WO2017143831A1 - 一种全颗粒油页岩炼制***及工艺 - Google Patents

一种全颗粒油页岩炼制***及工艺 Download PDF

Info

Publication number
WO2017143831A1
WO2017143831A1 PCT/CN2016/109039 CN2016109039W WO2017143831A1 WO 2017143831 A1 WO2017143831 A1 WO 2017143831A1 CN 2016109039 W CN2016109039 W CN 2016109039W WO 2017143831 A1 WO2017143831 A1 WO 2017143831A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
gas
inlet
shale
furnace
Prior art date
Application number
PCT/CN2016/109039
Other languages
English (en)
French (fr)
Inventor
钱宇
周怀荣
杨思宇
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2017143831A1 publication Critical patent/WO2017143831A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/06Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of oil shale and/or or bituminous rocks
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes

Definitions

  • the invention belongs to the technical field of energy and chemical industry, and particularly relates to a full-particle oil shale refining system and process.
  • Oil shale as an unconventional oil and gas resource, has abundant resource reserves, and the existing technology guarantees the feasibility of its development and utilization. According to statistics, China's oil shale reserves are converted into shale oil of 47.6 billion tons, twice as much as oil reserves. Vigorously developing oil shale refining technology will help alleviate the pressure on China's oil resources supply and demand, and provide a practical way to achieve energy diversification.
  • the gas heat carrier is represented by a gas full circulation technology, and the oil yield of the technology can reach about 85%.
  • the utilization rate of raw materials is low, and only shale particles having a particle diameter of 10 mm or more can be used.
  • additional fuel gas combustion is required to provide heat for shale retorting.
  • the solid heat carrier is represented by a large-scale technology, and the oil yield of the technology can reach 90%, and shale particles having a particle diameter of 10 mm or less can be utilized, and the utilization rate of the raw materials is high.
  • the present invention proposes a full particle oil shale refining system.
  • the system uses shale particles with a particle size of 10 mm or less that cannot be utilized by the gas full-circulation technology for the large-scale technology.
  • the dry distillation gas generated by the thermal decomposition of the large-scale technology is used for the heat source of the shale dry distillation of the gas full-circulation furnace, and the remaining dry distillation gas is used for Hydrogen is produced by reforming, and the hydrogen produced is used for hydrodenitrogenation of shale oil.
  • gas is full
  • the ash discharged from the ring process and the large process can be used for brick making.
  • the heat required for the reforming hydrogen production process and the brick making process is mainly provided by the semi-coke combustion of the gas full cycle process. Therefore, considering the resource-economy-environment three aspects, compared with the traditional gas full-circulation technology, the present invention proposes that the resource efficiency, economic benefit and environmental benefit of the full-particle oil shale refining system are greatly improved.
  • Another object of the present invention is to provide a process for using the above-described full particle oil shale refining system.
  • a full-particle oil shale refining system comprising a crushing and screening unit, a gas circulation furnace, an oil and gas separation unit, a first combustion furnace, a first heat exchanger, a large furnace, a second furnace, and a second exchange Heater, semi-coke combustion heating unit, brick making unit, hydrogen production unit and shale oil hydrogenation unit.
  • the crushing and screening unit divides the oil shale into two parts having a particle diameter of more than 10 mm and a particle diameter of less than 10 mm, the crushing and screening unit is provided with a raw material oil shale inlet, and the outlet of the crushing and screening unit is divided into two channels, one
  • the passage is connected to the oil shale feedstock inlet of the gas circulation furnace by more than 10 mm.
  • the other passage is connected to the first heat exchanger inlet through a pipe.
  • the outlet of the first heat exchanger is connected to the oil shale feedstock inlet of the larger furnace by less than 10 mm.
  • the first oil and gas mixture of the gas circulation furnace is connected to the oil and gas inlet of the oil and gas separation unit through a pipeline, and the semi-coke outlet of the gas circulation furnace is connected to the semi-coke inlet of the semi-coke combustion heating unit through a pipeline; the cold circulation of the outlet of the oil separation unit
  • the dry distillation gas is divided into three channels, one of which is connected to the inlet of the first combustion furnace regenerator through a pipe, one passage is connected to the inlet of the combustion chamber of the first combustion furnace through a pipe, and the other passage is connected to the gas and gas circulation through the pipe The furnace is connected.
  • the remaining dry distillation gas at the outlet of the oil and gas separation unit is connected to the inlet of the hydrogen production unit through a pipeline;
  • the hot recycle dry distillation gas outlet of the first combustion furnace is connected to the heat cycle dry distillation gas inlet of the gas circulation furnace through the pipeline;
  • the high nitrogen shale oil is exported from the oil separation unit It is connected to the shale oil hydrogenation unit shale oil inlet through a pipeline.
  • the preheated oil shale outlet of the first heat exchanger is connected to the oil shale inlet of the large furnace through a pipeline; the semi-coke and ash mixture flow of the large furnace is mixed with the semi-coke ash of the second furnace through the pipeline
  • the inlet of the stream is connected; the circulating ash outlet of the second furnace is connected to the circulating ash inlet of the large furnace through the pipeline, and the remaining ash outlet of the second furnace is passed through the pipeline and the ash inlet of the second heat exchanger Connection
  • the ash outlet of the second heat exchanger is connected to the ash inlet of the brick making unit through a pipe; the flue gas outlet of the second burner is connected to the flue gas inlet of the first heat exchanger through a pipe.
  • the ash slag outlet of the semi-coke combustion heating unit is connected to the ash inlet of the brick making unit through a pipeline, and the heat of the brick making unit is provided by a semi-coke burning unit; the hydrogen outlet of the hydrogen producing unit is passed through the pipeline and shale oil.
  • the hydrogen inlet of the hydrogen unit is connected, and the heat of the hydrogen production unit is supplied by the semi-coke combustion unit.
  • the oil and gas separation unit comprises a washing tower, a cooling tower and an electric catcher.
  • the oil and gas separation unit is provided with a pyrolysis oil and gas mixture inlet, and the first scrubbing gas from the water washing tower is connected to the first scrubbing gas inlet of the cooling tower through a pipeline.
  • the first oil-water mixture from the water scrubber is connected to the first shale oil inlet of the furnace through a pipe; the second scrubbing gas from the cooling tower is connected to the second scrubbing gas inlet of the electric box through a pipe.
  • the second oil-water mixture from the cooling tower is connected to the second shale oil inlet of the heating furnace through a pipeline;
  • the third washing gas from the electric hopper is divided into three passages, one passage through the pipeline and the dry distillation inlet of the first combustion furnace Connected, one channel is connected to the dry distillation gas inlet at the bottom of the gas circulation furnace through a pipe, and the other channel is connected to the reforming reactor dry distillation gas inlet through a pipe.
  • the hydrogen production unit comprises a reforming reactor, a waste heat recovery device, and a pressure swing adsorption separator.
  • the hydrogen production unit is provided with a raw material dry distillation gas inlet, and the first hydrogen rich in the reforming reactor is connected to the first hydrogen rich inlet of the pressure swing adsorption separator through a pipeline; the hydrogen sulfide outlet of the pressure swing adsorption separator passes through the pipeline and the heating furnace
  • the hydrogen inlet is connected;
  • the reforming reactor jacket is provided with a third flue gas inlet, and the fourth flue gas outlet of the reforming reactor jacket is connected to the flue gas inlet of the waste heat recovery device through the pipeline; the steam of the waste heat recovery device
  • the outlet is connected to the feed steam inlet of the reforming reactor through a conduit.
  • the shale oil hydrogenation unit comprises a heating furnace, a shale oil hydrogenation reactor, a high pressure separator and a compressor.
  • the shale oil hydrogenation unit is provided with a shale oil inlet, and the outlet of the shale oil and hydrogen mixture of the heating furnace is connected to the reactant inlet of the hydrogenation reactor through a pipeline; the reaction product outlet of the hydrogenation reactor is passed through the pipeline Connected to the reactant inlet of the high pressure separator; the outlet of the gas phase product of the high pressure separator is divided into two channels, one channel is connected to the recycle gas inlet of the compressor through the pipe, and the other channel is passed through The pipeline is directly burned and discharged.
  • the second heat exchanger is provided with an air inlet, and the preheated air outlet is connected to the air inlet of the second combustion furnace.
  • the semi-coke combustion heating unit is provided with an inlet for oil shale raw materials.
  • the brick making unit is provided with an inlet for making brick accessories.
  • a process for producing shale oil using the above-described full-particle oil shale refining system comprising the following steps:
  • the oil shale raw material is crushed and sieved, the oil shale with a particle size of 10 mm or more is screened and entered into the gas circulation furnace; the oil shale with a particle size of 10 mm or less and the flue gas are preheated and then enter the large furnace.
  • the gas outlet of the gas circulation furnace is mixed with the outlet gas of the large furnace and enters the oil separation unit.
  • a part of the gas obtained by the oil and gas separation unit is used as a circulating gas to supply heat, a part of which is used as a combustion gas to heat the circulating gas, and the remaining dry distillation gas is used for hydrogen production.
  • the separated shale oil is exported as low-nitrogen shale oil after hydrodenitrogenation.
  • the outlet semi-coke of the gas circulation furnace enters the semi-coke combustion heating unit, and the heat generated by the semi-coke combustion is supplied to the hydrogen production unit and the brick making unit.
  • the ash produced by the combustion of the semi-coke is used for brick making.
  • the heat of the large furnace is realized by circulating ash, and the remaining ash is used for brick making.
  • the raw material oil shale of the gas circulation furnace has a particle size of 10-75 mm.
  • the gas cycle furnace has a dry distillation temperature of 450-550 ° C and a pressure of 0.1 MPa.
  • the gas cycle temperature of the gas circulation furnace is 520 °C.
  • the large furnace has a dry distillation temperature of 450-520 ° C and a pressure of 0.1 MPa.
  • the dry distillation temperature of the large furnace is 500 °C.
  • the temperature of the hot cycle dry distillation gas is 550-650 ° C and the pressure is 0.1 MPa.
  • the amount of the hot cycle dry distillation gas is 480-640 Nm 3 /(t oil shale).
  • the preheating temperature of the flue gas is from 90 to 150 °C.
  • 1 is a schematic structural view of a gas full cycle oil shale refining system in the prior art.
  • 1 crushing and screening unit
  • 2 gas full circulation furnace
  • 3 oil and gas separation unit
  • 4 is first combustion furnace
  • 5-16 logistics number
  • 5 is oil shale
  • 6 is oil with particle diameter larger than 10mm Shale
  • 7 is oil shale with particle size less than 10mm
  • 8 is the first oil and gas mixture
  • 9 is semi-coke
  • 10 is circulating dry distillation gas
  • 11 is shale oil
  • 12 is cold cycle gas
  • 13 combustion dry distillation gas
  • 14 is a dry distillation gas for absorbing semi-coke heat
  • 15 is a fuel gas
  • 16 is a heat cycle dry distillation gas.
  • FIG. 2 is a schematic view showing the structure of a full-particle oil shale refining system of the present invention.
  • 17 is the first heat exchanger
  • 18 is the large furnace
  • 19 is the second combustion furnace
  • 20 is the second heat exchanger
  • 21 is the semi-coke combustion heating unit
  • 22 is the brick making unit
  • 23 is the hydrogen making unit
  • 24 is a shale oil hydrogenation unit
  • 25-45 is the logistics number, of which 25 is the first flue gas
  • 26 is the preheated oil shale
  • 27 is the second flue gas
  • 28 is the second oil and gas mixture
  • 29 is half Flow of coke and ash mixture
  • 30 is second air
  • 31 is circulating ash
  • 32 is residual ash
  • 33 is first air
  • 34 is second ash
  • 35 is oil shale
  • 36 is third ash
  • 37 is the fourth ash
  • 38 is the brick auxiliary
  • 39 is the brick
  • 40 is the third oil and gas mixture
  • FIG. 3 is a process flow diagram for producing shale oil using the full particle oil shale refining system of the present invention.
  • 46 is a grinder
  • 47 is a sifter
  • 48 is a water washing tower
  • 49 is a cooling tower
  • 50 is an electric catching box
  • 51 is a cyclone separator
  • 52 is a reforming reactor
  • 53 is a pressure swing adsorption separator
  • 54 For the waste heat recovery boiler, 55 is the compressor, 56 is the heating furnace, 57 is the hydrogenation reactor, 58 is the high pressure separator; 59-81 is the logistics No.
  • 59 is the gas-solid mixture flow
  • 60 is the fifth ash
  • 61 is the third air
  • 62 is the third flue gas
  • 63 is the first circulating water
  • 64 is the first washing gas
  • 65 is the first oil-water mixture
  • 66 is the second circulating water
  • 67 is the second washing gas
  • 68 is the second oil-water mixture
  • 69 is the third oil-water mixture
  • 70 is fresh water
  • 71 steam
  • 72 is reforming reaction gas
  • 73 is fourth flue gas.
  • 74 is a gas after separating hydrogen
  • 75 is fifth flue gas
  • 76 is compressed hydrogen
  • 77 is a preheated shale oil and hydrogen mixture stream
  • 78 is a hydrogenation product
  • 79 is a hydrogenated gas phase product
  • 80 is a cycle.
  • Gas, 81 is the gas.
  • the remaining numbers are the same as in Figure 2, indicating the same logistics.
  • FIG. 1 A schematic structural view of a gas full-cycle oil shale refining system in the prior art is shown in FIG.
  • the crushing and screening unit 1, the gas full circulation furnace 2, the oil and gas separation unit 3, and the first combustion furnace 4 are included.
  • the raw material oil shale 5 is crushed, and the shale particles having a particle diameter larger than 10 mm are filtered and passed into the gas full-circulation dry distillation furnace 2 to carry out a dry distillation reaction to produce a first oil and gas mixture 8 and a semi-coke 9.
  • the first oil and gas mixture 8 enters the oil and gas separation unit 3, and the dry distillation gas 10 and the shale oil 11 are separated.
  • the dry distillation gas 10 is completely circulated for heating.
  • FIG. 1 A full-particle oil shale refining system of this embodiment, the structural schematic of the system is shown in FIG.
  • the system includes a crushing and screening unit 1, a gas full circulation furnace 2, an oil and gas separation unit 3, a first combustion furnace 4, a first heat exchanger 17, a large furnace 18, a second combustion furnace 19, and a second heat exchanger 20.
  • the crushing and screening unit 1 is provided with an inlet of an oil shale raw material 5, and the outlet of the crushing and screening unit 1 is divided into two passages, and one passage is connected to an oil shale raw material inlet of the gas circulation furnace 2 of more than 10 mm through a pipeline.
  • the other passage is connected to the inlet of the first heat exchanger 17 through a pipe.
  • the outlet of the first heat exchanger 17 is connected via a conduit to an oil shale feedstock inlet of the utility furnace 18 of less than 10 mm.
  • the first oil and gas mixture 8 of the gas circulation furnace 2 passes through the pipeline and the oil separation unit 3 third oil
  • the inlets of the gas 40 are connected, and the outlet of the semi-coke 9 of the gas circulation furnace 2 is connected to the semi-coke inlet of the semi-coke combustion heating unit 21 through a pipeline; the cold-cycle dry distillation gas 10 at the outlet of the oil separation unit 3 is divided into three channels, one passage
  • the inlet 12 of the regenerator of the first combustion furnace 4 is connected by a pipe, one passage is connected to the inlet 13 of the combustion chamber of the first combustion furnace 4 through a pipe, and the other passage is connected to the gas circulation furnace 2 through a pipe.
  • the remaining dry distillation gas 42 at the outlet of the oil and gas separation unit 3 is connected to the inlet of the hydrogen production unit 23 through a pipeline; the outlet of the thermal cycle dry distillation gas 16 of the first combustion furnace 4 is connected to the heat cycle dry distillation gas inlet of the gas circulation furnace 2 through a pipeline; 3 The outlet high nitrogen shale oil 43 is connected to the 24 shale oil inlet of the shale oil hydrogenation unit through a pipeline.
  • the outlet of the preheated oil shale 26 of the first heat exchanger 17 is connected to the oil shale inlet of the large furnace 18 through a pipe; the semi-coke and ash mixture flow 29 of the large furnace 18 passes through the pipe and the second combustion furnace 19
  • the inlet of the semi-coke ash mixture stream is connected;
  • the outlet ash 31 outlet of the second furnace 19 is connected to the circulating ash inlet of the large furnace 18 through a pipe, and the remaining ash 32 outlet of the second furnace 19 is passed through the pipe
  • the ash outlet of the second heat exchanger 20 is connected to the ash inlet of the brick making unit 22 through the pipe;
  • the flue gas 25 outlet of the second burning furnace 19 is passed through the pipe It is connected to the flue gas inlet of the first heat exchanger 17.
  • the outlet of the ash 36 of the semi-coke combustion heating unit 21 is connected to the ash inlet of the brick making unit 22 through a pipe, the heat of the brick making unit 22 is supplied by the semi-coke burning unit 21; the hydrogen 44 outlet of the hydrogen producing unit 23 The heat of the hydrogen producing unit 23 is supplied by the semi-coke burning unit 21 through a pipe connected to the hydrogen inlet of the shale oil hydrogenation unit 24.
  • the oil and gas separation unit 3 includes a water washing tower 48, a cooling tower 49, and an electric catching box 50.
  • the oil and gas separation unit 3 is provided with a third oil and gas mixture 40 inlet, and the first scrubbing gas 64 from the water washing tower 48 is connected to the first scrubbing gas inlet of the cooling tower 49 through a pipe.
  • the first oil-water mixture from the scrubber 48 is connected to the first shale oil inlet of the furnace 56 through a pipe; the second scrubbing gas 67 from the cooling tower 49 is connected to the second scrubbing gas inlet of the electric catcher 50 through a pipe.
  • the first oil-water mixture 68 from the cooling tower 49 is connected to the second shale oil inlet of the heating furnace 56 through a pipe; the third scrubbing gas 41 from the electric catching box 50 is divided into three passages, one passage through the pipeline and the first combustion
  • the dry distillation inlets of the furnace 4 are connected, One passage is connected to the dry distillation gas inlet at the bottom of the gas circulation furnace 2 through a pipe, and the other passage is connected to the dry distillation gas inlet of the reforming reactor 52 through a pipe.
  • the hydrogen production unit 23 includes a reforming reactor 52, a pressure swing adsorption separator 53, and a waste heat recovery device 54.
  • the hydrogen generating unit 23 is provided with a raw material dry distillation gas 42 inlet, and the first hydrogen rich gas 72 of the reforming reactor 52 is connected to the first hydrogen rich inlet of the pressure swing adsorption separator 53 through a pipe; the pressure swing adsorption separator 53 outlet
  • the hydrogen gas is connected to the hydrogen inlet of the heating furnace 56 through a pipeline;
  • the reforming reactor 52 is jacketed with a third flue gas 62 inlet, and the outlet of the fourth flue gas 73 jacketed by the reforming reactor 52 passes through the pipeline and the waste heat recovery device 54.
  • the flue gas inlets are connected; the steam 71 outlet of the waste heat recovery unit 54 is connected to the feed steam inlet of the reforming reactor 52 through a conduit.
  • the shale oil hydrogenation unit includes a compressor 55, a furnace 56, a shale oil hydrogenation reactor 57, and a high pressure separator 58.
  • the shale oil hydrogenation unit 24 is provided with a shale oil 43 inlet, and the outlet of the shale oil and hydrogen mixture 77 of the heating furnace 56 is connected to the reactant inlet of the hydrogenation reactor 57 through a conduit; the hydrogenation reactor 57
  • the outlet of the reaction product 78 is connected to the reactant inlet of the high pressure separator 58 through a pipe; the outlet of the gas phase product 79 of the high pressure separator 58 is divided into two channels, one of which is connected to the recycle gas inlet of the compressor 55 through a pipe. The other channel is directly burned through the pipeline.
  • the second heat exchanger 20 is provided with an inlet for air 33, and the outlet of the preheated air 33 is connected to the air inlet of the second combustion furnace 19.
  • the semi-coke combustion heating unit 21 is provided with an inlet of an oil shale raw material 35.
  • the brick making unit 22 is provided with an inlet for a brick making material 38.
  • FIG. 3 The process flow chart for producing shale oil by using the full-particle oil shale refining system of this embodiment is shown in FIG. 3, and specifically includes the following steps:
  • the oil shale raw material 5 is crushed and sieved by the unit 1, the oil shale 6 having a particle diameter of 10 mm or more is selected and entered into the gas circulation furnace 2; the oil shale 7 having a particle diameter of 10 mm or less and the first flue gas 25 are preheated and then enter the work.
  • the outlet gas of the gas cycle furnace 2 is mixed with the outlet gas of the large furnace 18 to enter the oil separation unit 3.
  • a part of the gas obtained by the oil-gas separation unit 3 is heated as the circulation gas 12, a part of which is used as the combustion gas 13 to heat the circulation gas, and the remaining dry distillation gas 42 is used for hydrogen production.
  • the outlet half coke 9 of the gas circulation furnace 2 enters the semi-coke combustion heating unit 21, and the heat generated by the semi-coke combustion is supplied to the hydrogen generation unit 23 and the brick making unit 22.
  • the ash 37 produced by the combustion of the semi-coke is used for brick making.
  • the system of the present invention uses detrital shale for the production of shale oil, and the system It produces hydrogen from the interior and is used for hydrogenation of shale oil. It effectively removes high levels of nitrogen from shale oil and greatly increases the economic benefits of the entire refining system.
  • the gas cycle furnace has a dry distillation temperature of 450-550 ° C and a pressure of 0.1 MPa; preferably, the gas cycle temperature of the gas circulation furnace is 520 ° C.
  • the large furnace has a dry distillation temperature of 450-520 ° C and a pressure of 0.1 MPa; preferably, the dry distillation temperature of the large furnace is 500 ° C.
  • the temperature of the hot cycle dry distillation gas is 550-650 ° C and the pressure is 0.1 MPa.
  • the heat cycle dry distillation gas amount is 480-640 Nm 3 / (t shale).
  • the preheating temperature of the flue gas is from 90 to 150 °C.
  • a full-particle oil shale refining system of the present embodiment comprises a crushing and screening unit 1, a gas full circulation furnace 2, an oil and gas separation unit 3, a first combustion furnace 4, a first heat exchanger 17, and a large furnace 18,
  • the second combustion furnace 19, the second heat exchanger 20, the semi-coke combustion heating unit 21, the brick making unit 22, the hydrogen producing unit 23, and the shale oil hydrogenation unit 24 are schematically illustrated in Fig. 2.
  • the specific equipment of each process section is as described in Example 1.
  • the flow rate of the raw material entering the system of the embodiment was 375 t/h
  • the dry distillation temperature of the gas circulation furnace was 520 ° C
  • the pressure was 0.1 MPa
  • the dry distillation temperature of the large furnace was 500 ° C
  • the dry distillation volume of the thermal cycle was 630 Nm 3 / (t shale ).
  • the oil shale is based on Fushun oil shale.
  • the gas industry analysis and elemental analysis are shown in Table 1.
  • the process flow is shown in Figure 3.
  • the whole particle oil shale refining system of the present invention is compared to the existing gas full cycle oil shale refining process
  • the utilization rate of raw oil shale increased from 80% to 98%, and the shale oil yield increased from 4.2% to 6.5%.
  • the price of low-nitrogen shale oil is 3,000 yuan/ton
  • the economic income is 1.5 times
  • the investment profit rate has increased from 10.4% to 19.2%, an increase of 8.8%.
  • a full-particle oil shale refining system of the present embodiment comprises a crushing and screening unit 1, a gas full circulation furnace 2, an oil and gas separation unit 3, a first combustion furnace 4, a first heat exchanger 17, and a large furnace 18,
  • the second combustion furnace 19, the second heat exchanger 20, the semi-coke combustion heating unit 21, the brick making unit 22, the hydrogen producing unit 23, and the shale oil hydrogenation unit 24 are schematically illustrated in Fig. 2.
  • the specific equipment of each process section is as described in Example 1.
  • the flow rate of the raw material entering the system of the present embodiment is 375 t/h
  • the dry distillation temperature of the gas circulation furnace is 520 ° C
  • the pressure is 0.1 MPa
  • the dry distillation temperature of the large furnace is 500 ° C
  • the dry distillation gas volume of the thermal cycle is 480 Nm 3 / (page t rock).
  • the oil shale is made of Huadian oil shale.
  • the gas industry analysis and elemental analysis are shown in Table 2.
  • the process flow is shown in Figure 3.
  • the utilization rate of the raw material oil shale of the full-particle oil shale refining system of the present invention is increased from 80% to 99%, and the shale oil yield is compared. From 8.3% to 10.4%.
  • the price of low-nitrogen shale oil is 3,000 yuan/ton
  • the economic income is 1.3 times
  • the investment profit rate is increased from 9.7% to 18.2%, an increase of 8.5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种全颗粒油页岩炼制***及工艺,所述***包括破碎筛分单元(1)、瓦斯循环炉(2)、油气分离单元(3)、第一燃烧炉(4)、第一换热器(17)、大工炉(18)、第二燃烧炉(19)、第二换热器(20)、半焦燃烧供热单元(21)、制砖单元(22)、制氢单元(23)和页岩油加氢单元(24)。本工艺利用瓦斯循环炉不能利用的小颗粒页岩生产页岩油,利用剩余干馏气重整制氢,氢气用于页岩油加氢;利用瓦斯循环炉半焦燃烧给炼制过程提供热源,利用灰渣制砖。

Description

一种全颗粒油页岩炼制***及工艺 技术领域
本发明属于能源与化工技术领域,具体涉及一种全颗粒油页岩炼制***及工艺。
背景技术
随着国民经济的快速发展,人们对能源的需求日益增加。石油作为不可再生能源已经不能满足人类持续和不断增长的能源需求。而油页岩作为非常规的油气资源,其资源储量丰富,现有技术保证了其开发利用的可行性。据统计,我国油页岩储量折算成页岩油有476亿吨,为石油储量的2倍。大力发展油页岩炼制技术有利于缓解我国石油资源供需压力,为实现能源多元化提供切实可行的途径。
目前工业化的油页岩干馏技术有气体热载体和固体热载体。以气体热载体为代表的有瓦斯全循环技术,该技术油收率可达到85%左右。但是,原料利用率低,只能利用粒径10mm以上的页岩颗粒。另外,需要额外的燃料气燃烧为页岩干馏提供热量。以固体热载体为代表的有大工技术,该技术油收率可达到90%,可利用粒径10mm以下的页岩颗粒,原料利用率高。
发明内容
针对瓦斯全循环技术存在的问题,本发明提出一种全颗粒油页岩炼制***。该***将瓦斯全循环技术不能利用的粒径10mm以下的页岩颗粒用于大工技术,大工技术热解产生的干馏气一部分用于瓦斯全循环炉页岩干馏的热源,剩余干馏气则用于重整制氢,制得的氢气用于页岩油加氢脱氮。另外,瓦斯全循 环工艺和大工工艺排放的灰渣可用于制砖。重整制氢过程和制砖过程需要的热量主要由瓦斯全循环工艺的半焦燃烧提供。所以,从资源-经济-环境三方面考虑,相比传统瓦斯全循环技术,本发明提出一种全颗粒油页岩炼制***的资源效率、经济效益和环境效益都表现出较大的提高。
本发明的另一目的在于提供一种采用上述全颗粒油页岩炼制***的工艺。
本发明目的通过以下技术方案实现:
一种全颗粒油页岩炼制***,所述***包括破碎筛分单元、瓦斯循环炉、油气分离单元、第一燃烧炉、第一换热器、大工炉、第二燃烧炉、第二换热器、半焦燃烧供热单元、制砖单元、制氢单元和页岩油加氢单元。
所述破碎筛分单元将油页岩分成粒径大于10mm和粒径小于10mm两部分,所述破碎筛分单元设有原料油页岩入口,破碎筛分单元的出口分为两个通道,一个通道通过管道与瓦斯循环炉的大于10mm的油页岩原料入口相连接。另一个通道通过管道与第一换热器入口相连接。第一换热器的出口通过管道与大工炉的小于10mm的油页岩原料入口相连接。
所述瓦斯循环炉的第一油气混合物通过管道与油气分离单元油气入口相连接,瓦斯循环炉的半焦出口通过管道与半焦燃烧供热单元半焦入口相连接;油气分离单元出口的冷循环干馏气分为三个通道,一个通道通过管道与第一燃烧炉蓄热室的入口相连接,一个通道通过管道与第一燃烧炉的燃烧室的入口相连接,另一个通道通过管道与瓦斯循环炉相连接。油气分离单元出口剩余干馏气通过管道与制氢单元入口相连接;第一燃烧炉的热循环干馏气出口通过管道与瓦斯循环炉热循环干馏气入口相连接;油气分离单元出口高氮页岩油通过管道与页岩油加氢单元页岩油入口相连接。
所述第一换热器的预热油页岩出口通过管道与大工炉的油页岩入口相连接;大工炉的半焦和灰渣混合物流通过管道与第二燃烧炉的半焦灰渣混合物流的入口相连接;第二燃烧炉的循环灰渣出口通过管道与大工炉的循环灰渣入口相连接,第二燃烧炉的剩余灰渣出口通过管道与第二换热器的灰渣入口相连接; 第二换热器的灰渣出口通过管道与制砖单元的灰渣入口相连接;第二燃烧炉的烟气出口通过管道与第一换热器的烟气入口相连接。
所述半焦燃烧供热单元的灰渣出口通过管道与制砖单元的灰渣入口相连接,制砖单元的热量由半焦燃烧单元提供;制氢单元的氢气出口通过管道与页岩油加氢单元的氢气入口相连接,制氢单元的热量由半焦燃烧单元提供。
优选的,所述油气分离单元包括洗涤塔、冷却塔和电捕箱。
所述油气分离单元设有热解油气混合物入口,水洗塔出来的第一洗涤气通过管道与冷却塔的第一洗涤气入口相连接。水涤塔出来的第一油水混合物通过管道与加热炉第一页岩油入口相连接;冷却塔出来的第二洗涤气通过管道与电捕箱的第二洗涤气入口相连接。冷却塔出来的第二油水混合物通过管道与加热炉第二页岩油入口相连接;电捕箱出来的第三洗涤气分为三个通道,一个通道通过管道与第一燃烧炉的干馏气入口相连接,一个通道通过管道与瓦斯循环炉底部干馏气入口相连接,另外一个通道通过管道与重整反应器干馏气入口相连接。
优选的,所述制氢单元包括重整反应器、余热回收装置和变压吸附分离器。
所述制氢单元设有原料干馏气入口,重整反应器的第一富氢气通过管道与变压吸附分离器的第一富氢气入口相连接;变压吸附分离器出口氢气通过管道与加热炉氢气入口相连接;重整反应器夹套设有第三烟气入口,重整反应器夹套的第四烟气的出口通过管道与余热回收装置的烟气入口相连接;余热回收装置的蒸汽出口通过管道与重整反应器的原料蒸汽入口相连接。
优选的,所述页岩油加氢单元包括加热炉、页岩油加氢反应器、高压分离器和压缩机。
所述页岩油加氢单元设有页岩油入口,加热炉的页岩油和氢气混合物的出口通过管道与加氢反应器的反应物入口相连接;加氢反应器的反应产物出口通过管道与高压分离器的反应物入口相连接;高压分离器的气相产物的出口分为两个通道,一个通道通过管道与压缩机的循环气入口相连接,另一个通道通过 管道直接燃烧排放。
所述第二换热器设有空气入口,预热后的空气出口与第二燃烧炉的空气入口相连接。
所述半焦燃烧供热单元设有油页岩原料的入口。
所述制砖单元设有制砖辅料的入口。
一种采用上述全颗粒油页岩炼制***生产页岩油的工艺,包括如下步骤:
油页岩原料经破碎筛分单元后,筛选得到粒径10mm以上的油页岩进入瓦斯循环炉;粒径10mm以下的油页岩与烟气预热后进入大工炉。瓦斯循环炉出口气与大工炉出口气混合,进入油气分离单元。
油气分离单元得到的气体一部分作为循环气供热,一部分作为燃烧气加热循环气,剩余的干馏气用于制氢。分离得到的页岩油经加氢脱氮后,作为低含氮页岩油外销。
瓦斯循环炉的出口半焦进入半焦燃烧供热单元,半焦燃烧产生的热量供给制氢单元和制砖单元。半焦燃烧产生的灰渣用于制砖。
大工炉的热量通过循环灰渣实现,剩余的灰渣用于制砖。
优选的,所述瓦斯循环炉的原料油页岩粒径为10-75mm。
优选的,所述瓦斯循环炉的干馏温度为450-550℃,压力为0.1MPa。
更优选的,所述瓦斯循环炉的干馏温度为520℃。
优选的,所述大工炉的干馏温度为450-520℃,压力为0.1MPa。
更优选的,所述大工炉的干馏温度为500℃。
优选的,所述热循环干馏气的温度为550-650℃,压力为0.1MPa。
优选的,所述热循环干馏气量为480-640Nm3/(t油页岩)。
优选的,所述烟气的预热温度为90-150℃。
本发明的***及工艺具有如下优点及有益效果:
(1)利用瓦斯循环炉不能利用的小颗粒页岩生产页岩油,提高了原料页岩的利用率,同时大幅度提高了炼制过程经济效益;
(2)利用剩余的干馏气用于重整制氢,氢气用于页岩油加氢提质,降低外购氢的成本;
(3)利用瓦斯循环炉半焦燃烧,可供给整个炼制过程的热源;
(4)利用灰渣制砖,减少对环境的污染,同时提高整个炼制过程的经济效益。
附图说明
图1为现有技术中的瓦斯全循环油页岩炼制***的结构示意图。其中1为破碎筛分单元,2为瓦斯全循环炉,3为油气分离单元,4为第一燃烧炉;5-16为物流编号,其中5为油页岩,6为粒径大于10mm的油页岩,7为粒径小于10mm的油页岩,8为第一油气混合物,9为半焦,10为循环干馏气,11为页岩油,12为冷循环气,13为燃烧干馏气,14为用于吸收半焦热量的干馏气,15为燃料气,16为热循环干馏气。
图2为本发明的一种全颗粒油页岩炼制***的结构示意图。其中17为第一换热器,18为大工炉,19为第二燃烧炉,20为第二换热器,21为半焦燃烧供热单元,22为制砖单元,23为制氢单元,24为页岩油加氢单元;25-45为物流编号,其中25为第一烟气,26为预热的油页岩,27为第二烟气,28为第二油气混合物,29为半焦和灰渣混合物流,30为第二空气,31为循环灰渣,32为剩余灰渣,33为第一空气,34为第二灰渣,35为油页岩,36为第三灰渣,37为第四灰渣,38为制砖辅料,39为砖,40为第三油气混合物,41为第四油气混合物,42为第五油气混合物,43为高含氮页岩油,44为氢气,45为低含氮页岩油。其余编号与图1中相同编号表示相同的物流。
图3为采用本发明全颗粒油页岩炼制***生产页岩油的工艺流程图。其中46为研磨器,47为筛分器,48为水洗塔,49为冷却塔,50为电捕箱,51为旋风分离器,52为重整反应器,53为变压吸附分离器,54为废热回收锅炉,55为压缩机,56为加热炉,57为加氢反应器,58为高压分离器;59-81为物流编 号,其中59为气固混合物流,60为第五灰渣,61为第三空气,62为第三烟气,63为第一循环水,64为第一洗涤气,65为第一油水混合物,66为第二循环水,67为第二洗涤气,68为第二油水混合物,69第三油水混合物,70为新鲜水,71为蒸汽,72为重整反应气,73为第四烟气,74为分离氢气后的气体,75第五烟道气,76循环压缩氢气,77为预热的页岩油和氢气混合物流,78为加氢产物,79为加氢气相产物,80为循环气,81为驰放气。其余编号与图2中相同编号表示相同的物流。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
现有技术中的瓦斯全循环油页岩炼制***的结构示意图如图1所示。包括破碎筛分单元1,瓦斯全循环炉2,油气分离单元3,第一燃烧炉4。原料油页岩5经破碎,筛选出粒径大于10mm的页岩颗粒通入瓦斯全循环干馏炉2进行干馏反应,产生第一油气混合物8和半焦9。第一油气混合物8进入油气分离单元3,分离得到干馏气10和页岩油11。干馏气10全部循环供热。
实施例1
本实施例的一种全颗粒油页岩炼制***,所述***的结构示意图如图2所示。所述***包括破碎筛分单元1,瓦斯全循环炉2,油气分离单元3,第一燃烧炉4,第一换热器17,大工炉18,第二燃烧炉19,第二换热器20,半焦燃烧供热单元21,制砖单元22,制氢单元23,页岩油加氢单元24。
所述破碎筛分单元1设有油页岩原料5的入口,破碎筛分单元1出口分为两个通道,一个通道通过管道与瓦斯循环炉2的大于10mm的油页岩原料入口相连接。另一个通道通过管道与第一换热器17入口相连接。第一换热器17的出口通过管道与大工炉18的小于10mm的油页岩原料入口相连接。
所述瓦斯循环炉2的第一油气混合物8通过管道与油气分离单元3第三油 气40入口相连接,瓦斯循环炉2的半焦9出口通过管道与半焦燃烧供热单元21半焦入口相连接;油气分离单元3出口的冷循环干馏气10分为三个通道,一个通道通过管道与第一燃烧炉4蓄热室的入口12相连接,一个通道通过管道与第一燃烧炉4的燃烧室的入口13相连接,另一个通道通过管道与瓦斯循环炉2相连接。油气分离单元3出口剩余干馏气42通过管道与制氢单元23入口相连接;第一燃烧炉4的热循环干馏气16出口通过管道与瓦斯循环炉2热循环干馏气入口相连接;油气分离单元3出口高氮页岩油43通过管道与页岩油加氢单元24页岩油入口相连接。
所述第一换热器17的预热油页岩26出口通过管道与大工炉18的油页岩入口相连接;大工炉18的半焦和灰渣混合物流29通过管道与第二燃烧炉19的半焦灰渣混合物流的入口相连接;第二燃烧炉19的循环灰渣31出口通过管道与大工炉18的循环灰渣入口相连接,第二燃烧炉19的剩余灰渣32出口通过管道与第二换热器20的灰渣入口相连接;第二换热器20的灰渣出口通过管道与制砖单元22的灰渣入口相连接;第二燃烧炉19的烟气25出口通过管道与第一换热器17的烟气入口相连接。
所述半焦燃烧供热单元21的灰渣36出口通过管道与制砖单元22的灰渣入口相连接,制砖单元22的热量由半焦燃烧单元21提供;制氢单元23的氢气44出口通过管道与页岩油加氢单元24的氢气入口相连接,制氢单元23的热量由半焦燃烧单元21提供。
所述油气分离3单元包括水洗塔48、冷却塔49和电捕箱50。所述油气分离单元3设有第三油气混合物40入口,水洗塔48出来的第一洗涤气64通过管道与冷却塔49的第一洗涤气入口相连接。洗涤塔48出来的第一油水混合物通过管道与加热炉56第一页岩油入口相连接;冷却塔49出来的第二洗涤气67通过管道与电捕箱50的第二洗涤气入口相连接。冷却塔49出来的第而油水混合物68通过管道与加热炉56第二页岩油入口相连接;电捕箱50出来的第三洗涤气41分为三个通道,一个通道通过管道与第一燃烧炉4的干馏气入口相连接, 一个通道通过管道与瓦斯循环炉2底部干馏气入口相连接,另外一个通道通过管道与重整反应器52干馏气入口相连接。
所述制氢单元23包括重整反应器52、变压吸附分离器53和余热回收装置54。所述制氢单元23设有原料干馏气42入口,重整反应器52的第一富氢气72通过管道与变压吸附分离器53的第一富氢气入口相连接;变压吸附分离器53出口氢气通过管道与加热炉56氢气入口相连接;重整反应器52夹套设有第三烟气62入口,重整反应器52夹套的第四烟气73的出口通过管道与余热回收装置54的烟气入口相连接;余热回收装置54的蒸汽71出口通过管道与重整反应器52的原料蒸汽入口相连接。
所述页岩油加氢单元包括压缩机55、加热炉56、页岩油加氢反应器57和高压分离器58。所述页岩油加氢单元24设有页岩油43入口,加热炉56的页岩油和氢气混合物77的出口通过管道与加氢反应器57的反应物入口相连接;加氢反应器57的反应产物78出口通过管道与高压分离器58的反应物入口相连接;高压分离器58的气相产物79的出口分为两个通道,一个通道通过管道与压缩机55的循环气入口相连接,另一个通道通过管道直接燃烧排放。
所述第二换热器20设有空气33入口,预热后的空气33出口与第二燃烧炉19的空气入口相连接。
所述半焦燃烧供热单元21设有油页岩原料35的入口。
所述制砖单元22设有制砖辅料38的入口。
采用本实施例的全颗粒油页岩炼制***生产页岩油的工艺流程图如图3所示,具体包括如下步骤:
油页岩原料5经破碎筛分单元1后,筛选得到粒径10mm以上的油页岩6进入瓦斯循环炉2;粒径10mm以下的油页岩7与第一烟气25预热后进入大工炉18。瓦斯循环炉2出口气与大工炉18出口气混合,进入油气分离单元3。油气分离单元3得到的气体一部分作为循环气12供热,一部分作为燃烧气13加热循环气,剩余的干馏气42用于制氢。分离得到的页岩油43经加氢脱氮后, 作为低含氮页岩油45外销。瓦斯循环炉2的出口半焦9进入半焦燃烧供热单元21,半焦燃烧产生的热量供给制氢单元23和制砖单元22。半焦燃烧产生的灰渣37用于制砖。
由现有技术中的瓦斯全循环油页岩炼制***与本发明所述全颗粒油页岩炼制***对比可知,本发明所述***将碎屑页岩用于生产页岩油,并且***内自产氢气,并且用于页岩油加氢提质,有效脱除了页岩油里高含量的氮,同时大幅度提高了整个炼制***的经济效益。
所述瓦斯循环炉的干馏温度为450-550℃,压力为0.1MPa;优选的,所述瓦斯循环炉的干馏温度为520℃。所述大工炉的干馏温度为450-520℃,压力为0.1MPa;优选的,所述大工炉的干馏温度为500℃。所述热循环干馏气的温度为550-650℃,压力为0.1MPa。所述热循环干馏气量为480-640Nm3/(t页岩)。所述烟气的预热温度为90-150℃。
实施例2
本实施例的一种全颗粒油页岩炼制***,包括破碎筛分单元1,瓦斯全循环炉2,油气分离单元3,第一燃烧炉4,第一换热器17,大工炉18,第二燃烧炉19,第二换热器20,半焦燃烧供热单元21,制砖单元22,制氢单元23,页岩油加氢单元24,其结构示意图如图2所示。各工艺段具体设备如实施例1所述。
进入实施例所述***的原料流量为375t/h,瓦斯循环炉的干馏温度为520℃,压力为0.1MPa;大工炉的干馏温度为500℃;热循环干馏气量为630Nm3/(t页岩)。油页岩采用抚顺油页岩,气工业分析和元素分析见表1,工艺流程如图3。
表1抚顺油页岩工业分析和元素分析
Figure PCTCN2016109039-appb-000001
相比现有的瓦斯全循环油页岩炼制过程,本发明所述全颗粒油页岩炼制系 统的原料油页岩的利用率由原来的80%提高到了98%,页岩油产率由4.2%提高到了6.5%。低氮页岩油价格为3000元/吨时,经济收入为原来的1.5倍,投资利润率从10.4%提高到19.2%,提高了8.8%。
实施例3
本实施例的一种全颗粒油页岩炼制***,包括破碎筛分单元1,瓦斯全循环炉2,油气分离单元3,第一燃烧炉4,第一换热器17,大工炉18,第二燃烧炉19,第二换热器20,半焦燃烧供热单元21,制砖单元22,制氢单元23,页岩油加氢单元24,其结构示意图如图2所示。各工艺段具体设备如实施例1所述。
进入本实施例所述***的原料流量为375t/h,瓦斯循环炉的干馏温度为520℃,压力为0.1MPa;大工炉的干馏温度为500℃;热循环干馏气量为480Nm3/(t页岩)。油页岩采用桦甸油页岩,气工业分析和元素分析见表2,工艺流程如图3。
表2桦甸油页岩工业分析和元素分析
Figure PCTCN2016109039-appb-000002
相比现有的瓦斯全循环油页岩炼制过程,本发明所述全颗粒油页岩炼制***的原料油页岩的利用率由原来的80%提高到了99%,页岩油产率由8.3%提高到了10.4%。低氮页岩油价格为3000元/吨时,经济收入为原来的1.3倍,投资利润率从9.7%提高到18.2%,提高了8.5%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种全颗粒油页岩炼制***,其特征在于:所述***包括破碎筛分单元、瓦斯循环炉、油气分离单元、第一燃烧炉、第一换热器、大工炉、第二燃烧炉、第二换热器、半焦燃烧供热单元、制砖单元、制氢单元和页岩油加氢单元;所述破碎筛分单元设有原料油页岩入口,破碎筛分单元的出口分为两个通道,一个通道通过管道与瓦斯循环炉的大于10mm的油页岩原料入口相连接,另一个通道通过管道与第一换热器入口相连接,第一换热器的出口通过管道与大工炉的小于10mm的油页岩原料入口相连接;所述瓦斯循环炉的第一油气混合物出口通过管道与油气分离单元油气入口相连接,瓦斯循环炉的半焦出口通过管道与半焦燃烧供热单元半焦入口相连接;油气分离单元出口的冷循环干馏气分为三个通道,一个通道通过管道与第一燃烧炉蓄热室的入口相连接,一个通道通过管道与第一燃烧炉的燃烧室的入口相连接,另一个通道通过管道与瓦斯循环炉相连接,油气分离单元出口剩余干馏气通过管道与制氢单元入口相连接;第一燃烧炉的热循环干馏气出口通过管道与瓦斯循环炉热循环干馏气入口相连接;油气分离单元出口高氮页岩油通过管道与页岩油加氢单元页岩油入口相连接;所述第一换热器的预热油页岩出口通过管道与大工炉的油页岩入口相连接;大工炉的半焦和灰渣混合物流通过管道与第二燃烧炉的半焦灰渣混合物流的入口相连接;第二燃烧炉的循环灰渣出口通过管道与大工炉的循环灰渣入口相连接,第二燃烧炉的剩余灰渣出口通过管道与第二换热器的灰渣入口相连接;第二换热器的灰渣出口通过管道与制砖单元的灰渣入口相连接;第二燃烧炉的烟气出口通过管道与第一换热器的烟气入口相连接;所述半焦燃烧供热单元的灰渣出口通过管道与制砖单元的灰渣入口相连接,制砖单元的热量由半焦燃烧单元提供;制氢单元的氢气出口通过管道与页岩油加氢单元的氢气入口相连接,制氢单元的热量由半焦燃烧单元提供。
  2. 根据权利要求1所述的一种全颗粒油页岩炼制***,其特征在于:所述 油气分离单元包括洗涤塔、冷却塔和电捕箱;所述油气分离单元设有热解油气混合物入口,水洗塔出来的第一洗涤气通过管道与冷却塔的第一洗涤气入口相连接,水涤塔出来的第一油水混合物通过管道与加热炉第一页岩油入口相连接;冷却塔出来的第二洗涤气通过管道与电捕箱的第二洗涤气入口相连接,冷却塔出来的第二油水混合物通过管道与加热炉第二页岩油入口相连接;电捕箱出来的第三洗涤气分为三个通道,一个通道通过管道与第一燃烧炉的干馏气入口相连接,一个通道通过管道与瓦斯循环炉底部干馏气入口相连接,另外一个通道通过管道与重整反应器干馏气入口相连接。
  3. 根据权利要求1所述的一种全颗粒油页岩炼制***,其特征在于:所述制氢单元包括重整反应器、余热回收装置和变压吸附分离器;所述制氢单元设有原料干馏气入口,重整反应器的第一富氢气通过管道与变压吸附分离器的第一富氢气入口相连接;变压吸附分离器出口氢气通过管道与加热炉氢气入口相连接;重整反应器夹套设有第三烟气入口,重整反应器夹套的第四烟气的出口通过管道与余热回收装置的烟气入口相连接;余热回收装置的蒸汽出口通过管道与重整反应器的原料蒸汽入口相连接。
  4. 根据权利要求1所述的一种全颗粒油页岩炼制***,其特征在于:所述页岩油加氢单元包括加热炉、页岩油加氢反应器、高压分离器和压缩机;所述页岩油加氢单元设有页岩油入口,加热炉的页岩油和氢气混合物的出口通过管道与加氢反应器的反应物入口相连接;加氢反应器的反应产物出口通过管道与高压分离器的反应物入口相连接;高压分离器的气相产物的出口分为两个通道,一个通道通过管道与压缩机的循环气入口相连接,另一个通道通过管道直接燃烧排放。
  5. 根据权利要求1所述的一种全颗粒油页岩炼制***,其特征在于:所述第二换热器设有空气入口,预热后的空气出口与第二燃烧炉的空气入口相连接;所述半焦燃烧供热单元设有油页岩原料的入口;所述制砖单元设有制砖辅料的入口。
  6. 一种采用权利要求1~5任一项所述的一种全颗粒油页岩炼制***生产页岩油的工艺,其特征在于包括以下步骤:
    油页岩原料经破碎筛分单元后,筛选得到粒径10mm以上的油页岩进入瓦斯循环炉;粒径10mm以下的油页岩与烟气预热后进入大工炉,瓦斯循环炉出口气与大工炉出口气混合,进入油气分离单元;油气分离单元得到的气体一部分作为循环气供热,一部分作为燃烧气加热循环气,剩余的干馏气用于制氢;分离得到的页岩油经加氢脱氮后,得到低含氮页岩油;瓦斯循环炉的出口半焦进入半焦燃烧供热单元,半焦燃烧产生的热量供给制氢单元和制砖单元,半焦燃烧产生的灰渣用于制砖;大工炉的热量通过循环灰渣实现,剩余的灰渣用于制砖。
  7. 根据权利要求6所述的一种采用全颗粒油页岩炼制***生产页岩油的工艺,其特征在于:所述瓦斯循环炉的原料油页岩粒径为10-75mm。
  8. 根据权利要求6所述的一种采用全颗粒油页岩炼制***生产页岩油的工艺,其特征在于:所述瓦斯循环炉的干馏温度为450-550℃,压力为0.1MPa;所述大工炉的干馏温度为450-520℃,压力为0.1MPa。
  9. 根据权利要求8所述的一种采用全颗粒油页岩炼制***生产页岩油的工艺,其特征在于:所述瓦斯循环炉的干馏温度为520℃;所述大工炉的干馏温度为500℃。
  10. 根据权利要求6所述的一种采用全颗粒油页岩炼制***生产页岩油的工艺,其特征在于:所述热循环干馏气的温度为550-650℃,压力为0.1MPa;所述热循环干馏气量为480-640Nm3/t油页岩;所述烟气的预热温度为90-150℃。
PCT/CN2016/109039 2016-02-24 2016-12-08 一种全颗粒油页岩炼制***及工艺 WO2017143831A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610102832.3 2016-02-24
CN201610102832.3A CN105694936A (zh) 2016-02-24 2016-02-24 一种全颗粒油页岩炼制***及工艺

Publications (1)

Publication Number Publication Date
WO2017143831A1 true WO2017143831A1 (zh) 2017-08-31

Family

ID=56222755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109039 WO2017143831A1 (zh) 2016-02-24 2016-12-08 一种全颗粒油页岩炼制***及工艺

Country Status (2)

Country Link
CN (1) CN105694936A (zh)
WO (1) WO2017143831A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481023A (zh) * 2021-07-14 2021-10-08 大连理工大学 一种制备低灰生物质半焦的方法
CN114702004A (zh) * 2022-04-01 2022-07-05 兰州裕隆气体股份有限公司 一种甲醇制氢驰放气回收利用***
CN115505414A (zh) * 2021-06-07 2022-12-23 中国石油化工股份有限公司 一种小颗粒油页岩的产油***及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105694936A (zh) * 2016-02-24 2016-06-22 华南理工大学 一种全颗粒油页岩炼制***及工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581782A (ja) * 1981-06-29 1983-01-07 Mitsubishi Heavy Ind Ltd オイルシエ−ル又はタ−ルサンドの乾留方法とその装置
JPS58141286A (ja) * 1982-02-18 1983-08-22 Japan Steel Works Ltd:The 複合熱供給式オイルシエ−ルの流動乾留方法及び装置
CN101343544A (zh) * 2008-09-03 2009-01-14 吴启成 振动折返混流式全循环小颗粒油页岩干馏方法及装置
CN203938646U (zh) * 2014-05-29 2014-11-12 华南理工大学 一种以油页岩干馏气制氢提质的集成炼制***
CN104152166A (zh) * 2014-06-11 2014-11-19 华南理工大学 一种油页岩炼油集成伴生煤气化制氢综合利用***及工艺
CN104293403A (zh) * 2014-10-22 2015-01-21 华南理工大学 固体热载体油页岩炼制集成干馏气制甲烷的***及工艺
CN204198409U (zh) * 2014-11-17 2015-03-11 华南理工大学 一种固体热载体油页岩炼制集成干馏气制氢***
CN204589076U (zh) * 2015-03-30 2015-08-26 华南理工大学 一种耦合气体和固体热载体的油页岩综合利用***
CN105694936A (zh) * 2016-02-24 2016-06-22 华南理工大学 一种全颗粒油页岩炼制***及工艺
CN205616844U (zh) * 2016-02-24 2016-10-05 华南理工大学 一种全颗粒油页岩炼制***

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581782A (ja) * 1981-06-29 1983-01-07 Mitsubishi Heavy Ind Ltd オイルシエ−ル又はタ−ルサンドの乾留方法とその装置
JPS58141286A (ja) * 1982-02-18 1983-08-22 Japan Steel Works Ltd:The 複合熱供給式オイルシエ−ルの流動乾留方法及び装置
CN101343544A (zh) * 2008-09-03 2009-01-14 吴启成 振动折返混流式全循环小颗粒油页岩干馏方法及装置
CN203938646U (zh) * 2014-05-29 2014-11-12 华南理工大学 一种以油页岩干馏气制氢提质的集成炼制***
CN104152166A (zh) * 2014-06-11 2014-11-19 华南理工大学 一种油页岩炼油集成伴生煤气化制氢综合利用***及工艺
CN104293403A (zh) * 2014-10-22 2015-01-21 华南理工大学 固体热载体油页岩炼制集成干馏气制甲烷的***及工艺
CN204198409U (zh) * 2014-11-17 2015-03-11 华南理工大学 一种固体热载体油页岩炼制集成干馏气制氢***
CN204589076U (zh) * 2015-03-30 2015-08-26 华南理工大学 一种耦合气体和固体热载体的油页岩综合利用***
CN105694936A (zh) * 2016-02-24 2016-06-22 华南理工大学 一种全颗粒油页岩炼制***及工艺
CN205616844U (zh) * 2016-02-24 2016-10-05 华南理工大学 一种全颗粒油页岩炼制***

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505414A (zh) * 2021-06-07 2022-12-23 中国石油化工股份有限公司 一种小颗粒油页岩的产油***及方法
CN113481023A (zh) * 2021-07-14 2021-10-08 大连理工大学 一种制备低灰生物质半焦的方法
CN113481023B (zh) * 2021-07-14 2022-09-16 大连理工大学 一种制备低灰生物质半焦的方法
CN114702004A (zh) * 2022-04-01 2022-07-05 兰州裕隆气体股份有限公司 一种甲醇制氢驰放气回收利用***

Also Published As

Publication number Publication date
CN105694936A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
CN102849676B (zh) 一种固体燃料的高温水蒸气热解-裂解-气化装置及方法
WO2017143831A1 (zh) 一种全颗粒油页岩炼制***及工艺
CN109609198B (zh) 生物质循环流化床分级热解气化与高温除焦油除尘一体化工艺
CN206531067U (zh) 一种垃圾热解气化熔融的***
CN104152166B (zh) 一种油页岩炼油集成伴生煤气化制氢综合利用***及工艺
CN103911179B (zh) 煤气化方法和装置
CN105858660A (zh) 制备电石的***和方法
CN101250419B (zh) 一种煤气内热低温干馏方法
CN106701202A (zh) 合成气与煤混合反应及产物气固液分级分离装置及方法
CN107880938B (zh) 预热式分级气化方法及装置
CN101818073A (zh) 油页岩干馏、半焦焚烧一体化***
CN103740409A (zh) 一种多级配气高温煤气化装置及方法
CN109852429A (zh) 一种煤燃烧耦合垃圾水蒸气气化的制氢***及方法
CN105694935A (zh) 一种粉煤干馏活化一体炉
CN103435028B (zh) 一种生产兰炭的方法和装置
CN105969417A (zh) 油页岩或油砂下行循环床毫秒热解提炼装置
CN106995728B (zh) 一种粉煤高效清洁制备油气产品的联合工艺
CN105038827A (zh) 一种低阶碎煤分质分级梯级利用***及方法
CN104945215A (zh) 一种粉煤制备乙烯的方法及***
CN204939411U (zh) 一种流化床煤热解的***
CN104263394A (zh) 一种褐煤低温干馏热解方法
CN106010607A (zh) 一种煤热解气化耦合工艺及装置
CN203159534U (zh) 一种全方位煤炭分质利用多联产的***
CN205616844U (zh) 一种全颗粒油页岩炼制***
CN115386389A (zh) 一种煤热解发电耦合***和工艺

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891279

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 24/01/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16891279

Country of ref document: EP

Kind code of ref document: A1