WO2017139996A1 - Procédé de préparation d'une tranche d'électrode de graphène/soufre dopée à l'azote/nanotube de carbone tridimensionnelle - Google Patents

Procédé de préparation d'une tranche d'électrode de graphène/soufre dopée à l'azote/nanotube de carbone tridimensionnelle Download PDF

Info

Publication number
WO2017139996A1
WO2017139996A1 PCT/CN2016/074195 CN2016074195W WO2017139996A1 WO 2017139996 A1 WO2017139996 A1 WO 2017139996A1 CN 2016074195 W CN2016074195 W CN 2016074195W WO 2017139996 A1 WO2017139996 A1 WO 2017139996A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode sheet
electrode slice
solution
sulfur
electrode
Prior art date
Application number
PCT/CN2016/074195
Other languages
English (en)
Chinese (zh)
Inventor
肖丽芳
钟玲珑
Original Assignee
肖丽芳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肖丽芳 filed Critical 肖丽芳
Priority to PCT/CN2016/074195 priority Critical patent/WO2017139996A1/fr
Publication of WO2017139996A1 publication Critical patent/WO2017139996A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the synthesis of nano materials, in particular to a preparation method of a cathode material for a lithium sulfur battery.
  • the lithium-sulfur battery is a battery system in which lithium metal is used as a negative electrode and elemental sulfur is used as a positive electrode.
  • Lithium-sulfur batteries have two discharge platforms (about 2.4V and 2.1V), but their electrochemical reaction mechanism is complicated. Lithium-sulfur batteries have the advantages of high specific energy (2600Wh/kg), high specific capacity (1675mAh/g), low cost, etc., and are considered to be promising new generation batteries.
  • problems such as low utilization rate of active materials, low cycle life and poor safety, which seriously restricts the development of lithium-sulfur batteries.
  • Elemental sulfur is an electron and ion insulator, and the room temperature conductivity is low (5 ⁇ 10 -30 S ⁇ cm -1 ). Since there is no ionic sulfur, it is used as The activation of the positive electrode material is difficult; (2) the high polylithium polysulfide Li 2 S n (8>n ⁇ 4) generated during the electrode reaction is easily dissolved in the electrolyte, forming a concentration difference between the positive and negative electrodes. Under the action of the concentration gradient, it migrates to the negative electrode, and the high poly lithium polysulfide is reduced by the lithium metal to the oligomeric lithium polysulfide.
  • the oligomeric lithium polysulfide aggregates at the negative electrode, eventually forming a concentration difference between the two electrodes, and then migrating to the positive electrode to be oxidized to a highly polylithium polysulfide. This phenomenon is known as the shuttle effect, which reduces the utilization of sulfur active substances.
  • insoluble Li 2 S and Li 2 S 2 are deposited on the surface of the lithium negative electrode, which further deteriorates the performance of the lithium-sulfur battery; (3) the final product of the reaction, Li 2 S, is also an electronic insulator, which is deposited on the sulfur electrode, and lithium slow ion mobility in the solid state lithium sulfide, the slow electrochemical reaction kinetics; different density (4) sulfur and Li 2 S final product when sulfur is expanded to about 79% of the volume of lithium, Li 2 easily lead The powdering of S causes safety problems in lithium-sulfur batteries.
  • the above-mentioned shortcomings restrict the development of lithium-sulfur batteries, which is also the key issue that needs to be solved in the research of lithium-sulfur batteries.
  • the technical problem to be solved by the present invention is to provide a three-dimensional structure lithium-sulfur battery cathode material, and directly prepare a lithium-sulfur battery positive electrode sheet, the method for preparing three-dimensional carbon materials including sulfur nanoparticles, carbon nanotubes, partial reduction Nitrogen-doped graphene, nano-sulfur particles deposited on carbon nanotubes and nitrogen-doped graphite
  • the three-dimensional surface formed by the olefin which improves the conductivity of sulfur and prevents the dissolution of polysulfide of the discharge product.
  • the invention provides a preparation process of a three-dimensional carbon nanotube/nitrogen-doped graphene/sulfur electrode sheet as follows:
  • Carbon nanotubes, graphite oxide, and polyacrylonitrile were added to N-methylpyrrolidone, and the mixture was uniformly stirred, and ultrasonically reacted for 30 to 120 minutes, and then the mixed slurry was applied onto an aluminum foil, and vacuum-dried to obtain an electrode sheet.
  • the obtained electrode sheet is placed in an ammonia-protected muffle furnace, and the temperature is slowly raised to 400-500 ° C at a rate of 3-5 ° C / min, and the reaction is carried out for 0.5-5 hours, and naturally cooled.
  • the mass ratio of the carbon nanotubes, graphene and polyacrylonitrile in the step (1) is 1:1.6-2.4:0.8-1.2, the ultrasonic reaction time is 30-120 minutes, the diameter of the carbon nanotubes is 20-100 nm, and the length is 1-20um;
  • the reaction gas is ammonia gas
  • the temperature rise rate of the muffle furnace is 3-5 ° C / min
  • the reaction temperature is 400-500 ° C
  • the reaction time is 0.5-5 hours
  • the reaction is naturally cooled.
  • the concentration of the Na 2 S 2 O 3 solution in the step (3) is 0.5-2 mol/L; the static moment of the electrode sheet inserted into the Na 2 S 2 O 3 solution is 30-60 minutes; the amount of hydrochloric acid added is just such that the pH of the solution is 6.5. -7.5.
  • the invention adopts the above technical solution, and has the advantages that the graphite oxide is reduced to graphene at a high temperature, and at the same time, nitrogen is still partially retained on the graphene, and the existence of the oxygen atom can be in the process of charging and discharging.
  • the lithium ion reaction provides energy, and on the other hand, the oxygen atoms are able to attract the movement of polysulfides and reduce the shuttle effect.
  • the preparation method comprises the steps of reducing graphite oxide, nitrogen doping and polyacrylonitrile ring forming to improve the reaction efficiency; (2) polyacrylonitrile between the graphene layer and the layer and The graphene and the carbon nanotubes undergo a ring-forming reaction and cross-link together, so that the one-dimensional carbon nanotubes and the two-dimensional graphene form a three-dimensional space, and then the sulfur is stored in the three-dimensional space by in situ reduction. (3) High-conductivity carbon nanotubes and graphene materials can effectively improve the electrical conductivity of the electrode sheets; (4) During the charging and discharging process, the three-dimensional structure is favorable for the lithium ions and electrons to shuttle in the multi-dimensional conduction path.
  • the fully reduced nitrogen-doped graphene contains a part of nitrogen atoms and oxygen atoms, which has an adsorption effect on sulfur, can effectively reduce the shuttle effect and improve the cycle life of the lithium-sulfur battery; 6)
  • the electrode sheet prepared by the invention can be directly used for the positive electrode of the lithium sulfur battery, and no need to add a conductive agent and a binder, thereby greatly reducing the cost of the electrode.
  • 1 is an SEM image of a three-dimensional carbon nanotube/nitrogen-doped graphene/sulfur electrode sheet prepared by the present invention.
  • Electrode preparation and performance test the prepared electrode sheet was used as the positive electrode, the lithium metal plate was used as the counter electrode, CEL GARD 2400 was used as the separator, and 1 mol/L of LiTFSI/DOL-DME (volume ratio 1:1) was used as the electrolyte, 1 mol/ L LiNO3 is an additive, assembled into a button-type battery in a filled glove box, and a constant current charge and discharge test is performed using a Land battery test system.
  • the charge and discharge voltage range is 1-3V, the current density is 1C, and the performance is shown in Table 1.
  • FIG. 1 is an SEM image of a positive electrode material prepared by the present invention. It can be seen from the figure that the positive electrode material has a large number of open three-dimensional pore-like structures, which can provide an ion transport channel and improve the electrical energy of the material. Chemical properties.

Abstract

<sb /> <sb /> <sb />Une tranche d'électrode de graphène/soufre dopée à l'azote/nanotube de carbone tridimensionnelle comprend les étapes suivantes : étape (1) : ajouter des nanotubes de carbone, de l'oxyde de graphite et du polyacrylonitrile à de la N-méthylpyrrolidone, effectuer un traitement par ultrasons, revêtir une feuille d'aluminium avec la suspension épaisse mixte, et effectuer un séchage sous vide pour obtenir une tranche d'électrode ; étape (2) : disposer la tranche d'électrode obtenue dans un four à moufle sous la protection d'ammoniac, chauffer à une température de 400 à 500 ℃, et refroidir naturellement ; et étape (3) : insérer complètement la tranche d'électrode obtenue à l'étape (2) dans une solution de Na2S2O3, et ajouter lentement par goutte à goutte de l'acide chlorhydrique à la solution jusqu'à ce que la valeur de PH de la solution atteigne 6,5-7,5, puis sortir la tranche d'électrode, et sécher la tranche d'électrode pour obtenir une plaque positive. La tranche d'électrode préparée peut être directement appliquée à l'électrode positive d'une batterie lithium-soufre sans ajouter d'agent conducteur ni de liant, ce qui réduit considérablement le coût de l'électrode.
PCT/CN2016/074195 2016-02-21 2016-02-21 Procédé de préparation d'une tranche d'électrode de graphène/soufre dopée à l'azote/nanotube de carbone tridimensionnelle WO2017139996A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074195 WO2017139996A1 (fr) 2016-02-21 2016-02-21 Procédé de préparation d'une tranche d'électrode de graphène/soufre dopée à l'azote/nanotube de carbone tridimensionnelle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074195 WO2017139996A1 (fr) 2016-02-21 2016-02-21 Procédé de préparation d'une tranche d'électrode de graphène/soufre dopée à l'azote/nanotube de carbone tridimensionnelle

Publications (1)

Publication Number Publication Date
WO2017139996A1 true WO2017139996A1 (fr) 2017-08-24

Family

ID=59625584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074195 WO2017139996A1 (fr) 2016-02-21 2016-02-21 Procédé de préparation d'une tranche d'électrode de graphène/soufre dopée à l'azote/nanotube de carbone tridimensionnelle

Country Status (1)

Country Link
WO (1) WO2017139996A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768240A (zh) * 2018-12-24 2019-05-17 岭南师范学院 一种Sb掺氮石墨烯复合材料及其制备方法和应用
WO2019246104A1 (fr) * 2018-06-19 2019-12-26 Sabic Global Technologies B.V. Matériaux carbonés poreux à base de graphène pour cathode au lithium-soufre
CN113346040A (zh) * 2021-05-19 2021-09-03 北京化工大学 一种柔性一体化锂硫电池正极材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280630A (zh) * 2011-07-04 2011-12-14 中国科学院过程工程研究所 一种硫-石墨烯复合正极材料及其制备方法
CN102832379A (zh) * 2012-09-29 2012-12-19 上海空间电源研究所 一种锂硫电池用正极材料的制备方法
WO2014164494A1 (fr) * 2013-03-11 2014-10-09 Board Of Regents, The University Of Texas System Nanocomposites de soufre-graphène hydroxylé pour des batteries rechargeables au lithium-soufre, et leurs procédés de fabrication
CN104752725A (zh) * 2015-03-16 2015-07-01 山东玉皇新能源科技有限公司 一种高容量石墨烯锂硫电池正极材料及其制备方法
CN105244476A (zh) * 2014-06-11 2016-01-13 中国科学院苏州纳米技术与纳米仿生研究所 氮掺杂石墨烯包覆纳米硫正极复合材料、其制法及应用
CN105322132A (zh) * 2014-07-31 2016-02-10 中国科学院上海硅酸盐研究所 一种具有多功能弹性保护层的锂硫电池正极
CN105609736A (zh) * 2016-02-21 2016-05-25 钟玲珑 一种三维碳纳米管/氮掺杂石墨烯/硫电极片的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280630A (zh) * 2011-07-04 2011-12-14 中国科学院过程工程研究所 一种硫-石墨烯复合正极材料及其制备方法
CN102832379A (zh) * 2012-09-29 2012-12-19 上海空间电源研究所 一种锂硫电池用正极材料的制备方法
WO2014164494A1 (fr) * 2013-03-11 2014-10-09 Board Of Regents, The University Of Texas System Nanocomposites de soufre-graphène hydroxylé pour des batteries rechargeables au lithium-soufre, et leurs procédés de fabrication
CN105244476A (zh) * 2014-06-11 2016-01-13 中国科学院苏州纳米技术与纳米仿生研究所 氮掺杂石墨烯包覆纳米硫正极复合材料、其制法及应用
CN105322132A (zh) * 2014-07-31 2016-02-10 中国科学院上海硅酸盐研究所 一种具有多功能弹性保护层的锂硫电池正极
CN104752725A (zh) * 2015-03-16 2015-07-01 山东玉皇新能源科技有限公司 一种高容量石墨烯锂硫电池正极材料及其制备方法
CN105609736A (zh) * 2016-02-21 2016-05-25 钟玲珑 一种三维碳纳米管/氮掺杂石墨烯/硫电极片的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019246104A1 (fr) * 2018-06-19 2019-12-26 Sabic Global Technologies B.V. Matériaux carbonés poreux à base de graphène pour cathode au lithium-soufre
CN109768240A (zh) * 2018-12-24 2019-05-17 岭南师范学院 一种Sb掺氮石墨烯复合材料及其制备方法和应用
CN109768240B (zh) * 2018-12-24 2021-01-29 岭南师范学院 一种Sb掺氮石墨烯复合材料及其制备方法和应用
CN113346040A (zh) * 2021-05-19 2021-09-03 北京化工大学 一种柔性一体化锂硫电池正极材料及其制备方法

Similar Documents

Publication Publication Date Title
Fang et al. Polysulfide immobilization and conversion on a conductive polar MoC@ MoOx material for lithium-sulfur batteries
Zhou et al. Improving the performance of lithium–sulfur batteries by graphene coating
Xie et al. Preparation of three-dimensional hybrid nanostructure-encapsulated sulfur cathode for high-rate lithium sulfur batteries
Walle et al. Flower-like molybdenum disulfide/carbon nanotubes composites for high sulfur utilization and high-performance lithium–sulfur battery cathodes
WO2015188726A1 (fr) Matériau composite d&#39;anode à base de nano-soufre recouvert de graphène dopé à l&#39;azote et son procédé de préparation et son application
CN109037664B (zh) 一种N掺杂的碳包覆的Mo2C/C功能复合材料的制备方法及其在锂硫电池中的应用
Li et al. MoS2-decorated coaxial nanocable carbon aerogel composites as cathode materials for high performance lithium-sulfur batteries
WO2017139983A1 (fr) Procédé pour préparer un matériau d&#39;électrode positive ayant une structure dopée à l&#39;azote tridimensionnelle destiné à être utilisé dans une batterie au lithium-soufre
Wan et al. Do the bridging oxygen bonds between active Sn nanodots and graphene improve the Li-storage properties?
CN105762331A (zh) 一种三维硫掺杂石墨烯/硫复合材料电极片的制备方法
EP3493303A1 (fr) Matériau d&#39;électrode négative et son procédé de préparation, électrode négative et batterie lithium-ion entièrement solide
WO2017139984A1 (fr) Procédé de préparation d&#39;un matériau de cathode de batterie lithium-soufre dopé au soufre ayant une structure tridimensionnelle
WO2017139938A1 (fr) Procédé de préparation de matériau d&#39;électrode positive composite graphène/polypyrrole/soufre
Shen et al. Ionic liquid assist to prepare Si@ N-doped carbon nanoparticles and its high performance in lithium ion batteries
CN106920936B (zh) 一种高性能有机锂离子电池正极材料及其制备方法
CN106960954A (zh) 一种普鲁士蓝/石墨烯/硫复合材料的制备方法及应用
WO2017139991A1 (fr) Procédé de préparation de matériau d&#39;électrode positive de batterie lithium-soufre à sphères creuses de dioxyde de manganèse
Zhang et al. Preparation of ZnWO4/graphene composites and its electrochemical properties for lithium-ion batteries
WO2017139985A1 (fr) Procédé de préparation d&#39;un matériau d&#39;anode de batterie au lithium-soufre dopé au fluor ayant une structure tridimensionnelle
WO2017139982A1 (fr) Procédé de préparation pour un matériau d&#39;électrode positive de batterie au lithium-soufre ayant une structure tridimensionnelle, codopé au bore et à l&#39;azote
CN112038591A (zh) 镁硫电池及过渡金属硫化物/硫复合正极材料和复合方法
WO2017139941A1 (fr) Procédé de préparation d&#39;un matériau d&#39;anode composite de graphène/polyanthraquinone thioéther/sulfure
Wang et al. S, N co-doped carbon nanotubes decorated with ultrathin molybdenum disulfide nanosheets with highly electrochemical performance
WO2017139996A1 (fr) Procédé de préparation d&#39;une tranche d&#39;électrode de graphène/soufre dopée à l&#39;azote/nanotube de carbone tridimensionnelle
WO2017139986A1 (fr) Procédé de préparation d&#39;un matériau d&#39;anode de batterie lithium-soufre dopé au phosphore ayant une structure tridimensionnelle

Legal Events

Date Code Title Description
WA Withdrawal of international application
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE