WO2017139948A1 - 一种采用闭环控制技术的自动化热能动力装置 - Google Patents

一种采用闭环控制技术的自动化热能动力装置 Download PDF

Info

Publication number
WO2017139948A1
WO2017139948A1 PCT/CN2016/074036 CN2016074036W WO2017139948A1 WO 2017139948 A1 WO2017139948 A1 WO 2017139948A1 CN 2016074036 W CN2016074036 W CN 2016074036W WO 2017139948 A1 WO2017139948 A1 WO 2017139948A1
Authority
WO
WIPO (PCT)
Prior art keywords
chimney
heat recovery
waste heat
recovery mechanism
gas
Prior art date
Application number
PCT/CN2016/074036
Other languages
English (en)
French (fr)
Inventor
刘湘静
Original Assignee
刘湘静
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘湘静 filed Critical 刘湘静
Priority to PCT/CN2016/074036 priority Critical patent/WO2017139948A1/zh
Publication of WO2017139948A1 publication Critical patent/WO2017139948A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material

Definitions

  • the invention relates to an automated thermal power plant using closed loop control technology.
  • the thermal power device is a complete set of thermal equipment that generates thermal power by converting thermal energy into mechanical energy.
  • the source of thermal energy includes the heat energy released by burning fuel such as coal, oil, natural gas and oil shale.
  • the thermal power generation is the motive force generated by the thermal power device. To drive the generator to produce electricity.
  • the technical problem to be solved by the present invention is to provide an automatic thermal power device using closed-loop control technology in order to overcome the shortcomings of the prior art that the heat utilization accuracy is not high and the treatment measures for the exhaust gas impurities are lacking.
  • an automatic thermal power device using closed-loop control technology comprising a central control device and a gas turbine power generation mechanism, an exhaust gas treatment mechanism and a waste heat recovery mechanism sequentially connected, the gas turbine power generation mechanism
  • the utility model comprises an intake duct, a gas turbine generator set and a gas passage, wherein the gas turbine generator set comprises a transmission connected gas turbine and a first generator, and the intake duct and the gas passage are both connected to the gas turbine;
  • the waste heat recovery mechanism includes a waste heat recovery mechanism, a steam turbine power generation mechanism, and a condensing mechanism
  • the steam turbine power generation mechanism includes a drive connected steam turbine and a second power generator, the condensing mechanism and waste heat back
  • the receiving institutions are all connected to the steam turbine;
  • the exhaust gas treatment mechanism includes an exhaust damper, a first chimney and a second chimney, and the first chimney and the second chimney are both in communication with an exhaust damper, and the gas turbine power generating mechanism passes through an exhaust damper and a waste heat recovery mechanism Connected, the first chimney and the second chimney are provided with activated carbon;
  • the waste heat recovery mechanism is provided with a temperature sensor and a valve, and the temperature sensor and the valve are electrically connected to the central control device.
  • the air is diluted to a good extent, thereby reducing the pollution of the exhaust gas emissions, and the heights of the first chimney and the second chimney are both 15 meters.
  • the waste heat recovery mechanism in order to increase the efficiency of heat absorption by the waste heat recovery mechanism, by increasing the heat absorption length of the heat absorption pipe, the waste heat recovery mechanism includes a plurality of heat absorption pipes, and the heat absorption pipes are S-shaped.
  • the condensing mechanism includes a condensing mechanism and a deaerator, the deaerator is in communication with a steam turbine, and the deaerator is in communication with a waste heat recovery mechanism.
  • the condensing mechanism comprises a condensing duct and a condenser, the condensing duct is in communication with a steam turbine, the condenser is disposed in a condensing duct, and the condensing duct is in communication with the deaerator.
  • the central control device is a PLC
  • the central control device includes a central control system, a temperature detection module connected to the central control system, a valve control module, a first power generation module, and a second power generation.
  • a module, a wireless communication module and a working power module the temperature sensor is electrically connected to the temperature detecting module
  • the valve is electrically connected to the valve control module
  • the first generator is electrically connected to the first power generating module
  • the second power generating The machine is electrically connected to the second power generation module.
  • the solenoid valve has the characteristics of high control accuracy, and the valve is a solenoid valve.
  • said wireless communication module transmits a wireless signal via WIFI.
  • the waste heat recovery mechanism is disposed within the second chimney.
  • the invention has the beneficial effects that the automatic thermal power device adopting the closed loop control technology passes the temperature
  • the degree sensor accurately measures the temperature in the waste heat recovery mechanism, and then feedbacks the control valve to form a closed-loop control to ensure accurate control of the inflow speed, thereby achieving sufficient absorption of the remaining heat, and then passing through the steam turbine power generation mechanism,
  • the residual heat is fully utilized for power generation, thereby improving the utilization efficiency of the remaining heat; not only that, the gas grading treatment is realized by the cooperation of the exhaust damper, the first chimney and the second chimney, thereby improving
  • the reliability of the treatment of exhaust gas impurities reduces environmental pollution and improves the usability of the device.
  • FIG. 1 is a schematic structural view of an automatic thermal power device using closed loop control technology of the present invention
  • FIG. 2 is a system schematic diagram of an automated thermal power plant using closed loop control technology of the present invention
  • an automatic thermal power device adopting a closed-loop control technology includes a central control device and a gas turbine power generation mechanism, an exhaust gas treatment mechanism and a waste heat recovery mechanism, which are sequentially connected, and the gas turbine power generation mechanism includes an intake pipe.
  • the gas turbine power generation mechanism includes an intake pipe. 1.
  • the waste heat recovery mechanism includes a waste heat recovery mechanism 8, a steam turbine power generation mechanism, and a condensing mechanism
  • the steam turbine power generation mechanism includes a steam turbine 10 and a second power generator 11 that are connected to each other, and the condensing mechanism and the waste heat recovery mechanism 8 are both connected to the steam turbine 10. ;
  • the exhaust gas treatment mechanism includes an exhaust damper 6, a first chimney 5 and a second chimney 7, each of which is in communication with an exhaust damper 6 through which the gas turbine power generation mechanism passes
  • the damper 6 is connected to the waste heat recovery mechanism, and the first chimney 5 and the second chimney 7 are provided with activated carbon;
  • the waste heat recovery mechanism 8 is provided with a temperature sensor 15 and a valve 14, both of which are electrically connected to the central control unit.
  • the air is diluted to a good extent, thereby reducing the pollution of the exhaust gas emissions, and the heights of the first chimney 5 and the second chimney 7 are both 15 meters.
  • the waste heat recovery mechanism 8 includes a plurality of heat absorption pipes, and the heat absorption pipes are S-shaped.
  • the condensing mechanism includes a condensing mechanism and a deaerator 9, the deaerator 9 is in communication with the steam turbine 10, and the deaerator 9 is in communication with the waste heat recovery mechanism 8.
  • the condensing mechanism comprises a condensing duct 12 and a condenser 13, the condensing duct 12 is in communication with a steam turbine 10, and the condenser 13 is disposed in a condensing duct 12, the condensing duct 12 It is in communication with the deaerator 9.
  • the central control device is a PLC
  • the central control device includes a central control system 16, a temperature detecting module 17 connected to the central control system 16, a valve control module 18, and a first power generating module. 19.
  • the solenoid valve is characterized by high control accuracy, and the valve 14 is a solenoid valve.
  • said wireless communication module 21 transmits wireless signals via WIFI.
  • the waste heat recovery mechanism 8 is disposed in the second chimney 7.
  • the remaining heat enters the waste heat recovery mechanism for reuse.
  • the heat is first sufficiently absorbed by the waste heat recovery mechanism 8, wherein the heat absorption pipe in the waste heat recovery mechanism 8 is connected in an S-type to ensure the absorption length of the heat;
  • the control valve 14 is fed back to form a closed-loop control to ensure accurate control of the inflow speed, thereby achieving sufficient absorption of the remaining heat; and then entering the steam turbine power generation mechanism, The remaining heat is fully utilized for power generation, thereby improving the utilization efficiency of the remaining heat.
  • the gas enters the exhaust damper 6 in the exhaust gas treatment mechanism, and a large amount of impurity gas is discharged into the first chimney 5 by the exhaust damper 6, and the air is first filtered by the activated carbon in the first chimney 5. Then, the gas passing through the exhaust damper 6 enters into the second chimney 7, and then the second air is filtered through the activated carbon in the second chimney 7, and the gas is classified by the cooperation of the three. Thereby, the processing reliability of the exhaust gas impurities is improved, the pollution to the environment is reduced, and the utility of the device is improved.
  • the automatic thermal power device adopting the closed-loop control technology accurately measures the temperature in the waste heat recovery mechanism 8 through the temperature sensor 15, and then feedbacks the control valve 14 to form a closed-loop control to ensure the speed of the water inlet. Precise control is carried out to achieve sufficient absorption of residual heat, and then the residual heat is fully utilized for power generation through the steam turbine power generation mechanism, thereby improving the utilization efficiency of the remaining heat; not only that, through the exhaust damper 6, First chimney 5 and second chimney The cooperation of the three parties achieves the classification treatment of the gas, thereby improving the reliability of the treatment of the exhaust gas impurities, reducing the pollution to the environment, and improving the practicability of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种采用闭环控制技术的自动化热能动力装置,包括中央控制装置和依次连通的燃气轮机发电机构,废气处理机构和余热回收机构;燃气轮机发电机构包括进气管道(1),燃气轮机发电机组和燃气通道(4);燃气轮机发电机组包括传动连接的燃气轮机(2)和第一发电机(3);进气管道(1)和燃气通道(4)均与燃气轮机(2)连通;余热回收机构包括废热回收机构(8),汽轮机发电机构和冷凝机构;汽轮机发电机构包括传动连接的汽轮机(10)和第二发电机(11);冷凝机构和废热回收机构(8)均与汽轮机(10)连通;废气处理机构包括排气阻尼器(6),第一烟囱(5)和第二烟囱(7);第一烟囱(5)和第二烟囱(7)均与排气阻尼器(6)连通;燃气轮机发电机构通过排气阻尼器(6)与余热回收机构连通;第一烟囱(5)和第二烟囱(7)中均设有活性炭;废热回收机构(8)上设有温度传感器(15)和阀门(14),温度传感器(15)和阀门(14)均与中央控制装置电连接。该自动化热能动力装置实现了对气体的分级处理,从而提高了对废气杂质的处理可靠性,降低了对环境的污染。

Description

一种采用闭环控制技术的自动化热能动力装置 技术领域
本发明涉及一种采用闭环控制技术的自动化热能动力装置。
背景技术
热能动力装置为将热能转化为机械能而产生原动力的成套热力设备,热能的来源包括利用煤、石油、天然气、油页岩等燃料燃烧所释放的热能,火力发电就是利用热能动力装置所产生的原动力来驱动发电机生产电能。
在现有技术中,热能动力装置在燃气轮机组发电的过程中,热量被大量吸收,在后续对热量进行利用的过程中,由于对热量的利用精度不高,会造成产生的蒸汽量不够,导致后续发电效率低,降低了热能动力装置的发电效率;不仅如此,在热能动力装置工作过程中,由于缺少对废气杂质的处理措施,往往会造成大量的杂质排入空气中,造成空气污染。
发明内容
本发明要解决的技术问题是:为了克服现有技术对热量的利用精度不高且缺少对废气杂质的处理措施的不足,提供一种采用闭环控制技术的自动化热能动力装置。
本发明解决其技术问题所采用的技术方案是:一种采用闭环控制技术的自动化热能动力装置,包括中央控制装置和依次连通的燃气轮机发电机构、废气处理机构和余热回收机构,所述燃气轮机发电机构包括进气管道、燃气轮机发电机组和燃气通道,所述燃气轮机发电机组包括传动连接的燃气轮机和第一发电机,所述进气管道和燃气通道均与燃气轮机连通;
所述余热回收机构包括废热回收机构、汽轮机发电机构和冷凝机构,所述汽轮机发电机构包括传动连接的汽轮机和第二发电机,所述冷凝机构和废热回 收机构均与汽轮机连通;
所述废气处理机构包括排气阻尼器、第一烟囱和第二烟囱,所述第一烟囱和第二烟囱均与排气阻尼器连通,所述燃气轮机发电机构通过排气阻尼器与余热回收机构连通,所述第一烟囱和第二烟囱中均设有活性炭;
所述废热回收机构上设有温度传感器和阀门,所述温度传感器和阀门均与中央控制装置电连接。
作为优选,由于烟囱达到15米以后,空气稀释程度好,从而降低了废气排放的污染,所述第一烟囱和第二烟囱的高度均为15米。
作为优选,为了提高废热回收机构热量吸收的效率,通过提高吸热管道的吸热长度,所述废热回收机构包括若干吸热管道,所述吸热管道呈S型连接。
作为优选,所述冷凝机构包括凝汽机构和除氧器,所述除氧器与汽轮机连通,所述除氧器与废热回收机构连通。
作为优选,所述凝汽机构包括凝气管道和凝汽器,所述凝气管道与汽轮机连通,所述凝汽器设置在凝气管道内,所述凝气管道与除氧器连通。
作为优选,为了提高装置的智能化,所述中央控制装置为PLC,所述中央控制装置包括中央控制***、与中央控制***连接的温度检测模块、阀门控制模块、第一发电模块、第二发电模块、无线通讯模块和工作电源模块,所述温度传感器与温度检测模块电连接,所述阀门与阀门控制模块电连接,所述第一发电机与第一发电模块电连接,所述第二发电机与第二发电模块电连接。
作为优选,电磁阀具有控制精度高的特点,所述阀门为电磁阀。
作为优选,所述无线通讯模块通过WIFI传输无线信号。
作为优选,所述废热回收机构设置在第二烟囱内。
本发明的有益效果是,该采用闭环控制技术的自动化热能动力装置通过温 度传感器对废热回收机构中的温度进行精确测量,则再反馈控制阀门,形成闭环控制,保证对进水的速度进行精确控制,从而实现了对剩余热量的充分吸收,再通过汽轮机发电机构,对剩余热量在进行充分的利用发电,从而提高了对剩余热量的利用效率;不仅如此,通过排气阻尼器、第一烟囱和第二烟囱三者的配合,实现了对气体的分级处理,从而提高了对废气杂质的处理可靠性,降低了对环境的污染,提高了装置的实用性。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的采用闭环控制技术的自动化热能动力装置的结构示意图;
图2是本发明的采用闭环控制技术的自动化热能动力装置的***原理图;
图中:1.进气管道,2.燃气轮机,3.第一发电机,4.燃气通道,5.第一烟囱,6.排气阻尼器,7.第二烟囱,8.废热回收机构,9.除氧器,10.汽轮机,11.第二发电机,12.凝气管道,13.凝汽器,14.阀门,15.温度传感器,16.中央控制***,17.温度检测模块,18.阀门控制模块,19.第一发电模块,20.第二发电模块,21.无线通讯模块,22.工作电源模块。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
如图1和图2所示,一种采用闭环控制技术的自动化热能动力装置,包括中央控制装置和依次连通的燃气轮机发电机构、废气处理机构和余热回收机构,所述燃气轮机发电机构包括进气管道1、燃气轮机发电机组和燃气通道4,所述燃气轮机发电机组包括传动连接的燃气轮机2和第一发电机3,所述进气管道1和燃气通道4均与燃气轮机2连通;
所述余热回收机构包括废热回收机构8、汽轮机发电机构和冷凝机构,所述汽轮机发电机构包括传动连接的汽轮机10和第二发电机11,所述冷凝机构和废热回收机构8均与汽轮机10连通;
所述废气处理机构包括排气阻尼器6、第一烟囱5和第二烟囱7,所述第一烟囱5和第二烟囱7均与排气阻尼器6连通,所述燃气轮机发电机构通过排气阻尼器6与余热回收机构连通,所述第一烟囱5和第二烟囱7中均设有活性炭;
所述废热回收机构8上设有温度传感器15和阀门14,所述温度传感器15和阀门14均与中央控制装置电连接。
作为优选,由于烟囱达到15米以后,空气稀释程度好,从而降低了废气排放的污染,所述第一烟囱5和第二烟囱7的高度均为15米。
作为优选,为了提高废热回收机构8热量吸收的效率,通过提高吸热管道的吸热长度,所述废热回收机构8包括若干吸热管道,所述吸热管道呈S型连接。
作为优选,所述冷凝机构包括凝汽机构和除氧器9,所述除氧器9与汽轮机10连通,所述除氧器9与废热回收机构8连通。
作为优选,所述凝汽机构包括凝气管道12和凝汽器13,所述凝气管道12与汽轮机10连通,所述凝汽器13设置在凝气管道12内,所述凝气管道12与除氧器9连通。
作为优选,为了提高装置的智能化,所述中央控制装置为PLC,所述中央控制装置包括中央控制***16、与中央控制***16连接的温度检测模块17、阀门控制模块18、第一发电模块19、第二发电模块20、无线通讯模块21和工作电源模块22,所述温度传感器15与温度检测模块17电连接,所述阀门14与阀门控制模块18电连接,所述第一发电机3与第一发电模块19电连接,所述第 二发电机11与第二发电模块20电连接。
作为优选,电磁阀具有控制精度高的特点,所述阀门14为电磁阀。
作为优选,所述无线通讯模块21通过WIFI传输无线信号。
作为优选,所述废热回收机构8设置在第二烟囱7内。
该采用闭环控制技术的自动化热能动力装置中:燃气经过燃气轮机发电机构利用发电以后,剩余热量进入到余热回收机构中进行再次利用。为了提高对剩余热量的利用效率,首先经过废热回收机构8对热量进行充分吸收,其中废热回收机构8中的吸热管道呈S型连接,保证了对热量的吸收长度;同时通过温度传感器15对废热回收机构8中的温度进行精确测量,则再反馈控制阀门14,形成闭环控制,保证对进水的速度进行精确控制,从而实现了对剩余热量的充分吸收;随后进入到汽轮机发电机构中,对剩余热量在进行充分的利用发电,从而提高了对剩余热量的利用效率。
为了提高对废气杂质的处理,减少环境污染。首先气体进入到废气处理机构中的排气阻尼器6中,由排气阻尼器6将大量的杂质气体排放到第一烟囱5中,通过第一烟囱5中的活性炭对空气进行第一次过滤;随后经过排气阻尼器6后的气体由进入到第二烟囱7中,再通过第二烟囱7中的活性炭对空气进行第二次过滤,通过三者的配合,实现了对气体的分级处理,从而提高了对废气杂质的处理可靠性,降低了对环境的污染,提高了装置的实用性。
与现有技术相比,该采用闭环控制技术的自动化热能动力装置通过温度传感器15对废热回收机构8中的温度进行精确测量,则再反馈控制阀门14,形成闭环控制,保证对进水的速度进行精确控制,从而实现了对剩余热量的充分吸收,再通过汽轮机发电机构,对剩余热量在进行充分的利用发电,从而提高了对剩余热量的利用效率;不仅如此,通过排气阻尼器6、第一烟囱5和第二烟囱 7三者的配合,实现了对气体的分级处理,从而提高了对废气杂质的处理可靠性,降低了对环境的污染,提高了装置的实用性。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (9)

  1. 一种采用闭环控制技术的自动化热能动力装置,其特征在于,包括中央控制装置和依次连通的燃气轮机发电机构、废气处理机构和余热回收机构,所述燃气轮机发电机构包括进气管道(1)、燃气轮机发电机组和燃气通道(4),所述燃气轮机发电机组包括传动连接的燃气轮机(2)和第一发电机(3),所述进气管道(1)和燃气通道(4)均与燃气轮机(2)连通;
    所述余热回收机构包括废热回收机构(8)、汽轮机发电机构和冷凝机构,所述汽轮机发电机构包括传动连接的汽轮机(10)和第二发电机(11),所述冷凝机构和废热回收机构(8)均与汽轮机(10)连通;
    所述废气处理机构包括排气阻尼器(6)、第一烟囱(5)和第二烟囱(7),所述第一烟囱(5)和第二烟囱(7)均与排气阻尼器(6)连通,所述燃气轮机发电机构通过排气阻尼器(6)与余热回收机构连通,所述第一烟囱(5)和第二烟囱(7)中均设有活性炭;
    所述废热回收机构(8)上设有温度传感器(15)和阀门(14),所述温度传感器(15)和阀门(14)均与中央控制装置电连接。
  2. 如权利要求1所述的采用闭环控制技术的自动化热能动力装置,其特征在于,所述第一烟囱(5)和第二烟囱(7)的高度均为15米。
  3. 如权利要求1所述的采用闭环控制技术的自动化热能动力装置,其特征在于,所述废热回收机构(8)包括若干吸热管道,所述吸热管道呈S型连接。
  4. 如权利要求1所述的采用闭环控制技术的自动化热能动力装置,其特征在于,所述冷凝机构包括凝汽机构和除氧器(9),所述除氧器(9)与汽轮机(10)连通,所述除氧器(9)与废热回收机构(8)连通。
  5. 如权利要求4所述的采用闭环控制技术的自动化热能动力装置,其特征在于,所述凝汽机构包括凝气管道(12)和凝汽器(13),所述凝气管道(12) 与汽轮机(10)连通,所述凝汽器(13)设置在凝气管道(12)内,所述凝气管道(12)与除氧器(9)连通。
  6. 如权利要求1所述的采用闭环控制技术的自动化热能动力装置,其特征在于,所述中央控制装置为PLC,所述中央控制装置包括中央控制***(16)、与中央控制***(16)连接的温度检测模块(17)、阀门控制模块(18)、第一发电模块(19)、第二发电模块(20)、无线通讯模块(21)和工作电源模块(22),所述温度传感器(15)与温度检测模块(17)电连接,所述阀门(14)与阀门控制模块(18)电连接,所述第一发电机(3)与第一发电模块(19)电连接,所述第二发电机(11)与第二发电模块(20)电连接。
  7. 如权利要求1所述的采用闭环控制技术的自动化热能动力装置,其特征在于,所述阀门(14)为电磁阀。
  8. 如权利要求1所述的采用闭环控制技术的自动化热能动力装置,其特征在于,所述无线通讯模块(21)通过WIFI传输无线信号。
  9. 如权利要求1所述的采用闭环控制技术的自动化热能动力装置,其特征在于,所述废热回收机构(8)设置在第二烟囱(7)内。
PCT/CN2016/074036 2016-02-18 2016-02-18 一种采用闭环控制技术的自动化热能动力装置 WO2017139948A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074036 WO2017139948A1 (zh) 2016-02-18 2016-02-18 一种采用闭环控制技术的自动化热能动力装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074036 WO2017139948A1 (zh) 2016-02-18 2016-02-18 一种采用闭环控制技术的自动化热能动力装置

Publications (1)

Publication Number Publication Date
WO2017139948A1 true WO2017139948A1 (zh) 2017-08-24

Family

ID=59624766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074036 WO2017139948A1 (zh) 2016-02-18 2016-02-18 一种采用闭环控制技术的自动化热能动力装置

Country Status (1)

Country Link
WO (1) WO2017139948A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108979774A (zh) * 2018-09-14 2018-12-11 广东兴发铝业(河南)有限公司 铝型材加工过程中的热量回收利用装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1807860A (zh) * 2005-01-20 2006-07-26 华南理工大学 一种天然气冷热电联供的烟气低温端热利用***及其操作方法
JP3926048B2 (ja) * 1998-11-17 2007-06-06 株式会社東芝 コンバインドサイクル発電プラント
CN101463736A (zh) * 2007-12-20 2009-06-24 通用电气公司 用于起动联合循环电力***的方法和设备
CN104533623A (zh) * 2015-01-06 2015-04-22 中国科学院工程热物理研究所 一种部分氧化注蒸汽正逆燃气轮机联合循环
CN104819054A (zh) * 2015-05-17 2015-08-05 中国能源建设集团广东省电力设计研究院有限公司 一种分布式能源的余热利用***
CN105736142A (zh) * 2016-02-18 2016-07-06 刘湘静 一种采用闭环控制技术的自动化热能动力装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3926048B2 (ja) * 1998-11-17 2007-06-06 株式会社東芝 コンバインドサイクル発電プラント
CN1807860A (zh) * 2005-01-20 2006-07-26 华南理工大学 一种天然气冷热电联供的烟气低温端热利用***及其操作方法
CN101463736A (zh) * 2007-12-20 2009-06-24 通用电气公司 用于起动联合循环电力***的方法和设备
CN104533623A (zh) * 2015-01-06 2015-04-22 中国科学院工程热物理研究所 一种部分氧化注蒸汽正逆燃气轮机联合循环
CN104819054A (zh) * 2015-05-17 2015-08-05 中国能源建设集团广东省电力设计研究院有限公司 一种分布式能源的余热利用***
CN105736142A (zh) * 2016-02-18 2016-07-06 刘湘静 一种采用闭环控制技术的自动化热能动力装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108979774A (zh) * 2018-09-14 2018-12-11 广东兴发铝业(河南)有限公司 铝型材加工过程中的热量回收利用装置

Similar Documents

Publication Publication Date Title
CN201963341U (zh) 煤矿瓦斯综合应用***
CN102242647A (zh) 多台玻璃窑炉余热发电***
CN101639211A (zh) 浮法玻璃熔窑并联余热发电***
CN205717147U (zh) 一种全负荷脱硝与烟气余热利用及空预器防腐防堵耦合***
WO2017139948A1 (zh) 一种采用闭环控制技术的自动化热能动力装置
CN204283766U (zh) 太阳能与燃煤联合发电装置
CN201903037U (zh) 太阳能蒸汽发生装置
CN205638587U (zh) 一种火力发电厂尾气余热回收利用装置
CN102997691A (zh) 焦炉烟道废气转换为高品质废气的余热利用发电***及其方法
CN201448131U (zh) 考虑余热利用的太阳能热力发电装置
CN207454050U (zh) 一种利用余热循环发电装置
CN104315870B (zh) 矿热炉余热节能发电加热***
CN201417093Y (zh) 用于玻璃生产线的余热锅炉热回收***
CN205957740U (zh) 烧结环冷机废气余热综合回收利用***
CN204665225U (zh) 一种外置于烧结机大烟道旁的翅片管式余热锅炉***
CN203362239U (zh) 一种高炉煤气trt发电与蒸汽锅炉联合发电设备
CN201589537U (zh) 水泥窑余热发电中利用除氧给水加热凝结水的装置
CN103438722B (zh) 干法水泥生产线组合式低温余热发电***
CN203130171U (zh) 利用发电机组的烟气低温余热来发电的***
CN208184852U (zh) 一种一体式生物质发电器
CN104047647B (zh) 利用发电机组的烟气低温余热来发电的***
CN106091710A (zh) 烧结环冷机废气余热综合回收利用***
CN105736142A (zh) 一种采用闭环控制技术的自动化热能动力装置
CN205714466U (zh) 一种基于低浓度煤层气燃烧的外燃机发电装置
CN204678360U (zh) 一种锅炉烟气余热回收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890182

Country of ref document: EP

Kind code of ref document: A1