WO2017140149A1 - 一种太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器 - Google Patents

一种太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器 Download PDF

Info

Publication number
WO2017140149A1
WO2017140149A1 PCT/CN2016/106688 CN2016106688W WO2017140149A1 WO 2017140149 A1 WO2017140149 A1 WO 2017140149A1 CN 2016106688 W CN2016106688 W CN 2016106688W WO 2017140149 A1 WO2017140149 A1 WO 2017140149A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation signal
pulse amplitude
amplitude modulation
terahertz
wave
Prior art date
Application number
PCT/CN2016/106688
Other languages
English (en)
French (fr)
Inventor
欧阳征标
陈治良
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to US16/485,113 priority Critical patent/US20200044406A1/en
Publication of WO2017140149A1 publication Critical patent/WO2017140149A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1226Basic optical elements, e.g. light-guiding paths involving surface plasmon interaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • G01J3/0259Monolithic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/38Radiation pyrometry, e.g. infrared or optical thermometry using extension or expansion of solids or fluids
    • G01J5/42Radiation pyrometry, e.g. infrared or optical thermometry using extension or expansion of solids or fluids using Golay cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation

Definitions

  • the invention relates to a nanometer-scale terahertz wave-wavelength conversion amplifier component, in particular to a SPP terahertz wave pulse amplitude modulation signal direct-turning optical pulse amplitude modulation converter based on a conductor-insulator-conductor (MIM) structure.
  • MIM conductor-insulator-conductor
  • terahertz band occupies a richer and wider spectrum resource, which makes it have great potential and broad application prospects in the future of broadband wireless communication.
  • AM wave communication is a commonly used communication method.
  • terahertz amplitude modulation demodulator is an indispensable device.
  • terahertz wave detectors such as thermal effect detectors, thermistor detectors, liquid helium cooled Si or Ge thermal radiation meters, superconducting mixing techniques, and the use of phonon and electron scattering cooling mechanisms.
  • terahertz wave detectors such as thermal effect detectors, thermistor detectors, liquid helium cooled Si or Ge thermal radiation meters, superconducting mixing techniques, and the use of phonon and electron scattering cooling mechanisms.
  • terahertz time-domain spectroscopy technique which uses the coherent electromagnetic pulse between the far infrared and the microwave as the detection source, and directly records the amplitude and time waveform of the terahertz radiation electric field by photoconductive sampling or free-space electro-optic sampling, can be measured. Phase information can also be obtained from the amplitude of the terahertz wave.
  • Waveguides based on surface plasmons can break through the limits of diffraction limits and achieve nanoscale optical information processing and transmission.
  • the surface plasmon is a surface electromagnetic wave propagating on the metal surface formed by the free electron coupling of the electromagnetic wave and the metal surface when the electromagnetic wave is incident on the interface between the metal and the medium.
  • many devices based on surface plasmon structures such as filters, circulators, logic gates, optical switches, etc., have been proposed. These devices are relatively simple in structure and are very convenient for optical path integration.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a terahertz wave pulse amplitude modulation signal and an optical pulse amplitude modulation signal direct conversion amplifier based on a surface plasmon waveguide.
  • the present invention adopts the following technical solutions:
  • a terahertz wave pulse amplitude modulation signal and an optical pulse amplitude modulation signal conversion amplifier of the present invention comprises a rectangular cavity, an absorption cavity, a metal block, a vertical waveguide, a horizontal waveguide, three metal films, a terahertz wave, and a a horizontally-divided reference light composition;
  • the rectangular cavity is located at a terahertz pulse wave input end, the incident end of the terahertz pulse wave is located at an upper end of the absorption cavity, and the absorption cavity is connected to a vertical waveguide;
  • the metal block is disposed at The vertical waveguide is movable and movable; the vertical waveguide is connected to the horizontal waveguide; and the output power of the reference light is in one-to-one correspondence with the power of the input terahertz pulse wave.
  • the substance in the rectangular cavity is a high transmittance substance.
  • the high transmittance material is silicon, germanium or gallium arsenide.
  • the substance in the absorption chamber is a substance having a high coefficient of thermal expansion.
  • the substance having a high expansion coefficient is alcohol or mercury.
  • the shape of the absorption chamber is circular, polygonal, elliptical or irregular.
  • the metal is silver.
  • the horizontal waveguide 5 and the vertical waveguide 4 are waveguides of a MIM structure.
  • the medium within the horizontal waveguide is air.
  • the terahertz wave is a terahertz wave that loads a pulse amplitude signal.
  • the reference light is laser or coherent light.
  • the modulated signal in the terahertz wave can be detected by the traditional optical detector, and the integrated terahertz pulse amplitude modulation signal based on the surface plasmon waveguide is directly converted into the optical pulse amplitude modulation signal, which greatly reduces the The cost of the demodulation device of the Hertz pulse amplitude modulation signal has a wide application value.
  • the cost of the optical signal detector is much smaller than the detection cost of the terahertz signal, the manufacturing cost of the system is greatly reduced, and the modulation signal is greatly amplified during the conversion process, and no additional signal amplifier is needed to amplify the detection signal, further reducing The production cost of the system.
  • FIG. 1 is a two-dimensional structural diagram of a first embodiment of a terahertz wave pulse amplitude modulation signal and an optical pulse amplitude modulation signal conversion amplifier of the present invention.
  • Rectangular cavity 1 Absorption cavity 2
  • Metal block 3 Vertical waveguide 4
  • Horizontal waveguide 5 Metal film 6
  • Metal film 7 Metal film 8 Terahertz wave Horizontally propagated reference light 200
  • Figure 2 is a schematic view of the three-dimensional structure shown in Figure 1.
  • FIG. 3 is a two-dimensional structural diagram of a second embodiment of a terahertz wave pulse amplitude modulation signal and an optical pulse amplitude modulation signal conversion amplifier.
  • Rectangular cavity 1 Absorption cavity 2
  • Metal block 3 Vertical waveguide 4
  • Horizontal waveguide 5 Metal film 6
  • Metal film 7 Metal film 8 Terahertz wave 100
  • Horizontally transmitted reference light 200
  • FIG. 4 is a schematic view of the three-dimensional structure shown in FIG.
  • Figure 5 is a graph showing the relationship between signal light output power and terahertz wave input power.
  • Figure 6 is a data fit of the signal light output power.
  • Fig. 7 is a graph showing an output waveform of a power of a terahertz pulse wave of 0.5 nW in the first embodiment.
  • Fig. 8 is a graph showing an output waveform of a power of a terahertz pulse wave of 1 nW in the first embodiment.
  • Fig. 9 is a graph showing an output waveform of a power of a terahertz pulse wave of 1.2 nW in the first embodiment.
  • Fig. 10 is a graph showing an output waveform of a power of a terahertz pulse wave of 0.5 nW in the second embodiment.
  • Fig. 11 is a graph showing an output waveform of a power of a terahertz pulse wave of 1 nW in the second embodiment.
  • Fig. 12 is a graph showing an output waveform of a power of a terahertz pulse wave of 1.2 nW in the second embodiment.
  • the conversion amplifier of the present invention comprises a rectangular cavity 1, an absorption cavity 2 (terahertz wave absorption cavity), a metal block 3, and a vertical a waveguide 4, a horizontal waveguide 5, metal films 6, 7, 8, a terahertz wave 100, a horizontally propagating reference light 200 (surface plasmon); a rectangular cavity 1 at the input end of the terahertz pulse wave, the rectangle
  • the substance in the cavity 1 is a substance having high transmittance for controlling light; the material having high transmittance is silicon, germanium or gallium arsenide, the width of the rectangular cavity is in the range of 150 nm to 500 nm; the wavelength of the terahertz wave is the amplitude of the loading pulse.
  • the terahertz wave of the signal, the terahertz wave itself is a modulated signal, which is the input signal of the system; the center wavelength of the signal light is half wavelength of the 780 nm band and the spectrum signal of 20 nm is used, and the center wavelength of the terahertz pulse wave is 3 ⁇ m; the terahertz pulse wave
  • the period of the elapsed period is T, and the pulse width of the pulse width is modulated by amplitude modulation.
  • the period of the modulated terahertz pulse wave is T, the same pulse width is t, the period T is 0.1 ⁇ s-3ms, and t is T.
  • the period T of the pulse wave is 3 ms, and the pulse width t is 1 ms.
  • the reference light is laser or other coherent light, and the absorption chamber 2 is connected to the vertical waveguide 4.
  • the material in the absorption chamber 2 (terahertz pulse absorption chamber) is a substance having a high absorption coefficient and a high thermal expansion coefficient.
  • the high expansion coefficient material adopts alcohol;
  • the absorption cavity 2 (terahertz wave absorption cavity) adopts a circular cavity with a radius R and a cross-sectional area of 502655 nm 2 ;
  • the metal block 3 is disposed in the vertical waveguide 4 and can be moved
  • the length of the moving metal block 3 is in the range of 80 nm to 150 nm, and the length is preferably 125 nm.
  • the distance s of the movable metal block 3 from the horizontal waveguide 5 is in the range of 0 nm to 150 nm, and is determined by the position of the metal block 3,
  • the metal block 3 is made of gold or silver, preferably silver;
  • the vertical waveguide 4 is connected to the horizontal waveguide 5, and the vertical waveguide 4 and the horizontal waveguide 5 are waveguides of the MIM structure, that is, the waveguide of the MIM structure is a metal-insulator-metal structure.
  • the metal is made of gold or silver, the metal is made of silver; the insulator is made of transparent non-conductive material; the transparent non-conductive material is air, silicon dioxide or silicon; the vertical waveguide 4 is located at the upper end of the horizontal waveguide 5; the width of the vertical waveguide 4 is b 30nm-6
  • the value range of 0 nm is optimal with a width of 35 nm, and the length M of the vertical waveguide 4 is 200 nm or more, and the length of 300 nm is optimal; the distance a from the left edge of the vertical waveguide 4 to the left edge of the metal film 6 is 350 nm to 450 nm.
  • the range of values is best at 400 nm.
  • the width d of the horizontal waveguide 5 is in the range of 30 nm to 100 nm, and the width is preferably 50 nm.
  • the medium in the horizontal waveguide 5 is air; the distance from the lower edge of the horizontal waveguide 5 to the edge of the metal film 6 is greater than 150 nm. range.
  • the present invention heats the alcohol in the absorption chamber by the terahertz wave, causing it to expand to push the movable metal block 3 to move toward the horizontal waveguide 5 to change the length of the air segment in the vertical waveguide 4, thereby changing the transmittance of the reference light;
  • the metal block 3 is moved downward to change the distance to the horizontal waveguide 5, and the transmittance of the signal light changes accordingly.
  • the output power of the reference light is in one-to-one correspondence with the power of the input terahertz pulse wave, whereby the reference light can be modulated into an optical pulse amplitude signal.
  • the terahertz pulse amplitude modulation signal is completely converted into an optical pulse amplitude modulation signal, and the modulation signal is amplified.
  • the intensity information of the obtained optical pulse can be converted into an electrical signal, which is very convenient for information processing.
  • the metal block 3 will return to the initial pressure balance position, facilitating the arrival of the next pulse.
  • the alcohol of the present invention follows the Beer-lambert law for terahertz wave absorption, and the absorption coefficient is defined as follows: a monochromatic laser having an intensity of I 0 and a frequency of ⁇ , after passing through an absorption medium having a length of l, the light intensity at the exit end is I,
  • k is defined as the absorption coefficient. It can be seen from the formula that the absorption of terahertz wave energy by the alcohol solution is related to the length of light in the alcohol medium. Therefore, in order to allow the energy of the terahertz pulse wave to be absorbed by the alcohol as much as possible, it must be increased. The propagation distance of the wave in the alcohol finally determines the incident end of the terahertz pulse wave at the upper end of the absorption chamber 2. When the terahertz pulse wave is incident on the alcohol region, the alcohol absorbs the energy of the terahertz wave, the temperature rises and the volume becomes larger, and then the metal block 3 is pushed to move, thereby changing the transmittance of the signal light. Finally, the information of the terahertz pulse amplitude modulation signal is converted into an optical pulse amplitude modulation signal.
  • the conversion amplifier of the present invention comprises a rectangular cavity 1, an absorption cavity 2 (terahertz wave absorption cavity), a metal block 3, and a vertical waveguide. 4.
  • the substance in 1 is a substance with high transmittance for controlling light; the material with high transmittance is silicon, germanium or gallium arsenide, the width of rectangular cavity 1 is optional from 150 nm to 500 nm; the wavelength of terahertz wave 100 is loading pulse.
  • the terahertz wave of the amplitude signal, the terahertz wave itself is the modulated signal, that is, the input signal of the system;
  • the center wavelength of the signal light is a spectral signal with a half-width of 20 nm in the 780 nm band, and the center wavelength of the terahertz pulse wave is 3 ⁇ m;
  • the terahertz pulse The period of the wave passing is T, and the pulse width of the pulse width is modulated by amplitude modulation.
  • the period of the modulated terahertz pulse wave is T, the pulse width is t, the period T is 0.1 ⁇ s-3ms, and t is T.
  • terahertz Red wave cycle T using 3ms, t is the pulse width of 1ms.
  • the reference light is laser or other coherent light
  • the absorption chamber 2 is connected to the vertical waveguide 4.
  • the substance in the absorption chamber 2 (the terahertz wave absorption chamber) is a substance having a high absorption coefficient for the terahertz wave and a high thermal expansion coefficient.
  • the material with high expansion coefficient is alcohol
  • the absorption chamber 2 (terahertz wave absorption chamber) is hexagonal
  • the side length is r
  • the cross-sectional area thereof is 502655 nm 2
  • the metal block 3 is disposed in the vertical waveguide 4 and can be moved.
  • the length m of the moving metal block 3 is in the range of 80 nm to 150 nm, and the length of the movable metal block 3 is preferably 125 nm.
  • the distance s of the movable metal block 3 from the horizontal waveguide 5 is in the range of 0 nm to 150 nm, and is determined by the position of the metal block 3,
  • the metal block 3 is made of gold or silver, preferably silver; the vertical waveguide 4 is connected to the horizontal waveguide 5, and the vertical waveguide 4 and the horizontal waveguide 5 are waveguides of the MIM structure, that is, the waveguide of the MIM structure is a metal-insulator-metal structure.
  • the metal is made of gold or silver
  • the insulator is made of transparent non-conductive material
  • the transparent non-conductive material is air, silicon dioxide or silicon
  • the metal is silver
  • the vertical waveguide 4 is located at the upper end of the horizontal waveguide 5; the vertical waveguide 4 is used for the width b 30nm-60nm
  • the range is preferably 35 nm width, the length M of the vertical waveguide 4 is 200 nm or more, and the length is 300 nm, and the distance a from the left edge of the vertical waveguide 4 to the left edge of the metal film 6 is taken from 350 nm to 450 nm.
  • the range of values is best at 400 nm.
  • the width d of the horizontal waveguide 5 is in the range of 30 nm to 100 nm, and the width is preferably 50 nm.
  • the medium in the horizontal waveguide 5 is air; the distance from the lower edge of the horizontal waveguide 5 to the edge of the metal film 6 is greater than 150 nm. range.
  • the invention heats the alcohol in the absorption chamber by controlling the light to expand and push the movable metal block 3 to move to the horizontal waveguide 5 to change the length of the air segment in the vertical waveguide 4, thereby changing the transmittance of the signal light; the movable metal The block 3 moves downward to change the distance to the horizontal waveguide 5, and the transmittance of the signal light changes accordingly.
  • the output power of the signal light is in one-to-one correspondence with the power of the input terahertz pulse wave, whereby the signal light can be modulated into an optical pulse amplitude signal.
  • the terahertz pulse amplitude modulation signal is completely converted into an optical pulse amplitude modulation signal, and the modulation signal is amplified.
  • the intensity information of the obtained optical pulse can be converted into an electrical signal, which is very convenient for information processing.
  • the metal block 3 will return to the initial pressure balance position to facilitate the arrival of the next pulse.
  • the time when the terahertz pulse wave is incident into the absorption cavity is the pulse width t of the terahertz pulse, that is, 1 ms.
  • the terahertz pulse wave heats the material in the absorption chamber for 1 ms.
  • the absorption of the terahertz wave is reflected multiple times, so the absorption of alcohol is completely absorbed.
  • the relationship between the output power of the signal light and the input power of the terahertz pulse wave can be simulated, wherein the power of the input signal laser is 1W.
  • the relationship between the output power of the signal light and the input power of the terahertz pulse wave can be simulated, wherein the power of the input signal laser is 1W.
  • the conversion amplification factor is found to be 0.4575 ⁇ 10 9 times.
  • the terahertz pulse amplitude signal is completely converted into the optical pulse amplitude signal, and the conversion is convenient for detecting the light.
  • the intensity information of the obtained optical pulse can be converted into an electrical signal. It is very convenient to handle the information.
  • the intensity of the incident terahertz pulse amplitude modulation signal is 0.5 nW.
  • the reference light output power at this time is 0.25 W by two-dimensional numerical simulation, as shown in Fig. 7.
  • the intensity of the incident terahertz pulse amplitude modulation signal is 1 nW.
  • the reference light output power at this time is 0.47 W by two-dimensional numerical simulation, as shown in Fig. 8.
  • the intensity of the incident terahertz pulse amplitude modulation signal is 1.2 nW.
  • the reference light output power at this time is 0.57 W by two-dimensional numerical simulation, as shown in Fig. 9.
  • the intensity of the incident terahertz pulse amplitude modulation signal is 0.5 nW.
  • the reference light output power at this time is 0.25W by two-dimensional numerical simulation.
  • the intensity of the incident terahertz pulse amplitude modulation signal is 1 nW.
  • the reference light output power at this time is 0.47 W by two-dimensional numerical simulation, as shown in Fig. 11.
  • the intensity of the incident terahertz pulse amplitude modulation signal is 1.2 nW.
  • the reference light output power at this time is 0.57 W by two-dimensional numerical simulation, as shown in Fig. 12 .

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器,它由一个矩形腔(1)、一个吸收腔(2)、金属块(3)、一个竖直波导(4)、一个水平波导(5)、三个金属膜(6、7、8)、一个太赫兹波(100)、一个水平传播的参考光(200)组成;所述矩形腔(1)位于太赫兹脉冲波输入端,所述太赫兹脉冲波的入射端位于吸收腔(2)的上端,所述吸收腔(2)和竖直波导(4)连接;所述金属块(3)设置于竖直波导(4)内,且可以移动;所述竖直波导(4)和水平波导(5)连接;所述参考光(200)的输出功率与输入太赫兹脉冲波的功率一一对应。该放大器将太赫兹脉冲幅度调制信号转化为光脉冲幅度调制信号,降低了太赫兹脉冲调幅信号的解调装置的成本。

Description

一种太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器 技术领域
本发明涉及一种纳米尺度的太赫兹波-光波变换放大器件,尤其涉及一种基于导体-绝缘体-导体(MIM)结构的SPP太赫兹波脉冲调幅信号直转光脉冲调幅变换放大器。
背景技术
近年来,人们对电磁波谱之中各个波段的研究都有了长足的进展,而唯独在太赫兹波段(0.1THz-10THz),人们的研究还欠缺。与目前的无线通信相比,太赫兹波段占据了更丰富,更宽阔的频谱资源,这使其在未来的宽带无线通信领域有着巨大的潜力和广阔的应用前景。调幅波通信是一种常用的通信方式。在太赫兹调幅通信***中,太赫兹调幅解调器是必不可少的器件。
目前在太赫兹波探测器的研究上已经取得进展,如热效应探测器、热敏电阻探测器、液氦冷却Si或者Ge热辐射测量仪、超导混频技术以及利用声子和电子散射冷却机制发展起来的热电子辐射计,这些技术可以对太赫兹波进行强度探测。利用频率基于远红外和微波之间的相干电磁脉冲作为探测源,再用光电导取样或自由空间的电光取样方法直接记录太赫兹辐射电场的振幅时间波形的太赫兹时域光谱技术既可以测得太赫兹波的振幅也可以得到相位信息。虽然这些技术各有所长,但是体积都过大,对工作环境的要求相当苛刻,且所得到的信号非常微弱,需要很高放大倍数的放大器,所以价格昂贵,不便 于实际应用。这就使得以传统的太赫兹波探测器为基础所构建的太赫兹调幅解调器体积过大,成本高,不利于实际应用。
基于表面等离子激元的波导却能突破衍射极限的限制,实现纳米尺度的光信息处理和传输。表面等离子激元是当电磁波入射到金属与介质分界面时,电磁波和金属表面的自由电子耦合形成的一种在金属表面传播的表面电磁波。根据表面等离子激元的性质,人们已经提出了很多基于表面等离子体结构的器件,例如滤波器、环形器、逻辑门、光开关等。这些器件在结构上都比较简单,非常便于光路集成。
发明内容
本发明的目的是克服现有技术的不足,提供一种便于集成的基于表面等离子激元波导的太赫兹波脉冲调幅信号与光脉冲调幅信号直接变换放大器。
为了解决上述存在的技术问题,本发明采用下述技术方案:
本发明的一种太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器由一个矩形腔、一个吸收腔、金属块、一个竖直波导、一个水平波导、三个金属膜、一个太赫兹波、一个水平传播的参考光组成;所述矩形腔位于太赫兹脉冲波输入端,所述太赫兹脉冲波的入射端位于吸收腔的上端,所述吸收腔和竖直波导连接;所述金属块设置于竖直波导内,且可以移动;所述竖直波导和水平波导连接;所述参考光的输出功率与输入太赫兹脉冲波的功率一一对应。
所述矩形腔内的物质为高透射率的物质。
所述高透射率的物质为硅、锗或砷化镓。
所述吸收腔内物质为高热膨胀系数的物质。
所述高膨胀系数的物质为酒精或水银。
所述吸收腔的形状为圆形、多边形、椭圆形或不规则形状。
所述金属为银。
所述水平波导5和竖直波导4为MIM结构的波导。
所述水平波导内的介质为空气。
所述太赫兹波为加载脉冲幅度信号的太赫兹波。
所述参考光为激光或相干光。
本发明的优点:
利用传统的光学探测器就可以将太赫兹波中的调制信号检测出来,将便于集成的基于表面等离子激元波导的太赫兹脉冲幅度调制信号直接转化为光脉冲幅度调制信号,极大降低了太赫兹脉冲调幅信号的解调装置的成本,具有广泛的应用价值。
由于光信号探测器的成本远小于太赫兹信号的探测成本,使***的制作成本大为降低,且在转换过程中调制信号被大量放大,不需要额外的信号放大器来放大探测信号,进一步降低了***的制作成本。
附图说明
图1是本发明太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器第一种实施例二维结构示意图。
图中:矩形腔1 吸收腔2 金属块3 竖直波导4 水平波导5 金属膜6 金属膜7 金属膜8 太赫兹波 水平传播的参考光200
图2是图1所示三维结构示意图。
图3是太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器第二种实施例二维结构示意图。
图中:矩形腔1 吸收腔2 金属块3 竖直波导4 水平波导5 金属膜6 金属膜7 金属膜8 太赫兹波100 水平传播的参考光200
图4是图3所示的三维结构示意图。
图5是信号光输出功率与太赫兹波输入功率之间的关系图。
图6是信号光输出功率的数据拟合图。
图7是实施例1中太赫兹脉冲波的功率为0.5nW的输出波形变换图。
图8是实施例1中太赫兹脉冲波的功率为1nW的输出波形变换图。
图9是实施例1中太赫兹脉冲波的功率为1.2nW的输出波形变换图。
图10是实施例2中太赫兹脉冲波的功率为0.5nW的输出波形变换图。
图11是实施例2中太赫兹脉冲波的功率为1nW的输出波形变换图。
图12是实施例2中太赫兹脉冲波的功率为1.2nW的输出波形变换图。
具体实施方式
本发明具体结构及其实施例结合附图说明如下。
如图1和2所示(图2中省略了结构上面的封装介质),本发明的变换放大器由一个矩形腔1、一个吸收腔2(太赫兹波吸收腔)、金属块3、一个竖直波导4、一个水平波导5、金属膜6、7、8、一个太赫兹波100、一个水平传播的参考光200(表面等离子激元)组成;矩形腔1位于太赫兹脉冲波输入端,该矩形腔1内的物质为对控制光有高透射率的物质;高透射率的物质采用硅、锗或砷化镓,矩形腔宽度l采用150nm-500nm取值范围;太赫兹波100为加载脉冲幅度信号的太赫兹波,该太赫兹波本身是调制信号,是***的输入信号;信号光中心波长采用780nm频带半宽采用20nm的频谱信号,太赫兹脉冲波的中心波长采用3μm;太赫兹脉冲波经过的周期为T,脉宽为t的脉冲波调幅调制过的,调制过的太赫兹脉冲波的周期为T,同样脉宽为t,周期T采用0.1μs-3ms取值范围,t采用T/4-T/2取值范围;太赫兹脉冲波的周期T采用3ms,脉宽t即为1ms。参考光采用激光或其他相干光,吸收腔2和竖直波导4连接,该吸收腔2(太赫兹脉冲吸收腔)内的物质为,太赫兹波具有高吸收系数,且高热膨胀系数的物质,所述高膨胀系数的物质采用酒精;吸收腔2(太赫兹波吸收腔)采用圆形腔,半径为R,其截面积采用502655nm2;金属块3设置于竖直波导4内,且可以移动,移动金属块3长度m采用80nm-150nm取值范围,以125nm长度为最佳,可移动金属块3距离水平波导5的距离s采用0nm-150nm距离范围,且由金属块3的位置确定,该金属块3采用金或银,最佳为银;竖直波导4和水平波导5连接,竖直波导4和水平波导5为MIM结构的波导,即MIM结构的波导为金属- 绝缘体-金属结构;金属采用金或银,金属采用银;绝缘体采用透明不导电的物质;透明不导电物质为空气、二氧化硅或硅;竖直波导4位于水平波导5的上端;竖直波导4宽度b采用30nm-60nm取值范围,以35nm宽度为最佳,竖直波导4长度M采用200nm以上值,以300nm长度为最佳;竖直波导4的左边缘到金属膜6左边缘的距离a采用350nm-450nm取值范围,以400nm为最佳。水平波导5宽度d采用30nm-100nm取值范围,以50nm宽度为最佳,水平波导5内的介质采用空气;水平波导5的下边缘距离金属膜6的边缘的距离c采用大于150nm的取值范围。
本发明通过太赫兹波来加热吸收腔内的酒精,使其膨胀推动可移动金属块3向水平波导5移动来改变竖直波导4内空气段的长度,从而改变参考光的透射率;可移动金属块3往下移动使其到水平波导5距离发生变化,信号光的透过率也就随之发生变化。参考光的输出功率与输入太赫兹脉冲波的功率一一对应,由此即可把参考光调制成光脉冲幅度信号。这样太赫兹脉冲幅度调制信号就完全转化为光脉冲幅度调制信号,并将调制信号放大。根据硅光探测器伏安特性又可将得到光脉冲的强度信息转化为电信号,这样非常便于信息的处理。当太赫兹波不通入吸收腔2时,在外界大气压的作用下,金属块3又会回到初始压力平衡的位置,方便下一个脉冲的到来。
本发明酒精的比热容是C=2.4×103J/Kg·℃,体积膨胀系数为αethanol=1.1×10-3/℃,在室温(20℃)时密度为ρ=0.789g/cm3。 银的线膨胀系数为αAg=19.5×10-6/℃,相比于酒精的膨胀系数,在相同温度变化下银的膨胀可以忽略不计。
本发明酒精对太赫兹波吸收遵循Beer-lambert定律,吸收系数的定义如下:强度为I0、频率为μ的单色激光,通过长度为l的吸收介质后,在出射端的光强为I,
I=I0e-kl            (1)
则k就定义为吸收系数,由公式可以看出酒精溶液对太赫兹波能量的吸收量和光在酒精介质中的长度有关,所以为了让太赫兹脉冲波的能量尽可能被酒精吸收,就必须增加波在酒精内的传播距离,最终确定太赫兹脉冲波的入射端在吸收腔2的上端。当太赫兹脉冲波入射到酒精区域,酒精吸收太赫兹波的能量,温度升高体积变大,然后推动金属块3移动,从而改变信号光的透过率。最终实现将太赫兹脉冲调幅信号的信息转化为光脉冲调幅信号。
如图3和4所示(图中省略了结构上面的封装介质),本发明的变换放大器由一个矩形腔1、一个吸收腔2(太赫兹波吸收腔)、金属块3、一个竖直波导4、一个水平波导5、金属膜6、7、8、一个太赫兹波100、一个水平传播的参考光200(表面等离子激元)组成;矩形腔1位于太赫兹脉冲波输入端,该矩形腔1内的物质为对控制光有高透射率的物质;高透射率的物质采用硅、锗或砷化镓,矩形腔1宽度l可选150nm-500nm取值范围;太赫兹波100为加载脉冲幅度信号 的太赫兹波,该太赫兹波本身是调制信号,即***的输入信号;信号光中心波长采用780nm频带半宽为20nm的频谱信号,太赫兹脉冲波的中心波长采用3μm;太赫兹脉冲波经过的周期为T,脉宽为t的脉冲波调幅调制过的,调制的太赫兹脉冲波的周期为T,同样脉宽为t,周期T采用0.1μs-3ms取值范围,t采用T/4-T/2取值范围;太赫兹脉冲波的周期T采用3ms,脉宽t即为1ms。参考光采用激光或其他相干光,吸收腔2和竖直波导4连接,该吸收腔2(太赫兹波吸收腔)内的物质为对太赫兹波具有高吸收系数且具有高热膨胀系数的物质,高膨胀系数的物质采用酒精,吸收腔2(太赫兹波吸收腔)为六边形,边长为r,其截面积采用502655nm2;金属块3设置于竖直波导4内,且可以移动,移动金属块3长度m采用80nm-150nm取值范围,以选用125nm长度最佳,可移动金属块3距离水平波导5的距离s采用0nm-150nm距离范围,且由金属块3的位置确定,该金属块3采用金或银,最佳为银;竖直波导4和水平波导5连接,竖直波导4和水平波导5为MIM结构的波导,即:MIM结构的波导为金属-绝缘体-金属结构;金属采用金或银,绝缘体采用透明不导电的物质;透明不导电物质为空气、二氧化硅或硅;金属为银;竖直波导4位于水平波导5的上端;竖直波导4宽度b采用30nm-60nm取值范围,以35nm宽度为最佳,竖直波导4长度M采用200nm以上的值,以300nm长度为最佳,采用竖直波导4的左边缘到金属膜6左边缘的距离a采用350nm-450nm取值范围,以400nm为最佳。水平波导5宽度d采用30nm-100nm取值范围,以50nm宽度为最佳,水平波导5内的介 质采用空气;水平波导5的下边缘距离金属膜6的边缘的距离c采用大于150nm的取值范围。
本发明通过控制光来加热吸收腔内的酒精,使其膨胀推动可移动金属块3向水平波导5移动来改变竖直波导4内空气段的长度,从而改变信号光的透射率;可移动金属块3往下移动使其到水平波导5距离发生变化,信号光的透过率也就随之发生变化。信号光的输出功率与输入太赫兹脉冲波的功率一一对应,由此即可把信号光调制成光脉冲幅度信号。这样太赫兹脉冲幅度调制信号就完全转化为光脉冲幅度调制信号,并将调制信号放大。根据硅光探测器伏安特性又可将得到光脉冲的强度信息转化为电信号,这样就非常便于信息的处理了。当太赫兹波不在通入吸收腔时,在外界大气压的作用下,金属块3又会回到初始压力平衡的位置,方便下一个脉冲的到来。
如图5所示,太赫兹脉冲波入射到吸收腔内的时间为太赫兹脉冲的脉宽t的大小,即为1ms。太赫兹脉冲波对吸收腔内的物质加热时间为1ms,对于圆形腔和多边形腔由于太赫兹波在其内会多次反射,所以酒精对其的吸收设为完全吸收。根据酒精的参数以及结构的参数可以仿真计算出信号光的输出功率与太赫兹脉冲波输入功率之间的关系图,其中输入信号激光的功率为1W。根据酒精的参数以及结构的参数可以仿真计算出信号光的输出功率与太赫兹脉冲波输入功率之间的关系图,其中输入信号激光的功率为1W。
如图6所示,太赫兹脉冲波输入功率在0.1nW-1.45nW时,输入和输出基本是线性关系。信号光输出功率的数据拟合图。将此段数据 处理并做线性拟合可以得到图6的关系图,即信号光输出功率的数据拟合图。调制转换器的放大系数定义如下:
Figure PCTCN2016106688-appb-000001
从数据和图,再根据公式2可以得出转换放大系数为0.4575×109倍。这样太赫兹脉冲幅度信号就完全转化为光脉冲幅度信号,而且转化这样对于光的探测是很方便的,根据硅光探测器伏安特性又可将得到光脉冲的强度信息转化为电信号,这样就非常便于信息的处理了。
实施例1
本实施例中,入射太赫兹脉冲调幅信号强度为0.5nW。采用图1、2结构,利用二维数值模拟得到此时的参考光输出功率为0.25W,如图7所示的波形变换图。
实施例2
本实施例中,入射太赫兹脉冲调幅信号强度为1nW。采用图1、2结构,利用二维数值模拟得到此时的参考光输出功率为0.47W,如图8所示的波形变换图。
实施例3
本实施例中,入射太赫兹脉冲调幅信号强度为1.2nW。采用图1、2结构,利用二维数值模拟得到此时的参考光输出功率为0.57W,如图9所示的波形变换图。
实施例4
本实施例中,入射太赫兹脉冲调幅信号强度为0.5nW。采用图3、4结构,利用二维数值模拟得到此时的参考光输出功率为0.25W,如 图10所示的波形变换图。
实施例5
本实施例中,入射太赫兹脉冲调幅信号强度为1nW。采用图3、4结构,利用二维数值模拟得到此时的参考光输出功率为0.47W,如图11所示的波形变换图。
实施例6
本实施例中,入射太赫兹脉冲调幅信号强度为1.2nW。采用图3、4结构,利用二维数值模拟得到此时的参考光输出功率为0.57W,如图12所示的波形变换图。
尽管本专利已介绍了一些具体的实例,只要不脱离本脱离本专利权利要求所规定的精神,各种更改对本领域技术人员来说是显而易见的。

Claims (11)

  1. 一种太兹波脉冲调幅信号与光脉冲调幅信号变换放大器,其特征在于:它由一个矩形腔、一个吸收腔、金属块、一个竖直波导、一个水平波导、三个金属膜、一个太赫兹波、一个水平传播的参考光组成;所述矩形腔位于太赫兹脉冲波输入端,所述太赫兹脉冲波的入射端位于吸收腔的上端,所述吸收腔和竖直波导连接;所述金属块设置于竖直波导内,且可以移动;所述竖直波导和水平波导连接;所述参考光的输出功率与输入太赫兹脉冲波的功率一一对应。
  2. 按照权利要求1所述的太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器,其特征在于:所述矩形腔内的物质为高透射率的物质。
  3. 按照权利要求2所述的太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器,其特征在于:所述高透射率的物质为硅、锗、砷化镓。
  4. 按照权利要求1所述的太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器,其特征在于:所述吸收腔内物质为高热膨胀系数的物质。
  5. 按照权利要求4所述的太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器,其特征在于:所述高膨胀系数的物质为酒精或水银。
  6. 按照权利要求1所述的太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器,其特征在于:所述吸收腔的形状为圆形、多边形、椭圆形或者不规则形状。
  7. 按照权利要求1所述的太赫兹波脉冲调幅信号与光脉冲调幅 信号变换放大器,其特征在于:所述金属为银。
  8. 按照权利要求1所述的太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器,其特征在于:所述水平波导和竖直波导为MIM结构的波导。
  9. 按照权利要求1所述的太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器,其特征在于:所述水平波导内的介质为空气。
  10. 按照权利要求1所述的太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器,其特征在于:所述太赫兹波为加载脉冲幅度信号的太赫兹波。
  11. 按照权利要求1所述的太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器,其特征在于:所述参考光为激光或相干光。
PCT/CN2016/106688 2016-02-15 2016-11-21 一种太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器 WO2017140149A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/485,113 US20200044406A1 (en) 2016-02-15 2016-11-21 Terahertz wave pulse amplitude modulation signal and optical pulse amplitude modulation signal conversion amplifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610085847.3A CN105572797B (zh) 2016-02-15 2016-02-15 一种太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器
CN201610085847.3 2016-02-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/485,113 Continuation US20200044406A1 (en) 2016-02-15 2016-11-21 Terahertz wave pulse amplitude modulation signal and optical pulse amplitude modulation signal conversion amplifier

Publications (1)

Publication Number Publication Date
WO2017140149A1 true WO2017140149A1 (zh) 2017-08-24

Family

ID=55883127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106688 WO2017140149A1 (zh) 2016-02-15 2016-11-21 一种太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器

Country Status (3)

Country Link
US (1) US20200044406A1 (zh)
CN (1) CN105572797B (zh)
WO (1) WO2017140149A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572797B (zh) * 2016-02-15 2021-02-26 欧阳征标 一种太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器
CN105737975B (zh) * 2016-02-15 2021-04-30 欧阳征标 基于mim高灵敏度spp太赫兹探测器
CN105973844B (zh) * 2016-05-30 2019-03-22 成都曙光光纤网络有限责任公司 一种太赫兹波成像***
CN106092952B (zh) * 2016-05-30 2019-03-22 成都曙光光纤网络有限责任公司 一种中心遮挡装置
CN108736980B (zh) * 2017-04-20 2020-09-08 清华大学 一种太赫兹波通讯方法
CN107910734B (zh) * 2017-12-06 2023-12-08 中国工程物理研究院激光聚变研究中心 一种激光驱动的微波脉冲发射装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102096269A (zh) * 2011-01-18 2011-06-15 南京邮电大学 太赫兹表面等离子体波光学调制器及其调制方法
US20140001379A1 (en) * 2011-03-16 2014-01-02 Gwangju Institute Of Science And Technology Terahertz wave modulator based on hole-injection and -transfer
CN203444187U (zh) * 2013-08-20 2014-02-19 中国工程物理研究院流体物理研究所 一种全光控太赫兹强度调制器及太赫兹强度调制器
US20140183441A1 (en) * 2012-12-27 2014-07-03 Electronics And Telecommunications Research Institute Apparatus for generating/detecting terahertz wave using graphene and manufacturing method of the same
CN104267455A (zh) * 2014-10-08 2015-01-07 江南大学 基于矩形环共振腔与入射波导接桥的表面等离子体滤波器
CN104466617A (zh) * 2013-09-18 2015-03-25 中国科学院苏州纳米技术与纳米仿生研究所 太赫兹光源芯片、光源器件、光源组件及其制造方法
CN105572797A (zh) * 2016-02-15 2016-05-11 欧阳征标 一种太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728065A1 (en) * 2003-11-28 2006-12-06 Lumiscence A/S An examination system for examination of a specimen; sub-units and units therefore, a sensor and a microscope
US7400797B2 (en) * 2004-10-06 2008-07-15 Corning Incorporated Transverse closed-loop resonator
EP2017602B1 (en) * 2007-07-19 2014-02-26 Consejo Superior de Investigaciones Cientificas Interferometer and sensor based on bimodal optical waveguide and sensing method
CN101364517A (zh) * 2007-08-09 2009-02-11 李德杰 一种太赫兹波辐射源
US8327686B2 (en) * 2010-03-02 2012-12-11 Li-Cor, Inc. Method and apparatus for the photo-acoustic identification and quantification of analyte species in a gaseous or liquid medium
CN102590092B (zh) * 2012-03-07 2013-09-25 哈尔滨工业大学 用于激光吸收光谱技术的吸收光程延长的装置及方法
GB201218956D0 (en) * 2012-10-22 2012-12-05 Flow Technologies Ltd M Fluid sensor
CN103743498A (zh) * 2014-01-13 2014-04-23 南京工程学院 一种基于光强调制原理的光纤温度传感器
CN204116640U (zh) * 2014-10-08 2015-01-21 江南大学 基于矩形环共振腔与入射波导接桥的表面等离子体滤波器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102096269A (zh) * 2011-01-18 2011-06-15 南京邮电大学 太赫兹表面等离子体波光学调制器及其调制方法
US20140001379A1 (en) * 2011-03-16 2014-01-02 Gwangju Institute Of Science And Technology Terahertz wave modulator based on hole-injection and -transfer
US20140183441A1 (en) * 2012-12-27 2014-07-03 Electronics And Telecommunications Research Institute Apparatus for generating/detecting terahertz wave using graphene and manufacturing method of the same
CN203444187U (zh) * 2013-08-20 2014-02-19 中国工程物理研究院流体物理研究所 一种全光控太赫兹强度调制器及太赫兹强度调制器
CN104466617A (zh) * 2013-09-18 2015-03-25 中国科学院苏州纳米技术与纳米仿生研究所 太赫兹光源芯片、光源器件、光源组件及其制造方法
CN104267455A (zh) * 2014-10-08 2015-01-07 江南大学 基于矩形环共振腔与入射波导接桥的表面等离子体滤波器
CN105572797A (zh) * 2016-02-15 2016-05-11 欧阳征标 一种太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器

Also Published As

Publication number Publication date
CN105572797A (zh) 2016-05-11
CN105572797B (zh) 2021-02-26
US20200044406A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
WO2017140149A1 (zh) 一种太赫兹波脉冲调幅信号与光脉冲调幅信号变换放大器
Echtermeyer et al. Surface plasmon polariton graphene photodetectors
US10983047B2 (en) Imaging devices including dielectric metamaterial absorbers and related methods
Hsu et al. Graphene-based thermopile for thermal imaging applications
CN102096269B (zh) 太赫兹表面等离子体波光学调制器及其调制方法
US9933310B2 (en) Graphene-based infrared bolometer
Barzegar-Parizi et al. Dynamically switchable sub-THz absorber using VO 2 metamaterial suitable in optoelectronic applications
Ruan et al. Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials
US11099060B2 (en) Metal-insulator-metal high-sensitivity surface plasmon polariton terahertz wave detector
Bai et al. A terahertz photo-thermoelectric detector based on metamaterial absorber
Viti et al. Tailored nano-electronics and photonics with two-dimensional materials at terahertz frequencies
Zhong et al. Modulation of the absorption properties of a dual band metamaterial based on VO2 thin films
CN205176417U (zh) 一种宽带的中红外调制器
Lou et al. Highly sensitive light-induced thermoelastic spectroscopy oxygen sensor with co-coupling photoelectric and thermoelastic effect of quartz tuning fork
Singh et al. Terahertz photonics and optoelectronics of carbon-based nanosystems
Luo et al. Whispering-gallery mode resonance-assisted plasmonic sensing and switching in subwavelength nanostructures
CN105137619A (zh) 一种宽带的中红外调制器
Chen et al. A multi-band terahertz plasmonic absorber based on fan-like metasurface
Choi et al. Terahertz photonic applications of two-dimensional materials
CN106405735B (zh) 硅阵列结构的太赫兹波偏振分束器
Wang et al. Surface plasmons based terahertz modulator consisting of silicon–air–metal–dielectric–metal layers
Aghaei et al. Design of a novel THz metamaterial based on combination of different split-ring resonators
Ge et al. A thermocouple based on wideband hybrid metamaterial absorber for mid-infrared photo-thermoelectric detector
CN106094262A (zh) 一种电控太赫兹幅度调制器及其制造方法
Asgharian et al. Heat generation and light transmission in porous plasmonic nanostructures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23.10.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16890375

Country of ref document: EP

Kind code of ref document: A1