WO2017141999A1 - トンネル磁気抵抗素子及びその製造方法 - Google Patents

トンネル磁気抵抗素子及びその製造方法 Download PDF

Info

Publication number
WO2017141999A1
WO2017141999A1 PCT/JP2017/005608 JP2017005608W WO2017141999A1 WO 2017141999 A1 WO2017141999 A1 WO 2017141999A1 JP 2017005608 W JP2017005608 W JP 2017005608W WO 2017141999 A1 WO2017141999 A1 WO 2017141999A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic
magnetoresistive element
heat treatment
magnetic layer
Prior art date
Application number
PCT/JP2017/005608
Other languages
English (en)
French (fr)
Inventor
康夫 安藤
幹彦 大兼
耕輔 藤原
純一 城野
Original Assignee
国立大学法人東北大学
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, コニカミノルタ株式会社 filed Critical 国立大学法人東北大学
Priority to US16/077,601 priority Critical patent/US10559748B2/en
Priority to JP2018500183A priority patent/JP6978000B2/ja
Publication of WO2017141999A1 publication Critical patent/WO2017141999A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/131Amorphous metallic alloys, e.g. glassy metals containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/132Amorphous metallic alloys, e.g. glassy metals containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/133Amorphous metallic alloys, e.g. glassy metals containing rare earth metals
    • H01F10/135Amorphous metallic alloys, e.g. glassy metals containing rare earth metals containing transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/305Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
    • H01F41/307Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details

Definitions

  • the present invention relates to a tunnel magnetoresistive element and a manufacturing method thereof.
  • a tunnel magnetoresistive element (TMR (Tunnel Magneto Resistive) element) includes a pinned magnetic layer whose magnetization direction is fixed, a free magnetic layer whose magnetization direction changes under the influence of an external magnetic field, and a pinned magnetic layer And an insulating layer disposed between the magnetic layer and the free magnetic layer to form a magnetic tunnel junction (MTJ (Magnetic Tunnel Junction)).
  • MTJ Magnetic Tunnel Junction
  • a soft magnetic layer NiFe, CoFeSiB, etc.
  • a magnetic coupling layer is interposed between the ferromagnetic layer and the soft magnetic layer that are joined to the insulating layer.
  • the free magnetic layer includes a ferromagnetic layer made of CoFeB joined to an insulating layer, a soft magnetic layer made of NiFe, and a magnetic coupling layer made of Ru interposed therebetween.
  • a ferromagnetic layer made of CoFeB joined to an insulating layer a soft magnetic layer made of NiFe, and a magnetic coupling layer made of Ru interposed therebetween.
  • Ru a magnetic coupling layer made of Ru interposed therebetween.
  • the thinner the magnetic coupling layer the stronger and stable the synthetic coupling between the magnetic tunnel junction and the soft magnetic material, and the more stable the magnetic behavior. (0.85 nm in the example of Patent Document 1).
  • the magnetic coupling layer is thin, there is a problem of heat resistance. That is, when a part of the magnetic coupling layer is denatured at high temperature, the synthetic coupling becomes unstable, and the magnetoresistive characteristics of the tunnel magnetoresistive element cannot be sufficiently realized.
  • the above phenomenon is a serious problem when, for example, a heat treatment in a magnetic field for forming a tunnel magnetoresistive element or a module including the tunnel magnetoresistive element is mounted on a substrate by reflow.
  • the present invention has been made in view of the above problems in the prior art, and it is an object of the present invention to improve the heat resistance of a tunnel magnetoresistive element and to obtain excellent magnetoresistance characteristics after heat treatment in a higher temperature magnetic field. .
  • the invention according to claim 1 for solving the above-described problems is a pinned magnetic layer in which the magnetization direction is fixed, a free magnetic layer whose magnetization direction changes under the influence of an external magnetic field, and the pinned layer
  • a magnetic tunnel junction is formed by an insulating layer disposed between the magnetic layer and the free magnetic layer, and a tunnel effect is applied according to an angular difference between the magnetization direction of the pinned magnetic layer and the magnetization direction of the free magnetic layer.
  • a tunnel magnetoresistive element that changes the resistance of an insulating layer,
  • the free magnetic layer has a ferromagnetic layer bonded to the insulating layer, a soft magnetic layer made of NiFe, and a magnetic coupling layer interposed therebetween, and the material of the magnetic coupling layer is made of Ru or Ta,
  • a tunnel magnetoresistive element having a layer thickness of 1.0 nm to 1.3 nm.
  • the invention according to claim 2 is a method of manufacturing the tunnel magnetoresistive element according to claim 1,
  • the tunnel magnetoresistive element is subjected to a first heat treatment at a first temperature while applying an external magnetic field, at a second temperature lower than the first temperature and in a direction with respect to the first heat treatment.
  • the second heat treatment while applying an external magnetic field in a different manner, the easy magnetization axis of the ferromagnetic metal magnetization free layer is different from the easy magnetization axis of the ferromagnetic metal magnetization fixed layer.
  • the first temperature is set to 340 ° C. to 370 ° C.
  • the heat resistance of the tunnel magnetoresistive element can be improved, and excellent magnetoresistance characteristics can be obtained after heat treatment in a higher temperature magnetic field.
  • FIG. 1 is a schematic perspective view of a tunnel magnetoresistive element according to an embodiment of the present invention, in which an insulating layer is omitted.
  • 1 is a schematic perspective view of a tunnel magnetoresistive element according to an embodiment of the present invention, in which an insulating layer is omitted. It is a graph which shows transition of the temperature in a furnace in the heat treatment process in a magnetic field of the tunnel magnetoresistive element concerning one embodiment of the present invention.
  • the tunnel magnetoresistive element 1 is formed on a substrate 2 with an underlayer 3, a free magnetic layer 4, an insulating layer 5, a pinned magnetic layer 6, a corrosion-resistant layer 7, a protective layer 8, an electrode underlayer 9,
  • the upper electrode layer 10 has a stacked structure in which layers are sequentially stacked.
  • the free magnetic layer 4 has a laminated structure in which a soft magnetic layer 41, a magnetic coupling layer 42, and a ferromagnetic layer 43 are laminated from below.
  • the pinned magnetic layer 6 has a laminated structure in which a ferromagnetic layer 61, a magnetic coupling layer 62, a ferromagnetic layer 63, and an antiferromagnetic layer 64 are laminated from below.
  • the substrate 2 is a silicon material (Si, SiO2)
  • the underlayer 3 is Ta
  • the soft magnetic layer 41 is NiFe
  • the magnetic coupling layer 42 is Ru
  • the ferromagnetic layer 43 is CoFeB
  • the insulating layer 5 is MgO
  • Magnetic layer 61 is CoFeB
  • magnetic coupling layer 62 is Ru
  • ferromagnetic layer 63 is CoFe
  • antiferromagnetic layer 64 is IrMn
  • corrosion-resistant layer 7 is Ta
  • protective layer 8 is Ru
  • electrode underlayer 9 is Ta
  • the layer 10 is made of Au.
  • the material of the magnetic coupling layer 42 may be Ta and the material of the magnetic coupling layer 62 may be Ta, or both may be Ta.
  • the underlayer 3 functions as an underlayer for crystallizing NiFe constituting the soft magnetic layer 41.
  • the flatness of the base of the soft magnetic layer 41 and the adhesion of NiFe are improved.
  • the soft magnetic layer 41 changes its magnetization direction under the influence of an external magnetic field and is more responsive than the ferromagnetic layer 43. When the thickness of the soft magnetic layer 41 is thin, the TMR ratio is large, and when it is thick, 2Hk is small.
  • NiFe constituting the soft magnetic layer 41 has an FCC crystal structure.
  • the magnetic coupling layer 42 magnetically couples the soft magnetic layer 41 and the ferromagnetic layer 43.
  • the magnetic coupling layer 42 serves to separate the crystal structure of NiFe constituting the soft magnetic layer 41 from the crystal structure of CoFeB constituting the ferromagnetic layer 43. If the magnetic coupling layer 42 is too thin, the crystal structure of CoFeB is affected by the crystal structure of NiFe.
  • the ferromagnetic layer 43 has the same crystal structure as that of the insulating layer 5 and maintains spin jump. CoFeB constituting the ferromagnetic layer 43 has a BCC crystal structure.
  • the soft magnetic layer 41 and the ferromagnetic layer 43 are synthetically coupled through the magnetic coupling layer 42.
  • the insulating layer 5 is an insulator resistance layer having a magnetic tunnel junction and crystallized in the ⁇ 001> direction.
  • the resistance value per unit area of the bonding surface and the TMR ratio change depending on the thickness of the insulating layer 5.
  • the ferromagnetic layer 61 has the same crystal structure as that of the insulating layer 5 and maintains spin jump.
  • CoFeB constituting the ferromagnetic layer 61 has a BCC crystal structure.
  • the ferromagnetic layer 61 has an amorphous structure at the time of film formation, and B is removed by heat treatment to grow into a BCC crystal, and the released B moves to the Ta layer or the MgO layer.
  • the magnetic coupling layer 62 magnetically couples the ferromagnetic layer 61 and the ferromagnetic layer 63.
  • the way of coupling between CoFeB constituting the ferromagnetic layer 61 and CoFe constituting the ferromagnetic layer 63 changes. The change repeats every 0.4 nm. As the thickness of the magnetic coupling layer 62 is decreased, the coupling strength is obtained.
  • the ferromagnetic layer 63 is synthetically coupled to the ferromagnetic layer 61.
  • CoFe constituting the ferromagnetic layer 63 has an FCC crystal structure. IrMn constituting the antiferromagnetic layer 64 affects the crystallization of CoFe constituting the ferromagnetic layer 63 and promotes fixing of the magnetization direction of the ferromagnetic layer 63.
  • the anticorrosion layer 7 has a lower layer antioxidation effect.
  • the protective layer 8 has a protective action to prevent aging degradation. However, it may be omitted when the upper layer electrode is manufactured immediately.
  • the electrode base layer 9 is a base for improving the adhesion of the upper electrode layer 10 and the like. Wiring is joined to the upper electrode layer 10 by wire bonding or the like.
  • Each layer can be formed by, for example, a magnetron sputtering method.
  • heat treatment may be performed as necessary.
  • the easy magnetization axis 4 a of the free magnetic layer 4 is in a twisted position with respect to the easy magnetization axis 6 a of the pinned magnetic layer 6.
  • the substrate 2 on which the respective layers are stacked is placed in a furnace and placed in a magnetic field, and two heat treatments with different temperature conditions are performed as shown in FIG.
  • induced magnetic anisotropy is added to the free magnetic layer 4 and the pinned magnetic layer 6, and the easy magnetization axis 4 a of the free magnetic layer 4 and the easy magnetization axis 6 a of the pinned magnetic layer 6 are changed. It is formed. However, the easy magnetization axis 4a and the easy magnetization axis 6a are in the same direction.
  • the vertex temperature (second temperature) in the temperature transition graph A2 of the second heat treatment is lower than the vertex temperature (first temperature) in the temperature transition graph A1 of the first heat treatment (preferably lower by 10 ° C.
  • the easy magnetization axis 6a of the pinned magnetic layer 6 is formed at a twisted position with respect to the easy magnetization axis 4a by performing the second heat treatment.
  • the easy magnetization axis 4a is formed along the magnetic field direction during the first heat treatment.
  • the easy magnetization axis 6a is formed along the magnetic field direction during the second heat treatment. Therefore, by changing the magnetic field direction during the second heat treatment with respect to the magnetic field direction during the first heat treatment, the easy magnetization axis 6a can be twisted with respect to the easy magnetization axis 4a.
  • the magnetic field direction during the first heat treatment and the magnetic field direction during the second heat treatment are parallel to the layers.
  • the heat treatment time there is no particular limitation on the heat treatment time, and it may be performed, for example, for about 10 minutes to 2 hours, and it is preferable to make the second heat treatment time shorter than the first heat treatment.
  • the magnetic field in the heat treatment and the magnetic field may be, for example, in the range of 0.01 to 2 [T].
  • the external magnetic field in the second heat treatment is preferably smaller than that in the first heat treatment.
  • the twist angle ⁇ between the easy magnetization axis 4a and the easy magnetization axis 6a is 90 degrees.
  • FIG. 2B if the easy magnetization axis 4a and the easy magnetization axis 6a are not parallel, the effect of improving the sensitivity is obtained even if the twist angle ⁇ between them is not 90 degrees, but the twist angle ⁇ is 45 It is preferable that the angle is in the range of from 135 degrees to 135 degrees.
  • the area of the pinned magnetic layer 6 is equal to the area of the free magnetic layer 4 or is smaller than the area of the free magnetic layer 4 as shown in FIGS. 2A and 2B.
  • the ratio of the area of the pinned magnetic layer 6 to the area of the free magnetic layer 4 is not limited to this, but is preferably set in the range of 1: 1 to 1:10.
  • the thickness of the magnetic coupling layer 42 is set to 1.0 nm to 1.3 nm, and the first The vertex temperature (first temperature) in the temperature transition graph A1 of heat treatment is set to 340 ° C. to 370 ° C.
  • the graph of FIG. 4 shows the tunnels manufactured according to the above-described embodiment, where the first temperature is 350 ° C. and the thickness of the magnetic coupling layer 42 is 0.85, 1.0, 1.1, 1.35 (nm).
  • the magnetoresistive characteristic of the magnetoresistive element 1 is shown. In the range where the thickness of the magnetic coupling layer 42 is 1.0 nm to 1.3 nm, high and stable TMR ratio performance was obtained when the thickness was below and above this range.
  • the present invention can be used for a highly sensitive magnetic sensor or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)

Abstract

トンネル磁気抵抗素子の耐熱性を向上し、より高温の磁場中熱処理後に優れた磁気抵抗特性を獲得させる。自由磁性層(4)は、絶縁層(5)に接合する強磁性層(43)、NiFeからなる軟磁性層(41)、及びこれらの間に介在する磁気結合層(42)を有し、当該磁気結合層の材料がRu又はTaからなり、層厚が1.0nmから1.3nmである。

Description

トンネル磁気抵抗素子及びその製造方法
 本発明は、トンネル磁気抵抗素子及びその製造方法に関する。
 トンネル磁気抵抗素子(TMR(Tunnel Magneto Resistive)素子)は、磁化の向きが固定された固定磁性層、外部からの磁場の影響を受けて磁化の向きが変化する自由磁性層、及び、固定磁性層と自由磁性層との間に配置された絶縁層を有し、磁気トンネル接合(MTJ(Magnetic Tunnel Junction))を形成する。固定磁性層の磁化の向きと自由磁性層の磁化の向きとの角度差に従ってトンネル効果により絶縁層の抵抗を変化させる。
 自由磁性層には、外部からの磁場に反応しやすい軟磁性層(NiFeやCoFeSiBなど)を配置し、さらに、絶縁層に接合する強磁性層と軟磁性層との間に磁気結合層を介在させることで、磁気トンネル接合と軟磁性材料との固体物性上の結合は排除しつつ、磁気的な結合のみ発生させるシンセティック結合が利用されている。これにより、外部からの磁場に反応しやすい軟磁性材料の磁気特性変化に連動して絶縁層の抵抗を変化させ、高感度化が可能である。
 例えば、特許文献1において自由磁性層は、絶縁層と接合するCoFeBからなる強磁性層と、NiFeからなる軟磁性層と、それらの間に介在するRuからなる磁気結合層とを備えた構成とされている。
 従来、磁気結合層の厚さは薄いほど磁気トンネル接合と軟磁性材料とのシンセティック結合が強固で安定し、磁気的な挙動も安定するとして、磁気結合層は0.5nm程度と非常に薄く設定されている(特許文献1の実施例では0.85nm)。
特開2013-105825号公報
 しかしながら、磁気結合層が薄くなると耐熱性の問題がある。すなわち、高温下で磁気結合層の一部が変性してしまうことで、シンセティック結合が不安定になり、トンネル磁気抵抗素子の磁気抵抗特性を十分に実現できないという現象がある。
 上記の現象は、例えば、トンネル磁気抵抗素子を形成するための磁場中熱処理や、リフローにより基板にトンネル磁気抵抗素子を含むモジュールを実装する際に、大きな問題となっている。
 本発明は以上の従来技術における問題に鑑みてなされたものであって、トンネル磁気抵抗素子の耐熱性を向上し、より高温の磁場中熱処理後に優れた磁気抵抗特性を獲得させることを課題とする。
 以上の課題を解決するための請求項1記載の発明は、磁化の向きが固定された固定磁性層、外部からの磁場の影響を受けて磁化の向きが変化する自由磁性層、及び、前記固定磁性層と前記自由磁性層との間に配置された絶縁層により、磁気トンネル接合を形成し、前記固定磁性層の磁化の向きと前記自由磁性層の磁化の向きとの角度差に従ってトンネル効果により絶縁層の抵抗を変化させるトンネル磁気抵抗素子であって、
 前記自由磁性層は、前記絶縁層に接合する強磁性層、NiFeからなる軟磁性層、及びこれらの間に介在する磁気結合層を有し、 前記磁気結合層の材料がRu又はTaからなり、層厚が1.0nmから1.3nmであることを特徴とするトンネル磁気抵抗素子である。
 請求項2記載の発明は、請求項1に記載のトンネル磁気抵抗素子を製造する方法であって、
 前記トンネル磁気抵抗素子に対して、外部磁界を印加しながら第1の温度で第1の熱処理を行い、該第1の温度よりも低い第2の温度でかつ前記第1の熱処理とは向きを異ならせて外部磁界を印加しながら第2の熱処理を行うことで、前記強磁性金属磁化自由層の容易磁化軸を、前記強磁性金属磁化固定層の容易磁化軸に対して異なる方向にするにあたり、
 前記第1の温度を340℃から370℃とすることを特徴とするトンネル磁気抵抗素子の製造方法である。
 本発明によれば、トンネル磁気抵抗素子の耐熱性を向上し、より高温の磁場中熱処理後に優れた磁気抵抗特性を獲得させることができる。
本発明の一実施形態に係るトンネル磁気抵抗素子が構成されたTMRセンサーモジュールの積層構造の断面図である。 本発明の一実施形態に係るトンネル磁気抵抗素子の模式的斜視図であり、絶縁層を省略して描いている。 本発明の一実施形態に係るトンネル磁気抵抗素子の模式的斜視図であり、絶縁層を省略して描いている。 本発明の一実施形態に係るトンネル磁気抵抗素子の磁場中熱処理工程における炉中温度の変遷を示すグラフである。 本発明例及び比較例に係り、外部磁界(H(Oe)、横軸)に対するトンネル磁気抵抗素子の抵抗の変化率(TMR比(%)、縦軸)を示したグラフである。
 以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。
 図1に示すようにトンネル磁気抵抗素子1は、基板2上に、下地層3、自由磁性層4、絶縁層5、固定磁性層6、耐腐食層7、保護層8、電極下地層9、上部電極層10が順次積層された積層構造を有する。
 自由磁性層4は、下から軟磁性層41、磁気結合層42、強磁性層43が積層された積層構造を有する。
 固定磁性層6は、下から強磁性層61、磁気結合層62、強磁性層63、反強磁性層64が積層された積層構造を有する。
 材料構成としては、基板2がシリコン材料(Si,SiO2)、下地層3がTa、軟磁性層41がNiFe、磁気結合層42がRu、強磁性層43がCoFeB、絶縁層5がMgO、強磁性層61がCoFeB、磁気結合層62がRu、強磁性層63がCoFe、反強磁性層64がIrMn、耐腐食層7がTa、保護層8がRu、電極下地層9がTa、上部電極層10がAuで構成される。なお、本実施形態に拘わらず、磁気結合層42の材料をTa及び磁気結合層62の材料は、いずれか一方をTa、又は双方をTaとしてもよい。
 下地層3は、軟磁性層41を構成するNiFeを結晶化させるための下地として機能する。軟磁性層41の下地の平面度、NiFeの付着性を向上させる。
 軟磁性層41は、外部からの磁場の影響を受けて磁化の向きが変化し、強磁性層43より反応しやすい。軟磁性層41の厚みは、薄いとTMR比が大きくなり、厚いと2Hkが小さくなるため、バランスよく設定される。軟磁性層41を構成するNiFeは、FCC結晶構造となる。
 磁気結合層42は、軟磁性層41と強磁性層43とを磁気的に結合させる。磁気結合層42は、軟磁性層41を構成するNiFeの結晶構造と、強磁性層43を構成するCoFeBの結晶構造とを切り離す役目を有する。磁気結合層42が薄すぎると、CoFeBの結晶構造がNiFeの結晶構造に影響される。
 強磁性層43は、絶縁層5と結晶構造が一致し、スピンジャンプを保持する。強磁性層43を構成するCoFeBは、BCC結晶構造となる。磁気結合層42の介在により軟磁性層41と強磁性層43とがシンセティック結合する。
 絶縁層5、磁気トンネル接合の絶縁体抵抗層であり、<001>方向に結晶化している。絶縁層5の厚みにより接合面の単位面積当たりの抵抗値、TMR比が変化する。
 強磁性層61は、絶縁層5と結晶構造が一致し、スピンジャンプを保持する。強磁性層61を構成するCoFeBは、BCC結晶構造となる。強磁性層61は、成膜時はアモルファス構造で、熱処理によりBが抜けてBCC結晶に成長し、抜けたBはTa層やMgO層に移動する。
 磁気結合層62は、強磁性層61と強磁性層63とを磁気的に結合させる。磁気結合層62の厚みにより、強磁性層61を構成するCoFeBと強磁性層63を構成するCoFeとの結合の仕方が変化する。その変化は0.4nm毎に繰り返す。磁気結合層62の厚みは、薄いほど結合強度が得られるが、薄すぎると熱処理できなくなる。
 強磁性層63は、強磁性層61とシンセティック結合する。強磁性層63を構成するCoFeは、FCC結晶構造となる。
 反強磁性層64を構成するIrMnは、強磁性層63を構成するCoFeの結晶化に影響し、強磁性層63の磁化の向きの固定化を促進する。
 耐腐食層7は、下層の酸化防止作用がある。
 保護層8は、経年劣化防止する保護作用がある。但し、上層の電極をすぐ製作する場合は省略される場合もある。
 電極下地層9は、上部電極層10の付着性向上等のための下地である。
 上部電極層10に、ワイヤーボンディングなどで配線が接合される。
(製造方法)
 各層は、例えば、マグネトロンスパッタリング法により形成することができる。また、所望の結晶構造を得る等の目的のために、必要に応じて熱処理を施すとよい。本実施形態にあっては、図2A,図2Bに示すように、自由磁性層4の容易磁化軸4aは、固定磁性層6の容易磁化軸6aに対してねじれの位置にある。このような関係の容易磁化軸4a,6aを得るために、各層を積層した基板2を炉に納めるとともに磁界中に置き、図3に示すように温度条件の異なる2回の熱処理を行う。
 まず、第1の熱処理を行うことで、自由磁性層4及び固定磁性層6に誘導磁気異方性が付加され、自由磁性層4の容易磁化軸4a及び固定磁性層6の容易磁化軸6aが形成される。但し、容易磁化軸4aと容易磁化軸6aとが同方向を向いている。第2の熱処理の温度変遷グラフA2における頂点温度(第2の温度)は、第1の熱処理の温度変遷グラフA1における頂点温度(第1の温度)より低く(好適には10℃以上低く)、第1の熱処理の後、好ましくは室温付近まで冷却した後、第2の熱処理を行うことで固定磁性層6の容易磁化軸6aが容易磁化軸4aに対してねじれの位置に形成される。容易磁化軸4aは、第1の熱処理時の磁界方向に沿って形成される。容易磁化軸6aは、第2の熱処理時の磁界方向に沿って形成される。したがって、第1の熱処理時の磁界方向に対し第2の熱処理時の磁界方向を変えることで容易磁化軸6aを容易磁化軸4aに対してねじれの位置にすることができる。第1の熱処理時の磁界方向及び第2の熱処理時の磁界方向は層に平行である。したがって、基板2上の積層方向の軸(=基板2に垂直な軸)まわりに磁界方向を回転させることで、容易磁化軸6aを容易磁化軸4aに対してねじれの位置にすることができる。熱処理時間に特に制限はなく、例えば10分~2時間程度行えばよく、また、第1の熱処理よりも第2の熱処理の時間を短くすることが好ましい。熱処理の際の磁界にも特に制限はなく、例えば0.01~2[T]の範囲で行えばよく、また、第1の熱処理よりも第2の熱処理における外部磁界を小さくすることが好ましい。
 図2Aに示すように容易磁化軸4aと容易磁化軸6aとのねじれの角φは90度を目標として作製すれば足りる。図2Bに示すように容易磁化軸4aと容易磁化軸6aが平行でなければ、両者の成すねじれの角φが90度でなくても感度向上の効果はあるが、ねじれの角φは、45度から135度の範囲とすることが好ましい。
 また、固定磁性層6の面積は、自由磁性層4の面積と等しいか、図2A,図2Bに示すように、自由磁性層4の面積に対して小さくする。固定磁性層6の面積を相対的に小さくすることで、固定磁性層6から自由磁性層4への漏れ磁界の影響が小さくなり、磁気検出の感度をさらに向上させることができる。固定磁性層6の面積と、自由磁性層4の面積との比率は、これに限るものではないが、1:1~1:10の範囲に設定することが好ましい。
(耐熱性と磁気抵抗特性)
 トンネル磁気抵抗素子1の耐熱性を向上し、より高温の磁場中熱処理後に優れた磁気抵抗特性を獲得させるために、磁気結合層42の層厚を1.0nmから1.3nmとし、第1の熱処理の温度変遷グラフA1における頂点温度(第1の温度)を340℃から370℃とする。
 図4のグラフは、第1の温度を350℃とし、磁気結合層42の層厚を0.85,1.0,1.1,1.35(nm)として上記実施形態に従いそれぞれ製作したトンネル磁気抵抗素子1の磁気抵抗特性を示す。
 磁気結合層42の層厚が1.0nmから1.3nmである範囲で、この範囲を下回る場合及び上回る場合に対して、高く安定したTMR比性能が得られた。
 本発明は、高感度な磁気センサー等に利用することができる。
1 トンネル磁気抵抗素子
2 基板
3 下地層
4 自由磁性層
4a 容易磁化軸
5 絶縁層
6 固定磁性層
6a 容易磁化軸
7 耐腐食層
8 保護層
9 電極下地層
10 上部電極層
41 軟磁性層
42 磁気結合層
43 強磁性層
61 強磁性層
62 磁気結合層
63 強磁性層
64 反強磁性層

Claims (2)

  1.  磁化の向きが固定された固定磁性層、外部からの磁場の影響を受けて磁化の向きが変化する自由磁性層、及び、前記固定磁性層と前記自由磁性層との間に配置された絶縁層により、磁気トンネル接合を形成し、前記固定磁性層の磁化の向きと前記自由磁性層の磁化の向きとの角度差に従ってトンネル効果により絶縁層の抵抗を変化させるトンネル磁気抵抗素子であって、
     前記自由磁性層は、前記絶縁層に接合する強磁性層、NiFeからなる軟磁性層、及びこれらの間に介在する磁気結合層を有し、
     前記磁気結合層の材料がRu又はTaからなり、層厚が1.0nmから1.3nmであることを特徴とするトンネル磁気抵抗素子。
  2.  請求項1に記載のトンネル磁気抵抗素子を製造する方法であって、
     前記トンネル磁気抵抗素子に対して、外部磁界を印加しながら第1の温度で第1の熱処理を行い、該第1の温度よりも低い第2の温度でかつ前記第1の熱処理とは向きを異ならせて外部磁界を印加しながら第2の熱処理を行うことで、前記強磁性金属磁化自由層の容易磁化軸を、前記強磁性金属磁化固定層の容易磁化軸に対して異なる方向にするにあたり、
     前記第1の温度を340℃から370℃とすることを特徴とするトンネル磁気抵抗素子の製造方法。
PCT/JP2017/005608 2016-02-19 2017-02-16 トンネル磁気抵抗素子及びその製造方法 WO2017141999A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/077,601 US10559748B2 (en) 2016-02-19 2017-02-16 Tunnel magnetic resistance element and method for manufacturing same
JP2018500183A JP6978000B2 (ja) 2016-02-19 2017-02-16 トンネル磁気抵抗素子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-029566 2016-02-19
JP2016029566 2016-02-19

Publications (1)

Publication Number Publication Date
WO2017141999A1 true WO2017141999A1 (ja) 2017-08-24

Family

ID=59626053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005608 WO2017141999A1 (ja) 2016-02-19 2017-02-16 トンネル磁気抵抗素子及びその製造方法

Country Status (3)

Country Link
US (1) US10559748B2 (ja)
JP (1) JP6978000B2 (ja)
WO (1) WO2017141999A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114034932B (zh) * 2021-11-04 2022-04-19 之江实验室 一种测量亚铁磁垂直各向异性薄膜的平面霍尔电阻的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332318A (ja) * 1998-06-30 2000-11-30 Toshiba Corp 磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP2013105825A (ja) * 2011-11-11 2013-05-30 Konica Minolta Advanced Layers Inc 生体磁気センサー及びその製造方法
WO2015008718A1 (ja) * 2013-07-19 2015-01-22 コニカミノルタ株式会社 磁気センサー及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822838B2 (en) * 2002-04-02 2004-11-23 International Business Machines Corporation Dual magnetic tunnel junction sensor with a longitudinal bias stack
JP2003324225A (ja) * 2002-04-26 2003-11-14 Nec Corp 積層フェリ型磁性薄膜並びにそれを使用した磁気抵抗効果素子及び強磁性トンネル素子
US9768377B2 (en) * 2014-12-02 2017-09-19 Micron Technology, Inc. Magnetic cell structures, and methods of fabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332318A (ja) * 1998-06-30 2000-11-30 Toshiba Corp 磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP2013105825A (ja) * 2011-11-11 2013-05-30 Konica Minolta Advanced Layers Inc 生体磁気センサー及びその製造方法
WO2015008718A1 (ja) * 2013-07-19 2015-01-22 コニカミノルタ株式会社 磁気センサー及びその製造方法

Also Published As

Publication number Publication date
US10559748B2 (en) 2020-02-11
JP6978000B2 (ja) 2021-12-08
US20190044058A1 (en) 2019-02-07
JPWO2017141999A1 (ja) 2018-12-13

Similar Documents

Publication Publication Date Title
US11309489B2 (en) Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
TWI616007B (zh) 對磁場具有改良響應的自旋閥磁阻元件
US10746526B2 (en) Strain sensing element and pressure sensor
JP5429480B2 (ja) 磁気抵抗素子、mram、及び磁気センサー
US9705075B2 (en) Cobalt (Co) and platinum (Pt)-based multilayer thin film having inverted structure and method for manufacturing same
JP2017505538A5 (ja)
EP3143649A1 (en) Reduction of barrier resistance x area (ra) product and protection of perpendicular magnetic device applications
JPWO2015033464A1 (ja) 磁気センサ素子
US10243139B2 (en) Magnetoresistive effect element
JP2018073913A5 (ja)
JP2018073913A (ja) 磁気センサおよびその製造方法
US9753100B2 (en) Magnetic sensor
CN102135605B (zh) 薄膜磁传感器及其制造方法
WO2017141999A1 (ja) トンネル磁気抵抗素子及びその製造方法
US20200313083A1 (en) Magnetoresistive element, manufacturing method thereof and magnetic sensor
WO2020158159A1 (ja) 応力センサ及びその製造方法
US9523746B2 (en) Giant magnetoresistance element and current sensor using the same
JP6969751B2 (ja) トンネル磁気抵抗素子及び磁化方向補正回路
US10998131B2 (en) Multilayer device having an improved antiferromagnetic pinning layer and a corresponding manufacturing method
JP2019033106A (ja) 面直通電巨大磁気抵抗素子用積層膜、面直通電巨大磁気抵抗素子、及びその用途
JP6331862B2 (ja) 磁気抵抗素子
JP2022538384A (ja) 異方性磁場の低い2次元外部磁場を検知する磁場センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018500183

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753255

Country of ref document: EP

Kind code of ref document: A1