WO2017143499A1 - Recovery of palladium from palladium-containing components - Google Patents

Recovery of palladium from palladium-containing components Download PDF

Info

Publication number
WO2017143499A1
WO2017143499A1 PCT/CN2016/074296 CN2016074296W WO2017143499A1 WO 2017143499 A1 WO2017143499 A1 WO 2017143499A1 CN 2016074296 W CN2016074296 W CN 2016074296W WO 2017143499 A1 WO2017143499 A1 WO 2017143499A1
Authority
WO
WIPO (PCT)
Prior art keywords
palladium
module
base metal
solid
acid
Prior art date
Application number
PCT/CN2016/074296
Other languages
French (fr)
Inventor
Yuxin Song
Biqin CHEN
Xianxin WU
Ping Jiang
Christopher Jon VROMAN
Original Assignee
Entegris, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entegris, Inc. filed Critical Entegris, Inc.
Priority to PCT/CN2016/074296 priority Critical patent/WO2017143499A1/en
Publication of WO2017143499A1 publication Critical patent/WO2017143499A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/046Recovery of noble metals from waste materials from manufactured products, e.g. from printed circuit boards, from photographic films, paper or baths
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invcntion relates gcncrally to syslems and processes for recycling waste clectrical and electronic equipment such as multi-layer ceramic capacitors (MLCC) to recover palladium.
  • MLCC multi-layer ceramic capacitors
  • PCBs are a common element of many electronic systems. e.g., mothcrboards. notcboards. TV boards. server boards, hard drivc boards. SCSI cards. and smartphoncs. PCBs arc typically manufactured by laminating film on clean copper foil. which is supported on a fiberglass plate matrix. The film is exposed with a film negative of the circuit board design, and an etcher is used to remove unmasked copper foil from the plate. Solder is then applied over the unetchcd copper on the board. Depending upon the use and design of the particular PCB. various other metals may be used in the manufacturing process, including lead. tin. nickel, iron. zinc. aluminum, silver, gold, platinum.
  • Thermal methods including pyromctallurgical processing of waste PCBs, result in thc emission of hazardous chemicals to the atmosphere and water as the result of thermal degradation of epoxy (formation of dioxins and furans) and volatilization of metals (including Pb, Sb, As and Ga) .
  • Thermal methods are further characterized by high energy consumption, and the necessity to use expensive exhaust gas purification systems and corrosion resistance equipment.
  • PCT/US2011/032675 Processes for removing at least one recyclable material from a printed circuit board (PCB) were previously described in International Patent Application No. PCT/US2011/032675 filed on April 15, 2011 in the name of André Brosseau et al. and entitled “Method for Recycling of Obsolete Printed Circuit Boards, “which is hereby incorporated by reference herein in its entirety.
  • the method deseribed in PCT/US2011/032675 comprised at least one of (a) , (b) , (c) , or any combination thereof:
  • a system and process for recovering palladium from palladium-containing components such as MLCCs at a commercial level has not yet been developed.
  • the system and process should efficiently recover palladium from the MLCCs while minimizing the amount of chemicals and other resources used.
  • Embodiments of the invention relate to integrated, intelligent systems and processes for recycling palladium-containing components, e.g., MLCCs.
  • an integrated, intelligent system for recycling palladium-containing components wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components, wherein the system comprises:
  • a palladium leaching module comprising:
  • modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts.
  • Still another embodiment relates to a process for recycling palladium-containing components, wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in a solid, wherein the solid comprises palladium-containing components that have been ashed, ground, processed previously to remove other species, and/or crushed, said process comprising:
  • a palladium leaching (PL) module wherein the PL module comprises:
  • apparatuses are positioned and/or operated in series with one another, with or without intervening parts.
  • Figure 1 is a general schematic of the system described herein including a palladium leaching module (15) .
  • Figure 2 is another general schematic of the system described herein including a palladium leaching module (15) .
  • a pre-BCM (220) a BCM (240) , a DS Module (26) , a furnace module (320) , a milling module (340) . and an SPT Tool module (360) .
  • Figure 3 is a schematic of one embodiment of the desoldering module (260) apparatus.
  • Figure 4 is a schematic of the first base metal removal apparatus (BMR-1) (20) .
  • FIG. 5 is a schematic of the second base metal removal apparatus (BMR-2) (30) .
  • Figure 6 is a schematic of the palladium leaching apparatus (PL) (40) .
  • Figure 7 is a schematic of yet another embodiment of an SPT tool module (360) comprising a reaction tank. a removal composition tank, a holding tank, a rinse liquid tank, and a rinse tank.
  • the present invention relates generally to integrated systems and proccsses for recycling palladium-containing components to obtain precious metals for reuse and/or recovery. More particularly, the present invention relates generally to integrated systems and processes for recycling palladium-containing components to more cfficiently separate and recover precious metals, while simultaneously minimizing the use of chemicals and other resources.
  • the system and process of using may be controlled by one or more programmable logic controllers (PLC) that coordinate and regulate automated process steps in the apparatus.
  • PLCs programmable logic controllers
  • the one or more PLCs allow multiple different processing modules to operate simultaneously through the apparatus, providing maximum throughput per square foot of factory space.
  • Multi-tasking capability includes scheduling software that provides the system the intelligence nccessary to be able to concurrently process multiple modules and multiple processes, when process times in cach tank may not be balanced.
  • Process recipes and procedures basod on thc type of palladium-containing componcnt, as well as batch size, are stored in PLCs and automatically or manually initiated at the time batches of palladium-containing components enter the process stream.
  • each module has at least onc PLC.
  • SCADA supervisory control and date acquisition
  • a communication network can be used to control the one or more PLCs.
  • “electronic waste” or “e-waste” corresponds to computers, computer monitors, television receivers, electronic pads, cellular telephones, personal digital assistants (PDA) . video cameras, digital cameras, DVD players, video game consoles, facsimile machines, copiers, MP3 players, and similar products that have reached the end of their useful life or otherwise have been disposed of.
  • Electronic waste or e-waste includes the components contained within these well-known items such as printed circuit boards and the components contained thereon (e.g., transistors, capacitors. MLCCs, heat sinks.fans, chips, micro component, integrated circuits (IC’s) ,resistors, integrated switches, processors, connectors, USB ports. BGA chips) .
  • ious metals include the metals gold, silver, platinum, palladium, rhodium, iridium, osmium, rhenium, ruthenium and alloys comprising same.
  • base metals corresponds to iron, nickel, zinc, copper, aluminum, tungsten, molybdenum, tantalum, magnesium, cobalt, bismuth, cadmium, titanium, zirconium, antimony.
  • copper corresponds to Cu (0) metal as well as alloys comprising Cu (0) .
  • PCB printed circuit board
  • the printed circuit board provides the mechanical support and electrical connections for electronic components.
  • PCBs can be single sided, double sided, or multi-layered.
  • PCB assemblies correspond to PCBs populated with electronic components.
  • substantially dissolved is defined herein to be that more than 95 wt. %of the material originally present is dissolved or otherwise solubilized, preferably more than 98 wt. %, more preferably more than 99 wt. %, and most preferably more than 99.9 wt. %.
  • “Not substantially dissolved” is defined herein to be that less than 5 wt. %of the material originally present is dissolved or otherwisc solubilized, preferably less than 2 wt. %, more preferably less than 1 wt. %, even more preferably less than 0.1 wt. %, and most preferably less than 0.001 wt%.
  • the term “leaches” or “removes” corresponds to the complete or partial removal or extraction of the particular metal or other desired material into the particular removal composition.
  • the particular metal or other desired material is dissolved or othcrwise solubilized in the particular removal composition, preferably dissolved.
  • crushing corrcsponds to any method that substantially exposes the palladium-containing component, e.g., MLCC, to a removal composilion, e.g., cracking, pulverizing or shredding the palladium-containing component, e.g., MLCC.
  • milling corresponds to any method that reduces a larger material into a smaller material using a comprcssive force, thereby increasing the surface area of the material that can be exposed to a removal composition for removal of metals and other desired materials therefrom. Milling can be accomplished with a negligible rise in temperature of the materials being milled.
  • grinding corresponds to any method that reduces a larger material into a smaller material using a shearing force or a cutting action, thereby increasing the surface arca of the material that can be exposed to a removal composition for removal or metals and other desired materials therefrom.
  • removal compositions are specifically and/or selectively formulated to remove one or more metals or other desired materials. Further, the removal compositions can be proprietary, commercially available, or both.
  • solder, adhesives, glues and/or epoxy attaches “components, ” such as transistors, capacitors. MLCCs. heat sinks, fans, integrated circuit chips (IC's) , resistors, integrated switches, processors (e.g., CPUs) , connectors, USB ports, BGA chips, to the PCB.
  • components such as transistors, capacitors. MLCCs. heat sinks, fans, integrated circuit chips (IC's) , resistors, integrated switches, processors (e.g., CPUs) , connectors, USB ports, BGA chips, to the PCB.
  • recyclable components corresponds to components that comprise a metal that has value and is to be reclaimed.
  • micro componcnts correspond to any component that is less than about 2-3 mm in size,e.g., can be sorted from larger objccts based on size.
  • chips include ICs and CPUs as well as other solid state “micro-components” such as capacitors and/or resistors.
  • a “module” corresponds to a distinct system and corresponding process that is capable of facilitating the chemical, mechanical, thermal (i.e., heat) , and physical processes needed to accomplish a desired end goal, for example, the removal of components from a PCB. the removal of solder, the leaching of palladium. the leaching of gold. the leaching of silver, and the removal of base metals.
  • the modules may be connected and/or ogerate serially or in parallel, with or without intervcning steps therebetween, or not connected at all e.g., a module could be off-site relative to other modules or a module may be within another module.
  • ashing or “to ash” corresponds to a process wherein an organic material. also known as “ashable content, ” is reacted with air or other oxygen source at a high temperature, e.g., burned, to leave only noncombnstiblc material.
  • slurry corresponds to a mixture of solids in a liquid, for example, particle-containing solids in a liquid. Slurries tend to be a thick fluid and can be pumped and the solid will settle as a result of gravity if lefe in an unagitated state.
  • a “monorail” preferably includes at lcast one of layout flexibility, tracks, rails, slopes, switches turntables, interlocks, entry/exit sections, as well as curves.
  • the monorail may be elevated and/or run at grade and can connect to other systems, such as tonyeyors, elevators. or cranes.
  • the monorails can be arranged to move a “container” or a “containing means. ”
  • the monorail can also be arranged to move boards and/or components from one module to another.
  • a “container” or a “containing means” can include, but is not limited to, gaylords, drums, baskcts, tanks, bags, barrels, boxes, hoppers, supersacks, bins, bottles, and cylinders.
  • intelligent refers to the control of one or more systems and/or processes of using said systems using one or more programmable logic controllers (PLC) that coordinate and regulate automated process steps in the systems, PLCs allow multiple different processing modules. and multiple different containing means within each module, to oporate simultaneousty through the apparatus, providing maximum throughput per square foot of factory space.
  • Multi-tasking capability includes, but is not limited to. scheduling software developed that provides the system the intelligence necessary to be able to concurrently process and sample multiple modules and multiple containing means within each module, recipe input and adaptation, materials handling, real-time monitoring. sensing, data acquisition and analysis, remote and/or wireless use and communication, and any combination thereof.
  • the intelligent system (s) and/or process (es) can communicate with other systcm (s) and/or process (es) sccurely, using a network.
  • an “intelligcnt systcm” corresponds to a computer-based system that has the capacity to gather and analyze data and communicate with itself and/or other systems within the apparatus.
  • a module as described herein can analyze data and communicate with itself and/or another module within the apparatus, thereby making adjustments to the process and/or recipe.
  • an intelligent system is capable of shutting down a portion of. or the entire, system to ensure worker safety.
  • an intelligent system is capable of determining when maintenance to the hardware and/or software must occur.
  • a “loaded” removal composition corresponds to a removal composition that is substantially saturated with the metal ions or has otherwise reached a predetermined concentration or threshold of a constituent of a removal composition (e.g., a certain metal ion) or pH.
  • a predetermined concentration or threshold of a constituent of a removal composition e.g., a certain metal ion or pH.
  • the loaded removal composition can no longer substantially dissolve or solubilize the metal (s) it was intended to remove.
  • a “loaded” rinse liquid corresponds to a rinse liquid that no longer effectively rinses the solid or has otherwise reached a predetermined concentration or threshold of a chemical constituent (e.g., a certain metal ion) or pH.
  • a chemical constituent e.g., a certain metal ion
  • a “recipe” corresponds to the parameters used and/or programmable and/or input and/or chosen and/or adjusted to ensure maximum process efficiency, maximum metal removal, and minimum waste production using the system and process described herein, Parameters considered include, but are not limited to, ratio of solid to liquid during removal process, processing time, processing temperature, processing sequence, addition rates. the palladium-containing components being processed, the amount of palladium-containing components being processed, conccetration of chemicals in the removal compositions, order of addition, the amount of effluent that must be disposed of properly, type of agitation means, speed of agitation, how many times the removal or rinse composition has been reused/recirculated, type of material being processed. concentration of metal ion constituents, current and voltage changes. and other prespecified thresholds.
  • moving means correspond to manual or mechanical systems for moving objects from one location to another location including one or more of a conveyor belt.
  • a conveyor track a conveying wheel, a conveying roller, gravity conveyor, robots, a robotic loading arm with a moving mechanism.
  • Schmidt conveyors overhead conveyors with powered channels/tracks, tracks.
  • elevators collection conveyors, monorails, belts, link chains, transporter with wheels.
  • any conveying systems can inelude speed control and/or variable speed.
  • agitation means includedc, but are not limited to, top stirrers/mixcrs, bottom stirrers/mixers, side stirrers/mixers, screw agitators, rocking or rotating means, rotary mixers, sonication, ultrasonic energy, blenders, blades, dispersers, rotors, propellers, rccirculators, baffles, impellers. internal fins or augers within containing means that result in agitation when rotated, and any combination thereof.
  • liquid-solid separation means include. but are not limited to. centrifugation (e.g., decanter, cone-shaped) . decanting, filtering. drying, evaporation, osmosis, sedimentation, precipitation, filter presses, and combinations thereof.
  • gold ions are intended to cover Au (I) and Au (III) , as well as gold-containing ions comprising anions including, but not limited to. fluoride, chloride, bromide, iodide, nilrale, nitrite, sulfate, sulfite, cyanide, bisulfate, bisulfite, acetate, oxalate, chlorate, chlorite,hypochlorite, perchlorate, carbonate, bicarbonate, and phosphate.
  • fluoride chloride, bromide, iodide, nilrale, nitrite, sulfate, sulfite, cyanide, bisulfate, bisulfite, acetate, oxalate, chlorate, chlorite,hypochlorite, perchlorate, carbonate, bicarbonate, and phosphate.
  • ventilation means corresponds to forced air (mechanical) ventilation such as local exhaust ventilation (hoods, ductwork, air cleaning device, fans, exhaust stacks, scrubbers, and combinations thereof).
  • the “mcans to control air input into a furnace” corresponds to the use of ductwork and air pumps or pressure differentials to force atmospheric air or more oxygenated air into a furnace.
  • loading means include, but are not limited to chutes, conveyors. manually by hand. cranes, jacks, hoists, or any combination thereof.
  • many of the moving means, as defined herein, can be loading means.
  • air inputs correspond to openings or holes that allow the user to introduce one or more gases, e.g., air, via a pipe or line into a tank. especially when the chemical reaction requires or otherwise is more efficient when carried out in the presence of one or more gases.
  • MLCCs or multi-layer ceramic components correspond to multilayer ceramic capacitors that may be mounted on boards of electronic products including display devices such as liquid crystal displays (LCDs) and plasma display panels (PDPs) , computers, personal digital assistants (PDAS) . mobile phones, as well as used in chip-type condensers serving to charge or discharge electricity therein or therefrom.
  • display devices such as liquid crystal displays (LCDs) and plasma display panels (PDPs) , computers, personal digital assistants (PDAS) . mobile phones, as well as used in chip-type condensers serving to charge or discharge electricity therein or therefrom.
  • Such multilayer ceramic capacitors may have a structure in which a plurality of dielectric layers and internal electrodes of different polarities disposed between the dielectric layers are alternately disposed.
  • MLCC's comprise a small percentage of precious and rare earth metals, e.g., less than about 5%. including silver, palladium, gold.
  • MLCCs would be classified as micro-components, consistent with the present applieation.
  • the MLCCs comprise a higher amount of copper and other base metals than the precious and rare carth metals.
  • the MLCC may comprise between about 2-8 wt%copper, 2-7 wt%copper. 2-6 wt%copper. 2-5 wt%copper, 2-4 wt%copper, 3-5 wt%copper, or 3-6 wt%copper, based on the total weight of the MLCC.
  • the MLCC may comprise between about 0.05-0.6 wt%palladium, 0.05-0.5 wt%palladium, 0.05-0.4 wt%palladium. 0.05-0.3 wt%palladium, 0.1-0.3 wt%palladium, 0.1-0.4 wt%palladium, or 0.2-0.4 wt%palladium based on the total weight of the MLCC.
  • the amount of copper and palladium is dependent on the specific MLCC design.
  • palladium-containing componcnts include. but are not limited to. MLCCs, hybrid ICs comprising a ceramic substrate and different components, wherein the components are linked by conductive silver-palladium tracks, as well as components having conductive palladium layers.
  • miscellaneous parts present on the PCB’s including iron parts, batteries, crystals, USB ports, BGA chips, metal covers, metal casings, metal shields, stickers, foam or plastie shields, and metal or plastic brackets.
  • a “drum” comprises an enclosure for containing PCBs, PCB components, or both, therein, wherein the enclosure comprises at least one of: at least one hole for allowing a liquid to enter and exil the drum; at least one interior fin for agitating the PCBs, PCB componcnts, or both, contained within the drum; a rotating drive; and any combination thereof.
  • hydrooxide salt corresponds to alkali hydroxides (e.g., sodium hydroxide, potassium hydroxide, rubidium hydroxide) , alkaline earth metal hydroxides (e.g., magnesium hydroxide, calcium hydroxide) , ammonium hydroxide, tetraalky lammonium hydroxides having the formula NR t R 2 R 3 R 4 OH, and tetraalkylphosphonium hydroxides having the formula PR 1 R 2 R 3 R 4 OH, wherein R 1 , R 2 , R 3 and R 4 may be the same as or different from one another and are selected from the group consisting of hydrogen, straight-chained or branched C 1 -C 6 alkyl (e.g., methyl, ethyl, propyl, butyl, pentyl, and hexyl) . and substituted or unsubstituted C 6 -C 10 aryl, e.g., benzy
  • substantially completion of the chemical reaction corresponds to the completion of at least about 90%of the chemical reaction, based on the limiting reagent present, preferably at least about 95%, and most preferably at least about 99%.
  • a “complete reaction” corresponds to reaction of at least 99%of the limiting reagent, more preferably at least 99.5%.
  • an integrated, intelligent system and process for recycling palladium-containing components comprising a palladium leaching (PL) module, wherein the PL module comprises at least one base metal removal apparatus, and at least one palladium leaching apparatus, wherein the system and process of using said system efficiently recovers more than about 80%, preferably more than about 90%. and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • the system and process efficiently recovers more than about 80%, preferably more than about 85%, and most preferably more than about 90% of the silver contained in the palladium-containing components.
  • a schematic of the system and process for recycling palladium-containing components is shown in Figures 1 and 2.
  • the PL module (15) for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • the apparatuses are positioned and/or operated in series with one another, with or without intervening parts, and wherein the PL module efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • the PL module is designed such that the palladium-containing components, whether batch or otherwise, move within the PL module automatically or manually and/or can move from module to module, automatically or manually, using a movingmeans.
  • the PL module may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparalus.
  • the PL module (15) for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • the apparatuses are positioned and/or operated in series with one another, with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the PL module efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing componcnts,
  • the PL module is designed such that the palladium-containing components, whether batch or otherwise, move within the PL module automatically or manually and/or can move from module to module, automatically or manually, using a moving means.
  • the PL module may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • a palladium leaching module comprising:
  • the modules and apparatuses are positioned and/or operated in series with one another. with or without intervening parts, and wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module. automatically or manually, using a moving means.
  • the system may be controlled by one or more controlling device including. but not limited to. PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • a palladium leaching module comprising:
  • the modules and apparatuses are positioned and/or operaled in series with one another. with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • the system is designed such that the palladium-containing components. whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means.
  • the system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • a palladium leaching module comprising:
  • the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts.
  • the furnace module can be positioned before or after the palladium leaching module, and wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • the system is designed such that the palladium-containing components. whether batch or otherwise. move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means.
  • the system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • a palladium leaching module comprising:
  • the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, wherein the furnace module can be positioned before or after the palladium leaching module, and wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automaticallyor manually and/or can move from module to module, automatically or manually, using a moving means.
  • the system may be controlled by one or more controlling device including. but not limited to. PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • system for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • a palladium leaching module comprising:
  • the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts. and wherein the system efficienlly recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module. automatically or manually, using a moving mcans.
  • the system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • a palladium leaching module comprising:
  • the modules and apparatuses are positioned and/or operated in series with one another. with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means
  • the system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • a palladium leaching module comprising:
  • the SPT tool module (360) can comprise at least one module selected from the group consisting of (i) a SPT base metal removal module (380) , (ii) a SPT gold removal module (400) , (iii) a SPT silver leaching module (420) , (iv) any combination of (i) -(iii) , and (v) the combination of each of (i) - (iii) .
  • the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means.
  • the system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process sleps in the apparatus.
  • system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • a palladium leaching module comprising:
  • the SPT tool module (360) can comprise at least one module selected from the group consisting of (i) a SPT base metal removal module (380) , (ii) a SPT gold removal module (400) , (iii) a SPT silver leaching module (420) , (iv) any combination of (i) -(iii) .
  • the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means.
  • the system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • a palladium leaching module comprising:
  • the SPT tool module (360) can comprise at least one module selected from the group consisting of (i) a SPT base metal removal module (380) . (ii) a SPT gold removal module (400) , (iii) a SPT silver leaching module (420) , (iv) any combination of (i) -(iii) . and (v) the combination of each of (i) - (iii) .
  • the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from modute to module, automatically or manually, using a moving means.
  • the system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • a palladium leaching module comprising:
  • the SPT tool module (360) can comprise at least one module selected from the group consisting of (i) a SPT base metal removal module (380) . (ii) a SPT gold removal module (400) . (iii) a SPT silver leaching module (420) .
  • the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means.
  • the system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • a palladium leaching module comprising:
  • the SPT tool module (360) can comprise at least one module selected from the group consisting of (i) a SPT base metal removal module (380) . (ii) a SPT gold removal module (400) . (iii) a SPT silver leaching module (420) .
  • the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means.
  • the system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or morc automated process steps in the apparatus.
  • system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • a palladium leaching module comprising:
  • the SPT tool module (360) can comprise at least one module selected from the group consisting of (i) a SPT base metal removal module (380) . (ii) a SPT gold removal module (400) . (iii) a SPT silver leaching module (420) .
  • the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means.
  • the system may be controlled by one or more controlling device including but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • an integrated, intelligent system for recycling palladium-containing components wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components, said system comprising an palladium leaehing module (15) , and at least one additional module selected from the group consisting of:
  • the palladium leaching module comprises (A) at least one base metal removal apparatus (20) , and (B) at least one palladium leaching apparatus (40) .
  • the SPT tool module (360) can comprise at least one module selected from the group consisling of (i) a SPT base metal removal module (380) . (ii) a SPT gold removal module (400) . (iii) a SPT silver leaching module (420) . (iv) any combination of (i) -(iii) , and (v) the combination of each of (i) - (iii) .
  • the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means.
  • the system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulale one or more automated process steps in the apparatus.
  • an integrated, intelligent system for recycling palladium-containing components wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components, said system comprising an palladium leaching module (15) , and at least one additional module selected from the group consisting of:
  • the palladium leaching module comprises (A) at least two base metal removal apparatuses (20, 30) , and (B) at least one palladium leaching apparatus (40) , wherein the at least two base metal removal apparatuses can be the same as or different from one another.
  • the SPT tool module (360) can comprise at least one module selected from the group consisting of (i) a SPT base metal removal module (380) . (ii) a SPT gold removal module (400) . (iii) a SPT silver leaching module (420) .
  • the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means.
  • the system may be controlled by one or more controlling device including, but not limited to. PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • a process for recycling palladium-containing components in a palladium leaching (PL) module comprises, consists of, or consists essentially of:
  • the apparatuses are positioned and/or operated in series with one another, with or without intervening pans, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • the process includes moving the palladium-containing components within a module automatically or manually, and/or moving the palladium-containing components from module to module, automatically or manually, using a moving means.
  • the process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps.
  • a process for recycling palladium-containing components in a palladium leaching (PL) module comprises, consists of, or consists essentially of:
  • the apparatuses are positioned and/or operated in series with one another, with or without intervening pans, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the process efficiently recovers more than ahout 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • the process includes moving the palladium-containing components within a module automatically or manually, and/or moving the palladium-containing components from module to module, automatically or manually, using a moving means.
  • the process may be controlled by one or more controlling device including, but not limited to,PLCs that coordinate and regulate one or more automated process steps.
  • a process for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • a palladium leaching (PL) module (15) .
  • the PL module comprises:
  • the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • the process includes moving palladium-containing components or ground materials within a module automatically or manually, and/or moving palladium-containing components or ground materials from module to module, automatically or manually, using a moving means.
  • the process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automatcd process steps.
  • a process for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • PL palladium leaching
  • the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • the process includes moving palladium-containing components or ground materials within a module automatically or manually, and/or moving palladium-containing components or ground materials from module to module, automatically or manually, using a moving means.
  • the process may be controlled by one or more controlling device ineluding, but not limited to, PLCs that coordinate and regulate one or more automated process steps.
  • a process for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • PL palladium leaching
  • the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • the process includes moving palladium-containing components or solids within a module automatically or manually, and/or moving palladium-containing components or solids from module to module, automatically or manually, using a moving means.
  • the process may be controlled by one or more controlling device including, but not limited to. PLCs that coordinate and regulate one or more automated process steps.
  • a process for recycling palladium-containing components comprises, consists of. or consists essentially of:
  • PL palladium leaching
  • the modules and apparatuses are positioned and/or operated in series with one another. with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components,
  • the process includes moving palladium-containing components or solids within a module automatically or manually, and/or moving palladium-containing components or solids from module to module, automatically or manually, using a moving means.
  • the process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps.
  • a process for recycling palladium-containing components comprises, consists of. or consists cssentially of:
  • PL palladium leaching
  • a process for recycling palladium-containing componcnts comprises, consists of. or consists essentially of:
  • PL modulc comprises:
  • the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein thc process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • the process includes moving palladium-containing components or solids within a module automatically or manually, and/or moving palladium-containing components or solids from module to module, automatically or manually, using a moving means.
  • the process may be controlled by one or more controlling device including, but not limited to. PLCs that coordinate and regulate one or more automated process steps.
  • a process for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • Processing using the SPT tool module (360) can comprise at least one process selected from the group consisting of (i) removing at least one base metal using a base metal removal composition in a SPT base metal removal module (380) , (ii) removing gold using a gold removal composition in a SPT gold removal module (400) , (iii) removing silver using a silver removal composition in a SPT silver leaching module (420) , (iv) any combination of (i) - (iii) . and (v) the combination of each of (i) - (iii) .
  • the process includes moving palladium-containing components within a module automatically or manually, and/or moving palladium-containing components from module to module, automatically or manually, using a moving means
  • the process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • a process for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • PL module (a) removing palladium from palladium-containing components in a palladium leaching (PL) module, wherein the PL module (15) comprises:
  • Processing using the SPT tool module (360) can comprise at least one process selected from the group consisting of (i) removing at least one base metal using a base metal removal composition in a SPT base metal removal module (380) , (ii) removing gold using a gold removal composition in a SPT gold removal module (400) , (iii) removing silver using a silver removal composition in a SPT silver leaching module (420) , (iv) any combination of (i) - (iii) , and (v) the combination of each of (i) - (iii) .
  • the process includes moving palladium-containing components within a module automatically or manually, and/or moving palladium-containing components from module to module, automatically or manually, using a moving means
  • the process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • a process for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • a palladium leaching (PL) module (15) removing palladium from the ground materials in a palladium leaching (PL) module (15) , wherein the PL module comprises:
  • Processing using the SPT tool module (360) can comprise at least one process selceted from the group consisting of (i) removing at least one base metal using a base metal removal composition in a SPT base metal removal module (380) , (ii) removing gold using a gold removal composition in a SPT gold removal module (400) .
  • the process includes moving palladium-containing components or ground materials within a module automatically or manually. and/or moving palladium-containing components or ground materials from module to module, automatieally or manually, using a moving means.
  • the process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • a process for recycling palladium-containing components comprises, consists of. or consists essentially of:
  • a palladium leaching (PL) module (15) removing palladium from the ground materials in a palladium leaching (PL) module (15) , wherein the PL module comprises:
  • modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • Processing using the SPT tool module (360) can comprise at least one process selected from the group consisting of (i) removing at least one base metal using a base metal removal composition in a SPT base metal removal module (380) , (ii) removing gold using a gold removal composition in a SPT gold removal module (400) , (iii) removing silver using a silver removal composition in a SPT silver leaching module (420) , (iv) any combination of (i) - (iii) . and (v) the combination of each of (i) - (iii) .
  • the process includes moving palladium-containing components or ground materials within a module automatically or manually, and/or moving palladium-containing components or ground materials from module to module, automatically or manually, using a moving means
  • the process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more antomated process steps in the apparatus.
  • a process for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • PL palladium leaching
  • Processing using the SPT tool module (360) can comprise at least one process selected from the group consisting or (i) removing at least one base metal using a base metal removal composition in a SPT base metal removal module (380) .
  • the process includes moving palladium-containing components or solid within a module automatically or manually, and/or moving palladium-containing components or solid from module to module, automatically or manually, using a moving means.
  • the process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus,
  • a process for recycling palladium-containing components comprises, consists of, or consists essentially of:
  • PL palladium leaching
  • modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in thc palladium-containing components.
  • Processing using the SPT tool module (360) can comprise at least one process selected from the group consisting of (i) removing at least one base metal using a base metal removal composition in a SPT base metal removal module (380) , (ii) removing gold using a gold removal composition in a SPT gold removal module (400) , (iii) removing silver using a silver removal composition in a SPT silver leaching module (420) , (iv) any combination of (i) - (iii) , and (v) the combination of each of (i) - (iii) .
  • the process includes moving palladium-containing components or solid within a module automatically or manually, and/or moving palladium-containing components or solid from module to module, automatically or manually, using a moving means.
  • the process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • a process of recycling palladium-containing components wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • the process comprises removing palladium from palladium-containing components using a palladium leaching module (15) , and optionally at least one additional step selected from the group consisting of:
  • solder removal composition in a desoldering module (260) .
  • the palladium leaching (PL) module comprises, consists of, or consists esscntially of (A) removing at least one base metal from ground material using a base metal removal composition in at least one base metal removal apparatus (20) , and (B) removing palladium from the ground material using a palladium removal composition in a palladium leaching apparatus (40) .
  • Processing using the SPT tool module (360) can comprise at least one process selected from the group consisting of (i) removing at least one base metal using a base metal removal composition in a SPT base metal removal module (380) , (ii) removing gold using a gold removal composition in a SPT gold removal module (400) , (iii) removing silver using a silver removal composition in a SPT silver leaching module (420) , (iv) any combination of (i) - (iii) , and (v) the combination of each of (i) - (iii) .
  • the process includes moving material within a module automatically or manually, and/or moving material from module to module, automatically or manually, using a moving means.
  • the system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • a process of recycling palladium-containing components wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components.
  • the process comprises removing palladium from palladium-containing components using a palladium leaching module (15) , and optionally at least one additional step selected from the group consisting of:
  • the palladium leaching (PL) module comprises, consists of, or consists essentially of (A) removing at least one base metal from ground material using a base metal removal composition in at least two base metal removal apparatuses (20, 30) , and (B) removing palladium from the ground material using a palladium removal composition in a palladium leaching apparatus (40) , wherein the at least two base metal removal apparatuses can be the same as or different from one another.
  • Processing using the SPT tool module (360) can comprise at least one process selected from the group consisting of (i) removing at least one base metal using a buse metal removal composition in a SPT base metal removal module (380) , (ii) removing gold using a gold removal composition in a SPT gold removal module (400) , (iii) removing silver using a silver removal composition in a SPT silver leaching module (420) , (iv) any combination of (i) - (iii) , and (v) the combination of each of (i)- (iii) ,
  • the process includes moving material within a module automatically or manually, and/or moving material from module to module, automatically or manually, using a moving means
  • the system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
  • the systems and processes are integrated and intelligent and capable of maximizing the efficiency of precious metal, e.g., palladium and gold, removal.
  • the systems and processes ensure that the palladium-containing components are processed to ensure a minimization of resources (e.g., chemicals, energy, hardware, software, footprint of the facility, water) , a minimization of waste, and a maximization of metal reclaimod.
  • resources e.g., chemicals, energy, hardware, software, footprint of the facility, water
  • a minimization of waste e.g., metal reclaimod.
  • This is accomplished, in part, using at least one programmable logic controller, which can be controlled by a SCADA device.
  • the process can be either a wet process, a dry process, a chemical process, a physical process, an electrical process, a mechanical process, or some combination of more than one of the foregoing processes.
  • wet processing includes, but is not limited to, metal removal using chemicals and rinsing
  • dry processing includes, but is not limited to, thermal processing (i.e., heating) , grinding, and burning.
  • each module has at least one PLC controlling it.
  • multiple modules have at least one PLC controlling them.
  • a SCADA device can be used to control the one or more PLCs.
  • a SCADA device is a computer-based system that monitors and controls industrial, infrastructure and facility-based processes.
  • the apparatuses and processes described herein preferably optimize energy utilization.
  • the apparatuses and processes may rely on a closed loop energy system to transfer energy from energy generators including, but not limited to, heat in exhaust, heat of dilution, exothermic chemical reactions, that can be captured in heat exchangers) to energy users including, but not limited to, heating compositions, heating solder, ashing materials, maintaining temperatures during endothermic processes) .
  • the integrated, intelligent systems and processes can operate continuously (in batch or otherwise) twenty four hours a day, seven days a week, and process electronic waste with precious metal recovery efficiencies on the order of 85% to greater than 99%.
  • the systems described herein can include “kill switch” capabilities, wherein an Ethernet-based control system such as SCADA can shut down the system in the event that workers or the environment are at risk including, but not limited to, exposure to toxic fumes, out of control chemical reactions, computer or component malfunctions in the module.
  • an Ethernet-based control system such as SCADA can shut down the system in the event that workers or the environment are at risk including, but not limited to, exposure to toxic fumes, out of control chemical reactions, computer or component malfunctions in the module.
  • the at least one PLC and the SCADA when present, can be used for at least one of the following: data processing; managing and controlling module (s) ; storing of recipes; blending chemistries; separating materials; data archiving and reporting; controlling computer networks and systems; safety, efficiency, economic, and ecological operations; maintenance; leak detection and containment location and special requirements necessary; sampling and monitoring of a variable; and/ur printing production reports.
  • thc process es
  • hardware, evolved gas, palladium-containing components, solids, removal composition, raw materials for removal composition, process composition and rinse liquid, process rinse liquid may be monitored in real-time and the data acquired sent to at least one PLC for analysis and further action as needed.
  • the real-time monitoring can occur in any container, within any of the lines, during any point in a process.
  • chemical reactions wherein a removal composition is used to remove at least one metal from the palladium-containing material can he monitored whereby real-time sampling occurs and a concentration of one or more components determined. This allows the computer to make adjustments so that the removal composition remains at a steady concentration over time.
  • the chemical reaction may be complete and/or the removal composition may be loaded and/or an endpoint may be reached.
  • real- time sampling of rinse liquids can occur, allowing the computer to determine the status of the rinse liquid.
  • the pH of a removal composition or a rinse liquid must be adjusted and real-time sampling permits this action,
  • the solids can be sampled in real-time as well. Real-time sampling also ensures that workers and the environment are not nt risk by engaging the “kill switch” if some prespecified threshold is achieved.
  • Real-time monitoring can include, but is not limited to: temperature; pressure; liquid and/or gas leak detection; and the monitoring of chemical constituents and/or pH values and/or oxidation reduction potentials and/or end points and/or conductivity in solids and/or liquids during mixing, flow, levels, weight, storage, blending, agitation, reactions, recovery, reuse, feed and bleed, neutralization, buffering, diluting, pH adjustment, loading, NOx suppression, filtration, separation, centrifugation, precipitation, diffusion dialysis, resin-based acid recycle and metals recovery, electrowirming, wastewater treatment, and/or regeneration.
  • the chemical constituents monitored can bo raw chemical constituents or compositions comprising at least one chemical constituent.
  • the real-time monitoring can occur in any container in any module, within any of the lines, during any point in a process.
  • Process hardware can be monitored in real-time as well. Any of the gases evolved from any of the reactions can be monitored in real-time.
  • Real-time monitoring and analysis can bo in-line, direct, indirect, continuous, scheduled and/or require sample preparation.
  • the sampling can be manual or automatic.
  • the analytical analysis to determine concentration can be manual or automatic.
  • Concentrations can be determined using any “analytical techniques” or “sensing means” known in the art including, but not limited to, pH measurement, atomic absorption spectroscopy, atomic emission spoctroscopy, inductively coupled plasma spectroscopy, inductively coupled plasma optical emission spectroscopy, UV-Vis spectrophotomctry, UV spectrophotometry, titrations, infrared spectroscopy, temperature-controlled infrared spectroscopy, colorimetry, liquid chromatography, high perfermance liquid chromatography, refractive indox sensor, optical sensors, chemical sensors, electrochemical techniques (e.g., pulsed cyctie galvanostatic analysis, multi-variate analysis, galvanostatic, potentiodynamic) , cyclic voltammetry, linear polarization, radio frequency identification, and any other technique known by the skilled artisan to measure chemical concentrations.
  • electrochemical techniques e.g., pulsed cyctie gal
  • Palladium-containing components associated with e-waste are typically attached to printed circuit boards and should be removed from the PCB to increase the efficiency of the overall recycling and reclamation process. Furhher, the impact on the environment is lessened by reducing the volume of chemicals used, the waste stream as well as the operational (i.e., utility) and equipment (i.e., exchanger, scrubber, and wastewater treatment) costs.
  • the most common pallndium-containing component is the multi-layer ceramic capacitor (MLCC) .
  • MLCC multi-layer ceramic capacitor
  • the MLCCs can be removed from the PCBs and sorted for further processing according to the invention described herein.
  • Other palladium-containing components, as described herein, can also be collected using the system and process of the incorporated PCT/CN2016/070904 application for further processing according to the invention described herein.
  • the obtainment of the palladium-containing components is not limited to the system and process of the incorporated PCT/CN2016/070904 application, e.g., the pre-BCM, BCM and/or DS modules.
  • another system and process may be used to obtain the palladium-containing components.
  • the palladium-containing components can be removed from PCBs onsite or offsite and subsequently shipped to the fab for further processing according to the invention described herein.
  • PCBs comprising components can be sorted, manually or automatically. according to type, size. and weight in a pre-board clearing module (pre-BCM) (220). Components and other miscellaneous parts that can be easily re moved are. and everything can be sorted into batches for further processing.
  • pre-BCM pre-board clearing module
  • the PCBs and miscellancous parts of batch 1 are disposed of, the PCBs in batch 2 are further processed in the BCM to remove and recovcr PCB components from thc PCBs, and the PCBs and easy to remove components in batch 4 are further processed in the desoldering module to remove and recover PCB components and solder therefrom.
  • BCM board clearing module
  • DS desoldering
  • a BCM utilizes heating and mechanical means to remove PCB components from PCBs.
  • a board clearing module (240) (BCM) to remove PCB components from PCBs can comprise:
  • thermoforming means wherein the temperature is raised to softon solder, epoxy, glue, and/or other adhesives used to connect a PCB component to a PCB;
  • the mechanical means are selected from the group consisting of cutting blades, abrasive materials, grinders, tumblers, heated air knifes, vibration forces, brushes, rakes, scrapers, augers, high pressure gases, high pressure liquids, heat transfer fluids. hammers, and any combination thereof.
  • the temperature within the heating means is preferably about 1° to 30°C below the melting temperature of thc solder, cpoxy, glue, and/or other adhesives.
  • the mechanical means can remove thc PCB component from the PCB.
  • the BCM module (240) can further comprise at least one of: containing means to collect the PCBs and PCB components following removal of the PCB compoaents from the PCB, for further processing: moving means for moving the PCBs and PCB components through the BCM module (240); loading means for introducing the PCBs into the heating and/or mechanical means; sorting means for sorting PCBs and PCB components into hatch(s) ; and any combination thereof.
  • the “heating means, ” include, but are not limited to, batch ovens or the equivalent thereof that utilize infrared heat. resistance heating coils, heat transfer fluid, fluid/vapor heat exchangcrs, which can be used to heat the PCB, and hence the solder.to a temperature where the solder is softened, thereby enabling the mechanical removel of the PCB components from the PCB using mechanical and/or physical means.
  • a process of removing components from PCBs in a board clearing module (BCM) (240) can comprise;
  • the bonding agents can comprise any one of solder. adhesives, glues and/or epoxy.
  • the temperature that the bonding agent is heated to is preferably about 1° to 30°C below the melting temperature of the bonding agent.
  • the mechanical means can be selected from the group consisting of cutting blades, abrasive materials, grinders, tumblers, heated air knifes, vibration forces, brushes, rakes, scrapers, augers, high pressure gases, high pressure liquids, heat transfer fluids, hammers.
  • the process of removing components from PCBs in the BCM can further comprise at least one of: receiving the PCBs and PCB components in the BCM module; collecting the PCBs and PCB components in a containing means following removal of the PCB components from the PCB; moving the PCBs and PCB components through the BCM module (240) using moving means; introducing the PCBs into the heating and/or mechanical means using loading means: sorting PCBs and PCB components into batch(s) using sorting means, manually and/or automatically; moving/trausferring thc batch(s) to one or more modules manually and/or automatically; and any combination thereol.
  • a desoldering (DS) module (260) to remove solder.
  • PCB components, or both, from PCBs.PCB components, or both. is shown schematically in Figure 3. and can .comprise:
  • a system comprising at least at least one solder removal tank (264, 266). at least one dragout tank (268) . and at least one rinsing tank (270, 272), wherein each tank has the volumetric capacity to contain a containing mcars, e.g., drum, therein.
  • the system comprises moving means to move the containing means, e.g., drum, from tank to tank, e.g., from the at least one solder removal tank (264, 266) to the at least one dragout tank (268) to the at least one rinsing tank (270, 272) or any other order necessary to remove solder, PCB components, or both, from PCBs, PCB components, or both.
  • the PCBs, PCB components, or both are manually or automatically introduced to the containing means, e.g., drum, for processing.
  • the containing means, e.g., drum can be serially moved from tank to tank using moving means,complete with full or partial submersion of the containing means, e.g., drum.
  • the at least one solder removal tank can comprise a solder removal composition.
  • Each tank can comprise one or more of: agitation means; at least one filter, real-time sampling and adjustment; a cover to minimize evaporation; heating/cooling means; air inputs; sensing means; ventilation means; and any combination thereof.
  • the system can further comprise at least one drying tank (274) .
  • the DS module (260) can be controlled by a PLC.
  • the solder removal composition preferably removes solder metals selectively relative to precious metals, in particular gold and palladium, thereby increasing the loading of the bath for the solder and increasing the bath-life of the solder removal composition.
  • a process of removing solder, PCB components, or both, from PCBs, PCB components, or both can comprise:
  • each tank has the volumetric capacity to contain a containing means, e.g., drum, thereia
  • the system comprises moving means to move the containing means, e.g., drum, from tank to tank, e.g., from the at least one solder removal tank (264, 266) to the at leasl one dragout tank (268) to the at least one rinsing tank (270, 272) or any other order necessary to removc solder.
  • the containing means, e.g., drum can be serially moved from tank to tank using moving means.
  • Each tank can comprise one or more of: agitation means: at least one filter; real-time sampling and adjustmcnt; a cover to minimize evaporation; heating/cooliag means; air inputs; sensing means; ventilation means; and any combination thereof.
  • the system can further comprise al least one drying tank (274).
  • the containing means e.g., drum
  • the containing means can be fully or partially submerged in the at least one solder removal tank (264, 266) comprising a solder removal composition for time in a range from about 1 minute to about 80 minutes, preferably about 10 minutes to about 40 minutes, at temperature in a range from about room temperature to about 80°C. preferably about 30°C to about 60°C.
  • the containing means, e.g., drum can be fully or partially submerged in the at least one rinsing tank (270, 272) for time in a range from about 1 minute to about 30 minutes, preferably about 1 minute to about 10 minutes.
  • the DS module (260) can bc controlled by a PLC and the process of removing solder, PCB components,or both, from PCBs, PCB components, or both, can be subject to a recipc pvecific to what is being processed, as dictated by the PLC.
  • Recyclable palladium-containing components that have been manually or automatically removed from the PCBs can be further processed to remove precious metals.
  • the palladium-containing components can be collected and can be sent to a furnace/ashing module to ash the components, thereby increasing the surface area of the palladium-containing components that is exposed to further processing. This has the benefit of higher metal removal efficienoics, particularly gold from the rocyclable componcnts.
  • the furnace module comprises a furnace or some other heating means. and means to control the air input into the furnace.
  • the furnacc module may operate in a continuous and/or batch mode and comprises a furnace, means to feed and/or load the furnace with paliadium-containing components, and means to control the air input into the furnace.
  • the palladium-containing components may be crushed prior to or after introduction to thc furnace.
  • the type, size and/or capacity of the furnace can be readily determined by one skilled in the art based on factors including, but not limited to, operating temperatttre, footprint,throughput, capacity, weight, type of material to be ashed and combinations of the foregoing.
  • the furnace comprises one or more heating elemenls.
  • the healing element is electric and comprises one or more materials including, but not limited to, metal, metal alloys, metal superalloys, ceramics, composites and combihalioas of the foregoing.
  • the heating ellmcnt comprises one or more alloy materials including, but not limited to, Inconcl, Moncl, Hastelloy, Examples of useful furnaces include, but are not limited to, top loading furnaces, bottom loading furnaces, front loading furnaces, continuous furnaces, bench furnaces, batch furnaces, truck in furnaces, box furnaces, belt furnace, shelf furnaces.
  • Thc furnace may comprise fixed and/or adjuslanle parameters that may operate manually or automatically including, but not limited to. throughput, weight, capacity, temperature, temperature ramp rate, time, air flow, pressure, ventilalion and combinations of the foregoing.
  • thc furnace includes means to control lhe air input into the furnace because thc furnace ashes the palladium-containing components at high temperatures, e.g., in a range from about 500°C to about 800°C. preferably about 600°C to about 70t°C.
  • the furnace may require a supply of air provided at a known minimum airflow. Ifthe airflow is too low, combustible gases may build up.
  • the furnace may comprise means to control the direction, rate and/or flow of air through the furnace including, but not limited to. one or more blowers, fans. dampers, ducts, air curtains, air guides, baffles and combinations of the foregoing.
  • Furthor, pressure sensors, flow sensors, gas sensors (e.g., O 2 sensor), and/or temperature sensors can be included to control and regulate one or more components in thc effluent.
  • the furnace preferably includcs a ventilation and/or abatement system to handle combustible gases and any ash material that may become airborne.
  • the ventilation system can or may include an electrostatic precipitator or some filtering system. Further. the furnace shall be in compliance with local fire and air quality codes.
  • the means to feed the furnace with palladium-containing componcnts may be automatic or manual and may include at least one of the moving means described herein. Further, the palladium-containing components may be fed individually or in one or more batches into thc furnace. Batches of palladium-containing components may be formed in the furnace as the palladium-containing components are fed into the furnace. It is contemplated that the batches may include other components that are to be ashed for increased metal removal efficiency. Thc pallndium-containing components may be fed into the furnace on one or more support surfaces that support the individual or batch of palladium-containing components or the palladium-containing components may be fed onto one or more support surfaces already in the furnace.
  • “Support surfaces” include, but are not limited to, racks, shelves, trays, containers and combinations of the foregoing.
  • the palladium-containing components are arranged on one or more trays having a base surface and a sidewall having a height that extends above the base surface. Further the one or more trays may be solid and/or perforated.
  • the height of the tray sidewall is selected so as to maximize the efficiency of the ashing process and may be selectcd based on onc or more process parameters including but not limited to weight. capacity, tcmperature. time,,air flow, pressure, ventilation and combinations of the foregoing. In one cmbediment, the tray sidewail height is from betwcen about 1 mm and about 15 cm.
  • the furnace is a batch furnace that includes one or more racks and can accommodate one or more trays.
  • the palladium-containing components are manually or automatically placed on/in the trays and the trays can be manually or automattically loaded in the furnace.
  • the depth of palladium-containing components in the trays is from about 1 mm to about 10 cm. preferably about 1 cm to about 3 cm.
  • the furnace and trays should be constructed from a material that will withstand the temperatures. pressures. and VOCs of the ashing process and will not be a source of contamination during the heating/cooling processes.
  • the furnacc can be cooled to ambient temperatures following ashing. either with the assistance of refrigeration. the introduction of air to the furnace. by uncontrolled cooling to ambient temperature. or any other means of cooling. as understood by the person skilled in the art.
  • the furnace module ashes the palladium-containing components based on at least one process recipe that is based on one or more parameters that may be manually or automatically input including. but not limmited to. throughput. weight of recyctable components and/or memory boards, capacity of the furnace. tempcrature, tempcrature ramp rate. cycle time, air flow. pressure. ventilation and combinations of the foregoing.
  • the process recipc is selected by a PLC that controls one or more functions of the furnace module to ash greater than 80%. prcferably greater than 95%. of the ashable content of the palladium-containing components.
  • the process recipe includes a programmable temperaturc/time profile that is based on one or more of type.
  • the temperature/time profile for the furnace process may include, but is not limiled to, preheating, the rate of continous temperature ramping, ramp/hold, the tate of stepped temperature ramping. the rate of staged temperature ramping. and combinations of the foregoing.
  • the ashing process operates at a temperature from about 250°C to about 800°C from about 1 hour to about 8 hours.
  • the ashed materials have size in a range from about 1 to about 3000 microns. That said, it should be appreciated that there will be circumstances where not all of the palladium-containing components will be reduced to ash in the furnace. Some palladium-containing components include non-ashable inorganic matcrials.
  • the material remaining following processing in the furnace module can be sent to further processing to extract palladium from the material (e.g., in the palladiumlcaching module (15) ) or can be sent to the grinding or milling module. or eventually both. as readily determinable by the person skilled in the art.
  • the material can be moved to the next module in a container. automatically or manually, on a one or more moving means. In one embodiment. no separation of the inorganic materials from the ash occurs prior to further processing. In another embodiment. the inorganic materials are separated from the ash prior to further processing.
  • the components and memory boards will include inorganic materials that are not combustible in the furnace.
  • Some components and memory boards will include inorganic materials that are not combustible in the furnace.
  • palladium-containing components e.g., from the pre-BCM module (220) , from the BCM module (240) , and/or from the DS module (260) , do not require ashing for efficient processing of same to extract precious metais.
  • grinding or milling means (340) can be used to prepare the palladium-containing components for further processing.
  • the grinding means include. but are not limited to, an industrial grinder.
  • the milling means include. but are not limited to. a hammermill. a wet ball mill. etc.
  • the palladium-containing components or ash comprising the palladium-containing components, e.g., MLCCs. are introduced to the grinding or milling means and the materials arc ground into smaller pieces. for example. less than 10 mesh (1.70 mm) , more preferably less than 20 mesh (0.85 mm) , and most preferably less than 30 mesh (0.60 mm) ,
  • the grinding or milling means should be equipped with a dust recovery system because of the ash that can be stirred up during the grinding or milling process.
  • the dust recovery system is capable of capturing dust so that it can be collected and processed.
  • grinding or milling means preferably includes means to load and unload solids therein, e.g., containing means and/or moving means.
  • the palladium-containing components can be loaded into the grinding or milling means using a conveyor or serew feed.
  • the ground material remaining following processing in the grinding or milling module can be sent to flrther processiug in the palladium leaching module (15) ,
  • the material can be moved to the next module in a container. e.g., a hopper. automatically or manually. on one or more moving means. It should be appreciated that the palladium-containing components can arrive at the fab already ground for further processing using the systems and processes described herein.
  • the present system and process includes the removal of at least one base metal. including copper. from the palladium-containing material in a base metal removal apparatus.
  • the palladium-containing components were ground. ashed. or both prior to contact with a base metal removal composition (s) in a base metal removal apparatus (es) .
  • the system can include at least one base metal removal apparatus.
  • the system includes at least two base metal removal apparatuses. wherein each base metal removal apparatus comprises a base metal removal (BMR) composition.
  • BMR base metal removal
  • the base metal removal compositions in the at least two base metal removal apparatuses can be the same as or different from one another.
  • the base metal and copper remnoval efficiency was increased when the base metal removal compositions in the at least two base metal removal apparatnses are different from one another.
  • the first base metal removal apparatns (BMR-1) comprises a composition comprising. consisting of, or consisting essentialty of at least one chloride-containing compound and at least one solvent.
  • the second base metal removal apparatus (BMR-2) comprises a composition comprising. consisting of, or consisting essentially of at least one acid. at least one oxidizing agent and at least one solvent.
  • Chloride-containing compounds include. but are not limited to. hydrochloric acid. and alkaline chlorides (e.g., soditum chloride. potassium chloride. rubidium chloride. cesium chloride. magnesium chloride. calcium chloride. strontium chloride. ammonium chloride. quaternary ammoniusm chloride salts) , and combinations thereof.
  • the chloride-containing compound comprises hydrochloric acid. ammonium chloride. quaternary ammonium chloride salts. or combinations thereof.
  • Oxidizing agents are included in the composition to oxidize the base metals to be removed into an ionic form and accumulate highly soluble salts of dissolved metals.
  • Oxidizing agents contemplated herein include. but are not limited to. ozone. bubbled air, cyclohexylaminosulfonic acid. hydrogen peroxide (H 2 O 2 ) , oxone (potassium peroxymonosulfate, 2KHSO 5 ⁇ KHSO 4 ⁇ K 2 SO4) , ammonium polyatomic salts (e.g., ammonium peroxomonosulfate.
  • ammoninm chlorite (NH 4 CIO 2 ) , ammonium chlorate (NH 4 CIO3 ) , ammonium iodate (NH 4 IO 3 ) , ammonium perborate (NH 4 BO 3 ) , ammonium perchlorate (NH 4 CIO 4 ) , ammonium periodate (NH 4 IO 3 ) , ammonium persulfate ( (NH 4 ) 2 S 2 O 8 ) , ammonium hypochloritc (NH 4 CIO) ) , sodium polyatomic salts (e.g., sodium persulfaye (Na 2 S 2 O 8 ) , sodium hypochlorite (NaC(O) ) , potassium polyatomic salts (e.g., potassium iodate (KIO 3 ) , potassium permanganate (KMnO 4 ) , potassium persulfate.
  • sodium polyatomic salts e.g., sodium persulfaye (Na
  • potassium persulfate K 2 S 2 O 8
  • potassium hypochlorite KCIO
  • tetrantethylammonnium polyatomic salts e.g.,tetramethylammonium chlorite (( N (CH 3 ) 4 ) CIO 2 ) , tetramethylammonium chlorate ( (N (CH 3 ) 4 ) CIO 3 ) , tetramethylammonium iodate ( (N (CH 3 ) 4 ) IO 3 ) , tetramethylammonium perborate ( (N (CH 3 ) 4 ) BO 3 ) , tetramethylammoninm perchlorate ( (N (CH 3 ) 4 ) CIO 4 ) , tetramcthylammonium periodate ( )N (CH 3 ) 4 ) IO 4 ) , tetramethylammonitm persulfate ( (N (CH 3 ) 4 ) ,
  • oxidizing agents further include alkanesulfonic acids (e.g., methanesulfonic acid (MSA) , ethanesulfonic acid, 2-hydroxyethanesulfonic acid, n-propanesulfonic acid, isopropancsulfonic acid, isobutenesulfonic acid, n-butancsulfonic acid, n-octancsulfonic acid) , benzenesulfonic acid, benxenesulfonic acid dcrivatives (e.g., 4-mcthoxtbenzenesulfonic acid, 4-hydroxybenzenesulfonic acid, 4-aminobenzenesulfonic acid, 4-nitrobenzenesulfonic acid, toluenesulfonic acid, hcxylbcnzenesulfonic acid, hcptylbenzen
  • alkanesulfonic acids e.g., methan
  • nonylbenzenesulfonic acid decylbenzenesulfonic acid, undecylbenzenesulfonic acid, dodecylbcnzenesulfonic acid, tridecytbenzenesulfonic acid, tetradccylbcnzene sulfonic acid, hcxadecylbenzene sulfonic acid, 3-nitrobenzenesulronic acid, 2-nitrobenzenesulfonic acid, 2-nitronaphthalcnesulfonic acid, 3-nitronaphthalcncsulfonit acid, 2, 3-dinitrobcnzencsulfonic acid, 2, 4-dinitrobcnzenesulfonic acid, 2, 5-dinitrobenzenesulfoniw acid, 2, 6-dinitrobenzenesulfonic acid, 3, 5-dinitrobenzenesulfonic acid, 2, 4, 6-trinitrobenzenesulfonic acid.
  • the oxidizing agents can include a combination of the any of the species defined herein as oxidizing agent.
  • the oxidizing agent may be introduced to the base metal removal composition at the manufacturer. prior to introduction of the base metal removal composition to the ground or milled palladium-containing components. or alternatively at the ground or milled palladium-containing components. i.e., in silll.
  • the oxidizing agent comprises MSA. hydrogen peroxide. ammonium parsulfate. or combinations thereof.
  • the al least one acid is preferably a sulfur-containing species such as sulfuric acid, sutfate sahs (e.g., sodium sulfate. potassium sulfate. rubidium sulfate. cesium sulfate. magnesium sulfate. calcium sulfate. strontium sulfate. barium sulfate. ammonium sulfate) , sulfonic acid, sulfonic acid dcrivatives, and combinations thereof.
  • a sulfur-containing species such as sulfuric acid, sutfate sahs (e.g., sodium sulfate. potassium sulfate. rubidium sulfate. cesium sulfate. magnesium sulfate. calcium sulfate. strontium sulfate. barium sulfate. ammonium sulfate) , sulfonic acid, sulfonic acid dcrivatives,
  • Sulfonic acid derivatives contemplated include methanesuifonic acid (MSA) , ethanesulfonic acid, 2-hydroxyethanesulfonic acid, n-propanesulfonic acid, isopropancsulfonic acid, isobutenesulfonic acid, n-butanesulfonic acid, n-octanesulfonic acid) , bcnzenesulfonic acid, benzenesulfonic acid derivatives. and combinations thcreof.
  • the at least one acid comprises sulfuric acid, potassium sulfate, ammonium sulfate, or combinations thereof.
  • the at least one solvent includes. but is not limmited to. water. methanol. ethanol. isopropanol, bmanol, pentanol, hexanol, 2-ethyl-l-hexanol, heptanol, oetanol, ethylene glycol, propylene glycol, butylene glycol, tetrahydrofurfuryl alcohol (THFA) , butylene carbonate, ethylene carbonate. propylene carbonate. dipropylene glycol. diethylene glycol monomethyl ether. triethylene glycol monomethyl ether. diethylene glycol monoethyl ether. triethylene glycol monoethyl ether. ethylene glycol monopropyl ether.
  • THFA tetrahydrofurfuryl alcohol
  • ethylene glycol monobutyl ether diethylene glycol monobutyl ether. triethylene glycol monobutyl ether. ethylene glycol monohexyl ether. diethylene glycol monohexyl ether. ethylene glycol phenyl ether. propylene glycol methyl ether. dipropylene glycol methyl ether (DPGME) , tripropylene glycol methyl ether (TPGME) , dipropylene glycol dimethyl ether. dipropylene glycol ethyl ether. propykene glycol n-propyl ether. dipropylene glycol n-propyl ether (DPGPE) , tripropylene glycol n-propyl ether.
  • DPGME dipropylene glycol methyl ether
  • TPGME tripropylene glycol methyl ether
  • the at least one solvent comprises waler.
  • a first base metal removal composition (21) comprises. consists of. or consists essentially of at least one chloride-containing compound and at least one solvenr. e.g., about 1 wt%to about 25wt%. prefcrably about 5 wt%to about 15 wt%. of at least one chloride-containing compound and at least one solvent. e.g., about 10 to about 50 wt%HCl (37%) , preferably about 20 uo abouu 40 wt%HCl (37%) , in water.
  • the first base metal removal composition(21) is contacted with the ground and/or ashed palladium-containing components (22) in a containing means (23) at about 40 to about 80°C.
  • the ratio of ground and/or ashed palladium-containing componcnts to first base metal removal composition is about 1 ⁇ 1 to about 1 ⁇ 20. preferably about 1 ⁇ 5 to about 1 ⁇ 15.
  • the ground and/or ashed palladium-containing components can be separated from the loaded first base metal removal composition using liquid-solid separation means and rinsed with a first rinse (24) comprising water (25) to remove acid residues.
  • the first base metal removal composition can be used only once before further processing. That said. if the user intends to reuse the first base metal composition. prior to reuse. the first base metal removal composition should be processed to prccipitate the Ba 2+ ion and spiked with additional chioride-containing compound or else the subsequent use will result in Iower removal efficiencies.
  • a second base metal removal composition (31) comprises, consists of, or consists essentially of at least one acid, at least one oxidizing agent, and at least one solvent, e.g.,about 0.01 wt% to about 10 wt%, preferably about 2 wt% to about 7 wt%, of at least one acid, about 0.01 wt% to about 7 wt%, preferably about 1 wt% to about 5 wt%, of at least one oxidizing agent, and at least one solvent, e.g., about 0.1 to about 10 wt% sulfuric acid (98%) , preferably about 2 to about 7 wt% sulfuric acid (98%) , about 0.1 to about 20 wt% hydrogen peroxide (30%) , preferably about 2 to about 12 wt% hydrogen peroxide (30%) , even more preferably about 6 to about 12 wt% hydrogen peroxide (30%) , and water,
  • the second base metal removal composition (31) is contacted with the ground
  • the ratio of ground and/or ashed palladium-containing components to second base metal removal composition is about 1 ⁇ 1 to about 1 ⁇ 20, preferably about 1 ⁇ 5 to about 1 ⁇ 15
  • the ground and/or ashed palladium-containing components can be separated from the loaded second base metal removal composition using liquid-solid separation means and rinsed with a second rinse (34) comprising water (35) to remove acid resides
  • the loaded second base metal removal composition (36) can be sent for silver recovery (by contacting the loaded second base metal removal composition with a chloride-containing compound such as NaCl) (37) and subsequently to a wastewater treatment facility to neutralize the acid using a hydroxide salt (38) ,
  • the ground and/or ashed palladium-containing components can be separated from the second rinse using liquid-solid separation means and the second rinse liquid (39) can be reused a number of times as determined by the skilled artisan, and eventually sent to wastewater treatment for ncutralization (38) , whether through the loaded palladium leaching composition
  • the present inventors determined that the first base metal removal composition alone could remove greater than about 90% of the base metal but no more than about 82% of the copper from palladium-containing components that were not previously processed to remove any metals, Further, it was determined that the second base metal removal composition alone could remove greater than 99% copper but less than 30% of the base metals from palladium-containing components that were not previously processed to remove any metals. Knowing this, in order to maximize the removal efficiency of base metals and copper, the palladium-containing components are preferably processed in at least two base metal remtoval apparatuses, one comprishg the first base metal removal composition and the other comprising the second base metal removal composition. It was determined that greater than 99% of the copper can be removed using the two step base metal removal process. i.e., at least two base metal removat apparatuses.
  • BMR-1 is the first apparatus in the series and BMR-1 is the second apparatus
  • BMR-2 + a completely diffcrent BMR-2 apparatus
  • BMR-1 + a completely different BMR-1 apparatus
  • the base metal removal apparatus comprises, consists of, or consists essentially of a reaction container, at least one rinse container, and liquid-solid separation means, wherein the base metal removal apparatus (es) is capable of removing base metals and copper from palladium-containing components, wherein the palladium-containing components have been ashed, ground, previously processed to remove other species, and/or crushed.
  • the base metal removal apparatus further comprise at least one of: at least one base metal removal composition container in liquid communication with the at least one reaction container; at least one rinse liquid container in liquid communication with the at least one rinse container; at least one centrifuge; agitation means in at least one of the reaction container and/or the at least one rinse container; at least one pump; heating/cooling means for at least one of the reaction container and/or the at least one rinse container; at least one air input for at least one of the reaction container and/or the at least one rinse container; real-time sampling and adjustment; programmable logic controllers or equivalent thereof: sensing means for at least one of the reaction container and/or the at least one rinse container; and ventilation means for at least one of the reaction container and/or the at least one rinse container.
  • the system and process described herein specifically the at least one base metal removal apparatus, removes most of the base metals and copper from the ground and/or ashed palladium-containing components, This decreases the amount of base metals such as copper that will end up dissolving into the subsequent palladium leaching composition and improve the recovery and refinement of palladium, It is noted that the palladium leaching composition will also leach silver, but the separation of silver from palladium is more easily achievable as described hereinbelow. Further it is noted that gold does not substantially dissolve in the palladium leaching composition.
  • the palladium leaching apparatus comprises a composition comprising, consisting of, or consisting essentially of at least one nitrate-containing salt and at least one solvent.
  • the at least one nitrate-containing salt can include, but is not limited to, nitric acid, sodium nitrate, potassium nitraie, ammonium nitrate, tetraalkylammonium nitrate, and combinations thereof,
  • the at least one nitrate-containing salt comprises nitric acid, ammonium nitrate, sodium nitrate, or combinations thereof.
  • a palladium leaching composition (41) comprising, consisting of, or consisting essentially of at least one nitrate-containing salt and at least one solvent, e.g., about 5 wt% to about 45 wt%, preferably about 20 wt% to about 35 wt%, of at least one nitrate-containing salt and at least one solvent, e.g., about 10 to about 60 wt% HNO 3 (68%) , preferably about 30 to about 50 wt% HNO 3 (68%) , in water
  • the palladium leaching composition (41) is contacted with the ground and/or ashed palladium-containing components (42) in a containing means (43) at about 40 to about 80°C, preferably aborn 50 to about 70°C, at time of about 20 to about 200 min, preferably about 60 to about 150 min,
  • the ratio of ground and/or ashed palladium-containing components to palladium leaching composition is about 1 ⁇ 1 to about 1 ⁇ 20
  • the palladium leaching composition is substantially devoid of aqua regia.
  • Palladium reclamation means include, but are not limited to palladium electrowinning and/or other chemical palladium reclamation methods.
  • electrowinning preferably urea, sodium hydroxide, or both is added to solution comprising palladium that needs to be electrowon
  • a solution comprising palladium ions can be reacted with about 1 wt% to about 15 wt% ammonium chloride, preferably about 5 wt% to about 12wt% ammonium chloride, and additional nitric acid to form solid PdCl 4 (NH 4 ) 2+
  • the PdCl 4 (NH 4 ) 2 precipitate can be separated from the liquid and dissolved in hot water at a temperature in a range from about 40°C to about 60°C to yield PdCl 4 (NH 4 ) 2 in solution, After separation of any solid from the PdCl 4 (NH 4 ) 2 solution, ascorbic acid can be combined with the PdCl 4 (NH 4 ) 2
  • the palladium leaching apparatus comprises, consists of, or consists essentially of a reaction container, at least one rinse container, and liquid-solid separation means, wherein the palladium leaching apparatus is capable of removing palladium from palladium-containing components, wherein the palladium-containing components have been ashed, ground, previously processed to remove other species, and/or crushed.
  • the palladium leaching apparatus further comprises at least one of: at least one palladium leaching composition container in liquid communication with the at least one reaction containcr: at least one rinse liquid container in liquid communication with the at least one rinse container: at least one centrifuge: agitation means in at least one of the reaction container and/or the at least one rinse container; at least one pump: heating/cooling means for at least one of the reaction container and/or the at least one rinse container; at least one air input for at least one of the reaction container and/or the at least one rinse container; real-time sampling and adjustment, programmable logic controllers or equivalent thereof; sensing means for at least one of the reaction container and/or the at least one rinse container; and ventilation means for at least one of the reaction container and/or the at least one rinse container.
  • the palladium-containing components can be processed to recover additional metals including, but not limited to, gold.
  • the SPT tool module (360) is designed to remove metals, e.g., base metals and precious metals, fron the solid.
  • the SPT tool module (360) removes one or more precious metals from the solid, In another embodiment, the SPT tool module (360) removes gold from the solid,It should be appreciated that solids can be sent to the SPT tool module (360) for processing even if the solids were not previously processed in the furnace (320) and/or milling module (340) , For example, the solids could have been ashed, milled and/or ground in an earlier step, or milled and/or ground off site, Accordingly, as defined herein, the “solid” referred to in the SPT tool module (360) corresponds to material from the furnace module (320) , the milling module (340) , some other ashing process, some other grinding/milling process, components that have been crushed, material that has been through the palladium leaching module (15) , material that has been through one SPT tool module (360) (e.g., SPT base metal removal module (380) , SPT gold removal module (400) , SPT silver le
  • a general schematic of the SPT tool module (360) is illustrated in Figure 7,
  • the SPT tool module relies on dissolution or solubilization of at least one metal in a removal composition and the subsequent treatment of the removal composition and/or rinse liquid to convert metal ions contained therein to solid metal
  • the tanks may be constructed from the same or different materials,
  • the reaction tank (514) preferably comprises materials of construction that are compatible with the most demanding, e.g., corrosive, removal composition.
  • the reaction tank (514) is constructed from one or more materials that are compatible with the most demanding removal composition, and further comprises at least one of heating and/or cooling means, agitation means, ventilation means, sensing means, and air input means.
  • the solid and the gold removal composition (516) are introduced to the reaction tank (514) via one or more input lines and after time x, which corresponds to a point where the substantial majority of the reaction has occurred, as readily determined by the person skilled in the art.
  • time x may be determined based on a reaction tank temperature measured, a certain amount of time passed, a measurement of a concentration of a consumed chemical constituent, visual inspection, end point detection, a pH value measured, to name a few.
  • the determination of time x can be controlled by a PLC, with or without a specific process recipe,
  • the chemical reaction between the solid and the gold removal composition is completed in the holding tank (518) , Following substantial completion of the chemical reaction, the slurry comprising the gold removal composition and reacted solid is moved to a centrifuge,
  • the time of a complete reaction is dependent on several factors including, but not limited to, the solids being processed (e.g., which components made up the solids being processed) , the temperature of processing,the weight of the solid being processed, and the amount and concentration of gold removal composition needed to extract or remove about 65-100% of the gold in the solid. Using centrifugation.
  • the gold removal composition is separated from the reacted solid and the reacted solid is introduccd into a rinse tank.
  • the gold removal composition can be sent to processing or can be rcused.
  • a rinse liquid (520) e. g., water. is also introduccd to the rinse tank (522) and the rcactcd solid is ribsed using thc rinse liquid.
  • the slurry comprising the rinsed solid and the rinse liquid is moved to a centrifuge. either a ncw centrifugc or the prcviously used ccntrifuge. Following centrifugation.
  • the ribse liquid is separated from the rinsed solid and the rinsed solid can exit the spccific module.
  • the rinse liquid can be scnt to proccssing or can be reused.
  • a letdown chute, with split control or rotatable, coupled to a ccntrifuge may be used to move the solid from tank to tank and a PLC or other computer means may be used to automatically move the chutc as nccded. It should be undcrstood by the person skilled in the art that the natctials of construction of the tanks. inpul lines. output lines. and centrifuge should be rated to ensure thal the materials do not reaet with the gold removal composition.
  • the rinse tank (522) and all associated lines may be comprised of the same or differcnt material than the rraction (514) and holding tank (518) and all associated lines given the potentially less cottosive cnvironment of the rinse tank.
  • One or more tanks can include agitation means as previously describcd. Regatdless of the number of input and output lines. any or all of them can have a pump associated therewith.
  • the lanks are enclosed m one or more housings.
  • the SPT tool medule (360) of Figure 7 is preferably controlled by PLC and a particular processing recipe used based on the solid introduced as well as the metal being removed.
  • the gold removal composition is used until loaded with dissolved/solubilized gold ions.
  • one or more constilucnts of the gold removal composition is a regenerated and/or recycled constituent from one or more effluent waste streams within the e-waste facility.
  • a SPT gold removal module can comprise:
  • the SPT gold removal modute can further comprisc at least one of: at least one gold removal composition tank (5l6) in liquid communication with the at least one reaction tank (514) ; at least one rinsc liquid tank (520) in liquid communication with the at least one rinse tank (522) ; at least one centrifuge; agitation means in at least one of the reaction lank. the at least one holding lank.
  • the at least one reaction tank and the at least one holding tank can comprise a gold removal composition.
  • the SPT gold removal module is preferably enclosed in one or more housings and controlled by a programmable logie controller.
  • a process of removing gold from palladium-containing components can comprise removing gold from a solid using a gold removal composition in a solids processing technology (SPT) gold removal module (400) .
  • the SPT gold removal module comprises (a) at least one reaction tank (514) .
  • the holding tank (516) in liquid communication with the at least one reaction tank (514) .
  • at least one rinse tank (522) in liquid communication with the at least one holding tank (518) .
  • the solid comprises palladium-containing components thai have been ashed. ground. previously processed to remove other species. and/or crushed.
  • a process of removing gold from palladium-containing components can comprise:
  • the substantial completion of the chemical reaction takes from about 10 minules to about 200 minutes. preferably about 40 minutes to about I 10 minutes. al tempcrature in a range from room temperature to about 80°C, preferably about 40°C to about 70°C.
  • the gold removal composition is used several times bcfore processing (e.g., electrowinning and/or resin-based acid recycle and metals recovery) .
  • a removal composition is loaded. or otherwise no longer uscful for metal removal. and once a rinse liquid is no longer uscful for rinsing. they can be sent to at least one processing system inclnding. but not limited to. clcctrowinning. diffusion dialysis. pH adjustment. cementation. wastewater treatment. resin-based acid recycle and metals recovery. and any combination thereof. depending on the removal composition or rinse liquid. as disclosed hcrcinabove.
  • the wastewater typically has a very low pH and the pH can be adjusted with a strong base to initiaie precipitation of meial ions in the wastewater. for example as meial hydroxides.
  • the pH of the wastcwater can be adjusted to a vatue closcr to neutral and the neutralized water can be sent through a reverse osmosis system to yield water that can be recycled for reuse.
  • the wastewater recovery system can comprise at least oue waste tank adapted to hold wastewater from the process modules described herein. at least one nentralization tank. at least one pH adjusting agcnt. at least one filter press. a salt removal system (e.g., reverse osmosis and crystallizer) . tubular ultrafiltration. an ion exchanger to remove trace amounts of metel. and at least one return line adapted to return recycled water to at least one process module.
  • the electrowinning (EW) system can be chosen to ctfcctivcly convcrt at least one metal ion from a loaded removal composition and/or rinse liquid into metal using one or more electrode cells.
  • the EW system uses one or more cylindrieal electrode cells comprising at least one cathode clement and at least one anode clement.
  • the solutions to be electrowon comprise chemicals that may cause unwanted reactions at thc anode (e.g., metal ctchants. metal complexing agents. and chloride ions)
  • the EW system may further comprise a divided electrode cell. for example. a RenoCell as described in U.S.
  • at least one divider assembly is used to scparatc at least one catholytc chamber (comprising at least one cathode element and a cathoiyte solution) and at least one anolyte chamber (comprising at least one anode clement and anolyte solution) .
  • the divider assembly may comprise one or more porous membranes including one or more cation and/or anion exchange membranes.
  • the divider assembly is one or more porous cation exchange membranes.
  • the anode and cathode elements may comprise one or more materials, as readily determined by one skilled in the art.
  • the EW syslem comprises a porous carbon and/or graphite cathode clement and a titanium and/or titanium oxide anode element.
  • the catholyte solution comprises one or more loaded removal compositions and/or rinse liquids, as described herein. and the anolyte solution comprises one or more compatible acids and/or salt solutions ineluding. but not limited to. Na 2 SO 4 and H 2 SO 4 (wherein H 2 SO 4 is not compatible with the silver leaching solutions) .
  • the anolyte solution and eatholyte solution comprising the metal ion circulate through their respective chambers in the divided eleclrode cell and metal ion from the loaded removal composition and/or rinse liquid is reduced and deposits on the cathodc. wherein the metal reduced and deposited is dependent on the current of the EW system.
  • the anolyte solution and catholytc solution comprising at least one metal ion arc recirculated through their rcspcclive chambers in thc divided electrode cell and metal ion from the londed removal composition and/or rinse liquid is reduced and deposits on the cathode until greater than 80. 90 . 95. 99%of the metal ion is removed from the solution.
  • the concentration of the metal ion or precious metal ion in the catholyte solution is monitored manually or automatically until grcater than 80. 90. 95. 99%of the metal is removed from the solution.
  • the catholyte solution comprising the metal ion is recireutated through the EW system until less than 10 ppm. and more preferably less than 5ppm of the metal ion is detected in the catholyte solution.
  • the al least one metal ion in the catholyte solution is monitored directly or indirectly. optionally in real-time. manually or automatically using one or more analytical tcehniques described hereinabove.
  • the EW system comprises means for monitoring one or more chemical constituents in the loaded retooval composition and/or rinse liquid. directly or indirectly. optionally in real-time. manually or automatically. before and/or during the EW process using one or more analytical techniques described hereinabove.
  • the EW system described herein efficiently recovers greater than 85. 90. 95. 99%of the target metal in the loaded removal composition and/or rinse liquid by monitoring directly or indirectly. optionally in real-time. manually or automatically. at least one system parameter before and/or during the EW proeess. wherein the at least one system parameter is selected from the group consisting of catholyte solution flow. catholyte inlet and/or outlet pressure. anolyte solution flow. anolyte inlct and/or outlet pressure. differential pressure across the divided cell assembly. electrode cell currcnt electrode cell voltage. pH. oxidation-reduction potential. and temperature.
  • the system may further comprise means to maintain a minimal differential pressure across the divider assembly thereby mainiaining the shape of membrane.
  • the EW system comprises means to monitor and control thc differential pressure between the anolyte solution in the anolyte chamber and the catholyte solution in the catholyte chamber including. but not limited to. one or more pressure sensors. vadable speed pumps. pressure control valves. prcssure regulators. pressure relief valves. and back pressure regulators.
  • the pressure on the catholyte side is the same as or slightlygreater thun the pressure on the anolyte side of the membrane.
  • the EW system comprises a PLC that monitors. adjusts and controls process parameters including. but not limited to. electrode cell current and voltage. pH. oxidation-reduction potential. temperature. flow rates. and pressures that are based in part on one or more process recipes that may be manually or automatically selected based on parameters including. but not limited to. targeted meial. targeted metal concentration and concentration of one or more chemical constituents in thc loaded removal composition and/or rinse liquid.
  • the process times are based on a number of parameters including. but not limited to. current. current/voltage switching. final metal concentration to be achicved. and safcty considerations.
  • EW is used to separate the gold from a loaded gold removal compositiou and/or rinse liquid using the divided cell.
  • urea sodium hydroxide, or both, are added to the loaded gold removal compositiou to improve current efficiency during electrowinning.
  • urea is used.
  • urea solution is pre-mixed with process water or GL module rinse water in a separate tank. After urea and process water or GL module rinse water are properly mixed. the solution will be pumped to thc EW Feed Tank for mixing with the loaded gold removal composition.
  • NaOH is used. the NaOH solution can be mixed directly with loaded gold retmoval composition in an EW Feed Tank.
  • a pump may be used to circulate the solution through tank eductors to btend the solution. Once the solution in the EW Feed Tank is properly blended and at the prescribed temperaturc. it is pumped from the EW Feed Tank through the EW Tool and can be recircutated back to the EW Feed Tank. Once the gold has been recovered. the post-EW solution can be pumped to the wastewater treatment system. Prcfcrably. the EW process used to rccover gold utilizes urea. which can improve the efficicncy of the enntire process and can be recycled in the wastcwater trcatment sysiem for reuse.
  • electrowinning permits the recovery of one metal at a time. depending on the current. It should be appreciated that the current of the electrowinning process can be maintaincd at a constant current. changed over time, or both. It should also be appreciated that the voltage of the electrowinning process can be maintained at a constant current. constant voltage. changed over time. or all or the above.
  • a resin-based acid rccyclc and metals recovery system can be used to process the removal compositions and/or rinse liquids.
  • the resin-based acid recycle and metals recovery system utilizes a column comprising a resin having absolute pore diameters, for example, ion size exclusion, as nnderstood by the person skilled in the art, As the composition travels through the column, the ions are separated by size which allows for the capture of the metal ions as well as the recycling of aqueous compositions.
  • An example of resin-based acid recycle and metals recovery is a system and process using an ionic size exclusion resin or standard resin. Ionic size exclusion polymeric resins have a speeific surface area.
  • pore volume, and pore diameter can be used to separate two or more ionic species having different size radii from an aqueous composition.
  • the ionic species may comprise cations, anions, complex cations, complex anions. and/or combinations thereof.
  • ionic size exclusion resins may be used to separate metal ions from acid-containing compositions for recovery of the metal ions and/or reuse of thc acid. Further. ionic size exclusion resins may be used to separate two or more different metal ions from acid-containing compositions for recovery of the metal ions and/or reuse of the acid, wherein the two or more metal ions are further separated from one another and/or from the acid.
  • the captured metal ions can be reduced to metal, as understood by the person skilled in the art.
  • Resin materials useful for separating ions include, but are not limited to, polystyrene and/or divinylbenzene polystyrene.
  • any materials that can be recycled back through any of the processes should be. e.g., reclaimed acidic solutions.
  • EW. DD. or resin-based acid recycte and metals recovery there may be a liquid that has been treated such that it can be used as a rinse liquid or alternatively in a new metal removal composition.
  • this ensures that the waste stream is minimized.
  • the solder removal composition preferably removes solder melals sclectively relative to preeious metals, in particular gold, thereby increasing the loading of the bath for the solder and inereasing the bath-life of the solder removal composition.
  • the solder removal composition comprises, consists of. or consists essentially of at least one oxidizing agent and water.
  • the first composition may further comprise at least one lead and/or tin complexing agent, at least one organic solvent, and/or at least one passivatiag agent for passivating the precious metals and/or base metals.
  • the solder removal composition comprises, consists of, or consists essentially of at least one lead and/or tin complexing agent in combination with at least one oxidizing agent and water.
  • the solder removal composition comprises, consists of, or consists essentially of at least one oxidizing agent. water, and at least one passivatine agent for passivating the precious metals and/or base metal materials.
  • the solder removal composition comprises, cousists of. or consists essentially of at least one lead and/or tin complexing agent, at least one oxidizing agent. water, and at least one passivating agent for passivating the precious metals and/or base metal materials.
  • the solder removal composition comprises, consists of, or consists essentially of at least one oxidizing agent, at least one accelerator, water, and at leasl one passivating agent for passivating the precious metals and/or base metal materials.
  • the weight percent ratio of the at least one oxidizing agent to at least one passivating agent is in a range from about 1 ⁇ 1 to about 50 ⁇ 1, preferably about 15 ⁇ 1 to about 35 ⁇ 1.
  • the weight percent ratio of the at least one accelerator to at least one passivating agent is in a range from about 1 ⁇ 1 to about 25 ⁇ 1. preferably about 8 ⁇ 1 to about 20 ⁇ 1.
  • Oxidizing agents are included in the composition to oxidize the metals to be removed into an ionic form and accumulate highly soluble salts of dissolvod metals.
  • Oxidizing agents contemplated herein include, but are not limited to. ozone. nitric acid (HNO 3 ), bubbled air, cyclohexylaminosulfonie acid., hydrogen peroxide (H 2 O 2 ) , oxonc (potassium peroxymonosulfate. 2KHSO 5 ⁇ KHSO 4 ⁇ K 2 SO 4 ) .
  • ammonium polyatomie salts e.g., ammoniurn peroxomonosulfate, ammonium chlorite (NH 4 ClO 2 ) , ammonium chloratc (NH 4 ClO 3 ), ammonium iodate (NH 4 lO 3 ), ammonium perboratc (NH 4 BO 3 ) , ammonium perebloratc (NH 4 ClO 4 ).
  • ammonium periodate (NH 4 IO 3 ) .
  • ammonium persulfate (NH 4 ) 2 S 2 O 8 ) .
  • sodium polyatomic salts e.g., sodium persulfate (Na 2 S 2 O 8 ) , sodium hypochlorite (NaClO)
  • potassium polyatomic salts e.g., potassium iodate (KIO 3 ) .
  • potassium permanganate (KMnO 4 ) potassium persulfate, potassium persulfate (K 2 S 2 O 8 ) .
  • potassium hypochlorite (KClO) ) tetramethylammonium polyatomic salts (e.g., tetramethylammonium chlorite ( (N (CH 3 ) 4 ) ClO 2 ) , tetramethylammonium chlorate ( (N (CH 3 ) 4 ) ClO 3 ) . tetramethy lammonium iodate ( (N (CH 3 ) 4 ) IO 3 ) . tetramethylammonium perborate ( (N (CH 3 ) 4 ) BO 3 ) . tetramethylammonium perchlorate ( (N (CH 3 ) 4 )ClO 4 ) .
  • tetramethylammonium polyatomic salts e.g., tetramethylammonium chlorite ( (N (CH 3 ) 4 ) ClO 2 ) , tetramethylammonium chlorate ( (N (CH 3 ) 4 ) ClO 3
  • tetramcthylammonium periodate (N (CH 3 ) 4 )IO 4 ) . tetramethylammonium persulfate ( (N (CH 3 ) 4 ) S 2 O 8 ) ) . tetrabutylammonium polyatomic salts (e.g, tetrabutylammonium peroxomonosulfate) , peroxomonosulfurie acid. urea hydrogen peroxide ( (CO (NH 2 ) 2 ) H 2 O 2 ) . peracetic acid (CH 3 (CO) OOH) , sodium nitrate, potassium nitrate, ammonium nitrate, sulfuric acid, and combinations thereof.
  • oxidizing agents further include alkauesulfonic acids (e.g., methanesulfonie acid (MSA) . ethanesulfonic acid, 2-hydroxyethanesulfonic acid. n-propanesulfonic acid, isopropanesulfonic acid, isobutenesulfonic acid. n-butancsutfonic acid. n-octancsnlfonic acid), benzencsulfonic acid. benzenesulfonic acid derivatives (e.g., 4-methoxybenzenesutfonic acid.
  • alkauesulfonic acids e.g., methanesulfonie acid (MSA) .
  • ethanesulfonic acid 2-hydroxyethanesulfonic acid.
  • n-propanesulfonic acid isopropanesulfonic acid
  • isobutenesulfonic acid isobutancsu
  • tetradecylbenzene sulfonic acid hexadecylbenzene sulfonic acid. 3-nitrobenzenesulfonic acid. 2-nitrobenzenesulfonic acid. 2- nitronaphthalenesulfonic acid, 3-nitronaphthalenesulfonic acid, 2, 3-dinitrobenzenesulfonic acid. 2, 4-dinitrobenzenesulfonic acid. 2, 5-dinitrobenzenesulfonic acid, 2, 6-dinitrobenzenesulfonic acid. 3, 5-dinitrobenzenesulfonic acid, 2, 4, 6-trinitrobenzenesulfonic acid.
  • the oxidizing agents can include a combination of the any of the species defined herein as oxidizing agent.
  • the oxidizing agent may be introduced to the solder removal composition at the manufacturer, prior to introduction of the solder removal composition to the PCB. or alternatively at the PCB. i.e., in situ.
  • the oxidizing agent comprises a peroxide compound, oxone, nitric acid, sodium nitrate, methanesulfonic acid, or any combination thereof
  • the oxidizing agent comprises methanesulfonic acid.
  • the oxidizing agent in thc solder removal composition preferably comprises an alkane sulfonic acid (e.g., MSA) and nitric acid or salt thereof.
  • alkane sulfonic acid e.g., MSA
  • Other acce leralors contemplated include acids such as sulfuric acid. hydrochloric acid. phosphoric acid. hydrobromic acid, and any combination thereof.
  • Complexing agents are ineluded to complex the ions produced by the oxidizing agent.
  • Complexing agcnts contemplated herein include, but are not limited to: ⁇ -diketonate compounds such as acetylaeetonate. 1, 1, 1-trifluoro-2,4-pentanedionc. and 1, 1, 1, 5,5,5-hexafluoro-2, 4-pentanedione; carboxylates such as formate and acetate and other long chain carboxylates; and amides (and amincs) , such as bis (trimethylsilyIamide) tetramer.
  • ⁇ -diketonate compounds such as acetylaeetonate. 1, 1, 1-trifluoro-2,4-pentanedionc. and 1, 1, 1, 5,5,5-hexafluoro-2, 4-pentanedione
  • carboxylates such as formate and acetate and other long chain carboxylates
  • Additional chelating agents include amines and amino acids (i.e.glycinc, serinc, prolinc. leucinc. alanine ⁇ asparngine, aspanic acid. glutamine, valine, and lysine) , citrie acid. acetic acid. maleic acid. oxalie acid. malonic acid, succinic acid, phosphonic acid, phosphonic acid derivatives such as hydroxyethylidene diphesphonic acid (HEDP) . l-hydroxyethane- 1, 1-diphosphonic acid, nitrilo-tris (methylenephosphonic acid) , nitrilotriacetic acid. iminodiacetic acid, etidronic acid.
  • amines and amino acids i.e.glycinc, serinc, prolinc. leucinc. alanine ⁇ asparngine, aspanic acid. glutamine, valine, and lysine
  • citrie acid
  • ethylenediamine ethyienediaminetetraacetie acid
  • EDTA ethyienediaminetetraacetie acid
  • CDTA 1-cyelohexylenedinitrilo
  • PMDETA pentamethyldiethylenetriamine
  • Dequest 2060s diethylenetriamine pentaacetic acid, propytencdiaminc tetraacetic acid. 2-hydroxypyridinc 1-oxide. ethylendiaminc disuccinic acid (EDDS) , N- (2-hydroxyethyl) iminodiacetic acid (HEIDA) . sodium triphosphate penta basic, sodium and ammonium salts thereof, ammonium chloride, sodium chloridc, lithum chloridc, potassium chloride, ammonium sulfate, triammonium citrate, sodium citrate, thiourea. hydrochloric acid, sulfuric acid. and combinations thereof.
  • the complexing agent comprises HEDP. HEIDA, EDDS. sodium or ammonium salts thereof,sulfuric acid. or combinations thereof.
  • Passivating agents for passivating the precious metals and/or base metals include, but arc not limited to. ascorbic acid, adenosine.
  • 2- (5-amino-pentyl) -benzotriazote, 1-amino-1, 2, 3-triazole, 1-amino-5-methyl-1, 2, 3-triazole, 3-amino-1, 2,4-triazole, 3-mercapto-1, 2, 4-triazole, 3-isopropyl-1, 2, 4-triazole, 5-phenylthiol-benzotriazole, halo-benzotriazolcs (halo F, Cl, Br or I) . naphthotriazole) .
  • 2-mereaptothiazoline, 5-aminotetrazolc (ATA) 5-amino-1, 3, 4-thiadiazole-2-thiol, 2, 4-diamino-6-methyl-1, 3, 5-triazine, thiazole, triazine, methyltetrazole. 1, 3-dimethyl-2-imidazolidinone. 1, 5-pentamethyleneletrazole. 1-phenyl-5-mercaptotetrazole.
  • ammonium benzoate catechol, pyrogallol, resorcinoi, hydroquinone, cyanuric acid, barbitaric acid and derivvatives such as 1, 2-dimethylbarbituric acid, alpha-keto acids such as pyruvic acid, adenine, purinc, phosphonic acid and derivatives thereof, glycine/ascorbic acid, Dcquest 2000.
  • phosphonobutane tricarboxylic acid PBTCA
  • sodium molybdate sodium molybdate
  • ammonium molybdate salts of chromate (e.g., sodium, potassium, calcium, barium) , sodium tungstate, salts of dichromate (e.g., sodium, potassium, ammonium) , sodium sulfate, suberic acid, azaleie acid. sebaeie acid.
  • adipic acid octamethylene dicarboxylic acid. pimelic acid. dodecanc dicarboxylie acid. dimethyl malonic acid, 3, 3-diethyl succinic acid. 2, 2-dimethyl glutaric acid. 2-methyl adipic acid. trimethyl adipic acid.
  • decamethylenediearboxylic acid undccamethylenc dicarboxylic acid.
  • dodecamethylene dicarboxylic acid orthophthalic acid, naphthalenedicarboxylic acid, paraphenylenedicarboxylic acid, trimellitie acid, pyromellitic acid sodium phosphates (e.g., sodium hexametaphosphate) , sodium silicates, amino acids and their derivatives such as l-arginine.
  • nucleoside and nucleobases such as adensosine and adenine, respectively. and combinations thereof.
  • the passivating agent comprises BTA. ATAZ. TAZ, triazole derivatives. ascorbic acid, sodium molybdatc, or combinations thereof,
  • Organic solvents contemplated herein include, but are not limited to, alcohols, ethers, pyrrolidinones, glycols, carboxylic acids, glycol ethers, amines, ketones, aldehydes, alkanes, alkenes, alkynes, carbonates, and amides, more preferably alcohols, ethers, pyrrolidinones, glycols, carboxylic acids, and glycol ethers such as methanol, ethanol, isopropanol, butanol, and higher alcohols (including diols, and triols) .
  • telrahydrofuran THF
  • NMP N-methylpyrrolidinone
  • NMP cyclohexylpyrrolidinone.
  • N-octylpyrrolidinone N-phenylpyrrolidinone.
  • methyl formate dimethyl formamide (DMF) .
  • DMSO dimethylsulfoxide
  • tetramethylene sulfone sulfolane
  • diethyl ether diethyl ether
  • PPh phenox.-2-propanol
  • propdopheneone, ethyl lactate, ethyl acetate, ethyl benz falls, acetonitrile, acetone, ethylene glycol, propylene glycol, dioxane, butyry lactone, butylene carbonate, ethylene carbonate, propylene carbonate, dipropy lene glycol, amphiphilie species (diethylene glycol monomethyl ether, triethylenc glycol monomethyl elher, diethylene glycol monoethyl ether, triethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether (i.e., butyl carbitol) , triethylene glycol monobutyl ether, ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, ethylene glycol phenyl ether.
  • amphiphilie species diethylene glycol mono
  • propylene glycol methyl ether dipropylene glycol methyl ether (DPGME) . tripropylene glycol methyl ether. dipropylene glycol dimethyl ether. dipropylene glycol ethyl ether. propylene glycol n-propyl ether. dipropylene glyeol n-propyl ether (DPGPE) , tripropyleue glycol n-propyl ether, propylene glycol n-butyl ether, dipropylene glycol n-butyl ether. tripropylene glycol n-butyl ether, propylene glycol phenyl ether. and combinations thercof) .
  • DPGME dipropylene glycol methyl ether
  • DPGPE dipropylene glycol methyl ether
  • DPGPE dipropylene glyeol n-propyl ether
  • tripropyleue glycol n-propyl ether
  • the organic solvent comprises diethylene glycol monobutyl ether, dipropylene glycol propyl ether, propylene glycol, or mixtures thereof.
  • solder removal composition examples include, but are not limited to, (i) a solder removal composition comprising, consisting of or consisting essentially of MSA, nitric acid, BTA and water, (ii) a solder removal composition comprising, consisting of or consisting essentially of MSA, nitric acid, TAZ and water; (iii) a solder removal composition comprising, consisting of or consisting essentially of MSA, nitric acid, 1-amino-1, 2, 4-triazole (ATAZ) , and water; (iv) a solder removal composition comprising, consisting of or consisting essentially of MSA, nitric acid, 1-amino-1, 2, 3-triazole and water; (v) a solder removal composition comprising, consisting of or consisting essentially of MSA, nitric acid, 1-amino-5-methyl-1, 2, 3-triazole and water; (vi) a solder removal composition comprising, consisting of or consisting essentially of MSA, n
  • solder removal composition can be prepared upstream and stored in a tank for use, prepared upstream in the lines for introduction into the reaction tank, or prepared directly in the reaction tank by introducing the chemicals therein, Further, it is contemplated that a concentrate can be prepared and stored for dilution with a diluent (e.g., water) prior to, or in the reaction tank.
  • a diluent e.g., water
  • the solder removal composition is used until loaded with dissolved/solubilized metal ions, e.g., lead ions, and/or tin ions,
  • one or more constituents of the solder removal composition is a regenerated and/or recycled constituent from one or more effluent waste streams within the e-waste facility.
  • a gold removal composition comprises, consists of, or consists essentially of at least one oxidizing agent, optionally at least one halide, optionally at least one acid, and optionally at least one solvent
  • the gold removal composition comprises, consists of, or consists essentially of at least one oxidizing agent, at least one halide salt, optionally at least one acid, and optionally at least one solvent
  • the gold removal composition comprises, consists of, or consists essentially of at least one oxidizing agent, at least one halide, at least one acid, and at least one solvent
  • the gold removal composition comprises, consists of, or consists essentially of at least one oxidzing agent, at least one chloride salt, at least one acid, and at least one solvent
  • the gold removal composition comprises, consists of, or consists essentially of at least one oxidizing agent, at least one chloride salt, al least one sulfur-containing acid, and at least one solvent
  • the gold removal composition comprises,
  • Oxidizing agents are included in the composition to oxidize the metals to be removed into an ionic form and accumulate highly soluble salts of dissolved metals
  • Oxidizing agents contemplated herein include, but are not limited to, ozone, nitric acid (HNO 3 ), bubbled air, cyclohcxylaminosulfonic acid, , hydrogen peroxide (H 2 O 2 ) , oxone (potassium peroxy monosulfate, 2KHSO 5 ⁇ KHSO 4 ⁇ K 2 SO 4 ) .ammonium polyatomic salts (e.g., ammonium peroxomonosulfatc, ammonium chlorite (NH 4 ClO 2 ) , ammonium chlorate (NH 4 ClO 3 ) , ammonium iodate (NH 4 IO 3 ), ammonium perborate(NH 4 BO 3 ) , ammonium perchlorate (NH 4 ClO 4 ) , ammonium periodate (
  • the oxidizing agent comprises a nitrate ion including, but not limited to, nitric acid, sodium nitrate, potassium nitrate, ammonium n
  • the at least one halide is preferably a chloride-containing compound including, but not limilcd to, hydrochloric acic, and alkaline chlorides (e.g., sodium chloride, potassium chloride, rubidium chloride, cesium chloride, magnesium chloride, calcium chloride, strontium chloride, ammonium chloride, quaternary ammonium chloride salts) , and combinations thereof, with the proviso that the chloride-containing compound cannot include copper chloride, chlorine gas, or a second, different halide,
  • the at least one halide comprises an alkaline chloride, even more preferably an alkali metal chloride such as sodium chloride
  • the at least one halide can also include saits and/or acids comprising bromide and iodide including, but not limited to, sodium bromide, sodium iodide, potassium bromide, potassium iodide, rubidium bromide, rubidium iodide, cesium bromide, cesium
  • the at least one acid is preferably a sulfur-containing species such as sulfuric acid, sulfate salts (e.g., sodium sulfate, potassium sulfate, rubidium sulfate, cesium sulfate, magnesium sulfate, calcium sulfate, strontium sulfate, barium sulfate) , sulfonic acid, sulfonic acid derivatives, and combinations thereof
  • Sulfonic acid derivatives contemplated include methanesulfonic acid (MSA) , ethanesulfonic acid, 2-hydroxyethanesulfonic acid, n-propanesulfonic acid, isopropanesulfonic acid, isobutenesulfonic acid, n-butanesulfonic acid, n-octanesulfonic acid) , benzenesulfonie acid, benzenesulfonic acid derivatives, and combinations thereof.
  • the at least one solvent includes. but is not limited to, water, methanol, ethanol, isopropanol, butanol, pentanol, hexanol, 2-ethyl-1-hexanol, heptanol, octanol, ethylene glycol, propylene glycol, butylene glycol, tetrahydrofurfuryl alcohol (THFA) , butylene carbonate, ethylene carbonale, propylene carbonate, dipropylene glycol, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, dicthylene glycol monoethyl ether, triethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, ethylene glycol pheny
  • the gold removal composition comprises, consists of, or consists essentially of sodium chloride, sulfuric acid or a salt thereof (e.g., sodium sulfate) , nitric acid or a salt thereof (i.e., sodium nitrate) , and water.
  • sulfuric acid or a salt thereof e.g., sodium sulfate
  • nitric acid or a salt thereof i.e., sodium nitrate
  • the gold removal composition can further comprise at least one complexing agent (e.g., a noble metal complexing agent) , at least one buffering agent, at least one corrosion inhibitor, al least one NO X suppressing agent, at least one surfactant, at least one anti-foaming agent, at, least one passivating agent, and any combination thereof.
  • at least one complexing agent e.g., a noble metal complexing agent
  • at least one buffering agent e.g., at least one corrosion inhibitor, al least one NO X suppressing agent, at least one surfactant, at least one anti-foaming agent, at, least one passivating agent, and any combination thereof.
  • at least one complexing agent e.g., a noble metal complexing agent
  • the gold removal composition can be prepared upstream and stored in a container for use, prepared upstream in the lines for introduction into the gold leaching tank, or prepared directly in the gold leaching tank by introducing the chemicals therein, Further, it is contemplated that a concentrate can be prepared and stored for dilution with a diluent (e.g., water) prior to, or in, the gold leaching tank.
  • a diluent e.g., water

Abstract

System and process for recycling palladium-containing components to reclaim precious metals such as palladium, silver and gold. The system includes a number of modules to systematically separate palladium from palladium-containing components.

Description

RECOVERY OF PALLADIUM FROM PALLADIUM-CONTAINING COMPONENTS FIELD
The present invcntion relates gcncrally to syslems and processes for recycling waste clectrical and electronic equipment such as multi-layer ceramic capacitors (MLCC) to recover palladium.
DESCRIPTION OF THE RELATED ART
As electronic equipment becomes more ever-present disposal of used electronic equipment including obsolete or damaged computers, computer monitors, television receivers, cellular telephones. and similar products. is increasing at a rapid rate. It is recognized that there are significanl hazards to living things and to the environment generally when electronic equipment is dumped in landfills. Equally, it is understood that improper disassembly of such equipment poses appreciable risks to the health and safety of people performing manual disassembly.
Printed circuit boards (PCBs) are a common element of many electronic systems. e.g., mothcrboards. notcboards. TV boards. server boards, hard drivc boards. SCSI cards. and smartphoncs. PCBs arc typically manufactured by laminating film on clean copper foil. which is supported on a fiberglass plate matrix. The film is exposed with a film negative of the circuit board design, and an etcher is used to remove unmasked copper foil from the plate. Solder is then applied over the unetchcd copper on the board. Depending upon the use and design of the particular PCB. various other metals may be used in the manufacturing process, including lead. tin. nickel, iron. zinc. aluminum, silver, gold, platinum. palladium, and mcrcury. The PCBs include many components, for example, transistors, capacitors. MLCCs. heat sinks, fans. integrated eircuit chips (IC’s ) , resistors. integrated switches, processors, and connectors.
PCBs are potentially a difficult waste material to process since they generally have little usefulness once they are removed from the clectrical system in which thcy were installcd. In addition. they typically consist of matcrials that causc them to be classified as a hazardous or “special” waste stream. They must be segregated and handled separately from other nonhazardous solid waste streams. PCBs that are handled as waste materials must be processed using any one of several available disposal options. Not only are these options expensive, they require a significant amount of effort and handling by the gencrator. Furthermore. since some of these disposal options do not include destruction of the waste circuit boards, the generator also retains much of the liability associated with improper handling or disposal.
Different methods have been suggested to try to combat the waste of raw materials and cnvironmcntal pollution caused by the ever increasing load of scrap clectronic waste. To date.  methods requiring a high energy demand are needed to separate the materials so that they can be recycled. Mechanical. hydrometallurgical and pyrometallurgical methods have been the traditional methods of recycling of waste PCBs. which comprise grinding of the whole waste, followed by attempts to separate and concentrate different material streams. Disadvantageously. when PCBs are ground, only the plastic fraction can be effectively liberated from metals and toxic gases and dust can be evolved, Accordingly, mechanical methods do not result in high recovery rates, especially for precious metals. In hydrometallurgical methods, large amounts of chemicals are used. generating huge quantities of waste acids and sludge, which have to be disposed as hazardous waste. Furthermore, the overall processes of recycling of various metals by chemical processes are very long and complicated. Thermal methods, including pyromctallurgical processing of waste PCBs, result in thc emission of hazardous chemicals to the atmosphere and water as the result of thermal degradation of epoxy (formation of dioxins and furans) and volatilization of metals (including Pb, Sb, As and Ga) . Thermal methods are further characterized by high energy consumption, and the necessity to use expensive exhaust gas purification systems and corrosion resistance equipment.
The traditional methods of recycling waste PCBs resulted in environmental contamination, high cost expenditure and low efficiency. In contrast, the systems and methods described herein are based on a differential approach to the recycling of materials, wherein the various parts of the waste PCBs are separated and processed based on appearance and physical and chemical properties.
Processes for removing at least one recyclable material from a printed circuit board (PCB) were previously described in International Patent Application No. PCT/US2011/032675 filed on April 15, 2011 in the name of André Brosseau et al. and entitled “Method for Recycling of Obsolete Printed Circuit Boards, “which is hereby incorporated by reference herein in its entirety. Broadly, the method deseribed in PCT/US2011/032675 comprised at least one of (a) , (b) , (c) , or any combination thereof:
(a) releasing a component from the PCB;
(b) recovering a precious metal from the PCB and/or PCB component;
(c) recovering a base metal from the PCB.
Systems and processes for recycling printed circuit boards, integrated circuits and printed circuit board componcnts to separatc materials for reuse and/or recovery were also previously described in International Patent Application No. PCT/US2012/069404 filed on December 13, 2012 in the name of Tianniu CHEN et al. and entitled “Apparatus and Method for Stripping Solder Metals During the Recycling of Waste Electrical and Electronic Equipment,” which is hereby incorporated herein by reference in its entirety. Broadly, the apparatus described in PCT/US2012/069404 comprised (a) at least one of a mechanical solder removal module and/or a heater module, and (b) a chemical solder removal module.
An integrated, intelligent system for recycling material selected from the group consisting of printed circuit boards (PCB) , PCB components, materials comprising gold, and combinations thereof, wherein the system efficiently recovers more than about 80% of the gold contained in the material, was also previously described in International Patent Application No. PCT/CN2016/070904 filed on January 14, 2016 in the name of Entegris Inc. and entitled “Integrated Electronic Waste Recycling and Recovery System and Process of Using Same, ” which is hereby incorporated herein by reference in its entirety. Broadly, the apparatus described in PCT/CN2016/070904 comprised a gold leaching module and/or a solids processing tool (SPT) gold removal module, and optionally at least one additional module selected from the group consisting of:
(a) a pre-board clearing module,
(b) a Board clearing module,
(c) a dcsoldcring module,
(d) a base metal removal module,
(e) a SPT fumace module,
(f) a SPT milling module,
(g) a SPT base metal removal module,
(h) a SPT silver leaching module,
(i) any combination of (a) - (h) , and
(j) every module of (a) - (h) ,
wherein the modules are positioned and/or operaled in series with one another, with or without intervening parts. As defined in the PCT/CN2016/070904 application, “materials comprising gold” including, but was not limited to, gold fingers, connectors comprising gold, memory boards, and any other components having gold value. The PCT/CN2016/070904 application further described in detail a process of using said apparatus to recycle the material.
A system and process for recovering palladium from palladium-containing components such as MLCCs at a commercial level has not yet been developed. The system and process should efficiently recover palladium from the MLCCs while minimizing the amount of chemicals and other resources used.
SUMMARY
Embodiments of the invention relate generally to systems and processes for recycling palladium-containing components, e.g., MLCCs, to separate precious metals for reuse and/or recovery. More particularly, the embodiments of the invention relate generally to systems and processes for recycling palladium-containing components, e.g., MLCCs, to efficiently recover at least palladium, gold, and/or silver while minimizing the amount of chemicals and other resources used.
Embodiments of the invention relate to integrated, intelligent systems and processes for recycling palladium-containing components, e.g., MLCCs.
In one embodiment, an integrated, intelligent system for recycling palladium-containing components is described, wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components, wherein the system comprises:
(a) a furnace module, a milling module, or both; and
(b) a palladium leaching module comprising:
(i) at least one base metal removal apparatus; and
(ii) at least one palladium leaching apparatus,
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts.
Still another embodiment relates to a process for recycling palladium-containing components, wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in a solid, wherein the solid comprises palladium-containing components that have been ashed, ground, processed previously to remove other species, and/or crushed, said process comprising:
removing palladium from the solid in a palladium leaching (PL) module, wherein the PL module comprises:
(i) removing at least one base metal from the solid using a base metal removal composition in at least one base metal removal apparatus: and
(ii) removing palladium from the solid using a palladium removal composition in a palladium leaching apparatus,
wherein the apparatuses are positioned and/or operated in series with one another, with or without intervening parts.
Other aspects, features and advantages will be more fully apparent from the ensuing disclosure and appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a general schematic of the system described herein including a palladium leaching module (15) .
Figure 2 is another general schematic of the system described herein including a palladium leaching module (15) . a pre-BCM (220) , a BCM (240) , a DS Module (26) , a furnace module (320) , a milling module (340) . and an SPT Tool module (360) .
Figure 3 is a schematic of one embodiment of the desoldering module (260) apparatus.
Figure 4 is a schematic of the first base metal removal apparatus (BMR-1) (20) .
Figure 5 is a schematic of the second base metal removal apparatus (BMR-2) (30) .
Figure 6 is a schematic of the palladium leaching apparatus (PL) (40) .
Figure 7 is a schematic of yet another embodiment of an SPT tool module (360) comprising a reaction tank. a removal composition tank, a holding tank, a rinse liquid tank, and a rinse tank.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
The present invention relates generally to integrated systems and proccsses for recycling palladium-containing components to obtain precious metals for reuse and/or recovery. More particularly, the present invention relates generally to integrated systems and processes for recycling palladium-containing components to more cfficiently separate and recover precious metals, while simultaneously minimizing the use of chemicals and other resources. The system and process of using may be controlled by one or more programmable logic controllers (PLC) that coordinate and regulate automated process steps in the apparatus. The one or more PLCs allow multiple different processing modules to operate simultaneously through the apparatus, providing maximum throughput per square foot of factory space. Multi-tasking capability includes scheduling software that provides the system the intelligence nccessary to be able to concurrently process multiple modules and multiple processes, when process times in cach tank may not be balanced. Process recipes and procedures basod on thc type of palladium-containing componcnt, as well as batch size, are stored in PLCs and automatically or manually initiated at the time batches of palladium-containing components enter the process stream. In one embodiment. each module has at least onc PLC. Further, when necessary, a supervisory control and date acquisition (SCADA) device or equivalent thereof and/or a communication network can be used to control the one or more PLCs. The systems described herein enable high volume processing of electronic waste with precious metal recovery efficiencies of greater than 80%, preferably greater than 90% and more preferably greater than 95%.
For the purposes of the present disclosure, “electronic waste” or “e-waste” corresponds to computers, computer monitors, television receivers, electronic pads, cellular telephones, personal digital assistants (PDA) . video cameras, digital cameras, DVD players, video game consoles, facsimile machines, copiers, MP3 players, and similar products that have reached the end of their useful life or otherwise have been disposed of. Electronic waste or e-waste includes the components contained within these well-known items such as printed circuit boards and the components contained thereon (e.g., transistors, capacitors. MLCCs, heat sinks.fans, chips, micro component, integrated circuits (IC’s) ,resistors, integrated switches, processors, connectors, USB ports. BGA chips) .
As used herein, “precious metals” include the metals gold, silver, platinum, palladium, rhodium, iridium, osmium, rhenium, ruthenium and alloys comprising same.
As used herein, “base metals” corresponds to iron, nickel, zinc, copper, aluminum, tungsten,  molybdenum, tantalum, magnesium, cobalt, bismuth, cadmium, titanium, zirconium, antimony. manganese, beryllium, chromium, germanium, vanadium, gallium, hafnium, indium, niobium, rhcnium, thallium, alloys comprising samc, and combinations thereof.
As used herein, “copper” corresponds to Cu (0) metal as well as alloys comprising Cu (0) .
As used herein, “about” is intended to correspond to greater than or less than no more than 5 %of the stated value.
For the purposes of the present description, “printed circuit boards”is used to describe printed wire boards, printed circuit boards, as well as printed circuit board assemblies. The printed circuit board (PCB) provides the mechanical support and electrical connections for electronic components. PCBs can be single sided, double sided, or multi-layered. PCB assemblies correspond to PCBs populated with electronic components.
As used herein. “substantially dissolved”is defined herein to be that more than 95 wt. %of the material originally present is dissolved or otherwise solubilized, preferably more than 98 wt. %, more preferably more than 99 wt. %, and most preferably more than 99.9 wt. %. “Not substantially dissolved” is defined herein to be that less than 5 wt. %of the material originally present is dissolved or otherwisc solubilized, preferably less than 2 wt. %, more preferably less than 1 wt. %, even more preferably less than 0.1 wt. %, and most preferably less than 0.001 wt%.
AS used herein, the term “leaches” or “removes” corresponds to the complete or partial removal or extraction of the particular metal or other desired material into the particular removal composition. The particular metal or other desired material is dissolved or othcrwise solubilized in the particular removal composition, preferably dissolved.
As defined herein, “crushing” corrcsponds to any method that substantially exposes the palladium-containing component, e.g., MLCC, to a removal composilion, e.g., cracking, pulverizing or shredding the palladium-containing component, e.g., MLCC.
As defined herein, “milling” corresponds to any method that reduces a larger material into a smaller material using a comprcssive force, thereby increasing the surface area of the material that can be exposed to a removal composition for removal of metals and other desired materials therefrom. Milling can be accomplished with a negligible rise in temperature of the materials being milled.
As defined herein, “grinding” corresponds to any method that reduces a larger material into a smaller material using a shearing force or a cutting action, thereby increasing the surface arca of the material that can be exposed to a removal composition for removal or metals and other desired materials therefrom.
It should be appreciated that the “rcmoval compositions” described herein are specifically and/or selectively formulated to remove one or more metals or other desired materials. Further, the removal compositions can be proprietary, commercially available, or both.
It should be appreciated by the skilled artisan that solder, adhesives, glues and/or epoxy  attaches “components, ” such as transistors, capacitors. MLCCs. heat sinks, fans, integrated circuit chips (IC's) , resistors, integrated switches, processors (e.g., CPUs) , connectors, USB ports, BGA chips, to the PCB.
As defined herein, “recyclable components” corresponds to components that comprise a metal that has value and is to be reclaimed. As defined herein, “micro componcnts” correspond to any component that is less than about 2-3 mm in size,e.g., can be sorted from larger objccts based on size.
As defined herein, “chips” include ICs and CPUs as well as other solid state “micro-components” such as capacitors and/or resistors.
As defined herein, a “module” corresponds to a distinct system and corresponding process that is capable of facilitating the chemical, mechanical, thermal (i.e., heat) , and physical processes needed to accomplish a desired end goal, for example, the removal of components from a PCB. the removal of solder, the leaching of palladium. the leaching of gold. the leaching of silver, and the removal of base metals. The modules may be connected and/or ogerate serially or in parallel, with or without intervcning steps therebetween, or not connected at all e.g., a module could be off-site relative to other modules or a module may be within another module.
As used herein, “ashing” or “to ash” corresponds to a process wherein an organic material. also known as “ashable content, ” is reacted with air or other oxygen source at a high temperature, e.g., burned, to leave only noncombnstiblc material.
As used herein, “slurry” corresponds to a mixture of solids in a liquid, for example, particle-containing solids in a liquid. Slurries tend to be a thick fluid and can be pumped and the solid will settle as a result of gravity if lefe in an unagitated state.
For the purposes of the present disclosure a “monorail” preferably includes at lcast one of layout flexibility, tracks, rails, slopes, switches turntables, interlocks, entry/exit sections, as well as curves. The monorail may be elevated and/or run at grade and can connect to other systems, such as tonyeyors, elevators. or cranes. The monorails can be arranged to move a “container” or a “containing means. ” The monorail can also be arranged to move boards and/or components from one module to another.
As defined herein, a “container” or a “containing means” can include, but is not limited to, gaylords, drums, baskcts, tanks, bags, barrels, boxes, hoppers, supersacks, bins, bottles, and cylinders.
As defined herein, “intelligent” refers to the control of one or more systems and/or processes of using said systems using one or more programmable logic controllers (PLC) that coordinate and regulate automated process steps in the systems, PLCs allow multiple different processing modules. and multiple different containing means within each module, to oporate simultaneousty through the apparatus, providing maximum throughput per square foot of factory space. Multi-tasking capability includes, but is not limited to. scheduling software developed that provides the system the intelligence necessary to be able to concurrently process and sample multiple modules and multiple containing  means within each module, recipe input and adaptation, materials handling, real-time monitoring. sensing, data acquisition and analysis, remote and/or wireless use and communication, and any combination thereof. The intelligent system (s) and/or process (es) can communicate with other systcm (s) and/or process (es) sccurely, using a network.
As defined herein, an “intelligcnt systcm” corresponds to a computer-based system that has the capacity to gather and analyze data and communicate with itself and/or other systems within the apparatus. For example, a module as described herein, can analyze data and communicate with itself and/or another module within the apparatus, thereby making adjustments to the process and/or recipe. In addition, an intelligent system is capable of shutting down a portion of. or the entire, system to ensure worker safety. Moreover, an intelligent system is capable of determining when maintenance to the hardware and/or software must occur.
As defined herein, a “loaded” removal composition corresponds to a removal composition that is substantially saturated with the metal ions or has otherwise reached a predetermined concentration or threshold of a constituent of a removal composition (e.g., a certain metal ion) or pH. Considered another way, the loaded removal composition can no longer substantially dissolve or solubilize the metal (s) it was intended to remove.
As defined herein, a “loaded” rinse liquid corresponds to a rinse liquid that no longer effectively rinses the solid or has otherwise reached a predetermined concentration or threshold of a chemical constituent (e.g., a certain metal ion) or pH.
As defined herein, a “recipe” corresponds to the parameters used and/or programmable and/or input and/or chosen and/or adjusted to ensure maximum process efficiency, maximum metal removal, and minimum waste production using the system and process described herein, Parameters considered include, but are not limited to, ratio of solid to liquid during removal process, processing time, processing temperature, processing sequence, addition rates. the palladium-containing components being processed, the amount of palladium-containing components being processed, conccetration of chemicals in the removal compositions, order of addition, the amount of effluent that must be disposed of properly, type of agitation means, speed of agitation, how many times the removal or rinse composition has been reused/recirculated, type of material being processed. concentration of metal ion constituents, current and voltage changes. and other prespecified thresholds.
As defined herein, “moving means” correspond to manual or mechanical systems for moving objects from one location to another location including one or more of a conveyor belt. a conveyor track, a conveying wheel, a conveying roller, gravity conveyor, robots, a robotic loading arm with a moving mechanism. Schmidt conveyors, overhead conveyors with powered channels/tracks, tracks. elevators, collection conveyors, monorails, belts, link chains, transporter with wheels. trucks, hand trucks, trays, fork lifts, boom lifts, scissor lifts, straddle lifts, cantilever lifts, post lifts, vertical lifts,  horizontal lifts, trolleys, pallets, dollies, caddies, pulleys, clamps, hoists, hooks, forks, stackers, bucket elevators, carousels, cranes, guided vehicles, carts, pumps, slurry pumps, or combinations of the foregoing. For the purposes of this application, any conveying systems can inelude speed control and/or variable speed.
As defined herein, “agitation means” includc, but are not limited to, top stirrers/mixcrs, bottom stirrers/mixers, side stirrers/mixers, screw agitators, rocking or rotating means, rotary mixers, sonication, ultrasonic energy, blenders, blades, dispersers, rotors, propellers, rccirculators, baffles, impellers. internal fins or augers within containing means that result in agitation when rotated, and any combination thereof.
As defined herein. “liquid-solid separation means” include. but are not limited to. centrifugation (e.g., decanter, cone-shaped) . decanting, filtering. drying, evaporation, osmosis, sedimentation, precipitation, filter presses, and combinations thereof.
As defined herein, “gold ions” are intended to cover Au (I) and Au (III) , as well as gold-containing ions comprising anions including, but not limited to. fluoride, chloride, bromide, iodide, nilrale, nitrite, sulfate, sulfite, cyanide, bisulfate, bisulfite, acetate, oxalate, chlorate, chlorite,hypochlorite, perchlorate, carbonate, bicarbonate, and phosphate.
As defined herein. “ventilation means” corresponds to forced air (mechanical) ventilation such as local exhaust ventilation (hoods, ductwork, air cleaning device, fans, exhaust stacks, scrubbers, and combinations thereof).
As defined herein, the “mcans to control air input into a furnace” corresponds to the use of ductwork and air pumps or pressure differentials to force atmospheric air or more oxygenated air into a furnace.
As defined herein. “loading means” include, but are not limited to chutes, conveyors. manually by hand. cranes, jacks, hoists, or any combination thereof. In addition, many of the moving means, as defined herein, can be loading means.
As defined herein. “air inputs” correspond to openings or holes that allow the user to introduce one or more gases, e.g., air, via a pipe or line into a tank. especially when the chemical reaction requires or otherwise is more efficient when carried out in the presence of one or more gases.
AS defined herein. “MLCCs” or multi-layer ceramic components correspond to multilayer ceramic capacitors that may be mounted on boards of electronic products including display devices such as liquid crystal displays (LCDs) and plasma display panels (PDPs) , computers, personal digital assistants (PDAS) . mobile phones, as well as used in chip-type condensers serving to charge or discharge electricity therein or therefrom. Such multilayer ceramic capacitors may have a structure in which a plurality of dielectric layers and internal electrodes of different polarities disposed between the dielectric layers are alternately disposed. MLCC's comprise a small percentage of precious and rare earth metals, e.g., less than about 5%. including silver, palladium, gold. yttrium, neodymium, and  praseodymium. The ceramic material comprises BaTiO3 and other barium oxides. MLCCs would be classified as micro-components, consistent with the present applieation. The MLCCs comprise a higher amount of copper and other base metals than the precious and rare carth metals. For example, the MLCC may comprise between about 2-8 wt%copper, 2-7 wt%copper. 2-6 wt%copper. 2-5 wt%copper, 2-4 wt%copper, 3-5 wt%copper, or 3-6 wt%copper, based on the total weight of the MLCC. For example, the MLCC may comprise between about 0.05-0.6 wt%palladium, 0.05-0.5 wt%palladium, 0.05-0.4 wt%palladium. 0.05-0.3 wt%palladium, 0.1-0.3 wt%palladium, 0.1-0.4 wt%palladium, or 0.2-0.4 wt%palladium based on the total weight of the MLCC. The amount of copper and palladium is dependent on the specific MLCC design.
As defined herein, “palladium-containing componcnts” include. but are not limited to. MLCCs, hybrid ICs comprising a ceramic substrate and different components, wherein the components are linked by conductive silver-palladium tracks, as well as components having conductive palladium layers.
As defined herein, “miscellaneous parts” present on the PCB’s including iron parts, batteries, crystals, USB ports, BGA chips, metal covers, metal casings, metal shields, stickers, foam or plastie shields, and metal or plastic brackets.
As defined herein, a “drum” comprises an enclosure for containing PCBs, PCB components, or both, therein, wherein the enclosure comprises at least one of: at least one hole for allowing a liquid to enter and exil the drum; at least one interior fin for agitating the PCBs, PCB componcnts, or both, contained within the drum; a rotating drive; and any combination thereof.
As defined herein, “hydroxide salt” corresponds to alkali hydroxides (e.g., sodium hydroxide, potassium hydroxide, rubidium hydroxide) , alkaline earth metal hydroxides (e.g., magnesium hydroxide, calcium hydroxide) , ammonium hydroxide, tetraalky lammonium hydroxides having the formula NRtR2R3R4OH, and tetraalkylphosphonium hydroxides having the formula PR1R2R3R4OH, wherein R1, R2, R3 and R4 may be the same as or different from one another and are selected from the group consisting of hydrogen, straight-chained or branched C1-C6 alkyl (e.g., methyl, ethyl, propyl, butyl, pentyl, and hexyl) . and substituted or unsubstituted C6-C10 aryl, e.g., benzyl,
As defined herein, “substantial completion” of the chemical reaction corresponds to the completion of at least about 90%of the chemical reaction, based on the limiting reagent present, preferably at least about 95%, and most preferably at least about 99%. A “complete reaction” corresponds to reaction of at least 99%of the limiting reagent, more preferably at least 99.5%.
Systems and Processes to Reclaim Precious Metals
In one aspect, an integrated, intelligent system and process for recycling palladium-containing components is described, said system comprising a palladium leaching (PL) module, wherein the PL module comprises at least one base metal removal apparatus, and at least one palladium leaching  apparatus, wherein the system and process of using said system efficiently recovers more than about 80%, preferably more than about 90%. and most preferably more than about 95% of the palladium contained in the palladium-containing components. In addition, the system and process efficiently recovers more than about 80%, preferably more than about 85%, and most preferably more than about 90% of the silver contained in the palladium-containing components. A schematic of the system and process for recycling palladium-containing components is shown in Figures 1 and 2.
In one embodiment, the PL module (15) for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) at least one base. metal removal apparatus (20) ; and
(b) at least one palladium leaching apparatus (40) .
wherein the apparatuses are positioned and/or operated in series with one another, with or without intervening parts, and wherein the PL module efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. Preferably, the PL module is designed such that the palladium-containing components, whether batch or otherwise, move within the PL module automatically or manually and/or can move from module to module, automatically or manually, using a movingmeans. The PL module may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparalus.
In another embodiment, the PL module (15) for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) at least two base metal removal apparatuses (20.30) ; and
(b) at least one palladium Ieaching apparatus (40) .
wherein the apparatuses are positioned and/or operated in series with one another, with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the PL module efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing componcnts, Preferably, the PL module is designed such that the palladium-containing components, whether batch or otherwise, move within the PL module automatically or manually and/or can move from module to module, automatically or manually, using a moving means. The PL module may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
In yet another embodiment, the system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) a milling module (340) ; and
(b) a palladium leaching module (15) comprising:
(i) at least one base metal removal apparatus (20) : and
(ii) at least one palladium leaching apparatus (40) .
wherein the modules and apparatuses are positioned and/or operated in series with one another. with or without intervening parts, and wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. Preferably, the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module. automatically or manually, using a moving means. The system may be controlled by one or more controlling device including. but not limited to. PLCs that coordinate and regulate one or more automated process steps in the apparatus.
In still another embodiment, the system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) a milling module (340) : and
(b) a palladium leaching module (15) comprising:
(i) at least two base metal removal apparatuses (20, 30) ; and
(ii) at least one palladium leaching apparatus (40) .
wherein the modules and apparatuses are positioned and/or operaled in series with one another. with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. Preferably, the system is designed such that the palladium-containing components. whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means. The system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
In yet another embodiment, the system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) a furnace module (320) : and
(b) a palladium leaching module (15) comprising:
(i) at least one base metal removal apparatus (20) : and
(ii) at least one palladium leaching apparatus (40) .
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts. wherein the furnace module can be positioned before or after the palladium leaching module, and wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. Preferably, the system is designed such that the palladium-containing components. whether batch or otherwise. move within a module automatically  or manually and/or can move from module to module, automatically or manually, using a moving means. The system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
In still another embodiment, the system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) a furnace module (320) : and
(b) a palladium leaching module (15) comprising:
(i) at least two base metal removal apparatuses (20, 30) : and
(ii) at least one palladium leaching apparatus(40) .
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, wherein the furnace module can be positioned before or after the palladium leaching module, and wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. Preferably, the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automaticallyor manually and/or can move from module to module, automatically or manually, using a moving means. The system may be controlled by one or more controlling device including. but not limited to. PLCs that coordinate and regulate one or more automated process steps in the apparatus.
In yet another embodiment, the system for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) a furnace module (320) :
(b) a milling module (340) ;
and
(c) a palladium leaching module (15) comprising:
(i) at least one base metal removal apparalus (20) : and
(ii) at least one palladium leaching apparatus (40) ,
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts. and wherein the system efficienlly recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. Preferably, the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module. automatically or manually, using a moving mcans. The system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
In still another embodiment, the system (10) for recycling palladium-containing components  comprises, consists of, or consists essentially of:
(a) a furnace module (320) ;
(b) a milling module (340) : and
(c) a palladium leaching module (15) comprising:
(i) at least two base metal removal apparatuses (20, 30) ; and
(ii) at least one palladium leaching apparatus (40) ,
wherein the modules and apparatuses are positioned and/or operated in series with one another. with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. Prrferably, the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means, The system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
In another embodiment, the system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) a palladium leaching module (15) comprising:
(i) at least one base metal removal apparatus (20) ; and
(ii) at least one palladium leaching apparatus (40) : and
(b) an SPT tool module (360) ,
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, and wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. The SPT tool module (360) can comprise at least one module selected from the group consisting of (i) a SPT base metal removal module (380) , (ii) a SPT gold removal module (400) , (iii) a SPT silver leaching module (420) , (iv) any combination of (i) -(iii) , and (v) the combination of each of (i) - (iii) . Preferably, the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means. The system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process sleps in the apparatus.
In yet another embodiment, the system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) a palladium leaching module (15) comprising:
(i) at least two base metal removal apparatuses (20, 30) :
(ii) at least one palladium leaching apparatus (40) : and
(c) an SPT tool module (360) .
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. The SPT tool module (360) can comprise at least one module selected from the group consisting of (i) a SPT base metal removal module (380) , (ii) a SPT gold removal module (400) , (iii) a SPT silver leaching module (420) , (iv) any combination of (i) -(iii) . and (v) the combination of each of (i) - (iii) . Preferably, the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means. The system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
In still another embodiment, the system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) a milling module (340) :
(b) a palladium leaching module (15) comprising:
(i) at leasl one base metal removal apparaius (20) : and
(ii) at least one palladium leaching apparatus (40) : and
(c) an SPT tool module (360) .
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervcning parts, and wherein the system effieiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. The SPT tool module (360) can comprise at least one module selected from the group consisting of (i) a SPT base metal removal module (380) . (ii) a SPT gold removal module (400) , (iii) a SPT silver leaching module (420) , (iv) any combination of (i) -(iii) . and (v) the combination of each of (i) - (iii) . Preferably. the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from modute to module, automatically or manually, using a moving means. The system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
In another embodiment, the system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) a milling module (340) ;
(b) a palladium leaching module (15) comprising:
(i) at least two base metal removal apparatuses (20,30) : and
(ii) at least one palladium leaching apparatus (40) : and
(c) an SPT tool module (360) .
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. The SPT tool module (360) can comprise at least one module selected from the group consisting of (i) a SPT base metal removal module (380) . (ii) a SPT gold removal module (400) . (iii) a SPT silver leaching module (420) . (iv) any combination of (i) -(iii) , and (v) the combination of each of (i) - (iii) , Preferably, the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means. The system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
In still another embodiment, the system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) a furnace module (320) ;
(b) a milling module (340) ;
(c) a palladium leaching module (15) comprising:
(i) at least one base metal removal apparatus (20) : and
(ii) at least one palladium leaching apparatus (40) : and
(d) an SPT tool module (360) ,
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, and wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. The SPT tool module (360) can comprise at least one module selected from the group consisting of (i) a SPT base metal removal module (380) . (ii) a SPT gold removal module (400) . (iii) a SPT silver leaching module (420) . (iv) any combination of (i) -(iii) , and (v) the combination of each of (i) - (iii) , Preferably, the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means. The system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or morc automated process steps in the apparatus.
In another embodiment, the system (10) for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) a furnace module (320) :
(b) a milling module (340) :
(c) a palladium leaching module (15) comprising:
(i) at least two base metal removal apparatuses (20, 30) ; and
(ii) at least one palladium leaching apparatus (40) ; and
(d) an SPT tool module (360) ,
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the system efficiently recovers more than about 80%, preferably more than ahout 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. The SPT tool module (360) can comprise at least one module selected from the group consisting of (i) a SPT base metal removal module (380) . (ii) a SPT gold removal module (400) . (iii) a SPT silver leaching module (420) . (iv) any combination of (i) -(iii) , and (v) the combination of each of (i) -(iii) , Preferably, the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means. The system may be controlled by one or more controlling device including but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
In another embodiment, an integrated, intelligent system for recycling palladium-containing components is described, wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components, said system comprising an palladium leaehing module (15) , and at least one additional module selected from the group consisting of:
(a) a pre-board clearing module (220) ,
(b) a board clearing module (240) ,
(c) a desoldering module (260) ,
(d) a furnace module (320) ,
(e) a milling module (340) ,
(f) an SPT tool module (360) ,
(g) any combination of (a) - (f) , and
(h) every module of (a) - (f) ,
wherein the modules are positioned and/or operated in series with one another, with or without intervening parts. The palladium leaching module (15) comprises (A) at least one base metal removal apparatus (20) , and (B) at least one palladium leaching apparatus (40) . The SPT tool module (360) can comprise at least one module selected from the group consisling of (i) a SPT base metal removal module (380) . (ii) a SPT gold removal module (400) . (iii) a SPT silver leaching module (420) . (iv) any combination of (i) -(iii) , and (v) the combination of each of (i) - (iii) . Preferably, the system is  designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means. The system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulale one or more automated process steps in the apparatus.
In another embodiment, an integrated, intelligent system for recycling palladium-containing components is described, wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components, said system comprising an palladium leaching module (15) , and at least one additional module selected from the group consisting of:
(a) a pre-board clearing module (220) ,
(b) a board clearing module (240) ,
(c) a desoldering module (260) ,
(d) a furnace module (320) ,
(e) a milling module (340) ,
(f) an SPT tool module (360) ,
(g) any combination of (a) - (f) , and
(h) every module of (a) - (f) .
wherein the modules are positioned and/or operated in series with one another. with or without intervening parts. The palladium leaching module (15) comprises (A) at least two base metal removal apparatuses (20, 30) , and (B) at least one palladium leaching apparatus (40) , wherein the at least two base metal removal apparatuses can be the same as or different from one another. The SPT tool module (360) can comprise at least one module selected from the group consisting of (i) a SPT base metal removal module (380) . (ii) a SPT gold removal module (400) . (iii) a SPT silver leaching module (420) . (iv) any combination of (i) - (iii) , and (v) the combination of each of (i) - (iii) , Preferably, the system is designed such that the palladium-containing components, whether batch or otherwise, move within a module automatically or manually and/or can move from module to module, automatically or manually, using a moving means. The system may be controlled by one or more controlling device including, but not limited to. PLCs that coordinate and regulate one or more automated process steps in the apparatus.
In another embodiment, a process for recycling palladium-containing components in a palladium leaching (PL) module (15) comprises, consists of, or consists essentially of:
(a) removing at least one base metal from palladium-containing components using a base metal removal composition in at least one base metal removal apparatus (20) : and
(b) removing palladium from the palladium-eonlaining components using a palladium removal composition in a palladium leaching apparatus (40) .
wherein the apparatuses are positioned and/or operated in series with one another, with or without  intervening pans, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. Preferably, the process includes moving the palladium-containing components within a module automatically or manually, and/or moving the palladium-containing components from module to module, automatically or manually, using a moving means. The process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps.
In yet another embodiment, a process for recycling palladium-containing components in a palladium leaching (PL) module (15) comprises, consists of, or consists essentially of:
(a) removing at least one base metal from palladium-containing components using a base metal removal composition in at least two base metal removal apparatuses (20, 30) : and
(b) removing palladium from the palladium-containing components using a palladium removal composition in a palladium leaching apparatus (40) ,
wherein the apparatuses are positioned and/or operated in series with one another, with or without intervening pans, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the process efficiently recovers more than ahout 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. Preferably, the process includes moving the palladium-containing components within a module automatically or manually, and/or moving the palladium-containing components from module to module, automatically or manually, using a moving means. The process may be controlled by one or more controlling device including, but not limited to,PLCs that coordinate and regulate one or more automated process steps.
In still another embodiment, a process for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) grinding palladium-containing components in a milling module (340) to yield a solid comprising ground materials: and
(b) removing palladium from the ground materials in a palladium leaching (PL) module (15) .wherein the PL module comprises:
(i) removing at least one base metal from the ground materials using a base metal removal composition in at least one base metal removal apparatus (20) : and
(ii) removing palladium from the ground materials using a palladium removal composition in a palladium leaching apparatus (40) ,
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. Preferably, the process includes moving palladium-containing components or ground materials within a module automatically or manually,  and/or moving palladium-containing components or ground materials from module to module, automatically or manually, using a moving means. The process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automatcd process steps.
In another embodiment, a process for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) grinding palladium-containing components in a milling module (340) to yield a solid comprising ground materials: and
(b) removing palladium from the ground materials in a palladium leaching (PL) module (15) .wherein the PL modute comprises:
(i) removing at least one base metal from the ground materials using a base metal removal composition in at least two base metal removal apparatuses (20, 30) : and
(ii) removing palladium from the ground materials using a palladium removal composition in a palladium leaching apparatus (40) ,
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. Preferably, the process includes moving palladium-containing components or ground materials within a module automatically or manually, and/or moving palladium-containing components or ground materials from module to module, automatically or manually, using a moving means. The process may be controlled by one or more controlling device ineluding, but not limited to, PLCs that coordinate and regulate one or more automated process steps.
In still another embodiment, a process for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) ashing palladium-containing components in a furnace module (320) to yield a solid comprising ash: and
(b) removing palladium from the solid in a palladium leaching (PL) module (15) , wherein the PL module comprises:
(i) removing at least one base metal from the solid using a base metal removal composition in at least one base metal removal apparatus (20) : and
(ii) removing palladium from the solid using a palladium removal composition in a palladium leaching apparatus (40) ,
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium  contained in the palladium-containing components. Preferably, the process includes moving palladium-containing components or solids within a module automatically or manually, and/or moving palladium-containing components or solids from module to module, automatically or manually, using a moving means. The process may be controlled by one or more controlling device including, but not limited to. PLCs that coordinate and regulate one or more automated process steps.
In still another embodiment, a process for recycling palladium-containing components comprises, consists of. or consists essentially of:
(a) ashing palladium-containing components in a furnace module (320) to yield a solid comprising ash; and
(b) removing palladium from the solid in a palladium leaching (PL) module (15) , wherein the PL module comprises:
(i) removing at least one base metal from the solid using a base metal removal composition in at least two base metal removal apparatuses (20, 30) ; and
(ii) removing palladium from the solid using a palladium rcmoval composition in a palladium leaching apparatus (40) ,
wherein the modules and apparatuses are positioned and/or operated in series with one another. with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components, Preferably, the process includes moving palladium-containing components or solids within a module automatically or manually, and/or moving palladium-containing components or solids from module to module, automatically or manually, using a moving means. The process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps.
In still another embodiment, a process for recycling palladium-containing components comprises, consists of. or consists cssentially of:
(a) ashing palladium-containing components in a furnace module (320) to yield a solid comprising ash:
(b) grinding the solid in a milling modulc (340) ; and
(c) removing palladium from the solid in a palladium leaching (PL) module (15) . wherein the PL module comprises:
(i) removing at least one base metal from the solid using a base metal removal composition in at least one base metal removal apparatus (20) ; and
(ii) removing palladium from the solid using a palladium removal composition in a palladium leaching apparatus (40) .
wherein the modules and apparatuses arc positioned and/or operated in series with one another, with or without intervening parts, and wherein the process efficiently recovers more than about 80%,  preferably more than about 90%, aud most preferably more than about 95% of the palladium contained in the palladium-containing components, Preferably, the process includes moving palladium-containing components or solids within a module automatically or manually, and/or moving palladium-containing components or solids from module to module, automatically or manually, using a moving means. The process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps.
In still another embodiment, a process for recycling palladium-containing componcnts comprises, consists of. or consists essentially of:
(a) ashing palladium-containing components in a furnace module (320) to yield a solid comprising ash;
(b) grinding the solid in a milling module (340) ; and
(c) removing palladium from the solid in a palladium leaching (PL) module (15) , wherein the PL modulc comprises:
(i) removing at least one base metal from the solid using a base metal removal composition in at least two base metal removal apparatuses (20, 30) ; and
(ii) removing palladium from the solid using a palladium removal composition in a palladium leaching apparatus (40) .
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein thc process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. Preferably. the process includes moving palladium-containing components or solids within a module automatically or manually, and/or moving palladium-containing components or solids from module to module, automatically or manually, using a moving means. The process may be controlled by one or more controlling device including, but not limited to. PLCs that coordinate and regulate one or more automated process steps.
In yct another embodiment, a process for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) removing palladium from palladium-containing components in a palladium leaching (PL) module (15) , wherein the PL module comprises:
(i) removing at least one base metal from palladium-containing components using a base metal removal composition in at least one base metal removal apparatus (20) ; and
(ii) removing palladium from palladium-containing components using a palladium removal composition in a palladium leaching apparatus (40) , and
(b) removing gold from palladium-containing components in an SPT tool module (360) , ,
wherein the modules and apparatuses are positioned and/or operated in series with one another, with  or without intervening parts, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. Processing using the SPT tool module (360) can comprise at least one process selected from the group consisting of (i) removing at least one base metal using a base metal removal composition in a SPT base metal removal module (380) , (ii) removing gold using a gold removal composition in a SPT gold removal module (400) , (iii) removing silver using a silver removal composition in a SPT silver leaching module (420) , (iv) any combination of (i) - (iii) . and (v) the combination of each of (i) - (iii) . Preferably, the process includes moving palladium-containing components within a module automatically or manually, and/or moving palladium-containing components from module to module, automatically or manually, using a moving means, The process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
In still another cmbodiment, a process for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) removing palladium from palladium-containing components in a palladium leaching (PL) module, wherein the PL module (15) comprises:
(i) removing at least one base metal from palladium-containing components using a base metal removal composition in at least two base metal removal apparatuses (20, 30) ; and
(ii) removing palladium from palladium-containing components using a palladium removal composition in a palladium leaching apparatus (40) , and
(b) removing gold from palladium-containing components in an SPT tool module (360) , wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. Processing using the SPT tool module (360) can comprise at least one process selected from the group consisting of (i) removing at least one base metal using a base metal removal composition in a SPT base metal removal module (380) , (ii) removing gold using a gold removal composition in a SPT gold removal module (400) , (iii) removing silver using a silver removal composition in a SPT silver leaching module (420) , (iv) any combination of (i) - (iii) , and (v) the combination of each of (i) - (iii) . Preferably. the process includes moving palladium-containing components within a module automatically or manually, and/or moving palladium-containing components from module to module, automatically or manually, using a moving means, The process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
In yet another embodiment, a process for recycling palladium-containing components  comprises, consists of, or consists essentially of:
(a) grinding palladium-containing components in a milling module (340) to yield a solid comprising ground materials; and
(b) removing palladium from the ground materials in a palladium leaching (PL) module (15) , wherein the PL module comprises:
(i) removing at least one base metal from the ground materials using a base metal removal composition in at least one base metal removal apparatus (20) ; and
(ii) removing palladium from the ground materials using a palladium removal composition in a palladium leaching apparatus (40) ; and
(c) removing gold from the ground materials in an SPT tool module (360) ,
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. Processing using the SPT tool module (360) can comprise at least one process selceted from the group consisting of (i) removing at least one base metal using a base metal removal composition in a SPT base metal removal module (380) , (ii) removing gold using a gold removal composition in a SPT gold removal module (400) . (iii) removing silver using a silver removal composition in a SPT silver leaching module (420) , (iv) any combination of (i) - (iii) . and (v) the combination of each of (i) - (iii) . Preferably. the process includes moving palladium-containing components or ground materials within a module automatically or manually. and/or moving palladium-containing components or ground materials from module to module, automatieally or manually, using a moving means. The process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
In another embodiment, a process for recycling palladium-containing components comprises, consists of. or consists essentially of:
(a) grinding palladium-containing components in a milling module (340) to yield a solid comprising ground materials; and
(b) removing palladium from the ground materials in a palladium leaching (PL) module (15) , wherein the PL module comprises:
(i) removing at least one base metal from the ground materials using a basc metal removal composition in al least two base metal removal apparatuses (20, 30) ; and
(ii) removing palladium from the ground materials using a palladium removal composition in a palladium leaching apparatus (40) ; and
(c) removing gold from ground materials in an SPT tool module (360) .
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same  as or different from one another, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. Processing using the SPT tool module (360) can comprise at least one process selected from the group consisting of (i) removing at least one base metal using a base metal removal composition in a SPT base metal removal module (380) , (ii) removing gold using a gold removal composition in a SPT gold removal module (400) , (iii) removing silver using a silver removal composition in a SPT silver leaching module (420) , (iv) any combination of (i) - (iii) . and (v) the combination of each of (i) - (iii) . Preferably, the process includes moving palladium-containing components or ground materials within a module automatically or manually, and/or moving palladium-containing components or ground materials from module to module, automatically or manually, using a moving means, The process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more antomated process steps in the apparatus.
In yet another embodiment, a process for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) ashing palladium-containing components in a furnace module (320) to yield a solid comprising ash;
(b) grinding the solid in a milling module (340) ; and
(c) removing palladium from the solid in a palladium leaching (PL) module (15) , wherein the PL module comprises:
(i) removing at least one base metal from the solid using a base metal removal composition in at least one base metal removal apparatus (20) ; and
(ii) removing palladium from the solid using a palladium removal composition in a palladium leaching apparatus (40) ; and
(d) removing gold from the solid in an SPT tool module (360) .
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervcning parts, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. Processing using the SPT tool module (360) can comprise at least one process selected from the group consisting or (i) removing at least one base metal using a base metal removal composition in a SPT base metal removal module (380) . (ii) removing gold using a gold removal composition in a SPT gold removal module (400) , (iii) removing silver using a silver removal composition in a SPT silver leaching module (420) , (iv) any combination of (i) - (iii) , and (v) the combination of each of (i) - (iii) . Preferably, the process includes moving palladium-containing components or solid within a module automatically or manually, and/or moving palladium-containing components or solid from module to module, automatically or manually, using a moving means. The process may be controlled by one or more controlling device including, but not  limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus, 
In another embodiment, a process for recycling palladium-containing components comprises, consists of, or consists essentially of:
(a) ashing palladium-containing components in a fumace module (320) ; to yield a solid comprising ash;
(b) grinding the solid in a milling modulc (340) ; and
(c) removing palladium from the solid in a palladium leaching (PL) module (15) , wherein the PL module comprises:
(i) removing at least one base metal from the solid using a base metal removal composition in at least two base metla removal apparatuses (20, 30) ; and
(ii) removing palladium from the solid using a palladium removal composition in a palladium leaching apparatus (40) ; and
(d) removing gold from the solids in an SPT tool module (360) ,
wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts, wherein the at least two base metal removal apparatuses can be the same as or different from one another, and wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in thc palladium-containing components. Processing using the SPT tool module (360) can comprise at least one process selected from the group consisting of (i) removing at least one base metal using a base metal removal composition in a SPT base metal removal module (380) , (ii) removing gold using a gold removal composition in a SPT gold removal module (400) , (iii) removing silver using a silver removal composition in a SPT silver leaching module (420) , (iv) any combination of (i) - (iii) , and (v) the combination of each of (i) - (iii) . Preferably, the process includes moving palladium-containing components or solid within a module automatically or manually, and/or moving palladium-containing components or solid from module to module, automatically or manually, using a moving means. The process may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
In another aspect, a process of recycling palladium-containing components is described, wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. The process comprises removing palladium from palladium-containing components using a palladium leaching module (15) , and optionally at least one additional step selected from the group consisting of:
(a) sorting PCBs in a pre-board clearing module (220) , wherein the PCBs are sorted manually and/or automatically,
(b) removing palladium-containing components in a pre-board clearing module (220) , wherein the palladium-containing components are removed manually and/or automatically,
(c) removing palladium-containing components from PCBs using heat and mechanical means in a Board clearing module (240) .
(d) removing solder and palladium-containing components from PCBs using a solder removal composition in a desoldering module (260) .
(e) ashing palladium-containing components in a fumace module (320) to yield a solid comprising ash.
(f) grinding palladium-containing components in a milling module (340) to yield a solid comprising ground materials.
(g) removing gold from (i) ash from (e) , (ii) ground materials from (f) and/or (iii) unashed or unground palladium-containing components in an SPT tool module (360) .
(h) any combination of (a) - (g) , and
(i) every process of (a) - (g) .
wherein the processes are operated in series with one another, with or without intervening processes. The palladium leaching (PL) module comprises, consists of, or consists esscntially of (A) removing at least one base metal from ground material using a base metal removal composition in at least one base metal removal apparatus (20) , and (B) removing palladium from the ground material using a palladium removal composition in a palladium leaching apparatus (40) . Processing using the SPT tool module (360) can comprise at least one process selected from the group consisting of (i) removing at least one base metal using a base metal removal composition in a SPT base metal removal module (380) , (ii) removing gold using a gold removal composition in a SPT gold removal module (400) , (iii) removing silver using a silver removal composition in a SPT silver leaching module (420) , (iv) any combination of (i) - (iii) , and (v) the combination of each of (i) - (iii) . Preferably, the process includes moving material within a module automatically or manually, and/or moving material from module to module, automatically or manually, using a moving means. The system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
In another aspect, a process of recycling palladium-containing components is described, wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components. The process comprises removing palladium from palladium-containing components using a palladium leaching module (15) , and optionally at least one additional step selected from the group consisting of:
(a) sorting PCBs in a pre-board clearing module (220) , wherein the PCBs are sorted manually and/or automatically,
(b) removing palladium-containing components in a pre-board clearing module (220) , wherein the palladium-containing components are removed manually and/or automatically,
(c) removing palladium-containing components from PCBs using heat and mechanical means  in a Board clearing module (240) ,
(d) removing solder and palladium-containing components from PCBs using a solder removal composition in a desoldering module (260) ,
(e) ashing palladium-containing components in a furnace module (320) to yield a solid comprising ash,
(f) grinding palladium-containing components in a milling module (340) to yield a solid comprising ground materials,
(g) removing gold from (i) ash from (e) , (ii) ground materials from (f) and/or (iii) unashed or unground pulladium-containing components in an SPT tool module (360) .
(h) any combination of (a) - (g) , and
(i) every process of (a) - (g) ,
wherein the processes are operated in series with one another, with or without intervening processes. The palladium leaching (PL) module (15) comprises, consists of, or consists essentially of (A) removing at least one base metal from ground material using a base metal removal composition in at least two base metal removal apparatuses (20, 30) , and (B) removing palladium from the ground material using a palladium removal composition in a palladium leaching apparatus (40) , wherein the at least two base metal removal apparatuses can be the same as or different from one another. Processing using the SPT tool module (360) can comprise at least one process selected from the group consisting of (i) removing at least one base metal using a buse metal removal composition in a SPT base metal removal module (380) , (ii) removing gold using a gold removal composition in a SPT gold removal module (400) , (iii) removing silver using a silver removal composition in a SPT silver leaching module (420) , (iv) any combination of (i) - (iii) , and (v) the combination of each of (i)- (iii) , Preferably, the process includes moving material within a module automatically or manually, and/or moving material from module to module, automatically or manually, using a moving means, The system may be controlled by one or more controlling device including, but not limited to, PLCs that coordinate and regulate one or more automated process steps in the apparatus.
The systems and processes are integrated and intelligent and capable of maximizing the efficiency of precious metal, e.g., palladium and gold, removal. The systems and processes ensure that the palladium-containing components are processed to ensure a minimization of resources (e.g., chemicals, energy, hardware, software, footprint of the facility, water) , a minimization of waste, and a maximization of metal reclaimod. This is accomplished, in part, using at least one programmable logic controller, which can be controlled by a SCADA device. It should be appreciated that depending on the module, the process can be either a wet process, a dry process, a chemical process, a physical process, an electrical process, a mechanical process, or some combination of more than one of the foregoing processes. For example, wet processing includes, but is not limited to, metal removal using chemicals and rinsing, while dry processing includes, but is not limited to, thermal processing (i.e., heating) , grinding, and burning. In one embodiment, each module has at least one PLC  controlling it. In another embodiment, multiple modules have at least one PLC controlling them. When more than one PLC is present, a SCADA device can be used to control the one or more PLCs. A SCADA device is a computer-based system that monitors and controls industrial, infrastructure and facility-based processes.
The apparatuses and processes described herein preferably optimize energy utilization. For example, the apparatuses and processes may rely on a closed loop energy system to transfer energy from energy generators including, but not limited to, heat in exhaust, heat of dilution, exothermic chemical reactions, that can be captured in heat exchangers) to energy users including, but not limited to, heating compositions, heating solder, ashing materials, maintaining temperatures during endothermic processes) .
The integrated, intelligent systems and processes can operate continuously (in batch or otherwise) twenty four hours a day, seven days a week, and process electronic waste with precious metal recovery efficiencies on the order of 85% to greater than 99%.
The systems described herein can include “kill switch” capabilities, wherein an Ethernet-based control system such as SCADA can shut down the system in the event that workers or the environment are at risk including, but not limited to, exposure to toxic fumes, out of control chemical reactions, computer or component malfunctions in the module.
The at least one PLC and the SCADA, when present, can be used for at least one of the following: data processing; managing and controlling module (s) ; storing of recipes; blending chemistries; separating materials; data archiving and reporting; controlling computer networks and systems; safety, efficiency, economic, and ecological operations; maintenance; leak detection and containment location and special requirements necessary; sampling and monitoring of a variable; and/ur printing production reports.
Real-Time Monitoring
To achieve the high precious metal removal and recovery efficiency described herein, thc process (es) , hardware, evolved gas, palladium-containing components, solids, removal composition, raw materials for removal composition, process composition and rinse liquid, process rinse liquid may be monitored in real-time and the data acquired sent to at least one PLC for analysis and further action as needed. The real-time monitoring can occur in any container, within any of the lines, during any point in a process. For example, chemical reactions wherein a removal composition is used to remove at least one metal from the palladium-containing material can he monitored whereby real-time sampling occurs and a concentration of one or more components determined. This allows the computer to make adjustments so that the removal composition remains at a steady concentration over time. Alternatively, once a certain concentration is achieved, the chemical reaction may be complete and/or the removal composition may be loaded and/or an endpoint may be reached. Similarly, real- time sampling of rinse liquids can occur, allowing the computer to determine the status of the rinse liquid. Often the pH of a removal composition or a rinse liquid must be adjusted and real-time sampling permits this action, The solids can be sampled in real-time as well. Real-time sampling also ensures that workers and the environment are not nt risk by engaging the “kill switch” if some prespecified threshold is achieved. These are just a few examples of the advantages of real-time monitoring and sampling.
Real-time monitoring can include, but is not limited to: temperature; pressure; liquid and/or gas leak detection; and the monitoring of chemical constituents and/or pH values and/or oxidation reduction potentials and/or end points and/or conductivity in solids and/or liquids during mixing, flow, levels, weight, storage, blending, agitation, reactions, recovery, reuse, feed and bleed, neutralization, buffering, diluting, pH adjustment, loading, NOx suppression, filtration, separation, centrifugation, precipitation, diffusion dialysis, resin-based acid recycle and metals recovery, electrowirming, wastewater treatment, and/or regeneration. The chemical constituents monitored can bo raw chemical constituents or compositions comprising at least one chemical constituent. The real-time monitoring can occur in any container in any module, within any of the lines, during any point in a process. Process hardware can be monitored in real-time as well. Any of the gases evolved from any of the reactions can be monitored in real-time. Real-time monitoring and analysis can bo in-line, direct, indirect, continuous, scheduled and/or require sample preparation. The sampling can be manual or automatic. The analytical analysis to determine concentration can be manual or automatic. Concentrations can be determined using any “analytical techniques” or “sensing means” known in the art including, but not limited to, pH measurement, atomic absorption spectroscopy, atomic emission spoctroscopy, inductively coupled plasma spectroscopy, inductively coupled plasma optical emission spectroscopy, UV-Vis spectrophotomctry, UV spectrophotometry, titrations, infrared spectroscopy, temperature-controlled infrared spectroscopy, colorimetry, liquid chromatography, high perfermance liquid chromatography, refractive indox sensor, optical sensors, chemical sensors, electrochemical techniques (e.g., pulsed cyctie galvanostatic analysis, multi-variate analysis, galvanostatic, potentiodynamic) , cyclic voltammetry, linear polarization, radio frequency identification, and any other technique known by the skilled artisan to measure chemical concentrations.
Obtainment of Palladium-Containing Components
Palladium-containing components associated with e-waste are typically attached to printed circuit boards and should be removed from the PCB to increase the efficiency of the overall recycling and reclamation process. Furhher, the impact on the environment is lessened by reducing the volume of chemicals used, the waste stream as well as the operational (i.e., utility) and equipment (i.e., exchanger, scrubber, and wastewater treatment) costs.
The most common pallndium-containing component is the multi-layer ceramic capacitor  (MLCC) . Using the system and process of the incorporated PCT/CN2016/070904 application, as summarized herein, the MLCCs can be removed from the PCBs and sorted for further processing according to the invention described herein. Other palladium-containing components, as described herein, can also be collected using the system and process of the incorporated PCT/CN2016/070904 application for further processing according to the invention described herein. It should be appreciated that the obtainment of the palladium-containing components is not limited to the system and process of the incorporated PCT/CN2016/070904 application, e.g., the pre-BCM, BCM and/or DS modules. For example, another system and process may be used to obtain the palladium-containing components. The palladium-containing components can be removed from PCBs onsite or offsite and subsequently shipped to the fab for further processing according to the invention described herein.
Systems and processes used to remove and sort components from PCBs were previously described in International Patent Application No. PCT/CN2016/070904 filed on January 14. 2016 in the name of Entegris Inc. and entitled “Integrated El~ctronic Waste Recycling and Recover System and Process of Using Same.” which is hereby incorporated herein by reference in its entirety. In summary, the PCB’s comprising components can be sorted, manually or automatically. according to type, size. and weight in a pre-board clearing module (pre-BCM) (220). Components and other miscellaneous parts that can be easily re moved are. and everything can be sorted into batches for further processing. For example, a process of preparing PCBs for metal reclamation and recovery can comprise;
(a) sorting PCBs and PCB components into batches based on one or more of: PCBs and miscellancous parts that have no precious metal value (batch 1); PCBs that can be sent directly to a board clearing module (BCM) (240) to remove PCB components therefrom (batch 2) ; PCBs that require processing prior to BCM and/or desoldering (batch 3), and PCBs and easy to remove components that can be sent directly to a desoldering module (DS) (260) to remove PCB components and solder therefrom (batch 4);
(b) removing miscellancous parts and casy to remove PCB components from the PCBs of batch 3, wherein the miscellaneous paris and easy to remove PCB components are sorted into any one of  batches  1, 2, or 4,
wherein the PCBs and miscellancous parts of batch 1 are disposed of, the PCBs in batch 2 are further processed in the BCM to remove and recovcr PCB components from thc PCBs, and the PCBs and easy to remove components in batch 4 are further processed in the desoldering module to remove and recover PCB components and solder therefrom.
Further processing includcs, but is not limited to, a board clearing module (BCM) (240) and a desoldering (DS) module (260), as described in the incorporatedPPCT/CN2016/070904 application.
In summary, a BCM (240) utilizes heating and mechanical means to remove PCB  components from PCBs. For example, a board clearing module (240) (BCM) to remove PCB components from PCBs can comprise:
(a) heating means, wherein the temperature is raised to softon solder, epoxy, glue, and/or other adhesives used to connect a PCB component to a PCB;
(b) mechanical means to remove the PCB component from the PCB.
wherein the mechanical means are selected from the group consisting of cutting blades, abrasive materials, grinders, tumblers, heated air knifes, vibration forces, brushes, rakes, scrapers, augers, high pressure gases, high pressure liquids, heat transfer fluids. hammers, and any combination thereof.
The temperature within the heating means is preferably about 1° to 30℃ below the melting temperature of thc solder, cpoxy, glue, and/or other adhesives. Once the solder is softened, the mechanical means can remove thc PCB component from the PCB, The BCM module (240) can further comprise at least one of: containing means to collect the PCBs and PCB components following removal of the PCB compoaents from the PCB, for further processing: moving means for moving the PCBs and PCB components through the BCM module (240); loading means for introducing the PCBs into the heating and/or mechanical means; sorting means for sorting PCBs and PCB components into hatch(s) ; and any combination thereof. As defined herein, the “heating means, ” include, but are not limited to, batch ovens or the equivalent thereof that utilize infrared heat. resistance heating coils, heat transfer fluid, fluid/vapor heat exchangcrs, which can be used to heat the PCB, and hence the solder.to a temperature where the solder is softened, thereby enabling the mechanical removel of the PCB components from the PCB using mechanical and/or physical means.
A process of removing components from PCBs in a board clearing module (BCM) (240) can comprise;
(a) heating a bonding agent that connects the components to the PCB. wherein the bonding agent is softened by heating to a temperature below the melting temperature of the bonding agent;
(b) removing the components from the PCB once the bonding agent is softened using mechanical means, wherein the mechanical means are selected from the group consisting of cutting blades, abrasive materials, grinders, tumblers, heated air knifes, vibration forces, brushes, rakes, scrapers, augers, high pressure gases, high pressure liquids, heat transfer fluids, hammers, and any combination thereof.
The bonding agents can comprise any one of solder. adhesives, glues and/or epoxy. The temperature that the bonding agent is heated to is preferably about 1° to 30℃ below the melting temperature of the bonding agent. The mechanical means can be selected from the group consisting of cutting blades, abrasive materials, grinders, tumblers, heated air knifes, vibration forces, brushes, rakes, scrapers, augers, high pressure gases, high pressure liquids, heat transfer fluids, hammers. and any combination thereof, The process of removing components from PCBs in the BCM can further comprise at least  one of: receiving the PCBs and PCB components in the BCM module; collecting the PCBs and PCB components in a containing means following removal of the PCB components from the PCB; moving the PCBs and PCB components through the BCM module (240) using moving means; introducing the PCBs into the heating and/or mechanical means using loading means: sorting PCBs and PCB components into batch(s) using sorting means, manually and/or automatically; moving/trausferring thc batch(s) to one or more modules manually and/or automatically; and any combination thereol.
A desoldering (DS) module (260) to remove solder. PCB components, or both, from PCBs.PCB components, or both. is shown schematically in Figure 3. and can .comprise:
a system comprising at least at least one solder removal tank (264, 266). at least one dragout tank (268) . and at least one rinsing tank (270, 272), wherein each tank has the volumetric capacity to contain a containing mcars, e.g., drum, therein.
wherein the system comprises moving means to move the containing means, e.g., drum, from tank to tank, e.g., from the at least one solder removal tank (264, 266) to the at least one dragout tank (268) to the at least one rinsing tank (270, 272) or any other order necessary to remove solder, PCB components, or both, from PCBs, PCB components, or both. In practice, the PCBs, PCB components, or both, are manually or automatically introduced to the containing means, e.g., drum, for processing. The containing means, e.g., drum, can be serially moved from tank to tank using moving means,complete with full or partial submersion of the containing means, e.g., drum. in thc at least one solder removal tank and the al least one rinsing tank. The at least one solder removal tank (264, 266) can comprise a solder removal composition. Each tank can comprise one or more of: agitation means; at least one filter, real-time sampling and adjustment; a cover to minimize evaporation; heating/cooling means; air inputs; sensing means; ventilation means; and any combination thereof. The system can further comprise at least one drying tank (274) . The DS module (260) can be controlled by a PLC. The solder removal composition preferably removes solder metals selectively relative to precious metals, in particular gold and palladium, thereby increasing the loading of the bath for the solder and increasing the bath-life of the solder removal composition.
A process of removing solder, PCB components, or both, from PCBs, PCB components, or both can comprise:
(a) loading PCBs, PCB components, or both into a containing means. e.g., drum;
(b) removing the solder, PCB components, or both, from PCBs, PCB components. or both using a system, wherein the system comprises at least at least one solder removal tank (264, 266) , at least one dragout tank (268) , and at least one rinsing tank (270, 272) .
wherein each tank has the volumetric capacity to contain a containing means, e.g., drum, thereia, wherein the system comprises moving means to move the containing means, e.g., drum, from tank to tank, e.g., from the at least one solder removal tank (264, 266) to the at leasl one dragout tank (268) to the at least one rinsing tank (270, 272) or any other order necessary to removc solder. PCB components. or both. from PCBs, PCB components, or both,  The containing means, e.g., drum, can be serially moved from tank to tank using moving means. complete with full or partial submersion of the containing means, e.g., drum, in the at least one solder removal tank (264, 266) and the at least oae rinsing tank (270, 272) , Each tank can comprise one or more of: agitation means: at least one filter; real-time sampling and adjustmcnt; a cover to minimize evaporation; heating/cooliag means; air inputs; sensing means; ventilation means; and any combination thereof. The system can further comprise al least one drying tank (274). The containing means, e.g., drum, can be fully or partially submerged in the at least one solder removal tank (264, 266) comprising a solder removal composition for time in a range from about 1 minute to about 80 minutes, preferably about 10 minutes to about 40 minutes, at temperature in a range from about room temperature to about 80℃. preferably about 30℃ to about 60℃. The containing means, e.g., drum, can be fully or partially submerged in the at least one rinsing tank (270, 272) for time in a range from about 1 minute to about 30 minutes, preferably about 1 minute to about 10 minutes. The DS module (260) can bc controlled by a PLC and the process of removing solder, PCB components,or both, from PCBs, PCB components, or both, can be subject to a recipc pvecific to what is being processed, as dictated by the PLC.
Furnace Module
Recyclable palladium-containing components that have been manually or automatically removed from the PCBs (e.g., mechanically, thermally, and/or chemically) can be further processed to remove precious metals. In one embodiment, the palladium-containing components can be collected and can be sent to a furnace/ashing module to ash the components, thereby increasing the surface area of the palladium-containing components that is exposed to further processing. This has the benefit of higher metal removal efficienoics, particularly gold from the rocyclable componcnts.
In one embodiment. the furnace module comprises a furnace or some other heating means. and means to control the air input into the furnace. In a further embodiment, the furnacc module may operate in a continuous and/or batch mode and comprises a furnace, means to feed and/or load the furnace with paliadium-containing components, and means to control the air input into the furnace. Regardless of thc embodiment, the palladium-containing components may be crushed prior to or after introduction to thc furnace. The type, size and/or capacity of the furnace can be readily determined by one skilled in the art based on factors including, but not limited to, operating temperatttre, footprint,throughput, capacity, weight, type of material to be ashed and combinations of the foregoing. The furnace comprises one or more heating elemenls. Prcfcrably, the healing element is electric and comprises one or more materials including, but not limited to, metal, metal alloys, metal superalloys, ceramics, composites and combihalioas of the foregoing. More preferably, the heating ellmcnt comprises one or more alloy materials including, but not limited to, Inconcl, Moncl, Hastelloy,
Figure PCTCN2016074296-appb-000001
Examples of useful furnaces include, but are not limited to, top loading furnaces, bottom loading furnaces, front loading furnaces, continuous furnaces, bench furnaces, batch furnaces, truck in furnaces, box furnaces, belt furnace, shelf furnaces. truck in furnaces, elevator furnaces, tunncl furnaces, bell furnaecs, pusher furnaces, tube furnaces, shaker furnaccs and combinations of the foregoing. Thc furnace may comprise fixed and/or adjuslanle parameters that may operate manually or automatically including, but not limited to. throughput, weight, capacity, temperature, temperature ramp rate, time, air flow, pressure, ventilalion and combinations of the foregoing.
In an embodiment, thc furnace includes means to control lhe air input into the furnace because thc furnace ashes the palladium-containing components at high temperatures, e.g., in a range from about 500℃ to about 800℃. preferably about 600℃ to about 70t℃. For example, the furnace may require a supply of air provided at a known minimum airflow. Ifthe airflow is too low, combustible gases may build up. Accordingly, the furnace may comprise means to control the direction, rate and/or flow of air through the furnace including, but not limited to. one or more blowers, fans. dampers, ducts, air curtains, air guides, baffles and combinations of the foregoing. Furthor, pressure sensors, flow sensors, gas sensors (e.g., O2 sensor), and/or temperature sensors can be included to control and regulate one or more components in thc effluent.
The furnace preferably includcs a ventilation and/or abatement system to handle combustible gases and any ash material that may become airborne. in one embodiment, the ventilation system can or may include an electrostatic precipitator or some filtering system. Further. the furnace shall be in compliance with local fire and air quality codes.
The means to feed the furnace with palladium-containing componcnts may be automatic or manual and may include at least one of the moving means described herein. Further, the palladium-containing components may be fed individually or in one or more batches into thc furnace. Batches of palladium-containing components may be formed in the furnace as the palladium-containing components are fed into the furnace. It is contemplated that the batches may include other components that are to be ashed for increased metal removal efficiency. Thc pallndium-containing components may be fed into the furnace on one or more support surfaces that support the individual or batch of palladium-containing components or the palladium-containing components may be fed onto one or more support surfaces already in the furnace. “Support surfaces” include, but are not limited to, racks, shelves, trays, containers and combinations of the foregoing. Preferably, the palladium-containing components are arranged on one or more trays having a base surface and a sidewall having a height that extends above the base surface. Further the one or more trays may be solid and/or perforated. The height of the tray sidewall is selected so as to maximize the efficiency of the ashing process and may be selectcd based on onc or more process parameters including but not limited to weight. capacity, tcmperature. time,,air flow, pressure, ventilation and combinations of the foregoing. In one cmbediment, the tray sidewail height is from betwcen about 1 mm and about 15 cm. Preferably, the furnace is a batch furnace that includes one or more racks and can accommodate one or more trays. The palladium-containing components are manually or automatically placed on/in the trays and the trays can be manually or automattically loaded in the furnace. In one cmbodiment. the depth of palladium-containing components in the trays is from about 1 mm to about 10 cm. preferably about 1 cm to about 3 cm. The furnace and trays should be constructed from a material that will withstand the temperatures. pressures. and VOCs of the ashing process and will not be a source of contamination during the heating/cooling processes.
The furnacc can be cooled to ambient temperatures following ashing. either with the assistance of refrigeration. the introduction of air to the furnace. by uncontrolled cooling to ambient temperature. or any other means of cooling. as understood by the person skilled in the art.
Prcferably. the furnace module ashes the palladium-containing components based on at least one process recipe that is based on one or more parameters that may be manually or automatically input including. but not limmited to. throughput. weight of recyctable components and/or memory boards, capacity of the furnace. tempcrature, tempcrature ramp rate. cycle time, air flow. pressure. ventilation and combinations of the foregoing. Prefcrably the process recipc is selected by a PLC that controls one or more functions of the furnace module to ash greater than 80%. prcferably greater than 95%. of the ashable content of the palladium-containing components. In one embodiment. the process recipe includes a programmable temperaturc/time profile that is based on one or more of type. weight and amount of palladium-containing components to be ashed. The temperature/time profile for the furnace process may include, but is not limiled to, preheating, the rate of continous temperature ramping, ramp/hold, the tate of stepped temperature ramping. the rate of staged temperature ramping. and combinations of the foregoing. In one cmbodiment, the ashing process operates at a temperature from about 250℃ to about 800℃ from about 1 hour to about 8 hours.
Preferably. the ashed materials have size in a range from about 1 to about 3000 microns. That said, it should be appreciated that there will be circumstances where not all of the palladium-containing components will be reduced to ash in the furnace. Some palladium-containing components include non-ashable inorganic matcrials. The material remaining following processing in the furnace module can be sent to further processing to extract palladium from the material (e.g., in the palladiumlcaching module (15) ) or can be sent to the grinding or milling module. or eventually both. as readily determinable by the person skilled in the art. The material can be moved to the next module in a container. automatically or manually, on a one or more moving means. In one embodiment. no separation of the inorganic materials from the ash occurs prior to further processing. In another embodiment. the inorganic materials are separated from the ash prior to further processing.
Milling Module
As previously introduced. not all of the components and memory boards are reduced to ash in  the furnace module (320) , Some components and memory boards will include inorganic materials that are not combustible in the furnace. Furthor. there are instances where palladium-containing components. e.g., from the pre-BCM module (220) , from the BCM module (240) , and/or from the DS module (260) , do not require ashing for efficient processing of same to extract precious metais. Accordingly. grinding or milling means (340) can be used to prepare the palladium-containing components for further processing. The grinding means include. but are not limited to, an industrial grinder. The milling means include. but are not limited to. a hammermill. a wet ball mill. etc. The palladium-containing components or ash comprising the palladium-containing components, e.g., MLCCs. are introduced to the grinding or milling means and the materials arc ground into smaller pieces. for example. less than 10 mesh (1.70 mm) , more preferably less than 20 mesh (0.85 mm) , and most preferably less than 30 mesh (0.60 mm) , The grinding or milling means should be equipped with a dust recovery system because of the ash that can be stirred up during the grinding or milling process. Preferably the dust recovery system is capable of capturing dust so that it can be collected and processed. In addition. fhe grinding or milling means preferably includes means to load and unload solids therein, e.g., containing means and/or moving means. For example. the palladium-containing components can be loaded into the grinding or milling means using a conveyor or serew feed.
The ground material remaining following processing in the grinding or milling module can be sent to flrther processiug in the palladium leaching module (15) , The material can be moved to the next module in a container. e.g., a hopper. automatically or manually. on one or more moving means. It should be appreciated that the palladium-containing components can arrive at the fab already ground for further processing using the systems and processes described herein.
Base Metal Removal Apparatus (es)
Disadvantageously. palladium and copper readily dissolve in many compositions of the prior art. Since palladium constitutes such a small amount of the MLCC. relative to copper. it is difficull to refine the palladium with all of the copper presnnt. Accordingly. the present system and process includes the removal of at least one base metal. including copper. from the palladium-containing material in a base metal removal apparatus.
Preferably. the palladium-containing components were ground. ashed. or both prior to contact with a base metal removal composition (s) in a base metal removal apparatus (es) .
As introduced hereinabove. the system can include at least one base metal removal apparatus. In a preferred embodiment. the system includes at least two base metal removal apparatuses. wherein each base metal removal apparatus comprises a base metal removal (BMR) composition. It should be appreciated that the base metal removal compositions in the at least two base metal removal apparatuses can be the same as or different from one another. Unexpectedly. the base metal and  copper remnoval efficiency was increased when the base metal removal compositions in the at least two base metal removal apparatnses are different from one another.
For example. in a preferred embodiment. the first base metal removal apparatns (BMR-1) comprises a composition comprising. consisting of, or consisting essentialty of at least one chloride-containing compound and at least one solvent. while the second base metal removal apparatus (BMR-2) comprises a composition comprising. consisting of, or consisting essentially of at least one acid. at least one oxidizing agent and at least one solvent.
“Chloride-containing compounds” include. but are not limited to. hydrochloric acid. and alkaline chlorides (e.g., soditum chloride. potassium chloride. rubidium chloride. cesium chloride. magnesium chloride. calcium chloride. strontium chloride. ammonium chloride. quaternary ammoniusm chloride salts) , and combinations thereof. Preferably. the chloride-containing compound comprises hydrochloric acid. ammonium chloride. quaternary ammonium chloride salts. or combinations thereof.
Oxidizing agents are included in the composition to oxidize the base metals to be removed into an ionic form and accumulate highly soluble salts of dissolved metals. Oxidizing agents contemplated herein include. but are not limited to. ozone. bubbled air, cyclohexylaminosulfonic acid. hydrogen peroxide (H2O2) , oxone (potassium peroxymonosulfate, 2KHSO5·KHSO4·K2SO4) , ammonium polyatomic salts (e.g., ammonium peroxomonosulfate. ammoninm chlorite (NH4CIO2) , ammonium chlorate (NH4CIO3) , ammonium iodate (NH4IO3) , ammonium perborate (NH4BO3) , ammonium perchlorate (NH4CIO4) , ammonium periodate (NH4IO3) , ammonium persulfate ( (NH42 S2O8) , ammonium hypochloritc (NH4CIO) ) , sodium polyatomic salts (e.g., sodium persulfaye (Na2S2O8) , sodium hypochlorite (NaC(O) ) , potassium polyatomic salts (e.g., potassium iodate (KIO3) , potassium permanganate (KMnO4) , potassium persulfate. potassium persulfate (K2S2O8) , potassium hypochlorite (KCIO) ) , tetrantethylammonnium polyatomic salts (e.g.,tetramethylammonium chlorite (( N (CH34) CIO2) , tetramethylammonium chlorate ( (N (CH3)4) CIO3) , tetramethylammonium iodate ( (N (CH34) IO3) , tetramethylammonium perborate ( (N (CH34) BO3) , tetramethylammoninm perchlorate ( (N (CH34) CIO4) , tetramcthylammonium periodate ( )N (CH34) IO4) , tetramethylammonitm persulfate ( (N (CH34) S2O8) ) , tetrabutylammonium polyatomic sails (e.g.,tetrabutylammonium peroxomonosulfatc) , pcroxomonosulfuric acid, urea hydrogen peroxide ( (CO (NH22) H2O2) , peracetic acid (CH3 (CO) OOH) , and combinations thereof. Although not oxidizing agents per se, for the sake of the present disciosure. oxidizing agents further include alkanesulfonic acids (e.g., methanesulfonic acid (MSA) , ethanesulfonic acid, 2-hydroxyethanesulfonic acid, n-propanesulfonic acid, isopropancsulfonic acid, isobutenesulfonic acid, n-butancsulfonic acid, n-octancsulfonic acid) , benzenesulfonic acid, benxenesulfonic acid dcrivatives (e.g., 4-mcthoxtbenzenesulfonic acid, 4-hydroxybenzenesulfonic acid, 4-aminobenzenesulfonic acid, 4-nitrobenzenesulfonic acid, toluenesulfonic acid, hcxylbcnzenesulfonic acid, hcptylbenzenesulfonic acid, octylbenzencsulfonic  acid. nonylbenzenesulfonic acid, decylbenzenesulfonic acid, undecylbenzenesulfonic acid, dodecylbcnzenesulfonic acid, tridecytbenzenesulfonic acid, tetradccylbcnzene sulfonic acid, hcxadecylbenzene sulfonic acid, 3-nitrobenzenesulronic acid, 2-nitrobenzenesulfonic acid, 2-nitronaphthalcnesulfonic acid, 3-nitronaphthalcncsulfonit acid, 2, 3-dinitrobcnzencsulfonic acid, 2, 4-dinitrobcnzenesulfonic acid, 2, 5-dinitrobenzenesulfoniw acid, 2, 6-dinitrobenzenesulfonic acid, 3, 5-dinitrobenzenesulfonic acid, 2, 4, 6-trinitrobenzenesulfonic acid. 3-aminobenzenesulfonic acid, 2-aminobenzenesulfonic acid, 2-aminonaphthalenesulfonic acid, 3-aminonaphthalenesulfonic acid, 2, 3-diaminobcnzenesulfonic acid, 2, 4-diaminobenxenesulfonic acid, 2, 5-diaminobenzenesulfonic acid, 2, 6-diaminobenzenesulfonic acid, 3, 5-diaminobenzenesulfonic acid, 2, 4, 6-triaminobenzenesulfonic acid, 3-hydroxybenzenesulfonic acid, 2-hydroxybenzenesulfonic acid, 2-hydroxynaphthalenesulfonic acid, 3-hydroxynaphthalenesulfenic acid, 2, 3-dihydroxybenzenesulfonic acid, 2, 4-dihydroxybenzenesulfonic acid, 2, 5-dihydroxybenzenesulfonic acid, 2, 6-dihydroxybenzenesulfonic acid, 3, 5-dihydroxybenzenesulfonic acid, 2, 3, 4-trihydroxybenzenesulfonic acid, 2, 3, 5-trihydroxy benzenesulfonic acid, 2, 3, 6-trihydroxybenzenesulfonic acid, 2, 4, 5-trihydroxybrnzenesulfonic acid, 2, 4, 6-trihydroxybenzenesulfonic acid, 3, 4, 5-trihydroxybenzenesulfonic acid, 2, 3, 4, 5-tetrahydroxybenzenesulfonic acid, 2, 3, 4, 6-tetrahydroxybenzenesulfonic acid, 2, 3, 5, 6-tetrahydroxybenzenesulfonic acid, 2, 4, 5, 6-tetrahydroxybenzenesulfonic acid, 3-methoxybenxenesulfonic acid, 2-methoxybenzenesulfonic actd, 2, 3-dimcthoxybenzenesulfonic acid, 2, 4-dimethoxybenzenesulfonic acid, 2, 5-dimethoxybenzenesulfonic acid, 2, 6-dimethoxybenzenesulfonic acid, 3, 5-dimethoxybenzenesulfonic acid, 2, 4, 6-trimethoxybcrtzenesulfonic acid) , alkyl sulfate sutfonic acid, pyridine sulfonic acid, and combinations thereof. The oxidizing agents can include a combination of the any of the species defined herein as oxidizing agent. The oxidizing agent may be introduced to the base metal removal composition at the manufacturer. prior to introduction of the base metal removal composition to the ground or milled palladium-containing components. or alternatively at the ground or milled palladium-containing components. i.e., in silll. Preferably. the oxidizing agent comprises MSA. hydrogen peroxide. ammonium parsulfate. or combinations thereof.
The al least one acid is preferably a sulfur-containing species such as sulfuric acid, sutfate sahs (e.g., sodium sulfate. potassium sulfate. rubidium sulfate. cesium sulfate. magnesium sulfate. calcium sulfate. strontium sulfate. barium sulfate. ammonium sulfate) , sulfonic acid, sulfonic acid dcrivatives, and combinations thereof. Sulfonic acid derivatives contemplated include methanesuifonic acid (MSA) , ethanesulfonic acid, 2-hydroxyethanesulfonic acid, n-propanesulfonic acid, isopropancsulfonic acid, isobutenesulfonic acid, n-butanesulfonic acid, n-octanesulfonic acid) , bcnzenesulfonic acid, benzenesulfonic acid derivatives. and combinations thcreof. Prcferably, the at least one acid comprises sulfuric acid, potassium sulfate, ammonium sulfate, or combinations thereof.
The at least one solvent includes. but is not limmited to. water. methanol. ethanol. isopropanol, bmanol, pentanol, hexanol, 2-ethyl-l-hexanol, heptanol, oetanol, ethylene glycol, propylene glycol,  butylene glycol, tetrahydrofurfuryl alcohol (THFA) , butylene carbonate, ethylene carbonate. propylene carbonate. dipropylene glycol. diethylene glycol monomethyl ether. triethylene glycol monomethyl ether. diethylene glycol monoethyl ether. triethylene glycol monoethyl ether. ethylene glycol monopropyl ether. ethylene glycol monobutyl ether. diethylene glycol monobutyl ether. triethylene glycol monobutyl ether. ethylene glycol monohexyl ether. diethylene glycol monohexyl ether. ethylene glycol phenyl ether. propylene glycol methyl ether. dipropylene glycol methyl ether (DPGME) , tripropylene glycol methyl ether (TPGME) , dipropylene glycol dimethyl ether. dipropylene glycol ethyl ether. propykene glycol n-propyl ether. dipropylene glycol n-propyl ether (DPGPE) , tripropylene glycol n-propyl ether. propylene g lycol n-butyl ether. dipropylene glycol n-butyl ether. tripropylene glycol n-butyl ether. propylene glycol phenyl ether. 2.3-dihydrodecafluoropentane. ethyl perfluorobutylether. methyl perfluorobutylether. alkyl carbonates. alkylene carbonates. 4-methyl-2-pentanol. tctramethylene glycol dimethyl ether. and combinations thereof. Preferably. the at least one solvent comprises waler.
Referring to Figure 4. in practice. a first base metal removal composition (21) comprises. consists of. or consists essentially of at least one chloride-containing compound and at least one solvenr. e.g., about 1 wt%to about 25wt%. prefcrably about 5 wt%to about 15 wt%. of at least one chloride-containing compound and at least one solvent. e.g., about 10 to about 50 wt%HCl (37%) , preferably about 20 uo abouu 40 wt%HCl (37%) , in water. The first base metal removal composition(21) is contacted with the ground and/or ashed palladium-containing components (22) in a containing means (23) at about 40 to about 80℃. preferably about 50 to about 70℃. at time of about 20 to about 200 min. preferably about 60 to about 150 min. The ratio of ground and/or ashed palladium-containing componcnts to first base metal removal composition is about 1∶1 to about 1∶20. preferably about 1∶5 to about 1∶15. At the end of the prescribed contact. the ground and/or ashed palladium-containing components can be separated from the loaded first base metal removal composition using liquid-solid separation means and rinsed with a first rinse (24) comprising water (25) to remove acid residues. The loaded first base metal removal composition (26) can be sent to a wastcwater trcatment facility to remove Be2+ (by reacting the Ba2+with a sulfate ion to form BaSO4 precipitate) (27) , to neutralize the acid using a hydroxide salt (28) , or both. At the completion of the rinsc. the ground and/or ashed palladium-containing components can be separated from the first rinse using liquid-solid separation means and the first rinse liquid (29) can be used to make fresh first base metal removal composition (21) , The ground and/or ashed palladium-containing components (32) can be transfereed (when necessary) to the second base metal removal apparatus (BMR-2) using containing and moving means. as described herein. It is noted that the first base metal removal composition can be used only once before further processing. That said. if the user intends to reuse the first base metal composition. prior to reuse. the first base metal removal composition should be processed to prccipitate the Ba2+ ion and spiked with additional chioride-containing compound or else the subsequent use will result in Iower removal efficiencies.
Referring to Figure 5, in practice, a second base metal removal composition (31) comprises, consists of, or consists essentially of at least one acid, at least one oxidizing agent, and at least one solvent, e.g.,about 0.01 wt% to about 10 wt%, preferably about 2 wt% to about 7 wt%, of at least one acid, about 0.01 wt% to about 7 wt%, preferably about 1 wt% to about 5 wt%, of at least one oxidizing agent, and at least one solvent, e.g., about 0.1 to about 10 wt% sulfuric acid (98%) , preferably about 2 to about 7 wt% sulfuric acid (98%) , about 0.1 to about 20 wt% hydrogen peroxide (30%) , preferably about 2 to about 12 wt% hydrogen peroxide (30%) , even more preferably about 6 to about 12 wt% hydrogen peroxide (30%) , and water, The second base metal removal composition (31) is contacted with the ground and/or ashed palladium-containing components (32) , for example from the BMR-1 apparatus, in a containing means (33) at about 50 to about 100℃, preferably about 60 to about 90℃, at time of about 20 to about 200 min, preferably about 60 to about 150 min. The ratio of ground and/or ashed palladium-containing components to second base metal removal composition is about 1∶1 to about 1∶20, preferably about 1∶5 to about 1∶15 At the end of the prescribed contact, the ground and/or ashed palladium-containing components can be separated from the loaded second base metal removal composition using liquid-solid separation means and rinsed with a second rinse (34) comprising water (35) to remove acid resides, The loaded second base metal removal composition (36) can be sent for silver recovery (by contacting the loaded second base metal removal composition with a chloride-containing compound such as NaCl) (37) and subsequently to a wastewater treatment facility to neutralize the acid using a hydroxide salt (38) , At the completion of the rinse, the ground and/or ashed palladium-containing components can be separated from the second rinse using liquid-solid separation means and the second rinse liquid (39) can be reused a number of times as determined by the skilled artisan, and eventually sent to wastewater treatment for ncutralization (38) , whether through the loaded palladium leaching composition treatment route (as shown) or its own dedicated treatment route (not shown) , The remaining ground and/or ashed palladium-containing components (42) can be transferred to the palladium leaching apparatus using containing and moving means, as described herein.
Experimentally, the present inventors determined that the first base metal removal composition alone could remove greater than about 90% of the base metal but no more than about 82% of the copper from palladium-containing components that were not previously processed to remove any metals, Further, it was determined that the second base metal removal composition alone could remove greater than 99% copper but less than 30% of the base metals from palladium-containing components that were not previously processed to remove any metals. Knowing this, in order to maximize the removal efficiency of base metals and copper, the palladium-containing components are preferably processed in at least two base metal remtoval apparatuses, one comprishg the first base metal removal composition and the other comprising the second base metal removal composition. It was determined that greater than 99% of the copper can be removed using the two step base metal removal process. i.e., at least two base metal removat apparatuses.
Although applicants have disclosed possible compositions for a BMR-1 (20) and a BMR-2 (30) apparatus, it should be appreciated that only the BMR-1 or only the BMR-2 apparatus may be implemented. Alternatively, the order can be switched around (i.e., BMR-2 is the first apparatus in the series and BMR-1 is the second apparatus) , In still another alternative. the BMR-1 apparatus described herein can be in series with a completely diffcrent BMR-2 apparatus, hereafter BMR-2+. In still another alternative, a completely different BMR-1 apparatus, hereinafter BMR-1+. can be in series with the BMR-2 apparatus described herein, All of these variations are understood by the person skilled in the art.
In summary, the base metal removal apparatus (es) comprises, consists of, or consists essentially of a reaction container, at least one rinse container, and liquid-solid separation means, wherein the base metal removal apparatus (es) is capable of removing base metals and copper from palladium-containing components, wherein the palladium-containing components have been ashed, ground, previously processed to remove other species, and/or crushed. The base metal removal apparatus (es) further comprise at least one of: at least one base metal removal composition container in liquid communication with the at least one reaction container; at least one rinse liquid container in liquid communication with the at least one rinse container; at least one centrifuge; agitation means in at least one of the reaction container and/or the at least one rinse container; at least one pump; heating/cooling means for at least one of the reaction container and/or the at least one rinse container; at least one air input for at least one of the reaction container and/or the at least one rinse container; real-time sampling and adjustment; programmable logic controllers or equivalent thereof: sensing means for at least one of the reaction container and/or the at least one rinse container; and ventilation means for at least one of the reaction container and/or the at least one rinse container.
Palladium Leaching Apparatus
The system and process described herein, specifically the at least one base metal removal apparatus, removes most of the base metals and copper from the ground and/or ashed palladium-containing components, This decreases the amount of base metals such as copper that will end up dissolving into the subsequent palladium leaching composition and improve the recovery and refinement of palladium, It is noted that the palladium leaching composition will also leach silver, but the separation of silver from palladium is more easily achievable as described hereinbelow. Further it is noted that gold does not substantially dissolve in the palladium leaching composition.
In a preferred embodiment. the palladium leaching apparatus comprises a composition comprising, consisting of, or consisting essentially of at least one nitrate-containing salt and at least one solvent.
The at least one nitrate-containing salt can include, but is not limited to, nitric acid, sodium nitrate, potassium nitraie, ammonium nitrate, tetraalkylammonium nitrate, and combinations thereof,  Preferably, the at least one nitrate-containing salt comprises nitric acid, ammonium nitrate, sodium nitrate, or combinations thereof.
Referring to Figure 6, in practice, a palladium leaching composition (41) comprising, consisting of, or consisting essentially of at least one nitrate-containing salt and at least one solvent, e.g., about 5 wt% to about 45 wt%, preferably about 20 wt% to about 35 wt%, of at least one nitrate-containing salt and at least one solvent, e.g., about 10 to about 60 wt% HNO3 (68%) , preferably about 30 to about 50 wt% HNO3 (68%) , in water, The palladium leaching composition (41) is contacted with the ground and/or ashed palladium-containing components (42) in a containing means (43) at about 40 to about 80℃, preferably aborn 50 to about 70℃, at time of about 20 to about 200 min, preferably about 60 to about 150 min, The ratio of ground and/or ashed palladium-containing components to palladium leaching composition is about 1∶1 to about 1∶20, preferably about 1∶5 to about 1∶15, At the end of the prescribed contact, the ground and/or ashed palladium-containing components can be separated from the palladium leaching composition using liquid-solid separation means and rinsed with a third rinse (44) comprising water (45) to remove acid residues, The loaded palladium leaching composition (46) can be sent (a) for silver recovery (by contacting the loaded palladium leaching composition with a chloride-containing compound such as NaCl) (47) , (b) for palladium reclamation (48), as described below, (c) to a wastewater treatment facility to remove Ba2+ (by reacting the Ba2+ with a sulfate ion to form BaSO4 precipitate) (49) and/or to neutralize the acid using a hydroxide salt (50) , (d) any combination of (a) - (c) , or (e) each of (a) - (c) , At the completion of the rinse, the ground and/or ashed palladium-containing components can be separated from the third rinse using liquid-solid separation means and the third rinse liquid (51) can be sent (a) for silver recovery (by contacting the loaded palladium leaching composition with a chloride-containing compound such as NaCl) (47) , (b) for palladium reclamation using palladium reclamation means (48) , as described below, (c) to a wastewater treatment facility to remove Ba2+ (by reacting the Ba2+ with a sulfate ion to form BaSO4 precipitate) (49) and/or to neutralize the acid using a hydroxide salt (50) , (d) any combination of (a) - (c) , or (e) each of (a) - (c) , whether through the loaded palladium leaching composition treatment route (as shown) or its own dedicated treatment route (not shown) , The remaining ground and/or ashed palladium-containing components (52) can be stored for subsequent gold leaching, e.g., in the SPT tool module (360) , It is noted that the palladium leaching composition can be used multiple times, for example, once, more than once, more than twice. more than three times, more than four times, and more than five times, before further processing.
Notably, the palladium leaching composition is substantially devoid of aqua regia.
Palladium reclamation means include, but are not limited to palladium electrowinning and/or other chemical palladium reclamation methods. With regards to electrowinning, preferably urea, sodium hydroxide, or both is added to solution comprising palladium that needs to be electrowon, With regards to other chemical palladium reclamation methods, a solution comprising palladium ions  can be reacted with about 1 wt% to about 15 wt% ammonium chloride, preferably about 5 wt% to about 12wt% ammonium chloride, and additional nitric acid to form solid PdCl4 (NH42+ The PdCl4 (NH42 precipitate can be separated from the liquid and dissolved in hot water at a temperature in a range from about 40℃ to about 60℃ to yield PdCl4 (NH42 in solution, After separation of any solid from the PdCl4 (NH42 solution, ascorbic acid can be combined with the PdCl4 (NH42 solution to yield pure palladium, Preferably, the ratio of weight percent of ascorbic acid to the concentration of palladium in the solution is about 1∶1 to about 1∶10, more preferably about 1∶4 to about 1∶7, Preferably, the palladium reduction process does not require the use of iron powder and/or butyl xanthate.
In summary, the palladium leaching apparatus comprises, consists of, or consists essentially of a reaction container, at least one rinse container, and liquid-solid separation means, wherein the palladium leaching apparatus is capable of removing palladium from palladium-containing components, wherein the palladium-containing components have been ashed, ground, previously processed to remove other species, and/or crushed. The palladium leaching apparatus further comprises at least one of: at least one palladium leaching composition container in liquid communication with the at least one reaction containcr: at least one rinse liquid container in liquid communication with the at least one rinse container: at least one centrifuge: agitation means in at least one of the reaction container and/or the at least one rinse container; at least one pump: heating/cooling means for at least one of the reaction container and/or the at least one rinse container; at least one air input for at least one of the reaction container and/or the at least one rinse container; real-time sampling and adjustment, programmable logic controllers or equivalent thereof; sensing means for at least one of the reaction container and/or the at least one rinse container; and ventilation means for at least one of the reaction container and/or the at least one rinse container.
Gold Leaching
Following palladium (and silver and base metal) removal from the palladium-containing components, the palladium-containing components can be processed to recover additional metals including, but not limited to, gold.
Gold recovery was discussed at length in International Patent Application No. PCT/CN2016/070904 filed on January 14, 2016 in the name of Entegris Inc and entitled “Integrated Electronic Waste Recycling and Recovery System and Process of Using Same, ” which is hereby incorporated herein by reference in its entirety, In summary, the recovery of gold from microcomponents such as MLCCs was carried out in the solids processing technology (SPT) platform, which comprised ashing (e.g., in a furnace module (320) as described herein) and/or milling (e.g., in a milling module (340) as described herein) the microcomponents
Following processing in the furnace module (320) the material, hereinafter the solid, can cnter  an SPT tool module (360) , The SPT tool module (360) is designed to remove metals, e.g., base metals and precious metals, fron the solid. In one embodiment, the SPT tool module (360) removes one or more precious metals from the solid, In another embodiment, the SPT tool module (360) removes gold from the solid,It should be appreciated that solids can be sent to the SPT tool module (360) for processing even if the solids were not previously processed in the furnace (320) and/or milling module (340) , For example, the solids could have been ashed, milled and/or ground in an earlier step, or milled and/or ground off site, Accordingly, as defined herein, the “solid” referred to in the SPT tool module (360) corresponds to material from the furnace module (320) , the milling module (340) , some other ashing process, some other grinding/milling process, components that have been crushed, material that has been through the palladium leaching module (15) , material that has been through one SPT tool module (360) (e.g., SPT base metal removal module (380) , SPT gold removal module (400) , SPT silver leaching module (420) ) and is intended to be processed in at least one of the remaining SPT tool module (360) , or any combination thereof.
A general schematic of the SPT tool module (360) is illustrated in Figure 7, The SPT tool module relies on dissolution or solubilization of at least one metal in a removal composition and the subsequent treatment of the removal composition and/or rinse liquid to convert metal ions contained therein to solid metal In the module of Figure 7. there are at least five tanks; a reaction tank (514) , a holding tank (518) , a rinse tank (522) , a removal composition tank (516) , and a rinse liquid tank (520) , The tanks may be constructed from the same or different materials, In one embodiment, the reaction tank (514) preferably comprises materials of construction that are compatible with the most demanding, e.g., corrosive, removal composition. in another embodiment, the reaction tank (514) is constructed from one or more materials that are compatible with the most demanding removal composition, and further comprises at least one of heating and/or cooling means, agitation means, ventilation means, sensing means, and air input means. For the SPT gold removal module (400) , the solid and the gold removal composition (516) are introduced to the reaction tank (514) via one or more input lines and after time x, which corresponds to a point where the substantial majority of the reaction has occurred, as readily determined by the person skilled in the art. the slurry comprising the solid and gold removal composition is moved to the holding tank (518) , In one embodiment, time x may be determined based on a reaction tank temperature measured, a certain amount of time passed, a measurement of a concentration of a consumed chemical constituent, visual inspection, end point detection, a pH value measured, to name a few. The determination of time x can be controlled by a PLC, with or without a specific process recipe, The chemical reaction between the solid and the gold removal composition is completed in the holding tank (518) , Following substantial completion of the chemical reaction, the slurry comprising the gold removal composition and reacted solid is moved to a centrifuge, The time of a complete reaction is dependent on several factors including, but not limited to, the solids being processed (e.g., which components made up the solids being processed) , the temperature of processing,the weight of the solid being processed, and the amount and concentration  of gold removal composition needed to extract or remove about 65-100% of the gold in the solid. Using centrifugation. the gold removal composition is separated from the reacted solid and the reacted solid is introduccd into a rinse tank. The gold removal composition can be sent to processing or can be rcused. A rinse liquid (520) . e. g., water. is also introduccd to the rinse tank (522) and the rcactcd solid is ribsed using thc rinse liquid. Onee the ribse is complete. as rcadily determined by the person skilled in the art. the slurry comprising the rinsed solid and the rinse liquid is moved to a centrifuge. either a ncw centrifugc or the prcviously used ccntrifuge. Following centrifugation. the ribse liquid is separated from the rinsed solid and the rinsed solid can exit the spccific module. The rinse liquid can be scnt to proccssing or can be reused. It is contemplated herein that a letdown chute, with split control or rotatable, coupled to a ccntrifuge may be used to move the solid from tank to tank and a PLC or other computer means may be used to automatically move the chutc as nccded. It should be undcrstood by the person skilled in the art that the natctials of construction of the tanks. inpul lines. output lines. and centrifuge should be rated to ensure thal the materials do not reaet with the gold removal composition. Advantagcously. this means that the rinse tank (522) and all associated lines may be comprised of the same or differcnt material than the rraction (514) and holding tank (518) and all associated lines given the potentially less cottosive cnvironment of the rinse tank. One or more tanks can include agitation means as previously describcd. Regatdless of the number of input and output lines. any or all of them can have a pump associated therewith. In a preferred embodiment. the lanks are enclosed m one or more housings. The SPT tool medule (360) of Figure 7 is preferably controlled by PLC and a particular processing recipe used based on the solid introduced as well as the metal being removed.
In one cmbodiment, the gold removal composition is used until loaded with dissolved/solubilized gold ions. In one embodiment. one or more constilucnts of the gold removal composition is a regenerated and/or recycled constituent from one or more effluent waste streams within the e-waste facility.
In summary, a SPT gold removal module (400) can comprise:
(a) at least one reaction lank (514) .
(b) at least one holding tank (518) in liquid communication with the at least one reaction tank (514) .
(c) at least one rinse tank (522) in liquid communication witt the at least one holding tank, wherein said SPT gold removal module is capnble or removing gold from palladium-containing components, wherein the palladium-containing components have been ashed, ground, prcviously processed to remove other species, and/or crushed. The SPT gold removal modute can further comprisc at least one of: at least one gold removal composition tank (5l6) in liquid communication with the at least one reaction tank (514) ; at least one rinsc liquid tank (520) in liquid communication with the at least one rinse tank (522) ; at least one centrifuge; agitation means in at least one of the reaction lank. the at least one holding lank. and/or the at least one rinse tank; at least one pump;  heating/cooling means for at least one of the reaction tank. the at least one holding tank. and/or the at least one rinse tank; at least one air input for at least one of the reaction tank, the at least one holding rank, and/or the at least one rinse tank; real-time sampling and adjustment; seusing means for at least one of the reaction tank. the at least one holding tank, and/or the al least one rinse tank; and ventilation means for at least one of the reaction tank. the at least one holding tank. and/or the at least one rinse tank. The at least one reaction tank and the at least one holding tank can comprise a gold removal composition. The SPT gold removal module is preferably enclosed in one or more housings and controlled by a programmable logie controller.
A process of removing gold from palladium-containing components can comprise removing gold from a solid using a gold removal composition in a solids processing technology (SPT) gold removal module (400) . wherein the SPT gold removal module comprises (a) at least one reaction tank (514) . (b) at least one holding tank (516) in liquid communication with the at least one reaction tank (514) . and (c) at least one rinse tank (522) in liquid communication with the at least one holding tank (518) . wherein the solid comprises palladium-containing components thai have been ashed. ground. previously processed to remove other species. and/or crushed.
A process of removing gold from palladium-containing components can comprise:
(a) producing a slurry in a reaction tank. wherein the slurry comprises at least a solid and a gold removal composition, whcrcin the first slurry undergoes a rcaction for a time x;
(b) moving the first slurry from the reaction tank to a holding tank after time x to effectuatc the substantial completion of the chemical reaction;
(c) moving the first slurry from the holding tank to a centrifuge to separate the solid from the gold removal composition;
(d) moving the solid from centrifuge to a first rinse tank. wherein first rinse liquid is introduced to the solid to produce a second slurry. wherein the second slurry is rinsed for a time rl;
(c) moving the second slurry from the first rinse tank to a centrifuge to separate the solid from the first rinse liquid;
and optionally:
(f) moving the solid from centrifuge to a second rinse tank. wherein second rinse liquid is introduced to the solid to produce a third slurry. wherein the third slurry is rinsed for a time r2;
(g) moving the third slurry from the second rinse tank to a centrifuge to separate the solid from the second rinse liquid;
and optionally
(h) moving the solid from centrifuge to the first rinse tank. wherein third rinse liquid is introduced to the solid to produce a fourth slurry. wherein the fourth slurry is rinsed for a time r3; and
(g) moving the fourth slurry from the first rinse tank to a centrifuge to separate the solid from the third rinse liquid.
Preferably. the substantial completion of the chemical reaction takes from about 10 minules to about 200 minutes. preferably about 40 minutes to about I 10 minutes. al tempcrature in a range from room temperature to about 80℃, preferably about 40℃ to about 70℃. In one embodiment, the gold removal composition is used several times bcfore processing (e.g., electrowinning and/or resin-based acid recycle and metals recovery) .
Processing Compositions Subsequent to Use
As discussed herein, once a removal composition is loaded. or otherwise no longer uscful for metal removal. and once a rinse liquid is no longer uscful for rinsing. they can be sent to at least one processing system inclnding. but not limited to. clcctrowinning. diffusion dialysis. pH adjustment. cementation. wastewater treatment. resin-based acid recycle and metals recovery. and any combination thereof. depending on the removal composition or rinse liquid. as disclosed hcrcinabove. 
With regards to wastewater treatment. the wastewater typically has a very low pH and the pH can be adjusted with a strong base to initiaie precipitation of meial ions in the wastewater. for example as meial hydroxides. Following precipitation of a substantial amotint of the metal ions from the wastewater. the pH of the wastcwater can be adjusted to a vatue closcr to neutral and the neutralized water can be sent through a reverse osmosis system to yield water that can be recycled for reuse. Accordingly. the wastewater recovery system can comprise at least oue waste tank adapted to hold wastewater from the process modules described herein. at least one nentralization tank. at least one pH adjusting agcnt. at least one filter press. a salt removal system (e.g., reverse osmosis and crystallizer) . tubular ultrafiltration. an ion exchanger to remove trace amounts of metel. and at least one return line adapted to return recycled water to at least one process module.
The electrowinning (EW) system can be chosen to ctfcctivcly convcrt at least one metal ion from a loaded removal composition and/or rinse liquid into metal using one or more electrode cells. In a preferred cmbodiment. the EW system uses one or more cylindrieal electrode cells comprising at least one cathode clement and at least one anode clement. When the solutions to be electrowon comprise chemicals that may cause unwanted reactions at thc anode (e.g., metal ctchants. metal complexing agents. and chloride ions) , the EW system may further comprise a divided electrode cell. for example. a RenoCell as described in U.S. Patent 6,162,333 issued on December 19.2000 in the name of Charles E. Lemon et al. and entitled “Electrochemical Cell for Removal of Metals from Solutions. ” whieh is hereby incorporated herein by reference in its entirety. In the divided electrode cell at least one divider assembly is used to scparatc at least one catholytc chamber (comprising at least one cathode element and a cathoiyte solution) and at least one anolyte chamber (comprising at least one anode clement and anolyte solution) . The divider assembly may comprise one or more  porous membranes including one or more cation and/or anion exchange membranes. In a preferred embodiment, the divider assembly is one or more porous cation exchange membranes. Although the anode and cathode elements may comprise one or more materials, as readily determined by one skilled in the art. in a preferred cmbodiment the EW syslem comprises a porous carbon and/or graphite cathode clement and a titanium and/or titanium oxide anode element. In one embodiment, the catholyte solution comprises one or more loaded removal compositions and/or rinse liquids, as described herein. and the anolyte solution comprises one or more compatible acids and/or salt solutions ineluding. but not limited to. Na2SO4 and H2SO4 (wherein H2SO4 is not compatible with the silver leaching solutions) . The anolyte solution and eatholyte solution comprising the metal ion circulate through their respective chambers in the divided eleclrode cell and metal ion from the loaded removal composition and/or rinse liquid is reduced and deposits on the cathodc. wherein the metal reduced and deposited is dependent on the current of the EW system.
In one embodiment. the anolyte solution and catholytc solution comprising at least one metal ion arc recirculated through their rcspcclive chambers in thc divided electrode cell and metal ion from the londed removal composition and/or rinse liquid is reduced and deposits on the cathode until greater than 80. 90 . 95. 99%of the metal ion is removed from the solution. In a further embodiment. the concentration of the metal ion or precious metal ion in the catholyte solution is monitored manually or automatically until grcater than 80. 90. 95. 99%of the metal is removed from the solution. In a preferred embodiment, the catholyte solution comprising the metal ion is recireutated through the EW system until less than 10 ppm. and more preferably less than 5ppm of the metal ion is detected in the catholyte solution.
The al least one metal ion in the catholyte solution is monitored directly or indirectly. optionally in real-time. manually or automatically using one or more analytical tcehniques described hereinabove. Further. the EW system comprises means for monitoring one or more chemical constituents in the loaded retooval composition and/or rinse liquid. directly or indirectly. optionally in real-time. manually or automatically. before and/or during the EW process using one or more analytical techniques described hereinabove.
In a further embodiment the EW system described herein efficiently recovers greater than 85. 90. 95. 99%of the target metal in the loaded removal composition and/or rinse liquid by monitoring directly or indirectly. optionally in real-time. manually or automatically. at least one system parameter before and/or during the EW proeess. wherein the at least one system parameter is selected from the group consisting of catholyte solution flow. catholyte inlet and/or outlet pressure. anolyte solution flow. anolyte inlct and/or outlet pressure. differential pressure across the divided cell assembly. electrode cell currcnt electrode cell voltage. pH. oxidation-reduction potential. and temperature.
When the EW syslem comprises a divided electrode cell. the system may further comprise means to maintain a minimal differential pressure across the divider assembly thereby mainiaining the  shape of membrane. Accordingly. in a further embodiment. the EW system comprises means to monitor and control thc differential pressure between the anolyte solution in the anolyte chamber and the catholyte solution in the catholyte chamber including. but not limited to. one or more pressure sensors. vadable speed pumps. pressure control valves. prcssure regulators. pressure relief valves. and back pressure regulators. Preferably. the pressure on the catholyte side is the same as or slightlygreater thun the pressure on the anolyte side of the membrane.
Preferably the EW system comprises a PLC that monitors. adjusts and controls process parameters including. but not limited to. electrode cell current and voltage. pH. oxidation-reduction potential. temperature. flow rates. and pressures that are based in part on one or more process recipes that may be manually or automatically selected based on parameters including. but not limited to. targeted meial. targeted metal concentration and concentration of one or more chemical constituents in thc loaded removal composition and/or rinse liquid. The process times are based on a number of parameters including. but not limited to. current. current/voltage switching. final metal concentration to be achicved. and safcty considerations.
In one embodiment. EW is used to separate the gold from a loaded gold removal compositiou and/or rinse liquid using the divided cell. wherein urea. sodium hydroxide, or both, are added to the loaded gold removal compositiou to improve current efficiency during electrowinning. If urea is used. urea solution is pre-mixed with process water or GL module rinse water in a separate tank. After urea and process water or GL module rinse water are properly mixed. the solution will be pumped to thc EW Feed Tank for mixing with the loaded gold removal composition. If NaOH is used. the NaOH solution can be mixed directly with loaded gold retmoval composition in an EW Feed Tank. A pump may be used to circulate the solution through tank eductors to btend the solution. Once the solution in the EW Feed Tank is properly blended and at the prescribed temperaturc. it is pumped from the EW Feed Tank through the EW Tool and can be recircutated back to the EW Feed Tank. Once the gold has been recovered. the post-EW solution can be pumped to the wastewater treatment system. Prcfcrably. the EW process used to rccover gold utilizes urea. which can improve the efficicncy of the enntire process and can be recycled in the wastcwater trcatment sysiem for reuse.
Advautagcously. electrowinning permits the recovery of one metal at a time. depending on the current. It should be appreciated that the current of the electrowinning process can be maintaincd at a constant current. changed over time, or both. It should also be appreciated that the voltage of the electrowinning process can be maintained at a constant current. constant voltage. changed over time. or all or the above.
Altcrnativcly. or in addition to electrowinning, a resin-based acid rccyclc and metals recovery system can be used to process the removal compositions and/or rinse liquids. wherein the resin-based acid recycle and metals recovery system utilizes a column comprising a resin having absolute pore diameters, for example, ion size exclusion, as nnderstood by the person skilled in the art, As the  composition travels through the column, the ions are separated by size which allows for the capture of the metal ions as well as the recycling of aqueous compositions. An example of resin-based acid recycle and metals recovery is a system and process using an ionic size exclusion resin or standard resin. Ionic size exclusion polymeric resins have a speeific surface area. pore volume, and pore diameter and can be used to separate two or more ionic species having different size radii from an aqueous composition. The ionic species may comprise cations, anions, complex cations, complex anions. and/or combinations thereof. For the present disclosure, ionic size exclusion resins may be used to separate metal ions from acid-containing compositions for recovery of the metal ions and/or reuse of thc acid. Further. ionic size exclusion resins may be used to separate two or more different metal ions from acid-containing compositions for recovery of the metal ions and/or reuse of the acid, wherein the two or more metal ions are further separated from one another and/or from the acid. The captured metal ions can be reduced to metal, as understood by the person skilled in the art. Resin materials useful for separating ions include, but are not limited to, polystyrene and/or divinylbenzene polystyrene.
It should be appreciated that regardless of whether wastewater treatment. EW, DD or resin-based acid recycle and metals recovery is used to treat the compositions and rinse liquids described herein, any materials that can be recycled back through any of the processes should be. e.g., reclaimed acidic solutions. For example, following wastewater treatment. EW. DD. or resin-based acid recycte and metals recovery, there may be a liquid that has been treated such that it can be used as a rinse liquid or alternatively in a new metal removal composition. Advantageously, this ensures that the waste stream is minimized.
Solder Removal Compositions
The solder removal composition preferably removes solder melals sclectively relative to preeious metals, in particular gold, thereby increasing the loading of the bath for the solder and inereasing the bath-life of the solder removal composition. In one embodiment, the solder removal composition comprises, consists of. or consists essentially of at least one oxidizing agent and water. The first composition may further comprise at least one lead and/or tin complexing agent, at least one organic solvent, and/or at least one passivatiag agent for passivating the precious metals and/or base metals. In another embodiment, the solder removal composition comprises, consists of, or consists essentially of at least one lead and/or tin complexing agent in combination with at least one oxidizing agent and water. In yet another embodiment, the solder removal composition comprises, consists of, or consists essentially of at least one oxidizing agent. water, and at least one passivatine agent for passivating the precious metals and/or base metal materials. In another embodiment, the solder removal composition comprises, cousists of. or consists essentially of at least one lead and/or tin complexing agent, at least one oxidizing agent. water, and at least one passivating agent for  passivating the precious metals and/or base metal materials. At least one organic solvent, at least one accelerator, at least one corrosion inhibitor, at least one NOx suppressing agenl, at least one buffer, at least one surfactant, at least one anti-foaming agent, or any combination thereof can be added to any of the above solder removal composition embodiments. Accordingly, in yet another embodiment, the solder removal composition comprises, consists of, or consists essentially of at least one oxidizing agent, at least one accelerator, water, and at leasl one passivating agent for passivating the precious metals and/or base metal materials. The weight percent ratio of the at least one oxidizing agent to at least one passivating agent is in a range from about 1∶ 1 to about 50∶ 1, preferably about 15∶ 1 to about 35∶ 1. The weight percent ratio of the at least one accelerator to at least one passivating agent is in a range from about 1∶ 1 to about 25∶ 1. preferably about 8∶1 to about 20∶ 1.
Oxidizing agents are included in the composition to oxidize the metals to be removed into an ionic form and accumulate highly soluble salts of dissolvod metals. Oxidizing agents contemplated herein include, but are not limited to. ozone. nitric acid (HNO3), bubbled air, cyclohexylaminosulfonie acid., hydrogen peroxide (H2O2) , oxonc (potassium peroxymonosulfate. 2KHSO5·KHSO4·K2SO4) . ammonium polyatomie salts (e.g., ammoniurn peroxomonosulfate, ammonium chlorite (NH4ClO2) , ammonium chloratc (NH4ClO3), ammonium iodate (NH4lO3), ammonium perboratc (NH4BO3) , ammonium perebloratc (NH4ClO4). ammonium periodate (NH4IO3) . ammonium persulfate ( (NH42S2O8) . ammonium hypochlonte (NH4ClO) ) . sodium polyatomic salts (e.g., sodium persulfate (Na2S2O8) , sodium hypochlorite (NaClO) ) . potassium polyatomic salts (e.g., potassium iodate (KIO3) . potassium permanganate (KMnO4) . potassium persulfate, potassium persulfate (K2S2O8) . potassium hypochlorite (KClO) ) tetramethylammonium polyatomic salts (e.g., tetramethylammonium chlorite ( (N (CH34) ClO2) , tetramethylammonium chlorate ( (N (CH34) ClO3) . tetramethy lammonium iodate ( (N (CH34) IO3) . tetramethylammonium perborate ( (N (CH34) BO3) . tetramethylammonium perchlorate ( (N (CH3)4)ClO4) . tetramcthylammonium periodate ( (N (CH3)4)IO4) . tetramethylammonium persulfate ( (N (CH3)4) S2 O8) ) . tetrabutylammonium polyatomic salts (e.g, tetrabutylammonium peroxomonosulfate) , peroxomonosulfurie acid. urea hydrogen peroxide ( (CO (NH22) H2 O2) . peracetic acid (CH3 (CO) OOH) , sodium nitrate, potassium nitrate, ammonium nitrate, sulfuric acid, and combinations thereof. Although not oxidizing agents per se. for the sake of the present disclosure, oxidizing agents further include alkauesulfonic acids (e.g., methanesulfonie acid (MSA) . ethanesulfonic acid, 2-hydroxyethanesulfonic acid. n-propanesulfonic acid, isopropanesulfonic acid, isobutenesulfonic acid. n-butancsutfonic acid. n-octancsnlfonic acid), benzencsulfonic acid. benzenesulfonic acid derivatives (e.g., 4-methoxybenzenesutfonic acid. 4-hydroxybeuzenesulfonic acid, 4-aminobenzenesulfouic acid, 4-nitrobenzenesulfonic acid. toluenesulfonie acid. hexylbenzenesulfonic acid. heptylbenzenesulfonic acid. octylbenzenesulfonic acid. nonylbenzcncsulfonic acid. decylbcnzenesulfonic acid. undeeylbenzenesulfonic acid. dodecylbenzenesulfonie acid, tridecylbenzenesulfonic acid. tetradecylbenzene sulfonic acid, hexadecylbenzene sulfonic acid. 3-nitrobenzenesulfonic acid. 2-nitrobenzenesulfonic acid. 2- nitronaphthalenesulfonic acid, 3-nitronaphthalenesulfonic acid, 2, 3-dinitrobenzenesulfonic acid. 2, 4-dinitrobenzenesulfonic acid. 2, 5-dinitrobenzenesulfonic acid, 2, 6-dinitrobenzenesulfonic acid. 3, 5-dinitrobenzenesulfonic acid, 2, 4, 6-trinitrobenzenesulfonic acid. 3-aminobenzenesulfonic acid 2-aminobenzcncsulfonic acid. 2-aminonaphthalenesulfonic acid. 3-aminonaphthalenesulfonic acid. 2, 3-diaminobenzenesulfonic acid. 2, 4-diaminobenzenesulfonic acid. 2, 5-diaminobenzenesulfonic acid, 2, 6-diaminobenzenesulfonic acid. 3, 5-diaminobenzenesulfonic acid. 2, 4, 6-triaminobenzenesulfonic acid. 3-hydroxybenzenesulfonic acid. 2-hydroxybenzencsulfonic acid. 2-hydroxynaphthalenesulfonic acid, 3-hydroxynaphthalcnesulfonic actd, 2, 3-dihydroxybenzenesulfonie acid. 2, 4-dihydroxybenzenesulfonic acid. 2, 5-dihydroxybenzenesulfonic acid. 2, 6-dihydroxybenzenesulfonie acid, 3, 5-dihydroxy benzenesulfonic acid, 2, 3, 4-trihydroxybenzenesulfonic acid. 2, 3, 5-trihydroxybenzenesulfonie acid. 2, 3, 6-trihydroxy benzenesulfonie acid. 2, 4, 5-trihydroxybenzenesulfonic acid. 2, 4, 6-trihydroxybenzenesulfonic acid, 3, 4, 5-trihydroxybenzenesulfonic acid, 2, 3, 4, 5-tetrahydroxybenzenesulfonic acid. 2, 3, 4, 6-tetrahydroxybenzenesulfonic acid. 2, 3, 5, 6-tetrahydroxy benzenesulfonic acid, 2, 4, 5, 6-tetrahydroxybenzenesulfonic acid. 3-methoxybenzenesulfonic acid 2-methoxybenzenesulfonic acid, 2, 3-dimethoxybenzenesulfonic acid, 2, 4-dimethoxybenzenesulfonie acid. 2, 5-dimethoxybenzenesulfonic acid. 2, 6-dimethoxybenzenesulfonic acid. 3, 5-dimethoxybenzenesulfonic acid. 2, 4, 6-trimethoxybenzenesulfonic acid) , alkyl sulfate sulfonic acid. pyridine sulfonic acid. and combinations thereof. The oxidizing agents can include a combination of the any of the species defined herein as oxidizing agent. The oxidizing agent may be introduced to the solder removal composition at the manufacturer, prior to introduction of the solder removal composition to the PCB. or alternatively at the PCB. i.e., in situ. Preferably. the oxidizing agent comprises a peroxide compound, oxone, nitric acid, sodium nitrate, methanesulfonic acid, or any combination thereof Most preferably, the oxidizing agent comprises methanesulfonic acid.
When present, it is thought that an effective amount of nitric acid or salt thereof serve as an accelerator of the solder removal process. Accordingly. in some embodiments. the oxidizing agent in thc solder removal composition preferably comprises an alkane sulfonic acid (e.g., MSA) and nitric acid or salt thereof. Other acce leralors contemplated include acids such as sulfuric acid. hydrochloric acid. phosphoric acid. hydrobromic acid, and any combination thereof.
The complexing agents are ineluded to complex the ions produced by the oxidizing agent. Complexing agcnts contemplated herein include, but are not limited to: β-diketonate compounds such as acetylaeetonate. 1, 1, 1-trifluoro-2,4-pentanedionc. and 1, 1, 1, 5,5,5-hexafluoro-2, 4-pentanedione; carboxylates such as formate and acetate and other long chain carboxylates; and amides (and amincs) , such as bis (trimethylsilyIamide) tetramer. Additional chelating agents include amines and amino acids (i.e.glycinc, serinc, prolinc. leucinc. alanine~ asparngine, aspanic acid. glutamine, valine, and lysine) , citrie acid. acetic acid. maleic acid. oxalie acid. malonic acid, succinic acid, phosphonic acid, phosphonic acid derivatives such as hydroxyethylidene diphesphonic acid (HEDP) . l-hydroxyethane- 1, 1-diphosphonic acid, nitrilo-tris (methylenephosphonic acid) , nitrilotriacetic acid. iminodiacetic acid, etidronic acid. ethylenediamine, ethyienediaminetetraacetie acid (EDTA) . and (1, 2-cyelohexylenedinitrilo) tetraacetie acid (CDTA) . uric acid, tetraglyme. pentamethyldiethylenetriamine (PMDETA) . 1, 3, 5-triazine-2, 4, 6-thithiol trisodium salt solution. 1, 3, 5-triazine-2, 4, 6-thithiol triammonium salt solution, sodium diethyldithiocarbamate, disubstituted dithiocarbamates (R1 (CH2CH2O) 2 NR2CS2Na) with one alkyl group (R2=hexyl, oclyl, deceyl or dodecyl) and one oligocther (R1 (CH2CH2O) 2, where R1 = ethyl or buty1), ammonium sulfate, monoethanolamine (MEA) . Dequest 2000, Dequcst 2010. Dequest 2060s, diethylenetriamine pentaacetic acid, propytencdiaminc tetraacetic acid. 2-hydroxypyridinc 1-oxide. ethylendiaminc disuccinic acid (EDDS) , N- (2-hydroxyethyl) iminodiacetic acid (HEIDA) . sodium triphosphate penta basic, sodium and ammonium salts thereof, ammonium chloride, sodium chloridc, lithum chloridc, potassium chloride, ammonium sulfate, triammonium citrate, sodium citrate, thiourea. hydrochloric acid, sulfuric acid. and combinations thereof. Preferably. the complexing agent comprises HEDP. HEIDA, EDDS. sodium or ammonium salts thereof,sulfuric acid. or combinations thereof.
Passivating agents for passivating the precious metals and/or base metals include, but arc not limited to. ascorbic acid, adenosine. L (+) -ascorbic acid. isoascorbic acid, ascorbic acid derivatives. citric acid, ethylenediamine. gallic acid, oxalic acid. tannic acid, ethylenediaminetetraacetic acid (EDTA) . uric acid. 1, 2, 4-triazotc (TAZ) . triazole derivatives (e.g., bcezorriazote (BTA) . totyltriazole. 5-phenyl-benzotriazole. 5-nitro-benzotriazole. 3-amino-5-mercapto-1, 2, 4-triazole. 1-amino-1, 2, 4-triazole, hydroxybenzotriazole. 2- (5-amino-pentyl) -benzotriazote, 1-amino-1, 2, 3-triazole, 1-amino-5-methyl-1, 2, 3-triazole, 3-amino-1, 2,4-triazole, 3-mercapto-1, 2, 4-triazole, 3-isopropyl-1, 2, 4-triazole, 5-phenylthiol-benzotriazole, halo-benzotriazolcs (halo = F, Cl, Br or I) . naphthotriazole) . 4-amino-1, 2, 4-triazolc (ATAZ) , 2-mercaptobenzimidzaole (MB1) , 2-mereaptobenzothiazole, 4-methyl-2-phenylimidazole. 2-mereaptothiazoline, 5-aminotetrazolc (ATA) , 5-amino-1, 3, 4-thiadiazole-2-thiol, 2, 4-diamino-6-methyl-1, 3, 5-triazine, thiazole, triazine, methyltetrazole. 1, 3-dimethyl-2-imidazolidinone. 1, 5-pentamethyleneletrazole. 1-phenyl-5-mercaptotetrazole. diaminomethyltriazine, imidazolinc thione, mercaptobenzimidazole, 4-methyl-4H-1, 2, 4-triazole-3thiol. 5-amino-1, 3, 4-thiadiazote-2-thiol, benzothiazole, tritotyl phosphate, imidazole, indiazole, benzoic acid. boric acid. malonic acid. ammonium benzoate, catechol, pyrogallol, resorcinoi, hydroquinone, cyanuric acid, barbitaric acid and derivvatives such as 1, 2-dimethylbarbituric acid, alpha-keto acids such as pyruvic acid, adenine, purinc, phosphonic acid and derivatives thereof, glycine/ascorbic acid, Dcquest 2000. Dequest 7000, p-tolylthiourea, succinic acid. phosphonobutane tricarboxylic acid (PBTCA) , sodium molybdate, ammonium molybdate, salts of chromate (e.g., sodium, potassium, calcium, barium) , sodium tungstate, salts of dichromate (e.g., sodium, potassium, ammonium) , sodium sulfate, suberic acid, azaleie acid. sebaeie acid. adipic acid. octamethylene dicarboxylic acid. pimelic acid. dodecanc dicarboxylie acid. dimethyl malonic acid, 3, 3-diethyl succinic acid. 2, 2-dimethyl glutaric acid. 2-methyl adipic acid. trimethyl adipic acid. 1, 3-cyclopentane dicarboxylic acid. 1, 4-cyclohexane  dicarboxylic acid. terephthalic acid, isophthalic acid. 2, 6-naphthalene dicarboxylic acid. 2, 7-naphthalene dicaroxylie acid, 1, 4-naphthalene dicarboxylic acid. 1, 4-phenylenedioxy diacetic acid, 1, 3-phenylenedioxy diacetic acid. diphenic acid. 4, 4’ -biphenyl dicarboxy lic acid. 4, 4’ -oxydibenzoie acid, diphenylmethanc-4, 4’ -dicarboxylic acid, diphenylsulfone-4, 4’ -dicarboxylic acid. decamethylenediearboxylic acid, undccamethylenc dicarboxylic acid. dodecamethylene dicarboxylic acid, orthophthalic acid, naphthalenedicarboxylic acid, paraphenylenedicarboxylic acid, trimellitie acid, pyromellitic acid sodium phosphates (e.g., sodium hexametaphosphate) , sodium silicates, amino acids and their derivatives such as l-arginine. nucleoside and nucleobases such as adensosine and adenine, respectively. and combinations thereof. Most preferably, the passivating agent comprises BTA. ATAZ. TAZ, triazole derivatives. ascorbic acid, sodium molybdatc, or combinations thereof,
Although not wishing to be bound by theory, it is thought that organic solvents. wahen added. cnhance the metal etch rates by wetting the surface of the microeleetronic device strueturc. Organic solvents contemplated herein include, but are not limited to, alcohols, ethers, pyrrolidinones, glycols, carboxylic acids, glycol ethers, amines, ketones, aldehydes, alkanes, alkenes, alkynes, carbonates, and amides, more preferably alcohols, ethers, pyrrolidinones, glycols, carboxylic acids, and glycol ethers such as methanol, ethanol, isopropanol, butanol, and higher alcohols (including diols, and triols) . telrahydrofuran (THF). N-methylpyrrolidinone (NMP) . cyclohexylpyrrolidinone. N-octylpyrrolidinone. N-phenylpyrrolidinone. methyl formate. dimethyl formamide (DMF) . dimethylsulfoxide (DMSO) , tetramethylene sulfone (sulfolane) , diethyl ether, phenox.-2-propanol (PPh) . propdopheneone, ethyl lactate, ethyl acetate, ethyl benzoaie, acetonitrile, acetone, ethylene glycol, propylene glycol, dioxane, butyry lactone, butylene carbonate, ethylene carbonate, propylene carbonate, dipropy lene glycol, amphiphilie species (diethylene glycol monomethyl ether, triethylenc glycol monomethyl elher, diethylene glycol monoethyl ether, triethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether (i.e., butyl carbitol) , triethylene glycol monobutyl ether, ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, ethylene glycol phenyl ether. propylene glycol methyl ether. dipropylene glycol methyl ether (DPGME) . tripropylene glycol methyl ether. dipropylene glycol dimethyl ether. dipropylene glycol ethyl ether. propylene glycol n-propyl ether. dipropylene glyeol n-propyl ether (DPGPE) , tripropyleue glycol n-propyl ether, propylene glycol n-butyl ether, dipropylene glycol n-butyl ether. tripropylene glycol n-butyl ether, propylene glycol phenyl ether. and combinations thercof) . branched non-fluorinated ether-linkage carboxylic acids (CH3CH2)nO (CH2) mCOOH+ where n = 1 to 10 and m = 1 to 10) . unbranched non-fluorinated ether-linkage carboxylic acids (CH3CH2) nO (CH2)mCOOH. where n = 1 to 10 and m = 1 to 10) . branched non-fluorinated non-ether linkage carboxylic acids (CH3 (CH2)4COOH. where n = 1 to 10). unbranched non-fluorinated non-ether linkage carboxylic acids (CH3 (CH2nCOOH, where n = 1 to 10) , dicarboxylic acids, tricarboxylic acids, and combinations thereof. Preferably. the organic solvent comprises diethylene glycol monobutyl ether, dipropylene glycol propyl ether, propylene glycol, or  mixtures thereof.
Preferred embodiments of the solder removal composition include, but are not limited to, (i) a solder removal composition comprising, consisting of or consisting essentially of MSA, nitric acid, BTA and water, (ii) a solder removal composition comprising, consisting of or consisting essentially of MSA, nitric acid, TAZ and water; (iii) a solder removal composition comprising, consisting of or consisting essentially of MSA, nitric acid, 1-amino-1, 2, 4-triazole (ATAZ) , and water; (iv) a solder removal composition comprising, consisting of or consisting essentially of MSA, nitric acid, 1-amino-1, 2, 3-triazole and water; (v) a solder removal composition comprising, consisting of or consisting essentially of MSA, nitric acid, 1-amino-5-methyl-1, 2, 3-triazole and water; (vi) a solder removal composition comprising, consisting of or consisting essentially of MSA, nitric acid, 3-amino-1, 2, 4-triazole and water; (vii) a solder removal composition comprising, consisting of or consisting essentially of MSA, nitric acid, 3-mercapto-1, 2, 4-triazole and water, (viii) a solder removal composition comprising, consisting of or consisting essentially of MSA, nitric acid, 3-isopropyl-1, 2, 4-triazole and water; (ix) a solder removal composition comprising, consisting of or consisting essentially of MSA, nitric acid, MBI and water; (x) a solder removal composition comprising, consisting of or consisting essentially of MSA, nitric acid, ATA and water; (xi) a solder removal composition comprising, consisting of or consisting essentially of MSA, nitric acid, 2, 4-diamino-6-methyl-1, 3, 5-triazine and water, (xii) a solder removal composition comprising, consisting of or consisting essenlially of MSA, nitric acid, aseorbic acid and water; (xiii) a solder removal composition comprising, consisting of or consisting essentially or MSA, nitric acid, sodium molybdate and water; and (xiv) a solder remoral composition comprising, consisting of or consisting essentially of MSA, nitric acid, 3-amino-5-mercapto-1, 2, 4-triazole and water.
It will be appreciated by the person skilled in the art that the solder removal composition can be prepared upstream and stored in a tank for use, prepared upstream in the lines for introduction into the reaction tank, or prepared directly in the reaction tank by introducing the chemicals therein, Further, it is contemplated that a concentrate can be prepared and stored for dilution with a diluent (e.g., water) prior to, or in the reaction tank.
In one embodiment, the solder removal composition is used until loaded with dissolved/solubilized metal ions, e.g., lead ions, and/or tin ions, In one embodiment, one or more constituents of the solder removal composition is a regenerated and/or recycled constituent from one or more effluent waste streams within the e-waste facility.
Gold Removal Composition
One embodiment of a gold removal composition comprises, consists of, or consists essentially of at least one oxidizing agent, optionally at least one halide, optionally at least one acid, and optionally at least one solvent, In another embodiment, the gold removal composition comprises,  consists of, or consists essentially of at least one oxidizing agent, at least one halide salt, optionally at least one acid, and optionally at least one solvent, In one embodiment, the gold removal composition comprises, consists of, or consists essentially of at least one oxidizing agent, at least one halide, at least one acid, and at least one solvent, In one embodiment, the gold removal composition comprises, consists of, or consists essentially of at least one oxidzing agent, at least one chloride salt, at least one acid, and at least one solvent, In another embodiment, the gold removal composition comprises, consists of, or consists essentially of at least one oxidizing agent, at least one chloride salt, al least one sulfur-containing acid, and at least one solvent, In still another embodiment, the gold removal composition comprises, consists of, or consists essentially of at least one oxidizing agent, at least one alkaline chloride sait, at least one sulfur-containing acid, and at least one solvent, In yet another embodiment, the gold removal composition comprises, consists of, or consists essentially of at least one nitrate salt oxidizing agent, at least one alkaline chloride salt, at least one sulfur-containing acid, and at leasl one solvent, The gold removal composition is aqueous in nature and has a pH less than about 2, more preferably less than about I, The weight percent ratio of the at least one oxidizing agent to at least one acid is in a range from about 0, 1∶1 to about 5∶1, preferably about 1∶1 to about 3∶1, The weight percent ratio of the at least one halide to al least one acid is in a range from about 0.1∶1 to about 5∶1, preferably about 0.5∶1 to about 2∶1.
Oxidizing agents are included in the composition to oxidize the metals to be removed into an ionic form and accumulate highly soluble salts of dissolved metals, Oxidizing agents contemplated herein include, but are not limited to, ozone, nitric acid (HNO3), bubbled air, cyclohcxylaminosulfonic acid, , hydrogen peroxide (H2O2) , oxone (potassium peroxy monosulfate, 2KHSO5·KHSO4·K2SO4) .ammonium polyatomic salts (e.g., ammonium peroxomonosulfatc, ammonium chlorite (NH4ClO2) , ammonium chlorate (NH4ClO3) , ammonium iodate (NH4IO3), ammonium perborate(NH4BO3) , ammonium perchlorate (NH4ClO4) , ammonium periodate (NH4IO3), ammonium persulfate ( (NH42S2O3) , ammonium hypochlorite (NH4ClO) ) , sodium polyatomic salts (e.g., sodium persulfate (Na2S2Os) , sodium hypoehlorite (NaClO) ) , potassium polyatomic salts (e.g., potassium iodate (KIO3) , potassium permanganate (KMnO4), potassium persulfate, potassium persulfate (K2S2O3) , potassium hypochloritc (KClO) ), tetramethylammonium polyatomic sails (e.g., tetramethylammonium chlorite ( (N (CH34)ClO2) , tetramethylammonium chlorate ( (N (CH34) ClO3), tetramethylammonium iodate ( (N (CH34) IO3), tetramethylammonium perborate ( (N (CH34) BO3), tetramethylammonium perchlorate ( (N (CH34) ClO4) . tetramethylammonium periodate ( (N (CH34) IO4), tetramethylammonium persulfate ( (N (CH34) S2O8) , tetramethylammonium nitrate) , tetrabutylammonium polyatomic salts (e.g., tetrabutylammonium peroxomonosulfate, tetrabutylammonium nitrate) , peroxomonosulfuric acid, urea hydrogen peroxide ( (CO (NH22) H2O2) , peracetic acid (CH3 (CO) OOH) , sodium nitrate, potassium nitrate, ammonium nitrate, and combinations thereof, Most preferably, the oxidizing agent comprises a nitrate ion including, but not limited to, nitric acid, sodium nitrate, potassium nitrate, ammonium nitrate, tetraalkylammonium nitrate, and combinations thereof.
The at least one halide is preferably a chloride-containing compound including, but not limilcd to, hydrochloric acic, and alkaline chlorides (e.g., sodium chloride, potassium chloride, rubidium chloride, cesium chloride, magnesium chloride, calcium chloride, strontium chloride, ammonium chloride, quaternary ammonium chloride salts) , and combinations thereof, with the proviso that the chloride-containing compound cannot include copper chloride, chlorine gas, or a second, different halide, Preferably, the at least one halide comprises an alkaline chloride, even more preferably an alkali metal chloride such as sodium chloride, The at least one halide can also include saits and/or acids comprising bromide and iodide including, but not limited to, sodium bromide, sodium iodide, potassium bromide, potassium iodide, rubidium bromide, rubidium iodide, cesium bromide, cesium iodide, magnesium bromide, magnesium iodide, calcium bromide, calcium iodide, strontium bromide, strontium iodide, ammonium bromide, ammonium iodide, quaternary ammonium bromide salts, and quaternary ammonium bromide salts.
The at least one acid is preferably a sulfur-containing species such as sulfuric acid, sulfate salts (e.g., sodium sulfate, potassium sulfate, rubidium sulfate, cesium sulfate, magnesium sulfate, calcium sulfate, strontium sulfate, barium sulfate) , sulfonic acid, sulfonic acid derivatives, and combinations thereof, Sulfonic acid derivatives contemplated include methanesulfonic acid (MSA) , ethanesulfonic acid, 2-hydroxyethanesulfonic acid, n-propanesulfonic acid, isopropanesulfonic acid, isobutenesulfonic acid, n-butanesulfonic acid, n-octanesulfonic acid) , benzenesulfonie acid, benzenesulfonic acid derivatives, and combinations thereof. Preferably, the at least one acid comprises sulfuric acid, preferably concentrated sulfuric acid.
The at least one solvent includes. but is not limited to, water, methanol, ethanol, isopropanol, butanol, pentanol, hexanol, 2-ethyl-1-hexanol, heptanol, octanol, ethylene glycol, propylene glycol, butylene glycol, tetrahydrofurfuryl alcohol (THFA) , butylene carbonate, ethylene carbonale, propylene carbonate, dipropylene glycol, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, dicthylene glycol monoethyl ether, triethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, ethylene glycol phenyl ether, propylene glycol methyl ether, dipropylene glycol methyl ether (DPGME) , tripropylene glycol methyl ether (TPGME) , dipropylene glycol dimethyl ether, dipropylene glycol ethyl ether, propylene glycol n-propy ether, dipropylene glycol n-propyl ether (DPGPE) , tripropylene glycol n-propyl ether, propylene glycol n-butyl ether, dipropylene glycol n-butyl ether, tripropylene glycol n-butyl ether, propylene glycol phenyl ether, 2, 3-dihydrodecafluoropentane, ethyl perfluorobutylether, methyl perfluorobutylether, alkyl carbonates, alkylene carbonates, 4-methyl-2-pentanol, tetramethylene glycol dimethyl ether, and combinations thereof, Preferably, the at least one solvent comprises water.
In a particularly preferred embodiment, the gold removal composition comprises, consists of,  or consists essentially of sodium chloride, sulfuric acid or a salt thereof (e.g., sodium sulfate) , nitric acid or a salt thereof (i.e., sodium nitrate) , and water.
The gold removal composition can further comprise at least one complexing agent (e.g., a noble metal complexing agent) , at least one buffering agent, at least one corrosion inhibitor, al least one NOX suppressing agent, at least one surfactant, at least one anti-foaming agent, at, least one passivating agent, and any combination thereof.
It will be appreciated by the person skilled in the art that the gold removal composition can be prepared upstream and stored in a container for use, prepared upstream in the lines for introduction into the gold leaching tank, or prepared directly in the gold leaching tank by introducing the chemicals therein, Further, it is contemplated that a concentrate can be prepared and stored for dilution with a diluent (e.g., water) prior to, or in, the gold leaching tank.
Although the invention has been variously disclosed herein , with reference to illustrative embodiments and features, it will be appreciated that the embodiments and features described hereinabove are not intended to limit the invention, and that other variations, modifications and other embodiments will suggest themselves to those of ordinary skill in the art, based on the disclosure herein, The invention therefore is to be broadly construed, as encompassing all such variations, modifications and alternative embodiments within the spirit and scope of the claims hereafter set forth.

Claims (51)

  1. An integrated, intelligent system for recycling palladium-containing components, wherein the system efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in the palladium-containing components, wherein the system comprises:
    (a) a furnace module, a milling module, or both; and
    (b) a palladium leaching module comprising:
    (i) at least one base metal removal apparatus; and
    (ii) at least one palladium leaching apparatus,
    wherein the modules and apparatuses are positioned and/or operated in series with one another, with or without intervening parts.
  2. The system of claim 1, further comprising a solids processing technology (SPT) gold removal module.
  3. The system of claims 1 or 2, further comprising at least one additional module selected from the group consisting of:
    (a) a pre-board clearing module,
    (b) a board clearing module,
    (c) a desoldering module,
    (d) an SPT base metal removal module,
    (e) an SPT silver leaching module,
    (f) any combination of (a) - (e) , and
    (g) every module of (a) - (e) ,
    wherein the modules are positioned and/or operated in series with one another, with or without intervening parts.
  4. The system of any of claims 1-3, wherein the palladium-containing components to be recycled moves within a module automatically or manually, using a moving means.
  5. The system of any of claims 1-4, wherein the palladium-containing components to be recycled moves from module to module and/or within a module, automatically or manually, using a moving means.
  6. The system of any of claims 1-5, comprising the furnace module, wherein the furnace module comprises (a) a furnace and (b) means to control the air input into the furnace, wherein the furnace module converts the palladium-containing components into ash or powder.
  7. The system of claim 6, wherein the furnace module further comprises a ventilation system.
  8. The system of any of claims 1-7, comprising the milling module.
  9. The system of any of claims 1-8, wherein the palladium leaching apparatus comprises a reaction container, at least one rinse container, and liquid-solid separation means, wherein the palladium leaching apparatus is capable of removing palladium from palladium-containing components, wherein the palladium-containing components have been ashed, ground, previously processed to remove other species, and/or crushed.
  10. The system of claim 9, wherein the palladium leaching apparatus further comprises at least one of: at least one palladium leaching composition container in liquid communication with the reaction container; at least one rinse liquid container in liquid communication with the at least one rinse container; at least one centrifuge; agitation means in at least one of the reaction container and/or the at least one rinse container; at least one pump; heating/cooling means for at least one of the reaction container and/or the at least one rinse container; at least one air input for at least one of the reaction container and/or the at least one rinse container; real-time sampling and adjustment; programmable logic controllers or equivalent thereof; sensing means for at least one of the reaction container and/or the at least one rinse container; and ventilation means for at least one of the reaction container and/or the at least one rinse container.
  11. The system of claims 9 or 10, wherein the reaction container comprises a palladium leaching composition.
  12. The system of claim 11, wherein the palladium leaching composition comprises at least one nitrate-containing salt and at least one solvent.
  13. The system of any of claims 1-12, wherein the palladium leaching module comprises at least two base metal removal apparatuses.
  14. The system of any of claims 1-13, wherein the base metal removal apparatus (es) comprises a reaction container, at least one rinse container, and liquid-solid separation means, wherein the base  metal removal apparatus (es) is capable of removing base metals and copper from palladium-containing components, wherein the palladium-containing components have been ashed, ground, previously processed to remove other species, and/or crushed.
  15. The system of claim 13 or 14, wherein the base metal removal apparatus (es) further comprise at least one of: at least one base metal removal composition container in liquid communication with the at least one reaction container; at least one rinse liquid container in liquid communication with the at least one rinse container; at least one centrifuge; agitation means in at least one of the reaction container and/or the at least one rinse container; at least one pump; heating/cooling means for at least one of the reaction container and/or the at least one rinse container; at least one air input for at least one of the reaction container and/or the at least one rinse container; real-time sampling and adjustment; programmable logic controllers or equivalent thereof; sensing means for at least one of the reaction contaiuer and/or the at least one rinse container; and ventilation means for at least one of the reaction container and/or the at least one rinse container.
  16. The system of claims 14 or 15, wherein the reaction container comprises a first base metal removal composition or a second base metal removal composition.
  17. The system of claim 16, wherein the first base metal removal composition comprises at least one chloride-containing compound and at least one solvent.
  18. The system of claim 16, wherein the second base metal removal composition comprises at least one acid, at least one oxidizing agent, and at least one solvent.
  19. The system of any of claims 1-18, wherein the SPT gold removal module comprises:
    (a) at least one reaction tank,
    (b) at least one holding tank in liquid communication with the at least one reaction tank,
    (c) at least one rinse tank in liquid communication with the at least one holding tank,
    wherein said SPT gold removal module is capable of removing gold from palladium-containing components, wherein the palladium-containing components have been ashed, ground, previously processed to remove other species, and/or crushed.
  20. The system of claim 19, wherein the SPT gold removal module further comprise at least one of: at least one gold removal composition tank in liquid communication with the at least one reaction tank; at least one rinse liquid tank in liquid communication with the at least one rinse tank; at least one centrifuge; agitation means in at least one of the reaction tank, the at least one holding tank, and/or the at least one rinse tank; at least one pump; heating/cooling means for at least one of the reaction tank, the at least one holding tank, and/or the at least one rinse tank; at least one air input for at least one of the reaction tank, the at least one holding tank, and/or the at least one rinse tank; real-time sampling and adjustment; programmable logic controllers or equivalent thereof; sensing means for at least one of the reaction tank, the at least one holding tank, and/or the at least one rinse tank; and ventilation means for at least one of the reaction tank, the at least one holding tank, and/or the at least one rinse tank.
  21. The system of claims 19 or 20, wherein the at least one reaction tank and/or the at least one holding tank comprise a gold removal composition.
  22. The system of claim 21, wherein the gold removal composition comprises at least one oxidizing agent, optionally at least one halide, optionally at least one acid, and optionally at least one solvent, preferably at least one oxidizing agent, at least one halide, at least one acid, and at least one solvent.
  23. The system of any of claims 4 or 5, wherein the moving means comprises at least one mechanism selected from the group consisting of a conveyor belt, a conveyor track, a conveying wheel, a conveying roller, gravity conveyor, robots, a robotic loading arm with a moving mechanism, overhead conveyors with powered channels/tracks, tracks, elevators, collection conveyors, monorails, belts, link chains, transporter with wheels, trucks, hand trucks, trays, fork lifts, boom lifts, scissor lifts, straddle lifts, cantilever lifts, post lifts, vertical lifts, horizontal lifts, trolleys, pallets, dollies, caddies, pulleys, clamps, hoists, hooks, forks, stackers, bucket elevators, carousels, cranes, guided vehicles, carts, pumps, or combinations of the foregoing.
  24. The system of any of the preceding claims, wherein the system is controlled by one or more programmable logic controllers (PLC) .
  25. A process for recycling palladium-containing components, wherein the process efficiently recovers more than about 80%, preferably more than about 90%, and most preferably more than about 95% of the palladium contained in a solid, wherein the solid comprises palladium-containing components that have been ashed, ground, processed previously to remove other species, and/or crushed, said process comprising:
    removing palladium from the solid in a palladium leaching (PL) module, wherein the PL  module comprises:
    (i) removing at least one base metal from the solid using a base metal removal composition in at least one base metal removal apparatus; and
    (ii) removing palladium from the solid using a palladium removal composition in a palladium leaching apparatus,
    wherein the apparatuses are positioned and/or operated in series with one another, with or without intervening parts.
  26. The process of claim 25, further comprising ashing the palladium-containing components in a furnace module to yield the solid.
  27. The process of claims 25 or 26, further comprising grinding the palladium-containing components or the solid in a milling module to yield the solid.
  28. The process of any of claims 25-27, further comprising removing gold from the solid using a gold removal composition in a solids processing technology (SPT) gold removal module.
  29. The process of any of claims 25-28, further comprising at least one additional step selected from the group consisting of:
    (i) sorting the material in a pre-board clearing module, wherein printed circuit boards (PCBs) are sorted and PCB components are removed manually and/or automatically,
    (ii) removing PCB components from PCBs using heat and mechanical means in a Board clearing module,
    (iii) removing solder and PCB components from PCBs using a solder removal composition in a desoldering module,
    (iv) removing at least one base metal from the solid using a base metal removal composition in a SPT base metal removal module,
    (v) removing silver from the solid using a silver removal composition in a SPT silver leaching module,
    (vi) any combination of (i) - (v) , and
    (vii) every process of (i) - (v) ,
    wherein the processes are operated in series with one another, with or without intervening processes.
  30. The process of any of claims 25-29, wherein the process further comprises moving material within a module or apparatus automatically or manually, using a moving means.
  31. The process of any of claims 25-30, wherein the process further comprises moving material from module to module and/or within a module, automatically or manually, using a moving means.
  32. The process of any of claims 25-31, wherein the process of removing at least one base metal from the solid using a base metal removal composition in at least one base metal removal apparatus comprises contacting a base metal removal composition with the solid in a reaction container, separating the loaded base metal removal composition fiom the solid using liquid-solid separation means, rinsing the solid with a rinse in at least one rinse container, and separating the rinse from the solid using liquid-solid separation means.
  33. The process of any of claims 25-32, wherein the palladium leaching module comprises at least two base metal removal apparatuses.
  34. The process of claim 33, wherein a first base metal removal apparatus includes a first base metal removal composition in the reaction container, wherein the first base metal removal composition comprises at least one chloride-containing compound and at least one solvent.
  35. The process of claim 34, wherein the first base metal removal composition is contacted with the solid in the reaction container at about 40 to about 80℃, preferably about 50 to about 70℃, at time of about 20 to about 200 min, preferably about 60 to about 150 min.
  36. The process of claims 34 or 35, wherein the ratio of solid to first base metal removal composition is about 1∶1 to about 1∶20, preferably about 1∶5 to about 1∶15.
  37. The process of claim 33, wherein a second base metal removal apparatus includes a second base metal removal composition in the reaction container, wherein the second base metal removal composition comprises at least one acid, at least one oxidizing agent, and at least one solvent.
  38. The process of claim 37, wherein the second base metal removal composition is contacted with the solid in the reaction container at about 50 to about 100℃, preferably about 60 to about 90℃, at time of about 20 to about 200 min, preferably about 60 to about 150 min.
  39. The process of claims 37 or 38, wherein the ratio of solid to second base metal removal composition is about 1∶1 to about 1∶20, preferably about 1∶5 to about 1∶15.
  40. The process of claim 33, wherein greater than 99% of the copper in the solid is removed using the at least two base metal removal compositions.
  41. The process of any of claims 25-40, wherein the process of removing palladium from the solid using a palladium leaching composition in the palladium leaching apparatus comprises contacting a palladium leaching composition with the solid in a reaction container, separating the loaded palladium leaching composition from the solid using liquid-solid separation means, rinsing the solid with a rinse in at least one rinse container, and separating the rinse from the solid using liquid-solid separation means.
  42. The process of claim 41, wherein the palladium leaching composition comprises at least one nitrate-containing salt and at least one solvent.
  43. The process of claims 41 or 42, wherein the palladium leaching composition is contacted with the solid in the reaction container at about 40 to about 80℃, preferably about 50 to about 70℃ at time of about 20 to about 200 min, preferably about 60 to about 150 min.
  44. The process of any one of claims 41-43, wherein the ratio of solid to palladium leaching composition is about 1∶1 to about 1∶20, preferably about 1∶5 to about 1∶15.
  45. The process of any one of claims 41-44, wherein the loaded palladium leaching composition is further processed to reclaim palladium, wherein the processing comprises electrowinning and/or chemical reclamation methods.
  46. The process of claim 45, wherein the chemical reclamation method comprises:
    (i) contacting a solution comprising palladium ions with ammonium chloride and nitric acid to form solid PdCl4 (NH42
    (ii) separating the PdCl4 (NH42 solid from the liquid;
    (iii) dissolving the PdCl4 (NH42 solid in water at a temperature in a range from about 40℃ to about 60℃ to yield PdCl4 (NH42 in solution; and
    (iv) combining PdCl4 (NH42 in solution with ascorbic acid to yield solid palladium.
  47. The process of claim 26, wherein the ashing of palladium-containing components in a furnace module to yield a solid comprising ash comprises:
    (a) feeding the palladium-containing components into a furnace; and
    (b) heating the palladium-containing components in the furnace to a temperature of from about 250℃ to about 800℃ until from about 80% to greater than 95% of the ashable content of the palladiun-containing components has been reduced to ash
  48. The process of claim 47, wherein the furnace comprises means to control the air input into the furnace and optionally a ventilation system to handle combustible gases and any ash that may become airborne.
  49. The process of claims 47 or 48, wherein the heating is continuous or is in steps, wherein the temperatures are raised to a maximum ashing temperature in a range from about 500℃ to about 800℃.
  50. The process of any of claims 31 or 32, wherein the moving means comprises at least one mechanism selected from the group consisting of a conveyor belt, a conveyor track, a conveying wheel, a conveying roller, gravity conveyor, robots, a robotic loading arm with a moving mechanism, overhead conveyors with powered channels/tracks, trucks, elevators, collection conveyors, monorails, belts, link chains, transporter with wheels, trucks, hand trucks, trays, fork lifts, boom lifts, scissor lifts, straddle lifts, cantilever lifts, post lifts, vertical lifts, horizontal lifts, trolleys, pallets, dollies, caddies, pulleys, clamps, hoists, hooks, forks, stackers, bucket elevators, carousels, cranes, guided vehicles, carts, pumps, or combinations of the foregoing.
  51. The process of any of claims 25-50, wherein the process is controlled by one or more programmable logic controllers (PLC) .
PCT/CN2016/074296 2016-02-22 2016-02-22 Recovery of palladium from palladium-containing components WO2017143499A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074296 WO2017143499A1 (en) 2016-02-22 2016-02-22 Recovery of palladium from palladium-containing components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074296 WO2017143499A1 (en) 2016-02-22 2016-02-22 Recovery of palladium from palladium-containing components

Publications (1)

Publication Number Publication Date
WO2017143499A1 true WO2017143499A1 (en) 2017-08-31

Family

ID=59685873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074296 WO2017143499A1 (en) 2016-02-22 2016-02-22 Recovery of palladium from palladium-containing components

Country Status (1)

Country Link
WO (1) WO2017143499A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609783A (en) * 2018-12-22 2019-04-12 励福(江门)环保科技股份有限公司 A method of efficiently separating purification palladium and rhodium from the alloy sheet containing palladium, rhodium alloy
CN114350971A (en) * 2021-11-29 2022-04-15 重庆材料研究院有限公司 Method for recovering rhodium from rhodium-containing ammonium chloroplatinate precipitation slag

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101787547A (en) * 2010-02-09 2010-07-28 中南大学 Method for recovering valuable metals from waste printed circuit board
JP2011140675A (en) * 2010-01-05 2011-07-21 Okuchi Denshi Kk Method for collecting silver and palladium from waste scrap of conductive paste
CN102676822A (en) * 2011-03-11 2012-09-19 深圳市格林美高新技术股份有限公司 Burning-free non-cyaniding method for treating waste printed circuit board
US20120237417A1 (en) * 2011-03-18 2012-09-20 Heraeus Precious Metals Gmbh & Co. Kg Process for recovery of noble metals from functionalised, noble metal-containing adsorption materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140675A (en) * 2010-01-05 2011-07-21 Okuchi Denshi Kk Method for collecting silver and palladium from waste scrap of conductive paste
CN101787547A (en) * 2010-02-09 2010-07-28 中南大学 Method for recovering valuable metals from waste printed circuit board
CN102676822A (en) * 2011-03-11 2012-09-19 深圳市格林美高新技术股份有限公司 Burning-free non-cyaniding method for treating waste printed circuit board
US20120237417A1 (en) * 2011-03-18 2012-09-20 Heraeus Precious Metals Gmbh & Co. Kg Process for recovery of noble metals from functionalised, noble metal-containing adsorption materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609783A (en) * 2018-12-22 2019-04-12 励福(江门)环保科技股份有限公司 A method of efficiently separating purification palladium and rhodium from the alloy sheet containing palladium, rhodium alloy
CN109609783B (en) * 2018-12-22 2020-11-10 励福(江门)环保科技股份有限公司 Method for efficiently separating and purifying palladium and rhodium from alloy sheet containing palladium and rhodium alloy
CN114350971A (en) * 2021-11-29 2022-04-15 重庆材料研究院有限公司 Method for recovering rhodium from rhodium-containing ammonium chloroplatinate precipitation slag
CN114350971B (en) * 2021-11-29 2023-11-10 重庆材料研究院有限公司 Method for recovering rhodium from rhodium-containing ammonium chloroplatinate precipitation slag

Similar Documents

Publication Publication Date Title
WO2017120815A1 (en) Integrated electronic waste recycling and recovery system and process of using same
US10034387B2 (en) Method for recycling of obsolete printed circuit boards
JP6397946B2 (en) Apparatus and method for stripping solder metal during recycling of waste electrical and electronic equipment
US9238850B2 (en) Sustainable process for reclaiming precious metals and base metals from e-waste
US6129779A (en) Reclaiming metallic material from an article comprising a non-metallic friable substrate
EP2486161B1 (en) Hydrometalurgical process for recovering metals from waste material
CN105297020B (en) Tin stripping additive and application thereof
US10062933B2 (en) Hydrometallurgical electrowinning of lead from spent lead-acid batteries
WO2017143499A1 (en) Recovery of palladium from palladium-containing components
Niu et al. How to efficient and high-value recycling of electronic components mounted on waste printed circuit boards: Recent progress, challenge, and future perspectives
WO2023212815A1 (en) Process for extraction of common and precious metals from wasted circuit boards
JP6159297B2 (en) Silver recovery method
AU2021390415A1 (en) Method for high and selective extraction of silver

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890953

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16890953

Country of ref document: EP

Kind code of ref document: A1