WO2017141345A1 - X-ray device, x-ray measurement method, and structure manufacturing method - Google Patents

X-ray device, x-ray measurement method, and structure manufacturing method Download PDF

Info

Publication number
WO2017141345A1
WO2017141345A1 PCT/JP2016/054406 JP2016054406W WO2017141345A1 WO 2017141345 A1 WO2017141345 A1 WO 2017141345A1 JP 2016054406 W JP2016054406 W JP 2016054406W WO 2017141345 A1 WO2017141345 A1 WO 2017141345A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
measured
index member
mounting table
ray detector
Prior art date
Application number
PCT/JP2016/054406
Other languages
French (fr)
Japanese (ja)
Inventor
田中 稔久
遠藤 剛
将哉 宮崎
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2017567852A priority Critical patent/JP6693533B2/en
Priority to PCT/JP2016/054406 priority patent/WO2017141345A1/en
Publication of WO2017141345A1 publication Critical patent/WO2017141345A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/044Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using laminography or tomosynthesis

Definitions

  • the present invention relates to an X-ray apparatus, an X-ray measurement method, and a structure manufacturing method.
  • Patent Document 1 a tomographic apparatus that measures a shake amount associated with rotation of a rotary table using a reference object, moves the table based on the measured shake amount, and corrects reproducible rotational shake.
  • Patent Document 1 a tomographic apparatus that measures a shake amount associated with rotation of a rotary table using a reference object, moves the table based on the measured shake amount, and corrects reproducible rotational shake.
  • the X-ray apparatus is provided with an index member, a mounting table on which the object to be measured is placed, an X-ray source that irradiates the object to be measured and the index member with X-rays, At least two of the X-ray detector for detecting the projected image of the object to be measured and the projected image of the index member by the irradiated X-rays, the mounting table, the X-ray source, and the X-ray detector By rotating two members around a predetermined axis, the measurement object is irradiated with X-rays from a plurality of different irradiation directions.
  • An acquisition unit that acquires a projection image of the index member; and a projection image of the index member detected by the X-ray detector is an area of the observation area of the object to be measured among the areas detected by the X-ray detector. Based on the projected image when detected by the X-ray detector at a position different from the projected image, And a correction unit that performs correction process.
  • a reconstructed image is further obtained based on the projection image of the object to be measured for each irradiation direction acquired by the acquisition unit. It is preferable to include a reconstruction unit that outputs, and to perform the correction process by the correction unit before performing the reconstruction process by the reconstruction unit.
  • the X-ray apparatus includes an inspection processing unit that outputs an inspection result, and the correction unit performs the inspection process in the inspection processing unit before It is preferable to perform correction processing by the correction unit.
  • the correction unit has a projection image of the index member detected by the X-ray detector. As described above, based on the position of the projected image of the index member when detected by the X-ray detector at a position different from the projected image of the observation area of the object to be measured among the areas detected by the line detector.
  • the correction unit has a projection image of the index member detected by the X-ray detector. Based on the position of the projected image of the index member when detected by the X-ray detector at a position different from the projected image of the observation area of the object to be measured among the areas detected by the line detector. It is preferable to perform the correction process by moving the position of the projected image of the measurement object detected by the line detector.
  • the X-ray apparatus is provided with an index member, a mounting table for mounting the object to be measured, and an X-ray source for irradiating the object to be measured and the index member with X-rays
  • At least two of the X-ray detector for detecting the projected image of the object to be measured and the projected image of the index member by the irradiated X-rays, the mounting table, the X-ray source, and the X-ray detector
  • Two members are rotated around a predetermined axis, and X-rays are irradiated from a plurality of different irradiation directions to the object to be measured along with the rotation, and the projected image of the object to be measured and the index member Corresponding to the different irradiation directions on the basis of the acquisition unit for acquiring the projected image and the positional information of the indicator member on the mounting table and the relative positional relationship between the X-ray detector and the X-ray source The respective positions when the at least two members
  • the correction unit includes the at least two members, and the predetermined axis when the calculation unit calculates the first projection position. It is preferable that the correction process is performed so that a projection image of the object to be measured acquired when rotating around.
  • the correction unit projects the object to be measured acquired along with the relative positional relationship and the rotation. It is preferable to perform correction processing on at least one of the image.
  • the correction unit moves at least one of the mounting table and the X-ray detector based on the shift amount, and It is preferable to correct the relative positional relationship.
  • the X-ray apparatus includes a moving unit that moves the mounting table in a plane intersecting the predetermined axis, and the correction unit includes the deviation amount. It is preferable to move the mounting table to the moving unit based on the above.
  • the moving unit further moves the mounting table in a direction along the predetermined axis, and the correcting unit adjusts the deviation amount. Based on this, it is preferable to move the mounting table to the moving unit.
  • the moving unit moves the mounting table to a predetermined position within a plane intersecting the predetermined axis. preferable.
  • the correction unit in the X-ray apparatus according to any one of the sixth to twelfth aspects, includes the first projection position and the second projection on a detection surface of the X-ray detector. It is preferable to calculate the difference from the position as the shift amount.
  • the correction unit in the X-ray apparatus according to the thirteenth aspect according to any one of the tenth to twelfth aspects, is a first orthogonal coordinate system on a detection surface of the X-ray detector.
  • the correction unit when the deviation amount exceeds a predetermined size, It is preferable that correction is performed on at least one of the line detector and the shift amount is corrected for the projected image of the object to be measured when the shift amount does not exceed the predetermined size.
  • the position information for each of the plurality of index members provided on the mounting table at a predetermined distance is obtained. It is preferable that a storage unit for storing each index member is further provided. According to a seventeenth aspect of the present invention, in the X-ray apparatus according to the sixteenth aspect, it is preferable that the correction unit calculates the shift amount based on the position information stored in the storage unit. According to an eighteenth aspect of the present invention, in the X-ray apparatus according to the fourteenth aspect, the shift amount between the first projection position and the second projection position in the first orthogonal coordinate system is expressed by a multi-order polynomial.
  • the reference position of the object to be measured placed on the mounting table is set according to the rotation.
  • the position projected on the detection surface of the X-ray detector does not change in each of the plurality of different irradiation directions.
  • the correction unit performs the correction process, and then uses the projection image of the object to be measured.
  • the indicator member is provided as a partial region having a different thickness or density in the mounting table. Is preferred.
  • an X-ray path that passes through the indicator member, and an X-ray path that passes through the object to be measured Are preferably different from each other.
  • the position information is a relative distance between the object to be measured and the index member on the mounting table. And a relative height.
  • an X-ray apparatus is provided with an index member, a mounting table on which an object to be measured is placed, an X-ray source that irradiates the object to be measured and the index member with X-rays, At least two of the X-ray detector for detecting the projected image of the object to be measured and the projected image of the index member by the irradiated X-rays, the mounting table, the X-ray source, and the X-ray detector One member is moved to a predetermined position, and the object to be measured is irradiated with X-rays from a plurality of different irradiation directions along with the movement, so that a projected image of the object to be measured and a projected
  • a measurement object is placed on a mounting table provided with an index member, and the measurement object and the index member are irradiated with X-rays from an X-ray source. Then, a projected image of the object to be measured and a projected image of the index member by the irradiated X-ray are detected, and at least two members of the mounting table, the X-ray source, and the X-ray detector are set as predetermined.
  • the X-ray is irradiated from a plurality of different irradiation directions to the object to be measured along with the rotation, and a projection image of the object to be measured and a projection image of the index member are obtained.
  • the at least two members corresponding to the different irradiation directions are obtained based on the positional information of the index member on the mounting table and the relative positional relationship between the X-ray detector and the X-ray source.
  • the structure manufacturing method according to the twenty-sixth aspect it is preferable that the structure is re-processed based on a comparison result between the shape information and the design information. . According to a twenty-eighth aspect of the present invention, in the structure manufacturing method according to the twenty-seventh aspect, it is preferable that the structure is reprocessed based on the design information.
  • FIG. 8A is a diagram showing a positional relationship among a cross section of the index member parallel to the ZX plane of the index member at the observation position in FIG. 6, the emission point of the X-ray source, and the detection surface of the X-ray detector.
  • FIG. 8B is a diagram showing the positional relationship between the index member, the emission point of the X-ray source, and the detection surface of the X-ray detector when the mounting table is viewed from the top (Z direction + side).
  • FIG. 8C is a diagram showing the position of the projected image of the index member when the detection surface of the X-ray detector is viewed from the back side (opposite to the X-ray incident direction).
  • FIG. 9A shows the simulation results of the actual revolution trajectory of the index member when the center of the mounting table and the revolution axis of the mounting table have eccentricity, and the ideal revolution trajectory when there is no eccentricity
  • FIG. 9B is a diagram showing a deviation amount between the H axis direction and the V axis direction on the HV coordinate system of the actual revolution trajectory with respect to the ideal revolution trajectory shown in FIG. 9A.
  • FIG. 9A shows the simulation results of the actual revolution trajectory of the index member when the center of the mounting table and the revolution axis of the mounting table have eccentricity, and the ideal revolution trajectory when there is no eccentricity
  • FIG. 9B is a diagram showing a deviation amount between the H axis direction and the V axis direction on the HV coordinate system of the actual revolution trajectory with respect to the ideal revolution trajectory shown in
  • FIG. 10A shows a simulation result of an actual revolution movement trajectory when the positioning error during the revolution movement of the mounting table has a periodic error and an ideal revolution movement trajectory when there is no periodic positioning error.
  • FIG. 10B is a diagram showing a deviation amount between the H axis direction and the V axis direction on the HV coordinate system of the actual revolution trajectory with respect to the ideal revolution trajectory shown in FIG.
  • FIG. 11A shows a simulation result of an actual revolution trajectory when the mounting table has an inclination with respect to a horizontal plane and an ideal revolution trajectory when there is no inclination
  • FIG. It is a figure which shows the deviation
  • FIG. 13A and FIG. 13B are external views showing an example of an object to be measured. It is a figure which shows the positional relationship of the X-ray source at the time of observation operation
  • FIGS. 15A to 15C are diagrams showing positions at which the observation point of the object to be measured and the index member at the first initial observation position are projected on the detection surface of the X-ray detector.
  • FIGS. 16A and 16B are diagrams showing the positional relationship in the HV coordinate system between the observation points projected on the detection surface and the index member.
  • the X-ray apparatus irradiates the object to be measured with X-rays and detects transmitted X-rays that have passed through the object to be measured, thereby obtaining non-destructive X information (for example, internal structure) of the object to be measured.
  • This is a line CT (Computed Tomography) inspection apparatus.
  • an object to be measured is an industrial part such as a mechanical part or an electronic part
  • the X-ray apparatus is called an industrial X-ray CT inspection apparatus for inspecting an industrial part.
  • FIG. 1 to 3 are diagrams showing an example of the internal structure of the X-ray apparatus 100 according to the present embodiment
  • FIG. 1 is an internal front view of the X-ray apparatus 100
  • FIG. 3 and 3 are internal plan views of the X-ray apparatus 100.
  • FIG. For convenience of explanation, a coordinate system including the X axis, the Y axis, and the Z axis along the vertical direction is set as illustrated.
  • the X-ray apparatus 100 includes a housing 1, a gantry 2, and a control device 3.
  • the housing 1 is disposed on the floor surface of a factory or the like so that the XY plane is substantially horizontal, and the gantry 2 and the control device 3 are accommodated therein.
  • the housing 1 contains lead as a material in order to prevent X-rays from leaking to the outside.
  • the gantry 2 is equipped with an X-ray source 5, a placement unit 6, an X-ray detector 7, and an X-ray detector drive unit 8.
  • the gantry 2 is provided at each of the rectangular base bottom 22, four corners on the base bottom 22, four struts 23 extending along the Z-axis direction, and the top of the struts 23, and an X-ray detector And an attachment member 24 for attaching the drive unit 8.
  • a vibration isolation mount 25 is attached to the lower part (Z-axis-side) of the base bottom panel 22 in order to attenuate vibration applied to the gantry 2 from the outside of the housing 1.
  • the vibration isolation mount 25 is configured by, for example, a known air spring, coil spring, or the like alone or in combination.
  • the gantry 2 is not limited to the one that supports the X-ray detector drive unit 8 on the top of the four columns 23, and the X-ray detector drive unit 8, that is, the X-ray detector 7 can be stably supported. It can have the structure and shape necessary to become.
  • the X-ray source 5 is attached to the foundation bottom plate 22 of the gantry 2 and hangs from the vicinity of the center of the foundation bottom plate 22.
  • the X-ray source 5 is controlled by the control device 3 and emits wide-angle X-rays (so-called cone beams) that expand in a conical shape in the range of the visual field VV with the point P shown in FIG. This emission point P coincides with the focal spot of the X-ray source 5.
  • an axis parallel to the Z axis passing through the emission point P is referred to as a reference axis L.
  • the X-ray source 5 is provided so that the reference axis L passes through the center of the gantry 2.
  • the X-ray source 5 may be constituted by a transmission type X-ray source or a reflection type X-ray source.
  • the Z axis + side end surface of the structure of the X-ray source 5 is made of a conductive metal (for example, brass, tungsten alloy, copper, etc.).
  • the Z-axis + side end surface is a target made of a material containing tungsten, for example, for generating X-rays when electrons from the filament arrive. is there.
  • the X-ray source 5 has a protective member made of a conductor such as beryllium in order to protect the target from the outside, this protective member becomes the Z-axis + side end surface of the X-ray source 5.
  • the X-ray source 5 generates at least one kind of X-ray, for example, an ultrasoft X-ray of about 50 eV, a soft X-ray of about 0.1 to 2 keV, an X-ray of about 2 to 20 keV, and a hard X-ray of about 20 to 100 keV.
  • an ultrasoft X-ray of about 50 eV a soft X-ray of about 0.1 to 2 keV
  • an X-ray of about 2 to 20 keV an X-ray of about 2 to 20 keV
  • a hard X-ray of about 20 to 100 keV.
  • the mounting unit 6 includes a mounting table 61 for mounting the object to be measured S, an X-axis moving mechanism 62 for moving the mounting table 61 in the X-axis, Y-axis, and Z-axis directions, and a Y-axis moving mechanism, respectively. 63 and a Z-axis moving mechanism 64 (see FIG. 3).
  • the X-axis moving mechanism 62 and the Y-axis moving mechanism 63 are each composed of a motor, a rail, a slider, and the like, and move the mounting table 61 along the X-axis direction and the Y-axis direction according to control by the control device 3.
  • the mounting table 61 can be rotated by moving in parallel on the XY plane so as to draw a revolution trajectory about the reference axis L.
  • the Z-axis moving mechanism 64 includes a motor, a rail, a slider, and the like, and moves the mounting table 61 in the Z-axis direction according to control by the control device 3. Details of the mounting table 61 will be described later. Further, the mounting table 61 is provided with an index member to be described later.
  • the indicator member is made of a material that exhibits a high absorption coefficient for X-rays such as metal. Further, the index member is installed at a position deviated from the center of the mounting table 61. In particular, when the DUT S is placed, it is preferably arranged in the vicinity of the peripheral portion that often deviates from the range set in the observation region.
  • the X-ray detector 7 is composed of a scintillator section containing a known scintillation substance, a photomultiplier tube, a light receiving section such as a CCD, and the like, and is measured from the X-ray source 5 and mounted on the mounting table 61. X-rays including transmitted X-rays transmitted through the object S are received. The X-ray detector 7 converts the received X-ray energy into light energy, then converts the light energy into electric energy, and outputs it as an electric signal. Note that the X-ray detector 7 may convert the incident X-ray energy into an electrical signal without converting it into light energy, and output it.
  • the X-ray detector 7 has a plurality of pixels, and these pixels are two-dimensionally arranged. Thereby, the two-dimensional intensity distribution of the X-rays radiated from the X-ray source 5 and passed through the measurement object S can be acquired collectively. Accordingly, it is possible to obtain the entire projected image of the object S to be measured by one shooting.
  • the X-ray detector drive unit 8 moves the X-ray detector 7 on the revolution orbit around the reference axis L.
  • the X-ray detector drive unit 8 includes a rotation mechanism 81 attached to the attachment member 24 of the gantry 2 and an arcuate stage 82 rotated by the rotation mechanism 81.
  • the rotation mechanism 81 includes an attachment plate 811, a motor 812 attached to the attachment plate 811, a first gear 813 that is rotated by the motor 812, a second gear 814 that meshes with the first gear 813, and a hollow rotation shaft 815. have.
  • the rotation shaft 815 rotates around the reference axis L by the second gear 814
  • the arc-shaped stage 82 fixed to the lower portion of the rotation shaft 815 rotates, and the X is provided so as to be movable on the arc-shaped stage 82.
  • the line detector 7 rotates along the revolution trajectory MM around the reference axis L.
  • the moving range of the X-ray detector 7 on the arcuate stage 82 is set so as to intersect the reference axis L. Therefore, when the X-ray detector 7 is positioned at a position intersecting the reference axis L, the X-ray detector 7 can be rotated by the rotation mechanism 81.
  • the arc-shaped stage 82 is a plate formed in a circular arc shape having a predetermined length around a point P that is an X-ray emission point.
  • the arc-shaped stage 82 is provided with a guide rail, a slider, and the like, and the X-ray detector 7 described above is attached to be movable along the arc-shaped track W of the arc-shaped stage 82 by a motor or the like.
  • the desired height Z axis + side
  • the desired height is set so that the trajectory of the X-ray detector 7 is along the side surface of the cone having the emission point P as the apex. It can be adjusted to make a circular motion on the same surface.
  • the X-ray emission point P of the X-ray detector 7 is centered by the revolution orbit MM centered on the reference axis L and the arc-shaped trajectory W centered on the X-ray emission point P. Therefore, the user can photograph the object S to be measured at a desired photographing position and photographing angle. In addition, by moving the mounting table 61 in the Z-axis direction, the measurement object S can be photographed at a desired magnification.
  • the control device 3 has a microprocessor, peripheral circuits, and the like, and reads and executes a control program stored in advance in a storage medium (not shown) (for example, a flash memory), thereby Control each part.
  • the control device 3 includes an X-ray control unit 31, a movement control unit 32, an image generation unit 33, an image reconstruction unit 34, a calculation unit 35, a correction unit 36, and a storage unit 37. These are realized by software by the control device 3 executing a program stored in a non-illustrated non-volatile memory, but these may be configured by an ASIC or the like.
  • the X-ray control unit 31 controls the output of the X-ray source 5, and the movement control unit 32 controls the movement operation of the mounting unit 6 and the X-ray detector drive unit 8 in order to perform laminography described later.
  • the image generation unit 33 generates X-ray projection image data of the measurement object S based on the electrical signal output from the X-ray detector 7, and the image reconstruction unit 34 generates the X-rays of the measurement object S having different projection directions. Based on the projection image data, a known image reconstruction process is performed to generate a reconstructed image. Three-dimensional data that is the internal structure (cross-sectional structure) of the measurement object S is generated from the reconstructed image.
  • a method for generating a reconstructed image includes a back projection method, a filtered back projection method, a successive approximation method, and the like.
  • the calculation unit 35 When performing the laminography, which will be described later, the calculation unit 35 has passed through an index member, which will be described later, when the X-ray detector 7 and the mounting table 61 have an ideal relative positional relationship at each position of the revolution trajectory.
  • the projection position of the X-ray on the detection surface of the X-ray detector 7 is calculated.
  • the revolution trajectory is a trajectory when the mounting table 61 and the X-ray detector 7 rotate in synchronization with each other on a circumference around the reference axis L in a plane perpendicular to the reference axis L. It is.
  • the correction unit 36 is the position on the detection surface calculated by the calculation unit 35, and the position of the projected image of the index member on the detection surface on which the X-ray transmitted through the index member is to be projected, and the actual index Correction of the position of the mounting table 61 based on the amount of deviation from the position of the projected image of the index member on the detection surface of the X-rays transmitted through the index member, obtained at each position on the revolution track of the member; // X-ray projection image data of the measurement object S is corrected.
  • the projection position when the object to be measured S and / or the index member calculated by the calculation unit 35 has an ideal relative positional relationship is the first projection position, and the object to be measured S and / Alternatively, the projection positions obtained at the respective positions as the index member moves on the revolution track are referred to as second projection positions.
  • the storage unit 37 is a non-volatile storage medium, and stores various information used when the correction unit 36 calculates the deviation amount. The calculation unit 35, the correction unit 36, and the storage unit 37 will be described in detail later.
  • the X-ray apparatus 100 has a mechanism (mounting unit 6) for moving the mounting table 61 on the revolving track around the reference axis L, and the reference axis L as the center. And a mechanism (X-ray detector drive unit 8) for moving the X-ray detector 7 on the revolving trajectory MM.
  • the movement of the mounting table 61 on the revolution trajectory and the movement of the X-ray detector 7 on the revolution trajectory MM are controlled to be synchronized by the movement control unit 32 of the control device 3.
  • the image generation unit 33 acquires a projection image of the measurement object S in a state where the mounting table 61 and the X-ray detector 7 are rotated around the reference axis L by the movement control unit 32.
  • lamino drive the movement of the mounting table 61 and the X-ray detector 7 for laminography is referred to as lamino drive.
  • FIG. 4 shows the movement of the mounting table 61 and the X-ray detector 7 during the lamino drive.
  • FIG. 4 shows an example in which four observation positions A, B, C, and D provided every 90 ° are used as positions for observing the object S to be measured by lamino drive. That is, when the mounting table 61 and the X-ray detector 7 are moved synchronously along the direction of the arrow AR1, and the mounting table 61 and the X-ray detector 7 are positioned at the observation positions A, B, C, and D, The object to be measured S is observed.
  • the mounting table 61 and the X-ray detector 7 at the observation positions A, B, C, and D are represented as mounting tables 61A, 61B, 61C, and 61D, and X-ray detectors 7A, 7B, 7C, and 7D, respectively.
  • the X-ray detectors 7A, 7B, 7C and 7D are the revolution trajectories.
  • the mounting table 61 is controlled by the X-axis moving mechanism 62 and the Y-axis moving mechanism 63 so as to move on the revolving track MS around the reference axis L, so that the mounting tables 61A, 61B, 61C and 61D are revolving tracks. It can be located on the MS.
  • the X-ray VA from the X-ray source 5 passes through the measurement object S on the mounting table 61A and is projected onto the X-ray detector 7A.
  • the X-rays VB, VC, and VD from the X-ray source 5 pass through the measurement object S on the mounting tables 61B, 61C, and 61D, and the X-ray detectors 7B, 7C, and 7D.
  • the X-ray detector 7 moves so that the V direction, which is the vertical direction, and the H direction, which is the horizontal direction, change for each observation position. As shown in FIG.
  • each of the X-rays VA to VD is emitted from the X-ray source 5 with a predetermined inclination ⁇ td from the reference axis L, and enters the center (origin) of the detection surfaces of the X-ray detectors 7A to 7D.
  • the predetermined inclination ⁇ td is referred to as the tilt angle of the X-ray detector 7.
  • the tilt angle is 0 °
  • the X-ray detector 7 is located on the reference axis L.
  • the placement unit 6 moves in a plane parallel to the XY plane, which is a plane perpendicular to the reference axis L, according to the positions A, B, C, and D of the X-ray detector 7. . Further, during the movement, the operation that the mounting table 61 rotates with respect to the X-ray source 5 does not occur.
  • the index member M is revolved with respect to the reference axis L in a state where the index member M is arranged at any position in the X direction. It is controlled to be located on the orbit. Therefore, in the present embodiment, the X-ray detector 7 moves relative to the placement unit 6 so as to include a rotational movement component.
  • the measurement object S and the index member M are mounted on the mounting table 61.
  • the index member M is formed, for example, in a spherical shape, and is displaced from an ideal relative positional relationship with respect to the X-ray source 5 and the X-ray detector 7 at each position of the revolution trajectory MS of the mounting table 61 during lamino drive. It is used to calculate whether it is positioned at a certain position.
  • the control device 3 calculates the shift amount based on the projection position at which the index member M is projected onto the detection surface of the X-ray detector 7 and performs processing for correcting the calculated shift amount. The following description will be divided into the concept of calculating the deviation amount, the calculation of the correction amount, and the operation during lamino drive.
  • FIG. 5 is a diagram showing the measurement object S and the index member M placed on the placement table 61.
  • X-rays having a tilt angle ⁇ td from the emission point P of the X-ray source 5 are projected onto the center 710 of the detection surface 71 of the X-ray detector 7.
  • the object S to be measured is placed on an X-ray path LX1 emitted at a tilt angle ⁇ td. Note that a position where X-rays incident on the center 710 of the detection surface 71 pass through the DUT S is called an observation point.
  • an observation point of the measurement object S is represented as SO.
  • the projection position of the observation point SO on the detection surface 71 does not change from the center 710 of the detection surface 71 even if the mounting table 61 and the X-ray detector 7 move by lamino drive.
  • the index member M is placed on the placing table 61 at a position away from the observation point SO of the object S to be measured placed in a predetermined direction by a predetermined distance as shown in FIG. That is, the X-ray path that passes through the index member M is different from the X-ray path LX1 that passes through the observation point SO of the object S to be measured. Thereby, on the detection surface 71 of the X-ray detector 7, the projection image of the measurement object S and the projection image of the index member M do not overlap. Accordingly, since there is no index member M on the X-ray path LX1 passing through the observation point SO, the structure information of the object S to be measured at the observation point SO has better contrast than when the index member M exists at the observation point SO. You can get it.
  • the object to be measured S is arranged so that the index member M is located at a position away from the inspection object range. Is preferred.
  • the reconstruction process is performed using the projection image of the measurement object S detected by the X-ray detector 7, an artifact is generated due to the beam handling effect by the index member M. There is a possibility that the inspection result of the object S to be measured becomes erroneous due to the artifact.
  • the index member M when a reconstructed image is generated from the projection images of the plurality of objects to be measured S, it cannot be guaranteed whether the positional relationship between the projection images is deviated. If the reconstruction is performed in the case of deviation, an artifact is also generated, and the inspection result becomes incorrect.
  • the observation region is a range having a certain area as well as the observation region SO
  • the projected image of the index member M detected by the X-ray detector 7 is the X-ray detector 7.
  • the X-ray control unit 31 allows the user to arrange the measured object S to be detected by the X-ray detector 7 at a position away from the projection image of the observation area of the measured object S in the area detected by You may be encouraged.
  • the user interface (not shown) prompts the user to set the observation area of the measurement object S on the X-ray projection image data of the measurement object S, and the tomographic data of the observation area set by the user or 3 You may control the movement operation
  • the projection image of the index member M exists in the observation area of the object S, a warning is given to move the object S from the mounting table 61, or the observation area is changed to another area. It is preferable to display so as to recommend resetting to the area. Thereby, it is possible to prevent generation of false images such as beam hardening by the index member M in the reconstructed image.
  • FIG. 6 shows a case where the lamino drive is performed in a state where the object to be measured S and the index member M are placed on the placing table 61 as shown in FIG. 6, as in FIG. 4, the positional relationship between the mounting table 61 and the X-ray detector 7 when the mounting table 61 and the X-ray detector 7 are lamino-driven along the direction of the arrow AR ⁇ b> 1. Is shown for each observation position A, B, C and D.
  • an HV coordinate system is set on the detection surface 71 of the X-ray detector 7 and an RT coordinate system is set on the mounting table 61.
  • the HV coordinate system is an orthogonal coordinate system with the center of the detection surface 710 as the origin.
  • the V axis is an axis set so as to intersect the reference axis L from the center 710 of the detection surface 71, and the H axis is an axis orthogonal to the V axis. Even when the X-ray detector 7 is moved between the positional relationships A, B, C, and D in FIG. 6 by lamino drive, the V axis always maintains the direction intersecting the reference axis L at each position. .
  • the orientation of the H-axis changes with respect to the XYZ coordinate system at each of the positions A, B, C, and D.
  • the tilt angle ⁇ td is 0 °
  • the RT coordinate system is an orthogonal coordinate system provided on the mounting surface of the mounting table 61 that moves in synchronization with the X-ray detector 7, and the observation point SO of the object S to be measured mounted on the mounting table 61. Is the origin.
  • the R axis is an axis set in a direction intersecting with the V axis set on the detection surface 71 of the X-ray detector 7. In other words, the R axis is a line of intersection between the mounting table 61 and a plane including the V axis of the HV coordinate system and the reference axis L.
  • the R axis is set such that the observation point SO is the origin 610 and the direction away from the reference axis L is the + direction.
  • the T axis is orthogonal to the R axis at the origin 610.
  • the RT coordinate system is a rotating coordinate system that rotates around the reference axis L when the mounting table 61 moves in accordance with lamino drive.
  • the calculation of the ideal revolution trajectory in the lamino drive will be described. That is, the ideal revolution trajectories of the mounting table 61 and the X-ray detector 7 rotate in synchronism with each other on the circumference around the reference axis L in a plane perpendicular to the reference axis L. It indicates a state in which the relative positional relationship among the X-ray source 5, the X-ray detector 7 and the mounting table 6 is maintained at a position on each revolution orbit.
  • the calculation of the first projection position is performed according to the following procedures (1) to (3). Note that the calculation of the first projection position is not an actual observation, but is performed assuming an observation obtained when the relative positional relationship between the X-ray detector 7 and the mounting table 61 is an ideal positional relationship. is there.
  • (1) The relative position of the index member M with respect to the observation point SO of the object to be measured S is set.
  • (2) The angle formed by the X-ray path LX1 that passes through the observation point SO of the object to be measured S and the X-ray path LX2 that passes through the point M0 where the index member M contacts the mounting surface of the mounting table 61 is calculated. To do.
  • the relative position of the index member M with respect to the measured object S is set.
  • M0 be the intersection of a straight line parallel to the reference axis L passing through the center M1 of the index member M and the mounting surface of the mounting table 61.
  • a distance in a plane perpendicular to the reference axis L between the observation point SO and the point M0 of the object S to be measured placed on the placing table 61 is denoted by rs.
  • an angle formed by a straight line connecting the observation point SO and the point M0 with respect to the R axis on the RT coordinate system is defined as an azimuth angle ⁇ sr.
  • the distance rs and the azimuth angle ⁇ sr are acquired by analyzing the X-ray projection image data obtained by the X-ray detector 7 with the tilt angle ⁇ td of the X-ray detector 7 set to 0 °.
  • the origin 610 of the RT coordinate system that is, the position where the observation point SO and the reference axis L coincide (hereinafter referred to as the first initial observation position).
  • the distance rs is calculated by dividing the distance from the origin of the RT coordinate system to the center of the projection image of the index member M on the generated X-ray projection image data by the projection magnification.
  • the azimuth angle ⁇ sr is calculated based on the coordinate value of the projection image of the index member M on the X-ray projection image data.
  • the observation position of the object S to be measured that is, the height from the observation point SO to the center of the index member M (distance in the Z-axis direction) is zs.
  • the X-ray detector 7 and the mounting table 61 are moved to a position where the azimuth angle ⁇ sr becomes zero.
  • the X-ray detector 7 and the mounting table 61 may be rotated by the angle ⁇ sr around the X-ray emission point P in the direction in which the azimuth angle ⁇ sr becomes zero.
  • a straight line passing through the emission point P of the X-ray source 5 and the observation point SO of the X-ray detector 7 and a straight line passing through the emission point P of the X-ray source 5 and the center M1 of the index member M are both present.
  • a positional relationship (hereinafter referred to as a second initial observation position) in which the reference axis L is included in the included plane is obtained. Therefore, in the projected image of the index member M, a point corresponding to the center M1 of the index member M exists on the V axis.
  • An appropriate value may be selected for the tilt angle ⁇ td of the X-ray detector 7. In this case, the height zs is calculated by analyzing the X-ray projection image data obtained by the X-ray detector 7.
  • FIG. 7 shows the positional relationship between the cross section of the index member M at the second initial observation position in a plane parallel to the ZX plane, the emission point P of the X-ray source 5, and the detection surface 71 of the X-ray detector 7.
  • FIG. 7 the index member S is omitted for convenience of illustration.
  • a method for calculating the height zs will be described.
  • distances L1, L2, and L3 are defined as follows along a straight line LX0 connecting the emission point P of the X-ray source 5 and the observation point SO of the object S to be measured. That is, a distance L1 between the emission point P of the X-ray source 5 and the center 710 of the detection surface 71 of the X-ray detector 7 and a distance between the measurement point S and the observation point SO from the emission point P are L2. Also, let MP be the foot of a perpendicular line drawn from the point M0 to the straight line LX0, and let L3 be the distance between the observation points SO and MP. Furthermore, the distance in the Z-axis direction between the emission point P and the observation point SO is defined as Zt.
  • the projection magnification mrs on the detection surface 71 of the X-ray detector 7 at the position of the point M0 is expressed by the following equation (1).
  • L2 Zt / cos ( ⁇ td)
  • L3 rs ⁇ sin ( ⁇ td)
  • mrs L1 / (L2 + L3) (1) If the set projection magnification of the X-ray apparatus 100 is Mx, Zt is expressed by the following equation (2).
  • Zt (L1 / Mx) ⁇ cos ( ⁇ td) (2)
  • V1i rs ⁇ cos ( ⁇ td) ⁇ mrs (3)
  • be the distance between the center M1 of the index member M and the point M0 in the direction parallel to the detection surface 71. Further, on the detection surface 71 of the X-ray detector 7, the distance between the point corresponding to the observation point SO and the point corresponding to the center M1 of the index member M is set to V1.
  • the distance ⁇ is expressed by the following formula (4).
  • (V1i ⁇ V1)
  • ⁇ mrs rs ⁇ cos ( ⁇ td) ⁇ V1 / mrs (4)
  • FIG. 8A is a ZX sectional view showing the positional relationship between the emission point P of the X-ray source 5 and the detection surface 71 of the X-ray detector 7 at the observation position shown in FIG.
  • FIG. 8B shows the emission point P of the X-ray source and the detection surface 71 of the X-ray detector 7 when the state of FIG.
  • FIG. 8A is viewed from the top (Z direction + side) of the mounting table 61.
  • FIG. 8C is a view of the detection surface 71 of the X-ray detector 7 as seen from the back side. 8A, 8B, and 8C, the device under test S is omitted for convenience of illustration.
  • the angle between the path LX1 and the path LX2 on the paper surface of FIG. 8A is ⁇ v
  • the angle between the X-ray path LX1 and the path LX2 is on the paper surface of FIG. Let ⁇ h.
  • the angle ⁇ h formed by the path LX1 and the path LX2 on the paper surface of FIG. 8B can be expressed by the following equation (8). ... (8)
  • the HV coordinate system that is, the first projection position and the second projection position on the detection surface 71 of the X-ray detector 7 are used.
  • the deviation amounts ⁇ h and ⁇ v are expressed by the following equation (12).
  • the deviation amounts ⁇ h and ⁇ v are the difference between the ideal revolution trajectory and the revolution trajectory MS during actual lamino drive. Represents the value corresponding to the error.
  • the following may be considered as factors that cause an error between the ideal revolution trajectory and the actual revolution trajectory MS. That is, in the revolution trajectory MS in which the mounting portion 6 actually moves, the center of the ideal revolution trajectory is deviated (that is, eccentricity error), and the actual rotation angle is the rotation on the ideal revolution trajectory. It is considered that the actual revolution trajectory MS plane is inclined with respect to the ideal revolution trajectory (namely, surface runout), and the like.
  • FIG. 9 shows the simulation results of the ideal revolution trajectory and the actual revolution trajectory MS when there is an eccentricity error between the ideal revolution trajectory and the actual revolution trajectory MS during actual lamino drive.
  • the locus of the projected image of the center M1 of the index member M assumed on the detection surface 71 in the ideal revolution trajectory is indicated by a solid line C1
  • the index on the detection surface 71 in the actual revolution trajectory MS is indicated by a broken line C2.
  • the locus of the projected image of the center M1 of the member M is elliptical.
  • the projection magnification Mx is 20 times
  • the distance rs is 1 mm
  • the height zs is 0.5 mm
  • the eccentricity error is 0.2 mm.
  • the trajectory C1 and the trajectory C2 are both elliptical, but the trajectory C2 has a major axis and a minor axis both larger than the trajectory C1.
  • the deviation amount between the trajectory C1 and the trajectory C2 corresponds to the deviation amounts ⁇ h and ⁇ v.
  • FIG. 9B shows deviation amounts ⁇ h and ⁇ v of the locus C2 with respect to the locus C1 shown in FIG.
  • the deviation amount ⁇ h is indicated by a solid line
  • the deviation amount ⁇ v is indicated by a broken line.
  • the vertical axis represents the magnitudes of the shift amounts ⁇ h and ⁇ v
  • the horizontal axis represents the angle from the observation position A to each observation position.
  • the shift amounts ⁇ h and ⁇ v are both sinusoidal, but their phases and amplitudes are different from each other.
  • FIG. 10 shows a simulation result of the ideal revolution trajectory and the actual revolution trajectory MS when the actual rotation angle deviates from the rotation angle in the ideal revolution trajectory, that is, when there is a rotation angle error.
  • the rotation angle error assumes a case where a positioning error that causes a revolution cycle to appear every cycle occurs.
  • FIG. 10A shows a projected image trajectory of the center M1 of the index member M assumed on the detection surface 71 in the ideal revolution trajectory by a solid line C1, and the index member M on the detection surface 71 in the actual revolution trajectory MS.
  • the projected image locus of the center M1 is indicated by a broken line C3.
  • the projection magnification Mx is 20 times
  • the distance rs is 1 mm
  • the height zs is 0.5 mm
  • the angle variation is ⁇ 0.3 °.
  • the trajectory C1 and the trajectory C3 are both elliptical.
  • the trajectory C3 is substantially the same as the trajectory C1, but the major axis has the same length. Long length.
  • the deviation amount between the trajectory C1 and the trajectory C3 corresponds to the deviation amounts ⁇ h and ⁇ v.
  • FIG. 10B shows deviation amounts ⁇ h and ⁇ v of the locus C3 with respect to the locus C1 shown in FIG.
  • the deviation amount ⁇ h is indicated by a solid line
  • the deviation amount ⁇ v is indicated by a broken line.
  • the vertical axis represents the magnitudes of the shift amounts ⁇ h and ⁇ v
  • the horizontal axis represents the angle from the observation position A to each observation position.
  • the shift amount ⁇ h is sinusoidal, but the shift amount ⁇ v is 0 and constant.
  • FIG. 11 shows the simulation result of the ideal revolution trajectory and the actual revolution trajectory MS when the surface of the actual revolution trajectory MS is tilted with respect to the raceway surface of the ideal revolution trajectory.
  • FIG. 11A shows the locus of the projected image of the center M1 of the index member M assumed on the detection surface 71 in the ideal revolution trajectory by a solid line C1, and the index member on the detection surface 71 in the actual revolution trajectory MS.
  • the locus of the projected image of the center M1 of M is indicated by a broken line C4.
  • the projection magnification Mx is 20 times
  • the distance rs is 1 mm
  • the height zs is 0.5 mm
  • the inclination angle is 0.3 °.
  • the trajectory C1 and the trajectory C4 are both elliptical.
  • the trajectory C4 is substantially the same in length as the major axis, but the minor axis has a minor axis. The length is short.
  • the deviation amounts between the trajectory C1 and the trajectory C4 correspond to the deviation amounts ⁇ h and ⁇ v.
  • FIG. 11B shows deviation amounts ⁇ h and ⁇ v of the locus C4 with respect to the locus C1 shown in FIG.
  • the deviation amount ⁇ h is indicated by a solid line
  • the deviation amount ⁇ v is indicated by a broken line.
  • the vertical axis represents the magnitudes of the shift amounts ⁇ h and ⁇ v
  • the horizontal axis represents the angle from the observation position A to each observation position.
  • the shift amount ⁇ v is sinusoidal, but the shift amount ⁇ h is 0 and almost zero.
  • the operations of the mounting table 61 and / or the X-ray detector 7 are corrected in a direction in which these deviation amounts are eliminated based on the deviation amounts ⁇ h and ⁇ v generated according to the difference in error.
  • the correction of the mounting table 61 based on the deviation amounts ⁇ h and ⁇ v is performed as follows. That is, a conversion value obtained by converting the deviation amounts ⁇ h and ⁇ v in the HV coordinate system into an amount in the XY coordinate system is calculated, and the movement amount of the mounting table 61 is corrected based on the conversion value. It is possible to correct the influence due to.
  • FIG. 12 shows a position Q1 corresponding to the point M0 related to the index member M in the RT coordinate system, and a position Q2 in the case of being displaced from the position Q1 by the shift amounts ⁇ r and ⁇ t in the RT coordinate system.
  • the center of the RT coordinate system and the center of the XY coordinate system both correspond to the observation point SO, and the RT coordinate system has a relationship obtained by rotating the XY coordinate system by an angle ⁇ rs.
  • the X-ray apparatus 100 performs lamino observation by using all or selectively using the above-described procedures for calculating the shift amount, calculating the correction amount, and converting the correction amount.
  • lamino observation is described as being performed at the four observation positions A, B, C, and D described above, but the number of observation positions is not limited to this example, and the shape of the object S to be measured Depending on the required accuracy of the reconstructed image and the like, it can be set to an arbitrary number by an operator or the like.
  • FIG. 13 shows an example of the object S to be used for lamino observation. A case will be described in which the object to be measured S is observed at a plurality of observation points S100, S200, and S300 (three places in the example of FIG. 13).
  • FIG. 13A is a perspective view showing a state in which the object to be measured S is placed on the placing table 61.
  • FIG. 13B is a plan view of the upper part (Z-axis + side) of the measurement object S.
  • Index members M100, M200, and M300 are placed at positions that are separated from each observation point S100, S200, and S300 by a predetermined distance rs1, rs2, and rs3 in the directions of the predetermined angles ⁇ rs1, ⁇ rs2, and ⁇ rs3, respectively.
  • an initial observation operation for calculating the relative positions of the centers M101, M201, and M301 of the index members M100, M200, and M300 with respect to the observation points S100, S200, and S300 of the object S to be measured.
  • the actual observation operation for actually observing the observation points S100, S200, and S300 of the device under test S will be described.
  • Initial observation operation As an initial observation operation, a first initial observation operation for calculating a predetermined angle ⁇ rs1 and a predetermined distance rs1 of the center M101 of the index member M100 with respect to the observation point S100, and the center of the index member M100 with respect to the observation point S100 A second initial observation operation for calculating a projection magnification of a point corresponding to the height zs1 of M101 and the center M101 of the index member M100 is included.
  • the projection magnification Mx1 for observing the object S to be measured is set in advance by an operation of an operator or the like, and the position adjustment of the mounting table 61 in the Z-axis direction has been completed according to the projection magnification Mx1.
  • the observation operation for the observation point S100 of the X-ray apparatus 100 will be mainly described, but the X-ray apparatus 100 performs the same operation for each of the other observation points S200 and S300.
  • the movement control unit 32 instructs the X-ray detector drive unit 8 to move the X-ray detector 7 to the zenith LQ.
  • the movement control unit 32 instructs the mounting unit 6 to move the mounting table 61 by the X-axis moving mechanism 62 and / or the Y-axis moving mechanism 63 so that the observation point S100 of the object S to be measured is on the reference axis L. To be located. That is, the mounting table 61 and the X-ray detector 7 move to the first initial observation position.
  • FIG. 14 is a diagram showing a positional relationship among the X-ray source 5, the mounting table 61, and the X-ray detector 7 during the initial observation operation.
  • the mounting table 61 at the first initial observation position is indicated as Pm_ini1
  • the X-ray detector 7 is indicated as Pd_ini1.
  • the observation point S100 of the measurement object S and the center 710 of the detection surface 71 of the X-ray detector 7 are both Located on the reference axis L.
  • the X-ray control unit 31 emits X-rays from the X-ray source 5.
  • X-ray emission may be started before the mounting table 61 and the X-ray detector 7 move to the first initial observation position.
  • the image generation unit 33 Based on the electrical signal output from the X-ray detector 7, the image generation unit 33 generates X-ray projection image data corresponding to the X-ray projection image that has passed through the measurement object S and the index member M100.
  • FIG. 15 shows the positional relationship between the observation point S100 of the measurement object S and the center M101 of the index member M100 at the first initial observation position. That is, FIG. 15 shows an observation point S100 of the measurement object S and the index member in a transmission image formed on the detection surface 71 of the X-ray detector 7 by X-rays transmitted through the measurement object S and the index member M100. The positional relationship with the center M101 of M100 is shown.
  • FIG. 15A shows the positional relationship between the observation point S100 of the measurement object S and the center M101 of the index member M100.
  • the point corresponding to the observation point S100 in the projection image is the center of the detection surface 71, that is, the origin of the HV coordinate system. Located in. Further, the point corresponding to the center M101 of the index member M100 in the projection image forms an angle ⁇ sr1 with respect to the V axis of the HV coordinate system and is located at a distance rs11 from the origin of the HV coordinate system. The distance rs11 corresponds to the distance rs1 in the RT coordinate system.
  • the calculation unit 35 calculates the angle ⁇ sr1 and the distance rs1 based on the generated projection image data.
  • the calculation unit 35 calculates the angle ⁇ sr1 from the coordinate value corresponding to the center M101 of the index member M100 in the HV coordinate system.
  • the calculation unit 35 calculates the predetermined distance rs1 by dividing the distance rs11 on the projection image data by the projection magnification, that is, the ratio of the distance from the X-ray source 5 to the index member M100 and the distance to the detection surface 71.
  • the X-ray apparatus 100 performs the same processing on the other observation points S200, S300 and the index members M200, M300 of the object S to be measured.
  • FIG. 15B shows the positional relationship between the observation point S200 and the center M201 of the indicator member M200
  • FIG. 15C shows the positional relationship between the observation point S300 and the center M301 of the indicator member M300.
  • the calculation unit 35 calculates the angle ⁇ sr2 and the predetermined distance rs2 using the projection image data (FIG. 15B) generated in the state set to the first initial observation position with respect to the observation point S200.
  • the calculation unit 35 calculates the angle ⁇ sr3 and the predetermined distance rs3 using the projection image data (FIG. 15C) generated in the state set to the first initial observation position with respect to the observation point S300.
  • the angle ⁇ rs and the predetermined distance rs calculated based on the projection image data are stored in the storage unit 37.
  • the X-ray apparatus 100 performs the second initial observation operation for calculating the height zs1 of the center M101 of the index member M100 and the projection magnification mrs1 of the point corresponding to the center M101 of the index member M100.
  • the movement control unit 32 instructs the X-ray detector drive unit 8 to move the X-ray detector 7 to the position of the tilt angle ⁇ td.
  • the movement control unit 32 instructs the mounting unit 6 to move the mounting table 61 to the observation position A by the X-axis moving mechanism 62 and / or the Y-axis moving mechanism 63.
  • the movement control unit 32 further instructs the X-ray detector drive unit 8 to move the X-ray detector 7 from the observation position A along the revolution trajectory MM by a movement amount corresponding to the predetermined angle ⁇ rs1.
  • the positional relationship includes the reference axis L.
  • the X-ray control unit 31 emits X-rays from the X-ray source 5.
  • the image generation unit 33 Based on the electrical signal output from the X-ray detector 7, the image generation unit 33 generates projection image data corresponding to the X-ray projection image transmitted through the object to be measured S and the index member M100.
  • FIG. 16A shows the positional relationship between the center S100 of the measurement object S and the center M101 of the index member M100 in the projection image of the measurement object S and the index member M100 on the detection surface 71 at the observation position A. And shown on the HV coordinate system.
  • the projection position of the observation point S100 is the center of the detection surface 71, that is, the HV coordinate system, as in FIG. Matches the origin of.
  • the point corresponding to the center M101 of the index member M100 in the projection image of the index member M100 is a position that is separated from the origin of the HV coordinate system by the distance rs1 and that forms an angle ⁇ sr1 with respect to the V axis.
  • FIG. 16B shows the positions of the center S100 of the measurement object S and the center M101 of the index member M100 in the projection image of the measurement object S and the index member M100 on the detection surface 71 at the second initial observation position.
  • the relationship is shown on the HV coordinate system. That is, FIG. 16B shows the projection image data generated at the second initial observation positions Pm_ini2 and Pd_ini2.
  • the observation point S100 corresponds to the center 710 of the detection surface 71 as in the case of FIG.
  • the X-ray detector 7 is moved along the revolution trajectory MM by a movement amount corresponding to the angle ⁇ rs1.
  • the calculation unit 35 calculates the height zs1 of the index member M1 using the distance rs12 from the origin on the V axis.
  • the calculation unit 35 calculates Equation (1). To calculate the projection magnification ms1. The calculation unit 35 calculates the height zs1 using the above-described equations (4) and (5) based on the generated projection image data and the calculated projection magnification mrs1. At this time, V1 in Expression (4) is used in place of the distance rs12.
  • the X-ray apparatus 100 performs the same operation as described above for the other observation points S200, S300 and the index members M200, M300 of the object S to be measured, and each of the index members M200, M300 at the respective observation points S201, S301.
  • the heights zs2 and zs3 of the centers M201 and M301 are calculated.
  • projection magnifications mrs2 and mrs3 of points corresponding to the centers M201 and M301 are calculated.
  • the calculated heights zs1 to zs3 of the centers M101, M201 and M301 of the respective observation points S100, S200 and S300 and the projection magnifications mrs1 to mrs3 of the centers M101, M201 and M301 are stored in the storage unit 37. .
  • the movement control unit 32 instructs the X-ray detector drive unit 8 to move the X-ray detector 7 to the observation position A.
  • the movement control unit 32 instructs the mounting unit 6 to move the mounting table 61 to the observation position A by the X-axis moving mechanism 62 and / or the Y-axis moving mechanism 63.
  • the X-ray control unit 31 irradiates the X-ray source 5 with X-rays. Note that the X-ray detector 7 may be moved to the observation position A in a state where X-rays are irradiated in advance.
  • the X-ray detector 7 detects X-rays emitted from the X-ray source 5 and transmitted through the measurement object S and the index member M, and outputs an electrical signal based on the projection images of the measurement object S and the index member M. .
  • the image generation unit 33 generates X-ray projection image data using the electrical signal output from the X-ray detector 7.
  • the calculation unit 35 uses the above-described equations (9) and (10) to calculate the index member M1 at the first projection position. Coordinate values (href, vref) are calculated. Based on the first projection position of the index member M calculated by the calculation unit 35 and the second projection position of the index member M1 of the generated X-ray projection image data, the correction unit 36 calculates the above-described formula (12). The deviation amounts ⁇ h and ⁇ v in the HV coordinate system are calculated.
  • the correction unit 36 converts the shift amounts ⁇ h and ⁇ v in the HV coordinate system into the shift amounts ⁇ x and ⁇ y in the XY coordinate system using the above-described equations (13) and (14).
  • the movement control unit 32 outputs the deviation amounts ⁇ x and ⁇ y calculated by the correction unit 36 to the mounting unit 6 as the movement amount of the mounting table 61.
  • the mounting unit 6 moves the mounting table 61 by a distance corresponding to the shift amounts ⁇ x and ⁇ y by the X-axis moving mechanism 62 and / or the Y-axis moving mechanism 63. Thereby, the deviation
  • the image generation unit 33 generates X-ray projection image data of the object S to be measured using the electrical signal output from the X-ray detector 7 in a state where the displacement amount of the mounting table 61 is corrected, and the storage unit 37. To remember. Thereby, it is possible to obtain X-ray projection image data to be generated when it is assumed that the mounting table 61 and the X-ray detector driving unit 8 have no accuracy problem.
  • the X-ray apparatus 100 performs the above-described operation also at each observation position B, C, D, and acquires X-ray projection image data in a state where the displacement amount of the mounting table 61 is corrected at each observation position B, C, D. To do.
  • the X-ray apparatus 100 performs the same processing for each observation position A, B, C, and D for the other observation points S200 and S300 and the index members M200 and M300 to be measured S.
  • the shift amounts ⁇ h and ⁇ v are calculated using the projection image of the index member M at each observation position.
  • the present invention is not limited to this.
  • the deviation amounts ⁇ h and ⁇ v may be calculated and corrected at the observation positions A and C every 180 °.
  • the image reconstruction unit 34 performs a known image reconstruction process on the X-ray projection image data generated at each observation position for each observation point S100, S200, and S300 to generate a reconstructed image.
  • Three-dimensional data that is the internal structure (cross-sectional structure) of the measurement object S is generated from the reconstructed image.
  • step S1 the movement control unit 32 moves the mounting table 61 and the X-ray detector 7 to the first initial observation position, and proceeds to step S2.
  • step S ⁇ b> 2 the X-ray control unit 31 causes the X-ray source 5 to emit X-rays, the X-ray detector 7 outputs the detected projection image as an electrical signal, and the image generation unit 33 outputs from the X-ray detector 7.
  • X-ray projection image data is generated using the electrical signal thus generated.
  • the calculation unit 35 calculates the distance rs and the azimuth angle ⁇ sr of the index member M with respect to the observation point of the measurement object S, stores them in the storage unit 37, and proceeds to step S3.
  • step S3 the movement control unit 32 moves the mounting table 61 and the X-ray detector 7 to the second initial observation position, and proceeds to step S4.
  • step S4 the X-ray control unit 31 causes the X-ray source 5 to emit X-rays, the X-ray detector 7 outputs the detected projection image as an electrical signal, and the image generation unit 33 outputs from the X-ray detector 7.
  • X-ray projection image data is generated using the electrical signal thus generated.
  • the calculation unit 35 calculates the height zs of the index member M and the projection magnification mrs with respect to the observation point of the object S to be measured using the X-ray projection image data, stores it in the storage unit 37, and proceeds to step S5.
  • step S5 it is determined whether the distance rs, the height zs, and the projection magnification mrs of the index member M have been calculated for all observation points of the measurement object S. If processing has been performed for all observation points, an affirmative determination is made in step S5 and the process proceeds to step S6. If processing has not been performed for all observation points, a negative determination is made in step 5 and the process returns to step S1, and processing is performed for another observation point.
  • the processes in steps S1 to S5 described above are processes in the initial observation operation.
  • step S6 one observation point is selected from the plurality of observation points of the object S to be measured, and the process proceeds to step S7.
  • step S7 the movement control unit 32 moves the mounting table 61 and the X-ray detector 7 to the observation position in order to observe the selected observation point, and proceeds to step S8.
  • step S8 using the distance rs, the height zs, and the projection magnification mrs of the index member M calculated by the calculation unit 35, the coordinates of the index member M1 at the first projection position according to the equations (9) and (10). The values (href, vref) are calculated and the process proceeds to step S9.
  • step S9 the correction unit 36 uses the X-ray projection image data generated by the image generation unit 33 using the electrical signal output from the X-ray detector 7, and uses the X-ray projection image data generated at the second projection position of the index member M1.
  • a coordinate value real, termel is calculated, and the process proceeds to step S10.
  • step S10 the correction unit 36 calculates the shift amounts ⁇ h and ⁇ v in the HV coordinate system using Expression (12) based on the first projection position and the second projection position, and proceeds to step S11.
  • step S11 the correction unit 36 converts the calculated deviation amounts ⁇ h and ⁇ v into deviation amounts ⁇ x and ⁇ y in the XY coordinate system using the equations (13) and (14), and the process proceeds to step S12.
  • step S12 the movement control unit 32 outputs the deviation amounts ⁇ x and ⁇ y calculated by the correction unit 36 and the movement amount to the mounting unit 6, moves the mounting table 61, and proceeds to step S13.
  • step S13 the image generation unit 33 generates X-ray projection image data using the electrical signal output from the X-ray detector 7, stores it in the storage unit 37, and proceeds to step S14.
  • step S14 it is determined whether or not the processing has been completed for all observation positions. If the process has been performed at all the observation positions, an affirmative determination is made in step S14 and the process proceeds to step S15. If the processing has not been performed at all the observation positions, a negative determination is made in step S14 and the process returns to step S7, and processing for another observation position is performed.
  • step S15 it is determined whether or not processing has been performed for all observation points of the object S to be measured. If processing has been performed for all observation points, an affirmative determination is made in step S15 and the process proceeds to step S16. If processing has not been performed for all observation points, a negative determination is made in step S15 and the process returns to step S6, and processing is performed for another observation point.
  • the processing from step S6 to step S15 described above is processing in the actual observation operation.
  • step S16 the image reconstruction unit 34 generates a reconstructed image using the generated X-ray projection image data and ends the process.
  • the X-ray apparatus 100 includes a mounting table 61, an X-ray source 5, an X-ray detector 7, an image generation unit 33, a calculation unit 35, and a correction unit 36.
  • an index member M is provided on the mounting table 61.
  • the X-ray source 5 irradiates the measurement object S and the index member M with X-rays.
  • the X-ray detector 7 detects the projection image of the measurement object S and the projection image of the index member M by the irradiated X-rays.
  • the image generation unit 33 rotates the mounting table 61 and the X-ray detector 7 around the reference axis L, and irradiates the measurement object S with X-rays from a plurality of different irradiation directions along with the rotation.
  • the calculation unit 35 includes the mounting table 61 corresponding to different irradiation directions based on the positional information of the index member M on the mounting table 61 and the relative positional relationship between the X-ray detector 7 and the X-ray source 5.
  • a first projection position of the projection image of the index member M at each position when the X-ray detector 7 rotates around the reference axis L is calculated.
  • the correction unit 36 performs the second projection on the detection surface 71 of the X-ray detector 7 with the calculated first projection position in each of a plurality of different irradiation directions and the projection image of the index member M acquired with the rotation. Correction processing is performed based on the deviation amounts ⁇ h and ⁇ v from the projection position. Therefore, since the shift amounts ⁇ h and ⁇ v are calculated based on the position of the projection image of the index member M on the detection surface 71, the ideal revolution trajectories of the actual revolution trajectories MS and MM in the mounting table 61 and the X-ray detector 7 are calculated. It is possible to improve the calculation accuracy of the deviation amount with respect to.
  • the correction unit 36 is the measurement object S acquired when the mounting table 61 and the X-ray detector 7 rotate around the reference axis L1 when the calculation unit 35 calculates the first projection position.
  • the correction process is performed so that the projected image becomes. Therefore, by moving the mounting table 61 to the position of the ideal rotation locus, it is possible to irradiate the measurement object S with X-rays in a state where the influence of various error factors is reduced at each observation position. Thereby, generation
  • the correction unit 36 moves the mounting table 61 based on the shift amounts ⁇ x and ⁇ y, and corrects the relative positional relationship between the mounting table 61 and the X-ray detector 7. Therefore, the position of the projection image of the object S to be measured on the detection surface 71 of the X-ray detector 7 can be corrected to a position to be projected in a state where the influence of errors is reduced. Thereby, generation
  • the correction unit 36 causes the movement control unit 32 to move the mounting table 61 within the XY plane based on the shift amounts ⁇ x and ⁇ y. Therefore, by moving the mounting table 61 along the movable direction, it is possible to correct a shift in the position of the X-ray that passes through the object S to be measured.
  • the correction unit 36 calculates the difference between the first projection position and the second projection position on the detection surface 71 of the X-ray detector 7 as the shift amounts ⁇ h and ⁇ v. Therefore, since the shift amounts ⁇ h and ⁇ v are calculated based on the position of the projection image of the index member M on the detection surface 71, the ideal revolution trajectories of the actual revolution trajectories MS and MM in the mounting table 61 and the X-ray detector 7 are calculated. It is possible to improve the calculation accuracy of the deviation amount with respect to.
  • the correction unit 36 sets the shift amounts ⁇ h and ⁇ v between the first projection position and the second projection position represented by the VH coordinate system on the detection surface 71 of the X-ray detector 7 as the mounting surface of the mounting table 61. Is converted into a shift amount in the RT coordinate system, and shift amounts ⁇ x and ⁇ y in the XY coordinate system are calculated, and the mounting table 61 is moved using the shift amounts ⁇ x and ⁇ y. Therefore, since the shift amounts ⁇ x and ⁇ y for moving the mounting table 61 are calculated based on the position to be projected on the detection surface 71, the shift amounts ⁇ x and ⁇ y can be calculated with high accuracy.
  • the storage unit 37 stores, for each index member S, information indicating the position of each of the plurality of index members M provided on the mounting table 61 for each predetermined distance, that is, the distance rs and the height zs. Therefore, when measuring a plurality of objects to be measured S continuously, the objects to be measured S can be continuously measured while the plurality of index members M are mounted on the mounting table 61. The processing time required for the process can be shortened.
  • the correction unit 36 calculates the shift amounts ⁇ h and ⁇ v based on the distance rs and the height rz that are information indicating the position stored in the storage unit 37. Therefore, the displacement amounts ⁇ h and ⁇ v of the index member M can be easily calculated at each observation position, and the displacement amounts ⁇ x and ⁇ y can be corrected.
  • the observation point SO of the measurement object S placed on the mounting table 61 is X-rayed in each of a plurality of different irradiation directions when acquiring a projection image of the measurement object S according to the rotation.
  • the position projected on the detection surface 71 of the detector 7 does not change.
  • the relative distance rs between the observation point SO and the index member M, relative to the projection image of the measured object S and the index member M projected onto the detection surface 71 of the X-ray detector 7 The height zs can be calculated.
  • the image reconstruction unit 34 reconstructs an image of the measurement object S using the projection image of the measurement object S after the correction process is performed by the correction unit 36. Therefore, it is possible to acquire a highly accurate image by generating a reconstructed image of the object to be measured S based on the projection image data acquired in a state where the deviation amount is corrected.
  • the distance rs and the height rz between the measurement object S and the index member M on the mounting table 61 are used as position information. Thereby, the first projection position of the index member M can be easily calculated.
  • the correction unit 36 calculates the shift amounts ⁇ h and ⁇ v between the first projection position and the second projection position in the HV coordinate system using Expression (12) in the same manner as in the first embodiment.
  • the correction unit 36 corrects the projected image of the measurement object S based on the deviation amounts ⁇ h and ⁇ v when the deviation amounts ⁇ h and ⁇ v are less than a predetermined threshold.
  • the correction unit 36 displaces the projection position with respect to the projection image of the measurement object S in the X-ray projection image data generated by the image generation unit 33 using the shift amounts ⁇ h and ⁇ v as correction amounts. .
  • all the pixels constituting the image data are translated as the shift amounts ⁇ h and ⁇ v.
  • the predetermined threshold value represents a deviation amount that can be corrected by image processing, and is a value obtained by performing a test or the like in advance. This predetermined threshold value is stored in advance in a predetermined storage medium (not shown).
  • the correction unit 36 moves the mounting table 61 based on the deviation amounts ⁇ h and ⁇ v in the same manner as in the first embodiment when the deviation amounts ⁇ h and ⁇ v are equal to or larger than the predetermined threshold values. This is because when the deviation amounts ⁇ h and ⁇ v are equal to or greater than a predetermined threshold, it is considered that the influence of the deviation cannot be removed by image processing. Further, it is conceivable that the projection image of the measurement object S in such a large amount of deviation includes a lot of errors, and it is effective to perform image processing on such projection image data. This is because correction cannot be expected.
  • the correction unit 36 corrects the shift amount by moving the mounting table 61 when the shift amounts ⁇ h and ⁇ v are equal to or greater than the predetermined threshold. However, the correction unit 36 moves the mounting table 61 and corrects the projection image data. May be performed together. In this case, the correction unit 36 moves the mounting table 61 so that the deviation amounts ⁇ h and ⁇ v become predetermined values that are equal to or less than predetermined threshold values. In this state, the correction unit 36 performs image processing on the projection image data generated by the image generation unit 33 to correct the influence of the deviation.
  • Steps S51 (movement to the first initial observation position) to S60 (shift amount calculation) are performed in steps S1 (movement to the first initial observation position) to S10 (shift amount calculation) shown in the flowchart of FIG. It is the same as each process until.
  • step S61 the correction unit 36 determines whether or not the calculated deviation amounts ⁇ h and ⁇ v are equal to or greater than a predetermined threshold value. If the deviation amounts ⁇ h and ⁇ v are greater than or equal to the predetermined threshold, an affirmative determination is made in step S61 and the process proceeds to step S62. If the deviation amounts ⁇ h and ⁇ v are less than the predetermined threshold, a negative determination is made in step S61 and the process proceeds to step S68. In step S68, the correction unit 36 corrects the shift amounts ⁇ h and ⁇ v with respect to the X-ray projection image data generated in step S59 by image processing, and proceeds to step S69.
  • step S69 the X-ray projection image data corrected by the image processing is recorded in the storage unit 37, and the process proceeds to step S65.
  • step S62 shift amounts ⁇ h and ⁇ v to shift amounts in the XY coordinate system
  • step S67 reconstruction image
  • step S16 reconstruction image
  • the correction unit 36 performs correction processing on at least one of the relative positional relationship and the X-ray projection image data that is the projection image of the object S acquired along with the rotation. That is, the correction unit 36 corrects the position of the mounting table 61 when the deviation amounts ⁇ h and ⁇ v exceed the threshold value, and corrects the projected image of the measurement object S when the deviation amounts ⁇ h and ⁇ v do not exceed the threshold value. Correct the deviation. Therefore, even if the X-ray projection image data is affected by an error that exceeds the correctable deviation amounts ⁇ h and ⁇ v, the correction can be performed by moving the position of the mounting table 61. . Therefore, it is possible to generate highly accurate X-ray projection image data and a reconstructed image regardless of the magnitudes of the shift amounts ⁇ h and ⁇ v.
  • the structure manufacturing system of the present embodiment creates a molded product such as an electronic component including a circuit board, for example.
  • FIG. 19 is a block diagram showing an example of the configuration of the structure manufacturing system 400 according to the present embodiment.
  • the structure manufacturing system 400 includes the X-ray apparatus 100, the design apparatus 410, the molding apparatus 420, the control system 430, and the repair apparatus 440 described in any one of the first and second embodiments or modifications. With.
  • the design device 410 is a device used by a user when creating design information related to the shape of a structure, and performs a design process for creating and storing design information.
  • the design information is information indicating the coordinates of each position of the structure.
  • the design information is output to the molding apparatus 420 and a control system 430 described later.
  • the molding apparatus 420 performs a molding process for creating and molding a structure using the design information created by the design apparatus 410.
  • the molding apparatus 420 includes an apparatus that performs at least one of laminating, casting, forging, and cutting represented by 3D printer technology.
  • the X-ray apparatus 100 performs a measurement process for measuring the shape of the structure molded by the molding apparatus 420.
  • the X-ray apparatus 100 outputs information (hereinafter referred to as shape information) indicating the coordinates of the structure, which is a measurement result of the structure, to the control system 430.
  • the control system 430 includes a coordinate storage unit 431 and an inspection unit 432.
  • the coordinate storage unit 431 stores design information created by the design apparatus 410 described above.
  • the inspection unit 432 determines whether the structure molded by the molding device 420 is molded according to the design information created by the design device 410. In other words, the inspection unit 432 determines whether or not the molded structure is a good product. In this case, the inspection unit 432 reads the design information stored in the coordinate storage unit 431 and performs an inspection process for comparing the design information with the shape information input from the X-ray apparatus 100. The inspection unit 432 compares, for example, the coordinates indicated by the design information with the coordinates indicated by the corresponding shape information as the inspection processing, and if the coordinates of the design information and the coordinates of the shape information match as a result of the inspection processing. It is determined that the non-defective product is molded according to the design information.
  • the inspection unit 432 determines whether or not the coordinate difference is within a predetermined range, and if it is within the predetermined range, it can be restored. Judged as a defective product.
  • the inspection unit 432 outputs repair information indicating the defective portion and the repair amount to the repair device 440.
  • the defective part is the coordinate of the shape information that does not match the coordinate of the design information
  • the repair amount is the difference between the coordinate of the design information and the coordinate of the shape information in the defective part.
  • the repair device 440 performs a repair process for reworking a defective portion of the structure based on the input repair information. The repair device 440 performs again the same process as the molding process performed by the molding apparatus 420 in the repair process.
  • step S111 the design apparatus 410 is used when designing the structure by the user, creates and stores design information related to the shape of the structure by the design process, and proceeds to step S112.
  • the present invention is not limited to only the design information created by the design apparatus 410, and when design information already exists, the design information is acquired by inputting the design information and is included in one aspect of the present invention. It is.
  • step S112 the forming apparatus 420 creates and forms a structure based on the design information by a forming process, and proceeds to step S113.
  • step S113 the X-ray apparatus 100 performs measurement processing, measures the shape of the structure, outputs shape information, and proceeds to step S114.
  • step S114 the inspection unit 432 performs an inspection process for comparing the design information created by the design apparatus 410 with the shape information measured and output by the X-ray apparatus 100, and the process proceeds to step S115.
  • step S115 based on the result of the inspection process, the inspection unit 432 determines whether the structure formed by the forming apparatus 420 is a non-defective product. If the structure is a non-defective product, that is, if the coordinates of the design information coincide with the coordinates of the shape information, an affirmative determination is made in step S115 and the process ends.
  • step S115 If the structure is not a non-defective product, that is, if the coordinates of the design information do not match the coordinates of the shape information, or if coordinates that are not in the design information are detected, a negative determination is made in step S115 and the process proceeds to step S116.
  • step S116 the inspection unit 432 determines whether or not the defective portion of the structure can be repaired. If the defective part cannot be repaired, that is, if the difference between the coordinates of the design information and the coordinates of the shape information in the defective part exceeds the predetermined range, a negative determination is made in step 116 and the process ends. If the defective part can be repaired, that is, if the difference between the coordinates of the design information and the shape information in the defective part is within a predetermined range, an affirmative determination is made in step S116 and the process proceeds to step S117. In this case, the inspection unit 432 outputs repair information to the repair device 440.
  • step S117 the repair device 440 performs a repair process on the structure based on the input repair information, and returns to step S113. As described above, the repair device 440 performs again the same processing as the molding processing performed by the molding device 420 in the repair processing.
  • the X-ray apparatus 100 of the structure manufacturing system 400 performs a measurement process for acquiring shape information of the structure created by the molding apparatus 420 based on the design process of the design apparatus 410, and performs an inspection unit of the control system 430.
  • Reference numeral 432 performs an inspection process for comparing the shape information acquired in the measurement process with the design information created in the design process. Therefore, it is possible to determine whether a structure is a non-defective product created according to the design information by acquiring defect inspection of the structure or information inside the structure by nondestructive inspection. Contribute to.
  • the repair device 440 performs the repair process for performing the molding process again on the structure based on the comparison result of the inspection process. Therefore, when the defective portion of the structure can be repaired, the same processing as the molding process can be performed again on the structure, which contributes to the manufacture of a high-quality structure close to design information.
  • FIG. 21 shows a sectional view of the mounting table 61.
  • FIG. 21A shows an example in which an index member M manufactured from a material different from the material forming the mounting table 61, that is, a material having a different density, is embedded in the mounting table 61.
  • the amount of X-ray attenuation differs between the X-ray transmitted through the mounting table 61 and the X-ray transmitted through the index member M, so that the projected image of the index member M is detected on the X-ray detector 7.
  • FIG. 21B shows an example in which the index member M is formed by making the thickness of a part of the mounting table 61 different from other parts.
  • the attenuation amount of the X-rays differs.
  • the projection image of the index member M is detected on the X-ray detector 7.
  • the index member M is formed by making it thinner than other portions of the mounting table 61, but the index member M is made thicker than other portions of the mounting table 61. It may be formed. Further, as in the example shown in FIG.
  • the index member M may be formed by making a part of the mounting table 61 hollow. Further, the index member M may be formed using a material having a different density while being different in thickness from the other parts of the mounting table 61.
  • the index member M By configuring the index member M as shown in FIG. 20, it is not necessary to mount the index member M on the mounting table 61 for each observation, and work efficiency is improved. Furthermore, there is no possibility that the position of the index member M is shifted during the movement of the mounting table 61, and the accuracy of calculating the deviation amounts ⁇ h and ⁇ v is improved, thereby contributing to the generation of a high-quality reconstructed image.
  • the mounting table 61 may be moved in the Z direction in addition to the X direction and the Y direction.
  • the angle formed between the reference axis L and the path of the X-rays emitted from the emission point P of the X-ray source 5 and transmitted through the DUT changes from the tilt angle ⁇ td.
  • the shift amounts ⁇ h and ⁇ v can be corrected by changing the position of the projection image of the object S to be measured on the detection surface 71 of the X-ray detector 7.
  • the projection magnification is small, by moving the mounting table 61 and performing correction, it is possible to suppress a large change in the projection magnification caused by moving the mounting table 61 in the Z direction.
  • the movement control unit 32 may correct the shift amounts ⁇ h and ⁇ v by moving the X-ray detector 7.
  • the correction unit 36 converts the shift amounts ⁇ h and ⁇ v into a shift angle in a plane parallel to the XY plane with respect to the reference axis L and a shift angle in the Z-axis direction.
  • the movement control unit 32 may move the X-ray detector 7 according to the deviation angle.
  • the movement control unit 32 may correct the deviation amounts ⁇ h and ⁇ v by moving the X-ray detector 7 and the mounting table 61.
  • the correction unit 36 converts the deviation amounts ⁇ h and ⁇ v into deviation angles as described above.
  • the movement control unit 32 moves the X-ray detector 7 according to the deviation angle in the plane parallel to the XY plane with respect to the converted reference axis L, and moves the mounting table 61 in the Z direction according to the deviation angle in the Z-axis direction. Just do it.
  • the X-ray source 5 and the X-ray detector 7 may move on the revolution orbit instead of the stage 61 moving on the revolution orbit MS during the lamino drive.
  • the X-ray apparatus 100 has a mechanism for moving the X-ray source 5 on the XY plane instead of the X-axis moving mechanism 62 and the Y-axis moving mechanism 63 for moving the mounting table 61.
  • the movement control unit 32 moves the mounting table 61 in the Z direction by the Z-axis moving mechanism 64 according to the projection magnification.
  • the movement control unit 32 may move the X-ray source 5 using the converted deviation amounts ⁇ x and ⁇ y as movement amounts.
  • correction may be performed by moving the X-ray detector 7 as in Modification 3.
  • the X-ray apparatus 100 may have a mechanism for moving the X-ray source 5 in the Z direction in addition to the XY plane.
  • the X-axis moving mechanism 62 and the Y-axis moving mechanism 63 may have a structure for suppressing deformation due to temperature.
  • FIG. 22A shows a perspective view of the mounting table 61 and the X-axis moving mechanism 62.
  • the X-axis moving mechanism 62 includes a base 620, a first guide shaft 621, a second guide shaft 622, guide movers 623a and 623b (generally given reference numerals 623), an end limiting member. 624a to 624d (generally referred to as 624), elastic members 625a to 625d (generically referred to as 625), correction members 626a and 626b (generally referred to as 626).
  • the motor and the lead screw are omitted for the sake of illustration.
  • the base 620 is a flat plate member having an opening OP at the center, and is a substrate for attaching each constituent member to the X-axis moving mechanism 62.
  • the opening OP is provided for the passage of X-rays emitted from the X-ray source 5.
  • the first guide shaft 621 and the second guide shaft 622 extend along the X direction.
  • the first guide shaft 621 is attached in the vicinity of the Y axis + side end portion on the Z axis + side surface of the base 620, and the second guide shaft 622 is the Y axis on the Z axis + side surface of the base 620. -Mounted near the side edge.
  • a motor and a lead screw for moving the mounting table 61 in the X-axis direction are not shown.
  • the first guide shaft 621 and the second guide shaft 622 are fastened to the base 620 with screws in the vicinity of their respective central portions, that is, in a part of the total length of the first guide shaft 621 and the second guide shaft 622.
  • the FIG. 22 shows an example in which the first guide shaft 621 and the second guide shaft 622 are fastened to the base 620 with two screws.
  • the end on the X axis + side of the first guide shaft 621 is pressed against the Z axis ⁇ direction, that is, the base 620 by the end limiting member 624a and the elastic member 625a, and the end on the X axis ⁇ side is the end portion.
  • the restricting member 624b and the elastic member 625b are pressed against the base 620.
  • the first guide shaft 621 is sandwiched between the + side and the ⁇ side in the Y-axis direction by reference pins 628 in the vicinity of the X-axis + side and ⁇ side end portions, respectively.
  • the second guide shaft 622 similarly to the first guide shaft 621, the end on the X axis + side is constituted by the end restricting member 624c and the elastic member 625c, and the end on the X axis-side is constituted by the end restricting member 624d. And is pressed against the base 620 by the elastic member 625d.
  • the second guide shaft 622 is sandwiched between the + side and the ⁇ side in the Y-axis direction by the reference pin 628 in the vicinity of the X-axis + side and ⁇ side ends.
  • the end limiting member 624 has a central portion so that a cross section in a plane parallel to the YZ plane has a U-shape according to the cross-sectional shapes of the first guide shaft 621 and the second guide shaft 622. It is formed by cutting away.
  • the notch of the end limiting member 624 has a size that allows the first guide shaft 621 and the second guide shaft 622 to be in close contact with each other from the + side and the ⁇ side in the Y axis direction in the Y axis direction.
  • the length of the notch of the end limiting member 624 in the Z-axis direction is larger than the cross section of the first guide shaft 621 and the second guide portion shaft 622 in the Z-axis direction.
  • the end limiting member 624 when the end limiting member 624 is fastened to the base 620 with screws, there is no gap between the end limiting member 624, the first guide shaft 621, and the second guide shaft 622 in the Y direction. There is a gap in the Z direction. As a result, the first guide shaft 621 and the second guide shaft 622 limit the displacement in the Y-axis direction by the end portion limiting member 624 and the reference pin 628.
  • the elastic member 625 is, for example, a leaf spring, a coil spring, or rubber, and is sandwiched in a gap in the Z direction between the end limiting member 624, the first guide shaft 621, and the second guide shaft 622. As described above, the elastic member 625 is provided in the gap in the Z direction between the end limiting member 624 and the first guide shaft 621 and the second guide shaft 622, so that the first guide shaft 621 and the second guide shaft are provided. 622 receives a force in the Z-axis direction by the end portion restricting member 624 and the elastic member 625 and closely contacts the base 620.
  • the first guide shaft 621, the second guide shaft 622, and the base 620 are usually made of different materials.
  • the first guide shaft 621 and the second guide shaft 622 are made of stainless steel
  • the base 620 is made of an aluminum alloy.
  • the end portions of the first guide shaft 621 and the second guide shaft 622 are pressed against the base 620 via elastic members, but are not fastened to the base 620 by screws. . Therefore, it is possible to suppress the base 620 from being deformed due to a change in the length of the first guide shaft 621 and the second guide shaft 622 due to temperature.
  • the first guide shaft 621 and the second guide shaft 622 are fastened to the base 620 with screws only in the vicinity of the center portion. Therefore, the bending moment acting on the base 620 due to the temperature change can be suppressed to a small value.
  • correction members 626a and 626b are fastened to the plane of the base 620 on the Z-axis side by screws with the first guide shaft 621 and the second guide shaft 622 facing the screw fastening region to the base 620. Is done.
  • the correction member 626 is made of a material having the same thermal expansion coefficient as that of the first guide shaft 621 and the second guide shaft 622. Thereby, the bending moment with respect to said base 620 can be canceled.
  • the guide mover 623 is movably disposed on the first guide shaft 621 and the second guide shaft 622 via ball bearings.
  • a mounting portion 612 on the Y axis + side of the mounting table 61 is fastened to the upper portion of the guide movable element 623a with a screw.
  • a connecting member 627 is fastened to the upper portion of the guide movable element 623b with a screw.
  • the upper part 627a of the connecting member 627 engages with a notch formed in a plate spring 614 fastened to the Y-axis-side mounting part 613 of the mounting table 61 with a screw.
  • the mounting table 61 By rotating a lead screw engaged with a nut attached to the mounting table 61 by a motor attached to the base 620, the mounting table 61 is guided by the first guide shaft 621 and the second guide shaft 622, and X Move in the axial direction.
  • the nut, lead screw, and motor are not shown.
  • FIG. 22 (b) shows a cross-sectional view of the connecting member 627.
  • the connecting member 627 has a convex portion 627 a on the upper side (Z axis + side), that is, on the side connected to the mounting table 61.
  • the convex portion 627a includes a shaft portion 627b and a head portion 627c provided on the upper portion (Z axis + side) of the shaft portion 627b and having a diameter larger than that of the shaft portion 627b.
  • the convex portion 627 a protrudes above the attachment portion 613 through a hole 613 a provided in the attachment portion 613 of the mounting table 61.
  • the leaf spring 614 has a U-shaped notch 614a at a position corresponding to the position where the convex portion 627a protrudes.
  • the major axis of the notch 614a extends along the Y-axis direction, and the length in the X direction is larger than the diameter of the shaft 627a and smaller than the head 627c. That is, when the leaf spring 614 is fastened to the attachment portion 613, the head 627c of the convex portion 627a protrudes above the notch 614a of the leaf spring 614 (Z axis + side). That is, the mounting table 61 is supported by the guide movable element 623a without being fixed.
  • the mounting table 61 has a degree of freedom of movement in the Y-axis direction due to the shape of the notch 614a of the leaf spring 614 while receiving a force toward the Z-axis.
  • the second guide shaft 622 is higher in the Z direction than the first guide shaft 621.
  • the mounting table 61 receiving the force in the Z-axis direction on the leaf spring 614 and the head 627c moves along the Y-axis direction along the shape of the notch 614a when viewed from the connecting portion 627. To do. Thereby, for example, even if the positions of the first guide shaft 621 and the second guide shaft 622 in the Z-axis direction change due to the influence of temperature change, it is possible to prevent the mounting table 61 from being deformed. .
  • the X-axis moving mechanism 62 has the configuration described above, it is possible to suppress the occurrence of an error when the mounting table 61 is moved in the X-axis direction due to a temperature change.
  • the vicinity of the mounting table 61 is exposed to high heat, but deformation due to temperature changes of the X-axis moving mechanism 62 is suppressed. It is possible to suppress a decrease in movement accuracy of the mounting table 61 in the X-axis direction.
  • the Y-axis moving mechanism 63 has the same configuration, it is possible to suppress a decrease in movement accuracy of the mounting table 61 in the Y-axis direction due to a temperature change.
  • the correction unit 36 may represent the shift amounts ⁇ h and ⁇ v in the HV coordinate system calculated using Expression (12) by a multi-order polynomial.
  • the coefficient of the multi-degree polynomial may be stored in the storage unit 37.
  • the shift amount can be stored as data having a small capacity.
  • the coefficient of the order-resistant polynomial may be stored in a storage medium different from the storage unit 37.
  • Modification 7 It is not limited to what rotates the mounting base 61 or the X-ray detector 7 around the reference axis L. That is, the X-ray apparatus 100 does not move the mounting table 61 or the X-ray detector 7 along the revolution trajectory MS or MM, but moves it to a plurality of different predetermined positions on the revolution trajectory MS or MM. X-ray projection image data may be generated for each position. Even in this case, the X-ray apparatus 100 can acquire the X-ray projection image data of the object S to be measured from a plurality of different directions, and thus can generate a reconstructed image based on the acquired X-ray projection image data.
  • the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .

Abstract

An X-ray device according to the present invention is provided with: a table (61) on which an index member (M) is provided and on which an object to be measured (S) is placed; an X-ray source (5) for irradiating X-rays onto the object to be measured and the index member; an X-ray detector (7) for detecting a projection image of the object to be measured and a projection image of the index member resulting from the irradiated X-rays; an acquisition unit for rotating at least two members from among the table, X-ray source, and X-ray detector around a prescribed axis (L) so as to irradiate X-rays onto the object to be measured from a plurality of different irradiation directions and obtain a projection image of the object to be measured and a projection image of the index member for each of the irradiation directions; and a correction unit (36) for carrying out correction processing on the basis of the amount of deviation (Δh, Δv) between the position (first projection position) at which the index member (M) is projected onto the detection surface (71) of the X-ray detector (7) in an ideal positional relationship between the X-ray detector (7) and the table (61) and the position (second projection position) at which the index member (M) is projected onto the detection surface (71) of the X-ray detector (7) when X-rays are actually irradiated onto the index member (M) moving in an orbit. The present invention makes it possible to suppress the occurrence of errors in the X-ray projection image data generated at each observation position and generate a highly accurate reconstructed image.

Description

X線装置、X線計測方法および構造物の製造方法X-ray apparatus, X-ray measurement method and structure manufacturing method
 本発明は、X線装置、X線計測方法および構造物の製造方法に関する。 The present invention relates to an X-ray apparatus, an X-ray measurement method, and a structure manufacturing method.
 従来から、基準被検体を用いて回転テーブルの回転に伴う振れ量を測定し、測定した振れ量に基づいてテーブルを移動させて、再現性のある回転振れを補正する断層撮影装置が知られている(たとえば特許文献1)。しかしながら、再現性のない誤差要因による影響を補正することができないという問題がある。 Conventionally, a tomographic apparatus that measures a shake amount associated with rotation of a rotary table using a reference object, moves the table based on the measured shake amount, and corrects reproducible rotational shake has been known. (For example, Patent Document 1). However, there is a problem that it is not possible to correct the influence due to error factors having no reproducibility.
日本国特開2009-36660号公報Japanese Unexamined Patent Publication No. 2009-36660
 本発明の第1の態様によると、X線装置は、指標部材が設けられ、被測定物を載置する載置台と、前記被測定物および前記指標部材にX線を照射するX線源と、照射されたX線による前記被測定物の投影像および前記指標部材の投影像を検出するX線検出器と、前記載置台と、前記X線源と、前記X線検出器との少なくとも2つの部材を、所定の軸周りに回動させることで、前記被測定物に対して複数の異なる照射方向からX線を照射して、それぞれの照射方向毎に前記被測定物の投影像と前記指標部材の投影像とを取得する取得部と、前記X線検出器で検出された前記指標部材の投影像が、前記X線検出器で検出される領域のうち前記被測定物の観測領域の投影像と異なる位置で、前記X線検出器により検出されたときの投影像に基づき、補正処理を行う補正部と、を備える。
 本発明の第2の態様によると、第1の態様のX線装置において、さらに、前記取得部で取得された、それぞれの照射方向毎の前記被測定物の投影像に基づき、再構成像を出力する再構成部を有し、前記再構成部による再構成処理を行う前に、前記補正部により補正処理を行うことが好ましい。
 本発明の第3の態様によると、第1の態様のX線装置において、検査結果を出力する検査処理部を有し、前記補正部は、前記検査処理部で検査処理を行う前に、前記補正部により補正処理を行うことが好ましい。
 本発明の第4の態様によると、第1乃至第3の何れかの態様のX線装置において、前記補正部は、前記X線検出器で検出された前記指標部材の投影像が、前記X線検出器で検出される領域のうち前記被測定物の観測領域の投影像と異なる位置で、前記X線検出器により検出されたときの前記指標部材の投影像の位置に基づいて、前記載置台と前記X線検出器との少なくとも一方を移動させることで補正処理をすることが好ましい。
 本発明の第5の態様によると、第1乃至第3の何れかの態様のX線装置において、前記補正部は、前記X線検出器で検出された前記指標部材の投影像が、前記X線検出器で検出されたる領域のうち前記被測定物の観測領域の投影像と異なる位置で、前記X線検出器により検出されたときの前記指標部材の投影像の位置に基づいて、前記X線検出器により検出された前記被測定物の投影像の位置を移動させることで補正処理をすることが好ましい。
 本発明の第6の態様によると、X線装置は、指標部材が設けられ、被測定物を載置する載置台と、前記被測定物および前記指標部材にX線を照射するX線源と、照射されたX線による前記被測定物の投影像および前記指標部材の投影像を検出するX線検出器と、前記載置台と、前記X線源と、前記X線検出器との少なくとも2つの部材を、所定の軸周りに回動させ、前記回動に伴って前記被測定物に対して複数の異なる照射方向からX線を照射して、前記被測定物の投影像と前記指標部材の投影像とを取得する取得部と、前記指標部材の載置台における位置情報と前記X線検出器と前記X線源との間の相対的な位置関係に基づいて、前記異なる照射方向に対応する、前記少なくとも2つの部材が所定の軸周りに回動したときのそれぞれの位置での前記指標部材の投影像の第1投影位置を算出する算出部と、前記複数の異なる照射方向のそれぞれにおける前記算出された前記第1投影位置と、前記回動に伴って取得された前記指標部材の投影像の、前記X線検出器の検出面に対する第2投影位置とのずれ量に基づいて補正処理を行う補正部と、を備える。
 本発明の第7の態様によると、第6の態様のX線装置において、前記補正部は、前記少なくとも2つの部材が、前記算出部が前記第1投影位置を算出する際の前記所定の軸周りに回動するときに取得される前記被測定物の投影像となるように、前記補正処理を行うことが好ましい。
 本発明の第8の態様によると、第6または第7の態様のX線装置において、前記補正部は、前記相対的な位置関係と前記回動に伴って取得された前記被測定物の投影像との少なくとも一方に補正処理を行うことが好ましい。
 本発明の第9の態様によると、第8の態様のX線装置において、前記補正部は、前記ずれ量に基づいて、前記載置台と前記X線検出器との少なくとも一方を移動させて前記相対的な位置関係を補正することが好ましい。
 本発明の第10の態様によると、第9の態様のX線装置において、前記所定の軸と交差する面内に前記載置台を移動させる移動部を有し、前記補正部は、前記ずれ量に基づいて前記移動部に前記載置台を移動させることが好ましい。
 本発明の第11の態様によると、第10の態様のX線装置において、前記移動部は、前記載置台を前記所定の軸に沿う方向にさらに移動させ、前記補正部は、前記ずれ量に基づいて、前記移動部に前記載置台を移動させることが好ましい。
 本発明の第12の態様によると、第10または第11の態様のX線装置において、前記移動部は、前記載置台を前記所定の軸と交差する面内で所定の位置に移動させることが好ましい。
 本発明の第13の態様によると、第6乃至第12の何れかの態様のX線装置において、 前記補正部は、前記X線検出器の検出面における前記第1投影位置と前記第2投影位置との差分を前記ずれ量として算出することが好ましい。
 本発明の第14の態様によると、第10乃至12の何れかの態様に係る第13の態様のX線装置において、前記補正部は、前記X線検出器の検出面における第1直交座標系で表される前記第1投影位置と前記第2投影位置との前記ずれ量を、前記載置台の載置面における第2直交座標系に変換して変換ずれ量を算出し、前記変換ずれ量を用いて前記載置台を移動させることが好ましい。
 本発明の第15の態様によると、第6乃至第14の何れかの態様のX線装置において、 前記補正部は、前記ずれ量が所定の大きさを超える場合に、前記載置台と前記X線検出器との少なくとも一方に補正を行い、前記ずれ量が前記所定の大きさを超えない場合に前記被測定物の投影像に対して前記ずれ量の補正を行うことが好ましい。
 本発明の第16の態様によると、第6乃至第15の何れかの態様のX線装置において、前記載置台に所定の距離ごとに設けられた複数の前記指標部材のそれぞれに対する前記位置情報を、前記指標部材ごとに記憶する記憶部をさらに備えることが好ましい。
 本発明の第17の態様によると、第16の態様のX線装置において、前記補正部は、前記記憶部に記憶された前記位置情報に基づいて前記ずれ量を算出することが好ましい。
 本発明の第18の態様によると、第14の態様のX線装置において、前記第1直交座標系での前記第1投影位置と前記第2投影位置との前記ずれ量を多次多項式で表したときの係数を記憶する記憶部をさらに備えることが好ましい。
 本発明の第19の態様によると、第6乃至第18の何れかの態様のX線装置において、前記載置台に載置された前記被測定物の基準位置は、前記回動に応じて前記被測定物の投影像を取得する際に、前記複数の異なる照射方向のそれぞれにおいて、前記X線検出器の検出面上に投影される位置が変化しないことが好ましい。
 本発明の第20の態様によると、第6乃至第18の何れかの態様のX線装置において、前記補正部により前記補正処理が行われた後、前記被測定物の投影像を用いて前記被測定物の画像を再構成する処理部をさらに備えることが好ましい。
 本発明の第21の態様によると、第6乃至第20の何れかの態様のX線装置において、前記指標部材は、前記載置台のうち厚さまたは密度の異なる一部の領域として設けられることが好ましい。
 本発明の第22の態様によると、第6乃至第21の何れかの態様のX線装置において、前記指標部材を透過するX線の経路と、前記被測定物を透過するX線の経路とは互いに異なることが好ましい。
 本発明の第23の態様によると、第6乃至第22の何れかの態様のX線装置において、前記位置情報は、前記載置台での前記被測定物と前記指標部材との間の相対距離および相対高さであることが好ましい。
 本発明の第24の態様によると、X線装置は、指標部材が設けられ、被測定物を載置する載置台と、前記被測定物および前記指標部材にX線を照射するX線源と、照射されたX線による前記被測定物の投影像および前記指標部材の投影像を検出するX線検出器と、前記載置台と、前記X線源と、前記X線検出器との少なくとも2つの部材を、所定の位置に移動させ、前記移動に伴って前記被測定物に対して複数の異なる照射方向からX線を照射して、前記被測定物の投影像と前記指標部材の投影像とを取得する取得部と、前記指標部材の載置台における位置情報と前記X線検出器と前記X線源との間の相対的な位置関係に基づいて、前記異なる照射方向に対応する、前記少なくとも2つの部材が所定の位置に移動したときのそれぞれの位置での前記指標部材の投影像の第1投影位置を算出する算出部と、前記複数の異なる照射方向のそれぞれにおける前記算出された前記第1投影位置と、前記所定の位置ごとに取得された前記指標部材の投影像の、前記X線検出器の検出面に対する第2投影位置とのずれ量に基づいて補正処理を行う補正部と、を備える。
 本発明の第25の態様によると、X線計測方法は、指標部材が設けられた載置台に被測定物を載置し、X線源から前記被測定物および前記指標部材にX線を照射し、照射されたX線による前記被測定物の投影像および前記指標部材の投影像を検出し、前記載置台と、前記X線源と、X線検出器との少なくとも2つの部材を、所定の軸周りに回動させ、前記回動に伴って前記被測定物に対して複数の異なる照射方向からX線を照射して、前記被測定物の投影像と前記指標部材の投影像とを取得し、前記指標部材の載置台における位置情報と前記X線検出器と前記X線源との間の相対的な位置関係に基づいて、前記異なる照射方向に対応する、前記少なくとも2つの部材が所定の軸周りに回動したときのそれぞれの位置での前記指標部材の投影像の第1投影位置を算出し、前記複数の異なる照射方向のそれぞれにおける前記算出された前記第1投影位置と、前記回動に伴って取得された前記指標部材の投影像の、前記X線検出器の検出面に対する第2投影位置とのずれ量に基づいて補正処理を行う。
 本発明の第26の態様によると、構造物の製造方法は、構造物の形状に関する設計情報を作成し、前記設計情報に基づいて前記構造物を作成し、作成された前記構造物の形状を、第6乃至第22の何れかの態様のX線装置を用いて計測して形状情報を取得し、前記取得された前記形状情報と前記設計情報とを比較する。
 本発明の第27の態様によると、第26の態様の構造物の製造方法において、前記形状情報と前記設計情報との比較結果に基づいて実行され、前記構造物の再加工を行うことが好ましい。
 本発明の第28の態様によると、第27の態様の構造物の製造方法において、前記構造物の再加工は、前記設計情報に基づいて前記構造物の作成を再度行うことが好ましい。
According to the first aspect of the present invention, the X-ray apparatus is provided with an index member, a mounting table on which the object to be measured is placed, an X-ray source that irradiates the object to be measured and the index member with X-rays, At least two of the X-ray detector for detecting the projected image of the object to be measured and the projected image of the index member by the irradiated X-rays, the mounting table, the X-ray source, and the X-ray detector By rotating two members around a predetermined axis, the measurement object is irradiated with X-rays from a plurality of different irradiation directions. An acquisition unit that acquires a projection image of the index member; and a projection image of the index member detected by the X-ray detector is an area of the observation area of the object to be measured among the areas detected by the X-ray detector. Based on the projected image when detected by the X-ray detector at a position different from the projected image, And a correction unit that performs correction process.
According to the second aspect of the present invention, in the X-ray apparatus according to the first aspect, a reconstructed image is further obtained based on the projection image of the object to be measured for each irradiation direction acquired by the acquisition unit. It is preferable to include a reconstruction unit that outputs, and to perform the correction process by the correction unit before performing the reconstruction process by the reconstruction unit.
According to a third aspect of the present invention, in the X-ray apparatus according to the first aspect, the X-ray apparatus includes an inspection processing unit that outputs an inspection result, and the correction unit performs the inspection process in the inspection processing unit before It is preferable to perform correction processing by the correction unit.
According to a fourth aspect of the present invention, in the X-ray apparatus according to any one of the first to third aspects, the correction unit has a projection image of the index member detected by the X-ray detector. As described above, based on the position of the projected image of the index member when detected by the X-ray detector at a position different from the projected image of the observation area of the object to be measured among the areas detected by the line detector. It is preferable to perform the correction process by moving at least one of the table and the X-ray detector.
According to a fifth aspect of the present invention, in the X-ray apparatus according to any one of the first to third aspects, the correction unit has a projection image of the index member detected by the X-ray detector. Based on the position of the projected image of the index member when detected by the X-ray detector at a position different from the projected image of the observation area of the object to be measured among the areas detected by the line detector. It is preferable to perform the correction process by moving the position of the projected image of the measurement object detected by the line detector.
According to the sixth aspect of the present invention, the X-ray apparatus is provided with an index member, a mounting table for mounting the object to be measured, and an X-ray source for irradiating the object to be measured and the index member with X-rays At least two of the X-ray detector for detecting the projected image of the object to be measured and the projected image of the index member by the irradiated X-rays, the mounting table, the X-ray source, and the X-ray detector Two members are rotated around a predetermined axis, and X-rays are irradiated from a plurality of different irradiation directions to the object to be measured along with the rotation, and the projected image of the object to be measured and the index member Corresponding to the different irradiation directions on the basis of the acquisition unit for acquiring the projected image and the positional information of the indicator member on the mounting table and the relative positional relationship between the X-ray detector and the X-ray source The respective positions when the at least two members rotate around a predetermined axis A calculation unit that calculates a first projection position of a projection image of the index member, the calculated first projection position in each of the plurality of different irradiation directions, and the index acquired with the rotation A correction unit that performs correction processing based on a deviation amount of the projection image of the member from the second projection position with respect to the detection surface of the X-ray detector.
According to a seventh aspect of the present invention, in the X-ray apparatus according to the sixth aspect, the correction unit includes the at least two members, and the predetermined axis when the calculation unit calculates the first projection position. It is preferable that the correction process is performed so that a projection image of the object to be measured acquired when rotating around.
According to an eighth aspect of the present invention, in the X-ray apparatus according to the sixth or seventh aspect, the correction unit projects the object to be measured acquired along with the relative positional relationship and the rotation. It is preferable to perform correction processing on at least one of the image.
According to a ninth aspect of the present invention, in the X-ray apparatus according to the eighth aspect, the correction unit moves at least one of the mounting table and the X-ray detector based on the shift amount, and It is preferable to correct the relative positional relationship.
According to a tenth aspect of the present invention, in the X-ray apparatus according to the ninth aspect, the X-ray apparatus includes a moving unit that moves the mounting table in a plane intersecting the predetermined axis, and the correction unit includes the deviation amount. It is preferable to move the mounting table to the moving unit based on the above.
According to an eleventh aspect of the present invention, in the X-ray apparatus according to the tenth aspect, the moving unit further moves the mounting table in a direction along the predetermined axis, and the correcting unit adjusts the deviation amount. Based on this, it is preferable to move the mounting table to the moving unit.
According to a twelfth aspect of the present invention, in the X-ray apparatus according to the tenth or eleventh aspect, the moving unit moves the mounting table to a predetermined position within a plane intersecting the predetermined axis. preferable.
According to a thirteenth aspect of the present invention, in the X-ray apparatus according to any one of the sixth to twelfth aspects, the correction unit includes the first projection position and the second projection on a detection surface of the X-ray detector. It is preferable to calculate the difference from the position as the shift amount.
According to a fourteenth aspect of the present invention, in the X-ray apparatus according to the thirteenth aspect according to any one of the tenth to twelfth aspects, the correction unit is a first orthogonal coordinate system on a detection surface of the X-ray detector. The shift amount between the first projection position and the second projection position represented by the formula is converted into a second orthogonal coordinate system on the mounting surface of the mounting table to calculate a conversion shift amount, and the conversion shift amount It is preferable to move the mounting table using the above.
According to a fifteenth aspect of the present invention, in the X-ray apparatus according to any one of the sixth to fourteenth aspects, the correction unit, when the deviation amount exceeds a predetermined size, It is preferable that correction is performed on at least one of the line detector and the shift amount is corrected for the projected image of the object to be measured when the shift amount does not exceed the predetermined size.
According to a sixteenth aspect of the present invention, in the X-ray apparatus according to any one of the sixth to fifteenth aspects, the position information for each of the plurality of index members provided on the mounting table at a predetermined distance is obtained. It is preferable that a storage unit for storing each index member is further provided.
According to a seventeenth aspect of the present invention, in the X-ray apparatus according to the sixteenth aspect, it is preferable that the correction unit calculates the shift amount based on the position information stored in the storage unit.
According to an eighteenth aspect of the present invention, in the X-ray apparatus according to the fourteenth aspect, the shift amount between the first projection position and the second projection position in the first orthogonal coordinate system is expressed by a multi-order polynomial. It is preferable to further include a storage unit that stores the coefficient when the operation is performed.
According to a nineteenth aspect of the present invention, in the X-ray apparatus according to any one of the sixth to eighteenth aspects, the reference position of the object to be measured placed on the mounting table is set according to the rotation. When acquiring the projection image of the measurement object, it is preferable that the position projected on the detection surface of the X-ray detector does not change in each of the plurality of different irradiation directions.
According to a twentieth aspect of the present invention, in the X-ray apparatus according to any one of the sixth to eighteenth aspects, the correction unit performs the correction process, and then uses the projection image of the object to be measured. It is preferable to further include a processing unit for reconstructing an image of the object to be measured.
According to a twenty-first aspect of the present invention, in the X-ray apparatus according to any one of the sixth to twentieth aspects, the indicator member is provided as a partial region having a different thickness or density in the mounting table. Is preferred.
According to a twenty-second aspect of the present invention, in the X-ray apparatus according to any one of the sixth to twenty-first aspects, an X-ray path that passes through the indicator member, and an X-ray path that passes through the object to be measured Are preferably different from each other.
According to a twenty-third aspect of the present invention, in the X-ray apparatus according to any one of the sixth to twenty-second aspects, the position information is a relative distance between the object to be measured and the index member on the mounting table. And a relative height.
According to a twenty-fourth aspect of the present invention, an X-ray apparatus is provided with an index member, a mounting table on which an object to be measured is placed, an X-ray source that irradiates the object to be measured and the index member with X-rays, At least two of the X-ray detector for detecting the projected image of the object to be measured and the projected image of the index member by the irradiated X-rays, the mounting table, the X-ray source, and the X-ray detector One member is moved to a predetermined position, and the object to be measured is irradiated with X-rays from a plurality of different irradiation directions along with the movement, so that a projected image of the object to be measured and a projected image of the index member Corresponding to the different irradiation directions based on the acquisition unit for acquiring the position information on the mounting table of the index member and the relative positional relationship between the X-ray detector and the X-ray source, At each position when at least two members have moved to a predetermined position The calculation unit that calculates the first projection position of the projection image of the index member, the calculated first projection position in each of the plurality of different irradiation directions, and the index member acquired for each of the predetermined positions A correction unit that performs a correction process based on a deviation amount of the projected image of the second projection position with respect to the detection surface of the X-ray detector.
According to a twenty-fifth aspect of the present invention, in the X-ray measurement method, a measurement object is placed on a mounting table provided with an index member, and the measurement object and the index member are irradiated with X-rays from an X-ray source. Then, a projected image of the object to be measured and a projected image of the index member by the irradiated X-ray are detected, and at least two members of the mounting table, the X-ray source, and the X-ray detector are set as predetermined. The X-ray is irradiated from a plurality of different irradiation directions to the object to be measured along with the rotation, and a projection image of the object to be measured and a projection image of the index member are obtained. The at least two members corresponding to the different irradiation directions are obtained based on the positional information of the index member on the mounting table and the relative positional relationship between the X-ray detector and the X-ray source. Projected images of the index member at respective positions when rotated around a predetermined axis A first projection position is calculated, and the calculated first projection position in each of the plurality of different irradiation directions, and the X-ray detector of the projection image of the index member acquired along with the rotation Correction processing is performed based on the amount of deviation from the second projection position with respect to the detection surface.
According to a twenty-sixth aspect of the present invention, in a structure manufacturing method, design information relating to a shape of a structure is created, the structure is created based on the design information, and the shape of the created structure is determined. The shape information is obtained by measurement using the X-ray apparatus according to any one of the sixth to 22nd aspects, and the obtained shape information is compared with the design information.
According to a twenty-seventh aspect of the present invention, in the structure manufacturing method according to the twenty-sixth aspect, it is preferable that the structure is re-processed based on a comparison result between the shape information and the design information. .
According to a twenty-eighth aspect of the present invention, in the structure manufacturing method according to the twenty-seventh aspect, it is preferable that the structure is reprocessed based on the design information.
実施の形態によるX線装置の内部正面図である。It is an internal front view of the X-ray apparatus by embodiment. 実施の形態によるX線装置の内部側面図である。It is an internal side view of the X-ray apparatus by embodiment. 実施の形態によるX線装置の内部平面図である。It is an internal top view of the X-ray apparatus by embodiment. 載置台とX線検出器との移動の一例を示す図である。It is a figure which shows an example of a movement with a mounting base and an X-ray detector. 載置台上に載置された被測定物と指標部材との一例を示す図である。It is a figure which shows an example of the to-be-measured object and index member which were mounted on the mounting base. 図5に示すように載置台に被測定物と指標部材とが載置された状態で、載置台とX線検出器とが移動する場合を示す図である。It is a figure which shows the case where a mounting base and an X-ray detector move in the state by which the to-be-measured object and the index member were mounted on the mounting base, as shown in FIG. 第2初期観測位置における指標部材のZX平面に平行な面での断面と、X線源の射出点Pと、X線検出器の検出面との位置関係を示す図である。It is a figure which shows the positional relationship of the cross section in the surface parallel to ZX plane of the parameter | index member in a 2nd initial observation position, the emission point P of an X-ray source, and the detection surface of an X-ray detector. 図8(a)は図6の観測位置における指標部材のZX平面に平行な面における断面と、X線源の射出点と、X線検出器の検出面との位置関係を示す図であり、図8(b)は、載置台を上部(Z方向+側)から見た場合の指標部材と、X線源の射出点と、X線検出器の検出面との位置関係を示す図であり、図8(c)はX線検出器の検出面を裏側(X線入射方向の反対側)から見た時の指標部材の投影像の位置を示す図である。FIG. 8A is a diagram showing a positional relationship among a cross section of the index member parallel to the ZX plane of the index member at the observation position in FIG. 6, the emission point of the X-ray source, and the detection surface of the X-ray detector. FIG. 8B is a diagram showing the positional relationship between the index member, the emission point of the X-ray source, and the detection surface of the X-ray detector when the mounting table is viewed from the top (Z direction + side). FIG. 8C is a diagram showing the position of the projected image of the index member when the detection surface of the X-ray detector is viewed from the back side (opposite to the X-ray incident direction). 図9(a)は載置台の中心と載置台の公転軸とが偏芯を有する場合における指標部材の実際の公転軌道と、偏芯が無い場合の理想的な公転軌道のシミュレーション結果を示し、図9(b)は図9(a)に示す理想的な公転軌道に対する実際の公転軌道のHV座標系上でのH軸方向とV軸方向とのずれ量を示す図である。FIG. 9A shows the simulation results of the actual revolution trajectory of the index member when the center of the mounting table and the revolution axis of the mounting table have eccentricity, and the ideal revolution trajectory when there is no eccentricity, FIG. 9B is a diagram showing a deviation amount between the H axis direction and the V axis direction on the HV coordinate system of the actual revolution trajectory with respect to the ideal revolution trajectory shown in FIG. 9A. 図10(a)は載置台の公転移動中の位置決め誤差に周期的な誤差がある場合における実際の公転移動軌道と、周期的な位置決め誤差がない場合の理想的な公転移動軌道とのシミュレーション結果を示し、図10(b)は図10(a)に示す理想的な公転軌道に対する実際の公転軌道のHV座標系上でのH軸方向とV軸方向とのずれ量を示す図である。FIG. 10A shows a simulation result of an actual revolution movement trajectory when the positioning error during the revolution movement of the mounting table has a periodic error and an ideal revolution movement trajectory when there is no periodic positioning error. FIG. 10B is a diagram showing a deviation amount between the H axis direction and the V axis direction on the HV coordinate system of the actual revolution trajectory with respect to the ideal revolution trajectory shown in FIG. 図11(a)は載置台が水平面に対して傾きを有する場合における実際の公転軌道と、傾きが無い場合の理想的な公転軌道とのシミュレーション結果を示し、図11(b)は図11(a)に示す理想的な公転軌道に対する実際の公転軌道のHV座標系上でのH軸方向とV軸方向とのずれ量を示す図である。FIG. 11A shows a simulation result of an actual revolution trajectory when the mounting table has an inclination with respect to a horizontal plane and an ideal revolution trajectory when there is no inclination, and FIG. It is a figure which shows the deviation | shift amount of the H axis direction on the HV coordinate system with respect to the ideal revolution track shown to a) on the HV coordinate system, and a V-axis direction. RT座標系において、指標部材が載置された位置と、その位置からRT座標系上でΔr、Δtだけ変位させた場合の位置とを示す。In the RT coordinate system, a position where the index member is placed and a position when it is displaced from the position by Δr and Δt on the RT coordinate system are shown. 図13(a)、図13(b)は被測定物の一例を示す外観図である。FIG. 13A and FIG. 13B are external views showing an example of an object to be measured. 観測動作時におけるX線源と、載置台と、X線検出器との位置関係を示す図である。It is a figure which shows the positional relationship of the X-ray source at the time of observation operation | movement, a mounting base, and an X-ray detector. 図15(a)~(c)は、第1初期観測位置における被測定物の観測点と指標部材とが、X線検出器の検出面上に投影される位置を示す図である。FIGS. 15A to 15C are diagrams showing positions at which the observation point of the object to be measured and the index member at the first initial observation position are projected on the detection surface of the X-ray detector. 図16(a)、図16(b)は、検出面に投影された観測点と指標部材とのHV座標系における位置関係を示す図である。FIGS. 16A and 16B are diagrams showing the positional relationship in the HV coordinate system between the observation points projected on the detection surface and the index member. 第1の実施の形態によるX線装置の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the X-ray apparatus by 1st Embodiment. 第2の実施の形態によるX線装置の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the X-ray apparatus by 2nd Embodiment. 第3の実施の形態による構造物製造システムの構成を示すブロック図である。It is a block diagram which shows the structure of the structure manufacturing system by 3rd Embodiment. 第3の実施の形態による構造物製造システムの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the structure manufacturing system by 3rd Embodiment. 図21(a)~(c)は変形例1における載置台の断面図である。21A to 21C are cross-sectional views of the mounting table in the first modification. 変形例5におけるX軸移動機構と載置台との斜視図である。It is a perspective view of the X-axis movement mechanism in the modification 5, and a mounting base.
-第1の実施の形態-
 図面を参照しながら、第1の実施の形態によるX線装置について説明する。X線装置は、被測定物にX線を照射して、被測定物を透過した透過X線を検出することにより、被測定物の内部情報(たとえば内部構造)等を非破壊で取得するX線CT(Computed Tomography)検査装置である。被測定物が、たとえば機械部品や電子部品等の産業用部品が対象である場合には、X線装置は産業用部品を検査する産業用X線CT検査装置と呼ばれる。
-First embodiment-
The X-ray apparatus according to the first embodiment will be described with reference to the drawings. The X-ray apparatus irradiates the object to be measured with X-rays and detects transmitted X-rays that have passed through the object to be measured, thereby obtaining non-destructive X information (for example, internal structure) of the object to be measured. This is a line CT (Computed Tomography) inspection apparatus. When an object to be measured is an industrial part such as a mechanical part or an electronic part, the X-ray apparatus is called an industrial X-ray CT inspection apparatus for inspecting an industrial part.
 図1~図3は本実施の形態によるX線装置100の内部構造の一例を示す図であり、図1はX線装置100の内部正面図であり、図2はX線装置100の内部側面図、図3はX線装置100の内部平面図である。なお、説明の都合上、X軸、Y軸および鉛直方向に沿ったZ軸からなる座標系を図示の通りに設定する。
 X線装置100は、筐体1と、架台2と、制御装置3とを備えている。筐体1は工場等の床面上にXY平面が実質的に水平となるように配置され、内部に架台2と、制御装置3とが収容される。筐体1はX線が外部に漏洩しないようにするために、材料として鉛を含む。
1 to 3 are diagrams showing an example of the internal structure of the X-ray apparatus 100 according to the present embodiment, FIG. 1 is an internal front view of the X-ray apparatus 100, and FIG. 3 and 3 are internal plan views of the X-ray apparatus 100. FIG. For convenience of explanation, a coordinate system including the X axis, the Y axis, and the Z axis along the vertical direction is set as illustrated.
The X-ray apparatus 100 includes a housing 1, a gantry 2, and a control device 3. The housing 1 is disposed on the floor surface of a factory or the like so that the XY plane is substantially horizontal, and the gantry 2 and the control device 3 are accommodated therein. The housing 1 contains lead as a material in order to prevent X-rays from leaking to the outside.
 架台2には、X線源5と、載置部6と、X線検出器7と、X線検出器駆動ユニット8とが搭載されている。架台2は、矩形形状の基礎底盤22と、基礎底盤22上の四隅にそれぞれに設けられ、Z軸方向に沿って延伸する4つの支柱23と、支柱23の上部に設けられ、X線検出器駆動ユニット8を取り付けるための取付部材24とによって構成される。基礎底盤22の下部(Z軸-側)には、筐体1の外部から架台2に加わる振動を減衰させるため除振マウント25が取り付けられている。除振マウント25は、たとえば公知の空気バネやコイルバネ等が単独または組み合わせて構成される。なお、架台2は、X線検出器駆動ユニット8を4つの支柱23の上部にて支持するものに限定されず、X線検出器駆動ユニット8すなわちX線検出器7が安定して支持可能となるために必要な構造、形状を有することができる。 The gantry 2 is equipped with an X-ray source 5, a placement unit 6, an X-ray detector 7, and an X-ray detector drive unit 8. The gantry 2 is provided at each of the rectangular base bottom 22, four corners on the base bottom 22, four struts 23 extending along the Z-axis direction, and the top of the struts 23, and an X-ray detector And an attachment member 24 for attaching the drive unit 8. A vibration isolation mount 25 is attached to the lower part (Z-axis-side) of the base bottom panel 22 in order to attenuate vibration applied to the gantry 2 from the outside of the housing 1. The vibration isolation mount 25 is configured by, for example, a known air spring, coil spring, or the like alone or in combination. The gantry 2 is not limited to the one that supports the X-ray detector drive unit 8 on the top of the four columns 23, and the X-ray detector drive unit 8, that is, the X-ray detector 7 can be stably supported. It can have the structure and shape necessary to become.
 X線源5は、架台2の基礎底盤22に取り付けられ、基礎底盤22の中央部近傍から垂下する。X線源5は制御装置3により制御されて、図1に示す点Pを出射点として視野V-Vの範囲の円錐状に拡がる広角のX線(いわゆるコーンビーム)を出射する。この出射点Pは本X線源5のフォーカルスポットと一致する。なお、以後の説明では、出射点Pを通るZ軸に平行な軸を基準軸Lと呼ぶ。本実施の形態においては、基準軸Lが架台2の中心を通るようにX線源5が設けられている。なお、X線源5は、透過型X線源により構成されてもよいし、反射型X線源により構成されてもよい。 The X-ray source 5 is attached to the foundation bottom plate 22 of the gantry 2 and hangs from the vicinity of the center of the foundation bottom plate 22. The X-ray source 5 is controlled by the control device 3 and emits wide-angle X-rays (so-called cone beams) that expand in a conical shape in the range of the visual field VV with the point P shown in FIG. This emission point P coincides with the focal spot of the X-ray source 5. In the following description, an axis parallel to the Z axis passing through the emission point P is referred to as a reference axis L. In the present embodiment, the X-ray source 5 is provided so that the reference axis L passes through the center of the gantry 2. The X-ray source 5 may be constituted by a transmission type X-ray source or a reflection type X-ray source.
 X線源5の構造体のZ軸+側端面は導電性を有する金属(たとえば、真鍮、タングステン合金、銅など)を材料として構成される。X線源5が透過型X線源により構成される場合には、Z軸+側端面はフィラメントからの電子が到達することによってX線を発生するための、たとえばタングステンを含む材料からなるターゲットである。また、X線源5がターゲットを外部から保護するためにベリリウム等の導電体の保護部材を有する場合には、この保護部材がX線源5のZ軸+側端面となる。X線源5は、たとえば約50eVの超軟X線、約0.1~2keVの軟X線、約2~20keVのX線および約20~100keVの硬X線の少なくとも1種のX線を出射する。 The Z axis + side end surface of the structure of the X-ray source 5 is made of a conductive metal (for example, brass, tungsten alloy, copper, etc.). When the X-ray source 5 is composed of a transmission X-ray source, the Z-axis + side end surface is a target made of a material containing tungsten, for example, for generating X-rays when electrons from the filament arrive. is there. When the X-ray source 5 has a protective member made of a conductor such as beryllium in order to protect the target from the outside, this protective member becomes the Z-axis + side end surface of the X-ray source 5. The X-ray source 5 generates at least one kind of X-ray, for example, an ultrasoft X-ray of about 50 eV, a soft X-ray of about 0.1 to 2 keV, an X-ray of about 2 to 20 keV, and a hard X-ray of about 20 to 100 keV. Exit.
 載置部6は、被測定物Sを載置するための載置台61と、載置台61をX軸、Y軸およびZ軸方向にそれぞれ移動させるためのX軸移動機構62、Y軸移動機構63およびZ軸移動機構64を備えている(図3参照)。X軸移動機構62およびY軸移動機構63は、それぞれモータ、レール、スライダー等によって構成され、制御装置3による制御に従って、載置台61をX軸方向およびY軸方向に沿って移動させる。すなわち、載置台61は、XY平面上において、基準軸Lを中心として公転軌道を描くように平行移動することで回動ができる。Z軸移動機構64は、モータ、レール、スライダー等によって構成され、制御装置3による制御に従って載置台61をZ軸方向に移動させる。なお、載置台61については、詳細を後述する。また、載置台61には、後述する指標部材が設置されている。指標部材は金属などのX線に対して高い吸収係数を呈する材料で形成されている。また、指標部材は載置台61の中心部から外れた位置に設置されている。特に、被測定物Sを載置した時に、観測領域に設定される範囲から外れることの多い周縁部近傍に配置されることが好ましい。 The mounting unit 6 includes a mounting table 61 for mounting the object to be measured S, an X-axis moving mechanism 62 for moving the mounting table 61 in the X-axis, Y-axis, and Z-axis directions, and a Y-axis moving mechanism, respectively. 63 and a Z-axis moving mechanism 64 (see FIG. 3). The X-axis moving mechanism 62 and the Y-axis moving mechanism 63 are each composed of a motor, a rail, a slider, and the like, and move the mounting table 61 along the X-axis direction and the Y-axis direction according to control by the control device 3. That is, the mounting table 61 can be rotated by moving in parallel on the XY plane so as to draw a revolution trajectory about the reference axis L. The Z-axis moving mechanism 64 includes a motor, a rail, a slider, and the like, and moves the mounting table 61 in the Z-axis direction according to control by the control device 3. Details of the mounting table 61 will be described later. Further, the mounting table 61 is provided with an index member to be described later. The indicator member is made of a material that exhibits a high absorption coefficient for X-rays such as metal. Further, the index member is installed at a position deviated from the center of the mounting table 61. In particular, when the DUT S is placed, it is preferably arranged in the vicinity of the peripheral portion that often deviates from the range set in the observation region.
 X線検出器7は、公知のシンチレーション物質を含むシンチレータ部、光電子増倍管、CCD等の受光部等によって構成され、X線源5から出射され、載置台61上に載置された被測定物Sを透過した透過X線を含むX線を受光する。X線検出器7は、受光したX線のエネルギーを光エネルギーに変換した後、当該光エネルギーを電気エネルギーに変換し、電気信号として出力する。なお、X線検出器7は、入射するX線のエネルギーを光エネルギーに変換することなく電気信号に変換して出力してもよい。また、X線検出器7は、複数の画素を有しており、それらの画素は2次元的に配列されている。これにより、X線源5から放射され、被測定物Sを通過したX線の2次元的な強度分布を一括して取得できる。従って、1回の撮影で被測定物Sの全体の投影像を取得することができる。 The X-ray detector 7 is composed of a scintillator section containing a known scintillation substance, a photomultiplier tube, a light receiving section such as a CCD, and the like, and is measured from the X-ray source 5 and mounted on the mounting table 61. X-rays including transmitted X-rays transmitted through the object S are received. The X-ray detector 7 converts the received X-ray energy into light energy, then converts the light energy into electric energy, and outputs it as an electric signal. Note that the X-ray detector 7 may convert the incident X-ray energy into an electrical signal without converting it into light energy, and output it. The X-ray detector 7 has a plurality of pixels, and these pixels are two-dimensionally arranged. Thereby, the two-dimensional intensity distribution of the X-rays radiated from the X-ray source 5 and passed through the measurement object S can be acquired collectively. Accordingly, it is possible to obtain the entire projected image of the object S to be measured by one shooting.
 X線検出器駆動ユニット8は、X線検出器7を、基準軸Lを中心とする公転軌道上を移動させる。X線検出器駆動ユニット8は、架台2の取付部材24に取り付けられた回転機構81と、回転機構81により回転する円弧状ステージ82とを備える。回転機構81は、取付プレート811と、取付プレート811に取り付けられたモータ812と、モータ812により回転する第1ギア813と、第1ギア813と噛み合う第2ギア814と、中空の回転軸815とを有している。回転軸815が第2ギア814によって基準軸Lを中心として回転することにより、回転軸815の下部に固定された円弧状ステージ82は回転し、円弧状ステージ82上に移動可能に設けられたX線検出器7は基準軸Lを中心とした公転軌道MMに沿って回動する。なお、円弧状ステージ82上でのX線検出器7の移動範囲が基準軸Lと交差するように設定されている。それゆえ、X線検出器7が基準軸Lと交差する位置に位置決めされているような場合では、本X線検出器7は回転機構81により回転することもできる。 The X-ray detector drive unit 8 moves the X-ray detector 7 on the revolution orbit around the reference axis L. The X-ray detector drive unit 8 includes a rotation mechanism 81 attached to the attachment member 24 of the gantry 2 and an arcuate stage 82 rotated by the rotation mechanism 81. The rotation mechanism 81 includes an attachment plate 811, a motor 812 attached to the attachment plate 811, a first gear 813 that is rotated by the motor 812, a second gear 814 that meshes with the first gear 813, and a hollow rotation shaft 815. have. When the rotation shaft 815 rotates around the reference axis L by the second gear 814, the arc-shaped stage 82 fixed to the lower portion of the rotation shaft 815 rotates, and the X is provided so as to be movable on the arc-shaped stage 82. The line detector 7 rotates along the revolution trajectory MM around the reference axis L. The moving range of the X-ray detector 7 on the arcuate stage 82 is set so as to intersect the reference axis L. Therefore, when the X-ray detector 7 is positioned at a position intersecting the reference axis L, the X-ray detector 7 can be rotated by the rotation mechanism 81.
 円弧状ステージ82は、X線の出射点である点Pを中心とする円弧状に所定の長さを有して形成されたプレートである。円弧状ステージ82には、ガイドレールやスライダー等が設けられ、上述したX線検出器7が円弧状ステージ82の円弧状軌道Wに沿ってモータ等によって移動可能に取り付けられる。これにより、円弧状ステージ82を回転機構81により回転させることで、X線検出器7の軌道が出射点Pを頂点とする円錐の側面に沿うように、所望の同一高度(Z軸+側の同一面上)を円運動するように調整可能となる。 The arc-shaped stage 82 is a plate formed in a circular arc shape having a predetermined length around a point P that is an X-ray emission point. The arc-shaped stage 82 is provided with a guide rail, a slider, and the like, and the X-ray detector 7 described above is attached to be movable along the arc-shaped track W of the arc-shaped stage 82 by a motor or the like. Thereby, by rotating the arcuate stage 82 by the rotation mechanism 81, the desired height (Z axis + side) is set so that the trajectory of the X-ray detector 7 is along the side surface of the cone having the emission point P as the apex. It can be adjusted to make a circular motion on the same surface.
 上述した構成を備えることにより、基準軸Lを中心とした公転軌道MMとX線の出射点Pを中心とする円弧状軌道Wとにより、X線検出器7のX線の出射点Pを中心とする球面上の任意の場所に移動させることができるので、ユーザは所望する撮影位置、撮影角度にて被測定物Sを撮影することができる。また、載置台61をZ軸方向に移動させることにより、所望の拡大率にて被測定物Sを撮影することができる。 With the configuration described above, the X-ray emission point P of the X-ray detector 7 is centered by the revolution orbit MM centered on the reference axis L and the arc-shaped trajectory W centered on the X-ray emission point P. Therefore, the user can photograph the object S to be measured at a desired photographing position and photographing angle. In addition, by moving the mounting table 61 in the Z-axis direction, the measurement object S can be photographed at a desired magnification.
 制御装置3は、マイクロプロセッサやその周辺回路等を有しており、不図示の記憶媒体(たとえばフラッシュメモリ等)に予め記憶されている制御プログラムを読み込んで実行することにより、X線装置100の各部を制御する。制御装置3は、X線制御部31と、移動制御部32と、画像生成部33と、画像再構成部34と、算出部35と、補正部36と、記憶部37とを備える。これらは、制御装置3が不図示の不揮発性メモリに格納されているプログラムを実行することにより、ソフトウェア的に実現されるが、これらをASIC等により構成しても構わない。 The control device 3 has a microprocessor, peripheral circuits, and the like, and reads and executes a control program stored in advance in a storage medium (not shown) (for example, a flash memory), thereby Control each part. The control device 3 includes an X-ray control unit 31, a movement control unit 32, an image generation unit 33, an image reconstruction unit 34, a calculation unit 35, a correction unit 36, and a storage unit 37. These are realized by software by the control device 3 executing a program stored in a non-illustrated non-volatile memory, but these may be configured by an ASIC or the like.
 X線制御部31はX線源5の出力を制御し、移動制御部32は後述するラミノグラフィーを行うために、載置部6およびX線検出器駆動ユニット8の移動動作を制御する。画像生成部33はX線検出器7から出力された電気信号に基づいて被測定物SのX線投影画像データを生成し、画像再構成部34は投影方向の異なる被測定物SのX線投影画像データに基づいて、公知の画像再構成処理を施して再構成画像を生成する。再構成画像により、被測定物Sの内部構造(断面構造)である3次元データが生成される。この場合、再構成画像の生成方法としては、逆投影法、フィルタ補正逆投影法、逐次近似法等がある。 The X-ray control unit 31 controls the output of the X-ray source 5, and the movement control unit 32 controls the movement operation of the mounting unit 6 and the X-ray detector drive unit 8 in order to perform laminography described later. The image generation unit 33 generates X-ray projection image data of the measurement object S based on the electrical signal output from the X-ray detector 7, and the image reconstruction unit 34 generates the X-rays of the measurement object S having different projection directions. Based on the projection image data, a known image reconstruction process is performed to generate a reconstructed image. Three-dimensional data that is the internal structure (cross-sectional structure) of the measurement object S is generated from the reconstructed image. In this case, a method for generating a reconstructed image includes a back projection method, a filtered back projection method, a successive approximation method, and the like.
 算出部35は、後述するラミノグラフィーを行う際に、X線検出器7および載置台61が公転軌道の各々の位置で、理想的な相対位置関係を有する場合における後述する指標部材を透過したX線のX線検出器7の検出面における投影位置を算出する。なお、公転軌道とは、載置台61とX線検出器7とが、基準軸Lに垂直な平面内において、基準軸Lを中心とする円周上を互いに同期して回動する際の軌道である。補正部36は、算出部35により算出された検出面上の位置であって、指標部材を透過したX線が投影されるべき検出面上での指標部材の投影像の位置と、実際の指標部材の公転軌道上の各々の位置で得られた、指標部材を透過したX線の検出面上での指標部材の投影像の位置とのずれ量に基づいて、載置台61の位置の補正および/または被測定物SのX線投影画像データの補正を行う。なお、以後の説明では、算出部35が算出した被測定物Sおよび/または指標部材の理想的な相対位置関係を有した時の投影位置を第1投影位置、実際に被測定物Sおよび/または指標部材が公転軌道上を移動して各々の位置で得られた投影位置を第2投影位置と呼ぶ。記憶部37は、不揮発性の記憶媒体であり、補正部36がずれ量を算出する際に用いる各種の情報を記憶する。
 算出部35と補正部36と記憶部37とについては、詳細な説明を後に行う。
When performing the laminography, which will be described later, the calculation unit 35 has passed through an index member, which will be described later, when the X-ray detector 7 and the mounting table 61 have an ideal relative positional relationship at each position of the revolution trajectory. The projection position of the X-ray on the detection surface of the X-ray detector 7 is calculated. The revolution trajectory is a trajectory when the mounting table 61 and the X-ray detector 7 rotate in synchronization with each other on a circumference around the reference axis L in a plane perpendicular to the reference axis L. It is. The correction unit 36 is the position on the detection surface calculated by the calculation unit 35, and the position of the projected image of the index member on the detection surface on which the X-ray transmitted through the index member is to be projected, and the actual index Correction of the position of the mounting table 61 based on the amount of deviation from the position of the projected image of the index member on the detection surface of the X-rays transmitted through the index member, obtained at each position on the revolution track of the member; // X-ray projection image data of the measurement object S is corrected. In the following description, the projection position when the object to be measured S and / or the index member calculated by the calculation unit 35 has an ideal relative positional relationship is the first projection position, and the object to be measured S and / Alternatively, the projection positions obtained at the respective positions as the index member moves on the revolution track are referred to as second projection positions. The storage unit 37 is a non-volatile storage medium, and stores various information used when the correction unit 36 calculates the deviation amount.
The calculation unit 35, the correction unit 36, and the storage unit 37 will be described in detail later.
 本実施の形態のX線装置100は、上述したように、基準軸Lを中心とした公転軌道上で載置台61を移動させるための機構(載置部6)と、基準軸Lを中心とした公転軌道MM上でX線検出器7を移動させるための機構(X線検出器駆動ユニット8)とを有する。載置台61の公転軌道上における移動とX線検出器7の公転軌道MM上における移動とは、制御装置3の移動制御部32により同期するように制御される。画像生成部33は、移動制御部32により載置台61とX線検出器7とが基準軸Lの回りに回動された状態で、被測定物Sの投影像を取得する。これにより、X線源5からのX線のうち基準軸Lに対して所定の傾きを有するX線による被測定物Sの断層画像に対応するX線投影画像データを得る公知のラミノグラフィーが行われる。なお、以下の説明では、ラミノグラフィーのための載置台61とX線検出器7との移動をラミノ駆動と呼ぶ。 As described above, the X-ray apparatus 100 according to the present embodiment has a mechanism (mounting unit 6) for moving the mounting table 61 on the revolving track around the reference axis L, and the reference axis L as the center. And a mechanism (X-ray detector drive unit 8) for moving the X-ray detector 7 on the revolving trajectory MM. The movement of the mounting table 61 on the revolution trajectory and the movement of the X-ray detector 7 on the revolution trajectory MM are controlled to be synchronized by the movement control unit 32 of the control device 3. The image generation unit 33 acquires a projection image of the measurement object S in a state where the mounting table 61 and the X-ray detector 7 are rotated around the reference axis L by the movement control unit 32. Thus, a known laminography for obtaining X-ray projection image data corresponding to a tomographic image of the measurement object S by X-rays having a predetermined inclination with respect to the reference axis L among the X-rays from the X-ray source 5 is obtained. Done. In the following description, the movement of the mounting table 61 and the X-ray detector 7 for laminography is referred to as lamino drive.
 図4にラミノ駆動の際の、載置台61とX線検出器7との移動を示す。図4では、ラミノ駆動により被測定物Sを観測するための位置として、90°おきに設けた4つの観測位置A、B、CおよびDを用いた場合を一例として示す。すなわち、載置台61とX線検出器7とを矢印AR1の方向に沿って同期して移動させ、載置台61とX線検出器7とが観測位置A、B、CおよびDに位置すると、被測定物Sの観測を行う。観測位置A、B、CおよびDにおける載置台61とX線検出器7を、それぞれ載置台61A、61B、61Cおよび61D、X線検出器7A、7B、7Cおよび7Dとして表す。 FIG. 4 shows the movement of the mounting table 61 and the X-ray detector 7 during the lamino drive. FIG. 4 shows an example in which four observation positions A, B, C, and D provided every 90 ° are used as positions for observing the object S to be measured by lamino drive. That is, when the mounting table 61 and the X-ray detector 7 are moved synchronously along the direction of the arrow AR1, and the mounting table 61 and the X-ray detector 7 are positioned at the observation positions A, B, C, and D, The object to be measured S is observed. The mounting table 61 and the X-ray detector 7 at the observation positions A, B, C, and D are represented as mounting tables 61A, 61B, 61C, and 61D, and X-ray detectors 7A, 7B, 7C, and 7D, respectively.
 上述したように、X線検出器7は、X線検出器駆動ユニット8により基準軸Lを中心とする公転軌道MM上を移動するため、X線検出器7A、7B、7Cおよび7Dは公転軌道MM上に位置する。載置台61は、X軸移動機構62およびY軸移動機構63により基準軸Lを中心とする公転軌道MS上を移動するように制御されるため、載置台61A、61B、61Cおよび61Dは公転軌道MS上に位置させることができる。観測位置Aにおいては、X線源5からのX線VAは載置台61A上の被測定物Sを透過してX線検出器7Aに投影される。観測位置B、CおよびDにおいては、X線源5からのX線VB、VCおよびVDは載置台61B、61Cおよび61D上の被測定物Sを透過してX線検出器7B、7Cおよび7Dにそれぞれ投影される。なお、それぞれの観測位置毎にX線検出器7の上下方向であるV方向と、左右方向であるH方向とが変わるように、移動する。図6に示すように、X線検出器7は、公転軌道MS上を移動する際には、方位角θsrに応じて、V方向とH方向とが変わるように公転移動する。X線VA~VDのそれぞれは、基準軸Lから所定の傾きθtdを有してX線源5から射出され、X線検出器7A~7Dの検出面の中心(原点)に入射する。なお、以後の説明では、所定の傾きθtdをX線検出器7の傾動角と呼ぶ。傾動角が0°のときには、X線検出器7は基準軸L上に位置する。
 一方、載置部6は、X線検出器7のそれぞれの位置A、B、C、Dに応じて、基準軸Lに対して垂直な平面であるXY平面と平行な平面内において、移動する。また、移動の際に、載置台61がX線源5に対して回転するような動作は起こさない。たとえば、図6に示すように、被測定物Sに対して、指標部材Mはどのような位置であってもX方向に離れた位置に配置されている状態で、基準軸Lに対して公転軌道上に位置するように制御している。したがって、本実施の形態では、載置部6に対してX線検出器7が相対的に回転移動成分が含まれるように移動している。
As described above, since the X-ray detector 7 is moved on the revolution trajectory MM centered on the reference axis L by the X-ray detector drive unit 8, the X-ray detectors 7A, 7B, 7C and 7D are the revolution trajectories. Located on MM. The mounting table 61 is controlled by the X-axis moving mechanism 62 and the Y-axis moving mechanism 63 so as to move on the revolving track MS around the reference axis L, so that the mounting tables 61A, 61B, 61C and 61D are revolving tracks. It can be located on the MS. At the observation position A, the X-ray VA from the X-ray source 5 passes through the measurement object S on the mounting table 61A and is projected onto the X-ray detector 7A. At the observation positions B, C, and D, the X-rays VB, VC, and VD from the X-ray source 5 pass through the measurement object S on the mounting tables 61B, 61C, and 61D, and the X-ray detectors 7B, 7C, and 7D. Respectively. Note that the X-ray detector 7 moves so that the V direction, which is the vertical direction, and the H direction, which is the horizontal direction, change for each observation position. As shown in FIG. 6, when the X-ray detector 7 moves on the revolution trajectory MS, it revolves so that the V direction and the H direction change according to the azimuth angle θsr. Each of the X-rays VA to VD is emitted from the X-ray source 5 with a predetermined inclination θtd from the reference axis L, and enters the center (origin) of the detection surfaces of the X-ray detectors 7A to 7D. In the following description, the predetermined inclination θtd is referred to as the tilt angle of the X-ray detector 7. When the tilt angle is 0 °, the X-ray detector 7 is located on the reference axis L.
On the other hand, the placement unit 6 moves in a plane parallel to the XY plane, which is a plane perpendicular to the reference axis L, according to the positions A, B, C, and D of the X-ray detector 7. . Further, during the movement, the operation that the mounting table 61 rotates with respect to the X-ray source 5 does not occur. For example, as shown in FIG. 6, with respect to the measurement object S, the index member M is revolved with respect to the reference axis L in a state where the index member M is arranged at any position in the X direction. It is controlled to be located on the orbit. Therefore, in the present embodiment, the X-ray detector 7 moves relative to the placement unit 6 so as to include a rotational movement component.
 本実施の形態のX線装置100が行う観測動作について説明する。被測定物SのX線投影画像データを生成するために、載置台61には被測定物Sと指標部材M(図5参照)とが載置される。指標部材Mは、たとえば球形に形成され、ラミノ駆動に際して載置台61の公転軌道MSの各々の位置において、X線源5及びX線検出器7に対して理想的な相対位置関係からどの程度ずれた位置に位置決めされているかを算出するために用いられる。または、指標部材Mは、ラミノ駆動に際してX線検出器7の公転軌道MMの各々の位置においてX線源5および載置台61に対して理想的な相対位置関係からどの程度に位置決めされているかを算出するために用いられる。制御装置3は、指標部材MがX線検出器7の検出面に投影される投影位置に基づいて、上記ずれ量を算出し、算出したずれ量を補正するための処理を行う。
 以下の説明は、ずれ量算出の考え方、補正量の算出、およびラミノ駆動時の動作、に分けて行う。
An observation operation performed by the X-ray apparatus 100 of the present embodiment will be described. In order to generate X-ray projection image data of the measurement object S, the measurement object S and the index member M (see FIG. 5) are mounted on the mounting table 61. The index member M is formed, for example, in a spherical shape, and is displaced from an ideal relative positional relationship with respect to the X-ray source 5 and the X-ray detector 7 at each position of the revolution trajectory MS of the mounting table 61 during lamino drive. It is used to calculate whether it is positioned at a certain position. Or, how much the index member M is positioned from the ideal relative positional relationship with respect to the X-ray source 5 and the mounting table 61 at each position of the revolution trajectory MM of the X-ray detector 7 during the lamino drive. Used to calculate. The control device 3 calculates the shift amount based on the projection position at which the index member M is projected onto the detection surface of the X-ray detector 7 and performs processing for correcting the calculated shift amount.
The following description will be divided into the concept of calculating the deviation amount, the calculation of the correction amount, and the operation during lamino drive.
<ずれ量算出の考え方>
 図5は載置台61上に載置された被測定物Sと指標部材Mとを示す図である。なお、説明を簡単にするために、被測定物Sの観測点が1つの場合を例に挙げる。X線源5の出射点Pから傾動角θtdのX線はX線検出器7の検出面71の中心710に投影される。被測定物Sは、傾動角θtdにて射出されるX線の経路LX1上に載置される。なお、検出面71の中心710に入射するX線が被測定物Sを透過する位置を観測点と呼ぶ。また、直線LX1が載置台61において被測定物Sの載置面と交差する点、すなわち被測定物Sの観測点をSOと表す。X線装置100において、ラミノ駆動により載置台61およびX線検出器7が移動を行っても、観測点SOの検出面71への投影位置は検出面71の中心710から変化しないように構成される。
<Concept of deviation amount calculation>
FIG. 5 is a diagram showing the measurement object S and the index member M placed on the placement table 61. In order to simplify the description, a case where there is one observation point of the object S to be measured will be described as an example. X-rays having a tilt angle θtd from the emission point P of the X-ray source 5 are projected onto the center 710 of the detection surface 71 of the X-ray detector 7. The object S to be measured is placed on an X-ray path LX1 emitted at a tilt angle θtd. Note that a position where X-rays incident on the center 710 of the detection surface 71 pass through the DUT S is called an observation point. Further, a point where the straight line LX1 intersects the placement surface of the measurement object S on the placement table 61, that is, an observation point of the measurement object S is represented as SO. In the X-ray apparatus 100, the projection position of the observation point SO on the detection surface 71 does not change from the center 710 of the detection surface 71 even if the mounting table 61 and the X-ray detector 7 move by lamino drive. The
 指標部材Mは、載置台61上で図5に示すように載置された被測定物Sの観測点SOから所定の方向に所定の距離だけ離れた位置に載置される。すなわち、指標部材Mを透過するX線の経路は、被測定物Sの観測点SOを透過するX線の経路LX1とは異なる。これにより、X線検出器7の検出面71において、被測定物Sの投影像と指標部材Mの投影像とが重複しない。したがって、観測点SOを通るX線の経路LX1上に指標部材Mが無いので、指標部材Mが観測点SOに存在した時と比べて、観測点SOにおける被測定物Sの構造情報をコントラストよく取得できる。そのため、再構成時にも高精細な断層画像が形成でき、正確な検査が可能となる。
 なお、被検物の検査領域が点ではなく、ある範囲に渡って検査対象となる場合、その検査対象範囲よりも離れた位置に指標部材Mが位置するように被測定物Sを配置することが好ましい。
 特に、X線検出器7で検出された被測定物Sの投影像により再構成処理をする場合、指標部材Mによるビームハンドニング効果によりアーティファクトが生成されてしまう。そのアーティファクトにより被測定物Sの検査結果が誤ったものとなってしまう可能性がある。しかしながら、指標部材Mが無い場合には、複数の被測定物Sの投影像から再構成像を生成する場合、各投影像の位置関係がずれているかどうか保障できなくなる。もし、ずれていた場合で再構成を行ってしまうと、やはりアーティファクトが生成されてしまい、検査結果が誤ったものになってしまう。
 観測点SOのように観測領域がある箇所のみならず、観測領域がある面積を持った範囲である場合、X線検出器7で検出された指標部材Mの投影像が、X線検出器7で検出される領域のうち被測定物Sの観測領域の投影像から離れた位置でX線検出器7により検出されための被測定物Sの配置となるように、X線制御部31がユーザに促してもよい。この場合、予め不図示のユーザインターフェースにより、被測定物SのX線投影画像データ上に被測定物Sの観測領域をユーザに設定するように促し、ユーザが設定した観測領域の断層データまたは3次元データが再構成画像により形成されるように、載置部6及びX線検出器駆動ユニット8の移動動作を制御してもよい。また、被測定物SのX線投影画像データから公知のパターンマッチング技術で、被測定物Sの観測領域内に指標部材Mの投影像があるかどうかを判定する。その際、指標部材Mの投影像が被測定物Sの観測領域内に存在する場合であれば、被測定物Sを載置台61から移動するように警告を与えるか、または観測領域を別の領域に設定し直すことを勧めるように表示することが好ましい。それにより、再構成画像に指標部材Mによるビームハードニングなどの偽像の発生することを防ぐことができる。
The index member M is placed on the placing table 61 at a position away from the observation point SO of the object S to be measured placed in a predetermined direction by a predetermined distance as shown in FIG. That is, the X-ray path that passes through the index member M is different from the X-ray path LX1 that passes through the observation point SO of the object S to be measured. Thereby, on the detection surface 71 of the X-ray detector 7, the projection image of the measurement object S and the projection image of the index member M do not overlap. Accordingly, since there is no index member M on the X-ray path LX1 passing through the observation point SO, the structure information of the object S to be measured at the observation point SO has better contrast than when the index member M exists at the observation point SO. You can get it. Therefore, a high-definition tomographic image can be formed even during reconstruction, and an accurate inspection can be performed.
When the inspection area of the object to be inspected is not a point but over a certain range, the object to be measured S is arranged so that the index member M is located at a position away from the inspection object range. Is preferred.
In particular, when the reconstruction process is performed using the projection image of the measurement object S detected by the X-ray detector 7, an artifact is generated due to the beam handling effect by the index member M. There is a possibility that the inspection result of the object S to be measured becomes erroneous due to the artifact. However, in the case where the index member M is not provided, when a reconstructed image is generated from the projection images of the plurality of objects to be measured S, it cannot be guaranteed whether the positional relationship between the projection images is deviated. If the reconstruction is performed in the case of deviation, an artifact is also generated, and the inspection result becomes incorrect.
In the case where the observation region is a range having a certain area as well as the observation region SO, the projected image of the index member M detected by the X-ray detector 7 is the X-ray detector 7. The X-ray control unit 31 allows the user to arrange the measured object S to be detected by the X-ray detector 7 at a position away from the projection image of the observation area of the measured object S in the area detected by You may be encouraged. In this case, the user interface (not shown) prompts the user to set the observation area of the measurement object S on the X-ray projection image data of the measurement object S, and the tomographic data of the observation area set by the user or 3 You may control the movement operation | movement of the mounting part 6 and the X-ray detector drive unit 8 so that dimension data may be formed with a reconstructed image. Further, it is determined from the X-ray projection image data of the object S to be measured whether there is a projection image of the index member M in the observation region of the object S to be measured by a known pattern matching technique. At this time, if the projection image of the index member M exists in the observation area of the object S, a warning is given to move the object S from the mounting table 61, or the observation area is changed to another area. It is preferable to display so as to recommend resetting to the area. Thereby, it is possible to prevent generation of false images such as beam hardening by the index member M in the reconstructed image.
 図6は、図5に示すように載置台61に被測定物Sと指標部材Mとが載置された状態で、ラミノ駆動が行われた場合を示す。図6では、図4の場合と同様に、載置台61とX線検出器7とを矢印AR1の方向に沿ってラミノ駆動させた際の、載置台61とX線検出器7との位置関係を観測位置A、B、CおよびDごとに示す。 FIG. 6 shows a case where the lamino drive is performed in a state where the object to be measured S and the index member M are placed on the placing table 61 as shown in FIG. 6, as in FIG. 4, the positional relationship between the mounting table 61 and the X-ray detector 7 when the mounting table 61 and the X-ray detector 7 are lamino-driven along the direction of the arrow AR <b> 1. Is shown for each observation position A, B, C and D.
 以下の説明では、図6に示すように、X線検出器7の検出面71上にHV座標系、載置台61上にRT座標系を設定する。HV座標系は、検出面710の中心を原点とする直交座標系である。V軸は検出面71の中心710から基準軸Lと交差するように設定された軸であり、H軸はV軸に直交する軸である。ラミノ駆動によりX線検出器7が図6の位置関係A、B、CおよびDの間で移動した場合であっても、V軸はそれぞれの位置において常に基準軸Lと交差する方向を維持する。一方、H軸の向きは、位置A、B、CおよびDのそれぞれにおいてXYZ座標系に対して変化する。以下の説明では、傾動角θtdが0°となるようにX線検出器7を配置したときに、基準軸LとX線検出器7の検出面71の中心710とが交わる点を天頂LQと呼ぶ。 In the following description, as shown in FIG. 6, an HV coordinate system is set on the detection surface 71 of the X-ray detector 7 and an RT coordinate system is set on the mounting table 61. The HV coordinate system is an orthogonal coordinate system with the center of the detection surface 710 as the origin. The V axis is an axis set so as to intersect the reference axis L from the center 710 of the detection surface 71, and the H axis is an axis orthogonal to the V axis. Even when the X-ray detector 7 is moved between the positional relationships A, B, C, and D in FIG. 6 by lamino drive, the V axis always maintains the direction intersecting the reference axis L at each position. . On the other hand, the orientation of the H-axis changes with respect to the XYZ coordinate system at each of the positions A, B, C, and D. In the following description, when the X-ray detector 7 is arranged so that the tilt angle θtd is 0 °, the point where the reference axis L and the center 710 of the detection surface 71 of the X-ray detector 7 intersect with the zenith LQ. Call.
 RT座標系は、X線検出器7と同期して移動する載置台61の載置面上に設けられた直交座標系であり、載置台61に載置された被測定物Sの観測点SOを原点とする。R軸は、X線検出器7の検出面71に設定されたV軸と交差する方向に設定された軸である。換言すると、R軸は、HV座標系のV軸と基準軸Lとを含む平面と載置台61との交線である。R軸は、観測点SOを原点610とし、基準軸Lから離れる向きを+方向とするように設定される。T軸は、原点610にてR軸と直交する。RT座標系は、ラミノ駆動にともなって載置台61が移動する際に、基準軸Lを中心として回転する回転座標系である。 The RT coordinate system is an orthogonal coordinate system provided on the mounting surface of the mounting table 61 that moves in synchronization with the X-ray detector 7, and the observation point SO of the object S to be measured mounted on the mounting table 61. Is the origin. The R axis is an axis set in a direction intersecting with the V axis set on the detection surface 71 of the X-ray detector 7. In other words, the R axis is a line of intersection between the mounting table 61 and a plane including the V axis of the HV coordinate system and the reference axis L. The R axis is set such that the observation point SO is the origin 610 and the direction away from the reference axis L is the + direction. The T axis is orthogonal to the R axis at the origin 610. The RT coordinate system is a rotating coordinate system that rotates around the reference axis L when the mounting table 61 moves in accordance with lamino drive.
 上記のように設定した座標系を用いて、載置部6およびX線検出器駆動ユニット8に誤差等の精度的な問題が無いと仮定した場合の、載置台61およびX線検出器7のラミノ駆動における理想的な公転軌道の算出について説明する。すなわち、載置台61およびX線検出器7の理想的な公転軌道とは、それぞれが、基準軸Lに垂直な平面内において、基準軸Lを中心とする円周上を、互いに同期して回動し、各々の公転軌道上の位置でX線源5、X線検出器7及び載置台6の相対位置関係が維持されている状態を指す。これらの理想的な公転軌道は、指標部材Mと、X線源5の出射点Pと、X線検出器7の検出面71との相対的な位置関係に基づいて、指標部材Mが検出面71に投影される位置(以下、第1投影位置と呼ぶ)を算出することにより行われる。 Using the coordinate system set as described above, the mounting table 61 and the X-ray detector 7 when the mounting unit 6 and the X-ray detector driving unit 8 are assumed to have no accuracy problem such as an error. The calculation of the ideal revolution trajectory in the lamino drive will be described. That is, the ideal revolution trajectories of the mounting table 61 and the X-ray detector 7 rotate in synchronism with each other on the circumference around the reference axis L in a plane perpendicular to the reference axis L. It indicates a state in which the relative positional relationship among the X-ray source 5, the X-ray detector 7 and the mounting table 6 is maintained at a position on each revolution orbit. These ideal revolution trajectories are based on the relative positional relationship between the index member M, the emission point P of the X-ray source 5, and the detection surface 71 of the X-ray detector 7. This is performed by calculating a position projected on 71 (hereinafter referred to as a first projection position).
 第1投影位置の算出は、次の(1)~(3)の手順に従って行われる。なお、第1投影位置の算出は、実際の観測ではなく、X線検出器7と載置台61との相対的な位置関係が理想の位置関係の時に得られる観測を想定して算出するものである。
(1)被測定物Sの観測点SOに対する指標部材Mの相対位置を設定する。
(2)被測定物Sの観測点SOを透過するX線の経路LX1と、指標部材Mが載置台61の載置面と接する点M0を透過するX線の経路LX2とがなす角を算出する。
(3)経路LX1と計測LX2とのなす角をX線検出器7の検出面71上に設定したVH座標系の座標値に変換する。
 以下、(1)~(3)の手順のそれぞれについて、図6、図7、図8を用いながら説明する。
The calculation of the first projection position is performed according to the following procedures (1) to (3). Note that the calculation of the first projection position is not an actual observation, but is performed assuming an observation obtained when the relative positional relationship between the X-ray detector 7 and the mounting table 61 is an ideal positional relationship. is there.
(1) The relative position of the index member M with respect to the observation point SO of the object to be measured S is set.
(2) The angle formed by the X-ray path LX1 that passes through the observation point SO of the object to be measured S and the X-ray path LX2 that passes through the point M0 where the index member M contacts the mounting surface of the mounting table 61 is calculated. To do.
(3) The angle formed by the path LX1 and the measurement LX2 is converted into a coordinate value of the VH coordinate system set on the detection surface 71 of the X-ray detector 7.
Hereinafter, each of the procedures (1) to (3) will be described with reference to FIG. 6, FIG. 7, and FIG.
(1)被測定物Sに対する指標部材Mの相対位置を設定する。
 指標部材Mの中心M1を通る基準軸Lに平行な直線と載置台61の載置面との交点をM0とする。載置台61に載置された被測定物Sの観測点SOと点M0との間の基準軸Lに垂直な面内における距離をrsとする。また、観測点SOと点M0とを結ぶ直線が、RT座標系上においてR軸に対してなす角を方位角θsrとする。距離rsと方位角θsrとは、X線検出器7の傾動角θtdを0°とした状態で、X線検出器7により得られるX線投影画像データを解析することにより取得される。すなわち、この状態においては、RT座標系の原点610、すなわち観測点SOと基準軸Lとが一致した位置(以後、第1初期観測位置と呼ぶ)にある。距離rsは、生成されたX線投影画像データ上におけるRT座標系の原点から指標部材Mの投影像の中心までの距離を投影倍率で除することにより算出される。方位角θsrは、X線投影画像データ上における指標部材Mの投影像の座標値に基づいて算出される。
(1) The relative position of the index member M with respect to the measured object S is set.
Let M0 be the intersection of a straight line parallel to the reference axis L passing through the center M1 of the index member M and the mounting surface of the mounting table 61. A distance in a plane perpendicular to the reference axis L between the observation point SO and the point M0 of the object S to be measured placed on the placing table 61 is denoted by rs. Further, an angle formed by a straight line connecting the observation point SO and the point M0 with respect to the R axis on the RT coordinate system is defined as an azimuth angle θsr. The distance rs and the azimuth angle θsr are acquired by analyzing the X-ray projection image data obtained by the X-ray detector 7 with the tilt angle θtd of the X-ray detector 7 set to 0 °. In other words, in this state, the origin 610 of the RT coordinate system, that is, the position where the observation point SO and the reference axis L coincide (hereinafter referred to as the first initial observation position). The distance rs is calculated by dividing the distance from the origin of the RT coordinate system to the center of the projection image of the index member M on the generated X-ray projection image data by the projection magnification. The azimuth angle θsr is calculated based on the coordinate value of the projection image of the index member M on the X-ray projection image data.
 被測定物Sの観測位置、すなわち観測点SOから指標部材Mの中心までの高さ(Z軸方向の距離)をzsとする。高さzsを算出する際には、上記方位角θsrがゼロとなる位置まで、X線検出器7と載置台61とを移動させる。たとえば、方位角θsrの状態から、X線検出器7と載置台61とをX線の出射点Pを中心に、方位角θsrがゼロとなる方向に角θsrだけ回転させればよい。この状態において、X線検出器7のX線源5の出射点Pと観測点SOとを通る直線と、X線源5の出射点Pと指標部材Mの中心M1とを通る直線とを共に含む平面内に基準軸Lが含まれる位置関係(以後、第2初期観測位置と呼ぶ)となる。したがって、指標部材Mの投影像において、指標部材Mの中心M1に相当する点は、V軸上に存在することになる。なお、X線検出器7の傾動角θtdは適当な値を選択すればよい。この場合、X線検出器7により得られるX線投影画像データを解析することにより、高さzsが算出される。 The observation position of the object S to be measured, that is, the height from the observation point SO to the center of the index member M (distance in the Z-axis direction) is zs. When calculating the height zs, the X-ray detector 7 and the mounting table 61 are moved to a position where the azimuth angle θsr becomes zero. For example, from the state of the azimuth angle θsr, the X-ray detector 7 and the mounting table 61 may be rotated by the angle θsr around the X-ray emission point P in the direction in which the azimuth angle θsr becomes zero. In this state, a straight line passing through the emission point P of the X-ray source 5 and the observation point SO of the X-ray detector 7 and a straight line passing through the emission point P of the X-ray source 5 and the center M1 of the index member M are both present. A positional relationship (hereinafter referred to as a second initial observation position) in which the reference axis L is included in the included plane is obtained. Therefore, in the projected image of the index member M, a point corresponding to the center M1 of the index member M exists on the V axis. An appropriate value may be selected for the tilt angle θtd of the X-ray detector 7. In this case, the height zs is calculated by analyzing the X-ray projection image data obtained by the X-ray detector 7.
 図7は、第2初期観測位置における指標部材MのZX平面に平行な面での断面と、X線源5の出射点Pと、X線検出器7の検出面71との位置関係を示す図である。なお、図7では、図示の都合により指標部材Sを省略する。以下、高さzsの算出方法を説明する。 FIG. 7 shows the positional relationship between the cross section of the index member M at the second initial observation position in a plane parallel to the ZX plane, the emission point P of the X-ray source 5, and the detection surface 71 of the X-ray detector 7. FIG. In FIG. 7, the index member S is omitted for convenience of illustration. Hereinafter, a method for calculating the height zs will be described.
 図7に示すように、X線源5の出射点Pと被測定物Sの観測点SOとを結ぶ直線LX0に沿って、次の通り距離L1、L2およびL3を定義する。すなわち、X線源5の出射点PとX線検出器7の検出面71の中心710との距離L1、出射点Pから被測定物Sと観測点SOとの距離をL2とする。また、点M0から直線LX0に下ろした垂線の足をMPとして、観測点SOとMPとの距離をL3とする。さらに、出射点Pと観測点SOのZ軸方向における距離をZtとする。点M0の位置のX線検出器7の検出面71における投影倍率mrsは、以下の式(1)で表される。
 L2=Zt/cos(θtd)
 L3=rs×sin(θtd) 
 mrs=L1/(L2+L3) …(1)
 X線装置100の設定投影倍率をMxとすると、Ztは以下の式(2)で表される。
 Zt=(L1/Mx)×cos(θtd) …(2)
As shown in FIG. 7, distances L1, L2, and L3 are defined as follows along a straight line LX0 connecting the emission point P of the X-ray source 5 and the observation point SO of the object S to be measured. That is, a distance L1 between the emission point P of the X-ray source 5 and the center 710 of the detection surface 71 of the X-ray detector 7 and a distance between the measurement point S and the observation point SO from the emission point P are L2. Also, let MP be the foot of a perpendicular line drawn from the point M0 to the straight line LX0, and let L3 be the distance between the observation points SO and MP. Furthermore, the distance in the Z-axis direction between the emission point P and the observation point SO is defined as Zt. The projection magnification mrs on the detection surface 71 of the X-ray detector 7 at the position of the point M0 is expressed by the following equation (1).
L2 = Zt / cos (θtd)
L3 = rs × sin (θtd)
mrs = L1 / (L2 + L3) (1)
If the set projection magnification of the X-ray apparatus 100 is Mx, Zt is expressed by the following equation (2).
Zt = (L1 / Mx) × cos (θtd) (2)
 次に、X線検出器7の検出面71において、観測点SOに相当する点と、点M0に相当する点との距離V1iは、以下の式(3)により表される。
 V1i=rs×cos(θtd)×mrs …(3)
Next, on the detection surface 71 of the X-ray detector 7, the distance V1i between the point corresponding to the observation point SO and the point corresponding to the point M0 is expressed by the following equation (3).
V1i = rs × cos (θtd) × mrs (3)
 次に、指標部材Mの中心M1と点M0との、検出面71に平行な方向における距離をδとする。また、X線検出器7の検出面71において、観測点SOに相当する点と指標部材Mの中心M1に相当する点との距離をV1とする。距離δは、以下の式(4)で表される。
 δ=(V1i-V1)×mrs=rs×cos(θtd)-V1/mrs …(4)
 上記δを用いて、高さzsは以下の式(5)により表される。
 zs=δ/sin(θtd) …(5)
Next, let δ be the distance between the center M1 of the index member M and the point M0 in the direction parallel to the detection surface 71. Further, on the detection surface 71 of the X-ray detector 7, the distance between the point corresponding to the observation point SO and the point corresponding to the center M1 of the index member M is set to V1. The distance δ is expressed by the following formula (4).
δ = (V1i−V1) × mrs = rs × cos (θtd) −V1 / mrs (4)
Using the above δ, the height zs is expressed by the following equation (5).
zs = δ / sin (θtd) (5)
(2)被測定物Sの観測点SOを透過するX線の経路LX1と、点M0を透過するX線の経路LX2とがなす角を算出する。
 図8を参照しながら、観測位置において観測点SOを透過するX線と点M0を透過するX線とがなす角の算出について説明する。図8(a)は図6に示す観測位置における、X線源5の出射点PとX線検出器7の検出面71との位置関係を示すZX断面図である。図8(b)は、図8(a)の状態を載置台61の上部(Z方向+側)から見た場合の、X線源の出射点Pと、X線検出器7の検出面71との位置関係を示す図である。図8(c)は、X線検出器7の検出面71を裏側から見た図である。なお、図8(a)、(b)、(c)においては、図示の都合上、被測定物Sを省略する。
(2) The angle formed by the X-ray path LX1 that passes through the observation point SO of the DUT and the X-ray path LX2 that passes through the point M0 is calculated.
The calculation of the angle formed by the X-ray that passes through the observation point SO and the X-ray that passes through the point M0 at the observation position will be described with reference to FIG. FIG. 8A is a ZX sectional view showing the positional relationship between the emission point P of the X-ray source 5 and the detection surface 71 of the X-ray detector 7 at the observation position shown in FIG. FIG. 8B shows the emission point P of the X-ray source and the detection surface 71 of the X-ray detector 7 when the state of FIG. 8A is viewed from the top (Z direction + side) of the mounting table 61. FIG. FIG. 8C is a view of the detection surface 71 of the X-ray detector 7 as seen from the back side. 8A, 8B, and 8C, the device under test S is omitted for convenience of illustration.
 経路LX2に関して、図8(a)の紙面上において、経路LX1と経路LX2とがなす角をθvとし、図8(b)の紙面上において、X線の経路LX1と経路LX2とがなす角をθhとする。 Regarding the path LX2, the angle between the path LX1 and the path LX2 on the paper surface of FIG. 8A is θv, and the angle between the X-ray path LX1 and the path LX2 is on the paper surface of FIG. Let θh.
 図8(a)の紙面上において、経路LX2がXY平面となす角をθsvとすると、経路LX1と経路LX2とがなす角θsvを以下の式(6)で表すことができる。
 
Figure JPOXMLDOC01-appb-I000001
 …(6)
 したがって、角θvは、式(6)に基づいて、以下の式(7)で表すことができる。
 
Figure JPOXMLDOC01-appb-I000002
 …(7)
On the paper surface of FIG. 8A, when the angle formed by the path LX2 and the XY plane is θsv, the angle θsv formed by the path LX1 and the path LX2 can be expressed by the following formula (6).

Figure JPOXMLDOC01-appb-I000001
... (6)
Therefore, the angle θv can be expressed by the following formula (7) based on the formula (6).

Figure JPOXMLDOC01-appb-I000002
... (7)
 一方、図8(b)の紙面上において、経路LX1と経路LX2とがなす角θhは、以下の式(8)で表すことができる。
 
Figure JPOXMLDOC01-appb-I000003
 …(8)
On the other hand, the angle θh formed by the path LX1 and the path LX2 on the paper surface of FIG. 8B can be expressed by the following equation (8).

Figure JPOXMLDOC01-appb-I000003
... (8)
(3)経路LX1と経路LX2とがなす角をX線検出器7の検出面71上に設定したVH座標系の座標値に変換する。
 図8(a)、(c)に示すように、指標部材Mの中心M1に相当する点が検出面71に投影される位置は、X線の経路LX2が検出面71に入射する位置である。したがって、以下の式(9)により、角θvをHV座標系のV成分の座標値vrefに変換することができる。
 vref=-L1×tanθv …(9)
(3) The angle formed by the path LX1 and the path LX2 is converted into a coordinate value of the VH coordinate system set on the detection surface 71 of the X-ray detector 7.
As shown in FIGS. 8A and 8C, the position at which the point corresponding to the center M1 of the index member M is projected onto the detection surface 71 is the position where the X-ray path LX2 is incident on the detection surface 71. . Therefore, the angle θv can be converted to the coordinate value vref of the V component in the HV coordinate system by the following equation (9).
vref = −L1 × tan θv (9)
 図8(b)に示すように、指標部材Mの中心M1に相当する点が検出面71に投影される位置は、X線の経路LX2が検出面71に入射する位置である。したがって、以下の式(10)により算出された角θhをHV座標系のH成分の座標値hrefに変換することができる。
 href=L1×(cosθsv/cosθv)×tanθh …(10)
As shown in FIG. 8B, the position where the point corresponding to the center M <b> 1 of the index member M is projected onto the detection surface 71 is the position where the X-ray path LX <b> 2 is incident on the detection surface 71. Therefore, the angle θh calculated by the following equation (10) can be converted into the H component coordinate value href of the HV coordinate system.
href = L1 × (cos θsv / cos θv) × tan θh (10)
 このときの指標部材Mの中心M1に相当する点の検出面71における投影倍率msは、以下の式(11)により算出される。
 
Figure JPOXMLDOC01-appb-I000004
 …(11)
The projection magnification ms at the detection surface 71 at the point corresponding to the center M1 of the index member M at this time is calculated by the following equation (11).

Figure JPOXMLDOC01-appb-I000004
... (11)
 上述した手順(2)および(3)を、観測位置A、B、CおよびDのそれぞれについて行うことにより、公転軌道上の観測位置A、B、CおよびDのそれぞれにおける指標部材Mの投影像の理想的な座標値(href、vref)が得られる。これら複数の座標値(href、vref)を用いて軌跡を描いた場合に、この軌跡が理想的な公転軌道となる。 By performing the above steps (2) and (3) for each of the observation positions A, B, C, and D, the projected image of the index member M at each of the observation positions A, B, C, and D on the revolution orbit. Ideal coordinate values (href, vref) are obtained. When a trajectory is drawn using these coordinate values (href, vref), this trajectory becomes an ideal revolution trajectory.
<補正量の算出>
 上記の手順(1)~(3)により算出した指標部材Mの第1投影位置とは別に、公転軌道上を移動する指標部材Mに実際にX線を照射して、X線検出器7の検出面71に投影された指標部材Mの位置である第2投影位置を観測する。第1投影位置と第2投影位置とのずれ量に基づいて、補正量を算出する。HV座標系において、指標部材Mの中心M1の第1投影位置における座標値は、上記の通り(href、vref)である。一方、第2投影位置における指標部材Mの中心の座標値を(hreal、vreal)とすると、HV座標系、すなわちX線検出器7の検出面71における第1投影位置と第2投影位置とのずれ量Δh、Δvは、次の式(12)で表される。
 Δh=hreal-href
 Δv=vreal-vref …(12)
 上述したように、第1投影位置における指標部材Mの中心M1の軌跡が理想的な公転軌道なので、ずれ量Δh、Δvは、理想的な公転軌道と実際のラミノ駆動時の公転軌道MSとの誤差に対応する値を表す。
<Calculation of correction amount>
Apart from the first projection position of the index member M calculated by the above steps (1) to (3), the index member M moving on the revolution track is actually irradiated with X-rays, and the X-ray detector 7 A second projection position that is the position of the index member M projected on the detection surface 71 is observed. A correction amount is calculated based on the shift amount between the first projection position and the second projection position. In the HV coordinate system, the coordinate values at the first projection position of the center M1 of the index member M are (href, vref) as described above. On the other hand, when the coordinate value of the center of the index member M at the second projection position is (hreal, vreal), the HV coordinate system, that is, the first projection position and the second projection position on the detection surface 71 of the X-ray detector 7 are used. The deviation amounts Δh and Δv are expressed by the following equation (12).
Δh = hreal−href
Δv = vreal−vref (12)
As described above, since the locus of the center M1 of the index member M at the first projection position is an ideal revolution trajectory, the deviation amounts Δh and Δv are the difference between the ideal revolution trajectory and the revolution trajectory MS during actual lamino drive. Represents the value corresponding to the error.
 理想的な公転軌道と実際の公転軌道MSとに誤差が生ずる要因としては、次のことが考えられる。すなわち、載置部6が実際に移動する公転軌道MSにおいて、その中心と理想的な公転軌道の中心がずれていること(すなわち偏芯誤差)、実際の回転角度が理想的な公転軌道における回転角度とずれている(すなわち回転角度誤差)、実際の公転軌道MS面が理想的な公転軌道の軌道面に対して傾いていること(すなわち面振れ)、等よるものと考えられる。 The following may be considered as factors that cause an error between the ideal revolution trajectory and the actual revolution trajectory MS. That is, in the revolution trajectory MS in which the mounting portion 6 actually moves, the center of the ideal revolution trajectory is deviated (that is, eccentricity error), and the actual rotation angle is the rotation on the ideal revolution trajectory. It is considered that the actual revolution trajectory MS plane is inclined with respect to the ideal revolution trajectory (namely, surface runout), and the like.
 図9に、理想的な公転軌道と実際のラミノ駆動時の公転軌道MSとの間に偏芯誤差がある場合における、理想的な公転軌道および実際の公転軌道MSのシミュレーション結果を示す。図9(a)に、理想的な公転軌道においての検出面71で想定される指標部材Mの中心M1の投影像の軌跡を実線C1で示し、実際の公転軌道MSにおいて検出面71での指標部材Mの中心M1の投影像の軌跡を破線C2で示す。上述のように、載置部6に対してX線検出器7には回転移動成分も含まれているので、指標部材Mの投影像の軌跡は楕円状となる。なお、このシミュレーションは、投影倍率Mxを20倍、距離rsを1mm、高さzsを0.5mm、偏芯誤差を0.2mmとして実行したものである。 FIG. 9 shows the simulation results of the ideal revolution trajectory and the actual revolution trajectory MS when there is an eccentricity error between the ideal revolution trajectory and the actual revolution trajectory MS during actual lamino drive. In FIG. 9A, the locus of the projected image of the center M1 of the index member M assumed on the detection surface 71 in the ideal revolution trajectory is indicated by a solid line C1, and the index on the detection surface 71 in the actual revolution trajectory MS. The locus of the projected image of the center M1 of the member M is indicated by a broken line C2. As described above, since the X-ray detector 7 also includes a rotational movement component with respect to the placement unit 6, the locus of the projected image of the index member M is elliptical. In this simulation, the projection magnification Mx is 20 times, the distance rs is 1 mm, the height zs is 0.5 mm, and the eccentricity error is 0.2 mm.
 図9(a)に示すように、軌跡C1と軌跡C2とは共に楕円状であるが、軌跡C2は軌跡C1に比べ長径、短径が共に大きい。軌跡C1と軌跡C2とのずれ量は、ずれ量Δh、Δvに相当する。 As shown in FIG. 9A, the trajectory C1 and the trajectory C2 are both elliptical, but the trajectory C2 has a major axis and a minor axis both larger than the trajectory C1. The deviation amount between the trajectory C1 and the trajectory C2 corresponds to the deviation amounts Δh and Δv.
 図9(b)は、図9(a)に示す軌跡C1に対する軌跡C2のずれ量Δh、Δvを示す。図9(b)においては、ずれ量Δhを実線で示し、ずれ量Δvを破線で示す。縦軸はずれ量Δh、Δvの大きさ、横軸は観測位置Aから各観測位置までの角度を表す。図9(b)に示す通り、ずれ量ΔhとΔvとは共に正弦波状であるが、それぞれの位相と振幅とは互いに異なる。 FIG. 9B shows deviation amounts Δh and Δv of the locus C2 with respect to the locus C1 shown in FIG. In FIG. 9B, the deviation amount Δh is indicated by a solid line, and the deviation amount Δv is indicated by a broken line. The vertical axis represents the magnitudes of the shift amounts Δh and Δv, and the horizontal axis represents the angle from the observation position A to each observation position. As shown in FIG. 9B, the shift amounts Δh and Δv are both sinusoidal, but their phases and amplitudes are different from each other.
 図10に、実際の回転角度が理想的な公転軌道における回転角度とずれている場合、すなわち回転角度誤差がある場合における理想的な公転軌道と実際の公転軌道MSとのシミュレーション結果を示す。回転角度誤差は、公転周期が1周期毎に現れてしまう位置決め誤差が生じている場合を想定する。図10(a)に、理想的な公転軌道において検出面71で想定される指標部材Mの中心M1の投影像軌跡を実線C1で示し、実際の公転軌道MSにおいて検出面71での指標部材Mの中心M1の投影像軌跡を破線C3で示す。なお、このシミュレーションは、投影倍率Mxを20倍、距離rsを1mm、高さzsを0.5mm、角度変動を±0.3°として実行したものである。 FIG. 10 shows a simulation result of the ideal revolution trajectory and the actual revolution trajectory MS when the actual rotation angle deviates from the rotation angle in the ideal revolution trajectory, that is, when there is a rotation angle error. The rotation angle error assumes a case where a positioning error that causes a revolution cycle to appear every cycle occurs. FIG. 10A shows a projected image trajectory of the center M1 of the index member M assumed on the detection surface 71 in the ideal revolution trajectory by a solid line C1, and the index member M on the detection surface 71 in the actual revolution trajectory MS. The projected image locus of the center M1 is indicated by a broken line C3. In this simulation, the projection magnification Mx is 20 times, the distance rs is 1 mm, the height zs is 0.5 mm, and the angle variation is ± 0.3 °.
 図10(a)に示すように、軌跡C1と軌跡C3とは共に楕円状であるが、軌跡C3は軌跡C1に対して、短径の長さはほぼ同じであるのに対して、長径の長さが長い。軌跡C1と軌跡C3とのずれ量は、ずれ量Δh、Δvに相当する。 As shown in FIG. 10 (a), the trajectory C1 and the trajectory C3 are both elliptical. The trajectory C3 is substantially the same as the trajectory C1, but the major axis has the same length. Long length. The deviation amount between the trajectory C1 and the trajectory C3 corresponds to the deviation amounts Δh and Δv.
 図10(b)は、図10(a)に示す軌跡C1に対する軌跡C3のずれ量Δh、Δvを示す。図10(b)においては、ずれ量Δhを実線で示し、ずれ量Δvを破線で示す。縦軸はずれ量Δh、Δvの大きさ、横軸は観測位置Aから各観測位置までの角度を示す。図10(b)に示す通り、ずれ量Δhは正弦波状であるが、ずれ量Δvは0で一定である。 FIG. 10B shows deviation amounts Δh and Δv of the locus C3 with respect to the locus C1 shown in FIG. In FIG. 10B, the deviation amount Δh is indicated by a solid line, and the deviation amount Δv is indicated by a broken line. The vertical axis represents the magnitudes of the shift amounts Δh and Δv, and the horizontal axis represents the angle from the observation position A to each observation position. As shown in FIG. 10B, the shift amount Δh is sinusoidal, but the shift amount Δv is 0 and constant.
 図11に、実際の公転軌道MSの面が理想的な公転軌道の軌道面に対して傾いている場合、すなわち面振れがある場合における理想的な公転軌道と実際の公転軌道MSとのシミュレーション結果を示す。図11(a)に、理想的な公転軌道において検出面71で想定される指標部材Mの中心M1の投影像の軌跡を実線C1で示し、実際の公転軌道MSにおいて検出面71での指標部材Mの中心M1の投影像の軌跡を破線C4で示す。なお、このシミュレーションは、投影倍率Mxを20倍、距離rsを1mm、高さzsを0.5mm、傾き角度を0.3°として実行したものである。 FIG. 11 shows the simulation result of the ideal revolution trajectory and the actual revolution trajectory MS when the surface of the actual revolution trajectory MS is tilted with respect to the raceway surface of the ideal revolution trajectory. Indicates. FIG. 11A shows the locus of the projected image of the center M1 of the index member M assumed on the detection surface 71 in the ideal revolution trajectory by a solid line C1, and the index member on the detection surface 71 in the actual revolution trajectory MS. The locus of the projected image of the center M1 of M is indicated by a broken line C4. In this simulation, the projection magnification Mx is 20 times, the distance rs is 1 mm, the height zs is 0.5 mm, and the inclination angle is 0.3 °.
 図11(a)に示すように、軌跡C1と軌跡C4とは共に楕円状であるが、軌跡C4は軌跡C1に対して、長径の長さはほぼ同様であるのに対して、短径の長さが短い。軌跡C1と軌跡C4とずれ量は、ずれ量Δh、Δvに相当する。 As shown in FIG. 11A, the trajectory C1 and the trajectory C4 are both elliptical. The trajectory C4 is substantially the same in length as the major axis, but the minor axis has a minor axis. The length is short. The deviation amounts between the trajectory C1 and the trajectory C4 correspond to the deviation amounts Δh and Δv.
 図11(b)は、図11(a)に示す軌跡C1に対する軌跡C4のずれ量Δh、Δvを示す。図11(b)においては、ずれ量Δhを実線で示し、ずれ量Δvを破線で示す。縦軸はずれ量Δh、Δvの大きさ、横軸は観測位置Aから各観測位置までの角度を示す。図11(a)に示す通り、ずれ量Δvは正弦波状であるが、ずれ量Δhは0でほぼゼロである。 FIG. 11B shows deviation amounts Δh and Δv of the locus C4 with respect to the locus C1 shown in FIG. In FIG. 11B, the deviation amount Δh is indicated by a solid line, and the deviation amount Δv is indicated by a broken line. The vertical axis represents the magnitudes of the shift amounts Δh and Δv, and the horizontal axis represents the angle from the observation position A to each observation position. As shown in FIG. 11A, the shift amount Δv is sinusoidal, but the shift amount Δh is 0 and almost zero.
 上記の通り、誤差の違いに応じて生ずるずれ量Δh、Δvに基づいて、これらのずれ量をなくす方向に載置台61および/またはX線検出器7の動作を補正する。これにより、上記の各種の誤差の要因(偏芯誤差、回転角度誤差、面振れ等)による影響を除去した投影画像データの生成が可能となる。 As described above, the operations of the mounting table 61 and / or the X-ray detector 7 are corrected in a direction in which these deviation amounts are eliminated based on the deviation amounts Δh and Δv generated according to the difference in error. As a result, it is possible to generate projection image data in which the influence of the above-described various error factors (eccentricity error, rotation angle error, surface shake, etc.) is removed.
 ずれ量Δh、Δvに基づく載置台61の補正は次のようにして行われる。すなわち、HV座標系における上記ずれ量Δh、ΔvをXY座標系の量に変換した変換値を算出し、その変換値に基づいて、載置台61の移動量を補正量することで、上記誤差要因による影響を補正することが可能となる。 The correction of the mounting table 61 based on the deviation amounts Δh and Δv is performed as follows. That is, a conversion value obtained by converting the deviation amounts Δh and Δv in the HV coordinate system into an amount in the XY coordinate system is calculated, and the movement amount of the mounting table 61 is corrected based on the conversion value. It is possible to correct the influence due to.
 まず、HV座標系でのずれ量Δh、Δvを、以下の式(13)に基づいて、RT座標系でのずれ量Δr、Δtに変換する。
 Δr=-(Δv/ms)/cos(θtd+θv)
 Δt=-(Δh/ms)            …(13)
First, the shift amounts Δh and Δv in the HV coordinate system are converted into shift amounts Δr and Δt in the RT coordinate system based on the following equation (13).
Δr = − (Δv / ms) / cos (θtd + θv)
Δt = − (Δh / ms) (13)
 図12に、RT座標系における指標部材Mに関する点M0に相当する位置Q1と、RT座標系において位置Q1からずれ量Δr、Δtだけ変位させた場合の位置Q2とを示す。上述したように、RT座標系の中心とXY座標系の中心とは、共に観測点SOに相当し、RT座標系はXY座標系を角度θrsだけ回転させた関係となっている。 FIG. 12 shows a position Q1 corresponding to the point M0 related to the index member M in the RT coordinate system, and a position Q2 in the case of being displaced from the position Q1 by the shift amounts Δr and Δt in the RT coordinate system. As described above, the center of the RT coordinate system and the center of the XY coordinate system both correspond to the observation point SO, and the RT coordinate system has a relationship obtained by rotating the XY coordinate system by an angle θrs.
 図12に示す位置Q1と位置Q2との関係から、RT座標系におけるずれ量Δr、Δtと、XY座標系におけるずれ量Δx、Δyとの関係は、以下の式(14)により表される。
 Δx=Δr×cos(θsr)+Δt×sin(θsr)
 Δy=-Δr×sin(θsr)+Δt×cos(θsr) …(14)
 すなわち、上記の式(14)により、RT座標系におけるずれ量Δr、Δtは、XY座標系におけるずれ量Δx、Δyに変換される。
From the relationship between the positions Q1 and Q2 shown in FIG. 12, the relationship between the shift amounts Δr and Δt in the RT coordinate system and the shift amounts Δx and Δy in the XY coordinate system is expressed by the following equation (14).
Δx = Δr × cos (θsr) + Δt × sin (θsr)
Δy = −Δr × sin (θsr) + Δt × cos (θsr) (14)
That is, according to the above equation (14), the shift amounts Δr and Δt in the RT coordinate system are converted into the shift amounts Δx and Δy in the XY coordinate system.
<ラミノ駆動時の動作>
 本実施の形態のX線装置100は、上述したずれ量の算出、補正量の算出、および補正量の変換の各手順を全て、または選択的に用いることで、ラミノ観測を行う。なお、ラミノ観測は、上述した4つの観測位置A、B、CおよびDにて行われるものとして説明するが、観測位置の個数はこの例に限定されるものではなく、被測定物Sの形状や再構成画像の必要精度等に応じて、オペレータ等により任意の個数に設定可能である。
<Operation during lamino drive>
The X-ray apparatus 100 according to the present embodiment performs lamino observation by using all or selectively using the above-described procedures for calculating the shift amount, calculating the correction amount, and converting the correction amount. Note that lamino observation is described as being performed at the four observation positions A, B, C, and D described above, but the number of observation positions is not limited to this example, and the shape of the object S to be measured Depending on the required accuracy of the reconstructed image and the like, it can be set to an arbitrary number by an operator or the like.
 図13に、ラミノ観測に用いる被測定物Sの一例を示す。被測定物Sに対して、複数の観測点S100、S200およびS300において観測を行う場合について説明する(図13の例では3か所)。図13(a)は、載置台61に被測定物Sが載置されている様子を示す斜視図である。図13(b)は、被測定物Sの上部(Z軸+側)平面図である。各観測点S100、S200およびS300に対してそれぞれ所定角θrs1、θrs2およびθrs3の方向に所定距離rs1、rs2およびrs3だけ離れた位置に、指標部材M100、M200およびM300がそれぞれ載置される。
 以下、ラミノ駆動時の動作として、被測定物Sの各観測点S100、S200およびS300に対する各指標部材M100、M200およびM300の各中心M101、M201およびM301の相対位置を算出するための初期観測動作と、被測定物Sの観測点S100、S200およびS300を実際に観測する実観測動作とに分けて説明を行う。
FIG. 13 shows an example of the object S to be used for lamino observation. A case will be described in which the object to be measured S is observed at a plurality of observation points S100, S200, and S300 (three places in the example of FIG. 13). FIG. 13A is a perspective view showing a state in which the object to be measured S is placed on the placing table 61. FIG. 13B is a plan view of the upper part (Z-axis + side) of the measurement object S. FIG. Index members M100, M200, and M300 are placed at positions that are separated from each observation point S100, S200, and S300 by a predetermined distance rs1, rs2, and rs3 in the directions of the predetermined angles θrs1, θrs2, and θrs3, respectively.
Hereinafter, as an operation at the time of lamino drive, an initial observation operation for calculating the relative positions of the centers M101, M201, and M301 of the index members M100, M200, and M300 with respect to the observation points S100, S200, and S300 of the object S to be measured. And the actual observation operation for actually observing the observation points S100, S200, and S300 of the device under test S will be described.
(1)初期観測動作
 初期観測動作としては、観測点S100に対する指標部材M100の中心M101の所定角θrs1と所定距離rs1とを算出する第1初期観測動作と、観測点S100に対する指標部材M100の中心M101の高さzs1と指標部材M100の中心M101に相当する点の投影倍率を算出する第2初期観測動作とが含まれる。
 なお、被測定物Sの観測のための投影倍率Mx1は予めオペレータ等の操作により設定され、この投影倍率Mx1に従って、載置台61のZ軸方向の位置調整が済んでいるものとする。また、以下では、X線装置100の観測点S100に対する観測動作を主に説明するが、他の観測点S200、S300のそれぞれに対してもX線装置100は同様の動作を行う。
(1) Initial observation operation As an initial observation operation, a first initial observation operation for calculating a predetermined angle θrs1 and a predetermined distance rs1 of the center M101 of the index member M100 with respect to the observation point S100, and the center of the index member M100 with respect to the observation point S100 A second initial observation operation for calculating a projection magnification of a point corresponding to the height zs1 of M101 and the center M101 of the index member M100 is included.
Note that the projection magnification Mx1 for observing the object S to be measured is set in advance by an operation of an operator or the like, and the position adjustment of the mounting table 61 in the Z-axis direction has been completed according to the projection magnification Mx1. In the following, the observation operation for the observation point S100 of the X-ray apparatus 100 will be mainly described, but the X-ray apparatus 100 performs the same operation for each of the other observation points S200 and S300.
 第1初期観測動作のために、移動制御部32は、X線検出器駆動ユニット8に指令して、X線検出器7を天頂LQに移動させる。移動制御部32は、載置部6に指令して、X軸移動機構62および/またはY軸移動機構63により載置台61を移動させて、被測定物Sの観測点S100を基準軸L上に位置させる。すなわち載置台61とX線検出器7とは第1初期観測位置に移動する。 For the first initial observation operation, the movement control unit 32 instructs the X-ray detector drive unit 8 to move the X-ray detector 7 to the zenith LQ. The movement control unit 32 instructs the mounting unit 6 to move the mounting table 61 by the X-axis moving mechanism 62 and / or the Y-axis moving mechanism 63 so that the observation point S100 of the object S to be measured is on the reference axis L. To be located. That is, the mounting table 61 and the X-ray detector 7 move to the first initial observation position.
 図14は初期観測動作時におけるX線源5と、載置台61と、X線検出器7との位置関係を示す図である。図14では、第1初期観測位置における載置台61をPm_ini1、X線検出器7をPd_ini1として示す。載置台61およびX線検出器7がそれぞれ第1初期観測位置Pm_ini1、Pd_ini1に位置する場合においては、被測定物Sの観測点S100とX線検出器7の検出面71の中心710とは共に基準軸L上に位置する。 FIG. 14 is a diagram showing a positional relationship among the X-ray source 5, the mounting table 61, and the X-ray detector 7 during the initial observation operation. In FIG. 14, the mounting table 61 at the first initial observation position is indicated as Pm_ini1, and the X-ray detector 7 is indicated as Pd_ini1. When the mounting table 61 and the X-ray detector 7 are positioned at the first initial observation positions Pm_ini1 and Pd_ini1, respectively, the observation point S100 of the measurement object S and the center 710 of the detection surface 71 of the X-ray detector 7 are both Located on the reference axis L.
 載置台61およびX線検出器7がそれぞれ第1初期観測位置Pm_ini1、Pd_ini1へ移動すると、X線制御部31はX線源5からX線を射出させる。なお、X線の射出は載置台61およびX線検出器7が第1初期観測位置に移動する前に開始しても良い。画像生成部33は、X線検出器7から出力された電気信号に基づいて、被測定物Sおよび指標部材M100を透過したX線の投影像に相当するX線投影画像データを生成する。 When the mounting table 61 and the X-ray detector 7 move to the first initial observation positions Pm_ini1 and Pd_ini1, respectively, the X-ray control unit 31 emits X-rays from the X-ray source 5. X-ray emission may be started before the mounting table 61 and the X-ray detector 7 move to the first initial observation position. Based on the electrical signal output from the X-ray detector 7, the image generation unit 33 generates X-ray projection image data corresponding to the X-ray projection image that has passed through the measurement object S and the index member M100.
 図15に第1初期観測位置における被測定物Sの観測点S100と指標部材M100の中心M101との位置関係を示す。すなわち、図15は、被測定物Sと指標部材M100とを透過したX線によりX線検出器7の検出面71上に形成された透過像において、被測定物Sの観測点S100と指標部材M100の中心M101との位置関係を示す。図15(a)は、被測定物Sの観測点S100と指標部材M100の中心M101との位置関係を示す。観測点S101とX線検出器7の検出面71の中心とは共に基準軸L上に位置するので、投影像において観測点S100に相当する点は検出面71の中心、すなわちHV座標系の原点に位置する。また、投影像において指標部材M100の中心M101に相当する点は、HV座標系のV軸に対して角度θsr1をなすとともに、HV座標系の原点から距離rs11に位置する。距離rs11は、RT座標系における距離rs1に対応する。 FIG. 15 shows the positional relationship between the observation point S100 of the measurement object S and the center M101 of the index member M100 at the first initial observation position. That is, FIG. 15 shows an observation point S100 of the measurement object S and the index member in a transmission image formed on the detection surface 71 of the X-ray detector 7 by X-rays transmitted through the measurement object S and the index member M100. The positional relationship with the center M101 of M100 is shown. FIG. 15A shows the positional relationship between the observation point S100 of the measurement object S and the center M101 of the index member M100. Since the observation point S101 and the center of the detection surface 71 of the X-ray detector 7 are both located on the reference axis L, the point corresponding to the observation point S100 in the projection image is the center of the detection surface 71, that is, the origin of the HV coordinate system. Located in. Further, the point corresponding to the center M101 of the index member M100 in the projection image forms an angle θsr1 with respect to the V axis of the HV coordinate system and is located at a distance rs11 from the origin of the HV coordinate system. The distance rs11 corresponds to the distance rs1 in the RT coordinate system.
 算出部35は、生成された投影画像データに基づいて、角度θsr1および距離rs1を算出する。算出部35は、HV座標系における指標部材M100の中心M101に相当する座標値から角度θsr1を算出する。算出部35は、投影画像データ上における距離rs11を、投影倍率、すなわちX線源5から指標部材M100までの距離および検出面71までの距離の比率で除して、所定距離rs1を算出する。 The calculation unit 35 calculates the angle θsr1 and the distance rs1 based on the generated projection image data. The calculation unit 35 calculates the angle θsr1 from the coordinate value corresponding to the center M101 of the index member M100 in the HV coordinate system. The calculation unit 35 calculates the predetermined distance rs1 by dividing the distance rs11 on the projection image data by the projection magnification, that is, the ratio of the distance from the X-ray source 5 to the index member M100 and the distance to the detection surface 71.
 X線装置100は、被測定物Sの他の観測点S200、S300と指標部材M200、M300とについても同様の処理を行う。図15(b)は観測点S200と指標部材M200の中心M201との位置関係を示し、図15(c)は観測点S300と指標部材M300の中心M301との位置関係を示す。観測点S200に対して第1初期観測位置に設定された状態で生成された投影画像データ(図15(b))を用いて、算出部35は角度θsr2と所定距離rs2とを算出する。観測点S300に対して第1初期観測位置に設定された状態で生成された投影画像データ(図15(c))を用いて、算出部35は角度θsr3と所定距離rs3とを算出する。
 投影画像データに基づいて算出された角度θrsと所定距離rsとは記憶部37に記憶される。
The X-ray apparatus 100 performs the same processing on the other observation points S200, S300 and the index members M200, M300 of the object S to be measured. FIG. 15B shows the positional relationship between the observation point S200 and the center M201 of the indicator member M200, and FIG. 15C shows the positional relationship between the observation point S300 and the center M301 of the indicator member M300. The calculation unit 35 calculates the angle θsr2 and the predetermined distance rs2 using the projection image data (FIG. 15B) generated in the state set to the first initial observation position with respect to the observation point S200. The calculation unit 35 calculates the angle θsr3 and the predetermined distance rs3 using the projection image data (FIG. 15C) generated in the state set to the first initial observation position with respect to the observation point S300.
The angle θrs and the predetermined distance rs calculated based on the projection image data are stored in the storage unit 37.
 X線装置100は、指標部材M100の中心M101の高さzs1および指標部材M100の中心M101に相当する点の投影倍率mrs1を算出するための第2初期観測動作を行う。移動制御部32は、X線検出器駆動ユニット8に指令して、X線検出器7を傾動角θtdの位置に移動させる。移動制御部32は、載置部6に指令して、X軸移動機構62および/またはY軸移動機構63により載置台61を観測位置Aに移動させる。また、移動制御部32は、さらにX線検出器駆動ユニット8に指令して、X線検出器7を観測位置Aから公転軌道MMに沿って所定角θrs1に相当する移動量で移動させる。これにより、X線源5の出射点Pと被測定物Sの観測点S100とを通る直線と、X線源5の出射点Pと指標部材Mの中心M101とを通る直線とを共に含む平面内に基準軸Lが含まれる位置関係となるようにする。 The X-ray apparatus 100 performs the second initial observation operation for calculating the height zs1 of the center M101 of the index member M100 and the projection magnification mrs1 of the point corresponding to the center M101 of the index member M100. The movement control unit 32 instructs the X-ray detector drive unit 8 to move the X-ray detector 7 to the position of the tilt angle θtd. The movement control unit 32 instructs the mounting unit 6 to move the mounting table 61 to the observation position A by the X-axis moving mechanism 62 and / or the Y-axis moving mechanism 63. The movement control unit 32 further instructs the X-ray detector drive unit 8 to move the X-ray detector 7 from the observation position A along the revolution trajectory MM by a movement amount corresponding to the predetermined angle θrs1. Thereby, a plane including both a straight line passing through the emission point P of the X-ray source 5 and the observation point S100 of the object S to be measured and a straight line passing through the emission point P of the X-ray source 5 and the center M101 of the index member M. The positional relationship includes the reference axis L.
 載置台61およびX線検出器の第2初期観測位置Pm_ini2、Pd_ini2への移動が行われると、X線制御部31はX線源5からX線を射出させる。画像生成部33は、X線検出器7から出力された電気信号に基づいて、被測定物Sおよび指標部材M100を透過したX線の投影像に対応する投影画像データを生成する。 When the mounting table 61 and the X-ray detector are moved to the second initial observation positions Pm_ini2 and Pd_ini2, the X-ray control unit 31 emits X-rays from the X-ray source 5. Based on the electrical signal output from the X-ray detector 7, the image generation unit 33 generates projection image data corresponding to the X-ray projection image transmitted through the object to be measured S and the index member M100.
 図16(a)は、観測位置Aでの被測定物Sと指標部材M100との検出面71への投影像における、被測定物Sの中心S100と指標部材M100の中心M101との位置関係を、HV座標系上で示すものである。図16(a)において、観測点S100は検出面71の中心701に対応するので、図15(a)の場合と同様に、観測点S100の投影位置は検出面71の中心、すなわちHV座標系の原点に一致する。このため、指標部材M100の投影像において指標部材M100の中心M101に対応する点は、HV座標系の原点から距離rs1だけ離れ、かつ、V軸に対して角度θsr1をなす位置となる。 FIG. 16A shows the positional relationship between the center S100 of the measurement object S and the center M101 of the index member M100 in the projection image of the measurement object S and the index member M100 on the detection surface 71 at the observation position A. And shown on the HV coordinate system. In FIG. 16A, since the observation point S100 corresponds to the center 701 of the detection surface 71, the projection position of the observation point S100 is the center of the detection surface 71, that is, the HV coordinate system, as in FIG. Matches the origin of. Therefore, the point corresponding to the center M101 of the index member M100 in the projection image of the index member M100 is a position that is separated from the origin of the HV coordinate system by the distance rs1 and that forms an angle θsr1 with respect to the V axis.
 図16(b)は、第2初期観測位置での被測定物Sと指標部材M100との検出面71への投影像における、被測定物Sの中心S100と指標部材M100の中心M101との位置関係を、HV座標系上で示すものである。すなわち、図16(b)は、第2初期観測位置Pm_ini2、Pd_ini2にて生成された投影画像データを示す。図16(b)において、図16(a)の場合と同様に、観測点S100は検出面71の中心710に対応する。第2初期観測位置Pm_ini2、Pd_ini2においては、X線検出器7は公転軌道MMに沿って角度θrs1に相当する移動量で移動されている。このため、指標部材M100の投影像は、VH座標系において、図16(a)に示す位置から変位して、V軸上であって原点から距離rs12の位置に移動する。これにより、算出部35は、V軸上での原点からの距離rs12を用いて、指標部材M1の高さzs1を算出する。 FIG. 16B shows the positions of the center S100 of the measurement object S and the center M101 of the index member M100 in the projection image of the measurement object S and the index member M100 on the detection surface 71 at the second initial observation position. The relationship is shown on the HV coordinate system. That is, FIG. 16B shows the projection image data generated at the second initial observation positions Pm_ini2 and Pd_ini2. In FIG. 16B, the observation point S100 corresponds to the center 710 of the detection surface 71 as in the case of FIG. At the second initial observation positions Pm_ini2 and Pd_ini2, the X-ray detector 7 is moved along the revolution trajectory MM by a movement amount corresponding to the angle θrs1. For this reason, the projected image of the index member M100 is displaced from the position shown in FIG. 16A in the VH coordinate system, and moves on the V axis to a position at a distance rs12 from the origin. Accordingly, the calculation unit 35 calculates the height zs1 of the index member M1 using the distance rs12 from the origin on the V axis.
 算出部35は、第2初期観測位置Pm_ini2、Pd_ini2における、X線源5から指標部材M100の中心M101までの距離およびX線源5から検出面71までの距離に基づいて、式(1)を用いて投影倍率ms1を算出する。算出部35は、生成された投影画像データと、算出された投影倍率mrs1とに基づいて、上述した式(4)、(5)を用いて高さzs1を算出する。なお、このとき、式(4)のV1は距離rs12に置き換えて用いられる。 Based on the distance from the X-ray source 5 to the center M101 of the index member M100 and the distance from the X-ray source 5 to the detection surface 71 at the second initial observation positions Pm_ini2 and Pd_ini2, the calculation unit 35 calculates Equation (1). To calculate the projection magnification ms1. The calculation unit 35 calculates the height zs1 using the above-described equations (4) and (5) based on the generated projection image data and the calculated projection magnification mrs1. At this time, V1 in Expression (4) is used in place of the distance rs12.
 X線装置100は、被測定物Sの他の観測点S200、S300と指標部材M200、M300とについても上記と同様の動作を行い、各観測点S201、S301における指標部材M200、M300のそれぞれの中心M201、M301の高さzs2、zs3を算出する。また、中心M201、M301に相当する点の投影倍率mrs2、mrs3を算出する。算出された各観測点S100、S200およびS300のそれぞれの中心M101、M201およびM301の高さzs1~zs3と、中心M101、M201およびM301の投影倍率mrs1~mrs3とは、記憶部37に記憶される。 The X-ray apparatus 100 performs the same operation as described above for the other observation points S200, S300 and the index members M200, M300 of the object S to be measured, and each of the index members M200, M300 at the respective observation points S201, S301. The heights zs2 and zs3 of the centers M201 and M301 are calculated. Also, projection magnifications mrs2 and mrs3 of points corresponding to the centers M201 and M301 are calculated. The calculated heights zs1 to zs3 of the centers M101, M201 and M301 of the respective observation points S100, S200 and S300 and the projection magnifications mrs1 to mrs3 of the centers M101, M201 and M301 are stored in the storage unit 37. .
(2)実観測動作
 初期観測動作が終了すると、移動制御部32は、X線検出器駆動ユニット8に指令して、X線検出器7を観測位置Aに移動させる。移動制御部32は、載置部6に指令して、X軸移動機構62および/またはY軸移動機構63により載置台61を観測位置Aに移動させる。観測位置Aへの移動が行われると、X線制御部31はX線源5に対してX線を照射させる。なお、X線を予め照射した状態でX線検出器7を観測位置Aに移動させてもよい。X線検出器7は、X線源5から射出され、被測定物Sおよび指標部材Mを透過したX線を検出し、被測定物Sおよび指標部材Mの投影像に基づく電気信号を出力する。画像生成部33は、X線検出器7から出力された電気信号を用いて、X線投影画像データを生成する。
(2) Actual Observation Operation When the initial observation operation is completed, the movement control unit 32 instructs the X-ray detector drive unit 8 to move the X-ray detector 7 to the observation position A. The movement control unit 32 instructs the mounting unit 6 to move the mounting table 61 to the observation position A by the X-axis moving mechanism 62 and / or the Y-axis moving mechanism 63. When the movement to the observation position A is performed, the X-ray control unit 31 irradiates the X-ray source 5 with X-rays. Note that the X-ray detector 7 may be moved to the observation position A in a state where X-rays are irradiated in advance. The X-ray detector 7 detects X-rays emitted from the X-ray source 5 and transmitted through the measurement object S and the index member M, and outputs an electrical signal based on the projection images of the measurement object S and the index member M. . The image generation unit 33 generates X-ray projection image data using the electrical signal output from the X-ray detector 7.
 算出部35は、初期観測動作にて得られた指標部材M1の距離rs12、高さzs12に基づき、上述した式(9)、(10)を用いて、指標部材M1の第1投影位置での座標値(href、vref)を算出する。補正部36は、算出部35により算出された指標部材Mの第1投影位置と、生成されたX線投影画像データの指標部材M1の第2投影位置とに基づき、上述した式(12)を用いて、HV座標系におけるずれ量Δh、Δvを算出する。 Based on the distance rs12 and the height zs12 of the index member M1 obtained in the initial observation operation, the calculation unit 35 uses the above-described equations (9) and (10) to calculate the index member M1 at the first projection position. Coordinate values (href, vref) are calculated. Based on the first projection position of the index member M calculated by the calculation unit 35 and the second projection position of the index member M1 of the generated X-ray projection image data, the correction unit 36 calculates the above-described formula (12). The deviation amounts Δh and Δv in the HV coordinate system are calculated.
 補正部36は、上述した式(13)、(14)を用いて、HV座標系におけるずれ量Δh、ΔvをXY座標系におけるずれ量Δx、Δyに変換する。移動制御部32は、補正部36により算出されたずれ量Δx、Δyを載置台61の移動量として載置部6に出力する。載置部6は、X軸移動機構62および/またはY軸移動機構63により、載置台61をずれ量Δx、Δyに相当する距離だけ移動させる。これにより、載置台61の理想的な公転軌道からのずれ量を、載置台61を移動させることにより補正する。 The correction unit 36 converts the shift amounts Δh and Δv in the HV coordinate system into the shift amounts Δx and Δy in the XY coordinate system using the above-described equations (13) and (14). The movement control unit 32 outputs the deviation amounts Δx and Δy calculated by the correction unit 36 to the mounting unit 6 as the movement amount of the mounting table 61. The mounting unit 6 moves the mounting table 61 by a distance corresponding to the shift amounts Δx and Δy by the X-axis moving mechanism 62 and / or the Y-axis moving mechanism 63. Thereby, the deviation | shift amount from the ideal revolution track | orbit of the mounting base 61 is correct | amended by moving the mounting base 61. FIG.
 画像生成部33は、載置台61のずれ量が補正された状態においてX線検出器7から出力された電気信号を用いて、被測定物SのX線投影画像データを生成し、記憶部37に記憶する。これにより、載置台61およびX線検出器駆動ユニット8に精度的な問題が無いことを想定した場合に生成されるべきX線投影画像データを得ることができる。
 X線装置100は、上記の動作を各観測位置B、C、Dにおいても行い、各観測位置B、C、Dで載置台61のずれ量が補正された状態でX線投影画像データを取得する。
 X線装置100は、被測定物Sの他の観測点S200、S300と指標部材M200、M300とについても、各観測位置A、B、C、Dごとに、同様の処理を行う。
 なお、実観測動作の際に、各観測位置にて指標部材Mの投影像を用いてずれ量Δh、Δvを算出するものとして説明したが、これに限定されない。たとえば、90°ごとに観測位置A、B、C、Dが設定されている場合、たとえば180°ごとの観測位置A、Cにおいて、ずれ量Δh、Δvを算出して補正を行っても良い。
The image generation unit 33 generates X-ray projection image data of the object S to be measured using the electrical signal output from the X-ray detector 7 in a state where the displacement amount of the mounting table 61 is corrected, and the storage unit 37. To remember. Thereby, it is possible to obtain X-ray projection image data to be generated when it is assumed that the mounting table 61 and the X-ray detector driving unit 8 have no accuracy problem.
The X-ray apparatus 100 performs the above-described operation also at each observation position B, C, D, and acquires X-ray projection image data in a state where the displacement amount of the mounting table 61 is corrected at each observation position B, C, D. To do.
The X-ray apparatus 100 performs the same processing for each observation position A, B, C, and D for the other observation points S200 and S300 and the index members M200 and M300 to be measured S.
In the actual observation operation, the shift amounts Δh and Δv are calculated using the projection image of the index member M at each observation position. However, the present invention is not limited to this. For example, when the observation positions A, B, C, and D are set every 90 °, for example, the deviation amounts Δh and Δv may be calculated and corrected at the observation positions A and C every 180 °.
 画像再構成部34は、各観測点S100、S200、S300についての各観測位置で生成されたX線投影画像データに対して、公知の画像再構成処理を施して再構成画像を生成する。再構成画像により、被測定物Sの内部構造(断面構造)である3次元データが生成される。 The image reconstruction unit 34 performs a known image reconstruction process on the X-ray projection image data generated at each observation position for each observation point S100, S200, and S300 to generate a reconstructed image. Three-dimensional data that is the internal structure (cross-sectional structure) of the measurement object S is generated from the reconstructed image.
 図17フローチャートを参照して、制御装置3が行う動作について説明する。図17に示す処理は制御装置3でプログラムを実行して行われる。このプログラムは、メモリ(不図示)に格納されており、制御装置3により起動され、実行される。
 ステップS1では、移動制御部32は、載置台61およびX線検出器7を第1初期観測位置に移動させてステップS2へ進む。ステップS2では、X線制御部31はX線源5にX線を射出させ、X線検出器7は検出した投影像を電気信号として出力し、画像生成部33はX線検出器7から出力された電気信号を用いて、X線投影画像データを生成する。算出部35は、このX線投影画像データを用いて、被測定物Sの観測点に対する指標部材Mの距離rsと方位角θsrとを算出し、記憶部37に記憶してステップS3へ進む。
The operation performed by the control device 3 will be described with reference to the flowchart in FIG. The process shown in FIG. 17 is performed by executing a program in the control device 3. This program is stored in a memory (not shown), and is activated and executed by the control device 3.
In step S1, the movement control unit 32 moves the mounting table 61 and the X-ray detector 7 to the first initial observation position, and proceeds to step S2. In step S <b> 2, the X-ray control unit 31 causes the X-ray source 5 to emit X-rays, the X-ray detector 7 outputs the detected projection image as an electrical signal, and the image generation unit 33 outputs from the X-ray detector 7. X-ray projection image data is generated using the electrical signal thus generated. Using this X-ray projection image data, the calculation unit 35 calculates the distance rs and the azimuth angle θsr of the index member M with respect to the observation point of the measurement object S, stores them in the storage unit 37, and proceeds to step S3.
 ステップS3では、移動制御部32は、載置台61およびX線検出器7を第2初期観測位置に移動させてステップS4へ進む。ステップS4では、X線制御部31はX線源5にX線を射出させ、X線検出器7は検出した投影像を電気信号として出力し、画像生成部33はX線検出器7から出力された電気信号を用いて、X線投影画像データを生成する。算出部35は、このX線投影画像データを用いて、被測定物Sの観測点に対する指標部材Mの高さzsおよび投影倍率mrsを算出し、記憶部37に記憶してステップS5へ進む。 In step S3, the movement control unit 32 moves the mounting table 61 and the X-ray detector 7 to the second initial observation position, and proceeds to step S4. In step S4, the X-ray control unit 31 causes the X-ray source 5 to emit X-rays, the X-ray detector 7 outputs the detected projection image as an electrical signal, and the image generation unit 33 outputs from the X-ray detector 7. X-ray projection image data is generated using the electrical signal thus generated. The calculation unit 35 calculates the height zs of the index member M and the projection magnification mrs with respect to the observation point of the object S to be measured using the X-ray projection image data, stores it in the storage unit 37, and proceeds to step S5.
 ステップS5では、被測定物Sの全ての観測点について、指標部材Mの距離rs、高さzsおよび投影倍率mrsの算出が行われたか否かについて判定する。全ての観測点について処理が行われた場合には、ステップS5が肯定判定されてステップS6へ進む。全ての観測点について処理が行われていない場合には、ステップ5が否定判定されてステップS1へ戻り、別の観測点について処理が行われる。以上のステップS1~ステップS5の処理が初期観測動作での処理である。 In step S5, it is determined whether the distance rs, the height zs, and the projection magnification mrs of the index member M have been calculated for all observation points of the measurement object S. If processing has been performed for all observation points, an affirmative determination is made in step S5 and the process proceeds to step S6. If processing has not been performed for all observation points, a negative determination is made in step 5 and the process returns to step S1, and processing is performed for another observation point. The processes in steps S1 to S5 described above are processes in the initial observation operation.
 ステップS6では、被測定物Sの複数の観測点のうちの1つの観測点が選択されてステップS7へ進む。ステップS7では、移動制御部32は、選択された観測点を観測するために、載置台61およびX線検出器7を観測位置に移動させてステップS8へ進む。ステップS8では、算出部35により算出された指標部材Mの距離rs、高さzsおよび投影倍率mrsを用いて、式(9)、(10)により、指標部材M1の第1投影位置での座標値(href、vref)を算出してステップS9へ進む。 In step S6, one observation point is selected from the plurality of observation points of the object S to be measured, and the process proceeds to step S7. In step S7, the movement control unit 32 moves the mounting table 61 and the X-ray detector 7 to the observation position in order to observe the selected observation point, and proceeds to step S8. In step S8, using the distance rs, the height zs, and the projection magnification mrs of the index member M calculated by the calculation unit 35, the coordinates of the index member M1 at the first projection position according to the equations (9) and (10). The values (href, vref) are calculated and the process proceeds to step S9.
 ステップS9では、補正部36は、X線検出器7から出力された電気信号を用いて画像生成部33により生成されたX線投影画像データを用いて、指標部材M1の第2投影位置での座標値(hreal、vreal)を算出してステップS10へ進む。ステップS10では、補正部36は、第1投影位置と第2投影位置とに基づき、式(12)を用いて、HV座標系におけるずれ量Δh、Δvを算出してステップS11へ進む。ステップS11では、補正部36は、算出されたずれ量Δh、Δvを式(13)、(14)を用いてXY座標系におけるずれ量Δx、Δyに換算し、ステップS12へ進む。ステップS12では、移動制御部32は、補正部36により算出されたずれ量Δx、Δyと移動量として載置部6に出力し、載置台61を移動させステップS13へ進む。 In step S9, the correction unit 36 uses the X-ray projection image data generated by the image generation unit 33 using the electrical signal output from the X-ray detector 7, and uses the X-ray projection image data generated at the second projection position of the index member M1. A coordinate value (real, vreal) is calculated, and the process proceeds to step S10. In step S10, the correction unit 36 calculates the shift amounts Δh and Δv in the HV coordinate system using Expression (12) based on the first projection position and the second projection position, and proceeds to step S11. In step S11, the correction unit 36 converts the calculated deviation amounts Δh and Δv into deviation amounts Δx and Δy in the XY coordinate system using the equations (13) and (14), and the process proceeds to step S12. In step S12, the movement control unit 32 outputs the deviation amounts Δx and Δy calculated by the correction unit 36 and the movement amount to the mounting unit 6, moves the mounting table 61, and proceeds to step S13.
 ステップS13では、画像生成部33は、X線検出器7から出力された電気信号を用いてX線投影画像データを生成し、記憶部37に記憶してステップS14へ進む。ステップS14では、全ての観測位置について処理が終了したか否かを判定する。全ての観測位置で処理が行われた場合には、ステップS14が肯定判定されてステップS15へ進む。全ての観測位置で処理が行われていない場合には、ステップS14が否定判定されてステップS7へ戻り、別の観測位置に対する処理が行われる。 In step S13, the image generation unit 33 generates X-ray projection image data using the electrical signal output from the X-ray detector 7, stores it in the storage unit 37, and proceeds to step S14. In step S14, it is determined whether or not the processing has been completed for all observation positions. If the process has been performed at all the observation positions, an affirmative determination is made in step S14 and the process proceeds to step S15. If the processing has not been performed at all the observation positions, a negative determination is made in step S14 and the process returns to step S7, and processing for another observation position is performed.
 ステップS15では、被測定物Sの全ての観測点について処理が行われたか否かを判定する。全ての観測点に対して処理が行われた場合には、ステップS15が肯定判定されてステップS16へ進む。全ての観測点に対して処理が行われていない場合には、ステップS15が否定判定されてステップS6へ戻り、別の観測点について処理が行われる。上述したステップS6~ステップS15までの処理が実観測動作での処理である。ステップS16では、画像再構成部34は、生成されたX線投影画像データを用いて再構成画像を生成して処理を終了する。 In step S15, it is determined whether or not processing has been performed for all observation points of the object S to be measured. If processing has been performed for all observation points, an affirmative determination is made in step S15 and the process proceeds to step S16. If processing has not been performed for all observation points, a negative determination is made in step S15 and the process returns to step S6, and processing is performed for another observation point. The processing from step S6 to step S15 described above is processing in the actual observation operation. In step S16, the image reconstruction unit 34 generates a reconstructed image using the generated X-ray projection image data and ends the process.
 上述した第1の実施の形態によれば、次の作用効果が得られる。
(1)X線装置100は、載置台61と、X線源5と、X線検出器7と、画像生成部33と、算出部35と、補正部36とを備える。載置台61には、指標部材Mが設けられる。X線源5は、被測定物Sおよび指標部材MにX線を照射する。X線検出器7は、照射されたX線による被測定物Sの投影像および指標部材Mの投影像を検出する。画像生成部33は、載置台61とX線検出器7とを基準軸Lの周りに回動させ、回動に伴って被測定物Sに対して複数の異なる照射方向からX線を照射して、被測定物Sの投影像と指標部材Mの投影像とを取得する。算出部35は、指標部材Mの載置台61における位置情報とX線検出器7とX線源5との間の相対的な位置関係に基づいて、異なる照射方向に対応する、載置台61とX線検出器7とが基準軸Lの周りに回動したときのそれぞれの位置での指標部材Mの投影像の第1投影位置を算出する。補正部36は、複数の異なる照射方向のそれぞれにおける算出された第1投影位置と、回動に伴って取得された指標部材Mの投影像の、X線検出器7の検出面71に対する第2投影位置とのずれ量Δh、Δvに基づいて補正処理を行う。したがって、検出面71における指標部材Mの投影像の位置に基づいてずれ量Δh、Δvを算出するので、載置台61やX線検出器7における実際の公転軌道MS、MMの理想的な公転軌道に対するずれ量の算出精度を高めることができる。第1投影位置と第2投影位置とが再現性の無い誤差要因の影響を受けている場合であっても、算出したずれ量Δx、Δyに再現性の無い誤差要因の影響が加味され、補正の精度を向上させることができる。これにより、各観測位置で生成されるX線投影画像データに生じる誤差の影響を低減させ、高精度の再構成画像を生成することができる。
According to the first embodiment described above, the following operational effects are obtained.
(1) The X-ray apparatus 100 includes a mounting table 61, an X-ray source 5, an X-ray detector 7, an image generation unit 33, a calculation unit 35, and a correction unit 36. On the mounting table 61, an index member M is provided. The X-ray source 5 irradiates the measurement object S and the index member M with X-rays. The X-ray detector 7 detects the projection image of the measurement object S and the projection image of the index member M by the irradiated X-rays. The image generation unit 33 rotates the mounting table 61 and the X-ray detector 7 around the reference axis L, and irradiates the measurement object S with X-rays from a plurality of different irradiation directions along with the rotation. Thus, the projection image of the measurement object S and the projection image of the index member M are acquired. The calculation unit 35 includes the mounting table 61 corresponding to different irradiation directions based on the positional information of the index member M on the mounting table 61 and the relative positional relationship between the X-ray detector 7 and the X-ray source 5. A first projection position of the projection image of the index member M at each position when the X-ray detector 7 rotates around the reference axis L is calculated. The correction unit 36 performs the second projection on the detection surface 71 of the X-ray detector 7 with the calculated first projection position in each of a plurality of different irradiation directions and the projection image of the index member M acquired with the rotation. Correction processing is performed based on the deviation amounts Δh and Δv from the projection position. Therefore, since the shift amounts Δh and Δv are calculated based on the position of the projection image of the index member M on the detection surface 71, the ideal revolution trajectories of the actual revolution trajectories MS and MM in the mounting table 61 and the X-ray detector 7 are calculated. It is possible to improve the calculation accuracy of the deviation amount with respect to. Even when the first projection position and the second projection position are affected by non-reproducible error factors, the calculated deviation amounts Δx and Δy are affected by non-reproducible error factors, and correction is performed. Accuracy can be improved. Thereby, the influence of the error which arises in the X-ray projection image data produced | generated at each observation position can be reduced, and a highly accurate reconstruction image can be produced | generated.
(2)補正部36は、載置台61とX線検出器7とが、算出部35が第1投影位置を算出する際の基準軸L1周りに回動するときに取得される被測定物Sの投影像となるように、補正処理を行う。したがって、載置台61を理想的な回転軌跡の位置に移動させることにより、各観測位置において種々の誤差要因による影響が低減された状態で被測定物SにX線を照射させることができる。これにより、各観測位置ごとに生成されるX線投影画像データ上での誤差の発生を抑制し、精度の高い再構成画像を生成できる。 (2) The correction unit 36 is the measurement object S acquired when the mounting table 61 and the X-ray detector 7 rotate around the reference axis L1 when the calculation unit 35 calculates the first projection position. The correction process is performed so that the projected image becomes. Therefore, by moving the mounting table 61 to the position of the ideal rotation locus, it is possible to irradiate the measurement object S with X-rays in a state where the influence of various error factors is reduced at each observation position. Thereby, generation | occurrence | production of the error on the X-ray projection image data produced | generated for every observation position can be suppressed, and a highly accurate reconstruction image can be produced | generated.
(3)補正部36は、ずれ量Δx、Δyに基づいて載置台61を移動させて、載置台61とX線検出器7との相対的な位置関係を補正する。したがって、被測定物SのX線検出器7の検出面71への投影像の位置を、誤差の影響が低減された状態で投影されるべき位置に補正することができる。これにより、各観測位置で生成されるX線投影画像データでの誤差の発生を抑制することができる。 (3) The correction unit 36 moves the mounting table 61 based on the shift amounts Δx and Δy, and corrects the relative positional relationship between the mounting table 61 and the X-ray detector 7. Therefore, the position of the projection image of the object S to be measured on the detection surface 71 of the X-ray detector 7 can be corrected to a position to be projected in a state where the influence of errors is reduced. Thereby, generation | occurrence | production of the error in the X-ray projection image data produced | generated at each observation position can be suppressed.
(4)補正部36は、ずれ量Δx、Δyに基づいて移動制御部32に載置台61をXY平面内で移動させる。したがって、載置台61の可動方向に沿って移動させることで、被測定物Sを透過するX線の位置のずれを補正することができる。 (4) The correction unit 36 causes the movement control unit 32 to move the mounting table 61 within the XY plane based on the shift amounts Δx and Δy. Therefore, by moving the mounting table 61 along the movable direction, it is possible to correct a shift in the position of the X-ray that passes through the object S to be measured.
(5)補正部36は、X線検出器7の検出面71における第1投影位置と第2投影位置との差分をずれ量Δh、Δvとして算出する。したがって、検出面71における指標部材Mの投影像の位置に基づいてずれ量Δh、Δvを算出するので、載置台61やX線検出器7における実際の公転軌道MS、MMの理想的な公転軌道に対するずれ量の算出精度を高めることができる。 (5) The correction unit 36 calculates the difference between the first projection position and the second projection position on the detection surface 71 of the X-ray detector 7 as the shift amounts Δh and Δv. Therefore, since the shift amounts Δh and Δv are calculated based on the position of the projection image of the index member M on the detection surface 71, the ideal revolution trajectories of the actual revolution trajectories MS and MM in the mounting table 61 and the X-ray detector 7 are calculated. It is possible to improve the calculation accuracy of the deviation amount with respect to.
(6)補正部36は、X線検出器7の検出面71におけるVH座標系で表される第1投影位置と第2投影位置とのずれ量Δh、Δvを、載置台61の載置面におけるRT座標系でのずれ量に変換し、XY座標系におけるずれ量Δx、Δyを算出し、ずれ量Δx、Δyを用いて載置台61を移動させる。したがって、検出面71上で投影されるべき位置に基づいて載置台61を移動させるためのずれ量Δx、Δyを算出するので、ずれ量Δx、Δyを高い精度で算出できる。第1投影位置と第2投影位置とが再現性の無い誤差要因の影響を受けている場合であっても、算出したずれ量Δx、Δyに再現性の無い誤差要因の影響が加味され、補正の精度を向上させることができる。これにより、載置台61の移動後に生成されたX線投影画像データでの誤差の発生を抑制することができる。 (6) The correction unit 36 sets the shift amounts Δh and Δv between the first projection position and the second projection position represented by the VH coordinate system on the detection surface 71 of the X-ray detector 7 as the mounting surface of the mounting table 61. Is converted into a shift amount in the RT coordinate system, and shift amounts Δx and Δy in the XY coordinate system are calculated, and the mounting table 61 is moved using the shift amounts Δx and Δy. Therefore, since the shift amounts Δx and Δy for moving the mounting table 61 are calculated based on the position to be projected on the detection surface 71, the shift amounts Δx and Δy can be calculated with high accuracy. Even when the first projection position and the second projection position are affected by non-reproducible error factors, the calculated deviation amounts Δx and Δy are affected by non-reproducible error factors, and correction is performed. Accuracy can be improved. Thereby, generation | occurrence | production of the error in the X-ray projection image data produced | generated after the movement of the mounting base 61 can be suppressed.
(7)記憶部37は、載置台61に所定の距離ごとに設けられた複数の指標部材Mのそれぞれに対する位置を示す情報、すなわち距離rs、高さzsを、指標部材Sごとに記憶する。したがって、複数の被測定物Sを連続して測定するときに、複数の指標部材Mを載置台61に載置した状態のまま被測定物Sを連続して測定することができるので、観測動作に要する処理時間を短縮できる。 (7) The storage unit 37 stores, for each index member S, information indicating the position of each of the plurality of index members M provided on the mounting table 61 for each predetermined distance, that is, the distance rs and the height zs. Therefore, when measuring a plurality of objects to be measured S continuously, the objects to be measured S can be continuously measured while the plurality of index members M are mounted on the mounting table 61. The processing time required for the process can be shortened.
(8)補正部36は、記憶部37に記憶された位置を示す情報である距離rs、高さrzに基づいてずれ量Δh、Δvを算出する。したがって、各観測位置において、指標部材Mのずれ量Δh、Δvの算出を容易にし、ずれ量Δx、Δyの補正を行うことができる。 (8) The correction unit 36 calculates the shift amounts Δh and Δv based on the distance rs and the height rz that are information indicating the position stored in the storage unit 37. Therefore, the displacement amounts Δh and Δv of the index member M can be easily calculated at each observation position, and the displacement amounts Δx and Δy can be corrected.
(9)載置台61に載置された被測定物Sの観測点SOは、回動に応じて被測定物Sの投影像を取得する際に、複数の異なる照射方向のそれぞれにおいて、X線検出器7の検出面71上に投影される位置が変化しない。これにより、X線検出器7の検出面71に投影される被測定物Sと指標部材Mとの投影像により、観測点SOと指標部材Mとの間の相対的な距離rs、相対的な高さzsを算出することができる。 (9) The observation point SO of the measurement object S placed on the mounting table 61 is X-rayed in each of a plurality of different irradiation directions when acquiring a projection image of the measurement object S according to the rotation. The position projected on the detection surface 71 of the detector 7 does not change. Thereby, the relative distance rs between the observation point SO and the index member M, relative to the projection image of the measured object S and the index member M projected onto the detection surface 71 of the X-ray detector 7 The height zs can be calculated.
(10)画像再構成部34は、補正部36により補正処理が行われた後、被測定物Sの投影像を用いて被測定物Sの画像を再構成する。したがって、ずれ量が補正された状態で取得された投影画像データに基づいて被測定物Sの再構成画像を生成することにより、高精度の画像を取得することができる。 (10) The image reconstruction unit 34 reconstructs an image of the measurement object S using the projection image of the measurement object S after the correction process is performed by the correction unit 36. Therefore, it is possible to acquire a highly accurate image by generating a reconstructed image of the object to be measured S based on the projection image data acquired in a state where the deviation amount is corrected.
(11)指標部材Mを透過するX線の経路と、被測定物Sを透過するX線の経路とは互いに異なる。したがって、指標部材Mの投影像と被測定物Sの投影像とが重複することを防ぎ、第1投影位置の算出精度を向上させることができる。 (11) The X-ray path that passes through the index member M and the X-ray path that passes through the DUT S are different from each other. Therefore, it is possible to prevent the projection image of the index member M and the projection image of the measurement object S from overlapping and improve the calculation accuracy of the first projection position.
(12)位置の情報として載置台61での被測定物Sと指標部材Mとの間の距離rsおよび高さrzを用いる。これにより、指標部材Mの第1投影位置を容易に算出することができる。 (12) The distance rs and the height rz between the measurement object S and the index member M on the mounting table 61 are used as position information. Thereby, the first projection position of the index member M can be easily calculated.
-第2の実施の形態-
 図面を参照して、第2の実施の形態について説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、第1投影位置と第2投影位置とのずれ量を、画像処理も用いて補正する点が第1の実施の形態と異なる。
-Second Embodiment-
A second embodiment will be described with reference to the drawings. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and different points will be mainly described. Points that are not particularly described are the same as those in the first embodiment. This embodiment is different from the first embodiment in that the amount of deviation between the first projection position and the second projection position is corrected using image processing.
 補正部36は、第1の実施の形態の場合と同様にして、式(12)を用いて、HV座標系における第1投影位置と第2投影位置とのずれ量Δh、Δvを算出する。補正部36は、ずれ量Δh、Δvが所定の閾値未満の場合には、ずれ量Δh、Δvに基づいて、被測定物Sの投影画像を補正する。この場合、補正部36は、画像生成部33により生成されたX線投影画像データのうち被測定物Sの投影像に対して、ずれ量Δh、Δvを補正量として用いて投影位置を変位させる。具体的には、ずれ量Δh、Δvのシフト量として、画像データを構成する画素を全て平行移動させる。なお、所定の閾値は、画像処理により補正が可能なずれ量を表し、予め試験等を行って得られた値である。この所定の閾値は、予め所定の記憶媒体(不図示)に記憶されている。 The correction unit 36 calculates the shift amounts Δh and Δv between the first projection position and the second projection position in the HV coordinate system using Expression (12) in the same manner as in the first embodiment. The correction unit 36 corrects the projected image of the measurement object S based on the deviation amounts Δh and Δv when the deviation amounts Δh and Δv are less than a predetermined threshold. In this case, the correction unit 36 displaces the projection position with respect to the projection image of the measurement object S in the X-ray projection image data generated by the image generation unit 33 using the shift amounts Δh and Δv as correction amounts. . Specifically, all the pixels constituting the image data are translated as the shift amounts Δh and Δv. The predetermined threshold value represents a deviation amount that can be corrected by image processing, and is a value obtained by performing a test or the like in advance. This predetermined threshold value is stored in advance in a predetermined storage medium (not shown).
 補正部36は、ずれ量Δh、Δvが所定の閾値以上の場合には、第1の実施の形態の場合と同様にして、ずれ量Δh、Δvに基づいて載置台61を移動させる。ずれ量Δh、Δvが所定の閾値以上の場合には、画像処理ではずれによる影響を除去しきれないことが考えられるからである。また、このようにずれ量が大きい状態における被測定物Sの投影画像には多くの誤差が含まれていることが考えられ、このような投影画像データに対して画像処理を行っても有効な補正が期待できないためである。 The correction unit 36 moves the mounting table 61 based on the deviation amounts Δh and Δv in the same manner as in the first embodiment when the deviation amounts Δh and Δv are equal to or larger than the predetermined threshold values. This is because when the deviation amounts Δh and Δv are equal to or greater than a predetermined threshold, it is considered that the influence of the deviation cannot be removed by image processing. Further, it is conceivable that the projection image of the measurement object S in such a large amount of deviation includes a lot of errors, and it is effective to perform image processing on such projection image data. This is because correction cannot be expected.
 なお、補正部36は、ずれ量Δh、Δvが所定の閾値以上の場合には、載置台61の移動によりずれ量の補正を行うものとしたが、載置台61の移動と投影画像データの補正とを共に行っても良い。この場合、補正部36は、ずれ量Δh、Δvが所定の閾値以下の所定値になるように載置台61を移動させる。この状態で画像生成部33により生成された投影画像データに対して、補正部36が画像処理を行って、ずれによる影響を補正する。 The correction unit 36 corrects the shift amount by moving the mounting table 61 when the shift amounts Δh and Δv are equal to or greater than the predetermined threshold. However, the correction unit 36 moves the mounting table 61 and corrects the projection image data. May be performed together. In this case, the correction unit 36 moves the mounting table 61 so that the deviation amounts Δh and Δv become predetermined values that are equal to or less than predetermined threshold values. In this state, the correction unit 36 performs image processing on the projection image data generated by the image generation unit 33 to correct the influence of the deviation.
 図18フローチャートを参照して、制御装置3が行う動作について説明する。図18に示す処理は制御装置3でプログラムを実行して行われる。このプログラムは、メモリ(不図示)に格納されており、制御装置3により起動され、実行される。
 ステップS51(第1初期観測位置への移動)~S60(ずれ量算出)までの各処理は、図17のフローチャートに示すステップS1(第1初期観測位置への移動)~S10(ずれ量算出)までの各処理と同様である。
The operation performed by the control device 3 will be described with reference to the flowchart in FIG. The processing shown in FIG. 18 is performed by executing a program in the control device 3. This program is stored in a memory (not shown), and is activated and executed by the control device 3.
Steps S51 (movement to the first initial observation position) to S60 (shift amount calculation) are performed in steps S1 (movement to the first initial observation position) to S10 (shift amount calculation) shown in the flowchart of FIG. It is the same as each process until.
 ステップS61では、補正部36は、算出したずれ量Δh、Δvが所定の閾値以上か否かを判定する。ずれ量Δh、Δvが所定の閾値以上の場合には、ステップS61が肯定判定されてステップS62へ進む。ずれ量Δh、Δvが所定の閾値未満の場合には、ステップS61が否定判定されてステップS68へ進む。ステップS68では、補正部36は、ステップS59で生成されたX線投影画像データに対して、ずれ量Δh、Δvを画像処理により補正してステップS69へ進む。ステップS69では、画像処理により補正されたX線投影画像データを記憶部37に記録してステップS65へ進む。
 ステップS62(ずれ量Δh、ΔvをXY座標系のずれ量に換算)~ステップS67(再構成画像)までの各処理は、図16のステップS11(ずれ量Δh、ΔvをXY座標系のずれ量に換算)~ステップS16(再構成画像)までの各処理と同様である。
In step S61, the correction unit 36 determines whether or not the calculated deviation amounts Δh and Δv are equal to or greater than a predetermined threshold value. If the deviation amounts Δh and Δv are greater than or equal to the predetermined threshold, an affirmative determination is made in step S61 and the process proceeds to step S62. If the deviation amounts Δh and Δv are less than the predetermined threshold, a negative determination is made in step S61 and the process proceeds to step S68. In step S68, the correction unit 36 corrects the shift amounts Δh and Δv with respect to the X-ray projection image data generated in step S59 by image processing, and proceeds to step S69. In step S69, the X-ray projection image data corrected by the image processing is recorded in the storage unit 37, and the process proceeds to step S65.
Each processing from step S62 (shift amounts Δh and Δv to shift amounts in the XY coordinate system) to step S67 (reconstructed image) is performed in step S11 of FIG. 16 (shift amounts Δh and Δv are shifted in the XY coordinate system). Conversion) to step S16 (reconstructed image).
 上述した第2の実施の形態によれば、第1の実施の形態により得られる作用効果に加えて、次の作用効果が得られる。
 補正部36は、相対的な位置関係と回動に伴って取得された被測定物Sの投影像であるX線投影画像データとの少なくとも一方に補正処理を行う。すなわち、補正部36は、ずれ量Δh、Δvが閾値を超える場合に載置台61の位置に補正を行い、ずれ量Δh、Δvが閾値を超えない場合に被測定物Sの投影像に対してずれ量の補正を行う。したがって、X線投影画像データに対して補正可能なずれ量Δh、Δvを上回るほどの誤差の影響を受けている場合であっても、載置台61の位置を移動させて補正を行うことができる。したがって、ずれ量Δh、Δvの大きさによらず、高精度なX線投影画像データの生成および再構成画像の生成が可能になる。
According to the second embodiment described above, the following functions and effects can be obtained in addition to the functions and effects obtained by the first embodiment.
The correction unit 36 performs correction processing on at least one of the relative positional relationship and the X-ray projection image data that is the projection image of the object S acquired along with the rotation. That is, the correction unit 36 corrects the position of the mounting table 61 when the deviation amounts Δh and Δv exceed the threshold value, and corrects the projected image of the measurement object S when the deviation amounts Δh and Δv do not exceed the threshold value. Correct the deviation. Therefore, even if the X-ray projection image data is affected by an error that exceeds the correctable deviation amounts Δh and Δv, the correction can be performed by moving the position of the mounting table 61. . Therefore, it is possible to generate highly accurate X-ray projection image data and a reconstructed image regardless of the magnitudes of the shift amounts Δh and Δv.
-第3の実施の形態-
 図面を参照して、実施の形態による構造物製造システムを説明する。本実施の形態の構造物製造システムは、たとえば回路基板を備える電子部品等の成型品を作成する。
-Third embodiment-
A structure manufacturing system according to an embodiment will be described with reference to the drawings. The structure manufacturing system of the present embodiment creates a molded product such as an electronic component including a circuit board, for example.
 図19は、本実施の形態による構造物製造システム400の構成の一例を示すブロック図である。構造物製造システム400は、第1~第2の何れかの実施の形態または変形例にて説明したX線装置100と、設計装置410と、成形装置420と、制御システム430と、リペア装置440とを備える。 FIG. 19 is a block diagram showing an example of the configuration of the structure manufacturing system 400 according to the present embodiment. The structure manufacturing system 400 includes the X-ray apparatus 100, the design apparatus 410, the molding apparatus 420, the control system 430, and the repair apparatus 440 described in any one of the first and second embodiments or modifications. With.
 設計装置410は、構造物の形状に関する設計情報を作成する際にユーザが用いる装置であって、設計情報を作成して記憶する設計処理を行う。設計情報は、構造物の各位置の座標を示す情報である。設計情報は成形装置420および後述する制御システム430に出力される。成形装置420は設計装置410により作成された設計情報を用いて構造物を作成、成形する成形処理を行う。この場合、成形装置420は、3Dプリンター技術で代表される積層加工、鋳造加工、鍛造加工および切削加工のうち少なくとも1つを行うものについても本発明の一態様に含まれる。 The design device 410 is a device used by a user when creating design information related to the shape of a structure, and performs a design process for creating and storing design information. The design information is information indicating the coordinates of each position of the structure. The design information is output to the molding apparatus 420 and a control system 430 described later. The molding apparatus 420 performs a molding process for creating and molding a structure using the design information created by the design apparatus 410. In this case, the molding apparatus 420 includes an apparatus that performs at least one of laminating, casting, forging, and cutting represented by 3D printer technology.
 X線装置100は、成形装置420により成形された構造物の形状を測定する測定処理を行う。X線装置100は、構造物を測定した測定結果である構造物の座標を示す情報(以後、形状情報と呼ぶ)を制御システム430に出力する。制御システム430は、座標記憶部431と、検査部432とを備える。座標記憶部431は、上述した設計装置410により作成された設計情報を記憶する。 The X-ray apparatus 100 performs a measurement process for measuring the shape of the structure molded by the molding apparatus 420. The X-ray apparatus 100 outputs information (hereinafter referred to as shape information) indicating the coordinates of the structure, which is a measurement result of the structure, to the control system 430. The control system 430 includes a coordinate storage unit 431 and an inspection unit 432. The coordinate storage unit 431 stores design information created by the design apparatus 410 described above.
 検査部432は、成形装置420により成形された構造物が設計装置410により作成された設計情報に従って成形されたか否かを判定する。換言すると、検査部432は、成形された構造物が良品か否かを判定する。この場合、検査部432は、座標記憶部431に記憶された設計情報を読み出して、設計情報とX線装置100から入力した形状情報とを比較する検査処理を行う。検査部432は、検査処理としてたとえば設計情報が示す座標と対応する形状情報が示す座標とを比較し、検査処理の結果、設計情報の座標と形状情報の座標とが一致している場合には設計情報に従って成形された良品であると判定する。設計情報の座標と対応する形状情報の座標とが一致していない場合には、検査部432は、座標の差分が所定範囲内であるか否かを判定し、所定範囲内であれば修復可能な不良品と判定する。 The inspection unit 432 determines whether the structure molded by the molding device 420 is molded according to the design information created by the design device 410. In other words, the inspection unit 432 determines whether or not the molded structure is a good product. In this case, the inspection unit 432 reads the design information stored in the coordinate storage unit 431 and performs an inspection process for comparing the design information with the shape information input from the X-ray apparatus 100. The inspection unit 432 compares, for example, the coordinates indicated by the design information with the coordinates indicated by the corresponding shape information as the inspection processing, and if the coordinates of the design information and the coordinates of the shape information match as a result of the inspection processing. It is determined that the non-defective product is molded according to the design information. If the coordinates of the design information do not match the coordinates of the corresponding shape information, the inspection unit 432 determines whether or not the coordinate difference is within a predetermined range, and if it is within the predetermined range, it can be restored. Judged as a defective product.
 修復可能な不良品と判定した場合には、検査部432は、不良部位と修復量とを示すリペア情報をリペア装置440へ出力する。不良部位は設計情報の座標と一致していない形状情報の座標であり、修復量は不良部位における設計情報の座標と形状情報の座標との差分である。リペア装置440は、入力したリペア情報に基づいて、構造物の不良部位を再加工するリペア処理を行う。リペア装置440は、リペア処理にて成形装置420が行う成形処理と同様の処理を再度行う。 If it is determined that the defective product can be repaired, the inspection unit 432 outputs repair information indicating the defective portion and the repair amount to the repair device 440. The defective part is the coordinate of the shape information that does not match the coordinate of the design information, and the repair amount is the difference between the coordinate of the design information and the coordinate of the shape information in the defective part. The repair device 440 performs a repair process for reworking a defective portion of the structure based on the input repair information. The repair device 440 performs again the same process as the molding process performed by the molding apparatus 420 in the repair process.
 図20に示すフローチャートを参照しながら、構造物製造システム400が行う処理について説明する。
 ステップS111では、設計装置410はユーザによって構造物の設計を行う際に用いられ、設計処理により構造物の形状に関する設計情報を作成し記憶してステップS112へ進む。なお、設計装置410で作成された設計情報のみに限定されず、既に設計情報がある場合には、その設計情報を入力することで、設計情報を取得するものについても本発明の一態様に含まれる。ステップS112では、成形装置420は成形処理により、設計情報に基づいて構造物を作成、成形してステップS113へ進む。ステップS113においては、X線装置100は測定処理を行って、構造物の形状を計測し、形状情報を出力してステップS114へ進む。
The process performed by the structure manufacturing system 400 will be described with reference to the flowchart shown in FIG.
In step S111, the design apparatus 410 is used when designing the structure by the user, creates and stores design information related to the shape of the structure by the design process, and proceeds to step S112. Note that the present invention is not limited to only the design information created by the design apparatus 410, and when design information already exists, the design information is acquired by inputting the design information and is included in one aspect of the present invention. It is. In step S112, the forming apparatus 420 creates and forms a structure based on the design information by a forming process, and proceeds to step S113. In step S113, the X-ray apparatus 100 performs measurement processing, measures the shape of the structure, outputs shape information, and proceeds to step S114.
 ステップS114では、検査部432は、設計装置410により作成された設計情報とX線装置100により測定され、出力された形状情報とを比較する検査処理を行って、ステップS115へ進む。ステップS115では、検査処理の結果に基づいて、検査部432は成形装置420により成形された構造物が良品か否かを判定する。構造物が良品である場合、すなわち設計情報の座標と形状情報の座標とが一致する場合には、ステップS115が肯定判定されて処理を終了する。構造物が良品ではない場合、すなわち設計情報の座標と形状情報の座標とが一致しない場合や設計情報には無い座標が検出された場合には、ステップS115が否定判定されてステップS116へ進む。 In step S114, the inspection unit 432 performs an inspection process for comparing the design information created by the design apparatus 410 with the shape information measured and output by the X-ray apparatus 100, and the process proceeds to step S115. In step S115, based on the result of the inspection process, the inspection unit 432 determines whether the structure formed by the forming apparatus 420 is a non-defective product. If the structure is a non-defective product, that is, if the coordinates of the design information coincide with the coordinates of the shape information, an affirmative determination is made in step S115 and the process ends. If the structure is not a non-defective product, that is, if the coordinates of the design information do not match the coordinates of the shape information, or if coordinates that are not in the design information are detected, a negative determination is made in step S115 and the process proceeds to step S116.
 ステップS116では、検査部432は構造物の不良部位が修復可能か否かを判定する。不良部位が修復可能ではない場合、すなわち不良部位における設計情報の座標と形状情報の座標との差分が所定範囲を超えている場合には、ステップ116が否定判定されて処理を終了する。不良部位が修復可能な場合、すなわち不良部位における設計情報の座標と形状情報の座標との差分が所定範囲内の場合には、ステップS116が肯定判定されてステップS117へ進む。この場合、検査部432はリペア装置440にリペア情報を出力する。ステップS117においては、リペア装置440は、入力したリペア情報に基づいて、構造物に対してリペア処理を行ってステップS113へ戻る。なお、上述したように、リペア装置440は、リペア処理にて成形装置420が行う成形処理と同様の処理を再度行う。 In step S116, the inspection unit 432 determines whether or not the defective portion of the structure can be repaired. If the defective part cannot be repaired, that is, if the difference between the coordinates of the design information and the coordinates of the shape information in the defective part exceeds the predetermined range, a negative determination is made in step 116 and the process ends. If the defective part can be repaired, that is, if the difference between the coordinates of the design information and the shape information in the defective part is within a predetermined range, an affirmative determination is made in step S116 and the process proceeds to step S117. In this case, the inspection unit 432 outputs repair information to the repair device 440. In step S117, the repair device 440 performs a repair process on the structure based on the input repair information, and returns to step S113. As described above, the repair device 440 performs again the same processing as the molding processing performed by the molding device 420 in the repair processing.
 上述した第3の実施の形態による構造物製造システムによれば、以下の作用効果が得られる。
(1)構造物製造システム400のX線装置100は、設計装置410の設計処理に基づいて成形装置420により作成された構造物の形状情報を取得する測定処理を行い、制御システム430の検査部432は、測定処理にて取得された形状情報と設計処理にて作成された設計情報とを比較する検査処理を行う。従って、構造物の欠陥の検査や構造物の内部の情報を非破壊検査によって取得し、構造物が設計情報の通りに作成された良品であるか否かを判定できるので、構造物の品質管理に寄与する。
According to the structure manufacturing system of the third embodiment described above, the following functions and effects can be obtained.
(1) The X-ray apparatus 100 of the structure manufacturing system 400 performs a measurement process for acquiring shape information of the structure created by the molding apparatus 420 based on the design process of the design apparatus 410, and performs an inspection unit of the control system 430. Reference numeral 432 performs an inspection process for comparing the shape information acquired in the measurement process with the design information created in the design process. Therefore, it is possible to determine whether a structure is a non-defective product created according to the design information by acquiring defect inspection of the structure or information inside the structure by nondestructive inspection. Contribute to.
(2)リペア装置440は、検査処理の比較結果に基づいて、構造物に対して成形処理を再度行うリペア処理を行うようにした。従って、構造物の不良部分が修復可能な場合には、再度成形処理と同様の処理を構造物に対して施すことができるので、設計情報に近い高品質の構造物の製造に寄与する。 (2) The repair device 440 performs the repair process for performing the molding process again on the structure based on the comparison result of the inspection process. Therefore, when the defective portion of the structure can be repaired, the same processing as the molding process can be performed again on the structure, which contributes to the manufacture of a high-quality structure close to design information.
 次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の第1~第3の実施形態のX線装置100と組み合わせることも可能である。
(変形例1)
 指標部材Mを載置台61上に載置するものに代えて、指標部材Mを載置台61に埋め込む構成としても良い。図21に載置台61の断面図を示す。図21(a)は、載置台61を形成する材料とは異なる材料、すなわち密度の異なる材料で製造された指標部材Mが、載置台61に埋め込まれた例を示す。この場合、載置台61を透過するX線と、指標部材Mを透過するX線とでX線の減衰量が異なるので、X線検出器7上で指標部材Mの投影像が検出される。
The following modifications are also within the scope of the present invention, and one or a plurality of modifications can be combined with the X-ray apparatus 100 of the first to third embodiments described above.
(Modification 1)
Instead of mounting the index member M on the mounting table 61, the index member M may be embedded in the mounting table 61. FIG. 21 shows a sectional view of the mounting table 61. FIG. 21A shows an example in which an index member M manufactured from a material different from the material forming the mounting table 61, that is, a material having a different density, is embedded in the mounting table 61. In this case, the amount of X-ray attenuation differs between the X-ray transmitted through the mounting table 61 and the X-ray transmitted through the index member M, so that the projected image of the index member M is detected on the X-ray detector 7.
 図21(b)は、載置台61の一部の厚みを他の部分と異ならせることにより指標部材Mを形成した例を示す。この場合、指標部材MをX線が透過する距離と載置台61の他の部分をX線が透過する距離とが異なるためにX線の減衰量が異なる。これにより、X線検出器7上で指標部材Mの投影像が検出される。なお、図21(b)に示す例では、載置台61の他の部分よりも薄くすることにより指標部材Mを形成したが、載置台61の他の部分よりも厚くすることにより指標部材Mを形成しても良い。また、図21(c)に示す例のように、載置台61の一部の領域を中空にすることにより指標部材Mを形成しても良い。また、載置台61の他の部分と厚みを異ならせるとともに、密度の異なる材料を用いて指標部材Mを形成しても良い。
 指標部材Mを図20に示すように構成することにより、観測ごとに指標部材Mを載置台61上に載置する必要が無くなり、作業効率が向上する。さらに、載置台61の移動中に指標部材Mの位置がずれる虞が無く、ずれ量Δh、Δvの算出精度を向上し高画質の再構成画像の生成に寄与する。
FIG. 21B shows an example in which the index member M is formed by making the thickness of a part of the mounting table 61 different from other parts. In this case, since the distance through which the X-rays pass through the index member M is different from the distance through which the X-rays pass through the other part of the mounting table 61, the attenuation amount of the X-rays differs. Thereby, the projection image of the index member M is detected on the X-ray detector 7. In the example shown in FIG. 21B, the index member M is formed by making it thinner than other portions of the mounting table 61, but the index member M is made thicker than other portions of the mounting table 61. It may be formed. Further, as in the example shown in FIG. 21C, the index member M may be formed by making a part of the mounting table 61 hollow. Further, the index member M may be formed using a material having a different density while being different in thickness from the other parts of the mounting table 61.
By configuring the index member M as shown in FIG. 20, it is not necessary to mount the index member M on the mounting table 61 for each observation, and work efficiency is improved. Furthermore, there is no possibility that the position of the index member M is shifted during the movement of the mounting table 61, and the accuracy of calculating the deviation amounts Δh and Δv is improved, thereby contributing to the generation of a high-quality reconstructed image.
(変形例2)
 ずれ量Δh、Δvを補正するために、載置台61をX方向およびY方向に加えてZ方向に移動させても良い。載置台61がZ方向に移動することによって、X線源5の出射点Pから射出され被測定物Sを透過するX線の経路と基準軸Lとがなす角が傾動角θtdから変化する。これにより、X線検出器7の検出面71における被測定物Sの投影像の位置を変化させてずれ量Δh、Δvを補正することができる。この場合、投影倍率が小さい場合に載置台61を移動して補正を行うことにより、載置台61をZ方向へ移動させることに伴い投影倍率に大きな変化が生じることを抑制できる。
(Modification 2)
In order to correct the shift amounts Δh and Δv, the mounting table 61 may be moved in the Z direction in addition to the X direction and the Y direction. As the mounting table 61 moves in the Z direction, the angle formed between the reference axis L and the path of the X-rays emitted from the emission point P of the X-ray source 5 and transmitted through the DUT changes from the tilt angle θtd. Thereby, the shift amounts Δh and Δv can be corrected by changing the position of the projection image of the object S to be measured on the detection surface 71 of the X-ray detector 7. In this case, when the projection magnification is small, by moving the mounting table 61 and performing correction, it is possible to suppress a large change in the projection magnification caused by moving the mounting table 61 in the Z direction.
(変形例3)
 載置台61を移動させることによりずれ量Δh、Δvを補正するものに限定されない。例えば、移動制御部32は、X線検出器7を移動させることにより、ずれ量Δh、Δvを補正しても良い。この場合、補正部36は、ずれ量Δh、Δvを基準軸Lに対するXY平面に平行な面でのずれ角と、Z軸方向でのずれ角とに換算する。移動制御部32は、このずれ角に従って、X線検出器7を移動させれば良い。
(Modification 3)
It is not limited to what correct | amends deviation | shift amount (DELTA) h and (DELTA) v by moving the mounting base 61. FIG. For example, the movement control unit 32 may correct the shift amounts Δh and Δv by moving the X-ray detector 7. In this case, the correction unit 36 converts the shift amounts Δh and Δv into a shift angle in a plane parallel to the XY plane with respect to the reference axis L and a shift angle in the Z-axis direction. The movement control unit 32 may move the X-ray detector 7 according to the deviation angle.
 また、移動制御部32は、X線検出器7と載置台61とを移動させてずれ量Δh、Δvを補正しても良い。この場合、補正部36は上述したようにずれ量Δh、Δvをずれ角に換算する。移動制御部32は、換算された基準軸Lに対するXY平面に平行な面でのずれ角に従ってX線検出器7を移動させ、Z軸方向でのずれ角に従って載置台61をZ方向へ移動させれば良い。 Further, the movement control unit 32 may correct the deviation amounts Δh and Δv by moving the X-ray detector 7 and the mounting table 61. In this case, the correction unit 36 converts the deviation amounts Δh and Δv into deviation angles as described above. The movement control unit 32 moves the X-ray detector 7 according to the deviation angle in the plane parallel to the XY plane with respect to the converted reference axis L, and moves the mounting table 61 in the Z direction according to the deviation angle in the Z-axis direction. Just do it.
(変形例4)
 ラミノ駆動の際に載置台61が公転軌道MS上を移動するものに代えて、X線源5とX線検出器7とが公転軌道上を移動しても良い。この場合、X線装置100は、載置台61を移動させるためのX軸移動機構62とY軸移動機構63とに代えて、X線源5をXY平面上で移動させるための機構を有する。移動制御部32は、投影倍率に応じてZ軸移動機構64により載置台61をZ方向に移動させる。ずれ量Δh、Δvを補正する際には、移動制御部32が換算されたずれ量Δx、Δyを移動量としてX線源5を移動させれば良い。または変形例3のように、X線検出器7を移動させて補正を行っても良い。なお、Z軸移動機構64を有していない場合には、X線装置100はX線源5をXY平面に加えて、Z方向にも移動させるための機構を有するようにすれば良い。
(Modification 4)
The X-ray source 5 and the X-ray detector 7 may move on the revolution orbit instead of the stage 61 moving on the revolution orbit MS during the lamino drive. In this case, the X-ray apparatus 100 has a mechanism for moving the X-ray source 5 on the XY plane instead of the X-axis moving mechanism 62 and the Y-axis moving mechanism 63 for moving the mounting table 61. The movement control unit 32 moves the mounting table 61 in the Z direction by the Z-axis moving mechanism 64 according to the projection magnification. When correcting the deviation amounts Δh and Δv, the movement control unit 32 may move the X-ray source 5 using the converted deviation amounts Δx and Δy as movement amounts. Alternatively, correction may be performed by moving the X-ray detector 7 as in Modification 3. If the Z-axis moving mechanism 64 is not provided, the X-ray apparatus 100 may have a mechanism for moving the X-ray source 5 in the Z direction in addition to the XY plane.
(変形例5)
 X軸移動機構62やY軸移動機構63が温度に起因する変形を抑制するための構造を有しても良い。図22(a)に載置台61とX軸移動機構62との斜視図を示す。X軸移動機構62は、基台620と、第1案内軸621と、第2案内軸622と、案内可動子623a、623b(総称する場合は、符号623を付与する)と、端部制限部材624a~624d(総称する場合は、符号624を付与する)と、弾性部材625a~625d(総称する場合は、符号625を付与する)と、補正部材626a、626b(総称する場合は、符号626を付与する)と、連結部材627と、基準ピン628とを有する。なお、図22では、図示の都合上、モータおよびリードスクリューを省略して示す。
(Modification 5)
The X-axis moving mechanism 62 and the Y-axis moving mechanism 63 may have a structure for suppressing deformation due to temperature. FIG. 22A shows a perspective view of the mounting table 61 and the X-axis moving mechanism 62. The X-axis moving mechanism 62 includes a base 620, a first guide shaft 621, a second guide shaft 622, guide movers 623a and 623b (generally given reference numerals 623), an end limiting member. 624a to 624d (generally referred to as 624), elastic members 625a to 625d (generically referred to as 625), correction members 626a and 626b (generally referred to as 626). A connecting member 627 and a reference pin 628. In FIG. 22, the motor and the lead screw are omitted for the sake of illustration.
 基台620は中央部に開口OPを有する平板部材であり、X軸移動機構62に各構成部材を取り付けるための基板である。開口OPは、X線源5から射出されたX線が通過するために設けられる。第1案内軸621および第2案内軸622はX方向に沿って延在する。第1案内軸621は基台620のZ軸+側の面上におけるY軸+側端部の近傍に取り付けられ、第2案内軸622は基台620のZ軸+側の面上におけるY軸-側端部の近傍に取り付けられる。
 なお、図22では、載置台61をX軸方向に移動させるためのモータおよびリードスクリューは図示を省略した。
The base 620 is a flat plate member having an opening OP at the center, and is a substrate for attaching each constituent member to the X-axis moving mechanism 62. The opening OP is provided for the passage of X-rays emitted from the X-ray source 5. The first guide shaft 621 and the second guide shaft 622 extend along the X direction. The first guide shaft 621 is attached in the vicinity of the Y axis + side end portion on the Z axis + side surface of the base 620, and the second guide shaft 622 is the Y axis on the Z axis + side surface of the base 620. -Mounted near the side edge.
In FIG. 22, a motor and a lead screw for moving the mounting table 61 in the X-axis direction are not shown.
 第1案内軸621および第2案内軸622は、それぞれの中央部付近、すなわち第1案内軸621、第2案内軸622の全長のうちの一部の範囲にて基台620にネジで締結される。図22では、第1案内軸621および第2案内軸622がそれぞれ2本のネジにより基台620に締結された例を示している。第1案内軸621のX軸+側の端部は、端部制限部材624aと弾性部材625aとによりZ軸-方向、すなわち基台620に押し付けられ、X軸-側の端部は、端部制限部材624bと弾性部材625bとにより基台620に押し付けられる。第1案内軸621は、X軸+側および-側の端部近傍にて、それぞれ基準ピン628によりY軸方向+側と-側とから挟まれる。 The first guide shaft 621 and the second guide shaft 622 are fastened to the base 620 with screws in the vicinity of their respective central portions, that is, in a part of the total length of the first guide shaft 621 and the second guide shaft 622. The FIG. 22 shows an example in which the first guide shaft 621 and the second guide shaft 622 are fastened to the base 620 with two screws. The end on the X axis + side of the first guide shaft 621 is pressed against the Z axis − direction, that is, the base 620 by the end limiting member 624a and the elastic member 625a, and the end on the X axis − side is the end portion. The restricting member 624b and the elastic member 625b are pressed against the base 620. The first guide shaft 621 is sandwiched between the + side and the − side in the Y-axis direction by reference pins 628 in the vicinity of the X-axis + side and − side end portions, respectively.
 第2案内軸622についても、第1案内軸621と同様に、X軸+側の端部は端部制限部材624cおよび弾性部材625cとにより、X軸-側の端部は端部制限部材624dおよび弾性部材625dとにより基台620に押し付けられる。第2案内軸622は、X軸+側および-側の端部近傍にて、それぞれ基準ピン628によりY軸方向+側と-側とから挟まれる。 As for the second guide shaft 622, similarly to the first guide shaft 621, the end on the X axis + side is constituted by the end restricting member 624c and the elastic member 625c, and the end on the X axis-side is constituted by the end restricting member 624d. And is pressed against the base 620 by the elastic member 625d. The second guide shaft 622 is sandwiched between the + side and the − side in the Y-axis direction by the reference pin 628 in the vicinity of the X-axis + side and − side ends.
 端部制限部材624は、YZ平面に平行な面における断面が、第1案内軸621、第2案内軸622の断面形状に応じて、コの字(U字)形状となるように、中央部を切り欠いて形成される。端部制限部材624の切欠きは、Y軸方向については第1案内軸621、第2案内軸622をY軸方向+側と-側とから密着して挟むことができる大きさを有する。端部制限部材624の切欠きのZ軸方向の長さは、第1案内軸621、第2案内部軸622のZ軸方向の断面よりも大きい。すなわち、端部制限部材624を基台620にネジにより締結した場合、端部制限部材624と、第1案内軸621、第2案内軸622との間には、Y方向については空隙がなく、Z方向には空隙が生じる。これにより、第1案内軸621、第2案内軸622は、端部制限部材624と基準ピン628とによりY軸方向への位置ずれに対して制限を加える。 The end limiting member 624 has a central portion so that a cross section in a plane parallel to the YZ plane has a U-shape according to the cross-sectional shapes of the first guide shaft 621 and the second guide shaft 622. It is formed by cutting away. The notch of the end limiting member 624 has a size that allows the first guide shaft 621 and the second guide shaft 622 to be in close contact with each other from the + side and the − side in the Y axis direction in the Y axis direction. The length of the notch of the end limiting member 624 in the Z-axis direction is larger than the cross section of the first guide shaft 621 and the second guide portion shaft 622 in the Z-axis direction. That is, when the end limiting member 624 is fastened to the base 620 with screws, there is no gap between the end limiting member 624, the first guide shaft 621, and the second guide shaft 622 in the Y direction. There is a gap in the Z direction. As a result, the first guide shaft 621 and the second guide shaft 622 limit the displacement in the Y-axis direction by the end portion limiting member 624 and the reference pin 628.
 弾性部材625は、たとえば板バネ、コイルバネやゴムなどであり、端部制限部材624と、第1案内軸621、第2案内軸622との間のZ方向の空隙に挟み込まれる。上述したように、弾性部材625は端部制限部材624と第1案内軸621、第2案内軸622との間のZ方向の空隙に設けられることにより、第1案内軸621、第2案内軸622は、端部制限部材624と弾性部材625とによりZ軸-方向への力を受け、基台620に密着する。 The elastic member 625 is, for example, a leaf spring, a coil spring, or rubber, and is sandwiched in a gap in the Z direction between the end limiting member 624, the first guide shaft 621, and the second guide shaft 622. As described above, the elastic member 625 is provided in the gap in the Z direction between the end limiting member 624 and the first guide shaft 621 and the second guide shaft 622, so that the first guide shaft 621 and the second guide shaft are provided. 622 receives a force in the Z-axis direction by the end portion restricting member 624 and the elastic member 625 and closely contacts the base 620.
 第1案内軸621、第2案内軸622と、基台620とは通常、異なる材料により構成される。たとえば、第1案内軸621、第2案内軸622はステンレス鋼により構成され、基台620はアルミニウム合金で構成される。X軸移動機構62の周辺の温度が変化した場合、ステンレス鋼とアルミニウム合金との熱膨張係数の違いにより、両者の長さに差が生ずる。しかし、上記の通り、第1案内軸621、第2案内軸622のそれぞれの端部は、弾性部材を介して基台620に押し付けられているものの、ネジにより基台620に締結されてはいない。従って、温度による第1案内軸621、第2案内軸622の長さの変化により、基台620が変形することを抑制できる。また上記の通り、第1案内軸621、第2案内軸622は、それぞれ中央部付近でのみ基台620にネジで締結されている。従って、温度変化により基台620に働く曲げモーメントを小さな値に抑制することができる。 The first guide shaft 621, the second guide shaft 622, and the base 620 are usually made of different materials. For example, the first guide shaft 621 and the second guide shaft 622 are made of stainless steel, and the base 620 is made of an aluminum alloy. When the temperature around the X-axis moving mechanism 62 changes, the lengths of both differ due to the difference in thermal expansion coefficient between the stainless steel and the aluminum alloy. However, as described above, the end portions of the first guide shaft 621 and the second guide shaft 622 are pressed against the base 620 via elastic members, but are not fastened to the base 620 by screws. . Therefore, it is possible to suppress the base 620 from being deformed due to a change in the length of the first guide shaft 621 and the second guide shaft 622 due to temperature. As described above, the first guide shaft 621 and the second guide shaft 622 are fastened to the base 620 with screws only in the vicinity of the center portion. Therefore, the bending moment acting on the base 620 due to the temperature change can be suppressed to a small value.
 また、基台620のZ軸-側の平面には、第1案内軸621および第2案内軸622の基台620へのネジ締結領域に対向する領域に補正部材626a、626bがネジにて締結される。補正部材626は、第1案内軸621および第2案内軸622と同様の熱膨張係数を有する材料により構成されている。これにより、上記の基台620に対する曲げモーメントを相殺することができる。 In addition, correction members 626a and 626b are fastened to the plane of the base 620 on the Z-axis side by screws with the first guide shaft 621 and the second guide shaft 622 facing the screw fastening region to the base 620. Is done. The correction member 626 is made of a material having the same thermal expansion coefficient as that of the first guide shaft 621 and the second guide shaft 622. Thereby, the bending moment with respect to said base 620 can be canceled.
 案内可動子623は、ボールベアリングを介して第1案内軸621、第2案内軸622に移動可能に配置される。案内可動子623aの上部には、載置台61のY軸+側の取付部612がネジにより締結される。案内可動子623bの上部には連結部材627がネジにより締結される。連結部材627の上部627aは、載置台61のY軸-側の取付部613にネジで締結された板バネ614に形成された切欠き部に係合する。 The guide mover 623 is movably disposed on the first guide shaft 621 and the second guide shaft 622 via ball bearings. A mounting portion 612 on the Y axis + side of the mounting table 61 is fastened to the upper portion of the guide movable element 623a with a screw. A connecting member 627 is fastened to the upper portion of the guide movable element 623b with a screw. The upper part 627a of the connecting member 627 engages with a notch formed in a plate spring 614 fastened to the Y-axis-side mounting part 613 of the mounting table 61 with a screw.
 載置台61に取り付けられたナットに係合するリードスクリューを基台620に取り付けられたモータにより回転させることで、載置台61は、第1案内軸621、第2案内軸622に案内されてX軸方向に移動する。なお、上記のナット、リードスクリュー、モータは図示を省略する。 By rotating a lead screw engaged with a nut attached to the mounting table 61 by a motor attached to the base 620, the mounting table 61 is guided by the first guide shaft 621 and the second guide shaft 622, and X Move in the axial direction. The nut, lead screw, and motor are not shown.
 図22(b)は連結部材627の断面図を示す。連結部材627は、上部(Z軸+側)、すなわち載置台61と連結する側に凸部627aを有する。凸部627aは、軸部627bと、軸部627bの上部(Z軸+側)に設けられ軸部627bよりも径が大きい頭部627cとを有する。凸部627aは、載置台61の取付部613に設けられた穴613aを通して、取付部613の上部に突出する。板バネ614は、凸部627aが突出する位置に対応する位置にU字形の切欠き部614aを有する。切欠き部614aの長軸はY軸方向に沿って伸び、X方向の長さは軸部627aの径よりも大きく頭部627cよりも小さい。すなわち、板バネ614が取付部613に締結された際には、板バネ614の切欠き部614aの上部(Z軸+側)に凸部627aの頭部627cが突出する。すなわち、載置台61は案内可動子623aには固定されずに支持されている。 FIG. 22 (b) shows a cross-sectional view of the connecting member 627. The connecting member 627 has a convex portion 627 a on the upper side (Z axis + side), that is, on the side connected to the mounting table 61. The convex portion 627a includes a shaft portion 627b and a head portion 627c provided on the upper portion (Z axis + side) of the shaft portion 627b and having a diameter larger than that of the shaft portion 627b. The convex portion 627 a protrudes above the attachment portion 613 through a hole 613 a provided in the attachment portion 613 of the mounting table 61. The leaf spring 614 has a U-shaped notch 614a at a position corresponding to the position where the convex portion 627a protrudes. The major axis of the notch 614a extends along the Y-axis direction, and the length in the X direction is larger than the diameter of the shaft 627a and smaller than the head 627c. That is, when the leaf spring 614 is fastened to the attachment portion 613, the head 627c of the convex portion 627a protrudes above the notch 614a of the leaf spring 614 (Z axis + side). That is, the mounting table 61 is supported by the guide movable element 623a without being fixed.
 上記の構成を有することにより、載置台61は、Z軸-側への力を受けつつ、板バネ614が有する切欠き部614aの形状によりY軸方向への移動の自由度を有する。たとえば、第2案内軸622がZ方向の位置が第1案内軸621よりも高い場合を想定する。このとき、板バネ614と頭部627cとにZ軸-方向に力を受けている載置台61は、連結部627から見ると、切欠き部614aの形状に沿ってY軸方向に沿って移動する。これにより、たとえば温度変化の影響により、第1案内軸621と第2案内軸622とのZ軸方向における位置が変化した場合であっても、載置台61に変形が生じることを防ぐことができる。 By having the above-described configuration, the mounting table 61 has a degree of freedom of movement in the Y-axis direction due to the shape of the notch 614a of the leaf spring 614 while receiving a force toward the Z-axis. For example, it is assumed that the second guide shaft 622 is higher in the Z direction than the first guide shaft 621. At this time, the mounting table 61 receiving the force in the Z-axis direction on the leaf spring 614 and the head 627c moves along the Y-axis direction along the shape of the notch 614a when viewed from the connecting portion 627. To do. Thereby, for example, even if the positions of the first guide shaft 621 and the second guide shaft 622 in the Z-axis direction change due to the influence of temperature change, it is possible to prevent the mounting table 61 from being deformed. .
 X軸移動機構62が以上で説明した構成を有することにより、温度変化に起因した載置台61がX軸方向へ移動する際の誤差の発生を抑制することができる。X線を照射して被測定物Sを観測、測定する際には、載置台61付近は高熱に曝されることになるが、X軸移動機構62の温度変化による変形が抑制されるので、載置台61のX軸方向への移動精度の低下を抑制することができる。さらに、Y軸移動機構63も同様の構成を有することにより、温度変化に伴う載置台61のY軸方向へ移動精度の低下を抑制できる。これにより、載置台61の移動精度の低下を抑制し、さらに、補正部36によりずれ量の補正を行うので、被測定物Sの観測精度を向上させ、高画質の再構成画像を生成することができる。 When the X-axis moving mechanism 62 has the configuration described above, it is possible to suppress the occurrence of an error when the mounting table 61 is moved in the X-axis direction due to a temperature change. When observing and measuring the measurement object S by irradiating X-rays, the vicinity of the mounting table 61 is exposed to high heat, but deformation due to temperature changes of the X-axis moving mechanism 62 is suppressed. It is possible to suppress a decrease in movement accuracy of the mounting table 61 in the X-axis direction. Furthermore, since the Y-axis moving mechanism 63 has the same configuration, it is possible to suppress a decrease in movement accuracy of the mounting table 61 in the Y-axis direction due to a temperature change. As a result, a decrease in the movement accuracy of the mounting table 61 is suppressed, and the correction amount is corrected by the correction unit 36. Therefore, the observation accuracy of the object S to be measured is improved and a high-quality reconstructed image is generated. Can do.
(変形例6)
 補正部36は、式(12)を用いて算出されるHV座標系でのずれ量Δh、Δvを多次多項式で表すようにしても良い。この場合、多次多項式の係数を記憶部37に記憶すれば良い。これにより、ずれ量を容量の小さなデータとして記憶することができる。なお、耐次多項式の係数は、記憶部37とは異なる記憶媒体に記憶されても良い。
(Modification 6)
The correction unit 36 may represent the shift amounts Δh and Δv in the HV coordinate system calculated using Expression (12) by a multi-order polynomial. In this case, the coefficient of the multi-degree polynomial may be stored in the storage unit 37. As a result, the shift amount can be stored as data having a small capacity. Note that the coefficient of the order-resistant polynomial may be stored in a storage medium different from the storage unit 37.
(変形例7)
 載置台61やX線検出器7を基準軸Lの回りに回動させるものに限定されない。すなわち、X線装置100は、載置台61やX線検出器7を公転軌道MSやMMに沿って移動させるものではなく、公転軌道MSやMM上の複数の異なる所定位置に移動させ、異なる所定位置ごとにX線投影画像データを生成してもよい。この場合であっても、X線装置100は、異なる複数の方向から被測定物SのX線投影画像データを取得できるので、取得したX線投影画像データに基づいて再構成画像を生成できる。
(Modification 7)
It is not limited to what rotates the mounting base 61 or the X-ray detector 7 around the reference axis L. That is, the X-ray apparatus 100 does not move the mounting table 61 or the X-ray detector 7 along the revolution trajectory MS or MM, but moves it to a plurality of different predetermined positions on the revolution trajectory MS or MM. X-ray projection image data may be generated for each position. Even in this case, the X-ray apparatus 100 can acquire the X-ray projection image data of the object S to be measured from a plurality of different directions, and thus can generate a reconstructed image based on the acquired X-ray projection image data.
 本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。 As long as the characteristics of the present invention are not impaired, the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .
3…制御装置、5…X線源、6…載置部、7…X線検出器、
31…X線制御部、32…移動制御部、33…画像生成部、
34…画像再構成部、35…算出部、36…補正部、37…記憶部、
61…載置台、62…X軸移動機構、63…Y軸移動機構、64…Z軸移動機構、
100…X線装置、400…構造物製造システム、410…設計装置、
420…成形装置、430…制御システム、432…検査部、440…リペア装置
3 ... Control device, 5 ... X-ray source, 6 ... Mounting part, 7 ... X-ray detector,
31 ... X-ray control unit, 32 ... Movement control unit, 33 ... Image generation unit,
34 ... Image reconstruction unit, 35 ... Calculation unit, 36 ... Correction unit, 37 ... Storage unit,
61 ... mounting table, 62 ... X-axis moving mechanism, 63 ... Y-axis moving mechanism, 64 ... Z-axis moving mechanism,
DESCRIPTION OF SYMBOLS 100 ... X-ray apparatus, 400 ... Structure manufacturing system, 410 ... Design apparatus,
420 ... Molding device, 430 ... Control system, 432 ... Inspection unit, 440 ... Repair device

Claims (28)

  1.  指標部材が設けられ、被測定物を載置する載置台と、
     前記被測定物および前記指標部材にX線を照射するX線源と、
     照射されたX線による前記被測定物の投影像および前記指標部材の投影像を検出するX線検出器と、
     前記載置台と、前記X線源と、前記X線検出器との少なくとも2つの部材を、所定の軸周りに回動させることで、前記被測定物に対して複数の異なる照射方向からX線を照射して、それぞれの照射方向毎に前記被測定物の投影像と前記指標部材の投影像とを取得する取得部と、
     前記X線検出器で検出された前記指標部材の投影像が、前記X線検出器で検出される領域のうち前記被測定物の観測領域の投影像と異なる位置で、前記X線検出器により検出されたときの投影像に基づき、補正処理を行う補正部と、を備えるX線装置。
    An index member is provided, and a mounting table on which an object to be measured is mounted;
    An X-ray source for irradiating the object to be measured and the indicator member with X-rays;
    An X-ray detector for detecting a projected image of the object to be measured and an projected image of the index member by irradiated X-rays;
    By rotating at least two members of the mounting table, the X-ray source, and the X-ray detector around a predetermined axis, X-rays are emitted from a plurality of different irradiation directions with respect to the object to be measured. An acquisition unit that acquires a projection image of the object to be measured and a projection image of the index member for each irradiation direction;
    The projected image of the index member detected by the X-ray detector is different from the projected image of the observation area of the object to be measured among the areas detected by the X-ray detector. An X-ray apparatus comprising: a correction unit that performs correction processing based on a projected image when detected.
  2.  請求項1に記載のX線装置において、
     さらに、前記取得部で取得された、それぞれの照射方向毎の前記被測定物の投影像に基づき、再構成像を出力する再構成部を有し、
     前記再構成部による再構成処理を行う前に、前記補正部により補正処理を行うX線装置。
    The X-ray apparatus according to claim 1,
    And a reconstruction unit that outputs a reconstructed image based on the projection image of the object to be measured for each irradiation direction acquired by the acquisition unit,
    An X-ray apparatus that performs correction processing by the correction unit before performing reconstruction processing by the reconstruction unit.
  3.  請求項1に記載のX線装置において、
     検査結果を出力する検査処理部を有し、
     前記補正部は、前記検査処理部で検査処理を行う前に、前記補正部により補正処理を行うX線装置。
    The X-ray apparatus according to claim 1,
    It has an inspection processing unit that outputs inspection results,
    The correction unit is an X-ray apparatus that performs correction processing by the correction unit before performing inspection processing by the inspection processing unit.
  4.  請求項1乃至3の何れか一項に記載のX線装置において、
     前記補正部は、前記X線検出器で検出された前記指標部材の投影像が、前記X線検出器で検出される領域のうち前記被測定物の観測領域の投影像と異なる位置で、前記X線検出器により検出されたときの前記指標部材の投影像の位置に基づいて、前記載置台と前記X線検出器との少なくとも一方を移動させることで補正処理をするX線装置。
    The X-ray apparatus according to any one of claims 1 to 3,
    The correction unit is configured such that the projected image of the index member detected by the X-ray detector is different from the projected image of the observation area of the object to be measured among the areas detected by the X-ray detector. An X-ray apparatus that performs correction processing by moving at least one of the mounting table and the X-ray detector based on the position of the projected image of the index member when detected by the X-ray detector.
  5.  請求項1乃至3の何れか一項に記載のX線装置において、
     前記補正部は、前記X線検出器で検出された前記指標部材の投影像が、前記X線検出器で検出されたる領域のうち前記被測定物の観測領域の投影像と異なる位置で、前記X線検出器により検出されたときの前記指標部材の投影像の位置に基づいて、前記X線検出器により検出された前記被測定物の投影像の位置を移動させることで補正処理をするX線装置。
    The X-ray apparatus according to any one of claims 1 to 3,
    The correction unit is configured such that the projected image of the index member detected by the X-ray detector is different from the projected image of the observation area of the object to be measured among the areas detected by the X-ray detector. Based on the position of the projected image of the index member when detected by the X-ray detector, correction processing is performed by moving the position of the projected image of the measurement object detected by the X-ray detector. Wire device.
  6.  指標部材が設けられ、被測定物を載置する載置台と、
     前記被測定物および前記指標部材にX線を照射するX線源と、
     照射されたX線による前記被測定物の投影像および前記指標部材の投影像を検出するX線検出器と、
     前記載置台と、前記X線源と、前記X線検出器との少なくとも2つの部材を、所定の軸周りに回動させ、前記回動に伴って前記被測定物に対して複数の異なる照射方向からX線を照射して、前記被測定物の投影像と前記指標部材の投影像とを取得する取得部と、
     前記指標部材の載置台における位置情報と前記X線検出器と前記X線源との間の相対的な位置関係に基づいて、前記異なる照射方向に対応する、前記少なくとも2つの部材が所定の軸周りに回動したときのそれぞれの位置での前記指標部材の投影像の第1投影位置を算出する算出部と、
     前記複数の異なる照射方向のそれぞれにおける前記算出された前記第1投影位置と、前記回動に伴って取得された前記指標部材の投影像の、前記X線検出器の検出面に対する第2投影位置とのずれ量に基づいて補正処理を行う補正部と、を備えるX線装置。
    An index member is provided, and a mounting table on which an object to be measured is mounted;
    An X-ray source for irradiating the object to be measured and the indicator member with X-rays;
    An X-ray detector for detecting a projected image of the object to be measured and an projected image of the index member by irradiated X-rays;
    At least two members of the mounting table, the X-ray source, and the X-ray detector are rotated around a predetermined axis, and a plurality of different irradiations are performed on the object to be measured along with the rotation. An acquisition unit that irradiates X-rays from a direction and acquires a projection image of the object to be measured and a projection image of the index member;
    The at least two members corresponding to the different irradiation directions have a predetermined axis based on positional information on the mounting table of the index member and a relative positional relationship between the X-ray detector and the X-ray source. A calculation unit that calculates a first projection position of the projection image of the index member at each position when the lens member rotates around;
    The calculated first projection position in each of the plurality of different irradiation directions and the second projection position with respect to the detection surface of the X-ray detector of the projected image of the index member acquired with the rotation An X-ray apparatus comprising: a correction unit that performs a correction process based on the amount of deviation.
  7.  請求項6に記載のX線装置において、
     前記補正部は、前記少なくとも2つの部材が、前記算出部が前記第1投影位置を算出する際の前記所定の軸周りに回動するときに取得される前記被測定物の投影像となるように、前記補正処理を行うX線装置。
    The X-ray apparatus according to claim 6,
    In the correction unit, the at least two members may be projected images of the measurement object acquired when the calculation unit rotates around the predetermined axis when calculating the first projection position. An X-ray apparatus that performs the correction process.
  8.  請求項6または7に記載のX線装置において、
     前記補正部は、前記相対的な位置関係と前記回動に伴って取得された前記被測定物の投影像との少なくとも一方に補正処理を行うX線装置。
    The X-ray apparatus according to claim 6 or 7,
    The correction unit is an X-ray apparatus that performs a correction process on at least one of the relative positional relationship and the projection image of the object to be measured acquired with the rotation.
  9.  請求項8に記載のX線装置において、
     前記補正部は、前記ずれ量に基づいて、前記載置台と前記X線検出器との少なくとも一方を移動させて前記相対的な位置関係を補正するX線装置。
    The X-ray apparatus according to claim 8,
    The correction unit is an X-ray apparatus that corrects the relative positional relationship by moving at least one of the mounting table and the X-ray detector based on the shift amount.
  10.  請求項9に記載のX線装置において、
     前記所定の軸と交差する面内に前記載置台を移動させる移動部を有し、
     前記補正部は、前記ずれ量に基づいて前記移動部に前記載置台を移動させるX線装置。
    The X-ray apparatus according to claim 9,
    A moving unit for moving the mounting table in a plane intersecting the predetermined axis;
    The correction unit is an X-ray apparatus that moves the mounting table to the moving unit based on the shift amount.
  11.  請求項10に記載のX線装置において、
     前記移動部は、前記載置台を前記所定の軸に沿う方向にさらに移動させ、
     前記補正部は、前記ずれ量に基づいて、前記移動部に前記載置台を移動させるX線装置。
    The X-ray apparatus according to claim 10,
    The moving unit further moves the mounting table in a direction along the predetermined axis,
    The correction unit is an X-ray apparatus that moves the mounting table to the moving unit based on the shift amount.
  12.  請求項10または11に記載のX線装置において、
     前記移動部は、前記載置台を前記所定の軸と交差する面内で所定の位置に移動させるX線装置。
    The X-ray apparatus according to claim 10 or 11,
    The moving unit is an X-ray apparatus that moves the mounting table to a predetermined position in a plane intersecting the predetermined axis.
  13.  請求項6乃至12の何れか一項に記載のX線装置において、
     前記補正部は、前記X線検出器の検出面における前記第1投影位置と前記第2投影位置との差分を前記ずれ量として算出するX線装置。
    The X-ray apparatus according to any one of claims 6 to 12,
    The correction unit is an X-ray apparatus that calculates a difference between the first projection position and the second projection position on the detection surface of the X-ray detector as the shift amount.
  14.  請求項10乃至12の何れか一項に従属する請求項13に記載のX線装置において、
     前記補正部は、前記X線検出器の検出面における第1直交座標系で表される前記第1投影位置と前記第2投影位置との前記ずれ量を、前記載置台の載置面における第2直交座標系に変換して変換ずれ量を算出し、前記変換ずれ量を用いて前記載置台を移動させるX線装置。
    The X-ray apparatus according to claim 13, which is dependent on any one of claims 10 to 12.
    The correction unit calculates the shift amount between the first projection position and the second projection position represented by the first orthogonal coordinate system on the detection surface of the X-ray detector, on the placement surface of the mounting table. An X-ray apparatus that converts to a two orthogonal coordinate system, calculates a conversion deviation amount, and moves the mounting table using the conversion deviation amount.
  15.  請求項6乃至14の何れか一項に記載のX線装置において、
     前記補正部は、前記ずれ量が所定の大きさを超える場合に、前記載置台と前記X線検出器との少なくとも一方に補正を行い、前記ずれ量が前記所定の大きさを超えない場合に前記被測定物の投影像に対して前記ずれ量の補正を行うX線装置。
    The X-ray apparatus according to any one of claims 6 to 14,
    The correction unit corrects at least one of the mounting table and the X-ray detector when the deviation amount exceeds a predetermined size, and when the deviation amount does not exceed the predetermined size. An X-ray apparatus that corrects the shift amount with respect to a projected image of the object to be measured.
  16.  請求項6乃至15の何れか一項に記載のX線装置において、
     前記載置台に所定の距離ごとに設けられた複数の前記指標部材のそれぞれに対する前記位置情報を、前記指標部材ごとに記憶する記憶部をさらに備えるX線装置。
    The X-ray apparatus according to any one of claims 6 to 15,
    An X-ray apparatus further comprising a storage unit that stores, for each of the index members, the position information for each of the plurality of index members provided on the mounting table at a predetermined distance.
  17.  請求項16に記載のX線装置において、
     前記補正部は、前記記憶部に記憶された前記位置情報に基づいて前記ずれ量を算出するX線装置。
    The X-ray apparatus according to claim 16,
    The correction unit is an X-ray apparatus that calculates the shift amount based on the position information stored in the storage unit.
  18.  請求項14に記載のX線装置において、
     前記第1直交座標系での前記第1投影位置と前記第2投影位置との前記ずれ量を多次多項式で表したときの係数を記憶する記憶部をさらに備えるX線装置。
    The X-ray apparatus according to claim 14,
    An X-ray apparatus further comprising a storage unit that stores a coefficient when the shift amount between the first projection position and the second projection position in the first orthogonal coordinate system is expressed by a multi-order polynomial.
  19.  請求項6乃至18の何れか一項に記載のX線装置において、
     前記載置台に載置された前記被測定物の基準位置は、前記回動に応じて前記被測定物の投影像を取得する際に、前記複数の異なる照射方向のそれぞれにおいて、前記X線検出器の検出面上に投影される位置が変化しないX線装置。
    The X-ray apparatus according to any one of claims 6 to 18,
    The reference position of the object to be measured placed on the mounting table is the X-ray detection in each of the plurality of different irradiation directions when acquiring a projection image of the object to be measured according to the rotation. X-ray apparatus in which the position projected on the detector detection surface does not change.
  20.  請求項6乃至18の何れか一項に記載のX線装置において、
     前記補正部により前記補正処理が行われた後、前記被測定物の投影像を用いて前記被測定物の画像を再構成する処理部をさらに備えるX線装置。
    The X-ray apparatus according to any one of claims 6 to 18,
    An X-ray apparatus further comprising: a processing unit that reconstructs an image of the measurement object using a projection image of the measurement object after the correction process is performed by the correction unit.
  21.  請求項6乃至20の何れか一項に記載のX線装置において、
     前記指標部材は、前記載置台のうち厚さまたは密度の異なる一部の領域として設けられるX線装置。
    The X-ray apparatus according to any one of claims 6 to 20,
    The index member is an X-ray apparatus provided as a partial region having a different thickness or density in the mounting table.
  22.  請求項6乃至21の何れか一項に記載のX線装置において、
     前記指標部材を透過するX線の経路と、前記被測定物を透過するX線の経路とは互いに異なるX線装置。
    The X-ray apparatus according to any one of claims 6 to 21,
    An X-ray apparatus in which an X-ray path that passes through the index member and an X-ray path that passes through the object to be measured are different from each other.
  23.  請求項6乃至22の何れか一項に記載のX線装置において、
     前記位置情報は、前記載置台での前記被測定物と前記指標部材との間の相対距離および相対高さであるX線装置。
    The X-ray apparatus according to any one of claims 6 to 22,
    The X-ray apparatus, wherein the position information is a relative distance and a relative height between the object to be measured and the index member on the mounting table.
  24.  指標部材が設けられ、被測定物を載置する載置台と、
     前記被測定物および前記指標部材にX線を照射するX線源と、
     照射されたX線による前記被測定物の投影像および前記指標部材の投影像を検出するX線検出器と、
     前記載置台と、前記X線源と、前記X線検出器との少なくとも2つの部材を、所定の位置に移動させ、前記移動に伴って前記被測定物に対して複数の異なる照射方向からX線を照射して、前記被測定物の投影像と前記指標部材の投影像とを取得する取得部と、
     前記指標部材の載置台における位置情報と前記X線検出器と前記X線源との間の相対的な位置関係に基づいて、前記異なる照射方向に対応する、前記少なくとも2つの部材が所定の位置に移動したときのそれぞれの位置での前記指標部材の投影像の第1投影位置を算出する算出部と、
     前記複数の異なる照射方向のそれぞれにおける前記算出された前記第1投影位置と、前記所定の位置ごとに取得された前記指標部材の投影像の、前記X線検出器の検出面に対する第2投影位置とのずれ量に基づいて補正処理を行う補正部と、を備えるX線装置。
    An index member is provided, and a mounting table on which an object to be measured is mounted;
    An X-ray source for irradiating the object to be measured and the indicator member with X-rays;
    An X-ray detector for detecting a projected image of the object to be measured and an projected image of the index member by irradiated X-rays;
    At least two members of the mounting table, the X-ray source, and the X-ray detector are moved to predetermined positions, and X to be measured from a plurality of different irradiation directions with respect to the object to be measured. An acquisition unit that irradiates a line and acquires a projection image of the object to be measured and a projection image of the index member;
    Based on the positional information of the index member on the mounting table and the relative positional relationship between the X-ray detector and the X-ray source, the at least two members corresponding to the different irradiation directions are at predetermined positions. A calculation unit that calculates a first projection position of the projection image of the indicator member at each position when moved to
    The calculated first projection position in each of the plurality of different irradiation directions and the second projection position with respect to the detection surface of the X-ray detector of the projected image of the index member obtained for each of the predetermined positions An X-ray apparatus comprising: a correction unit that performs a correction process based on the amount of deviation.
  25.  指標部材が設けられた載置台に被測定物を載置し、
     X線源から前記被測定物および前記指標部材にX線を照射し、
     照射されたX線による前記被測定物の投影像および前記指標部材の投影像を検出し、
     前記載置台と、前記X線源と、X線検出器との少なくとも2つの部材を、所定の軸周りに回動させ、前記回動に伴って前記被測定物に対して複数の異なる照射方向からX線を照射して、前記被測定物の投影像と前記指標部材の投影像とを取得し、
     前記指標部材の載置台における位置情報と前記X線検出器と前記X線源との間の相対的な位置関係に基づいて、前記異なる照射方向に対応する、前記少なくとも2つの部材が所定の軸周りに回動したときのそれぞれの位置での前記指標部材の投影像の第1投影位置を算出し、
     前記複数の異なる照射方向のそれぞれにおける前記算出された前記第1投影位置と、前記回動に伴って取得された前記指標部材の投影像の、前記X線検出器の検出面に対する第2投影位置とのずれ量に基づいて補正処理を行うX線計測方法。
    Place the object to be measured on the mounting table provided with the index member,
    Irradiating the object to be measured and the index member with X-rays from an X-ray source;
    Detecting a projected image of the object to be measured and an projected image of the index member by irradiated X-rays;
    At least two members of the mounting table, the X-ray source, and the X-ray detector are rotated around a predetermined axis, and a plurality of different irradiation directions are applied to the object to be measured along with the rotation. Irradiating with X-rays to obtain a projected image of the object to be measured and a projected image of the index member;
    The at least two members corresponding to the different irradiation directions have a predetermined axis based on positional information on the mounting table of the index member and a relative positional relationship between the X-ray detector and the X-ray source. Calculating a first projection position of the projected image of the indicator member at each position when rotating around,
    The calculated first projection position in each of the plurality of different irradiation directions and the second projection position with respect to the detection surface of the X-ray detector of the projected image of the index member acquired with the rotation X-ray measurement method for performing correction processing based on the deviation amount.
  26.  構造物の形状に関する設計情報を作成し、
     前記設計情報に基づいて前記構造物を作成し、
     作成された前記構造物の形状を、請求項6乃至22の何れか一項に記載のX線装置を用いて計測して形状情報を取得し、
     前記取得された前記形状情報と前記設計情報とを比較する構造物の製造方法。
    Create design information about the shape of the structure,
    Create the structure based on the design information,
    The shape of the created structure is measured using the X-ray apparatus according to any one of claims 6 to 22 to acquire shape information,
    A structure manufacturing method for comparing the acquired shape information and the design information.
  27.  請求項26に記載の構造物の製造方法において、
     前記形状情報と前記設計情報との比較結果に基づいて実行され、前記構造物の再加工を行う構造物の製造方法。
    In the manufacturing method of the structure according to claim 26,
    A method of manufacturing a structure, which is executed based on a comparison result between the shape information and the design information, and reworks the structure.
  28.  請求項27に記載の構造物の製造方法において、
     前記構造物の再加工は、前記設計情報に基づいて前記構造物の作成を再度行う構造物の製造方法。
     
    In the manufacturing method of the structure according to claim 27,
    The reworking of the structure is a structure manufacturing method in which the structure is created again based on the design information.
PCT/JP2016/054406 2016-02-16 2016-02-16 X-ray device, x-ray measurement method, and structure manufacturing method WO2017141345A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017567852A JP6693533B2 (en) 2016-02-16 2016-02-16 X-ray device, X-ray measuring method, and structure manufacturing method
PCT/JP2016/054406 WO2017141345A1 (en) 2016-02-16 2016-02-16 X-ray device, x-ray measurement method, and structure manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/054406 WO2017141345A1 (en) 2016-02-16 2016-02-16 X-ray device, x-ray measurement method, and structure manufacturing method

Publications (1)

Publication Number Publication Date
WO2017141345A1 true WO2017141345A1 (en) 2017-08-24

Family

ID=59625675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054406 WO2017141345A1 (en) 2016-02-16 2016-02-16 X-ray device, x-ray measurement method, and structure manufacturing method

Country Status (2)

Country Link
JP (1) JP6693533B2 (en)
WO (1) WO2017141345A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158534A (en) * 2018-03-12 2019-09-19 株式会社ミツトヨ X-ray ct apparatus for measurement and method for generating fault image
CN112461165A (en) * 2019-09-09 2021-03-09 株式会社三丰 Calibration method for X-ray measuring device
JP7147346B2 (en) 2018-08-08 2022-10-05 株式会社島津製作所 X-ray phase imaging system
WO2022270018A1 (en) * 2021-06-21 2022-12-29 日本装置開発株式会社 Method for generating ct image
CN110261416B (en) * 2018-03-12 2024-05-14 株式会社三丰 X-ray CT apparatus for measurement and tomographic image generation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080247505A1 (en) * 2007-04-07 2008-10-09 Rohit Patnaik Xray device for planar tomosynthesis
JP2009036660A (en) * 2007-08-02 2009-02-19 Toshiba It & Control Systems Corp Tomogram system
JP2012042340A (en) * 2010-08-19 2012-03-01 Shimadzu Corp X-ray ct equipment
JP2013015426A (en) * 2011-07-05 2013-01-24 Shimadzu Corp Radiation ct system
JP2013096992A (en) * 2011-10-27 2013-05-20 Nordson Corp Method and apparatus for generating three-dimensional model of region of interest using imaging system
WO2016021031A1 (en) * 2014-08-07 2016-02-11 株式会社ニコン X-ray apparatus and structure production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080247505A1 (en) * 2007-04-07 2008-10-09 Rohit Patnaik Xray device for planar tomosynthesis
JP2009036660A (en) * 2007-08-02 2009-02-19 Toshiba It & Control Systems Corp Tomogram system
JP2012042340A (en) * 2010-08-19 2012-03-01 Shimadzu Corp X-ray ct equipment
JP2013015426A (en) * 2011-07-05 2013-01-24 Shimadzu Corp Radiation ct system
JP2013096992A (en) * 2011-10-27 2013-05-20 Nordson Corp Method and apparatus for generating three-dimensional model of region of interest using imaging system
WO2016021031A1 (en) * 2014-08-07 2016-02-11 株式会社ニコン X-ray apparatus and structure production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158534A (en) * 2018-03-12 2019-09-19 株式会社ミツトヨ X-ray ct apparatus for measurement and method for generating fault image
CN110261416A (en) * 2018-03-12 2019-09-20 株式会社三丰 Measurement X-ray CT equipment and tomographic image generation method
US11234670B2 (en) * 2018-03-12 2022-02-01 Mitutoyo Corporation Measuring X-ray CT apparatus and tomographic image generating method
CN110261416B (en) * 2018-03-12 2024-05-14 株式会社三丰 X-ray CT apparatus for measurement and tomographic image generation method
JP7147346B2 (en) 2018-08-08 2022-10-05 株式会社島津製作所 X-ray phase imaging system
CN112461165A (en) * 2019-09-09 2021-03-09 株式会社三丰 Calibration method for X-ray measuring device
WO2022270018A1 (en) * 2021-06-21 2022-12-29 日本装置開発株式会社 Method for generating ct image

Also Published As

Publication number Publication date
JPWO2017141345A1 (en) 2018-12-06
JP6693533B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
US10809208B2 (en) X-ray inspection device, X-ray inspection method, and method of manufacturing structure
WO2017141345A1 (en) X-ray device, x-ray measurement method, and structure manufacturing method
JP5444718B2 (en) Inspection method, inspection device, and inspection program
WO2009084581A1 (en) X-ray examining apparatus and x-ray examining method
JP7164524B2 (en) X-ray CT device
JP2018072274A (en) Measuring x-ray ct apparatus and jig for adjusting coordinate of coordinates measuring machine
JP6147852B2 (en) X-ray apparatus and structure manufacturing method
JPWO2016021030A1 (en) X-ray apparatus and structure manufacturing method
TW201414360A (en) X-ray device and structure manufacturing method
JP2015083932A (en) X-ray measurement device, x-ray measurement method and manufacturing method of structure
CN111141767A (en) X-ray CT apparatus for measurement and CT reconstruction method using the same
US20230181136A1 (en) Radiographic imaging apparatus, image generation method, radiographic imaging system, and recording medium
CN111247424A (en) Inspection position specifying method, three-dimensional image generating method, and inspection device
JP5167810B2 (en) X-ray inspection equipment
JP7211722B2 (en) X-ray CT system for measurement
CN112556611A (en) Calibration method for X-ray measuring device
JP2021050937A (en) Calibration method of x-ray ct scanner for measurement, measurement method, and x-ray ct scanner for measurement
JP5569061B2 (en) X-ray inspection method, X-ray inspection apparatus and X-ray inspection program
JP2019158541A (en) X-ray ct apparatus for measurement and method for measuring mass-produced workpieces
JP4058523B2 (en) Calibrator and calibration method
JP5125297B2 (en) X-ray inspection apparatus and X-ray inspection method
CN113932741A (en) Calibration method for an X-ray measuring device
WO2016021031A1 (en) X-ray apparatus and structure production method
JP2010133982A (en) X-ray inspection device and x-ray inspection method
KR101464180B1 (en) X-ray Three-dimensional restore method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890487

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017567852

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890487

Country of ref document: EP

Kind code of ref document: A1