WO2017141909A1 - コンベヤベルト用ゴム組成物およびコンベヤベルト - Google Patents

コンベヤベルト用ゴム組成物およびコンベヤベルト Download PDF

Info

Publication number
WO2017141909A1
WO2017141909A1 PCT/JP2017/005347 JP2017005347W WO2017141909A1 WO 2017141909 A1 WO2017141909 A1 WO 2017141909A1 JP 2017005347 W JP2017005347 W JP 2017005347W WO 2017141909 A1 WO2017141909 A1 WO 2017141909A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
conveyor belt
rubber composition
molecular weight
mass
Prior art date
Application number
PCT/JP2017/005347
Other languages
English (en)
French (fr)
Inventor
徳慶 鄒
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to AU2017221581A priority Critical patent/AU2017221581B2/en
Priority to JP2018500124A priority patent/JP6904328B2/ja
Priority to CN201780011054.XA priority patent/CN108602622A/zh
Publication of WO2017141909A1 publication Critical patent/WO2017141909A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G15/00Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration
    • B65G15/30Belts or like endless load-carriers
    • B65G15/32Belts or like endless load-carriers made of rubber or plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to a rubber composition for a conveyor belt and a conveyor belt.
  • a rubber belt used as a conveyor belt is a core (hereinafter referred to as “reinforcing layer”) made of canvas or steel cord, and the upper and lower surfaces of the core are covered with an upper cover rubber layer and a lower cover rubber layer, respectively. It is a laminated structure.
  • This rubber belt is processed into a loop-shaped conveyor belt with both ends joined to each other, and circulates and drives a conveyance path formed by a large number of rollers and pulleys, so that an object to be conveyed (for example, ore, earth and sand, and A belt conveyor that continuously conveys bulk materials such as grains; bulk items such as boxes, bags, and pallets; etc.) along the conveyance path.
  • the belt conveyor drives the conveyor belt by rotating the pulley. It is known that the power consumption at this time generally increases when the conveying path is long and the belt conveyor becomes a long machine length. This is thought to be because the number of rollers that support the conveyor belt increases as the machine length increases, so that the power loss (energy loss) caused by the contact between the lower belt rubber layer of the conveyor belt and the roller increases. .
  • Patent Document 1 contains “natural rubber (NR) and butadiene rubber (BR), and the mass ratio (NR / BR) of the natural rubber (NR) and the butadiene rubber (BR) is 90. / 10 to 55/45 of rubber component, ultra high molecular weight polyethylene, and carbon black, and the content of the ultra high molecular weight polyethylene is 5 to 22 parts by mass with respect to 100 parts by mass of the rubber component. And the carbon black content is 5 to 55 parts by mass with respect to 100 parts by mass of the rubber component, and the fatty acid amide content is less than 5 parts by mass with respect to 100 parts by mass of the rubber component.
  • Conveyor belt rubber composition and “Conveyor belt using at least the lower cover rubber” as a composition thereof are described ([Claim 1] [Claim 4]).
  • an object of the present invention is to provide a rubber composition for a conveyor belt capable of producing a conveyor belt having a cover rubber layer excellent in wear resistance, and a conveyor belt using the same.
  • the present inventor made the rubber component containing a predetermined amount of butadiene rubber contain ultrahigh molecular weight polyethylene and carbon black having predetermined characteristics, thereby providing wear resistance. It has been found that a rubber composition for a conveyor belt capable of producing a conveyor belt having a cover rubber layer having excellent properties and a conveyor belt using the same can be obtained. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • the content of the ultrahigh molecular weight polyethylene is 1.0 to 15.0 parts by mass with respect to 100 parts by mass of the rubber component
  • the carbon black content is 25 to 45 parts by mass with respect to 100 parts by mass of the rubber component
  • Ratio of weight average molecular weight of butadiene rubber to long chain branching index (LCB value) of butadiene rubber is 5.5 ⁇ 10 4 to 16.6 ⁇ 10 4
  • a rubber composition for a conveyor belt capable of producing a conveyor belt having a cover rubber layer excellent in wear resistance, and a conveyor belt using the same.
  • FIG. 1 is a cross-sectional view schematically showing an example of an embodiment of the conveyor belt of the present invention.
  • the rubber composition for conveyor belts of the present invention is characterized in that a rubber component containing a predetermined amount of butadiene rubber contains ultrahigh molecular weight polyethylene and carbon black having predetermined characteristics.
  • a rubber composition for a conveyor belt after vulcanization hereinafter simply referred to as “rubber composition after vulcanization”.
  • M50 stress
  • loss tangent loss tangent
  • the wear of the cover rubber layer of the conveyor belt is, for example, an upper surface cover rubber layer, which is a destruction phenomenon of the rubber composition after vulcanization in a minute region caused by the friction between the conveyed object and the cover rubber layer.
  • the amount of wear increases as the frictional force between the individuals that rub against each other increases, and the frictional force varies depending on various factors such as load, sliding speed, surface roughness, and ambient temperature. This indicates that when the environment in which the conveyor belt is used is different, the main factor that causes wear, that is, the factor that affects the frictional force is different.
  • a conveyor belt having a cover rubber layer with excellent wear resistance can be produced even if a compounding design is performed by paying attention only to the numerical value of the abrasion resistance test result of the vulcanized rubber composition. It was difficult to obtain a rubber composition for a conveyor belt and a conveyor belt using the same.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • a rubber composition for conveyor belts according to an embodiment of the present invention includes a rubber component containing 45 to 100% by mass of butadiene rubber, ultrahigh molecular weight polyethylene, carbon And the content of the ultra high molecular weight polyethylene is 1.0 to 15.0 parts by mass with respect to 100 parts by mass of the rubber component, and the content of the carbon black is 100 parts by mass of the rubber component.
  • a rubber composition for conveyor belts, wherein the carbon black has a nitrogen adsorption specific surface area of 85 to 160 m 2 / g and a dibutyl phthalate oil absorption of 105 to 140 ml / 100 g. is there. Below, each component contained in the rubber composition of this invention is demonstrated.
  • the rubber component contained in the rubber composition of the present invention contains 45 to 100% by mass of butadiene rubber (BR).
  • BR butadiene rubber
  • the content of butadiene rubber (BR) in the rubber component is preferably 55 to 100% by mass, more preferably 75 to 95% by mass, and still more preferably 85 to 90% by mass. .
  • the vulcanizate of the rubber composition of the present invention is more excellent in wear resistance when used for a cover rubber layer of a heavy load and low speed operation conveyor belt. Have sex.
  • content of butadiene rubber (BR) is below an upper limit, a rubber composition will have the outstanding workability.
  • the rubber component may contain rubber other than butadiene rubber (BR).
  • rubber other than butadiene rubber (BR) include natural rubber (NR), isoprene rubber, styrene-butadiene rubber, and ethylene-propylene-diene rubber. Of these, natural rubber (NR) is preferred because of its excellent compatibility with butadiene rubber (BR).
  • the content mass ratio (NR / BR) of the content of natural rubber (NR) to the content of butadiene rubber (BR) in the rubber component is 10 / 90-55 / 45 is preferred, 20 / 85-45 / 55 is more preferred, and 25 / 75-45 / 55 is even more preferred.
  • BR butadiene rubber
  • the weight average molecular weight of butadiene rubber (BR) in the rubber component is preferably 500,000 to 1,000,000, more preferably 700,000 to 1,000,000.
  • the M50 in the rubber composition after vulcanization is larger and the loss tangent tends to be smaller, so that the vulcanized product of the rubber composition of the present invention can be applied with a small load and / or When used for the cover rubber layer of a high-speed conveyor belt, it has better wear resistance.
  • a weight average molecular weight is a weight average molecular weight (polystyrene conversion) measured by gel permeation chromatography (Gel permeation chromatography (GPC)), and it is preferable to use tetrahydrofuran (THF) as a solvent for the measurement.
  • GPC Gel permeation chromatography
  • the Mooney viscosity of the butadiene rubber (BR) in an unvulcanized state is preferably 40 to 90, more preferably 50 to 80. When the Mooney viscosity of butadiene rubber (BR) is within this range, the processability of the rubber composition is more excellent.
  • the Mooney viscosity is a Mooney viscosity (ML1 + 4) at 100 ° C. measured using a Mooney viscometer in accordance with JIS K6300.
  • the ratio of the weight average molecular weight of the butadiene rubber to the long chain branching index (LCB value) of the butadiene rubber (BR) is 5.5 ⁇ 10 4 to 16.6 ⁇ 10 4. It is preferably 5.8 ⁇ 10 4 to 15.3 ⁇ 10 4 , more preferably 7.5 ⁇ 10 4 to 14.2 ⁇ 10 4 , and 8.2 ⁇ It is particularly preferably 10 4 to 14.2 ⁇ 10 4 .
  • the ratio of the weight average molecular weight to the long chain branching index (LCB value) is 5.5 ⁇ 10 4 to 16.6 ⁇ 10 4 , the M50 in the rubber composition after vulcanization is larger and the loss tangent is more When the vulcanizate of the rubber composition of the present invention is used for a cover rubber layer of a conveyor belt with a small load and / or a high speed operation, the wear resistance is more excellent.
  • the long chain branching index (LCB value: Long Chain Branch) is a value measured by a LAOS (Large Amplitude Oscillation Shear) measurement method using an RPA2000 type tester (manufactured by Alpha Technologies). .
  • the long chain branching index indicates that the polymer obtained has a higher degree of linearity and a lower degree of branching as the obtained numerical value approaches zero. Therefore, the ratio of the weight average molecular weight to the long chain branching index (LCB value) is considered to have a positive correlation with the number of molecular chain terminals per unit amount of the butadiene rubber, and this value is within the above range. Thus, it is presumed that the effect of reducing the loss tangent in particular is obtained.
  • the long chain branching index see “FT-Rheology, a Tool to Quantify Long Chain Branching (LCB) in Natural Rubber and its Effect on Mastication, Mixing Behavior and Final Properties.” (Henri G. Burhin, Alpha Technologies, UK 15 Rue du Culot B-1435 Hevillers, Belgium).
  • M / L ⁇ ⁇ (M i / L i ) ⁇ a i ⁇
  • M / L represents the ratio of the weight average molecular weight of the butadiene rubber to the long chain branching index (LCB value)
  • M i , L i , and a i are each the weight average molecular weight of each butadiene rubber.
  • the butadiene rubber (BR) can be synthesized by a known method, for example, by polymerizing butadiene in an inert organic solvent in the presence of a catalyst containing a transition metal compound.
  • a catalyst containing a transition metal compound examples include cobalt, vanadium, lithium, nickel, and neodymium. Of these, cobalt and neodymium are preferable, and neodymium is more preferable.
  • Butadiene rubber obtained by polymerizing butadiene in the presence of a neodymium-based catalyst is easy to be linear with few branches in the microstructure, and as described above, the loss tangent of the rubber composition after vulcanization is smaller. Prone.
  • the rubber composition of the present invention contains ultra high molecular weight polyethylene (U-PE).
  • U-PE ultra high molecular weight polyethylene
  • M50 can be enlarged, maintaining the loss tangent of the rubber composition after vulcanization.
  • Ultra high molecular weight polyethylene has poor compatibility with the butadiene rubber in the rubber component, and blending this has little effect on the loss tangent of the rubber component itself, while U-PE is dispersed in the rubber component. Therefore, it is estimated that it contributed to the improvement of M50.
  • the content of the ultra high molecular weight polyethylene (U-PE) is 1.0 to 15.0 parts by mass with respect to 100 parts by mass of the rubber component.
  • the content of ultrahigh molecular weight polyethylene (U-PE) is less than the lower limit, the M50 of the rubber composition after vulcanization is small and the wear resistance is poor.
  • the upper limit value loss tangent and pico wear will increase, and as a result, the wear resistance of the rubber composition after vulcanization will be poor.
  • 1.0 to 12.0 parts by mass is more preferable, and 1.0 to 10.0 parts by mass is more preferable in that the rubber composition after vulcanization has excellent bending resistance.
  • the molecular weight of the ultra high molecular weight polyethylene (U-PE) is preferably 500,000 to 4,000,000, more preferably 1,000,000 to 3,000,000. When the molecular weight is within this range, M50 is further improved and the processability is hardly impaired.
  • the viscosity average molecular weight of ultra high molecular weight polyethylene (U-PE) was measured by an intrinsic viscosity method (ASTM D4020-11 X5. NOMINAL VISCOSITY AVERAGE MOLECULAR WEIGHT OF ULTRA-HIGH MOLECULAR-WEIGHT POLYETLEENE).
  • the average particle size of the ultra high molecular weight polyethylene (U-PE) is preferably 1 to 300 ⁇ m, and more preferably 10 to 50 ⁇ m. If the average particle size is within this range, the dispersibility in the rubber tends to be good.
  • the ultra high molecular weight polyethylene (U-PE) is available, for example, as Mipelon XM220 (manufactured by Mitsui Chemicals), Hi-Zex Million 340M (manufactured by Mitsui Chemicals), or the like.
  • the rubber composition of the present invention contains carbon black (CB).
  • the content of the carbon black (CB) is 25 to 45 parts by mass, preferably 30 to 40 parts by mass with respect to 100 parts by mass of the rubber component.
  • the content of carbon black (CB) is less than the lower limit, the M50 of the rubber composition after vulcanization is small and pico wear is also increased, resulting in poor wear resistance of the rubber composition after vulcanization.
  • the loss tangent increases, resulting in poor wear resistance after vulcanization.
  • the carbon black contained in the rubber composition of the present invention has a nitrogen adsorption specific surface area of 85 to 160 m 2 / g and a dibutyl phthalate oil absorption of 105 to 140 ml / 100 g.
  • carbon black (CB) having the above characteristics is not contained, M50 of the rubber composition after vulcanization is small and pico abrasion is increased, resulting in poor wear resistance of the rubber composition after vulcanization.
  • Examples of such carbon black include SAF, ISAF-HS, ISAF-LS, and HAF-HS grades, and the rubber composition after vulcanization has a larger M50 and a smaller loss tangent, resulting in HAF-HS, ISAF-HS, and ISAF-LS grades are more preferable in that the rubber composition after vulcanization is more excellent in wear resistance.
  • Commercially available carbon black is available as Show Black N110, N234, N220, N339 (all manufactured by Cabot Japan).
  • the nitrogen adsorption ratio of carbon black (CB) in that the M50 of the rubber composition after vulcanization is larger and the loss tangent is smaller, and as a result the wear resistance of the rubber composition after vulcanization is more excellent.
  • the surface area is 85 to 125 m 2 / g
  • the dibutyl phthalate oil absorption is 110 to 125 ml / 100 g.
  • the nitrogen adsorption specific surface area is a value measured in accordance with ASTM D4820-93 and is an index representing the particle size of carbon black particles
  • the dibutyl phthalate oil absorption is in accordance with ASTM D2414-93. It is an index that represents the degree of connection of carbon black particles, the so-called structure size (complexity of shape).
  • the rubber composition of the present invention may contain a crosslinking agent or a vulcanization retarder such as a vulcanizing agent, a vulcanization aid, and a vulcanization accelerator in addition to the above-described components.
  • a crosslinking agent or a vulcanization retarder such as a vulcanizing agent, a vulcanization aid, and a vulcanization accelerator in addition to the above-described components.
  • Various compounding agents may be contained as long as the purpose is not impaired.
  • Examples of the vulcanizing agent include sulfur-based, organic peroxide-based, metal oxide-based, phenol resins, quinone dioxime vulcanizing agents, and the like.
  • Examples of the sulfur vulcanizing agent include powdered sulfur, precipitated sulfur, highly dispersible sulfur, surface-treated sulfur, insoluble sulfur, dimorpholine disulfide, alkylphenol disulfide and the like.
  • vulcanization accelerators examples include aldehyde / ammonia, guanidine, thiourea, thiazole, sulfenamide, thiuram, and dithiocarbamate vulcanization accelerators.
  • Specific examples of the sulfenamide-based vulcanization accelerator include N-cyclohexyl-2-benzothiazolylsulfenamide (CZ), Nt-butyl-2-benzothiazolylsulfenamide (NS ) And the like.
  • vulcanization aid general rubber aids can be used together, and examples thereof include zinc white, stearic acid, oleic acid, and Zn salts thereof.
  • the total content in the case of containing such a vulcanizing agent, vulcanization accelerator and vulcanizing aid is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component, More preferably, it is 0.5 to 5 parts by mass. When the content range is within this range, the effect of the present invention is superior.
  • compounding agents include reinforcing agents (fillers) other than the above-described carbon black, anti-aging agents, antioxidants, pigments (dyes), plasticizers, thixotropic agents, ultraviolet absorbers, flame retardants, solvents, Surfactants (including leveling agents), dispersants, dehydrating agents, rust preventives, adhesion-imparting agents, antistatic agents, processing aids and the like can be mentioned.
  • fillers other than the above-described carbon black
  • anti-aging agents antioxidants, pigments (dyes), plasticizers, thixotropic agents, ultraviolet absorbers, flame retardants, solvents, Surfactants (including leveling agents), dispersants, dehydrating agents, rust preventives, adhesion-imparting agents, antistatic agents, processing aids and the like
  • antioxidants pigments
  • plasticizers thixotropic agents
  • ultraviolet absorbers flame retardants
  • solvents solvents
  • Surfactants including leveling agents
  • dispersants including leveling agents
  • dehydrating agents rust
  • the rubber composition of the present invention is prepared by adding the above-mentioned rubber component, ultrahigh molecular weight polyethylene, carbon black, and other various compounding agents, kneading with a Banbury mixer or the like, and then using a mixing roll machine or the like with a vulcanizing agent or a vulcanizing agent. It can be carried out by kneading a vulcanization aid and a vulcanization accelerator. Further, vulcanization can be carried out under the usual conditions. Specifically, for example, it is carried out by heating at a temperature of about 148 ° C. for 30 minutes.
  • a conveyor belt according to an embodiment of the present invention (hereinafter referred to as “conveyor belt of the present invention”) includes an upper surface cover rubber layer, a reinforcing layer, and a lower surface cover rubber layer. It is a conveyor belt using the rubber composition of the present invention. Below, the conveyor belt of this invention is demonstrated using FIG. 1, However, The structure of the conveyor belt of this invention is not limited to this. For example, you may use the rubber composition of this invention for an upper surface cover rubber layer and a lower surface cover rubber layer.
  • FIG. 1 is a cross-sectional view schematically showing an example of an embodiment of a conveyor belt according to the present invention.
  • the conveyor belt 10 is a laminated structure in which a reinforcing layer 1 and upper and lower surfaces thereof are covered with an upper cover rubber layer 2 and a lower cover rubber layer 3.
  • the top cover rubber layer 2 has an outer layer 2a and an inner layer 2b in order from the conveying surface 4 side.
  • the lower surface cover rubber layer 3 also has an outer layer 3a and an inner layer 3b in order from a surface in contact with a drive pulley or roller of a belt conveyor (not shown).
  • These outer layers (2a, 3a) and inner layers (2b, 3b) may be formed using the same rubber composition, or may be formed using different rubber compositions.
  • the outer layers (2a, 3a) and the inner layers (2b, 3b) may have a multilayer structure.
  • the conveyor belt 10 is a conveyor belt using the rubber composition of the present invention for at least the upper cover rubber layer 2. Therefore, at least one layer selected from the group consisting of the outer layer 2a and the inner layer 2b may be formed using the rubber composition of the present invention.
  • the rubber composition of the present invention is preferable as a rubber composition used for the outer layer 2a that is in direct contact with the object to be conveyed.
  • the inner layer 2b is preferably formed using another rubber composition because manufacturing costs and adhesiveness with the reinforcing layer 1 are important.
  • the upper cover rubber layer 2 is composed of a plurality of layers. It is preferable that it is comprised from these.
  • the lower surface cover rubber layer 3 of the conveyor belt 10 is preferably composed of a plurality of layers.
  • the rubber composition of the present invention may be used for either or both of the outer layer 3a and the inner layer 3b, or a rubber composition different from the rubber composition of the present invention may be used for the outer layer 3a and the inner layer 3b. good.
  • the core of the reinforcing layer 1 is not particularly limited and can be appropriately selected from those used for ordinary conveyor belts.
  • a rubber paste is applied to a material composed of cotton cloth and chemical fiber or synthetic fiber, and infiltrated. And those obtained by folding a material treated with RFL (Resorcin Formalin Latex), canvas, special woven nylon canvas, steel cord, and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the shape of the reinforcement layer 1 is not specifically limited, A sheet form may be sufficient and a wire-shaped reinforcement wire may be embedded in parallel.
  • the manufacturing method of the conveyor belt 10 is not specifically limited, The method used normally etc. can be employ
  • the conveyor belt 10 of the present invention is excellent in wear resistance because the upper cover rubber layer 2, preferably the outer layer 2a thereof, is formed using the rubber composition of the present invention.
  • ⁇ NR Natural rubber (RSS # 3)
  • BR1 Butadiene rubber (Nipol BR1220, weight average molecular weight 460,000, manufactured by Nippon Zeon, long chain branching index 9.5, Mooney viscosity 44, butadiene rubber obtained by polymerizing butadiene in the presence of a cobalt-based catalyst)
  • BR2 Butadiene rubber (Ubepol BR-360L, weight average molecular weight 560,000, manufactured by Ube Industries, long chain branching index 7.3, Mooney viscosity 54, butadiene obtained by polymerizing butadiene in the presence of a cobalt-based catalyst Rubber)
  • BR3 Butadiene rubber (Buna CB21, weight average molecular weight 770,000, manufactured by LANXESS, long chain branching index 8.5, Mooney viscosity 73, butadiene rubber obtained by polymerizing butadiene in the presence of a ne
  • Example 1 is superior to Comparative Example 1 in that M50 of the rubber composition after vulcanization is large, loss tangent (tan ⁇ ) and pico wear are small, and wear resistance is excellent. all right.
  • Comparative Example 1 and Comparative Examples 2 to 5 the desired effect was not obtained. Comparing Example 1, Example 2 and Example 3, Example 2 and Example 3 containing BR having a weight average molecular weight of 500,000 to 1,000,000 are superior in M50 and loss tangent after vulcanization. It has been found that when used in a cover rubber layer of a conveyor belt that is lightly loaded and / or operated at high speed, it has better wear resistance.
  • Example 3 in which the ratio (weight average molecular weight / long chain branching index) of the weight average molecular weight and long chain branching index (LCB value) of the butadiene rubber contained is 9.0 ⁇ 10 4 is 7.6 ⁇ 10 6.
  • Example 2 which is 4
  • M50 and loss tangent after vulcanization were further improved.
  • carbon black (CB) has a nitrogen adsorption specific surface area of 85 to 125 m 2 / g and dibutyl phthalate oil absorption of 110 to 125 ml / g. It was found that when it was 100 g, the M50 of the rubber composition after vulcanization was larger and the loss tangent was smaller, and as a result, the rubber composition after vulcanization was more excellent in wear resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Belt Conveyors (AREA)

Abstract

本発明は、耐摩耗性に優れたカバーゴム層を有するコンベヤベルトを作製することができるコンベヤベルト用ゴム組成物、および、それを用いたコンベヤベルトを提供する。本発明のコンベヤベルト用ゴム組成物は、ブタジエンゴムを45~100質量%含有するゴム成分と、超高分子量ポリエチレンと、カーボンブラックとを含有し、上記超高分子量ポリエチレンの含有量が、上記ゴム成分100質量部に対して1.0~15.0質量部であり、上記カーボンブラックの含有量が、上記ゴム成分100質量部に対して25~45質量部であり、上記カーボンブラックの窒素吸着比表面積が85~160m2/gであり、ジブチルフタレート吸油量が105~140ml/100gである。

Description

コンベヤベルト用ゴム組成物およびコンベヤベルト
 本発明は、コンベヤベルト用ゴム組成物およびコンベヤベルトに関する。
 コンベヤベルトとして用いられるゴムベルトは、帆布やスチールコード等からなる芯体(以下「補強層」という。)と、上記芯体の上面および下面を、上面カバーゴム層および下面カバーゴム層でそれぞれ被覆した積層構造体である。このゴムベルトは、両端部が互いに接合されてループ状のコンベヤベルトに加工され、多数のローラとプーリで形成された搬送経路を循環駆動することにより、被搬送物(例えば、鉱石、土砂、および、穀物などのばら物;箱、袋、パレットなどのかさ物;等)を上記搬送経路に沿って連続搬送するベルトコンベヤを構成する。
 ベルトコンベヤは上記プーリを回転さることでコンベヤベルトを駆動する。このときの消費電力は、一般に搬送経路が長く、ベルトコンベヤが長機長となると大きくなることが知られている。これは、長機長になるとコンベヤベルトを支えるローラの数が増えるので、コンベヤベルトの下面カバーゴム層とローラとの接触に起因して生じる動力損失(エネルギーロス)が大きくなるからだと考えられている。
 これに対し、特許文献1には「天然ゴム(NR)とブタジエンゴム(BR)とを含有し、前記天然ゴム(NR)と前記ブタジエンゴム(BR)との質量比(NR/BR)が90/10~55/45であるゴム成分と、超高分子量ポリエチレンと、カーボンブラックとを含有し、前記超高分子量ポリエチレンの含有量が、前記ゴム成分100質量部に対して5~22質量部であり、前記カーボンブラックの含有量が、前記ゴム成分100質量部に対して5~55質量部であり、脂肪酸アミドの含有量が、前記ゴム成分100質量部に対して5質量部未満である、コンベヤベルト用ゴム組成物」、および、その組成物を「少なくとも下面カバーゴムに用いたコンベヤベルト」が記載されている([請求項1][請求項4])。
特開2012-57001号公報
 ここで、コンベヤベルトのカバーゴム層には、被搬送物との間に繰り返し生ずる摩擦などにより、徐々に微小領域での破壊が起きることが知られている。この現象は摩耗と呼ばれ、カバーゴム層の摩耗に対する強さ(耐摩耗性)はコンベヤベルト自体の耐用期間に直結するため、カバーゴム層には、優れた耐摩耗性が求められている。
 そして、本発明者が特許文献1に記載のゴム組成物をカバーゴム層に用いたコンベヤベルトについて検討したところ、カバーゴム層の耐摩耗性が十分とはいえないことを知見した。
 そこで、本発明は、耐摩耗性に優れたカバーゴム層を有するコンベヤベルトを作製することができるコンベヤベルト用ゴム組成物、および、それを用いたコンベヤベルトを提供することを課題とする。
 本発明者は、上記課題を解決するために鋭意検討した結果、ブタジエンゴムを所定量含有するゴム成分に、超高分子量ポリエチレンと、所定の特性を有するカーボンブラックとを含有させることにより、耐摩耗性に優れたカバーゴム層を有するコンベヤベルトを作製することができるコンベヤベルト用ゴム組成物、および、それを用いたコンベヤベルトを得ることができることを見出した。
 すなわち、以下の構成により上記課題を解決することができることを見出した。
(1)ブタジエンゴムを45~100質量%含有するゴム成分と、超高分子量ポリエチレンと、カーボンブラックとを含有し、
 上記超高分子量ポリエチレンの含有量が、上記ゴム成分100質量部に対して1.0~15.0質量部であり、
 上記カーボンブラックの含有量が、上記ゴム成分100質量部に対して25~45質量部であり、
 上記カーボンブラックの窒素吸着比表面積が85~160m2/gであり、ジブチルフタレート吸油量が105~140ml/100gである、コンベヤベルト用ゴム組成物。
(2)上記ブタジエンゴムの重量平均分子量が50万~100万である、(1)に記載のコンベヤベルト用ゴム組成物。
(3)ブタジエンゴムの長鎖分岐指数(LCB値)に対する、ブタジエンゴムの重量平均分子量の比(重量平均分子量/長鎖分岐指数)が、5.5×10~16.6×10である(1)または(2)に記載のコンベヤベルト用ゴム組成物。
(4)上記超高分子量ポリエチレンの粘度平均分子量が50万~400万である、(1)~(3)のいずれかに記載のコンベヤベルト用ゴム組成物。
(5)上面カバーゴム層と、補強層と、下面カバーゴム層とを有し、少なくとも上記上面カバーゴム層に(1)~(4)のいずれかに記載のコンベヤベルト用ゴム組成物を用いたコンベヤベルト。
 本発明によれば、耐摩耗性に優れたカバーゴム層を有するコンベヤベルトを作製することができるコンベヤベルト用ゴム組成物、および、それを用いたコンベヤベルトを提供することができる。
図1は、本発明のコンベヤベルトの実施態様の一例を模式的に示した断面図である。
 以下、本発明について詳細に説明する。
 本発明のコンベヤベルト用ゴム組成物は、ブタジエンゴムを所定量含有するゴム成分に、超高分子量ポリエチレンと、所定の特性を有するカーボンブラックとを含有させたことを特徴のひとつとする。これは、本発明者が、コンベヤベルトのカバーゴム層の耐摩耗性を向上させるためには、加硫後のコンベヤベルト用ゴム組成物(以下、単に「加硫後のゴム組成物」という)について、従来実施されてきた耐摩耗性試験結果に加えて、引張試験において試験片が50%伸長されたときの応力(以下、「M50」という)、および、損失正接(tanδ)を制御することが重要であることを知見したうえで配合設計を行ったことによりはじめてなし得たものである。
 コンベヤベルトのカバーゴム層の摩耗は、たとえば上面カバーゴム層であれば、被搬送物とカバーゴム層の摩擦により生ずる微小領域での加硫後のゴム組成物の破壊現象である。摩耗量は擦れ合う個体間の摩擦力が大きいほど多くなり、摩擦力は荷重、すべり速度、表面粗さ、雰囲気温度等様々な要因により変化する。これは、コンベヤベルトが使用される環境が異なれば、摩耗を生じさる主要因、すなわち摩擦力に影響を与える要因が異なることを示している。したがって、従来のように、加硫後のゴム組成物の耐摩耗性試験結果の数値にのみ着目して配合設計を行っても、耐摩耗性に優れたカバーゴム層を有するコンベヤベルトを作製することができるコンベヤベルト用ゴム組成物、および、それを用いたコンベヤベルトを得ることは困難であった。
 しかし、本発明者が鋭意検討した結果、加硫後のゴム組成物に対する耐摩耗性試験結果に加えて、加硫後のゴム組成物のM50および損失正接に着目して配合設計を行うことで、耐摩耗性に優れたカバーゴム層を有するコンベヤベルトを作製することができるコンベヤベルト用ゴム組成物、および、それを用いたコンベヤベルトを得ることができることを知見した。
 すなわち、本発明者は、個体間に生じる摩擦力Fを凝着項F、ヒステリシス項F、掘り起こし摩擦項Fの和(F=F+F+F)で表す固体摩擦の基本原理をコンベヤベルトの摩耗解析に応用することにより、加硫後のゴム組成物のピコ摩耗、M50および損失正接を制御して耐摩耗性を向上させることができることを知見して配合設計を行い、本発明を完成させたものである。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[コンベヤベルト用ゴム組成物]
 本発明の実施形態に係るコンベヤベルト用ゴム組成物(以下、「本発明のゴム組成物」という。)は、ブタジエンゴムを45~100質量%含有するゴム成分と、超高分子量ポリエチレンと、カーボンブラックとを含有し、上記超高分子量ポリエチレンの含有量が、上記ゴム成分100質量部に対して1.0~15.0質量部であり、上記カーボンブラックの含有量が、上記ゴム成分100質量部に対して25~45質量部であり、上記カーボンブラックの窒素吸着比表面積が85~160m2/gであり、ジブチルフタレート吸油量が105~140ml/100gである、コンベヤベルト用ゴム組成物である。
 以下に、本発明のゴム組成物に含有される各成分について説明する。
〔ゴム成分〕
 本発明のゴム組成物に含有されるゴム成分は、ブタジエンゴム(BR)を45~100質量%含有する。ブタジエンゴムの含有量が下限値未満であると、M50が小さくなり、損失正接およびピコ摩耗が大きくなってしまい、耐摩耗性に劣る。
 また、上記ゴム成分におけるブタジエンゴム(BR)の含有量は、55~100質量%であるのが好ましく、75~95質量%であるのがより好ましく、85~90質量%であるのがさらに好ましい。ブタジエンゴム(BR)の含有量が下限値以上であれば、本発明のゴム組成物の加硫物を大荷重かつ低速稼動のコンベヤベルトのカバーゴム層に用いた場合に、より優れた耐摩耗性を有する。また、ブタジエンゴム(BR)の含有量が上限値以下であれば、ゴム組成物は、優れた加工性を有する。
 上記ゴム成分は、ブタジエンゴム(BR)以外のゴムを含有していてもよい。ブタジエンゴム(BR)以外のゴムとしては、例えば、天然ゴム(NR)、イソプレンゴム、スチレン-ブタジエンゴム、および、エチレン-プロピレン-ジエンゴムなどが挙げられる。なかでも、ブタジエンゴム(BR)との相溶性に優れる点で天然ゴム(NR)が好ましい。
 上記ゴム成分中に天然ゴム(NR)を含有する場合、上記ゴム成分中におけるブタジエンゴム(BR)の含有量に対する天然ゴム(NR)との含有量の含有質量比(NR/BR)は10/90~55/45が好ましく、20/85~45/55がより好ましく、25/75~45/55がさらに好ましい。NR/BRがこの範囲であると、加硫後のゴム組成物の損失正接はより小さくなり、本発明のゴム組成物の加硫物を高速稼動のコンベヤベルトのカバーゴム層に用いた場合に、より優れた耐摩耗性を有する。
<ブタジエンゴム(BR)>
 上記ゴム成分中のブタジエンゴム(BR)の重量平均分子量は50万~100万が好ましく、70万~100万がより好ましい。重量平均分子量が50万~100万であると、加硫後のゴム組成物におけるM50がより大きく、損失正接がより小さくなりやすく、本発明のゴム組成物の加硫物を小荷重および/または高速稼動のコンベヤベルトのカバーゴム層に用いた場合に、より優れた耐摩耗性を有する。
 なお、重量平均分子量は、ゲルパーミエションクロマトグラフィー(Gel permeation chromatography(GPC))により測定した重量平均分子量(ポリスチレン換算)であり、測定にはテトラヒドロフラン(THF)を溶媒として用いるのが好ましい。
 上記ブタジエンゴム(BR)の未加硫状態でのムーニー粘度は40~90が好ましく、50~80がより好ましい。ブタジエンゴム(BR)のムーニー粘度がこの範囲であると、ゴム組成物の加工性がより優れる。
 なお、ムーニー粘度は、JIS K6300に準拠してムーニー粘度計を用いて測定される、100℃におけるムーニー粘度(ML1+4)である。
 上記ブタジエンゴム(BR)の長鎖分岐指数(LCB値)に対する、ブタジエンゴムの重量平均分子量の比(重量平均分子量/長鎖分岐指数)は、5.5×10~16.6×10であることが好ましく、5.8×10~15.3×10であることがより好ましく、7.5×10~14.2×10であることがさらに好ましく、8.2×10~14.2×10であることがとくに好ましい。長鎖分岐指数(LCB値)に対する、重量平均分子量の比が5.5×10~16.6×10であると、加硫後のゴム組成物におけるM50がより大きく、損失正接がより小さくなりやすく、本発明のゴム組成物の加硫物を小荷重および/または高速稼動のコンベヤベルトのカバーゴム層に用いた場合に、より優れた耐摩耗性を有する。
 なお、本明細書において、長鎖分岐指数(LCB値:Long Chain Branch)とは、RPA2000型試験機(アルファテクノロジーズ社製)を用いてLAOS(Large  Amplitude  Oscillatory  Shear)測定方法により測定した値である。長鎖分岐指数は、得られる数値が零に近づくほどリニアリティーの高い分岐度が低いポリマーであることを示す。したがって、長鎖分岐指数(LCB値)に対する、重量平均分子量の比は、ブタジエンゴムの有する単位量あたりの分子鎖末端数と正の相関関係を有するものと考えられ、この値を上述の範囲内とすることで、特に損失正接をより小さくする効果が得られたものと推測される。なお、長鎖分岐指数(LCB値)の詳細については、“FT-Rheology, a Tool to Quantify Long Chain Branching (LCB) in Natural Rubber and its Effect on Mastication, Mixing Behavior and Final Properties.”(Henri G. Burhin, Alpha Technologies, UK 15 Rue du Culot B-1435 Hevillers, Belgium)などを参照することができる。
 なお、ゴム組成物が、2種以上のブタジエンゴムを含有する場合、長鎖分岐指数(LCB値)に対する、ブタジエンゴムの重量平均分子量の比(重量平均分子量/長鎖分岐指数)は以下の式により計算することができる。
式:M/L=Σ{(M/L)×a
 上記式中、M/Lは、長鎖分岐指数(LCB値)に対する、ブタジエンゴムの重量平均分子量の比を表し、M、L、および、aはそれぞれ、各ブタジエンゴムの重量平均分子量、LCB値、および、ゴム組成物中に含有される全ブタジエンゴムに対する各ブタジエンゴムの質量分率を表し、Σは総和を表す。
 上記ブタジエンゴム(BR)は公知の方法により合成することができ、例えば、不活性有機溶媒中、遷移金属化合物を含む触媒の存在下でブタジエンを重合することにより製造することができる。触媒としては、例えば、コバルト系、バナジウム系、リチウム系、ニッケル系、ネオジウム系などが挙げられる。なかでもコバルト系、ネオジウム系が好ましく、ネオジウム系がより好ましい。ネオジウム系触媒の存在下でブタジエンを重合させて得られたブタジエンゴムは、そのミクロ構造において、分岐が少なく直鎖状となり易く、上述のとおり、加硫後のゴム組成物の損失正接がより小さくなりやすい。
〔超高分子量ポリエチレン〕
 本発明のゴム組成物は、超高分子量ポリエチレン(U-PE)を含有する。これにより、加硫後のゴム組成物の損失正接を維持しつつ、M50を大きくすることができる。超高分子量ポリエチレンは上記ゴム成分中のブタジエンゴムと相溶性が悪く、これを配合することによって、ゴム成分自体の損失正接に与える影響が少ない一方で、U-PEがゴム成分中に分散することで、M50の向上に寄与したためと推測される。
 上記超高分子量ポリエチレン(U-PE)の含有量は、上記ゴム成分100質量部に対して、1.0~15.0質量部である。超高分子量ポリエチレン(U-PE)の含有量が下限値より小さいと加硫後のゴム組成物のM50が小さく、耐摩耗性が劣る。一方で上限値より大きいと、損失正接およびピコ摩耗が大きくなってしまい、結果として加硫後のゴム組成物の耐摩耗性が劣る。なかでも、加硫後のゴム組成物が優れた耐屈曲性を有する点で、1.0~12.0質量部がより好ましく、1.0~10.0質量部がより好ましい。
 上記超高分子量ポリエチレン(U-PE)の分子量としては、粘度平均分子量が50万~400万が好ましく、100万~300万がより好ましい。分子量がこの範囲であると、M50がより向上し、かつ加工性も損なわれにくい。
 なお、超高分子量ポリエチレン(U-PE)の粘度平均分子量は固有粘度法(ASTM D4020-11 X5.NOMINAL VISCOSITY AVERAGE MOLECULAR WEIGHT OF ULTRA-HIGH MOLECULAR-WEIGHT POLYETHYLENE)により測定された分子量である。
 また、上記超高分子量ポリエチレン(U-PE)の平均粒径は、1~300μmであるのが好ましく、10~50μmであるのがより好ましい。平均粒径がこの範囲であれば、ゴム中の分散性が良好となりやすい。
 上記超高分子量ポリエチレン(U-PE)は、例えば、ミペロンXM220(三井化学社製)、ハイゼックスミリオン340M(三井化学社製)などとして入手可能である。
〔カーボンブラック〕
 本発明のゴム組成物はカーボンブラック(CB)を含有する。上記カーボンブラック(CB)の含有量は、上記ゴム成分100質量部に対して25~45質量部であり、30~40質量部が好ましい。カーボンブラック(CB)の含有量が下限値未満であると加硫後のゴム組成物のM50が小さく、ピコ摩耗も大きくなってしまい、結果として加硫後のゴム組成物の耐摩耗性が劣る。一方で上限値より大きいと、損失正接が大きくなってしまい、結果として加硫後の耐摩耗性が劣る。
 本発明のゴム組成物が含有する上記カーボンブラックの、窒素吸着比表面積は85~160m2/gであり、ジブチルフタレート吸油量は105~140ml/100gである。上記特性を有するカーボンブラック(CB)を含有しない場合、加硫後のゴム組成物のM50が小さく、ピコ摩耗が大きくなり、結果として加硫後のゴム組成物の耐摩耗性が劣る。
 このようなカーボンブラックとしては、例えば、SAF、ISAF-HS、ISAF-LS、HAF-HSグレードが挙げられ、加硫後のゴム組成物のM50がより大きく、損失正接がより小さくなり、結果として加硫後のゴム組成物の耐摩耗性がより優れる点で、HAF-HS、ISAF-HS、および、ISAF-LSグレードがより好ましい。
 カーボンブラックの市販品としては、ショウブラックN110、N234、N220、N339(いずれもキャボットジャパン社製)として入手可能である。
 また、加硫後のゴム組成物のM50がより大きく、損失正接がより小さくなり、結果として加硫後のゴム組成物の耐摩耗性がより優れる点で、カーボンブラック(CB)の窒素吸着比表面積が85~125m2/gであり、ジブチルフタレート吸油量が110~125ml/100gであることがより好ましい。
 なお、上記窒素吸着比表面積はASTM D4820-93に準拠して測定される値で、カーボンブラック粒子の粒子径の小ささを表す指標であり、ジブチルフタレート吸油量は、ASTM D2414-93に準拠して測定される値で、カーボンブラック粒子のつながり具合、いわゆるストラクチャの大きさ(形状の複雑さ)を表す指標である。
〔その他〕
 本発明のゴム組成物は、上述した各成分以外に、加硫剤、加硫助剤、加硫促進剤等の架橋剤や加硫遅延剤を含有していてもよく、さらに、本発明の目的を損なわない範囲で、各種配合剤を含有していてもよい。
 加硫剤としては、例えば、イオウ系、有機過酸化物系、金属酸化物系、フェノール樹脂、キノンジオキシム等の加硫剤などが挙げられる。
 イオウ系加硫剤としては、例えば、粉末イオウ、沈降性イオウ、高分散性イオウ、表面処理イオウ、不溶性イオウ、ジモルフォリンジサルファイド、アルキルフェノールジサルファイドなどが挙げられる。
 加硫促進剤としては、例えば、アルデヒド・アンモニア系、グアニジン系、チオウレア系、チアゾール系、スルフェンアミド系、チウラム系、ジチオカルバミン酸塩系等の加硫促進剤などが挙げられる。
 スルフェンアミド系加硫促進剤としては、具体的には、例えば、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CZ)、N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド(NS)などが挙げられる。
 加硫助剤としては、一般的なゴム用助剤を併せて用いることができ、例えば、亜鉛華、ステアリン酸やオレイン酸およびこれらのZn塩などが挙げられる。
 このような加硫剤、加硫促進剤および加硫助剤を含有する場合の合計の含有量は、上記ゴム成分100質量部に対して、0.1~10質量部であるのが好ましく、0.5~5質量部であるのがより好ましい。含有量の範囲がこの範囲であると、本発明の効果により優れる。
 配合剤としては、例えば、上述したカーボンブラック以外の補強剤(充填剤)、老化防止剤、酸化防止剤、顔料(染料)、可塑剤、揺変成付与剤、紫外線吸収剤、難燃剤、溶剤、界面活性剤(レベリング剤を含む)、分散剤、脱水剤、防錆剤、接着付与剤、帯電防止剤、加工助剤などが挙げられる。
 これらの配合剤は、ゴム組成物用の一般的なものを用いることができる。それらの配合量も特に制限されず、任意に選択できる。
〔作製方法〕
 本発明のゴム組成物は、上述したゴム成分、超高分子量ポリエチレン、カーボンブラック、その他含有する各種配合剤を加え、バンバリミキサー等で混練りし、ついで、ミキシングロール機等で加硫剤、加硫助剤、加硫促進剤を混練りして行うことができる。
 また、加硫は、通常行われる条件で行うことができる。具体的には、例えば、温度148℃程度、30分間の条件下、加熱することにより行われる。
[コンベヤベルト用ゴム組成物を用いたコンベヤベルト]
〔構成〕
 本発明の実施形態に係るコンベヤベルト(以下、「本発明のコンベヤベルト」という。)は、上面カバーゴム層と、補強層と、下面カバーゴム層とを有し、少なくとも上記上面カバーゴム層に本発明のゴム組成物を用いたコンベヤベルトである。
 以下に、図1を用いて本発明のコンベヤベルトを説明するが、本発明のコンベヤベルトの構造は、これに限定されない。例えば、本発明のゴム組成物を上面カバーゴム層および下面カバーゴム層に用いてもよい。
 図1は、本発明のコンベヤベルトの実施形態の一例を模式的に示した断面図である。コンベヤベルト10は、補強層1と、その上下を上面カバーゴム層2および下面カバーゴム層3で被覆した積層構造体である。
 上面カバーゴム層2は、搬送面4側から順に、外層2aと、内層2bとを有している。同様に、下面カバーゴム層3も、図示しないベルトコンベヤの駆動プーリまたはローラに接する面から順に外層3aと、内層3bとを有している。これらの外層(2a、3a)および内層(2b、3b)は、それぞれ同じゴム組成物を用いて形成されていてもよいし、別のゴム組成物を用いて形成されていてもよい。また、外層(2a、3a)および内層(2b、3b)は多層構造であっても良い。
 コンベヤベルト10は、少なくとも上面カバーゴム層2に本発明のゴム組成物を用いたコンベヤベルトである。したがって、外層2aおよび内層2bからなる群から選択される少なくとも一層が本発明のゴム組成物を用いて形成されていればよい。本発明のゴム組成物は、被搬送物と直接接触する外層2aに用いるゴム組成物として好ましい。一方、内層2bは製造コストや補強層1との接着性が重視されることから他のゴム組成物を用いて形成されるのが好ましく、以上の理由から、上面カバーゴム層2は複数の層から構成されていることが好ましい。
 コンベヤベルト10の下面カバーゴム層3についても同様に複数の層から構成されるのが好ましい。このとき、本発明のゴム組成物を外層3a、内層3bのいずれかまたは両方に用いてもよいし、外層3aおよび内層3bに本発明のゴム組成物とは別のゴム組成物を用いても良い。
 補強層1の芯体は特に限定されず、通常のコンベヤベルトに用いられるものを適宜選択して用いることができ、例えば、綿布と化学繊維または合成繊維とからなるものにゴム糊を塗布、浸潤させたもの、RFL(Resorcin Formalin Latex;レゾルシンフォルマリンラテックス)処理したものを折り畳んだもの、帆布、特殊織のナイロン帆布、スチールコードなどが挙げられる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 また、補強層1の形状は特に限定されず、シート状であってもよいし、ワイヤー状の補強線を並列に埋込むものであってもよい。
 コンベヤベルト10の製造方法は特に限定されず、通常用いられる方法等を採用することができる。具体的には、まず、ロール、ニーダー、または、バンバリミキサー等を用いて本発明のゴム組成物、または、他のゴム組成物を混練りした後、カレンダロール等を用いて上面カバーゴム層2および下面カバーゴム層3用にシート状に成形し、次に、得られた各層を、補強層1を挟み込むように所定の順序で積層し、130~170℃の温度で5~30分間加圧することにより行われる。
 本発明のコンベヤベルト10は、上面カバーゴム層2、好ましくはその外層2aが本発明のゴム組成物を用いて形成されているため、耐摩耗性に優れる。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
〔ゴム組成物および加硫後のゴム組成物の調製〕
 表1に示す各成分を、同表に示す配合量(質量部)で配合し、バンバリミキサーを用いてこれらを均一に混練りして表1に示される各々の実施例、比較例のゴム組成物を調製した。得られたゴム組成物を148℃、30分間加硫し、加硫後のゴム組成物を調製した。
〔加硫後物性〕
<M50>
 調製した各加硫後のゴム組成物から3号ダンベル状に打ち抜いた試験片を用い、JIS K6251-2004に準じて、引張速度500mm/分での引張試験を行い、M50(MPa)を室温にて測定した。得られた結果は比較例1を100とする指数として、表1に示した。この値が大きいほど、小荷重のコンベヤベルトのカバーゴム層に用いた場合に、耐摩耗性に優れる。
<損失正接(tanδ)>
 調製した各加硫後のゴム組成物から短冊状(長さ20mm×幅5mm×厚み2mm)に切り抜いた試験片を用い、東洋精機製作所製粘弾性スペクトロメータを用いて損失正接(tanδ)を測定した。測定は、20℃の測定温度下で、10%伸張させ、振幅±2%の振動を振動数10Hzで与えて行った。得られた結果は、比較例1を100とする指数として、表1に示した。この値が小さいほど、高速稼動のコンベヤベルトのカバーゴム層に用いた場合に、耐摩耗性に優れる。
<ピコ摩耗>
 加硫後のゴム組成物のピコ摩耗を、JIS K6264に準拠して、FERRY MACHINE CO.社製ピコ摩耗試験機を用いて測定した。測定条件は、荷重44N、ターンテーブルの回転速度を毎分60±2回、ターンテーブルの合計回転数80回(正回転20回と逆回転20回を各々2回交互に行う)とした。得られた結果は、比較例1を100とする指数として、表1に示した。この指数が小さいほど、大荷重かつ低速稼動のコンベヤベルトのカバーゴム層に用いた場合に、耐摩耗性に優れる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記表1に示す各組成成分としては、以下に示すものを用いた。
・NR:天然ゴム(RSS#3)
・BR1:ブタジエンゴム(Nipol BR1220、重量平均分子量46万、日本ゼオン社製、長鎖分岐指数9.5、ムーニー粘度44、コバルト系触媒の存在下でブタジエンを重合させて得られたブタジエンゴム)
・BR2:ブタジエンゴム(Ubepol BR-360L、重量平均分子量56万、宇部興産社製、長鎖分岐指数7.3、ムーニー粘度54、コバルト系触媒の存在下でブタジエンを重合させて得られたブタジエンゴム)
・BR3:ブタジエンゴム(Buna CB21、重量平均分子量77万、ランクセス社製、長鎖分岐指数8.5、ムーニー粘度73、ネオジウム系触媒の存在下でブタジエンを重合させて得られたブタジエンゴム)
・CB1:カーボンブラック(ショウブラックN110、窒素吸着比表面積144m2/g、ジブチルフタレート吸油量115ml/100g、SAFグレード、キャボットジャパン社製)
・CB2:カーボンブラック(ショウブラックN234、窒素吸着比表面積123m2/g、ジブチルフタレート吸油量123ml/100g、ISAF-HSグレード、キャボットジャパン社製)
・CB3:カーボンブラック(ショウブラックN326、窒素吸着比表面積81m2/g、ジブチルフタレート吸油量75ml/100g、HAF-LSグレード、キャボットジャパン社製)
・CB4:カーボンブラック(ショウブラックN220、窒素吸着比表面積111m2/g、ジブチルフタレート吸油量115ml/100g、ISAF-LSグレード、キャボットジャパン社製)
・CB5:カーボンブラック(ショウブラックN339、窒素吸着比表面積88m2/g、ジブチルフタレート吸油量121ml/100g、HAF-HSグレード、キャボットジャパン社製)
・U-PE:超高分子量ポリエチレン(ミペロンXM220、粘度平均分子量220万、平均粒径20μm、三井化学社製)
・老化防止剤6C:アンチゲン6C(住友化学社製)
・酸化亜鉛:酸化亜鉛3種(正同化学工業社製)
・ステアリン酸:ステアリン酸YR(日油社製)
・パラフィンワックス:OZOACE-0015(日本精蝋社製)
・アロマオイル:A-OMIX(三共油化工業社製)
・加硫促進剤NS:ノクセラーNS-P(大内新興化学工業社製)
・硫黄:金華印油入微粉硫黄(鶴見化学工業社製)
 表1に示す結果から、実施例1は、比較例1と比較して、加硫後のゴム組成物のM50が大きく、損失正接(tanδ)およびピコ摩耗が小さく、耐摩耗性に優れることがわかった。比較例1、および、比較例2~5では所望の効果は得られなかった。
 実施例1、実施例2および実施例3とを比較すると、重量平均分子量が50万~100万のBRを含有する実施例2よび実施例3は、加硫後のM50および損失正接がより優れ、小荷重および/または高速稼動のコンベヤベルトのカバーゴム層に用いた場合に、より優れた耐摩耗性を有することがわかった。なかでも含有するブタジエンゴムの重量平均分子量と長鎖分岐指数(LCB値)の比(重量平均分子量/長鎖分岐指数)が9.0×10である実施例3は、7.6×10である実施例2と比較して、加硫後のM50および損失正接がさらに優れることがわかった。
 また、実施例6、10、および、11と、実施例1とを比較すると、カーボンブラック(CB)の窒素吸着比表面積が85~125m2/gであり、ジブチルフタレート吸油量が110~125ml/100gであると、加硫後のゴム組成物のM50がより大きく、損失正接がより小さくなり、結果として加硫後のゴム組成物の耐摩耗性がより優れることがわかった。
 10 コンベヤベルト
 1 補強層
 2 上面カバーゴム層
 3 下面カバーゴム層
 2a、3a 外層
 2b、3b 内層
 4 搬送面

Claims (5)

  1.  ブタジエンゴムを45~100質量%含有するゴム成分と、超高分子量ポリエチレンと、カーボンブラックとを含有し、
     前記超高分子量ポリエチレンの含有量が、前記ゴム成分100質量部に対して1.0~15.0質量部であり、
     前記カーボンブラックの含有量が、前記ゴム成分100質量部に対して25~45質量部であり、
     前記カーボンブラックの窒素吸着比表面積が85~160m2/gであり、ジブチルフタレート吸油量が105~140ml/100gである、コンベヤベルト用ゴム組成物。
  2.  前記ブタジエンゴムの重量平均分子量が50万~100万である、請求項1に記載のコンベヤベルト用ゴム組成物。
  3.  前記ブタジエンゴムの長鎖分岐指数に対する、前記ブタジエンゴムの重量平均分子量の比が、5.5×10~16.6×10である請求項1または2に記載のコンベヤベルト用ゴム組成物。
  4.  前記超高分子量ポリエチレンの粘度平均分子量が50万~400万である、請求項1~3のいずれか1項に記載のコンベヤベルト用ゴム組成物。
  5.  上面カバーゴム層と、補強層と、下面カバーゴム層とを有し、
     少なくとも前記上面カバーゴム層に請求項1~4のいずれか1項に記載のコンベヤベルト用ゴム組成物を用いたコンベヤベルト。
PCT/JP2017/005347 2016-02-15 2017-02-14 コンベヤベルト用ゴム組成物およびコンベヤベルト WO2017141909A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2017221581A AU2017221581B2 (en) 2016-02-15 2017-02-14 Rubber composition for conveyor belts, and conveyor belt
JP2018500124A JP6904328B2 (ja) 2016-02-15 2017-02-14 コンベヤベルト用ゴム組成物およびコンベヤベルト
CN201780011054.XA CN108602622A (zh) 2016-02-15 2017-02-14 传送带用橡胶组合物以及传送带

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-026137 2016-02-15
JP2016026137 2016-02-15

Publications (1)

Publication Number Publication Date
WO2017141909A1 true WO2017141909A1 (ja) 2017-08-24

Family

ID=59626093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005347 WO2017141909A1 (ja) 2016-02-15 2017-02-14 コンベヤベルト用ゴム組成物およびコンベヤベルト

Country Status (4)

Country Link
JP (1) JP6904328B2 (ja)
CN (1) CN108602622A (ja)
AU (1) AU2017221581B2 (ja)
WO (1) WO2017141909A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110406124A (zh) * 2019-07-18 2019-11-05 无锡宝通科技股份有限公司 防挡边磨损的输送带的制备方法
CN114395175A (zh) * 2021-12-24 2022-04-26 山东非金属材料研究所 一种耐磨橡胶材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110615922A (zh) * 2019-10-12 2019-12-27 无锡宝通科技股份有限公司 一种超耐磨抗撕裂输送带覆盖胶及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617348A (ja) * 1984-06-22 1986-01-14 Yokohama Rubber Co Ltd:The ポリマ−組成物
JPS6363729A (ja) * 1986-09-02 1988-03-22 ゲンコ−プ インコ−ポレ−テツド 空気タイヤ
JPS6395241A (ja) * 1986-10-09 1988-04-26 Bridgestone Corp ゴム組成物
JP2002069241A (ja) * 2000-08-28 2002-03-08 Bridgestone Corp ベルト用ゴム組成物及びベルト
JP2015205961A (ja) * 2014-04-17 2015-11-19 株式会社ブリヂストン コンベアベルト用ゴム組成物、及びコンベアベルト

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4125341B2 (ja) * 2006-11-10 2008-07-30 バンドー化学株式会社 伝動ベルト及びその製造方法
US7956146B2 (en) * 2009-02-24 2011-06-07 The Goodyear Tire & Rubber Company Tire with tread of polybutadiene rubber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617348A (ja) * 1984-06-22 1986-01-14 Yokohama Rubber Co Ltd:The ポリマ−組成物
JPS6363729A (ja) * 1986-09-02 1988-03-22 ゲンコ−プ インコ−ポレ−テツド 空気タイヤ
JPS6395241A (ja) * 1986-10-09 1988-04-26 Bridgestone Corp ゴム組成物
JP2002069241A (ja) * 2000-08-28 2002-03-08 Bridgestone Corp ベルト用ゴム組成物及びベルト
JP2015205961A (ja) * 2014-04-17 2015-11-19 株式会社ブリヂストン コンベアベルト用ゴム組成物、及びコンベアベルト

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110406124A (zh) * 2019-07-18 2019-11-05 无锡宝通科技股份有限公司 防挡边磨损的输送带的制备方法
CN114395175A (zh) * 2021-12-24 2022-04-26 山东非金属材料研究所 一种耐磨橡胶材料及其制备方法
CN114395175B (zh) * 2021-12-24 2023-09-08 山东非金属材料研究所 一种耐磨橡胶材料及其制备方法

Also Published As

Publication number Publication date
CN108602622A (zh) 2018-09-28
JPWO2017141909A1 (ja) 2018-12-06
AU2017221581B2 (en) 2019-03-14
AU2017221581A1 (en) 2018-08-30
JP6904328B2 (ja) 2021-07-14

Similar Documents

Publication Publication Date Title
AU2015267872B2 (en) Rubber composition and conveyor belt using same
WO2008007733A1 (fr) Composition de caoutchouc pour tapis de convoyage et tapis de convoyage
WO2017141909A1 (ja) コンベヤベルト用ゴム組成物およびコンベヤベルト
JP6620105B2 (ja) コンベヤベルト用ゴム組成物、及びコンベヤベルト
WO2012032896A1 (ja) コンベヤベルト用ゴム組成物およびコンベヤベルト
JP2010095584A (ja) コンベヤベルト用ゴム組成物およびコンベヤベルト
JP4561046B2 (ja) コンベヤベルト用ゴム組成物およびコンベヤベルト
JP6282406B2 (ja) 空気浮上式コンベヤベルト用ゴム組成物及びこれを用いる空気浮上式コンベヤベルト
JP2004018752A (ja) コンベヤベルト用ゴム組成物およびコンベヤベルト
JP6377945B2 (ja) コンベアベルト用ゴム組成物、及びコンベアベルト
JP6565512B2 (ja) コンベヤベルト用ゴム組成物及びコンベヤベルト
JP2010013262A (ja) コンベヤベルト用ゴム組成物、コンベヤベルトの製造方法およびコンベヤベルト
JP6868409B2 (ja) ゴム組成物、コンベアベルト用ゴム組成物及びコンベアベルト
JP6350778B1 (ja) コンベヤベルト用ゴム組成物及びコンベヤベルト
JP7081587B2 (ja) コンベヤベルト用ゴム組成物及びコンベヤベルト
CN110291026B (zh) 传送带用橡胶组合物以及传送带
JP5515461B2 (ja) コンベヤベルト用ゴム組成物およびコンベヤベルト
JP6952234B2 (ja) コンベヤベルト用ゴム組成物及びコンベヤベルト
JP2019056047A (ja) 空気浮上式コンベヤベルト用ゴム組成物及び空気浮上式コンベヤベルト
JP2014227541A (ja) コンベアベルト用ゴム組成物、コンベアベルト及びベルトコンベア装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018500124

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017221581

Country of ref document: AU

Date of ref document: 20170214

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17753166

Country of ref document: EP

Kind code of ref document: A1