WO2017145244A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2017145244A1
WO2017145244A1 PCT/JP2016/055109 JP2016055109W WO2017145244A1 WO 2017145244 A1 WO2017145244 A1 WO 2017145244A1 JP 2016055109 W JP2016055109 W JP 2016055109W WO 2017145244 A1 WO2017145244 A1 WO 2017145244A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
ratio
mass
refrigeration cycle
less
Prior art date
Application number
PCT/JP2016/055109
Other languages
French (fr)
Japanese (ja)
Inventor
悟 梁池
航祐 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/055109 priority Critical patent/WO2017145244A1/en
Priority to JP2017505673A priority patent/JPWO2017145244A1/en
Publication of WO2017145244A1 publication Critical patent/WO2017145244A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • chlorofluorocarbon CFC
  • hydrochlorofluorocarbon HCFC
  • refrigerants containing chlorine such as CFC and HCFC are currently restricted in use because they have a great influence on the ozone layer in the stratosphere (influence on global warming).
  • HFC hydrofluorocarbon
  • difluoromethane also referred to as methylene fluoride, Freon 32, HFC-32, R32, etc., hereinafter referred to as “R32”
  • R32 difluoromethane
  • Patent Document 1 See Japanese Patent No. 3956589
  • tetrafluoroethane, R125 (1,1,1,2,2-pentafluoroethane) and the like are also known.
  • R410A a pseudoazeotropic refrigerant mixture of R32 and R125 is widely used because of its high refrigeration capacity.
  • Examples of the low GWP refrigerant include R1234yf (2,3,3,3-tetrafluoro-1-propene), R1234ze (1,3,3,3-tetrafluoro-1-propene) having a GWP of less than 10.
  • R1234yf (2,3,3,3-tetrafluoro-1-propene)
  • R1234ze (1,3,3,3-tetrafluoro-1-propene) having a GWP of less than 10.
  • trifluoroethylene having a GWP of approximately 0 also referred to as 1,1,2-trifluoroethene, HFO1123, R1123, etc., hereinafter referred to as “HFO1123”
  • HFO1123 trifluoroethylene having a GWP of approximately 0
  • these low GWP refrigerants have a carbon-carbon double bond that is easily decomposed by OH radicals in the atmosphere, and thus are considered to have little influence on the ozone layer. Further, these low GWP refrigerants are described in, for example, Patent Document 2 (International Publication No. 2012/157774), Patent Document 3 (International Publication No. 2015/115550), and the like.
  • R1234yf and R1234ze have low vapor density and low latent heat of vaporization, and therefore have low heat transfer performance. For this reason, when using these low GWP refrigerants, it is necessary to change the design of the compressor volume, frequency, etc. in order to increase the displacement of the compressor in order to obtain the same refrigeration performance as before. There's a problem.
  • HFO1123 has high heat transfer performance because of high vapor density and large latent heat of vaporization. Therefore, it is desirable to use HFO1123 as a low GWP refrigerant from the viewpoint of vapor density.
  • HFO1123 alone causes a disproportionation reaction (self-decomposition reaction), and has flammability. From these points, the reliability of the refrigeration cycle apparatus is lowered simply by adopting HFO 1123 as the refrigerant. Therefore, it is necessary to mix nonflammable refrigerants.
  • non-azeotropic refrigerant mixtures have different compositions in the liquid phase and gas phase. For this reason, there exists a problem that a temperature gradient arises and a performance fall etc. will arise when a temperature gradient becomes large.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a refrigeration cycle apparatus that is less affected by global warming and has sufficient performance and sufficient reliability.
  • the refrigeration cycle apparatus includes a refrigeration circuit including a compressor, an outdoor heat exchanger, an indoor heat exchanger, and an expansion valve.
  • a refrigerant is sealed in the refrigeration circuit, and the refrigerant contains HFO 1123, R32, and at least one of R125 and R134a.
  • the ratio of HFO1123 is 20% by mass or more and 40% by mass or less, and the total ratio of R125 and R134a is 30% by mass or more and 50% by mass or less with respect to the total amount of HFO1123, R32, R125, and R134a.
  • the ratio is 10 mass% or more and 50 mass% or less.
  • FIG. 3 is a triangular composition diagram showing the composition of the refrigerant according to the first embodiment. It is a graph which shows the relationship between the composition ratio of the nonflammable refrigerant
  • coolant 60%), and GWP. It is a graph which shows the temperature gradient of the refrigerant
  • coolant 60%). It is a graph which shows the temperature gradient of the refrigerant
  • coolant 50%).
  • FIG. It is a graph which shows the temperature gradient of the refrigerant
  • coolant 40%) which concerns on Embodiment 1.
  • FIG. It is a graph which shows the temperature gradient of the refrigerant
  • coolant 30%).
  • It is another triangular composition figure which shows the composition of the refrigerant
  • FIG. It is a graph which shows the COP ratio of the refrigerant
  • coolant 50%).
  • FIG. 1 is a schematic configuration diagram illustrating a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 1 is a schematic configuration diagram illustrating a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 15 is a schematic configuration diagram illustrating the refrigeration cycle apparatus according to the first embodiment.
  • the refrigeration cycle apparatus includes a refrigeration circuit including a compressor 1, a flow path switching valve 2 that switches a flow direction during cooling and heating, an outdoor heat exchanger 3, an expansion valve 4, and an indoor heat exchanger 5. Prepare. In a refrigerator that does not require switching between cooling and heating, the flow path switching valve 2 is not necessary.
  • the high-temperature and high-pressure gaseous refrigerant compressed by the compressor 1 flows into the outdoor heat exchanger 3 via the flow path switching valve 2 (flow path shown by a solid line), It condenses there.
  • the liquid refrigerant condensed in the outdoor heat exchanger 3 flows into the indoor heat exchanger 5 via the expansion valve 4 and evaporates (vaporizes) there.
  • the gaseous refrigerant evaporated in the indoor heat exchanger 5 returns to the compressor 1 via the flow path switching valve 2 (flow path shown by a solid line).
  • the refrigerant circulates in the direction of the solid arrow shown in FIG. 15 in the refrigeration circuit of the refrigeration cycle apparatus.
  • the refrigerant circulates in the direction of the broken arrow shown in FIG. 15 in the refrigeration circuit of the refrigeration cycle apparatus.
  • the refrigeration cycle apparatus of the present embodiment may further include other devices such as a gas-liquid branching device, a receiver, an accumulator, and a high / low pressure heat exchanger.
  • the refrigerant used in the present embodiment includes HFO 1123, R32, and non-combustible refrigerant (at least one of R125 and R134A).
  • the ratio of HFO 1123 is 20% or more and 40% or less.
  • the ratio of HFO1123 exceeds 40%, the possibility of a disproportionation reaction increases.
  • the ratio of HFO 1123 is less than 20%, the GWP of the refrigerant cannot be sufficiently reduced.
  • the ratio of the non-combustible refrigerant (R125 and R134a) is 30% or more and 50% or less.
  • the ratio of the incombustible refrigerant is 60% or more, as described later, the refrigerant temperature gradient becomes larger than the temperature gradient (7 ° C.) of the conventional refrigerant R407C.
  • the ratio of the nonflammable refrigerant is less than 30%, there is a possibility that the nonflammability of the refrigerant cannot be sufficiently ensured.
  • the ratio of R32 is 10% or more and 50% or less.
  • the ratio range of R32 is a range determined by the ratio of HFO 1123 and non-combustible refrigerant (R125 and R134a).
  • composition of the refrigerant used in the present embodiment is within the range of the hatched portion shown in the triangular composition diagram of FIG.
  • the refrigerant used in the present embodiment may be a mixed refrigerant composed of only the above components (not including components other than HFO1123, R32, R125, and R134a), and may further include other refrigerant components.
  • examples of other refrigerant components include R290, R1270, and other HFCs.
  • the blending ratio of other components is set within a range that does not hinder the main effects of this embodiment. Specifically, it is preferable to set the blending ratio of the other components so that the ratio of the total of the above components (the total of HFO1123, R32, R125, and R134a) to the mass of the entire refrigerant is 80% or more.
  • the refrigerant may further contain refrigeration oil.
  • the refrigerating machine oil include commonly used refrigerating machine oils (such as ester-based lubricating oils, ether-based lubricating oils, fluorine-based lubricating oils, mineral-based lubricating oils, and hydrocarbon-based lubricating oils). In that case, it is preferable to select a refrigerating machine oil that is superior in terms of compatibility with the refrigerant and stability.
  • the refrigerant may further contain a stabilizer as necessary, for example, when high stability is required under severe use conditions.
  • a stabilizer is a component that improves the stability of the refrigerant against heat and oxidation.
  • the well-known stabilizer conventionally used for the refrigerating-cycle apparatus for example, an oxidation resistance improver, a heat resistance improver, a metal deactivator, etc. are mentioned.
  • the refrigerant may further contain a polymerization inhibitor.
  • a polymerization inhibitor examples include hydroquinone, hydroquinone methyl ether, benzotriazole, and the like.
  • the refrigerant used in the present embodiment is a mixed refrigerant of HFO 1123 and an incombustible refrigerant in consideration of the disproportionation reaction and the flammability of HFO 1123. Since the composition of the non-azeotropic refrigerant mixture is different between the liquid phase and the gas phase, the start temperature and end temperature of evaporation (or condensation) in the heat exchanger are different. For example, when the pressure of the non-azeotropic refrigerant mixture is constant, the refrigerant temperature decreases toward the outlet in the condenser, and the refrigerant temperature increases toward the outlet in the evaporator. For this reason, a temperature difference occurs between the saturated liquid and the saturated steam. This temperature difference is called “temperature gradient”. When the temperature gradient of the refrigerant increases, the difference between the temperature of the air sent from the blower and the outlet temperature of the heat exchanger decreases, which may cause problems such as a decrease in heat exchange performance.
  • the refrigerant having a particularly large temperature gradient is R407C (the non-azeotropic refrigerant mixture of R32, R125, and R134a).
  • the temperature gradient of R407C is about 7 ° C.
  • the existing refrigeration cycle apparatus is designed so that problems such as performance and reliability do not occur with respect to the refrigerant having a temperature gradient of 7 ° C. or less.
  • the temperature gradient of the refrigerant is desirably 7 ° C. or less.
  • the temperature gradient becomes larger than 7 ° C. when the ratio of the non-combustible refrigerant is 60% or more. For this reason, the ratio of a nonflammable refrigerant needs to be less than 60%.
  • the present inventors have confirmed the relationship between the refrigerant composition and the temperature gradient when each composition is changed for the refrigerant composed of HFO 1123, R32, and incombustible refrigerant (at least one of R125 and R134A). .
  • FIGS. 3 to 6 show the case where the non-combustible refrigerant is 60%, 50%, 40%, and 30% for the refrigerant composed of HFO 1123, R32, and non-combustible refrigerant (at least one of R125 and R134A). It is a graph which shows the relationship between a refrigerant composition and a temperature gradient when changing a composition.
  • the horizontal axis in FIGS. 3 to 6 indicates the GWP of the refrigerant of each composition.
  • FIG. 2 shows the relationship between the ratio (composition ratio) of R125 and R134a in the incombustible refrigerant and the GWP of the refrigerant when the incombustible refrigerant is 60%, HFO1123 is 30%, and R32 is 10%.
  • R125 has a larger GWP value than R134a, the larger the ratio of R125, the higher the GWP of the refrigerant.
  • the GWP shown on the horizontal axis in FIGS. 3 to 6 corresponds to the ratio of R125 and R134a in the incombustible refrigerant.
  • the larger the GWP the greater the R125 in the incombustible refrigerant. It shows that the ratio is large and the ratio of R134a is small. The same applies to the horizontal axes of FIGS. 8 to 13 described later.
  • the temperature gradient can be set to 7 ° C. or less (Table 1, FIG. 6).
  • the ratio of the incombustible refrigerant when the ratio of the incombustible refrigerant is 40% or more and 50% or less (when the composition is within the composition range of the hatched portion shown in the triangular composition diagram of FIG. 7), the ratio of R125 is 8 % Or more and 38% or less is preferable.
  • the ratio of R134a is preferably 2% or more and 32% or less.
  • the ratio of R125 is more preferably 25% or more and 28% or less.
  • the ratio of R134a is more preferably 22% or more and 25% or less. When the ratio of R125 and the ratio of R134a are in such a range, it is considered that the temperature gradient can be surely made 7 ° C. or less when the ratio of the non-combustible refrigerant is 40% or more and 50% or less.
  • FIGS. 8 to 10 show the refrigerant in the first embodiment (the refrigerant having the composition range shown in FIG. 1) when the noncombustible refrigerant is 50%, 40%, and 30% when the respective compositions are changed. It is a graph which shows the ratio (henceforth a "COP ratio") with respect to COP of R410A of energy consumption efficiency (COP).
  • the refrigerant used in this embodiment has a COP ratio of about 80% or more, and the difference from the conventional refrigerant R410A COP is small. Therefore, the refrigeration cycle apparatus of this embodiment using such a refrigerant has sufficient performance. For this reason, even when implementing the method (drop-in) of replacing only the refrigerant of the existing refrigeration cycle apparatus with the low GWP refrigerant, it is considered that it is not necessary to change the design of the apparatus.
  • the GWP of the refrigerant of the present embodiment is greatly reduced compared to the conventional refrigerants R410A, R407A, etc. because the GFO of the HFO 1123 is substantially zero. Therefore, the refrigeration cycle apparatus of this embodiment has little influence on global warming.
  • the refrigeration cycle apparatus of the present embodiment is less affected by global warming and has sufficient performance and sufficient reliability.
  • a refrigeration cycle apparatus for refrigeration, for example, a refrigerator, a cold water machine, an ice maker, a turbo refrigerator, a chiller (chilling unit), a screw refrigerator, a refrigeration unit, a refrigeration showcase, a refrigeration showcase And vending machines.
  • Embodiment 2 This embodiment is different from Embodiment 1 in that the ratio of R134a in the incombustible refrigerant contained in the refrigerant to be used is limited to a range in which the reliability in the pressure resistance of the refrigeration cycle apparatus can be maintained. Since the other points are the same as those of the first embodiment, a duplicate description is omitted.
  • the ratio of R134a is 14% or more. In this case, it is possible to maintain reliability in terms of pressure resistance of the refrigeration cycle apparatus without requiring a design change or the like. The reason will be described below.
  • the HFO 1123 has a problem that the operating pressure is high.
  • the “operating pressure” is the pressure (refrigerant) in the refrigeration circuit during operation of the refrigeration cycle apparatus.
  • the reliability in terms of pressure resistance of the refrigeration cycle apparatus decreases.
  • the refrigerant having a particularly high operating pressure is R410A.
  • the existing refrigeration cycle apparatus is designed so as not to cause a problem of reliability in terms of pressure resistance with respect to a refrigerant having a saturation pressure at 65 ° C. of 4.3 MPaA or less.
  • the operating pressure of the low GWP refrigerant is equal to the operating pressure of R410A. The following is desirable.
  • the present inventors have determined the refrigeration safety rule-related example as an index of the maximum operating pressure at the high pressure portion (between the compressor outlet and the expansion valve inlet) expected for each refrigerant for each refrigerant.
  • the saturation pressure of the refrigerant at 65 ° C. which is the highest temperature among the reference condensation temperatures, was confirmed.
  • the results are shown in FIGS. 11 to 13 (in the case where the ratio of non-combustible refrigerant is 50%, 40%, and 30%).
  • the saturation pressure is indicated by an absolute pressure (MPaA) that is the sum of the gauge pressure and the atmospheric pressure (0.101 MPa).
  • 11 to 13 also show a reference line (a dotted line parallel to the horizontal axis) indicating the saturation pressure of R410A at 65 ° C. (4.3 MPa).
  • the saturation pressure at 65 ° C. is equal to or lower than R410A (4.3 MPaA
  • the ratio of R134a is preferably 14% or more in order to achieve the following).
  • the ratio of R134a is more preferably 27% or more.
  • the refrigeration cycle apparatus of the present embodiment has sufficient reliability in terms of pressure resistance in addition to the same effects as those of the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

This refrigeration cycle device is provided with a refrigeration circuit which comprises a compressor, an outdoor heat exchanger, an indoor heat exchanger and an expansion valve. A refrigerant is enclosed in the refrigeration circuit; and the refrigerant contains R32 and at least one of HFO1123, R125 and R134a. Relative to the total amount of HFO1123, R125, R134a and R32, the ratio of HFO1123 is from 20% by mass to 40% by mass (inclusive), the ratio of the total of R125 and R134a is from 30% by mass to 50% by mass (inclusive) and the ratio of R32 is from 10% by mass to 50% by mass (inclusive).

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle apparatus.
 従来、空気調和機、冷凍機などに用いられる冷媒としては、クロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)などが用いられていた。しかし、CFC、HCFCなどの塩素を含む冷媒は、成層圏のオゾン層への影響(地球温暖化への影響)が大きいため、現在、使用が規制されている。 Conventionally, chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), and the like have been used as refrigerants used in air conditioners, refrigerators, and the like. However, refrigerants containing chlorine such as CFC and HCFC are currently restricted in use because they have a great influence on the ozone layer in the stratosphere (influence on global warming).
 このため、冷媒として、塩素を含まずオゾン層への影響が少ないハイドロフルオロカーボン(HFC)を用いるようになっている。このようなHFCとしては、例えば、ジフルオロメタン(フッ化メチレン、フロン32、HFC-32、R32などとも呼ばれる。以下、「R32」と呼ぶ。)などが知られている(例えば、特許文献1:特許第3956589号公報参照)。他のHFCとしては、テトラフルオロエタン、R125(1,1,1,2,2-ペンタフルオロエタン)なども知られている。特に、R410A(R32とR125の擬似共沸混合冷媒)は、冷凍能力が高いため広く使用されている。 For this reason, hydrofluorocarbon (HFC) which does not contain chlorine and has little influence on the ozone layer is used as the refrigerant. As such an HFC, for example, difluoromethane (also referred to as methylene fluoride, Freon 32, HFC-32, R32, etc., hereinafter referred to as “R32”) is known (for example, Patent Document 1: (See Japanese Patent No. 3956589). As other HFCs, tetrafluoroethane, R125 (1,1,1,2,2-pentafluoroethane) and the like are also known. In particular, R410A (a pseudoazeotropic refrigerant mixture of R32 and R125) is widely used because of its high refrigeration capacity.
 しかし、2025年に施行されるフロン排出抑制法では、例えば、冷凍機に用いる冷媒の地球温暖化係数(GWP)を1500以下にすることが求められている。このため、GWPが2090であるR410Aなどの冷媒は使用できなくなる。したがって、R410Aの代替となるさらにGWPが低い冷媒(低GWP冷媒)の開発が望まれている。 However, according to the Freon emission suppression law that will be enforced in 2025, for example, it is required that the global warming potential (GWP) of the refrigerant used in the refrigerator be 1500 or less. For this reason, a refrigerant such as R410A having a GWP of 2090 cannot be used. Therefore, development of a refrigerant having a lower GWP (low GWP refrigerant) that is an alternative to R410A is desired.
 低GWP冷媒としては、GWPが10未満である、R1234yf(2,3,3,3-テトラフルオロ-1-プロペン)、R1234ze(1,3,3,3-テトラフルオロ-1-プロペン)などが知られている。また、他の低GWP冷媒の候補としては、GWPが略0であるトリフルオロエチレン(1,1,2-トリフルオロエテン、HFO1123、R1123などとも呼ばれる。以下、「HFO1123」と呼ぶ。)も知られている。 Examples of the low GWP refrigerant include R1234yf (2,3,3,3-tetrafluoro-1-propene), R1234ze (1,3,3,3-tetrafluoro-1-propene) having a GWP of less than 10. Are known. As other low GWP refrigerant candidates, trifluoroethylene having a GWP of approximately 0 (also referred to as 1,1,2-trifluoroethene, HFO1123, R1123, etc., hereinafter referred to as “HFO1123”) is also known. It has been.
 なお、これらの低GWP冷媒は、大気中のOHラジカルによって分解されやすい炭素-炭素二重結合を有しているため、オゾン層への影響が少ないと考えられている。また、これらの低GWP冷媒は、例えば、特許文献2(国際公開第2012/157764号)、特許文献3(国際公開第2015/115550号参照)などに記載されている。 Note that these low GWP refrigerants have a carbon-carbon double bond that is easily decomposed by OH radicals in the atmosphere, and thus are considered to have little influence on the ozone layer. Further, these low GWP refrigerants are described in, for example, Patent Document 2 (International Publication No. 2012/157774), Patent Document 3 (International Publication No. 2015/115550), and the like.
特許第3956589号公報Japanese Patent No. 3956589 国際公開第2012/157764号International Publication No. 2012/157774 国際公開第2015/115550号International Publication No. 2015/115550
 上記の低GWP冷媒のうち、R1234yfおよびR1234zeは、蒸気密度が低く、蒸発潜熱が小さいため、伝熱性能が低い。このため、これらの低GWP冷媒を用いる場合、従来と同等の冷凍性能を得るためには、圧縮機の押しのけ量を増加させるために、圧縮機の容積、周波数等の設計変更が必要になるという問題がある。 Among the above-mentioned low GWP refrigerants, R1234yf and R1234ze have low vapor density and low latent heat of vaporization, and therefore have low heat transfer performance. For this reason, when using these low GWP refrigerants, it is necessary to change the design of the compressor volume, frequency, etc. in order to increase the displacement of the compressor in order to obtain the same refrigeration performance as before. There's a problem.
 これに対して、HFO1123は、蒸気密度が高く、蒸発潜熱が大きいため、伝熱性能が高い。したがって、蒸気密度の観点からは、低GWP冷媒として、HFO1123を用いることが望ましい。 On the other hand, HFO1123 has high heat transfer performance because of high vapor density and large latent heat of vaporization. Therefore, it is desirable to use HFO1123 as a low GWP refrigerant from the viewpoint of vapor density.
 しかし、HFO1123は、それだけでは不均化反応(自己分解反応)を生じてしまい、また、燃性を有している。これらの点から、単にHFO1123を冷媒に採用するだけでは、冷凍サイクル装置の信頼性が低下してしまう。したがって、不燃性冷媒を混合して用いる必要がある。 However, HFO1123 alone causes a disproportionation reaction (self-decomposition reaction), and has flammability. From these points, the reliability of the refrigeration cycle apparatus is lowered simply by adopting HFO 1123 as the refrigerant. Therefore, it is necessary to mix nonflammable refrigerants.
 ただし、非共沸混合冷媒では、液相、気相では組成が異なる。このため、温度勾配が生じ、温度勾配が大きくなると、性能低下などが生じるという問題がある。 However, non-azeotropic refrigerant mixtures have different compositions in the liquid phase and gas phase. For this reason, there exists a problem that a temperature gradient arises and a performance fall etc. will arise when a temperature gradient becomes large.
 本発明は、上記課題に鑑みてなされたものであり、地球温暖化の影響が少なく、十分な性能と十分な信頼性を有する冷凍サイクル装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a refrigeration cycle apparatus that is less affected by global warming and has sufficient performance and sufficient reliability.
 本発明に係る冷凍サイクル装置は、圧縮機、室外熱交換器、室内熱交換器および膨張弁を含む冷凍回路を備える。冷凍回路内に冷媒が封入されており、冷媒は、HFO1123と、R32と、R125およびR134aの少なくともいずれかとを含有する。HFO1123、R32、R125およびR134aの合計量に対して、HFO1123の比率が20質量%以上40質量%以下であり、R125およびR134aの合計の比率が30質量%以上50質量%以下であり、R32の比率が10質量%以上50質量%以下である。 The refrigeration cycle apparatus according to the present invention includes a refrigeration circuit including a compressor, an outdoor heat exchanger, an indoor heat exchanger, and an expansion valve. A refrigerant is sealed in the refrigeration circuit, and the refrigerant contains HFO 1123, R32, and at least one of R125 and R134a. The ratio of HFO1123 is 20% by mass or more and 40% by mass or less, and the total ratio of R125 and R134a is 30% by mass or more and 50% by mass or less with respect to the total amount of HFO1123, R32, R125, and R134a. The ratio is 10 mass% or more and 50 mass% or less.
 本発明によれば、地球温暖化の影響が少なく、十分な性能と十分な信頼性を有する冷凍サイクル装置を提供することができる。 According to the present invention, it is possible to provide a refrigeration cycle apparatus that is less affected by global warming and has sufficient performance and sufficient reliability.
実施形態1に係る冷媒の組成を示す三角組成図である。FIG. 3 is a triangular composition diagram showing the composition of the refrigerant according to the first embodiment. 実施形態1に係る冷媒(不燃冷媒=60%)における不燃冷媒の組成比とGWPとの関係を示すグラフである。It is a graph which shows the relationship between the composition ratio of the nonflammable refrigerant | coolant in the refrigerant | coolant which concerns on Embodiment 1 (nonflammable refrigerant | coolant = 60%), and GWP. 実施形態1に係る冷媒(不燃冷媒=60%)の温度勾配を示すグラフである。It is a graph which shows the temperature gradient of the refrigerant | coolant which concerns on Embodiment 1 (nonflammable refrigerant | coolant = 60%). 実施形態1に係る冷媒(不燃冷媒=50%)の温度勾配を示すグラフである。It is a graph which shows the temperature gradient of the refrigerant | coolant which concerns on Embodiment 1 (nonflammable refrigerant | coolant = 50%). 実施形態1に係る冷媒(不燃冷媒=40%)の温度勾配を示すグラフである。It is a graph which shows the temperature gradient of the refrigerant | coolant (noncombustible refrigerant | coolant = 40%) which concerns on Embodiment 1. FIG. 実施形態1に係る冷媒(不燃冷媒=30%)の温度勾配を示すグラフである。It is a graph which shows the temperature gradient of the refrigerant | coolant which concerns on Embodiment 1 (nonflammable refrigerant | coolant = 30%). 実施形態1の係る冷媒の組成を示す別の三角組成図である。It is another triangular composition figure which shows the composition of the refrigerant | coolant which concerns on Embodiment 1. FIG. 実施形態1に係る冷媒(不燃冷媒=50%)のCOP比を示すグラフである。It is a graph which shows the COP ratio of the refrigerant | coolant which concerns on Embodiment 1 (nonflammable refrigerant | coolant = 50%). 実施形態1に係る冷媒(不燃冷媒=40%)のCOP比を示すグラフである。It is a graph which shows the COP ratio of the refrigerant | coolant which concerns on Embodiment 1 (nonflammable refrigerant | coolant = 40%). 実施形態1に係る冷媒(不燃冷媒=30%)のCOP比を示すグラフである。It is a graph which shows the COP ratio of the refrigerant | coolant which concerns on Embodiment 1 (nonflammable refrigerant | coolant = 30%). 実施形態2に係る冷媒(不燃冷媒=50%)の耐圧を示すグラフである。It is a graph which shows the pressure resistance of the refrigerant | coolant (noncombustible refrigerant | coolant = 50%) which concerns on Embodiment 2. FIG. 実施形態2に係る冷媒(不燃冷媒=40%)の耐圧を示すグラフである。It is a graph which shows the pressure resistance of the refrigerant | coolant which concerns on Embodiment 2 (nonflammable refrigerant | coolant = 40%). 実施形態2に係る冷媒(不燃冷媒=30%)の耐圧を示すグラフである。It is a graph which shows the pressure resistance of the refrigerant | coolant which concerns on Embodiment 2 (nonflammable refrigerant | coolant = 30%). 実施形態1に係る冷凍サイクル装置を示す概略構成図である。1 is a schematic configuration diagram illustrating a refrigeration cycle apparatus according to Embodiment 1. FIG.
 以下、本発明の実施形態について説明する。
 [実施形態1]
 (冷凍サイクル装置)
 まず、本実施形態の冷凍サイクル装置の概要について簡単に説明する。図15は、実施形態1に係る冷凍サイクル装置を示す概略構成図である。冷凍サイクル装置は、圧縮機1と、冷房時と暖房時の流れ方向を切替える流路切替弁2と、室外熱交換器3と、膨張弁4と、室内熱交換器5とを含む冷凍回路を備える。なお、冷房と暖房を切替える必要のない冷凍機などでは、流路切替弁2は必要ない。
Hereinafter, embodiments of the present invention will be described.
[Embodiment 1]
(Refrigeration cycle equipment)
First, the outline | summary of the refrigerating-cycle apparatus of this embodiment is demonstrated easily. FIG. 15 is a schematic configuration diagram illustrating the refrigeration cycle apparatus according to the first embodiment. The refrigeration cycle apparatus includes a refrigeration circuit including a compressor 1, a flow path switching valve 2 that switches a flow direction during cooling and heating, an outdoor heat exchanger 3, an expansion valve 4, and an indoor heat exchanger 5. Prepare. In a refrigerator that does not require switching between cooling and heating, the flow path switching valve 2 is not necessary.
 冷房時、冷凍時等においては、圧縮機1で圧縮された高温高圧のガス状冷媒は、流路切替弁2(実線で示す流路)を経由して室外熱交換器3へと流入し、そこで凝縮する。室外熱交換器3で凝縮した液状冷媒は、膨張弁4を経由して室内熱交換器5に流入し、そこで蒸発(気化)する。最後に、室内熱交換器5にて蒸発したガス状冷媒は、流路切替弁2(実線で示す流路)を経由して圧縮機1へ戻る。このように、冷房時において、冷媒は、冷凍サイクル装置の冷凍回路内を図15に示す実線矢印の方向に循環する。なお、暖房時において、冷媒は、冷凍サイクル装置の冷凍回路内を図15に示す破線矢印の方向に循環する。 During cooling, freezing, etc., the high-temperature and high-pressure gaseous refrigerant compressed by the compressor 1 flows into the outdoor heat exchanger 3 via the flow path switching valve 2 (flow path shown by a solid line), It condenses there. The liquid refrigerant condensed in the outdoor heat exchanger 3 flows into the indoor heat exchanger 5 via the expansion valve 4 and evaporates (vaporizes) there. Finally, the gaseous refrigerant evaporated in the indoor heat exchanger 5 returns to the compressor 1 via the flow path switching valve 2 (flow path shown by a solid line). Thus, during cooling, the refrigerant circulates in the direction of the solid arrow shown in FIG. 15 in the refrigeration circuit of the refrigeration cycle apparatus. During heating, the refrigerant circulates in the direction of the broken arrow shown in FIG. 15 in the refrigeration circuit of the refrigeration cycle apparatus.
 本実施形態の冷凍サイクル装置は、さらに、気液分岐器、レシーバー、アキュームレータ、高低圧熱交換器等の他の機器を備えていてもよい。 The refrigeration cycle apparatus of the present embodiment may further include other devices such as a gas-liquid branching device, a receiver, an accumulator, and a high / low pressure heat exchanger.
 (冷媒)
 次に、本実施形態において、冷凍回路内に封入される冷媒の特徴について説明する。なお、本明細書において、「比率」とは、特に言及しない限り、HFO1123、R32、R125およびR134aの合計量に対する質量比率を意味する。また、「%」は、冷媒の組成に関して用いる場合、「質量%」を意味する。
(Refrigerant)
Next, the characteristics of the refrigerant sealed in the refrigeration circuit in this embodiment will be described. In the present specification, the “ratio” means a mass ratio with respect to the total amount of HFO1123, R32, R125, and R134a unless otherwise specified. “%” Means “% by mass” when used in relation to the composition of the refrigerant.
 本実施形態に用いる冷媒は、HFO1123と、R32と、不燃冷媒(R125およびR134Aの少なくともいずれか)とを含んでいる。 The refrigerant used in the present embodiment includes HFO 1123, R32, and non-combustible refrigerant (at least one of R125 and R134A).
 本実施形態に用いる冷媒において、HFO1123の比率は、20%以上40%以下である。HFO1123の比率が40%を超えると、不均化反応が生じる可能性が高くなる。一方、HFO1123の比率が20%未満では、冷媒のGWPを十分に低下させることができなくなる。 In the refrigerant used in the present embodiment, the ratio of HFO 1123 is 20% or more and 40% or less. When the ratio of HFO1123 exceeds 40%, the possibility of a disproportionation reaction increases. On the other hand, if the ratio of HFO 1123 is less than 20%, the GWP of the refrigerant cannot be sufficiently reduced.
 また、不燃冷媒(R125およびR134a)の比率は、30%以上50%以下である。不燃冷媒の比率が60%以上の場合、後述するように、冷媒の温度勾配が従来の冷媒であるR407Cの温度勾配(7℃)より大きくなってしまう。一方、不燃冷媒の比率が30%未満の場合、冷媒の不燃性を十分に確保できない可能性がある。 Further, the ratio of the non-combustible refrigerant (R125 and R134a) is 30% or more and 50% or less. When the ratio of the incombustible refrigerant is 60% or more, as described later, the refrigerant temperature gradient becomes larger than the temperature gradient (7 ° C.) of the conventional refrigerant R407C. On the other hand, when the ratio of the nonflammable refrigerant is less than 30%, there is a possibility that the nonflammability of the refrigerant cannot be sufficiently ensured.
 また、R32の比率は、10%以上50%以下である。なお、このR32の比率範囲は、HFO1123と不燃冷媒(R125およびR134a)の比率によって決まる範囲である。 Moreover, the ratio of R32 is 10% or more and 50% or less. The ratio range of R32 is a range determined by the ratio of HFO 1123 and non-combustible refrigerant (R125 and R134a).
 したがって、本実施形態に用いられる冷媒の組成は、図1の三角組成図に示す斜線部の範囲内にある。 Therefore, the composition of the refrigerant used in the present embodiment is within the range of the hatched portion shown in the triangular composition diagram of FIG.
 なお、本実施形態において用いられる冷媒は、上記成分のみからなる(HFO1123、R32、R125およびR134a以外の成分を含まない)混合冷媒であってもよく、さらに他の冷媒成分を含んでいてもよい。他の冷媒成分としては、例えば、R290、R1270等または他のHFCが挙げられる。 Note that the refrigerant used in the present embodiment may be a mixed refrigerant composed of only the above components (not including components other than HFO1123, R32, R125, and R134a), and may further include other refrigerant components. . Examples of other refrigerant components include R290, R1270, and other HFCs.
 他の成分の配合比率等は、本実施形態の主要な効果を妨げない範囲内において設定される。具体的には、冷媒全体の質量に対する上記成分の合計(HFO1123、R32、R125およびR134aの合計)の比率が、80%以上となるように、他の成分の配合比率を設定することが好ましい。 The blending ratio of other components is set within a range that does not hinder the main effects of this embodiment. Specifically, it is preferable to set the blending ratio of the other components so that the ratio of the total of the above components (the total of HFO1123, R32, R125, and R134a) to the mass of the entire refrigerant is 80% or more.
 また、冷媒は、さらに冷凍機油を含有してもよい。冷凍機油としては、例えば、一般に用いられる冷凍機油(エステル系潤滑油、エーテル系潤滑油、フッ素系潤滑油、鉱物系潤滑油、炭化水素系潤滑油等)が挙げられる。その場合、冷媒との相溶性および安定性等の面で優れている冷凍機油を選択することが好ましい。 The refrigerant may further contain refrigeration oil. Examples of the refrigerating machine oil include commonly used refrigerating machine oils (such as ester-based lubricating oils, ether-based lubricating oils, fluorine-based lubricating oils, mineral-based lubricating oils, and hydrocarbon-based lubricating oils). In that case, it is preferable to select a refrigerating machine oil that is superior in terms of compatibility with the refrigerant and stability.
 また、冷媒は、例えば過酷な使用条件において高度の安定性を要求される場合などには、必要に応じて安定剤をさらに含有してもよい。安定剤は熱および酸化に対する冷媒の安定性を向上させる成分である。安定剤としては、従来から冷凍サイクル装置に用いられる公知の安定剤、例えば、耐酸化性向上剤、耐熱性向上剤、金属不活性剤等が挙げられる。 In addition, the refrigerant may further contain a stabilizer as necessary, for example, when high stability is required under severe use conditions. A stabilizer is a component that improves the stability of the refrigerant against heat and oxidation. As a stabilizer, the well-known stabilizer conventionally used for the refrigerating-cycle apparatus, for example, an oxidation resistance improver, a heat resistance improver, a metal deactivator, etc. are mentioned.
 また、冷媒は、さらに重合禁止剤を含んでいてもよい。重合禁止剤としては、例えば、ハイドロキノン、ハイドロキノンメチルエーテル、ベンゾトリアゾール等が挙げられる。 The refrigerant may further contain a polymerization inhibitor. Examples of the polymerization inhibitor include hydroquinone, hydroquinone methyl ether, benzotriazole, and the like.
 (温度勾配)
 次に、本実施形態に用いられる冷媒における不燃冷媒の比率の上限値の理由について、冷媒の温度勾配の観点から説明する。
(Temperature gradient)
Next, the reason for the upper limit value of the ratio of the incombustible refrigerant in the refrigerant used in the present embodiment will be described from the viewpoint of the temperature gradient of the refrigerant.
 本実施形態に用いる冷媒は、HFO1123の不均化反応および燃性を考慮して、HFO1123と不燃性冷媒等との混合冷媒としている。非共沸混合冷媒は、液相と気相で組成が異なるため、熱交換器での蒸発(または凝縮)の開始温度と終了温度が異なる。例えば、非共沸混合冷媒の圧力が一定である場合、凝縮器では出口に向かって冷媒温度が低下し、蒸発器では出口に向かって冷媒温度が上昇する。このため、飽和液と飽和蒸気との温度差が生じる。この温度差を「温度勾配」という。冷媒の温度勾配が大きくなると、送風機から送られる空気の温度と熱交換器の出口温度との差が少なくなるため、熱交換性能が低下するなどの問題が生じる可能性がある。 The refrigerant used in the present embodiment is a mixed refrigerant of HFO 1123 and an incombustible refrigerant in consideration of the disproportionation reaction and the flammability of HFO 1123. Since the composition of the non-azeotropic refrigerant mixture is different between the liquid phase and the gas phase, the start temperature and end temperature of evaporation (or condensation) in the heat exchanger are different. For example, when the pressure of the non-azeotropic refrigerant mixture is constant, the refrigerant temperature decreases toward the outlet in the condenser, and the refrigerant temperature increases toward the outlet in the evaporator. For this reason, a temperature difference occurs between the saturated liquid and the saturated steam. This temperature difference is called “temperature gradient”. When the temperature gradient of the refrigerant increases, the difference between the temperature of the air sent from the blower and the outlet temperature of the heat exchanger decreases, which may cause problems such as a decrease in heat exchange performance.
 従来から使用されている冷媒のうち、特に温度勾配が大きい冷媒はR407C(R32、R125およびR134aの非共沸混合冷媒)である。R407Cの温度勾配は、7℃程度である。このため、既存の冷凍サイクル装置は、温度勾配が7℃以下の冷媒に対して、性能、信頼性などの問題が生じないように設計されていると考えられる。 Among the refrigerants used conventionally, the refrigerant having a particularly large temperature gradient is R407C (the non-azeotropic refrigerant mixture of R32, R125, and R134a). The temperature gradient of R407C is about 7 ° C. For this reason, it is considered that the existing refrigeration cycle apparatus is designed so that problems such as performance and reliability do not occur with respect to the refrigerant having a temperature gradient of 7 ° C. or less.
 しかし、既存の冷凍サイクル装置に対して、温度勾配が7℃より大きい冷媒を使用すると、上記の性能および信頼性の問題が生じ、装置の設計変更が必要となる可能性がある。したがって、冷媒の温度勾配は7℃以下であることが望ましい。 However, if a refrigerant having a temperature gradient greater than 7 ° C. is used for an existing refrigeration cycle apparatus, the above-mentioned performance and reliability problems may occur, and the apparatus design may need to be changed. Therefore, the temperature gradient of the refrigerant is desirably 7 ° C. or less.
 一方、冷媒の不燃性を確実にする観点からは、不燃冷媒の比率を高めることが望ましい。しかし、本発明者らの検討により、不燃冷媒の比率が60%以上になると、温度勾配が7℃より大きくなってしまうことが判明した。このため、不燃冷媒の比率は、60%未満である必要がある。 On the other hand, from the viewpoint of ensuring the nonflammability of the refrigerant, it is desirable to increase the ratio of the nonflammable refrigerant. However, as a result of studies by the present inventors, it has been found that the temperature gradient becomes larger than 7 ° C. when the ratio of the non-combustible refrigerant is 60% or more. For this reason, the ratio of a nonflammable refrigerant needs to be less than 60%.
 すなわち、本発明者らは、HFO1123と、R32と、不燃冷媒(R125およびR134Aの少なくともいずれか)とからなる冷媒について、各組成を変化させたときの冷媒組成と温度勾配との関係を確認した。 That is, the present inventors have confirmed the relationship between the refrigerant composition and the temperature gradient when each composition is changed for the refrigerant composed of HFO 1123, R32, and incombustible refrigerant (at least one of R125 and R134A). .
 図3~図6は、HFO1123と、R32と、不燃冷媒(R125およびR134Aの少なくともいずれか)とからなる冷媒について、不燃冷媒が60%、50%、40%および30%である場合について、各組成を変化させたときの冷媒組成と温度勾配との関係を示すグラフである。なお、図3~図6の横軸は、各組成の冷媒のGWPを示している。 FIGS. 3 to 6 show the case where the non-combustible refrigerant is 60%, 50%, 40%, and 30% for the refrigerant composed of HFO 1123, R32, and non-combustible refrigerant (at least one of R125 and R134A). It is a graph which shows the relationship between a refrigerant composition and a temperature gradient when changing a composition. The horizontal axis in FIGS. 3 to 6 indicates the GWP of the refrigerant of each composition.
 図2は、不燃冷媒が60%であり、HFO1123が30%であり、R32が10%であるときにおいて、不燃冷媒中のR125とR134aの比率(組成比率)と冷媒のGWPとの関係を示す図である。R125はR134aよりもGWPの値が大きいため、R125の比率が多い程、冷媒のGWPは高くなる。 FIG. 2 shows the relationship between the ratio (composition ratio) of R125 and R134a in the incombustible refrigerant and the GWP of the refrigerant when the incombustible refrigerant is 60%, HFO1123 is 30%, and R32 is 10%. FIG. Since R125 has a larger GWP value than R134a, the larger the ratio of R125, the higher the GWP of the refrigerant.
 このように、図3~図6の横軸に示すGWPは、不燃冷媒中のR125とR134aの比率に対応しており、図3~図6において、GWPが大きい程、不燃冷媒中のR125の比率が多く、R134aの比率が少ないことを示している。なお、後述する図8~図13の横軸も同様である。 Thus, the GWP shown on the horizontal axis in FIGS. 3 to 6 corresponds to the ratio of R125 and R134a in the incombustible refrigerant. In FIGS. 3 to 6, the larger the GWP, the greater the R125 in the incombustible refrigerant. It shows that the ratio is large and the ratio of R134a is small. The same applies to the horizontal axes of FIGS. 8 to 13 described later.
 そして、図3~図6において、温度勾配が横軸と平行な点線で示す7℃以下である範囲を、冷媒の各組成の比率で示すと、以下の表1に示す組成範囲であった。 In FIGS. 3 to 6, the range where the temperature gradient is 7 ° C. or lower indicated by the dotted line parallel to the horizontal axis is indicated by the ratio of each composition of the refrigerant.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1(図3)の結果から、不燃冷媒が60%である場合、全範囲で温度勾配は7℃より大きくなることが分かる。すなわち、不燃冷媒の比率が60%以上になると、不燃冷媒(R125およびR134a)中のR125およびR134aの組成比率を調整しても、温度勾配を7℃以下にすることはできないと考えられる。 From the results of Table 1 (FIG. 3), it can be seen that when the non-combustible refrigerant is 60%, the temperature gradient is greater than 7 ° C. over the entire range. That is, when the ratio of the incombustible refrigerant is 60% or more, it is considered that the temperature gradient cannot be reduced to 7 ° C. or less even if the composition ratio of R125 and R134a in the incombustible refrigerant (R125 and R134a) is adjusted.
 なお、不燃冷媒(R125およびR134a)の比率が30%以下である場合、R125およびR134aのいずれか一方のみを用いる場合でも、温度勾配を7℃以下にすることはできる(表1、図6)。 When the ratio of the non-combustible refrigerant (R125 and R134a) is 30% or less, even when only one of R125 and R134a is used, the temperature gradient can be set to 7 ° C. or less (Table 1, FIG. 6). .
 ただし、冷媒の不燃性を確実にする観点からは、不燃冷媒の比率を高めることが望ましい。しかし、表1(図4、図5)の結果から、不燃冷媒の比率が40%以上50%以下である場合、温度勾配を7℃以下にするためには、不燃冷媒としてR125およびR134aの両方を使用し、かつ、R125の比率およびR134aの比率を特定の範囲に調整することが好ましいことが判明した。 However, from the viewpoint of ensuring the nonflammability of the refrigerant, it is desirable to increase the ratio of the nonflammable refrigerant. However, from the results of Table 1 (FIGS. 4 and 5), when the ratio of the incombustible refrigerant is 40% or more and 50% or less, in order to make the temperature gradient 7 ° C. or less, both R125 and R134a are used as the incombustible refrigerant. And adjusting the ratio of R125 and the ratio of R134a to a specific range was found to be preferable.
 すなわち、本実施形態に係る冷媒において、不燃冷媒の比率が40%以上50%以下である場合(図7の三角組成図に示す斜線部の組成範囲内にある場合)、R125の比率は、8%以上38%以下であることが好ましい。また、R134aの比率は、2%以上32%以下であることが好ましい。 That is, in the refrigerant according to the present embodiment, when the ratio of the incombustible refrigerant is 40% or more and 50% or less (when the composition is within the composition range of the hatched portion shown in the triangular composition diagram of FIG. 7), the ratio of R125 is 8 % Or more and 38% or less is preferable. The ratio of R134a is preferably 2% or more and 32% or less.
 なお、R125の比率は、より好ましくは25%以上28%以下である。また、R134aの比率は、より好ましくは22%以上25%以下である。R125の比率およびR134aの比率がこのような範囲内にある場合、不燃冷媒の比率が40%以上50%以下である場合において、確実に温度勾配を7℃以下にすることができると考えられる。 The ratio of R125 is more preferably 25% or more and 28% or less. The ratio of R134a is more preferably 22% or more and 25% or less. When the ratio of R125 and the ratio of R134a are in such a range, it is considered that the temperature gradient can be surely made 7 ° C. or less when the ratio of the non-combustible refrigerant is 40% or more and 50% or less.
 図8~図10は、本実施形態1における冷媒(図1に示す組成範囲を有する冷媒)について、不燃冷媒が50%、40%および30%である場合について、各組成を変化させたときのエネルギー消費効率(COP)のR410AのCOPに対する比率(以下、「COP比率」と呼ぶ。)を示すグラフである。 FIGS. 8 to 10 show the refrigerant in the first embodiment (the refrigerant having the composition range shown in FIG. 1) when the noncombustible refrigerant is 50%, 40%, and 30% when the respective compositions are changed. It is a graph which shows the ratio (henceforth a "COP ratio") with respect to COP of R410A of energy consumption efficiency (COP).
 図8~図10の結果から、本実施形態に用いる冷媒は、いずれもCOP比率が約80%以上であり、従来の冷媒であるR410AのCOPとの差が小さいことが分かる。したがって、このような冷媒を用いた本実施形態の冷凍サイクル装置は、十分な性能を有している。このため、既存の冷凍サイクル装置の冷媒のみを低GWP冷媒に入れ替える方法(ドロップイン)を実施する場合でも、装置の設計変更等を行う必要がないと考えられる。 8 to 10, it can be seen that the refrigerant used in this embodiment has a COP ratio of about 80% or more, and the difference from the conventional refrigerant R410A COP is small. Therefore, the refrigeration cycle apparatus of this embodiment using such a refrigerant has sufficient performance. For this reason, even when implementing the method (drop-in) of replacing only the refrigerant of the existing refrigeration cycle apparatus with the low GWP refrigerant, it is considered that it is not necessary to change the design of the apparatus.
 また、本実施形態の冷媒のGWPは、HFO1123のGWPが略0であるため、従来の冷媒であるR410A、R407Aなどに対して大幅に低減されたものとなる。したがって、本実施形態の冷凍サイクル装置は、地球温暖化への影響が少ない。 Further, the GWP of the refrigerant of the present embodiment is greatly reduced compared to the conventional refrigerants R410A, R407A, etc. because the GFO of the HFO 1123 is substantially zero. Therefore, the refrigeration cycle apparatus of this embodiment has little influence on global warming.
 なお、HFO1123と、R32と、不燃冷媒(R125およびR134Aの少なくともいずれか)とを含む冷媒において、不燃冷媒が50%、40%および30%である場合に、GWPが1500以下となる組成範囲を、表2に示す。 Note that in a refrigerant containing HFO 1123, R32, and an incombustible refrigerant (at least one of R125 and R134A), a composition range in which GWP is 1500 or less when the incombustible refrigerant is 50%, 40%, and 30%. Table 2 shows.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から、表1に示す不燃冷媒が50%、40%および30%である場合の組成範囲の全てにおいて、GWPが1500以下となっていることが分かる。したがって、本実施形態は、少なくとも冷凍用の冷凍サイクル装置(冷凍機)について、2025年に施行されるフロン排出抑制法に適合したものである。 From Table 2, it can be seen that GWP is 1500 or less in all composition ranges when the non-combustible refrigerant shown in Table 1 is 50%, 40% and 30%. Therefore, this embodiment is suitable for at least the refrigeration cycle apparatus (refrigerator) for refrigeration in accordance with the Freon emission suppression law that will be enforced in 2025.
 以上のことから、本実施形態の冷凍サイクル装置は、地球温暖化の影響が少なく、十分な性能と十分な信頼性を有するものであることが分かる。 From the above, it can be seen that the refrigeration cycle apparatus of the present embodiment is less affected by global warming and has sufficient performance and sufficient reliability.
 なお、冷凍用の冷凍サイクル装置(冷凍機)としては、例えば、冷蔵庫、冷水機、製氷機、ターボ冷凍機、チラー(チリングユニット)、スクリュー冷凍機、冷凍冷蔵ユニット、冷蔵ショーケース、冷凍ショーケース、自動販売機等が挙げられる。 In addition, as a refrigeration cycle apparatus (refrigerator) for refrigeration, for example, a refrigerator, a cold water machine, an ice maker, a turbo refrigerator, a chiller (chilling unit), a screw refrigerator, a refrigeration unit, a refrigeration showcase, a refrigeration showcase And vending machines.
 [実施形態2]
 本実施形態は、使用する冷媒に含まれる不燃冷媒中のR134aの比率を、冷凍サイクル装置の耐圧面での信頼性を維持できる範囲に限定する点で、実施形態1とは異なる。それ以外の点は実施形態1と同様であるため、重複する説明は省略する。
[Embodiment 2]
This embodiment is different from Embodiment 1 in that the ratio of R134a in the incombustible refrigerant contained in the refrigerant to be used is limited to a range in which the reliability in the pressure resistance of the refrigeration cycle apparatus can be maintained. Since the other points are the same as those of the first embodiment, a duplicate description is omitted.
 具体的には、本実施形態に用いられる冷媒において、R134aの比率は14%以上である。この場合、設計変更等を必要とせずに冷凍サイクル装置の耐圧面での信頼性を維持することができる。その理由について以下に説明する。 Specifically, in the refrigerant used in the present embodiment, the ratio of R134a is 14% or more. In this case, it is possible to maintain reliability in terms of pressure resistance of the refrigeration cycle apparatus without requiring a design change or the like. The reason will be described below.
 (耐圧性:作動圧力)
 HFO1123は、作動圧力が高いという問題がある。なお、「作動圧力」とは、冷凍サイクル装置の運転時における冷凍回路内の(冷媒の)圧力である。冷媒の作動圧力が高くなると、冷凍サイクル装置の耐圧面での信頼性が低下するという問題がある。
(Pressure resistance: Working pressure)
The HFO 1123 has a problem that the operating pressure is high. The “operating pressure” is the pressure (refrigerant) in the refrigeration circuit during operation of the refrigeration cycle apparatus. When the operating pressure of the refrigerant increases, there is a problem that the reliability in terms of pressure resistance of the refrigeration cycle apparatus decreases.
 なお、作動圧力が高い冷媒を用いた場合に耐圧面での信頼性を維持するには、冷凍サイクル装置の回路配管等の許容圧力(使用できる最大圧力)を高くするための設計変更などが必要になってしまう。 In order to maintain pressure-resistant reliability when a refrigerant with a high operating pressure is used, it is necessary to change the design to increase the allowable pressure (maximum pressure that can be used) for the circuit piping of the refrigeration cycle equipment. Become.
 従来の冷凍サイクル装置に用いられていた主な冷媒のうち、特に作動圧力が高い冷媒はR410Aである。このため、既存の冷凍サイクル装置は、65℃における飽和圧力が4.3MPaA以下の冷媒に対して、耐圧面での信頼性の問題が生じないように設計されていると考えられる。 Among the main refrigerants used in the conventional refrigeration cycle apparatus, the refrigerant having a particularly high operating pressure is R410A. For this reason, it is considered that the existing refrigeration cycle apparatus is designed so as not to cause a problem of reliability in terms of pressure resistance with respect to a refrigerant having a saturation pressure at 65 ° C. of 4.3 MPaA or less.
 しかし、既存の冷凍サイクル装置に対して、R410Aより作動圧力が大きい冷媒を使用すると、耐圧面での信頼性の問題が生じ、装置の設計変更が必要となる可能性がある。したがって、既存の冷凍サイクル装置の冷媒のみを低GWP冷媒に入れ替える方法(ドロップイン)により、GWPの基準を満たすようにするためには、低GWP冷媒の作動圧力がR410Aの作動圧力に対して同等以下であることが望ましい。 However, if a refrigerant having an operating pressure larger than that of R410A is used for the existing refrigeration cycle apparatus, a problem of reliability in terms of pressure resistance may occur, and the apparatus design may need to be changed. Therefore, in order to satisfy the GWP standard by replacing only the refrigerant of the existing refrigeration cycle apparatus with the low GWP refrigerant (drop-in), the operating pressure of the low GWP refrigerant is equal to the operating pressure of R410A. The following is desirable.
 そこで、本発明者らは、各冷媒について、運転時に予想される高圧部(圧縮機出口から膨張弁入口の間)での最大の作動圧力の指標として、冷凍保安規則関係例示基準で定められた基準凝縮温度のうち最も高い温度である65℃での冷媒の飽和圧力を確認した。その結果を図11~図13(不燃冷媒の比率が50%、40%および30%の場合)に示す。なお、飽和圧力は、ゲージ圧と大気圧(0.101MPa)の和である絶対圧力(MPaA)で示している。また、図11~図13では、R410Aの65℃での飽和圧力(4.3MPa)を示す基準線(横軸に平行な点線)を併せて示している。 Therefore, the present inventors have determined the refrigeration safety rule-related example as an index of the maximum operating pressure at the high pressure portion (between the compressor outlet and the expansion valve inlet) expected for each refrigerant for each refrigerant. The saturation pressure of the refrigerant at 65 ° C., which is the highest temperature among the reference condensation temperatures, was confirmed. The results are shown in FIGS. 11 to 13 (in the case where the ratio of non-combustible refrigerant is 50%, 40%, and 30%). The saturation pressure is indicated by an absolute pressure (MPaA) that is the sum of the gauge pressure and the atmospheric pressure (0.101 MPa). 11 to 13 also show a reference line (a dotted line parallel to the horizontal axis) indicating the saturation pressure of R410A at 65 ° C. (4.3 MPa).
 そして、図11~図13において、飽和温度が4.3MPaA以下である範囲を、冷媒の各組成の比率で示すと、以下の表3に示す組成範囲であった。 In FIGS. 11 to 13, the range where the saturation temperature is 4.3 MPaA or less is indicated by the ratio of each composition of the refrigerant.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3(図11~図13)の結果から、冷媒の組成が図1の三角組成図に示す斜線部の組成範囲内にある場合において、65℃の飽和圧力をR410Aと同等以下(4.3MPaA以下)にするためには、R134aの比率を14%以上にすることが好ましいことが分かる。 From the results of Table 3 (FIGS. 11 to 13), when the refrigerant composition is within the composition range of the hatched portion shown in the triangular composition diagram of FIG. 1, the saturation pressure at 65 ° C. is equal to or lower than R410A (4.3 MPaA The ratio of R134a is preferably 14% or more in order to achieve the following).
 なお、R134aの比率は、より好ましくは27%以上である。この場合、図1の三角組成図に示す斜線部の範囲内の組成を有する冷媒において、確実に65℃の飽和圧力をR410Aと同等以下にすることができる。 The ratio of R134a is more preferably 27% or more. In this case, in a refrigerant having a composition within the range of the hatched portion shown in the triangular composition diagram of FIG.
 以上のことから、本実施形態の冷凍サイクル装置は、実施形態1と同様の効果に加えて、耐圧性の面でも十分な信頼性を有するものであることが分かる。 From the above, it can be seen that the refrigeration cycle apparatus of the present embodiment has sufficient reliability in terms of pressure resistance in addition to the same effects as those of the first embodiment.
 1 圧縮機、2 流路切替弁、3 室外熱交換器、4 膨張弁、5 室内熱交換器。 1 compressor, 2 flow path switching valve, 3 outdoor heat exchanger, 4 expansion valve, 5 indoor heat exchanger.

Claims (4)

  1.  圧縮機、室外熱交換器、室内熱交換器および膨張弁を含む冷凍回路を備え、
     前記冷凍回路内に冷媒が封入されており、
     前記冷媒は、HFO1123と、R32と、R125およびR134aの少なくともいずれかと、を含有し、
     HFO1123、R32、R125およびR134aの合計量に対して、
     HFO1123の比率が20質量%以上40質量%以下であり、
     R125およびR134aの合計の比率が30質量%以上50質量%以下であり、
     R32の比率が10質量%以上50質量%以下である、冷凍サイクル装置。
    A refrigeration circuit including a compressor, an outdoor heat exchanger, an indoor heat exchanger and an expansion valve;
    A refrigerant is enclosed in the refrigeration circuit,
    The refrigerant contains HFO1123, R32, and at least one of R125 and R134a,
    For the total amount of HFO1123, R32, R125 and R134a,
    The ratio of HFO1123 is 20 mass% or more and 40 mass% or less,
    The total ratio of R125 and R134a is 30% by mass or more and 50% by mass or less,
    The refrigeration cycle apparatus whose ratio of R32 is 10 mass% or more and 50 mass% or less.
  2.  前記冷媒は、R125およびR134aの両方を含有し、
     HFO1123、R32、R125およびR134aの合計量に対して、
     R125およびR134aの合計の比率が40質量%以上50質量%以下であり、
     R125の比率が8質量%以上38質量%以下であり、
     R134aの比率が2質量%以上32質量%以下である、請求項1に記載の冷凍サイクル装置。
    The refrigerant contains both R125 and R134a,
    For the total amount of HFO1123, R32, R125 and R134a,
    The total ratio of R125 and R134a is 40% by mass or more and 50% by mass or less,
    The ratio of R125 is 8% by mass or more and 38% by mass or less,
    The refrigeration cycle apparatus according to claim 1, wherein the ratio of R134a is 2 mass% or more and 32 mass% or less.
  3.  HFO1123、R32、R125およびR134aの合計量に対して、
     R134aの比率が14質量%以上である、請求項1または2に記載の冷凍サイクル装置。
    For the total amount of HFO1123, R32, R125 and R134a,
    The refrigeration cycle apparatus according to claim 1 or 2, wherein the ratio of R134a is 14 mass% or more.
  4.  冷凍機に用いられる、請求項1~3のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 3, which is used in a refrigerator.
PCT/JP2016/055109 2016-02-22 2016-02-22 Refrigeration cycle device WO2017145244A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/055109 WO2017145244A1 (en) 2016-02-22 2016-02-22 Refrigeration cycle device
JP2017505673A JPWO2017145244A1 (en) 2016-02-22 2016-02-22 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055109 WO2017145244A1 (en) 2016-02-22 2016-02-22 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2017145244A1 true WO2017145244A1 (en) 2017-08-31

Family

ID=59684860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055109 WO2017145244A1 (en) 2016-02-22 2016-02-22 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JPWO2017145244A1 (en)
WO (1) WO2017145244A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189676A (en) * 2018-04-18 2019-10-31 ダイキン工業株式会社 COMPOSITION CONTAINING REFRIGERANT CONTAINING R32, R125, R143a, R1234yf AND R134a, REFRIGERATION METHOD USING THE COMPOSITION, OPERATION METHOD OF REFRIGERATION MACHINE AND REFRIGERATION MACHINE
WO2019207618A1 (en) * 2018-04-23 2019-10-31 三菱電機株式会社 Refrigeration cycle device and refrigeration device
JP2019194319A (en) * 2018-04-25 2019-11-07 ダイキン工業株式会社 Refrigerant-containing composition, use thereof, refrigerating method using same, and refrigerator comprising same
WO2023181403A1 (en) * 2022-03-25 2023-09-28 三菱電機株式会社 Refrigeration cycle device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141678A1 (en) * 2014-03-18 2015-09-24 旭硝子株式会社 Working medium for heat cycles, composition for heat-cycle systems, and heat-cycle system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062124A (en) * 2014-03-06 2016-10-26 旭硝子株式会社 Working medium for heat cycle, and heat cycle system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141678A1 (en) * 2014-03-18 2015-09-24 旭硝子株式会社 Working medium for heat cycles, composition for heat-cycle systems, and heat-cycle system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189676A (en) * 2018-04-18 2019-10-31 ダイキン工業株式会社 COMPOSITION CONTAINING REFRIGERANT CONTAINING R32, R125, R143a, R1234yf AND R134a, REFRIGERATION METHOD USING THE COMPOSITION, OPERATION METHOD OF REFRIGERATION MACHINE AND REFRIGERATION MACHINE
WO2019207618A1 (en) * 2018-04-23 2019-10-31 三菱電機株式会社 Refrigeration cycle device and refrigeration device
JPWO2019207618A1 (en) * 2018-04-23 2021-02-12 三菱電機株式会社 Refrigeration cycle equipment and refrigeration equipment
JP2019194319A (en) * 2018-04-25 2019-11-07 ダイキン工業株式会社 Refrigerant-containing composition, use thereof, refrigerating method using same, and refrigerator comprising same
WO2023181403A1 (en) * 2022-03-25 2023-09-28 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JPWO2017145244A1 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP5674157B2 (en) Trans-chloro-3,3,3-trifluoropropene for use in cooler applications
EP3730871A1 (en) Heat source unit and refrigeration cycle device
US20200326105A1 (en) Heat source unit and refrigeration cycle apparatus
KR102525762B1 (en) Low gwp heat transfer compositions
WO2019124329A1 (en) Refrigerant cycling device
KR20150089026A (en) Low gwp heat transfer compositions
JP2017145975A (en) Refrigeration cycle device, process of manufacture of refrigeration cycle device, drop-in method for refrigeration cycle device, and replace method for refrigeration cycle device
WO2017145244A1 (en) Refrigeration cycle device
KR20150093728A (en) Low gwp heat transfer compositions
WO2015083834A1 (en) Composition including difluoromethane (hfc-32), pentafluoroethane (hfc-125), and 1,1,1,2-tetrafluoroethane (hfc-134a)
JP6608038B2 (en) Refrigeration cycle equipment
WO2008065331A2 (en) Refrigerant extenders for hcfc22
JP2020073640A (en) Refrigeration cycle apparatus
JP6725639B2 (en) Refrigeration cycle equipment
JP7354271B2 (en) Refrigeration cycle equipment
CN114556031B (en) Refrigeration cycle device
JP2004175998A (en) Refrigerant composition
CN113046029B (en) Composition containing fluoroolefin and preparation method thereof
TW202233798A (en) Thermal pump refrigerants
EP3969535A1 (en) Refrigerant composition
JP2019138625A (en) Refrigeration cycle device
JP2010285620A (en) Refrigerant composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017505673

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891403

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891403

Country of ref document: EP

Kind code of ref document: A1