電圧をスイッチ素子Q4のゲートへ印加する。スイッチ素子Q4がオンすることで、キャパシタC5が電力供給ライン101A,102A間に接続される構成となる。これにより、負荷回路15へ供給される電圧がキャパシタC5を充電し平滑化されるため、負荷回路15に安定した電力供給ができる。また、逆に交流電圧が6.78MHz以外の周波数である場合、スイッチ素子Q4が導通しないため、整流回路13からキャパシタC5が切り離される。この結果、近距離無線通信システムで動作するときは、通信回路17は、キャパシタC5への不要な電力供給の影響が低減されて動作する。よって、通信距離の低下を抑制することができ、より確実に通信できるようになる。 The switch drive circuit 16 rectifies and smoothes the voltage when the AC voltage between the power supply lines 101A and 102A is 6.78 MHz, as in the first embodiment. Then, the switch drive circuit 16 applies the rectified and smoothed voltage to the gate of the switch element Q4. When the switch element Q4 is turned on, the capacitor C5 is connected between the power supply lines 101A and 102A. As a result, the voltage supplied to the load circuit 15 is charged and smoothed by charging the capacitor C5, so that stable power supply to the load circuit 15 can be achieved. Conversely, when the AC voltage has a frequency other than 6.78 MHz, the switch element Q4 does not conduct, and thus the capacitor C5 is disconnected from the rectifier circuit 13. As a result, when operating in the short-range wireless communication system, the communication circuit 17 operates while reducing the influence of unnecessary power supply to the capacitor C5. Therefore, a decrease in communication distance can be suppressed and communication can be performed more reliably.
 また、スイッチ駆動回路16は、電力供給ライン101A,102A間の交流電圧を整流平滑して、スイッチ素子Q4のゲートに印加して、スイッチ素子Q4をオンする。このため、スイッチ駆動回路16は、複雑な処理を行う信号処理回路(マイコンなど)を必要とせず、簡単な回路構成で実現できる。また、スイッチ駆動回路16用の電力源も必要としないため、受電装置10Bの小型化は阻害されない。また、受電装置10Bの二次電池が放電してしまい、信号処理回路が起動しない状態であっても6.78MHzの高周波電力を受電するとスイッチ駆動回路16が動作して給電・充電できる。 Further, the switch drive circuit 16 rectifies and smoothes the AC voltage between the power supply lines 101A and 102A, applies it to the gate of the switch element Q4, and turns on the switch element Q4. For this reason, the switch drive circuit 16 does not require a signal processing circuit (such as a microcomputer) for performing complicated processing, and can be realized with a simple circuit configuration. In addition, since a power source for the switch drive circuit 16 is not required, downsizing of the power receiving device 10B is not hindered. Further, even when the secondary battery of the power receiving device 10B is discharged and the signal processing circuit is not activated, when the high frequency power of 6.78 MHz is received, the switch driving circuit 16 operates to supply and charge.
(実施形態4)
 実施形態4に係る受電装置は、通信回路の構成、及び、スイッチ駆動回路と通信回路との接続が実施形態1と相違している。
(Embodiment 4)
The power receiving device according to the fourth embodiment is different from the first embodiment in the configuration of the communication circuit and the connection between the switch drive circuit and the communication circuit.
 図12は、実施形態4に係る受電装置10Gの回路図である。 FIG. 12 is a circuit diagram of the power receiving device 10G according to the fourth embodiment.
 受電装置10Gが備える通信回路17Gはスイッチ回路14Gを有する。スイッチ回路14Gは、通信回路用整合回路172とローパスフィルタ173の間に配置され、通信用IC171を保護するために通信回路用整合回路172とローパスフィルタ173及び通信用IC171とを電気的に切断する。スイッチ回路14Gは、スイッチ駆動回路16から出力される電圧によって動作する。スイッチ回路14Gは、制御端子を有するスイッチ素子を含み、例えば双方向スイッチ回路で構成される。当該スイッチ素子は本発明に係る「第2のスイッチ素子」の一例であり、当該制御端子は本発明に係る「第2の制御端子」の一例である。 The communication circuit 17G included in the power receiving device 10G includes a switch circuit 14G. The switch circuit 14G is disposed between the communication circuit matching circuit 172 and the low-pass filter 173, and electrically disconnects the communication circuit matching circuit 172, the low-pass filter 173, and the communication IC 171 in order to protect the communication IC 171. . The switch circuit 14G operates by the voltage output from the switch drive circuit 16. The switch circuit 14G includes a switch element having a control terminal, and is configured by, for example, a bidirectional switch circuit. The switch element is an example of a “second switch element” according to the present invention, and the control terminal is an example of a “second control terminal” according to the present invention.
 例えば、受電装置10Gが非接触電力供給システムの動作周波数の高周波電力を受電していない場合、スイッチ回路14Gはオフであり、非接触電力供給システムの動作周波数の高周波電力を受電した場合に、スイッチ回路14Gはオンになり、ローパスフィルタ173手前のライン間を短絡するよう構成する。この構成では、通信用IC171を非接触電力供給に起因する過電圧から保護することができる。 For example, when the power receiving device 10G is not receiving high-frequency power at the operating frequency of the non-contact power supply system, the switch circuit 14G is off, and when the high-frequency power at the operating frequency of the non-contact power supply system is received, The circuit 14G is turned on, and the line before the low-pass filter 173 is configured to be short-circuited. In this configuration, the communication IC 171 can be protected from overvoltage caused by non-contact power supply.
 なお、スイッチ回路14Gはローパスフィルタ173と通信用IC171の間に配置されてもよく、通信用IC171に内蔵してもよい。 The switch circuit 14G may be disposed between the low-pass filter 173 and the communication IC 171 or may be built in the communication IC 171.
 また、実施形態4に係る受電装置は、非接触電力供給システムと近距離無線通信システムで共通のコイルアンテナを用いなくともよく、個別のコイルアンテナを備えていてもよい。図13に個別のコイルアンテナ11,11Fを備えた受信装置10Hを示す。通信回路用整合回路172にはコイルアンテナ11Fが接続される。この回路構成であっても、スイッチ駆動回路16とスイッチ回路14により、負荷回路15及び平滑キャパシタCoへの不要な電力供給を遮断することができる。これにより、給電装置20(図1参照)と磁界結合するときにのみ、負荷回路15への電力供給を行い、負荷回路15と平滑キャパシタCoが通信回路17Gに与える影響を抑えることができる。また、スイッチ駆動回路16とスイッチ回路14Gにより、通信用IC171を非接触電力供給に起因する過電圧から保護することができる。 In addition, the power receiving device according to the fourth embodiment may not include a common coil antenna in the non-contact power supply system and the short-range wireless communication system, and may include an individual coil antenna. FIG. 13 shows a receiving apparatus 10H provided with individual coil antennas 11 and 11F. A coil antenna 11F is connected to the communication circuit matching circuit 172. Even with this circuit configuration, unnecessary power supply to the load circuit 15 and the smoothing capacitor Co can be cut off by the switch drive circuit 16 and the switch circuit 14. Thus, power is supplied to the load circuit 15 only when magnetically coupled to the power supply device 20 (see FIG. 1), and the influence of the load circuit 15 and the smoothing capacitor Co on the communication circuit 17G can be suppressed. Further, the switch driving circuit 16 and the switch circuit 14G can protect the communication IC 171 from overvoltage caused by non-contact power supply.
 以上説明した、実施形態1~4では、受電装置は、非接触電力供給システムと、近距離無線通信システムとで動作する装置として説明したが、異なる周波数帯域を用いた近距離無線通信システムが動作する装置であってもよい。この場合、受電装置は、第1の周波数を用いて通信を行う通信回路と、第2の周波数を用いて通信を行う通信回路とを備える。そして、上述したスイッチ駆動回路により、受電装置が受信する信号の周波数に応じて、スイッチ回路を切り替える。同様に、受電装置は、異なる周波数帯域を用いた非接触電力供給システムが動作する装置であってもよい。 In the first to fourth embodiments described above, the power receiving device is described as a device that operates in the non-contact power supply system and the short-range wireless communication system. However, the short-range wireless communication system using different frequency bands operates. It may be a device that performs. In this case, the power receiving apparatus includes a communication circuit that performs communication using the first frequency and a communication circuit that performs communication using the second frequency. Then, the switch circuit is switched according to the frequency of the signal received by the power receiving device by the switch drive circuit described above. Similarly, the power receiving device may be a device in which a non-contact power supply system using different frequency bands operates.
 なお、非接触電力供給システムとして6.78MHzの例を示したが低周波10kHz~500kHzの電磁誘導を利用した非接触給電システムに対しても適用可能である。 In addition, although the example of 6.78 MHz was shown as a non-contact electric power supply system, it is applicable also to the non-contact electric power feeding system using the electromagnetic induction of low frequency 10kHz-500kHz.
 また、以上説明した、実施形態1~4では、近距離無線通信システムの動作時に、整流回路と負荷回路及び平滑キャパシタとを切り離すことを説明したが、この限りではない。少なくともコイルアンテナと、負荷回路及び平滑キャパシタとが電気的に切り離されればよく、スイッチ回路はコイルアンテナと整流回路との間に設けられていてもよい。 In the first to fourth embodiments described above, the rectifier circuit, the load circuit, and the smoothing capacitor are disconnected during the operation of the short-range wireless communication system, but this is not restrictive. It is sufficient that at least the coil antenna, the load circuit and the smoothing capacitor are electrically disconnected, and the switch circuit may be provided between the coil antenna and the rectifier circuit.
 また、以上説明した、実施形態1~4では、近距離無線通信システムの動作時に、整流回路と負荷回路及び平滑キャパシタとの間に電流が流れないように、整流回路と負荷回路及び平滑キャパシタとの間の電流経路を切り離すことを説明したが、この限りではない。近距離無線通信システムの動作時に、少なくともコイルアンテナから通信用信号電圧によって負荷回路及び平滑キャパシタに不要な電力が供給されないようにすればよく、例えば、負荷回路及び平滑キャパシタの前段、又は、整流回路の前段で、2本の電力供給ラインの間を短絡させることにより、負荷回路及び平滑キャパシタに電圧が印加されないようにすることで、負荷回路及び平滑キャパシタに電力が供給されないようにしてもよい。図14に、電源用ライン101Bと基準電位用ライン102Bとの間にスイッチ回路14Iを接続した受電装置10Iを示す。この回路構成では、スイッチ回路14Iは制御電圧を印加していないとき、オンとなるように構成されている(すなわち、整流回路13の出力を短絡している)。スイッチ回路14Iは、スイッチ駆動回路16によって、ゲート-ソース間に電圧を印加するとオフになる。スイッチ駆動回路16は、コイルアンテナ11の両端間の電圧を入力し、通信回路17は、コイルアンテナ11の両端ではなく、電力伝送系の整合回路12Dの共振キャパシタ(キャパシタC21~C24)を分圧した点に接続する。この構成では、整流部の寄生容量の影響をなくすことができる。 In Embodiments 1 to 4 described above, the rectifier circuit, the load circuit, and the smoothing capacitor are arranged so that no current flows between the rectifier circuit, the load circuit, and the smoothing capacitor during the operation of the short-range wireless communication system. It has been described that the current path between is disconnected, but this is not the case. During operation of the short-range wireless communication system, it is sufficient to prevent unnecessary power from being supplied to the load circuit and the smoothing capacitor by at least the signal voltage for communication from the coil antenna. For example, the stage before the load circuit and the smoothing capacitor, or the rectifier circuit In the preceding stage, power may be prevented from being supplied to the load circuit and the smoothing capacitor by short-circuiting the two power supply lines so that no voltage is applied to the load circuit and the smoothing capacitor. FIG. 14 shows a power receiving device 10I in which a switch circuit 14I is connected between a power supply line 101B and a reference potential line 102B. In this circuit configuration, the switch circuit 14I is configured to be turned on when no control voltage is applied (that is, the output of the rectifier circuit 13 is short-circuited). The switch circuit 14I is turned off when a voltage is applied between the gate and the source by the switch drive circuit 16. The switch drive circuit 16 inputs a voltage across the coil antenna 11, and the communication circuit 17 divides the resonance capacitors (capacitors C21 to C24) of the matching circuit 12D of the power transmission system, not the both ends of the coil antenna 11. Connect to the point. With this configuration, the influence of the parasitic capacitance of the rectifying unit can be eliminated.
C11,C12,C13…キャパシタ
C21,C22,C23,C24…キャパシタ
C31,C32,C33,C34,C35,C36,…キャパシタ
C41,C42…キャパシタ
C5…キャパシタ
Co…平滑キャパシタ
CP…接続部
D1…ダイオード
171…通信用IC
In1,In2…入力部
L11…1次コイル
L12…2次コイル
L31,L32…インダクタ
Out1,Out2…出力部
Q1,Q2,Q3,Q4…スイッチ素子
R1…ゲート抵抗
T,TE…トランス
10,10A,10B,10C,10D,10E,10F,10G,10H,10I…受電装置(回路切替装置)
11,11F…コイルアンテナ
12,12D…整合回路
13…整流回路
14,14A,14B,14C,14G,14I…スイッチ回路
15…負荷回路
16,16E…スイッチ駆動回路
17,17G…通信回路
18…EMIフィルタ
20…給電装置
21…コイルアンテナ
22…給電回路
30…通信装置
31…コイルアンテナ
32…通信回路
100…電力供給システム
101A,102A…電力供給ライン
102A…電力供給ライン
102B…基準電位用ライン
160…積層体
160A,160B…コイル
161,161E…周波数ディテクタ(フィルタ回路)
162…整流平滑回路(整流回路)
C11, C12, C13 ... capacitors C21, C22, C23, C24 ... capacitors C31, C32, C33, C34, C35, C36, ... capacitors C41, C42 ... capacitor C5 ... capacitor Co ... smoothing capacitor CP ... connection part D1 ... diode 171 ... Communication IC
In1, In2 ... input L11 ... primary coil L12 ... secondary coils L31, L32 ... inductor Out1, Out2 ... output Q1, Q2, Q3, Q4 ... switch element R1 ... gate resistance T, TE ... transformer 10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 10H, 10I ... Power receiving device (circuit switching device)
DESCRIPTION OF SYMBOLS 11, 11F ... Coil antenna 12, 12D ... Matching circuit 13 ... Rectifier circuit 14, 14A, 14B, 14C, 14G, 14I ... Switch circuit 15 ... Load circuit 16, 16E ... Switch drive circuit 17, 17G ... Communication circuit 18 ... EMI Filter 20 ... Feeding device 21 ... Coil antenna 22 ... Feeding circuit 30 ... Communication device 31 ... Coil antenna 32 ... Communication circuit 100 ... Power supply system 101A, 102A ... Power supply line 102A ... Power supply line 102B ... Line for reference potential 160 ... Laminates 160A, 160B ... Coils 161, 161E ... Frequency detector (filter circuit)
162 ... Rectifier smoothing circuit (rectifier circuit)

Claims (8)

  1.  第1のコイルアンテナと、
     前記第1のコイルアンテナに接続される非接触電力供給システム用受電回路と、
     前記第1のコイルアンテナに接続される近距離無線通信システム用通信回路と、
     第1の制御端子を有し、前記第1のコイルアンテナから前記受電回路への電力供給を遮断する第1のスイッチ素子と、
     前記第1のコイルアンテナが受信する信号のうち、特定周波数の信号を検波して、前記第1の制御端子へ制御電圧を出力して前記第1のスイッチ素子を直接駆動する検波回路と、
     を備える回路切替装置。
    A first coil antenna;
    A power receiving circuit for a non-contact power supply system connected to the first coil antenna;
    A communication circuit for a short-range wireless communication system connected to the first coil antenna;
    A first switch element having a first control terminal and blocking power supply from the first coil antenna to the power receiving circuit;
    A detection circuit that detects a signal of a specific frequency among signals received by the first coil antenna, outputs a control voltage to the first control terminal, and directly drives the first switch element;
    A circuit switching device comprising:
  2.  第1のコイルアンテナと、
     前記第1のコイルアンテナに接続される非接触電力供給システム用受電回路と、
     前記第1のコイルアンテナと磁界結合する第2のコイルアンテナと、
     前記第2のコイルアンテナに接続される近距離無線通信システム用通信回路と、
     第1の制御端子を有し、前記第1のコイルアンテナから前記受電回路への電力供給を遮断する第1のスイッチ素子と、
     前記第1のコイルアンテナが受信する信号のうち、特定周波数の信号を検波して、前記第1の制御端子へ制御電圧を出力して前記第1のスイッチ素子を直接駆動する検波回路と、
     を備える回路切替装置。
    A first coil antenna;
    A power receiving circuit for a non-contact power supply system connected to the first coil antenna;
    A second coil antenna magnetically coupled to the first coil antenna;
    A communication circuit for a short-range wireless communication system connected to the second coil antenna;
    A first switch element having a first control terminal and blocking power supply from the first coil antenna to the power receiving circuit;
    A detection circuit that detects a signal of a specific frequency among signals received by the first coil antenna, outputs a control voltage to the first control terminal, and directly drives the first switch element;
    A circuit switching device comprising:
  3.  前記検波回路は複共振回路を有する、請求項1または2に記載の回路切替装置。 The circuit switching device according to claim 1 or 2, wherein the detection circuit has a double resonance circuit.
  4.  前記複共振回路は絶縁トランスを有する、請求項3に記載の回路切替装置。 The circuit switching device according to claim 3, wherein the double resonance circuit includes an insulating transformer.
  5.  前記通信回路は、第2の制御端子を有し、前記第1のコイルアンテナから前記通信回路への電力供給を遮断または接続する第2のスイッチ素子を備える、請求項1に記載の回路切替装置。 2. The circuit switching device according to claim 1, wherein the communication circuit includes a second switch element that has a second control terminal and cuts off or connects power supply from the first coil antenna to the communication circuit. .
  6.  前記通信回路は、第2の制御端子を有し、前記第2のコイルアンテナから前記通信回路への電力供給を遮断または接続する第2のスイッチ素子を備える、請求項2に記載の回路切替装置。 The circuit switching device according to claim 2, wherein the communication circuit includes a second switch element that has a second control terminal and cuts off or connects power supply from the second coil antenna to the communication circuit. .
  7.  前記第2のスイッチ素子は、前記第2の制御端子が前記検波回路の出力側に接続される、請求項5または6に記載の回路切替装置。 The circuit switching device according to claim 5 or 6, wherein the second switch element has the second control terminal connected to the output side of the detection circuit.
  8.  電力供給ラインから交流電圧を入力する入力部と、
     前記入力部から入力される電圧のうち、特定周波数の電圧を通過させるフィルタ回路と、
     前記フィルタ回路を通過する電圧を整流し、電力供給ラインを電気的に遮断又は接続するスイッチ素子の制御端子へ出力する整流回路と、
     を備えるスイッチ駆動回路。
    An input unit for inputting an AC voltage from the power supply line;
    Among the voltages input from the input unit, a filter circuit that passes a voltage of a specific frequency;
    A rectifying circuit that rectifies the voltage passing through the filter circuit and outputs the rectified voltage to a control terminal of a switch element that electrically cuts off or connects the power supply line;
    A switch driving circuit comprising:
PCT/JP2017/005396 2016-02-23 2017-02-15 Circuit switching device and switch driving device WO2017145880A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018501611A JP6390812B2 (en) 2016-02-23 2017-02-15 Circuit switching device and switch drive circuit

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-031992 2016-02-23
JP2016031992 2016-02-23
JP2016061508 2016-03-25
JP2016-061508 2016-03-25
JP2016122206 2016-06-21
JP2016-122206 2016-06-21

Publications (1)

Publication Number Publication Date
WO2017145880A1 true WO2017145880A1 (en) 2017-08-31

Family

ID=59685099

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/005396 WO2017145880A1 (en) 2016-02-23 2017-02-15 Circuit switching device and switch driving device
PCT/JP2017/005395 WO2017145879A1 (en) 2016-02-23 2017-02-15 Antenna apparatus and electronic apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005395 WO2017145879A1 (en) 2016-02-23 2017-02-15 Antenna apparatus and electronic apparatus

Country Status (2)

Country Link
JP (3) JP6390812B2 (en)
WO (2) WO2017145880A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114902232A (en) * 2019-12-23 2022-08-12 株式会社村田制作所 Near field communication device
JPWO2021245981A1 (en) 2020-06-05 2021-12-09
JP7464119B2 (en) 2020-06-05 2024-04-09 株式会社村田製作所 Electronic card with electronic function circuit
WO2023008222A1 (en) * 2021-07-27 2023-02-02 株式会社村田製作所 Short-range wireless communication device
JPWO2023008224A1 (en) * 2021-07-27 2023-02-02
WO2023008223A1 (en) * 2021-07-27 2023-02-02 株式会社村田製作所 Near-field wireless communication device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134049A (en) * 2009-12-24 2011-07-07 Murata Mfg Co Ltd Medium with built-in ic and system thereof
JP2016067075A (en) * 2014-09-22 2016-04-28 キヤノン株式会社 Electronic apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3068745B2 (en) * 1994-05-27 2000-07-24 ローム株式会社 High-frequency tag and information exchange system using it
JP5245690B2 (en) * 2008-09-29 2013-07-24 株式会社村田製作所 Contactless power receiving circuit and contactless power transmission system
JP5677875B2 (en) * 2011-03-16 2015-02-25 日立マクセル株式会社 Non-contact power transmission system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134049A (en) * 2009-12-24 2011-07-07 Murata Mfg Co Ltd Medium with built-in ic and system thereof
JP2016067075A (en) * 2014-09-22 2016-04-28 キヤノン株式会社 Electronic apparatus

Also Published As

Publication number Publication date
JP6390812B2 (en) 2018-09-19
JPWO2017145880A1 (en) 2018-08-16
JP2019096333A (en) 2019-06-20
WO2017145879A1 (en) 2017-08-31
JP6465247B2 (en) 2019-02-06
JPWO2017145879A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6390812B2 (en) Circuit switching device and switch drive circuit
JP6044692B2 (en) Control device, power receiving device and transmission system
US9933539B2 (en) Foreign object detection device, foreign object detection method, and non-contact charging system
US7277675B2 (en) Array for the contact-less transmission of electrical signals or energy
US9755460B2 (en) Power reception device, power transmission device and wireless power transmission system
JP5841668B2 (en) Non-contact charging apparatus and non-contact power supply system using the same
WO2014129181A1 (en) Foreign object detection device, foreign object detection method, and non-contact charging system
JP2009520250A (en) Circuit device for transponder and method of operating the circuit device
JP6583599B1 (en) ANTENNA DEVICE, COMMUNICATION SYSTEM, AND ELECTRONIC DEVICE
JP5994500B2 (en) Coupling degree adjusting element, antenna device, and wireless communication device
JP5761251B2 (en) Antenna device and communication device
WO2016125725A1 (en) Electric current detection element and electrical power transmission system
JP6365773B2 (en) Inductor module and power transmission system
WO2015083202A1 (en) Array coil system
JP6315109B2 (en) Power supply device
US11095167B2 (en) Power transmission device
WO2015099065A1 (en) Non-contact power reception circuit, non-contact power reception apparatus, and non-contact power transmission/reception apparatus
WO2024009485A1 (en) Power transmission coil
JP4934659B2 (en) Shared antenna and matching circuit
EP1403963A2 (en) AM Antenna Noise Reduction
WO2023149316A1 (en) Wireless power reception device
KR20170142920A (en) Resonator module and apparatus for transmiting power wirelessly using the same
JP7071193B2 (en) Power transmission device
TW202002534A (en) Communication device capable of suppressing the deterioration of signal quality while reducing the influence of external interference even if a plurality of types of connection configurations are provided

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501611

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756320

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756320

Country of ref document: EP

Kind code of ref document: A1