WO2017138581A1 - Powder comprising graft copolymer, and method for producing said powder - Google Patents

Powder comprising graft copolymer, and method for producing said powder Download PDF

Info

Publication number
WO2017138581A1
WO2017138581A1 PCT/JP2017/004643 JP2017004643W WO2017138581A1 WO 2017138581 A1 WO2017138581 A1 WO 2017138581A1 JP 2017004643 W JP2017004643 W JP 2017004643W WO 2017138581 A1 WO2017138581 A1 WO 2017138581A1
Authority
WO
WIPO (PCT)
Prior art keywords
graft copolymer
powder
polyvinyl alcohol
mass
formula
Prior art date
Application number
PCT/JP2017/004643
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 天野
栄一 石田
一彦 前川
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2017138581A1 publication Critical patent/WO2017138581A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F261/00Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00
    • C08F261/02Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols
    • C08F261/04Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols on to polymers of vinyl alcohol

Definitions

  • the present invention relates to a powder comprising a graft copolymer having high crystallinity and good water solubility, and having a softening temperature higher than that of a conventional vinyl alcohol resin, and a method for producing the same.
  • Polyvinyl alcohol resin is one of the few crystalline water-soluble polymers. Conventionally, it utilizes its excellent film properties (strength, oil resistance, film-forming property, oxygen gas barrier property, etc.) and water-solubility to emulsifiers and suspensions. Widely used in turbidity agents, surfactants, fiber processing agents, various binders, paper processing agents, adhesives, films and the like. The above physical properties are manifested due to the high crystallinity of the polyvinyl alcohol resin. On the other hand, the polyvinyl alcohol resin usually softens when the glass transition temperature (about 70 ° C.) is exceeded. Depending on the application, the temperature of the polyvinyl alcohol resin increases near the glass transition temperature, which causes a problem that the mechanical properties and barrier properties are drastically reduced.
  • Non-Patent Document 1 describes that a polyvinyl alcohol resin whose crystal size is controlled has a glass transition temperature higher than that of a normal polyvinyl alcohol resin.
  • the crystallinity is greatly reduced by such control.
  • a method of chemically introducing other components into polyvinyl alcohol is used for functionalizing the polyvinyl alcohol resin.
  • a method of introducing other components by copolymerization, a method of dissolving a polyvinyl alcohol resin in a solvent and then modifying the solution in a solution are generally known.
  • the crystallization temperature decreases in proportion to the content of the other components, that is, the crystallinity decreases. It has been known.
  • Non-Patent Document 2 describes a graft copolymer gel obtained by graft polymerization of N-isopropylacrylamide on a polyvinyl alcohol main chain.
  • the graft copolymer gel described in Non-Patent Document 2 only discusses the relationship between the swellability and the amount of methylene blue released, and does not describe any thermal properties of the graft copolymer.
  • the graft copolymer gel was poor in water solubility.
  • the present invention has been made in order to solve the above problems, and has a powder comprising a graft copolymer having high crystallinity and good water solubility and having a softening temperature higher than that of a conventional vinyl alcohol resin, and It aims at providing the manufacturing method.
  • the present inventors have introduced a predetermined amount of a graft chain having an amide group in the main chain of polyvinyl alcohol, thereby maintaining high crystallinity and good water solubility.
  • the present inventors have found that it is possible to increase the glass transition temperature and completed the present invention.
  • a powder comprising a graft copolymer
  • the graft copolymer has a main chain composed of polyvinyl alcohol and a side chain composed of a polymer composed of repeating units represented by the following formula (I) or formula (II):
  • the content of the repeating unit represented by the following formula (I) or formula (II) with respect to all monomer units in the graft copolymer is 0.2 to 20 mol%
  • R1 represents a hydrogen atom or a methyl group
  • R2 and R3 each independently represent a hydrogen atom, or an alkyl group which may have a hydroxyl group or acyl group having 1 to 10 carbon atoms.
  • R2 and R3 may be connected to each other to form a ring.
  • R 1 is the same as in the above formula (I).
  • R4 and R5 each independently represent a hydrogen atom, or an alkyl group which may have a hydroxyl group having 1 to 10 carbon atoms or an acyl group.
  • R4 and R5 may be connected to each other to form a ring.
  • the graft copolymer contained in the powder made of the graft copolymer of the present invention (hereinafter sometimes abbreviated as the powder of the present invention) has high crystallinity and good water solubility, and is a conventional vinyl alcohol.
  • the softening temperature is higher than that of the base resin. Therefore, taking advantage of such characteristics, the powder of the present invention is suitably used for various applications. Moreover, according to the manufacturing method of this invention, the powder of this invention can be manufactured efficiently.
  • FIG. 6 is a graph plotting glass transition temperature against modification amount in the copolymers of Examples 1 to 9, 11 to 16, and Comparative Examples 4, 5, and 7.
  • FIG. 4 is a graph plotting crystal melting temperature against modification amount in the copolymers of Examples 1 to 9, 11 to 16, and Comparative Examples 4, 5, and 7.
  • Example 19 and Example 20 it is the figure which plotted the torque with respect to kneading
  • the present invention is a powder comprising a graft copolymer, wherein the graft copolymer is composed of a main chain comprising polyvinyl alcohol and a repeating unit represented by the following formula (I) or formula (II):
  • the content of the repeating unit represented by the following formula (I) or formula (II) with respect to all monomer units in the graft copolymer is 0.2 to 20 mol%.
  • the average particle size is 20 to 1,000 ⁇ m, and 2 g or more can be completely dissolved in 100 g of water.
  • R1 represents a hydrogen atom or a methyl group
  • R2 and R3 each independently represent a hydrogen atom, or an alkyl group which may have a hydroxyl group or acyl group having 1 to 10 carbon atoms.
  • R2 and R3 may be connected to each other to form a ring.
  • R 1 is the same as in the above formula (I).
  • R4 and R5 each independently represent a hydrogen atom, or an alkyl group which may have a hydroxyl group having 1 to 10 carbon atoms or an acyl group. R4 and R5 may be connected to each other to form a ring. ]
  • the side chain polymer may be composed of at least one of the repeating unit represented by the above formula (I) and the repeating unit represented by the above formula (II).
  • R1 represents a hydrogen atom or a methyl group. From the viewpoint of further improving water solubility, R 1 is preferably a hydrogen atom.
  • R2 and R3 each independently represent a hydrogen atom, or an alkyl group that may have a hydroxyl group or acyl group having 1 to 10 carbon atoms.
  • the carbon number of the alkyl group means a carbon atom in a substituent (acyl group).
  • the alkyl group preferably has 5 or less carbon atoms.
  • the acyl group contained in the alkyl group include an acetyl group, a propanoyl group, and a butanoyl group.
  • R2 and R3 may be connected to each other to form a ring.
  • the total number of carbon atoms contained in R2 and R3 needs to be 1-10.
  • N-vinylformamide, N-vinylacetamide, N-methylvinylacetamide, N-vinylpyrrolidone and N-vinylcaprolactam are preferable.
  • N-vinylformamide, N-vinylacetamide and N-vinylpyrrolidone are more preferable.
  • N-vinylformamide and N-vinylacetamide are particularly preferable, and N-vinylacetamide is most preferable.
  • the repeating unit represented by the above formula (I) may be used alone or in combination of two or more, but the former is preferred.
  • R1 is the same as the above formula (I).
  • R4 and R5 each independently represent a hydrogen atom, or an alkyl group which may have a hydroxyl group having 1 to 10 carbon atoms or an acyl group.
  • the carbon number of the alkyl group means a carbon atom in a substituent (acyl group).
  • the alkyl group preferably has 5 or less carbon atoms.
  • the acyl group contained in the alkyl group include an acetyl group, a propionyl group, and a butyryl group.
  • R4 and R5 may be connected to each other to form a ring.
  • the total number of carbon atoms contained in R4 and R5 needs to be 1-10.
  • the molecular motion of the amorphous part is suppressed by the interaction caused by hydrogen bonding between the amide group in the side chain and the hydroxyl group of the polyvinyl alcohol main chain, so that the glass transition The temperature rises.
  • the above-mentioned formula (I) or A polymer composed of repeating units represented by the formula (II) is introduced as a side chain.
  • the polymer introduced as a side chain in this way is difficult to inhibit the crystallinity of the vinyl alcohol moiety, it is represented by the above formula (I) or formula (II) as shown in the following examples.
  • the decrease in crystallization temperature with respect to the content of repeating units is small. Therefore, it is possible to achieve both a high glass transition temperature and high crystallinity.
  • the graft copolymer has a side chain composed of a polymer composed of a repeating unit represented by the above formula (I).
  • a graft copolymer having a side chain made of such a polymer has a particularly high glass transition temperature.
  • the reason why the glass transition temperature is improved by the structure represented by the formula (I) is unclear, but the main chain of the polymer in which the nitrogen atom of the amide group in the repeating unit constitutes the side chain of the graft copolymer.
  • the glass transition temperature is considered to be improved.
  • the polymer composed of the repeating unit represented by the above formula (I) in the graft copolymer is selected from the group consisting of poly N-vinylformamide, poly N-vinylacetamide, and poly N-vinylpyrrolidone. More preferably, it is at least one, more preferably at least one of poly N-vinylformamide and poly N-vinylacetamide, and particularly preferably polyN-vinylacetamide.
  • the content of the repeating unit represented by the above formula (I) or (II) with respect to all the monomer units in the graft copolymer is 0.2 to 20 mol%.
  • the content is preferably 0.3 mol% or more, more preferably 0.5 mol% or more.
  • the content of the repeating unit exceeds 20 mol%, the crystallinity is lowered, and not only physical properties such as mechanical strength and barrier properties are reduced when formed into a molded product, but also one feature of the present invention. Some water solubility may also deteriorate.
  • the said content becomes like this.
  • Preferably it is 15 mol% or less, More preferably, it is 13 mol% or less.
  • the content is preferably 10 mol% or less, more preferably 7 mol% or less.
  • the number of repeating units represented by the above formula (I) or formula (II) in the polymer constituting the side chain is 2 or more from the viewpoint of increasing the intermolecular binding force due to the hydrogen bond of the amide group. Is preferred.
  • the molecular weight of the graft copolymer is preferably a number average molecular weight of 5,000 to 250,000. When the number average molecular weight of the graft copolymer is less than 5,000, the mechanical strength when formed into a molded product may be lowered.
  • the number average molecular weight is more preferably 10,000 or more, and further preferably 15,000 or more.
  • the stability of the solution viscosity may be lowered, or the melt viscosity at the time of thermoforming may be increased. is there.
  • the number average molecular weight is more preferably 200,000 or less, and further preferably 150,000 or less.
  • the number average molecular weight of the graft copolymer in the present invention means a value measured by a gel permeation chromatography (GPC) method using polyethylene oxide and polyethylene glycol as standard substances and an aqueous column as a column.
  • GPC gel permeation chromatography
  • the glass transition temperature of the graft copolymer is preferably 80 ° C. or higher. By having such a glass transition temperature, the softening temperature of the graft copolymer is increased, and there is an advantage that the molded product can be used at a higher temperature. Meanwhile, the glass transition temperature of the graft copolymer is preferably 120 ° C. or lower. If the glass transition temperature exceeds 120 ° C., the crystallinity of the graft copolymer may be insufficient.
  • the crystal melting temperature of the graft copolymer is preferably 200 ° C. or higher. By having such a crystal melting temperature, excellent mechanical strength and high barrier properties are exhibited. On the other hand, the crystal melting temperature of the graft copolymer is preferably 250 ° C. or lower.
  • the powder of the present invention may contain components other than the graft copolymer as long as the effects of the present invention are not impaired.
  • examples of other components include light stabilizers and antioxidants.
  • the content of other components in the powder is preferably 5% by mass or less, more preferably 1% by mass or less.
  • the total content of alkali metal and alkaline earth metal in the powder of the present invention is preferably 0.5% by mass or less.
  • the thermal stability of the amide group in the side chain of the graft copolymer is improved, and the heat resistance of the graft copolymer is further improved. . Therefore, when the powder of the present invention is used for thermoforming or the like, coloring of the obtained molded product can be prevented, and thermal decomposition of the graft copolymer is suppressed, and mechanical strength is further improved.
  • the total content of alkali metal and alkaline earth metal is more preferably 0.3% by mass or less, and still more preferably 0.1% by mass or less.
  • the thermal decomposition temperature of the powder of the present invention is preferably 300 ° C. or higher. When the thermal decomposition temperature is in the above range, thermal degradation of the powder can be suppressed.
  • the thermal decomposition temperature is more preferably 310 ° C. or higher, and further preferably 320 ° C. or higher.
  • the thermal decomposition temperature of the powder is measured using a thermogravimetric apparatus. Specific measurement conditions are as described in the following examples.
  • the powder of the present invention needs to be able to completely dissolve 2 g or more with respect to 100 g of water.
  • the judgment of whether or not it can be completely dissolved is based on whether or not 2 g of the powder can be completely dissolved with respect to 100 g of water at 100 ° C.
  • the determination is made by the following method. 2 g of powder is added to 100 g of ion-exchanged water at room temperature (25 ° C.). The resulting mixture is heated to 100 ° C. at 10 ° C./min while stirring (150 rpm), and then stirring is continued at the temperature. At this time, whether or not the powder can be completely dissolved within 60 minutes after raising the temperature to 100 ° C. is used as an index.
  • the powder can be completely dissolved within 30 minutes after the temperature is raised to 100 ° C.
  • 2 g of the powder was completely dissolved in 100 g of water at 100 ° C.
  • the graft copolymer in the aqueous solution was completely dissolved.
  • the state can be maintained, and it is more preferable that the state in which the graft copolymer is completely dissolved is maintained even after one day has passed since the aqueous graft copolymer solution was cooled to 25 ° C.
  • the average particle size of the powder of the present invention is 20 to 1,000 ⁇ m.
  • the average particle size is preferably 50 ⁇ m or more, and more preferably 80 ⁇ m or more.
  • the average particle size exceeds 1,000 ⁇ m, the time required for dissolving the graft copolymer in water becomes too long, and a graft copolymer in which side chains are uniformly introduced cannot be obtained. There is.
  • the average particle size is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and even more preferably 200 ⁇ m or less.
  • the average particle diameter of the powder in the present invention means a volume average diameter measured by dispersing the graft copolymer particles in methanol using a light scattering method using laser light.
  • the powder comprising the graft copolymer of the present invention comprises a step of irradiating a polyvinyl alcohol powder having an average particle size of 20 to 1,000 ⁇ m with ionizing radiation, and a polyvinyl alcohol powder irradiated with the ionizing radiation represented by the following formula (III Or a method comprising a step of graft polymerization by dispersing in a solution containing a monomer represented by formula (IV).
  • the powder comprising the graft copolymer of the present invention is obtained by irradiating polyvinyl alcohol powder having an average particle diameter of 20 to 1,000 ⁇ m with ionizing radiation and then irradiating the ionizing radiation with the above formula ( It is preferable that it is obtained by carrying out graft polymerization by dispersing in a solution containing the monomer represented by III) or formula (IV).
  • the starting polyvinyl alcohol used in the production method of the present invention can be obtained by polymerizing a vinyl ester monomer and saponifying the obtained polymer by a conventional method according to a conventionally known method.
  • a method for polymerizing the vinyl ester monomer conventionally known methods such as a solution polymerization method, a bulk polymerization method, a suspension polymerization method, and an emulsion polymerization method can be applied.
  • As the polymerization catalyst an azo catalyst, a peroxide catalyst, a redox catalyst or the like is appropriately selected according to the polymerization method.
  • the saponification reaction can be applied by alcoholysis or hydrolysis using a conventionally known alkali catalyst or acid catalyst. Among them, methanol is the solvent, and the saponification reaction using a caustic soda (NaOH) catalyst is simple and most preferred. .
  • Examples of the vinyl ester monomer used in the production of the polyvinyl alcohol include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl versatate, vinyl caproate, vinyl caprylate, and lauric acid.
  • Examples thereof include vinyl, vinyl palmitate, vinyl stearate, vinyl oleate, vinyl benzoate and the like. Of these, vinyl acetate is most preferred.
  • the polyvinyl alcohol may have a monomer unit other than the vinyl alcohol unit and the vinyl ester unit as long as the effect of the present invention is not inhibited.
  • Other monomer units include, for example, ⁇ -olefins such as ethylene, propylene, n-butene, isobutylene, 1-hexene; acrylic acid, methyl acrylate, ethyl acrylate, N-propyl acrylate, i-acrylate Unsaturated monomers having an acrylate group such as propyl, N-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid, Methyl methacrylate, ethyl methacrylate, N-propyl methacrylate, i-propyl methacrylate, N-butyl meth
  • the viscosity average degree of polymerization of the polyvinyl alcohol may be appropriately adjusted according to the number average molecular weight of the target graft copolymer, and is preferably 100 to 10,000. When the viscosity average polymerization degree is out of the above range, the mechanical strength in the case of a molded product may be lowered.
  • the viscosity average degree of polymerization is more preferably 200 or more, and still more preferably 300 or more. On the other hand, the viscosity average degree of polymerization is more preferably 7,000 or less, and further preferably 5,000 or less.
  • the degree of saponification of polyvinyl alcohol is preferably 50 mol% or more, more preferably 80 mol% or more, and further preferably 95 mol% or more. If the degree of saponification is less than 50 mol%, the water solubility may decrease. On the other hand, the saponification degree of the polyvinyl alcohol is preferably 99.99 mol% or less.
  • the polyvinyl alcohol may be used alone or in combination of two or more.
  • polyvinyl alcohol powder having an average particle size of 20 to 1,000 ⁇ m is used.
  • the particle diameter of the polyvinyl alcohol powder may be appropriately adjusted by pulverization or the like.
  • the average particle diameter of the polyvinyl alcohol powder is less than 20 ⁇ m, there is a problem that the powder is likely to be scattered, which makes it difficult to handle.
  • the average particle diameter is preferably 50 ⁇ m or more, and more preferably 75 ⁇ m or more.
  • the average particle diameter of the polyvinyl alcohol powder exceeds 1000 ⁇ m, a graft copolymer in which side chains are uniformly introduced cannot be obtained, and the time required for dissolving the obtained graft copolymer in water is not obtained.
  • the average particle size is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and even more preferably 200 ⁇ m or less.
  • the average particle diameter of the polyvinyl alcohol powder is measured by the same method as that for the powder made of the graft copolymer.
  • the polyvinyl alcohol powder is composed of porous polyvinyl alcohol particles because graft chains can be introduced more efficiently.
  • a method for obtaining porous polyvinyl alcohol particles a method of melt-mixing a pore-forming material such as a foaming agent and a polyvinyl alcohol resin, a composite obtained after combining a polyvinyl alcohol resin and a water-insoluble component, For example, a method for extracting a water-insoluble component from the water, a method for aggregating polyvinyl alcohol particles of several ⁇ m, and the like.
  • a simultaneous irradiation method in which ionizing radiation is irradiated in the presence of a polyvinyl alcohol resin and an unsaturated monomer is known.
  • this method has problems that side reactions are likely to occur and the water-solubility of the obtained graft copolymer is significantly deteriorated due to gelation by intermolecular crosslinking.
  • the polyvinyl alcohol powder and the monomer represented by the formula (III) or formula (IV) are used. To perform graft polymerization.
  • radicals generated by irradiating the resin with ionizing radiation react with water in the air and deactivate in a short time.
  • the polyvinyl alcohol powder is irradiated with ionizing radiation
  • the polyvinyl alcohol in the powder has high reactivity to the monomer even after a long period of time.
  • the graft copolymer obtained by the said method has favorable water solubility.
  • the graft reaction selectively proceeds while the cross-linking reaction between the polyvinyl alcohol molecules is suppressed, so that the powder made of a graft copolymer having good water solubility. Is considered to be obtained.
  • polyvinyl alcohol powder having a moisture content of 15% by mass or less with ionizing radiation.
  • the water content of the polyvinyl alcohol powder exceeds 15% by mass, radicals generated in the polyvinyl alcohol are easily lost by irradiation with ionizing radiation, and the reactivity of the polyvinyl alcohol with respect to the monomer may be insufficient. is there.
  • Examples of the ionizing radiation applied to the polyvinyl alcohol powder include ⁇ rays, ⁇ rays, ⁇ rays, electron rays, and ultraviolet rays. Practically, electron rays and ⁇ rays are preferable, the processing speed is high, and equipment is also provided. An electron beam that can be simply used is more preferable.
  • the dose of the polyvinyl alcohol powder irradiated with ionizing radiation is, for example, preferably 5 to 200 kGy, more preferably 10 to 150 kGy, still more preferably 20 to 100 kGy, and most preferably 30 to 90 kGy.
  • the irradiation dose is less than 5 kGy, the content of the repeating unit represented by the above formula (I) or formula (II) in the obtained graft copolymer may not reach the target amount.
  • the dose to be irradiated exceeds 200 kGy, the cost may increase, or the polyvinyl alcohol powder may be deteriorated by irradiation with ionizing radiation.
  • the polyvinyl alcohol powder irradiated with ionizing radiation is dispersed in a solution containing the monomer represented by the above formula (III) or formula (IV) to perform graft polymerization.
  • the liquid medium used at this time needs to dissolve the monomer represented by the above formula (III) or formula (IV) but does not dissolve the polyvinyl alcohol powder.
  • the polyvinyl alcohol powder is dissolved, the progress of graft polymerization and the deactivation of radicals generated in the polyvinyl alcohol proceed at the same time, so it is difficult to control the amount of added monomer.
  • liquid medium used for the graft polymerization examples include lower alcohols such as methanol, ethanol and isopropanol; ethers such as tetrahydrofuran, dioxane and diethyl ether; ketones such as acetone and methyl ethyl ketone; amides such as dimethylformamide and dimethylacetamide; Hexane etc. are mentioned.
  • the polyvinyl alcohol particles swell so that the monomer represented by the above formula (III) or formula (IV) penetrates into the inside of the particles, and the above formula (I) or formula (II) It is possible to introduce the repeating unit represented by the formula into the side chain of the graft copolymer in a uniform and large amount. Therefore, it is preferable to select the liquid medium to be used in consideration of the affinity with the polyvinyl alcohol.
  • lower alcohols such as methanol, ethanol, and isopropanol have high affinity with the polyvinyl alcohol, and thus are preferably used in the production method of the present invention.
  • the water content in the liquid medium is, for example, preferably 1 to 50% by mass, more preferably 2 to 30% by mass, and even more preferably 5 to 20% by mass. If the water content is less than 1% by mass, the effect of swelling the polyvinyl alcohol particles may not be sufficiently obtained. On the other hand, when the water content exceeds 50% by mass, it becomes difficult to take out the powder composed of the graft copolymer after polymerization because the polyvinyl alcohol particles are partially dissolved or the polyvinyl alcohol particles are excessively swollen. May be.
  • the amount of the monomer represented by the above formula (III) or formula (IV) used for graft polymerization is appropriately adjusted according to the reactivity of the monomer. As described above, the reactivity varies depending on the ease of penetration of the monomer into the polyvinyl alcohol particles. Accordingly, the appropriate addition amount of the monomer varies depending on the type and amount of the liquid medium, and also the degree of polymerization and saponification of the polyvinyl alcohol, but with respect to 100 parts by mass of the polyvinyl alcohol particles, ⁇ 200 parts by weight are preferred.
  • the amount of the monomer represented by the above formula (III) or formula (IV) is out of the above range, the content of the repeating unit represented by the above formula (I) or formula (II) is within the above range. There is a possibility that the graft copolymer is not obtained.
  • the amount of the monomer represented by the above formula (III) or formula (IV) is more preferably 1 to 100 parts by mass, and further preferably 2 to 50 parts by mass.
  • the amount of the liquid medium used for graft polymerization is preferably 100 to 4000 parts by mass, more preferably 200 to 2000 parts by mass, and further preferably 300 to 1500 parts by mass with respect to 100 parts by mass of the polyvinyl alcohol particles.
  • the reaction temperature for carrying out graft polymerization is preferably 20 ° C. to 150 ° C., more preferably 30 ° C. to 120 ° C., and further preferably 40 ° C. to 100 ° C.
  • the reaction temperature is lower than 20 ° C, the graft polymerization reaction may hardly proceed.
  • the reaction temperature exceeds 150 ° C., the amide group may be decomposed.
  • the powder of the present invention can be used in a wide range of applications such as molded bodies (eg, films, sheets, boards, fibers, etc.), paints, adhesives, coating agents, barrier agents and the like.
  • A The solution was completely dissolved within 30 minutes after the temperature was raised to 100 ° C., and the dissolved state was maintained even after 1 day from cooling.
  • B Completely dissolved within 30 minutes after the temperature was raised to 100 ° C. and after 60 minutes, and the dissolved state was maintained even after 1 day from cooling.
  • C Even if 60 minutes passed after the temperature was raised to 100 ° C., it was not completely dissolved.
  • thermophysical properties were measured under the conditions of temperature rising / falling rate: 10 ° C./min, temperature range: 0 ° C. to 240 ° C.
  • the glass transition temperature (T g ) and the crystal melting temperature (T m ) were both 2nd heating values.
  • thermogravimetric measuring device “Thermo Plus TG8120” manufactured by Rigaku Corporation, the mass change was measured under the conditions of a temperature increase rate of 5 ° C./min and a temperature range of 20 ° C. to 500 ° C. The temperature at which the reduction rate reached 50% was defined as the thermal decomposition temperature.
  • Methyl acetate was added thereto to neutralize the remaining alkali, and then subjected to Soxhlet washing with methanol for 8 hours. Furthermore, polyvinyl alcohol resin (coarse particles) was obtained by vacuum drying at 40 ° C. overnight. The obtained polyvinyl alcohol resin had a saponification degree of 98.6 mol% and a viscosity average polymerization degree of 1700. Further, the obtained polyvinyl alcohol resin is frozen with liquid nitrogen and then pulverized with a centrifugal pulverizer, and the powder is classified with a sieve having an opening of 75 ⁇ m to 150 ⁇ m and dried with a hot air dryer at 100 ° C. for 3 hours.
  • PVOH-1 polyvinyl alcohol powder
  • a halogen moisture meter 150 ° C.
  • the average particle size was 96 ⁇ m.
  • polyvinyl alcohol resin After adding methyl acetate to this and neutralizing the remaining alkali, it wash
  • cleaned well with methanol, and it filtered and obtained polyvinyl alcohol resin (coarse particle). Furthermore, the polyvinyl alcohol resin was added to a mixed solution of methanol and water (mixing ratio: methanol / water 90/10, weight ratio), followed by stirring and washing for 1 hour. The polyvinyl alcohol resin was filtered off and vacuum dried at 40 ° C. overnight to obtain a polyvinyl alcohol resin (coarse particles). The obtained polyvinyl alcohol resin had a saponification degree of 99.9 mol% and a viscosity average polymerization degree of 1700.
  • polyvinyl alcohol resin is frozen with liquid nitrogen and then pulverized with a centrifugal pulverizer, and the powder is classified with a sieve having an opening of 75 ⁇ m to 150 ⁇ m and dried with a hot air dryer at 100 ° C. for 3 hours.
  • polyvinyl alcohol powder (PVOH-2) was obtained.
  • the moisture content was 1.2 mass%.
  • the average particle size was 102 ⁇ m.
  • the obtained polyvinyl alcohol resin had a saponification degree of 98.5 mol% and a viscosity average polymerization degree of 1,000. Further, the obtained polyvinyl alcohol resin is frozen with liquid nitrogen and then pulverized using a centrifugal pulverizer, and the powder is classified with a sieve having an opening of 300 ⁇ m to 500 ⁇ m and dried with a hot air dryer at 100 ° C. for 3 hours. As a result, polyvinyl alcohol powder (PVOH-3) was obtained. As a result of measuring the moisture content of PVOH-3 with a halogen moisture meter (150 ° C.), the moisture content was 1.1 mass%. The average particle size was 432 ⁇ m.
  • the obtained polyvinyl alcohol resin had a saponification degree of 99.6 mol% and a viscosity average polymerization degree of 4500. Further, the obtained polyvinyl alcohol resin is frozen with liquid nitrogen and then pulverized using a centrifugal pulverizer, and the powder is classified with a sieve having an opening of 300 ⁇ m to 500 ⁇ m and dried with a hot air dryer at 100 ° C. for 3 hours. As a result, polyvinyl alcohol powder (PVOH-4) was obtained. As a result of measuring the moisture content of PVOH-4 with a halogen moisture meter (150 ° C.), the moisture content was 2.4% by mass. The average particle size was 410 ⁇ m.
  • the obtained polyvinyl alcohol resin had a saponification degree of 98.5 mol% and a viscosity average polymerization degree of 500. Further, the obtained polyvinyl alcohol resin is frozen with liquid nitrogen and then pulverized with a centrifugal pulverizer, and the powder is classified with a sieve having an opening of 75 ⁇ m to 150 ⁇ m and dried with a hot air dryer at 100 ° C. for 3 hours. As a result, polyvinyl alcohol powder (PVOH-6) was obtained. As a result of measuring the moisture content of PVOH-6 with a halogen moisture meter (150 ° C.), the moisture content was 0.6 mass%. The average particle size was 99 ⁇ m.
  • Example 1 PVOH-1 was irradiated with an electron beam (30 kGy). Next, 6.0 parts by mass of N-vinylformamide and 944 parts by mass of methanol were charged into a reactor equipped with a stirrer, a reflux condenser, an argon inlet, and an initiator addition port, and the system was maintained for 30 minutes with argon bubbling. The inside was replaced with argon. 100 parts by mass of PVOH-1 irradiated with an electron beam was added thereto, and the mixture was stirred and heated to reflux for 300 minutes in a state where the particles were dispersed in the solution, thereby performing graft polymerization. Thereafter, the particles were collected by filtration and vacuum-dried at 40 ° C.
  • Table 1 shows the analysis results and physical property evaluation results of the total content of alkali metals and alkaline earth metals, the number average molecular weight, and the average particle diameter.
  • FIG. 1 shows a plot of the glass transition temperature against the amount of modification of the graft copolymer.
  • FIG. 2 shows a graph in which the crystal melting temperature is plotted against the amount of modification of the graft copolymer.
  • Example 2 A powder comprising a graft copolymer was obtained in the same manner as in Example 1 except that the amount of N-vinylformamide was changed to 15 parts by mass and the amount of methanol was changed to 985 parts by mass.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 4.3 mol% of N-vinylformamide structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer.
  • Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
  • Example 3 A powder comprising a graft copolymer was obtained in the same manner as in Example 1 except that the amount of N-vinylformamide was changed to 30 parts by mass and the amount of methanol was changed to 970 parts by mass.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 9.7 mol% of N-vinylformamide structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer.
  • Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
  • Example 4 A graft copolymer was obtained in the same manner as in Example 1 except that 35 parts by mass of N-vinylacetamide was used instead of N-vinylformamide and the amount of methanol charged into the reactor was changed to 965 parts by mass. .
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 5.4 mol% of N-vinylacetamide structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer. The results of 1 H-NMR analysis are shown below.
  • Poly N-vinylacetamide was extracted from the powder comprising the graft copolymer obtained using methanol, which is a good solvent for poly N-vinylacetamide, but no poly N-vinylacetamide was confirmed during the extraction. Further, Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
  • Example 5 A powder comprising a graft copolymer was obtained in the same manner as in Example 4 except that the amount of N-vinylacetamide was changed to 70 parts by mass and the amount of methanol was changed to 930 parts by mass.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 10.0 mol% of N-vinylacetamide structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer.
  • Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
  • Example 6 A powder comprising a graft copolymer was obtained in the same manner as in Example 4 except that the amount of N-vinylacetamide was changed to 100 parts by mass and the amount of methanol was changed to 900 parts by mass.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 12.2 mol% of N-vinylacetamide constituent units were introduced with respect to the number of moles of all constituent units. It was found to be a graft copolymer.
  • Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
  • Example 7 A powder comprising a graft copolymer was obtained in the same manner as in Example 1 except that 30 parts by mass of N-vinylpyrrolidone was used in place of N-vinylformamide and that the amount of methanol was changed to 970 parts by mass.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 2.6 mol% of N-vinylpyrrolidone structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer. The results of 1 H-NMR analysis are shown below.
  • Poly N-vinyl pyrrolidone was extracted from the powder comprising the graft copolymer obtained using methanol, which is a good solvent for poly N-vinyl pyrrolidone, but no poly N-vinyl pyrrolidone was confirmed during the extraction. Further, Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
  • Example 8 A powder comprising a graft copolymer was obtained in the same manner as in Example 7 except that the amount of N-vinylpyrrolidone was changed to 70 parts by mass and the amount of methanol was changed to 930 parts by mass.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 6.5 mol% of N-vinylpyrrolidone structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer.
  • Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
  • Example 9 A powder comprising a graft copolymer was obtained in the same manner as in Example 7 except that the amount of N-vinylpyrrolidone was changed to 190 parts by mass and the amount of methanol was changed to 900 parts by mass.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 10.6 mol% of N-vinylpyrrolidone structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer.
  • Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
  • Example 10 Example 1 except that PVOH-2 was used as the polyvinyl alcohol powder, that 23 parts by mass of N-vinylacetamide was used instead of N-vinylformamide, and that the amount of methanol was changed to 477 parts by mass. Thus, a powder made of the graft copolymer was obtained. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 5.5 mol% of N-vinylacetamide structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer. Table 1 shows the results of analysis of alkali metal and alkaline earth metal content, number average molecular weight, average particle diameter, and evaluation of physical properties.
  • Example 11 Use of PVOH-3 as polyvinyl alcohol powder, change of electron beam irradiation dose to 60 kGy, use of 5 parts by mass of N- (2-hydroxyethyl) acrylamide instead of N-vinylformamide, A powder made of a graft copolymer was obtained in the same manner as in Example 1 except that the amount was changed to 995 parts by mass. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, N- (2-hydroxyethyl) acrylamide had 1 structural unit relative to the number of moles of all structural units.
  • Example 12 The graft copolymer was prepared in the same manner as in Example 1 except that 30 parts by mass of N- (2-hydroxyethyl) acrylamide was used instead of N-vinylformamide and that the amount of methanol was changed to 970 parts by mass. A powder was obtained. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 4 N- (2-hydroxyethyl) acrylamide structural units were present per mole of all structural units. It was found that the graft copolymer was introduced at 7 mol%. Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
  • Example 13 A powder comprising a graft copolymer was obtained in the same manner as in Example 12 except that the amount of N- (2-hydroxyethyl) acrylamide was changed to 80 parts by mass and the amount of methanol to 920 parts by mass.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 10 N- (2-hydroxyethyl) acrylamide structural units were present relative to the number of moles of all structural units. It was found to be a graft copolymer introduced with .4 mol%.
  • Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
  • Example 14 A powder composed of a graft copolymer was obtained in the same manner as in Example 1 except that 80 parts by mass of acrylamide was used instead of N-vinylformamide and the amount of methanol was changed to 920 parts by mass.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.).
  • the graft copolymer in which 1.9 mol% of acrylamide structural units were introduced with respect to the number of moles of all structural units. It was found to be a polymer.
  • the results of 1 H-NMR analysis are shown below.
  • FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
  • Example 15 A powder comprising a graft copolymer was obtained in the same manner as in Example 14 except that the electron beam irradiation amount was changed to 60 kGy, the amount of acrylamide was changed to 150 parts by mass, and the amount of methanol was changed to 850 parts by mass. It was.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, the graft copolymer in which 4.5 mol% of acrylamide structural units were introduced with respect to the number of moles of all structural units. It was found to be a polymer. Further, Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
  • Example 16 A powder comprising a graft copolymer was obtained in the same manner as in Example 14 except that the electron beam irradiation amount was changed to 90 kGy, the amount of acrylamide was changed to 100 parts by mass, and the amount of methanol was changed to 400 parts by mass. It was.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 8.8 mol% of acrylamide structural units were introduced with respect to the number of moles of all structural units. It was found to be a polymer. Further, Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
  • Example 17 Except for using PVOH-4 as the polyvinyl alcohol powder, changing the electron beam irradiation amount to 90 kGy, changing the amount of N-vinylacetamide to 20 parts by mass, and changing the amount of methanol to 494 parts by mass.
  • a powder made of a graft copolymer was obtained.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 1.2 mol% of N-vinylacetamide structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer.
  • Table 1 shows the results of analysis of alkali metal and alkaline earth metal content, number average molecular weight, average particle diameter, and evaluation of physical properties.
  • Example 18 A powder made of a graft copolymer was obtained in the same manner as in Example 7 except that PVOH-5 was used as the polyvinyl alcohol powder and the electron beam irradiation amount was changed to 60 kGy.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 1.3 mol% of N-vinylpyrrolidone structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer.
  • Table 1 shows the results of analysis of alkali metal and alkaline earth metal content, number average molecular weight, average particle diameter, and evaluation of physical properties.
  • Example 19 A powder made of a graft copolymer was obtained in the same manner as in Example 4 except that PVOH-6 was used as the polyvinyl alcohol powder and the electron beam irradiation amount was changed to 60 kGy.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 6.5 mol% of N-vinylacetamide constituent units were introduced with respect to the number of moles of all constituent units. It was found to be a graft copolymer.
  • Table 1 shows the results of analysis of alkali metal and alkaline earth metal content, number average molecular weight, average particle diameter, and evaluation of physical properties.
  • Example 20 Example 14 except that PVOH-7 was used as the polyvinyl alcohol powder, the electron beam irradiation amount was changed to 150 kGy, the amount of acrylamide was changed to 100 parts by mass, and the amount of methanol was changed to 400 parts by mass.
  • a powder comprising a graft copolymer was obtained.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.), the graft copolymer in which 4.9 mol% of acrylamide structural units were introduced with respect to the number of moles of all structural units. It was found to be a polymer.
  • Table 1 shows the results of analysis of alkali metal and alkaline earth metal content, number average molecular weight, average particle diameter, and evaluation of physical properties.
  • PVOH-1 unmodified polyvinyl alcohol
  • Table 1 shows the results of analysis of alkali metal and alkaline earth metal content, number average molecular weight, average particle diameter, and evaluation of physical properties.
  • Example 2 A powder comprising a graft copolymer was obtained in the same manner as in Example 1 except that the amount of N-vinylacetamide was changed to 0.5 parts by mass and the amount of methanol was changed to 995.5 parts by mass.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 0.1 mol% of N-vinylacetamide structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer.
  • Table 1 shows the results of analysis of alkali metal and alkaline earth metal content, number average molecular weight, average particle diameter, and evaluation of physical properties.
  • Example 3 A powder comprising a graft copolymer was obtained in the same manner as in Example 1 except that the amount of N-vinylformamide was changed to 60 parts by mass and the amount of methanol was changed to 940 parts by mass.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 26.1 mol% of N-vinylformamide structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer.
  • Table 1 shows the results of analysis of alkali metal and alkaline earth metal content, number average molecular weight, average particle diameter, and evaluation of physical properties.
  • Example 4 A powder composed of a graft copolymer was obtained in the same manner as in Example 1 except that 100 parts by mass of hydroxyethyl methacrylate was used instead of N-vinylformamide and that the amount of methanol was changed to 900 parts by mass.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.), 8.8 mol% of the structural unit of hydroxyethyl methacrylate was introduced with respect to the number of moles of all the structural units. It was found to be a graft copolymer.
  • Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
  • Example 5 A powder comprising a graft copolymer was obtained in the same manner as in Example 1 except that 10 parts by mass of methyl methacrylate was used instead of N-vinylformamide, and the amount of methanol was changed to 990 parts by mass.
  • the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, a graft in which 2.9 mol% of methyl methacrylate structural units were introduced with respect to the number of moles of all structural units. It was found to be a copolymer.
  • the results of 1 H-NMR analysis are shown below. Further, Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
  • N-vinylacetamide was dissolved in 100 parts by mass of PVOH-1 so as to be 0.5 parts by mass, and then the aqueous solution was irradiated with an electron beam (30 kGy). It could not be removed in the form of particles. A part of the obtained gel was dried and its solubility in water was evaluated, but the gel was not completely dissolved even after 200 minutes had passed after the temperature was raised to 100 ° C.
  • the temperature of the reactor was increased, and when the internal temperature reached 60 ° C., 0.15 parts by mass of 2,2′-azobisisobutyronitrile was added to initiate polymerization.
  • the prepared delay solution was dropped into the system so that the monomer composition (molar ratio of vinyl acetate and N-vinylacetamide) in the polymerization solution became constant.
  • the polymerization was stopped by cooling. Subsequently, unreacted monomers were removed while adding methanol occasionally at 30 ° C. under reduced pressure to obtain a methanol solution of polyvinyl acetate modified with N-vinylacetamide.
  • methanol was added to the methanol solution of polyvinyl acetate to adjust the concentration to 20% by mass, and then 489 parts by mass of the methanol solution of polyvinyl acetate was prepared. 0 mass%) was added and saponification was carried out at 40 ° C.
  • a gelled product was formed within a few minutes after the addition of the sodium hydroxide methanol solution. This was pulverized by a pulverizer and allowed to stand for 60 minutes at 40 ° C. to allow saponification to proceed. Methyl acetate was added thereto to neutralize the remaining alkali, and then subjected to Soxhlet washing with methanol for 8 hours. Furthermore, it was vacuum-dried overnight at 40 ° C.
  • a polyvinyl alcohol resin (coarse particles) modified with N-vinylacetamide.
  • the saponification degree of the polyvinyl alcohol resin was 98.7 mol%.
  • the obtained polyvinyl alcohol resin is frozen with liquid nitrogen and then pulverized using a centrifugal pulverizer, and the powder is classified with a sieve having an opening of 75 ⁇ m to 150 ⁇ m and modified with N-vinylacetamide.
  • (Random copolymer) particles (PVOH-8) were obtained.
  • the obtained random copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.).
  • FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
  • the graft copolymer of the present invention has an increased glass transition temperature while maintaining high crystallinity. Therefore, it is expected to exhibit excellent mechanical strength at a higher temperature range than conventional polyvinyl alcohol resins. Moreover, since the good water solubility which is one of the important characteristics of polyvinyl alcohol resin is not lost and the thermal decomposition temperature is high, the graft copolymer of the present invention is used for a wide range of uses of polyvinyl alcohol resin. be able to.
  • Example 19 when the amount of alkali metal and alkaline earth metal contained in the graft copolymer was particularly small, the amide group was difficult to decompose and the heat resistance was particularly excellent. As shown in FIG. 3, the graft copolymer of Example 19 was particularly excellent in melt moldability because gelation and torque increase due to thermal decomposition did not easily occur during melt molding.
  • the unmodified polyvinyl alcohol resin softens in a high temperature region exceeding 80 ° C. in a dry state, and mechanical properties in the temperature region cannot be expected.
  • Comparative Example 2 when the graft chain content (modification amount) was very small, the glass transition temperature was not sufficiently increased. On the other hand, when the graft chain content was too large as in Comparative Example 3, the crystallinity was lowered.
  • hydroxyethyl methacrylate is graft polymerized with polyvinyl alcohol as in Comparative Example 4
  • the glass transition temperature hardly changes, and it is important for the glass transition temperature to have an amide group introduced into the graft chain. I understand.
  • Comparative Example 6 is an example in which graft polymerization was performed in a state where polyvinyl alcohol was dissolved. In this case, polyvinyl alcohol was cross-linked and water solubility was lost.
  • Comparative Example 7 shows an example in which N-vinylacetamide is introduced into a polyvinyl alcohol resin by random copolymerization. In this case, the glass transition temperature increased due to the effect of the amide group, but the crystallinity was significantly reduced as compared with the graft copolymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Provided is a powder comprising a graft copolymer, wherein the graft copolymer has a main chain comprising polyvinyl alcohol and a side chain comprising a polymer configured from prescribed repeating units that have an amide group, the repeating unit content relative to the total monomer units in the graft copolymer is 0.2-20 mol%, the average particle size is 20-1,000 μm, and the powder can dissolve completely in an amount of 2 g or more per 100 g of water. Thereby provided is a powder comprising a graft copolymer that has high crystallinity and excellent water solubility together with a higher softening temperature than is found in conventional vinyl alcohol resins.

Description

グラフト共重合体からなる粉末及びその製造方法Powder made of graft copolymer and method for producing the same
 本発明は、高い結晶性及び良好な水溶性を有するとともに、従来のビニルアルコール系樹脂に比べて高い軟化温度を有するグラフト共重合体からなる粉末及びその製造方法に関する。 The present invention relates to a powder comprising a graft copolymer having high crystallinity and good water solubility, and having a softening temperature higher than that of a conventional vinyl alcohol resin, and a method for producing the same.
 ポリビニルアルコール樹脂は、数少ない結晶性の水溶性高分子であり、従来から、その優れた皮膜特性(強度、耐油性、造膜性、酸素ガスバリア性等)や水溶性を利用して、乳化剤、懸濁剤、界面活性剤、繊維加工剤、各種バインダー、紙加工剤、接着剤、フィルム等に広く利用されている。上記物性は、ポリビニルアルコール樹脂の高い結晶性に起因して発現する。一方、通常ポリビニルアルコール樹脂はガラス転移温度(約70℃)を超えると軟化する。用途によっては、ポリビニルアルコール樹脂の温度がガラス転移温度近くに上昇することによって、機械的物性やバリア性の急激な低下を招くという問題を抱えていた。 Polyvinyl alcohol resin is one of the few crystalline water-soluble polymers. Conventionally, it utilizes its excellent film properties (strength, oil resistance, film-forming property, oxygen gas barrier property, etc.) and water-solubility to emulsifiers and suspensions. Widely used in turbidity agents, surfactants, fiber processing agents, various binders, paper processing agents, adhesives, films and the like. The above physical properties are manifested due to the high crystallinity of the polyvinyl alcohol resin. On the other hand, the polyvinyl alcohol resin usually softens when the glass transition temperature (about 70 ° C.) is exceeded. Depending on the application, the temperature of the polyvinyl alcohol resin increases near the glass transition temperature, which causes a problem that the mechanical properties and barrier properties are drastically reduced.
 こうした課題に対して、ポリビニルアルコール樹脂の結晶ラメラサイズを制御することによってガラス転移温度を向上させる方法が提案されている。例えば、非特許文献1には、結晶サイズが制御されたポリビニルアルコール樹脂は、通常のポリビニルアルコール樹脂よりも高いガラス転移温度を有していることが記載されている。しかしながら、このような制御によって結晶性は大きく低下した。このように、ポリビニルアルコール樹脂の結晶性を維持しつつ、ガラス転移温度を上昇させることは困難であった。 In response to these problems, a method for improving the glass transition temperature by controlling the crystal lamella size of the polyvinyl alcohol resin has been proposed. For example, Non-Patent Document 1 describes that a polyvinyl alcohol resin whose crystal size is controlled has a glass transition temperature higher than that of a normal polyvinyl alcohol resin. However, the crystallinity is greatly reduced by such control. Thus, it was difficult to raise the glass transition temperature while maintaining the crystallinity of the polyvinyl alcohol resin.
 通常、ポリビニルアルコール樹脂の機能化には、ポリビニルアルコールに他の成分を化学的に導入する方法が用いられる。例えば共重合によって他の成分を導入する方法や、ポリビニルアルコール樹脂を溶媒に溶解させた後、溶液中で変性させる方法等が一般的に知られている。しかしながら、これらの方法では、導入された他の成分によってポリビニルアルコール部分の結晶化が阻害されるため、他成分の含有量に比例して結晶化温度が低下すること、すなわち結晶性が低下することが知られている。 Usually, a method of chemically introducing other components into polyvinyl alcohol is used for functionalizing the polyvinyl alcohol resin. For example, a method of introducing other components by copolymerization, a method of dissolving a polyvinyl alcohol resin in a solvent and then modifying the solution in a solution are generally known. However, in these methods, since the crystallization of the polyvinyl alcohol portion is inhibited by the other components introduced, the crystallization temperature decreases in proportion to the content of the other components, that is, the crystallinity decreases. It has been known.
 一方、ポリビニルアルコール樹脂を機能化させる方法として、ポリビニルアルコールの主鎖に対して、他成分をグラフト重合させる方法も知られている。例えば、非特許文献2には、ポリビニルアルコール主鎖にN-イソプロピルアクリルアミドをグラフト重合させてなるグラフト共重合体ゲルが記載されている。しかしながら、非特許文献2に記載されたグラフト共重合体ゲルは、膨潤性とメチレンブルーの放出量の関係を議論しているのみであり、グラフト共重合体の熱物性については一切記述されていない。また、当該グラフト共重合体ゲルは、水溶性が不良であった。 On the other hand, as a method of functionalizing the polyvinyl alcohol resin, a method of graft polymerization of other components to the main chain of polyvinyl alcohol is also known. For example, Non-Patent Document 2 describes a graft copolymer gel obtained by graft polymerization of N-isopropylacrylamide on a polyvinyl alcohol main chain. However, the graft copolymer gel described in Non-Patent Document 2 only discusses the relationship between the swellability and the amount of methylene blue released, and does not describe any thermal properties of the graft copolymer. The graft copolymer gel was poor in water solubility.
 本発明は上記課題を解決するためになされたものであり、高い結晶性及び良好な水溶性を有するとともに、従来のビニルアルコール系樹脂に比べて高い軟化温度を有するグラフト共重合体からなる粉末及びその製造方法を提供することを目的とする。 The present invention has been made in order to solve the above problems, and has a powder comprising a graft copolymer having high crystallinity and good water solubility and having a softening temperature higher than that of a conventional vinyl alcohol resin, and It aims at providing the manufacturing method.
 本発明者らは、上記課題を解決するため鋭意検討した結果、ポリビニルアルコールの主鎖にアミド基を有するグラフト鎖を所定量導入することによって、高い結晶性と良好な水溶性とを維持しつつ、ガラス転移温度を上昇させることが可能であることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have introduced a predetermined amount of a graft chain having an amide group in the main chain of polyvinyl alcohol, thereby maintaining high crystallinity and good water solubility. The present inventors have found that it is possible to increase the glass transition temperature and completed the present invention.
 本発明によれば、上記課題は、
[1]グラフト共重合体からなる粉末であって、
 前記グラフト共重合体が、ポリビニルアルコールからなる主鎖と、下記式(I)又は式(II)で表される繰り返し単位から構成される重合体からなる側鎖とを有し、
 前記グラフト共重合体中の全単量体単位に対する下記式(I)又は式(II)で表される繰り返し単位の含有量が0.2~20mol%であり、
 平均粒子径が20~1,000μmであり、かつ
水100gに対して2g以上完全に溶解することができる粉末;
Figure JPOXMLDOC01-appb-C000005
[式中、R1は、水素原子又はメチル基を表し、R2及びR3は、それぞれ独立して水素原子、又は炭素数1~10の水酸基又はアシル基を有してもよいアルキル基を表す。R2及びR3は相互に連結して環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000006
[式中、R1は、上記式(I)と同じである。R4及びR5は、それぞれ独立して水素原子、又は炭素数1~10の水酸基又はアシル基を有してもよいアルキル基を表す。R4及びR5は相互に連結して環を形成していてもよい。]
[2]前記グラフト共重合体が前記式(I)で表される繰り返し単位から構成される重合体からなる側鎖を有する[1]に記載の粉末;
[3]前記グラフト共重合体がポリN-ビニルホルムアミド、ポリN-ビニルアセトアミド及びポリN-ビニルピロリドンからなる群から選択される少なくとも一種からなる側鎖を有する[2]に記載の粉末;
[4]前記グラフト共重合体の数平均分子量が5,000~250,000である[1]~[3]のいずれかに記載の粉末;
[5]アルカリ金属及びアルカリ土類金属の合計含有量が0.5質量%以下である[1]~[4]のいずれかに記載の粉末;
[6]平均粒子径が20~1,000μmであるポリビニルアルコール粉末に電離放射線を照射する工程と、
 電離放射線が照射されたポリビニルアルコール粉末を、下記式(III)又は式(IV)で表される単量体を含む溶液中に分散させてグラフト重合を行う工程を備える[1]~[5]のいずれかに記載の粉末の製造方法;
Figure JPOXMLDOC01-appb-C000007
[式中、R1、R2及びR3は、上記式(I)と同じである。]
Figure JPOXMLDOC01-appb-C000008
[式中、R1、R4及びR5は、上記式(II)と同じである。]
[7]水分率15質量%以下のポリビニルアルコール粉末に電離放射線を照射する[6]に記載の粉末の製造方法;
を提供することにより解決される。
According to the present invention, the above problem is
[1] A powder comprising a graft copolymer,
The graft copolymer has a main chain composed of polyvinyl alcohol and a side chain composed of a polymer composed of repeating units represented by the following formula (I) or formula (II):
The content of the repeating unit represented by the following formula (I) or formula (II) with respect to all monomer units in the graft copolymer is 0.2 to 20 mol%,
A powder having an average particle size of 20 to 1,000 μm and capable of completely dissolving 2 g or more in 100 g of water;
Figure JPOXMLDOC01-appb-C000005
[Wherein R1 represents a hydrogen atom or a methyl group, and R2 and R3 each independently represent a hydrogen atom, or an alkyl group which may have a hydroxyl group or acyl group having 1 to 10 carbon atoms. R2 and R3 may be connected to each other to form a ring. ]
Figure JPOXMLDOC01-appb-C000006
[Wherein, R 1 is the same as in the above formula (I). R4 and R5 each independently represent a hydrogen atom, or an alkyl group which may have a hydroxyl group having 1 to 10 carbon atoms or an acyl group. R4 and R5 may be connected to each other to form a ring. ]
[2] The powder according to [1], wherein the graft copolymer has a side chain composed of a polymer composed of a repeating unit represented by the formula (I);
[3] The powder according to [2], wherein the graft copolymer has at least one side chain selected from the group consisting of poly N-vinylformamide, poly N-vinylacetamide, and poly N-vinylpyrrolidone;
[4] The powder according to any one of [1] to [3], wherein the number average molecular weight of the graft copolymer is 5,000 to 250,000;
[5] The powder according to any one of [1] to [4], wherein the total content of alkali metal and alkaline earth metal is 0.5% by mass or less;
[6] A step of irradiating polyvinyl alcohol powder having an average particle size of 20 to 1,000 μm with ionizing radiation;
[1] to [5] comprising a step of graft polymerization by dispersing polyvinyl alcohol powder irradiated with ionizing radiation in a solution containing a monomer represented by the following formula (III) or formula (IV): A method for producing the powder according to any one of
Figure JPOXMLDOC01-appb-C000007
[Wherein, R1, R2 and R3 are the same as those in the above formula (I). ]
Figure JPOXMLDOC01-appb-C000008
[Wherein, R1, R4 and R5 are the same as those in the above formula (II). ]
[7] The method for producing a powder according to [6], wherein the polyvinyl alcohol powder having a moisture content of 15% by mass or less is irradiated with ionizing radiation;
It is solved by providing.
 本発明のグラフト共重合体からなる粉末(以下、本発明の粉末と略称することがある)に含まれるグラフト共重合体は、高い結晶性及び良好な水溶性を有するうえに、従来のビニルアルコール系樹脂に比べて高い軟化温度を有する。したがって、このような特性を生かして、本発明の粉末は様々な用途に好適に用いられる。また、本発明の製造方法によれば、本発明の粉末を、効率よく製造することができる。 The graft copolymer contained in the powder made of the graft copolymer of the present invention (hereinafter sometimes abbreviated as the powder of the present invention) has high crystallinity and good water solubility, and is a conventional vinyl alcohol. The softening temperature is higher than that of the base resin. Therefore, taking advantage of such characteristics, the powder of the present invention is suitably used for various applications. Moreover, according to the manufacturing method of this invention, the powder of this invention can be manufactured efficiently.
実施例1~9、11~16、比較例4、5、7の共重合体における、変性量に対して、ガラス転移温度をプロットした図である。FIG. 6 is a graph plotting glass transition temperature against modification amount in the copolymers of Examples 1 to 9, 11 to 16, and Comparative Examples 4, 5, and 7. 実施例1~9、11~16、比較例4、5、7の共重合体における、変性量に対して、結晶融解温度をプロットした図である。FIG. 4 is a graph plotting crystal melting temperature against modification amount in the copolymers of Examples 1 to 9, 11 to 16, and Comparative Examples 4, 5, and 7. 実施例19及び実施例20において、混錬時間に対して、トルクをプロットした図である。In Example 19 and Example 20, it is the figure which plotted the torque with respect to kneading | mixing time.
(グラフト共重合体)
 本発明は、グラフト共重合体からなる粉末であって、前記グラフト共重合体が、ポリビニルアルコールからなる主鎖と、下記式(I)又は式(II)で表される繰り返し単位から構成される重合体からなる側鎖とを有し、前記グラフト共重合体中の全単量体単位に対する下記式(I)又は式(II)で表される繰り返し単位の含有量が0.2~20mol%であり、平均粒子径が20~1,000μmであり、かつ水100gに対して2g以上完全に溶解することができる粉末である。
(Graft copolymer)
The present invention is a powder comprising a graft copolymer, wherein the graft copolymer is composed of a main chain comprising polyvinyl alcohol and a repeating unit represented by the following formula (I) or formula (II): The content of the repeating unit represented by the following formula (I) or formula (II) with respect to all monomer units in the graft copolymer is 0.2 to 20 mol%. The average particle size is 20 to 1,000 μm, and 2 g or more can be completely dissolved in 100 g of water.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[式中、R1は、水素原子又はメチル基を表し、R2及びR3は、それぞれ独立して水素原子、又は炭素数1~10の水酸基又はアシル基を有してもよいアルキル基を表す。R2及びR3は相互に連結して環を形成していてもよい。] [Wherein R1 represents a hydrogen atom or a methyl group, and R2 and R3 each independently represent a hydrogen atom, or an alkyl group which may have a hydroxyl group or acyl group having 1 to 10 carbon atoms. R2 and R3 may be connected to each other to form a ring. ]
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[式中、R1は、上記式(I)と同じである。R4及びR5は、それぞれ独立して水素原子、又は炭素数1~10の水酸基又はアシル基を有してもよいアルキル基を表す。R4及びR5は相互に連結して環を形成していてもよい。] [Wherein, R 1 is the same as in the above formula (I). R4 and R5 each independently represent a hydrogen atom, or an alkyl group which may have a hydroxyl group having 1 to 10 carbon atoms or an acyl group. R4 and R5 may be connected to each other to form a ring. ]
 前記グラフト共重合体において、側鎖の重合体は上記式(I)で表される繰り返し単位と上記式(II)で表される繰り返し単位の少なくとも一方から構成されるものであればよい。 In the graft copolymer, the side chain polymer may be composed of at least one of the repeating unit represented by the above formula (I) and the repeating unit represented by the above formula (II).
 上記式(I)中、R1は、水素原子又はメチル基を表す。水溶性がさらに向上する観点から、R1は水素原子であることが好ましい。 In the above formula (I), R1 represents a hydrogen atom or a methyl group. From the viewpoint of further improving water solubility, R 1 is preferably a hydrogen atom.
 上記式(I)中、R2及びR3は、それぞれ独立して水素原子、又は炭素数1~10の水酸基又はアシル基を有してもよいアルキル基を表す。ここで、前記アルキル基の炭素数は置換基(アシル基)中の炭素原子も含めたものを意味する。前記アルキル基の炭素数は、5以下が好ましい。前記アルキル基に含有されるアシル基としては、アセチル基、プロパノイル基、ブタノイル基等が挙げられる。 In the above formula (I), R2 and R3 each independently represent a hydrogen atom, or an alkyl group that may have a hydroxyl group or acyl group having 1 to 10 carbon atoms. Here, the carbon number of the alkyl group means a carbon atom in a substituent (acyl group). The alkyl group preferably has 5 or less carbon atoms. Examples of the acyl group contained in the alkyl group include an acetyl group, a propanoyl group, and a butanoyl group.
 上記式(I)中、R2及びR3は相互に連結して環を形成していてもよい。この場合、R2及びR3に含有される炭素原子の合計数が1~10である必要がある。 In the above formula (I), R2 and R3 may be connected to each other to form a ring. In this case, the total number of carbon atoms contained in R2 and R3 needs to be 1-10.
 上記式(I)で表される繰り返し単位としては、N-ビニルホルムアミド、N-ビニルアセトアミド、N-メチルビニルアセトアミド、N-ビニルピロリドン、N-ビニルカプロラクタムが好ましい。中でも、N-ビニルホルムアミド、N-ビニルアセトアミド及びN-ビニルピロリドンがより好ましく、ガラス転移温度が特に向上する観点から、N-ビニルホルムアミド及びN-ビニルアセトアミドが特に好ましく、N-ビニルアセトアミドが最も好ましい。上記式(I)で表される繰り返し単位は単独で用いてもよいし、2種類以上を併用してもよいが、前者が好ましい。 As the repeating unit represented by the above formula (I), N-vinylformamide, N-vinylacetamide, N-methylvinylacetamide, N-vinylpyrrolidone and N-vinylcaprolactam are preferable. Among these, N-vinylformamide, N-vinylacetamide and N-vinylpyrrolidone are more preferable. From the viewpoint of particularly improving the glass transition temperature, N-vinylformamide and N-vinylacetamide are particularly preferable, and N-vinylacetamide is most preferable. . The repeating unit represented by the above formula (I) may be used alone or in combination of two or more, but the former is preferred.
 上記式(II)中、R1は、上記式(I)と同じである。上記式(II)中、R4及びR5は、それぞれ独立して水素原子、又は炭素数1~10の水酸基又はアシル基を有してもよいアルキル基を表す。ここで、前記アルキル基の炭素数は置換基(アシル基)中の炭素原子も含めたものを意味する。前記アルキル基の炭素数は、5以下が好ましい。前記アルキル基に含有されるアシル基としては、アセチル基、プロピオニル基、ブチリル基等が挙げられる。 In the above formula (II), R1 is the same as the above formula (I). In the above formula (II), R4 and R5 each independently represent a hydrogen atom, or an alkyl group which may have a hydroxyl group having 1 to 10 carbon atoms or an acyl group. Here, the carbon number of the alkyl group means a carbon atom in a substituent (acyl group). The alkyl group preferably has 5 or less carbon atoms. Examples of the acyl group contained in the alkyl group include an acetyl group, a propionyl group, and a butyryl group.
 上記式(II)中、R4及びR5は相互に連結して環を形成していてもよい。この場合、R4及びR5に含有される炭素原子の合計数が1~10である必要がある。 In the above formula (II), R4 and R5 may be connected to each other to form a ring. In this case, the total number of carbon atoms contained in R4 and R5 needs to be 1-10.
 上記式(II)で表される繰り返し単位としては、(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、N,N’-ジエチル(メタ)アクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、N-(2,2,2-トリヒドロキシエチル)アクリルアミド、N-(2-ヒドロキシ-1-メチルエチル)(メタ)アクリルアミド、N-(2,2-ジヒドロキシエチル)(メタ)アクリルアミド、N-(2-ヒドロキシ-1,1-ジメチルエチル)(メタ)アクリルアミド、N-(2-ヒドロキシプロピル)(メタ)アクリルアミド、N-(3-ヒドロキシプロピル)(メタ)アクリルアミド、N-(2,3-ジヒドロキシプロピル)(メタ)アクリルアミド、N-(3-ヒドロキシ-1-メチルプロピル)(メタ)アクリルアミド、N-[2,3-ジヒドロキシ-1-(ヒドロキシメチル)プロピル]メタクリルアミド、N-(2-ヒドロキシ-2-メチルプロピル)(メタ)アクリルアミド、N-[1-(ヒドロキシメチル)プロピル](メタ)アクリルアミド、N-(3-ヒドロキシ-1,1-ジメチルプロピル)(メタ)アクリルアミド、N-[1-エチル-1-(ヒドロキシメチル)プロピル](メタ)アクリルアミド、N-(3-ヒドロキシ-2,2-ジメチルプロピル)(メタ)アクリルアミド、N-(2-ヒドロキシ-1,1-ジメチルプロピル)(メタ)アクリルアミド、N-(2,3-ジヒドロキシ-1,1-ジメチルプロピル)(メタ)アクリルアミド、N-[3-ヒドロキシ-2,2-ビス(ヒドロキシメチル)プロピル](メタ)アクリルアミド、N-[3-ヒドロキシ-1,1-ビス(2-ヒドロキシエチル)プロピル](メタ)アクリルアミド、N-(3-ヒドロキシブチル)(メタ)アクリルアミド、N-(4-ヒドロキシブチル)(メタ)アクリルアミド、N-(4,4-ジヒドロキシブチル)(メタ)アクリルアミド、N-(3-ヒドロキシ-3-メチルブチル)(メタ)アクリルアミド、N-(1-(ヒドロキシメチル)-3-メチルブチル)(メタ)アクリルアミド、N-(5-ヒドロキシペンチル)(メタ)アクリルアミド、N-(4-ヒドロキシ-2-メチルペンチル)(メタ)アクリルアミド、N-(2,3,4,5-テトラヒドロキシ-1-ヒドロキシメチルペンチル)(メタ)アクリルアミド、N-(6-ヒドロキシヘキシル)(メタ)アクリルアミド、N-(6-ヒドロキシ-5-(ヒドロキシメチル)ヘキシル)(メタ)アクリルアミド、N-(2,3,4,5,6-ペンタヒドロキシヘキシル)アクリルアミド、N-[1-(ヒドロキシメチル)-1-メチルヘプチル](メタ)アクリルアミド、N-(2-ヒドロキシ-1-メチルオクチル)(メタ)アクリルアミドが好ましく、中でも、N-(2-ヒドロキシエチル)アクリルアミド、アクリルアミド、N,N’-ジメチルアクリルアミド、N,N’-ジエチルアクリルアミド、N-(2-ヒドロキシエチル)メタクリルアミド、メタクリルアミド、N,N’-ジメチルメタクリルアミド、N,N’-ジエチルメタクリルアミドがより好ましい。上記式(II)で表される繰り返し単位は単独で用いてもよいし、2種類以上を併用してもよいが、前者が好ましい。 As the repeating unit represented by the above formula (II), (meth) acrylamide, N, N′-dimethyl (meth) acrylamide, N, N′-diethyl (meth) acrylamide, N- (2-hydroxyethyl) ( (Meth) acrylamide, N- (2,2,2-trihydroxyethyl) acrylamide, N- (2-hydroxy-1-methylethyl) (meth) acrylamide, N- (2,2-dihydroxyethyl) (meth) acrylamide N- (2-hydroxy-1,1-dimethylethyl) (meth) acrylamide, N- (2-hydroxypropyl) (meth) acrylamide, N- (3-hydroxypropyl) (meth) acrylamide, N- (2 , 3-Dihydroxypropyl) (meth) acrylamide, N- (3-hydroxy-1-methylpropyl) ( ) Acrylamide, N- [2,3-dihydroxy-1- (hydroxymethyl) propyl] methacrylamide, N- (2-hydroxy-2-methylpropyl) (meth) acrylamide, N- [1- (hydroxymethyl) Propyl] (meth) acrylamide, N- (3-hydroxy-1,1-dimethylpropyl) (meth) acrylamide, N- [1-ethyl-1- (hydroxymethyl) propyl] (meth) acrylamide, N- (3 -Hydroxy-2,2-dimethylpropyl) (meth) acrylamide, N- (2-hydroxy-1,1-dimethylpropyl) (meth) acrylamide, N- (2,3-dihydroxy-1,1-dimethylpropyl) (Meth) acrylamide, N- [3-hydroxy-2,2-bis (hydroxymethyl) propyl] ( (Meth) acrylamide, N- [3-hydroxy-1,1-bis (2-hydroxyethyl) propyl] (meth) acrylamide, N- (3-hydroxybutyl) (meth) acrylamide, N- (4-hydroxybutyl) (Meth) acrylamide, N- (4,4-dihydroxybutyl) (meth) acrylamide, N- (3-hydroxy-3-methylbutyl) (meth) acrylamide, N- (1- (hydroxymethyl) -3-methylbutyl) (Meth) acrylamide, N- (5-hydroxypentyl) (meth) acrylamide, N- (4-hydroxy-2-methylpentyl) (meth) acrylamide, N- (2,3,4,5-tetrahydroxy-1 -Hydroxymethylpentyl) (meth) acrylamide, N- (6-hydroxyhexyl) (meth) Kurylamide, N- (6-hydroxy-5- (hydroxymethyl) hexyl) (meth) acrylamide, N- (2,3,4,5,6-pentahydroxyhexyl) acrylamide, N- [1- (hydroxymethyl) -1-methylheptyl] (meth) acrylamide and N- (2-hydroxy-1-methyloctyl) (meth) acrylamide are preferred, among which N- (2-hydroxyethyl) acrylamide, acrylamide and N, N′-dimethyl More preferred are acrylamide, N, N′-diethylacrylamide, N- (2-hydroxyethyl) methacrylamide, methacrylamide, N, N′-dimethylmethacrylamide, and N, N′-diethylmethacrylamide. The repeating unit represented by the above formula (II) may be used alone or in combination of two or more, but the former is preferred.
 本発明のグラフト共重合体において、側鎖中のアミド基とポリビニルアルコール主鎖の水酸基との間に水素結合による相互作用が生じることにより、非晶部の分子運動が抑制されるため、ガラス転移温度が上昇する。共重合成分がポリビニルアルコールの主鎖中にランダムに配置された従来の共重合体とは異なり、本発明では、グラフト重合を行うことにより、ポリビニルアルコール主鎖に対して、上記式(I)又は式(II)で表される繰り返し単位から構成される重合体が側鎖として導入されている。このように側鎖として導入された重合体は、ビニルアルコール部分の結晶性を阻害しにくいため、下記の実施例で示されているように上記式(I)又は式(II)で表される繰り返し単位の含有量に対する結晶化温度の低下が小さい。従って、高いガラス転移温度と高い結晶性を両立することが可能となる。 In the graft copolymer of the present invention, the molecular motion of the amorphous part is suppressed by the interaction caused by hydrogen bonding between the amide group in the side chain and the hydroxyl group of the polyvinyl alcohol main chain, so that the glass transition The temperature rises. Unlike the conventional copolymer in which the copolymer component is randomly arranged in the main chain of polyvinyl alcohol, in the present invention, by performing graft polymerization, the above-mentioned formula (I) or A polymer composed of repeating units represented by the formula (II) is introduced as a side chain. Since the polymer introduced as a side chain in this way is difficult to inhibit the crystallinity of the vinyl alcohol moiety, it is represented by the above formula (I) or formula (II) as shown in the following examples. The decrease in crystallization temperature with respect to the content of repeating units is small. Therefore, it is possible to achieve both a high glass transition temperature and high crystallinity.
 前記グラフト共重合体が上記式(I)で表される繰り返し単位から構成される重合体からなる側鎖を有することが好ましい。このような重合体からなる側鎖を有するグラフト共重合体は、特に高いガラス転移温度を有する。前記式(I)で表される構造によってガラス転移温度が向上する理由については不明な点が多いが、繰り返し単位中のアミド基の窒素原子がグラフト共重合体側鎖を構成する重合体の主鎖側に配置されることによって、アミド基と水酸基との水素結合による分子間の拘束力が強まり、結果としてガラス転移温度が向上するものと考えられる。 It is preferable that the graft copolymer has a side chain composed of a polymer composed of a repeating unit represented by the above formula (I). A graft copolymer having a side chain made of such a polymer has a particularly high glass transition temperature. The reason why the glass transition temperature is improved by the structure represented by the formula (I) is unclear, but the main chain of the polymer in which the nitrogen atom of the amide group in the repeating unit constitutes the side chain of the graft copolymer. By being arranged on the side, the binding force between molecules due to the hydrogen bond between the amide group and the hydroxyl group is strengthened, and as a result, the glass transition temperature is considered to be improved.
 前記グラフト共重合体中の上記式(I)で表される繰り返し単位から構成される重合体が、ポリN-ビニルホルムアミド、ポリN-ビニルアセトアミド及びポリN-ビニルピロリドンからなる群から選択される少なくとも一種であることがより好ましく、ポリN-ビニルホルムアミド及びポリN-ビニルアセトアミドの少なくとも一種であることがさらに好ましく、ポリN-ビニルアセトアミドであることが特に好ましい。 The polymer composed of the repeating unit represented by the above formula (I) in the graft copolymer is selected from the group consisting of poly N-vinylformamide, poly N-vinylacetamide, and poly N-vinylpyrrolidone. More preferably, it is at least one, more preferably at least one of poly N-vinylformamide and poly N-vinylacetamide, and particularly preferably polyN-vinylacetamide.
 前記グラフト共重合体中の全単量体単位に対する上記式(I)又は式(II)で表される繰り返し単位の含有量は0.2~20mol%である。前記繰り返し単位の含有量が0.2mol%未満の場合、ガラス転移温度の上昇が不十分である。当該含有量は、好ましくは0.3mol%以上であり、より好ましくは0.5mol%以上である。一方、前記繰り返し単位の含有量が20mol%を超える場合、結晶性が低下し、成形品とした場合の機械的強度やバリア性等の物性が低下するだけでなく、本発明の一つの特徴である水溶性も悪化する場合がある。当該含有量は、好ましくは15mol%以下であり、より好ましくは13mol%以下である。特に高い結晶性が必要な場合には、当該含有量は好ましくは10mol%以下であり、より好ましくは7mol%以下である。 The content of the repeating unit represented by the above formula (I) or (II) with respect to all the monomer units in the graft copolymer is 0.2 to 20 mol%. When the content of the repeating unit is less than 0.2 mol%, the glass transition temperature is not sufficiently increased. The content is preferably 0.3 mol% or more, more preferably 0.5 mol% or more. On the other hand, when the content of the repeating unit exceeds 20 mol%, the crystallinity is lowered, and not only physical properties such as mechanical strength and barrier properties are reduced when formed into a molded product, but also one feature of the present invention. Some water solubility may also deteriorate. The said content becomes like this. Preferably it is 15 mol% or less, More preferably, it is 13 mol% or less. When particularly high crystallinity is required, the content is preferably 10 mol% or less, more preferably 7 mol% or less.
 アミド基の水素結合による分子間の拘束力がより強まる観点から、側鎖を構成する重合体における、上記式(I)又は式(II)で表される単位の繰り返し数は2以上であることが好ましい。 The number of repeating units represented by the above formula (I) or formula (II) in the polymer constituting the side chain is 2 or more from the viewpoint of increasing the intermolecular binding force due to the hydrogen bond of the amide group. Is preferred.
 前記グラフト共重合体の分子量としては、数平均分子量が5,000~250,000であることが好ましい。グラフト共重合体の数平均分子量が5,000未満の場合、成形品とした場合の機械的強度が低下するおそれがある。数平均分子量が10,000以上であることがより好ましく、15,000以上であることがさらに好ましい。一方、グラフト共重合体の数平均分子量が250,000を超える場合、溶液粘度の安定性が低下したり、熱成形時の溶融粘度が増大したりする等、取り扱い性が不十分になるおそれがある。数平均分子量が200,000以下であることがより好ましく、150,000以下であることがさらに好ましい。本発明におけるグラフト共重合体の数平均分子量は、標準物質としてポリエチレンオキシド及びポリエチレングリコールを用い、カラムとして水系カラムを用いたゲルパーミエーションクロマトグラフィー(GPC)法により測定した値を意味する。 The molecular weight of the graft copolymer is preferably a number average molecular weight of 5,000 to 250,000. When the number average molecular weight of the graft copolymer is less than 5,000, the mechanical strength when formed into a molded product may be lowered. The number average molecular weight is more preferably 10,000 or more, and further preferably 15,000 or more. On the other hand, when the number average molecular weight of the graft copolymer is more than 250,000, the stability of the solution viscosity may be lowered, or the melt viscosity at the time of thermoforming may be increased. is there. The number average molecular weight is more preferably 200,000 or less, and further preferably 150,000 or less. The number average molecular weight of the graft copolymer in the present invention means a value measured by a gel permeation chromatography (GPC) method using polyethylene oxide and polyethylene glycol as standard substances and an aqueous column as a column.
 前記グラフト共重合体のガラス転移温度は80℃以上であることが好ましい。このようなガラス転移温度であることにより、前記グラフト共重合体の軟化温度が上昇し、成形品とした場合により高温での使用が可能となる等の利点を有する。一方、前記グラフト共重合体のガラス転移温度は120℃以下であることが好ましい。ガラス転移温度が120℃を超えると、前記グラフト共重合体の結晶性が不十分になるおそれがある。 The glass transition temperature of the graft copolymer is preferably 80 ° C. or higher. By having such a glass transition temperature, the softening temperature of the graft copolymer is increased, and there is an advantage that the molded product can be used at a higher temperature. Meanwhile, the glass transition temperature of the graft copolymer is preferably 120 ° C. or lower. If the glass transition temperature exceeds 120 ° C., the crystallinity of the graft copolymer may be insufficient.
 前記グラフト共重合体の結晶融解温度は200℃以上であることが好ましい。このような結晶融解温度を有することにより、優れた機械強度や高いバリア性が発現される。一方、前記グラフト共重合体の結晶融解温度は、250℃以下であることが好ましい。 The crystal melting temperature of the graft copolymer is preferably 200 ° C. or higher. By having such a crystal melting temperature, excellent mechanical strength and high barrier properties are exhibited. On the other hand, the crystal melting temperature of the graft copolymer is preferably 250 ° C. or lower.
 本発明の粉末は、本発明の効果を阻害しない範囲であれば、前記グラフト共重合体以外の他の成分を含有していても構わない。他の成分として、光安定剤、酸化防止剤等が挙げられる。前記粉末中の他の成分の含有量は、好ましくは5質量%以下であり、より好ましくは1質量%以下である。 The powder of the present invention may contain components other than the graft copolymer as long as the effects of the present invention are not impaired. Examples of other components include light stabilizers and antioxidants. The content of other components in the powder is preferably 5% by mass or less, more preferably 1% by mass or less.
 本発明の粉末中のアルカリ金属及びアルカリ土類金属の合計含有量は0.5質量%以下であることが好ましい。アルカリ金属及びアルカリ土類金属の合計含有量が上記範囲であると、前記グラフト共重合体の側鎖中のアミド基の熱的安定性が向上してグラフト共重合体の耐熱性がさらに向上する。したがって、本発明の粉末を熱成形等に用いる場合に、得られる成形品の着色を防止できるとともに、グラフト共重合体の熱分解が抑制されて機械的強度がさらに向上する。このような効果は、ルイス酸として働く金属成分が低減することでアミド基の分解が抑えられ、併発する分子鎖分解反応が抑制されることによるものと考えられる。アルカリ金属及びアルカリ土類金属の合計含有量は、より好ましくは0.3質量%以下、さらに好ましくは0.1質量%以下である。
 
The total content of alkali metal and alkaline earth metal in the powder of the present invention is preferably 0.5% by mass or less. When the total content of alkali metal and alkaline earth metal is within the above range, the thermal stability of the amide group in the side chain of the graft copolymer is improved, and the heat resistance of the graft copolymer is further improved. . Therefore, when the powder of the present invention is used for thermoforming or the like, coloring of the obtained molded product can be prevented, and thermal decomposition of the graft copolymer is suppressed, and mechanical strength is further improved. Such an effect is considered to be due to the reduction of the metal component that acts as a Lewis acid, thereby suppressing the decomposition of the amide group and the accompanying molecular chain decomposition reaction. The total content of alkali metal and alkaline earth metal is more preferably 0.3% by mass or less, and still more preferably 0.1% by mass or less.
 本発明の粉末の熱分解温度は300℃以上であることが好ましい。熱分解温度が上記範囲であると、前記粉末の熱劣化を抑制することができる。熱分解温度は310℃以上であることがより好ましく、320℃以上であることがさらに好ましい。前記粉末の熱分解温度は熱重量測定装置を用いて測定される。具体的な測定条件は下記の実施例に記載のとおりである。 The thermal decomposition temperature of the powder of the present invention is preferably 300 ° C. or higher. When the thermal decomposition temperature is in the above range, thermal degradation of the powder can be suppressed. The thermal decomposition temperature is more preferably 310 ° C. or higher, and further preferably 320 ° C. or higher. The thermal decomposition temperature of the powder is measured using a thermogravimetric apparatus. Specific measurement conditions are as described in the following examples.
 本発明の粉末は水100gに対して2g以上完全に溶解することができる必要がある。ここで、完全に溶解することができるかどうかの判断は、100℃の水100gに対して前記粉末2gが完全に溶解できるかどうかを指標とする。具体的には、以下の方法で判断する。室温(25℃)でイオン交換水100gに対して粉末2gを添加する。得られた混合物を撹拌(150rpm)しながら10℃/minにて100℃まで昇温させた後、当該温度で撹拌を続ける。このとき、100℃に昇温後60分以内に粉末が完全に溶解できるかどうかを指標とする。100℃に昇温後30分以内に粉末が完全に溶解できることが好ましい。また、100℃の水100gに対して粉末2gを完全に溶解させた後、得られたグラフト共重合体水溶液を25℃に自然冷却した場合に、当該水溶液中のグラフト共重合体が完全溶解した状態を維持できることが好ましく、グラフト共重合体水溶液を25℃に冷却してから1日経過後もグラフト共重合体が完全に溶解した状態を維持していることがより好ましい。 The powder of the present invention needs to be able to completely dissolve 2 g or more with respect to 100 g of water. Here, the judgment of whether or not it can be completely dissolved is based on whether or not 2 g of the powder can be completely dissolved with respect to 100 g of water at 100 ° C. Specifically, the determination is made by the following method. 2 g of powder is added to 100 g of ion-exchanged water at room temperature (25 ° C.). The resulting mixture is heated to 100 ° C. at 10 ° C./min while stirring (150 rpm), and then stirring is continued at the temperature. At this time, whether or not the powder can be completely dissolved within 60 minutes after raising the temperature to 100 ° C. is used as an index. It is preferable that the powder can be completely dissolved within 30 minutes after the temperature is raised to 100 ° C. In addition, when 2 g of the powder was completely dissolved in 100 g of water at 100 ° C., when the obtained graft copolymer aqueous solution was naturally cooled to 25 ° C., the graft copolymer in the aqueous solution was completely dissolved. It is preferable that the state can be maintained, and it is more preferable that the state in which the graft copolymer is completely dissolved is maintained even after one day has passed since the aqueous graft copolymer solution was cooled to 25 ° C.
 本発明の粉末の平均粒子径は20~1,000μmである。平均粒子径が上記範囲であると、前記グラフト共重合体の取扱性や加工性が向上する。平均粒子径が20μm未満の場合、粉末が飛散し易い等の問題があり、取り扱いが難しく実用的ではない。平均粒子径は50μm以上が好ましく、80μm以上がより好ましい。一方、平均粒子径が1,000μmを超えると、グラフト共重合体を水に溶解させるのに要する時間が長くなり過ぎるうえに、側鎖が均一に導入されたグラフト共重合体が得られない場合がある。平均粒子径は500μm以下が好ましく、300μm以下がより好ましく、200μm以下がさらに好ましい。本発明における粉末の平均粒子径は、レーザー光による光散乱法を用い、メタノール中にグラフト共重合体粒子を分散させて測定される体積平均径を意味する。 The average particle size of the powder of the present invention is 20 to 1,000 μm. When the average particle size is in the above range, the handleability and processability of the graft copolymer are improved. When the average particle diameter is less than 20 μm, there is a problem that the powder is likely to be scattered, and it is difficult to handle and is not practical. The average particle size is preferably 50 μm or more, and more preferably 80 μm or more. On the other hand, if the average particle size exceeds 1,000 μm, the time required for dissolving the graft copolymer in water becomes too long, and a graft copolymer in which side chains are uniformly introduced cannot be obtained. There is. The average particle size is preferably 500 μm or less, more preferably 300 μm or less, and even more preferably 200 μm or less. The average particle diameter of the powder in the present invention means a volume average diameter measured by dispersing the graft copolymer particles in methanol using a light scattering method using laser light.
(グラフト共重合体からなる粉末の製造方法)
 本発明のグラフト共重合体からなる粉末は、平均粒子径が20~1,000μmであるポリビニルアルコール粉末に電離放射線を照射する工程と、電離放射線が照射されたポリビニルアルコール粉末を、下記式(III)又は式(IV)で表される単量体を含む溶液中に分散させてグラフト重合を行う工程を備える方法により製造することが好ましい。
(Method for producing a powder comprising a graft copolymer)
The powder comprising the graft copolymer of the present invention comprises a step of irradiating a polyvinyl alcohol powder having an average particle size of 20 to 1,000 μm with ionizing radiation, and a polyvinyl alcohol powder irradiated with the ionizing radiation represented by the following formula (III Or a method comprising a step of graft polymerization by dispersing in a solution containing a monomer represented by formula (IV).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式中、R1、R2及びR3は、上記式(I)と同じである。] [Wherein, R1, R2 and R3 are the same as those in the above formula (I). ]
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式中、R1、R4及びR5は、上記式(II)と同じである。] [Wherein, R1, R4 and R5 are the same as those in the above formula (II). ]
 また、本発明のグラフト共重合体からなる粉末は、平均粒子径が20~1,000μmであるポリビニルアルコール粉末に電離放射線を照射した後、電離放射線が照射されたポリビニルアルコール粉末を、上記式(III)又は式(IV)で表される単量体を含む溶液中に分散させてグラフト重合を行うことによって得られたものであることが好ましい。 The powder comprising the graft copolymer of the present invention is obtained by irradiating polyvinyl alcohol powder having an average particle diameter of 20 to 1,000 μm with ionizing radiation and then irradiating the ionizing radiation with the above formula ( It is preferable that it is obtained by carrying out graft polymerization by dispersing in a solution containing the monomer represented by III) or formula (IV).
 本発明の製造方法に用いられる原料のポリビニルアルコールは、従来公知の方法にしたがい、ビニルエステルモノマーを重合し、得られた重合体を常法によりけん化することによって得ることができる。ビニルエステルモノマーを重合する方法としては、溶液重合法、塊状重合法、懸濁重合法、乳化重合法等、従来公知の方法を適用することができる。重合触媒としては、重合方法に応じて、アゾ系触媒、過酸化物系触媒、レドックス系触媒等が適宜選ばれる。けん化反応は、従来公知のアルカリ触媒又は酸触媒を用いる加アルコール分解、加水分解等を適用することができ、この中でもメタノールを溶剤とし、苛性ソーダ(NaOH)触媒を用いるけん化反応が簡便であり最も好ましい。 The starting polyvinyl alcohol used in the production method of the present invention can be obtained by polymerizing a vinyl ester monomer and saponifying the obtained polymer by a conventional method according to a conventionally known method. As a method for polymerizing the vinyl ester monomer, conventionally known methods such as a solution polymerization method, a bulk polymerization method, a suspension polymerization method, and an emulsion polymerization method can be applied. As the polymerization catalyst, an azo catalyst, a peroxide catalyst, a redox catalyst or the like is appropriately selected according to the polymerization method. The saponification reaction can be applied by alcoholysis or hydrolysis using a conventionally known alkali catalyst or acid catalyst. Among them, methanol is the solvent, and the saponification reaction using a caustic soda (NaOH) catalyst is simple and most preferred. .
 前記ポリビニルアルコールの製造に用いられるビニルエステルモノマーとしては、例えばギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、オレイン酸ビニル、安息香酸ビニル等が挙げられる。中でも酢酸ビニルが最も好ましい。 Examples of the vinyl ester monomer used in the production of the polyvinyl alcohol include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl versatate, vinyl caproate, vinyl caprylate, and lauric acid. Examples thereof include vinyl, vinyl palmitate, vinyl stearate, vinyl oleate, vinyl benzoate and the like. Of these, vinyl acetate is most preferred.
 前記ポリビニルアルコールは、本発明の効果が阻害されない範囲であれば、ビニルアルコール単位及びビニルエステル単位以外の他の単量体単位を有することができる。他の単量体単位は、例えばエチレン、プロピレン、n-ブテン、イソブチレン、1-ヘキセン等のα-オレフィン類;アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸N-プロピル、アクリル酸i-プロピル、アクリル酸N-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル、アクリル酸オクタデシル等のアクリル酸エステル基を有する不飽和単量体;メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸N-プロピル、メタクリル酸i-プロピル、メタクリル酸N-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル基を有する不飽和単量体;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸、アクリルアミドプロピルジメチルアミン;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸、メタクリルアミドプロピルジメチルアミン;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル、2,3-ジアセトキシ-1-ビニルオキシプロパン等のビニルエーテル類;アクリロニトリル、メタクリロニトリル等のシアン化ビニル類;塩化ビニル、フッ化ビニル等のハロゲン化ビニル類;塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニリデン類;酢酸アリル、2,3-ジアセトキシ-1-アリルオキシプロパン、塩化アリル等のアリル化合物;マレイン酸、イタコン酸、フマル酸等の不飽和ジカルボン酸及びその塩又はエステル;ビニルトリメトキシシラン等のビニルシリル化合物、酢酸イソプロペニルが挙げられる。他の単量体単位の含有量は、ポリビニルアルコール中の全単量体単位に対して10mol%未満が好ましい。 The polyvinyl alcohol may have a monomer unit other than the vinyl alcohol unit and the vinyl ester unit as long as the effect of the present invention is not inhibited. Other monomer units include, for example, α-olefins such as ethylene, propylene, n-butene, isobutylene, 1-hexene; acrylic acid, methyl acrylate, ethyl acrylate, N-propyl acrylate, i-acrylate Unsaturated monomers having an acrylate group such as propyl, N-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid, Methyl methacrylate, ethyl methacrylate, N-propyl methacrylate, i-propyl methacrylate, N-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, methacrylic acid Methacrylic acid esters such as octadecyl Unsaturated monomers having: acrylamide, N-methyl acrylamide, N-ethyl acrylamide, N, N-dimethyl acrylamide, diacetone acrylamide, acrylamide propane sulfonic acid, acrylamide propyl dimethylamine; methacrylamide, N-methyl methacrylamide, N-ethylmethacrylamide, methacrylamidepropanesulfonic acid, methacrylamidepropyldimethylamine; methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl Vinyl ethers such as vinyl ether, stearyl vinyl ether, 2,3-diacetoxy-1-vinyloxypropane; Vinyl cyanides such as acrylonitrile and methacrylonitrile; Vinyl halides such as vinyl chloride and vinyl fluoride; Vinylidene halides such as vinylidene chloride and vinylidene fluoride; Allyl acetate, 2,3-diacetoxy-1-allyl Examples include allyl compounds such as oxypropane and allyl chloride; unsaturated dicarboxylic acids such as maleic acid, itaconic acid, and fumaric acid, and salts or esters thereof; vinylsilyl compounds such as vinyltrimethoxysilane; and isopropenyl acetate. The content of other monomer units is preferably less than 10 mol% with respect to all monomer units in the polyvinyl alcohol.
 前記ポリビニルアルコールの粘度平均重合度(JIS K6726に準拠して測定)は、目的とするグラフト共重合体の数平均分子量に合わせて適宜調整すればよく、好ましくは100~10,000である。粘度平均重合度が上記範囲から外れた場合には、成形品とした場合の機械的強度が低下するおそれがある。前記粘度平均重合度は、より好ましくは200以上であり、さらに好ましくは300以上である。一方、前記粘度平均重合度は、より好ましくは7,000以下であり、さらに好ましくは5,000以下である。 The viscosity average degree of polymerization of the polyvinyl alcohol (measured in accordance with JIS K6726) may be appropriately adjusted according to the number average molecular weight of the target graft copolymer, and is preferably 100 to 10,000. When the viscosity average polymerization degree is out of the above range, the mechanical strength in the case of a molded product may be lowered. The viscosity average degree of polymerization is more preferably 200 or more, and still more preferably 300 or more. On the other hand, the viscosity average degree of polymerization is more preferably 7,000 or less, and further preferably 5,000 or less.
 前記ポリビニルアルコールのけん化度(JIS K6726に準拠して測定)としては、好ましくは50モル%以上であり、より好ましくは80モル%以上であり、さらに好ましくは95モル%以上である。けん化度が50モル%未満であると水溶性が低下するおそれがある。一方、前記ポリビニルアルコールのけん化度は、好ましくは99.99モル%以下である。 The degree of saponification of polyvinyl alcohol (measured in accordance with JIS K6726) is preferably 50 mol% or more, more preferably 80 mol% or more, and further preferably 95 mol% or more. If the degree of saponification is less than 50 mol%, the water solubility may decrease. On the other hand, the saponification degree of the polyvinyl alcohol is preferably 99.99 mol% or less.
 前記ポリビニルアルコールは、単独で用いてもよいし又は2種以上組み合わせて用いても構わない。 The polyvinyl alcohol may be used alone or in combination of two or more.
 本発明の製造方法において、平均粒子径が20~1,000μmであるポリビニルアルコール粉末が用いられる。ポリビニルアルコール粉末の粒子径は、粉砕等により適宜調整すればよい。ポリビニルアルコール粉末の均粒子径が20μm未満の場合、粉末が飛散し易い等の問題があり、取り扱いが難しい。当該均粒子径は、50μm以上が好ましく、75μm以上がより好ましい。一方、ポリビニルアルコール粉末の平均粒子径が1000μmを超える場合、側鎖が均一に導入されたグラフト共重合体が得られないうえに、得られるグラフト共重合体を水に溶解させるのに要する時間が長くなり過ぎるおそれがある。当該均粒子径は、平均粒子径は500μm以下が好ましく、300μm以下がより好ましく、200μm以下がさらに好ましい。ポリビニルアルコール粉末の平均粒子径は、グラフト共重合体からなる粉末と同様の方法により測定される。 In the production method of the present invention, polyvinyl alcohol powder having an average particle size of 20 to 1,000 μm is used. The particle diameter of the polyvinyl alcohol powder may be appropriately adjusted by pulverization or the like. When the average particle diameter of the polyvinyl alcohol powder is less than 20 μm, there is a problem that the powder is likely to be scattered, which makes it difficult to handle. The average particle diameter is preferably 50 μm or more, and more preferably 75 μm or more. On the other hand, when the average particle diameter of the polyvinyl alcohol powder exceeds 1000 μm, a graft copolymer in which side chains are uniformly introduced cannot be obtained, and the time required for dissolving the obtained graft copolymer in water is not obtained. May be too long. The average particle size is preferably 500 μm or less, more preferably 300 μm or less, and even more preferably 200 μm or less. The average particle diameter of the polyvinyl alcohol powder is measured by the same method as that for the powder made of the graft copolymer.
 前記ポリビニルアルコール粉末が多孔質のポリビニルアルコール粒子からなるものであることがさらに効率的にグラフト鎖を導入できるため好ましい。多孔質のポリビニルアルコール粒子を得る方法としては、発泡剤等の気孔形成材とポリビニルアルコール樹脂とを溶融混合する方法、ポリビニルアルコール樹脂と非水溶性の成分を複合させた後、得られた複合体から非水溶性の成分を抽出する方法、数μmのポリビニルアルコール粒子を凝集させる方法等が挙げられる。 It is preferable that the polyvinyl alcohol powder is composed of porous polyvinyl alcohol particles because graft chains can be introduced more efficiently. As a method for obtaining porous polyvinyl alcohol particles, a method of melt-mixing a pore-forming material such as a foaming agent and a polyvinyl alcohol resin, a composite obtained after combining a polyvinyl alcohol resin and a water-insoluble component, For example, a method for extracting a water-insoluble component from the water, a method for aggregating polyvinyl alcohol particles of several μm, and the like.
 グラフト重合方法としては、ポリビニルアルコール樹脂と不飽和単量体の共存下、電離放射線を照射する同時照射法が知られている。しかしながら、当該方法は、副反応が起こり易いうえに、分子間架橋によるゲル化によって、得られるグラフト共重合体の水溶性が著しく悪化する等の問題があった。それに対して、本発明の製造方法においては、予め前記ポリビニルアルコール粉末に電離放射線を照射した後、当該ポリビニルアルコール粉末と上記式(III)又は式(IV)で表される単量体とを用いてグラフト重合を行う。通常、樹脂に電離放射線を照射して発生したラジカルは空気中の水等と反応して短時間で失活する。一方、前記ポリビニルアルコール粉末に電離放射線を照射した場合、長期間経過後も当該粉末中のポリビニルアルコールは単量体に対する高い反応性を有する。また、当該方法により得られるグラフト共重合体は良好な水溶性を有する。このメカニズムは明らかではないが、ポリビニルアルコールは高いバリア性を有するため、粉末内部のポリビニルアルコールに発生したラジカルが水等と反応して消失することなく、長期間存在するものと考えられる。また、粉末中ではポリビニルアルコールの分子運動が抑制されているため、ポリビニルアルコール分子間の架橋反応が抑制されながらグラフト反応が選択的に進行するため、水溶性の良好なグラフト共重合体からなる粉末が得られるものと考えられる。 As a graft polymerization method, a simultaneous irradiation method in which ionizing radiation is irradiated in the presence of a polyvinyl alcohol resin and an unsaturated monomer is known. However, this method has problems that side reactions are likely to occur and the water-solubility of the obtained graft copolymer is significantly deteriorated due to gelation by intermolecular crosslinking. On the other hand, in the production method of the present invention, after the polyvinyl alcohol powder is irradiated with ionizing radiation in advance, the polyvinyl alcohol powder and the monomer represented by the formula (III) or formula (IV) are used. To perform graft polymerization. Usually, radicals generated by irradiating the resin with ionizing radiation react with water in the air and deactivate in a short time. On the other hand, when the polyvinyl alcohol powder is irradiated with ionizing radiation, the polyvinyl alcohol in the powder has high reactivity to the monomer even after a long period of time. Moreover, the graft copolymer obtained by the said method has favorable water solubility. Although this mechanism is not clear, since polyvinyl alcohol has a high barrier property, it is considered that radicals generated in polyvinyl alcohol inside the powder do not disappear by reacting with water or the like and exist for a long period of time. In addition, since the molecular motion of polyvinyl alcohol is suppressed in the powder, the graft reaction selectively proceeds while the cross-linking reaction between the polyvinyl alcohol molecules is suppressed, so that the powder made of a graft copolymer having good water solubility. Is considered to be obtained.
 本発明の製造方法において、水分率15質量%以下のポリビニルアルコール粉末に電離放射線を照射することが好ましい。前記ポリビニルアルコール粉末の水分率が15質量%を超える場合、電離放射線を照射することによりポリビニルアルコールに発生したラジカルが消失しやすくなり、ポリビニルアルコールの単量体に対する反応性が不十分になるおそれがある。 In the production method of the present invention, it is preferable to irradiate polyvinyl alcohol powder having a moisture content of 15% by mass or less with ionizing radiation. When the water content of the polyvinyl alcohol powder exceeds 15% by mass, radicals generated in the polyvinyl alcohol are easily lost by irradiation with ionizing radiation, and the reactivity of the polyvinyl alcohol with respect to the monomer may be insufficient. is there.
 ポリビニルアルコール粉末に照射する電離放射線としては、α線、β線、γ線、電子線及び紫外線等が挙げられるが、実用的には電子線及びγ線が好ましく、処理速度が早く、かつ設備も簡便にできる電子線がより好ましい。 Examples of the ionizing radiation applied to the polyvinyl alcohol powder include α rays, β rays, γ rays, electron rays, and ultraviolet rays. Practically, electron rays and γ rays are preferable, the processing speed is high, and equipment is also provided. An electron beam that can be simply used is more preferable.
 ポリビニルアルコール粉末に電離放射線を照射する線量としては、例えば5~200kGyが好ましく、10~150kGyがより好ましく、20~100kGyがさらに好ましく、30~90kGyが最も好ましい。照射する線量が5kGy未満の場合、得られるグラフト共重合体中の上記式(I)又は式(II)で表される繰り返し単位の含有量が目的の量に到達できないことがある。一方、照射する線量が200kGyを超える場合、コスト高になったり、電離放射線の照射によってポリビニルアルコール粉末が劣化したりするおそれがある。 The dose of the polyvinyl alcohol powder irradiated with ionizing radiation is, for example, preferably 5 to 200 kGy, more preferably 10 to 150 kGy, still more preferably 20 to 100 kGy, and most preferably 30 to 90 kGy. When the irradiation dose is less than 5 kGy, the content of the repeating unit represented by the above formula (I) or formula (II) in the obtained graft copolymer may not reach the target amount. On the other hand, when the dose to be irradiated exceeds 200 kGy, the cost may increase, or the polyvinyl alcohol powder may be deteriorated by irradiation with ionizing radiation.
 電離放射線が照射された前記ポリビニルアルコール粉末を、上記式(III)又は式(IV)で表される単量体を含む溶液中に分散させてグラフト重合を行う。このとき用いられる液体媒体は、上記式(III)又は式(IV)で表される単量体を溶解させるが、前記ポリビニルアルコール粉末を溶解させないものである必要がある。前記ポリビニルアルコール粉末が溶解した場合、グラフト重合の進行とポリビニルアルコールに発生したラジカルの失活が同時に進行するため、付加する単量体の量を制御することが困難である。前記グラフト重合に用いられる液体媒体としては、例えばメタノール、エタノール、イソプロパノール等の低級アルコール;テトラヒドロフラン、ジオキサン、ジエチルエーテル等のエーテル;アセトン、メチルエチルケトン等のケトン;ジメチルホルムアミド、ジメチルアセトアミド等のアミド;トルエン、ヘキサン等が挙げられる。 The polyvinyl alcohol powder irradiated with ionizing radiation is dispersed in a solution containing the monomer represented by the above formula (III) or formula (IV) to perform graft polymerization. The liquid medium used at this time needs to dissolve the monomer represented by the above formula (III) or formula (IV) but does not dissolve the polyvinyl alcohol powder. When the polyvinyl alcohol powder is dissolved, the progress of graft polymerization and the deactivation of radicals generated in the polyvinyl alcohol proceed at the same time, so it is difficult to control the amount of added monomer. Examples of the liquid medium used for the graft polymerization include lower alcohols such as methanol, ethanol and isopropanol; ethers such as tetrahydrofuran, dioxane and diethyl ether; ketones such as acetone and methyl ethyl ketone; amides such as dimethylformamide and dimethylacetamide; Hexane etc. are mentioned.
 グラフト重合を行う工程において、前記ポリビニルアルコール粒子が膨潤することで上記式(III)又は式(IV)で表される単量体が粒子内部まで浸透し、上記式(I)又は式(II)で表される繰り返し単位を均一且つ多量にグラフト共重合体の側鎖に導入することが可能になる。したがって、使用する液体媒体は前記ポリビニルアルコールとの親和性を考慮して選択することが好ましい。上述の液体媒体の中でも、メタノール、エタノール、イソプロパノール等の低級アルコールは前記ポリビニルアルコールとの親和性が高いため、本発明の製造方法において好適に用いられる。また、前記ポリビニルアルコール粉末が溶解しない範囲で、上記液体媒体に水を共存させることも、上記と同様の理由で効果的である。液体媒体中の水の含有量としては、例えば1~50質量%が好ましく、2~30質量%がより好ましく、5~20質量%がさらに好ましい。水の含有量が1質量%未満の場合、ポリビニルアルコール粒子を膨潤させる効果が十分得られないおそれがある。一方、水の含有量が50質量%を超える場合、ポリビニルアルコール粒子が一部溶解したり、ポリビニルアルコール粒子が膨潤し過ぎたりすることで重合後のグラフト共重合体からなる粉末の取り出しが困難になることがある。 In the step of carrying out the graft polymerization, the polyvinyl alcohol particles swell so that the monomer represented by the above formula (III) or formula (IV) penetrates into the inside of the particles, and the above formula (I) or formula (II) It is possible to introduce the repeating unit represented by the formula into the side chain of the graft copolymer in a uniform and large amount. Therefore, it is preferable to select the liquid medium to be used in consideration of the affinity with the polyvinyl alcohol. Among the liquid media described above, lower alcohols such as methanol, ethanol, and isopropanol have high affinity with the polyvinyl alcohol, and thus are preferably used in the production method of the present invention. Moreover, it is also effective for the reason similar to the above to make water coexist in the said liquid medium in the range which the said polyvinyl alcohol powder does not melt | dissolve. The water content in the liquid medium is, for example, preferably 1 to 50% by mass, more preferably 2 to 30% by mass, and even more preferably 5 to 20% by mass. If the water content is less than 1% by mass, the effect of swelling the polyvinyl alcohol particles may not be sufficiently obtained. On the other hand, when the water content exceeds 50% by mass, it becomes difficult to take out the powder composed of the graft copolymer after polymerization because the polyvinyl alcohol particles are partially dissolved or the polyvinyl alcohol particles are excessively swollen. May be.
 グラフト重合に用いる上記式(III)又は式(IV)で表される単量体の量は、単量体の反応性に合わせて適宜調整される。反応性は前述の通り、前記ポリビニルアルコール粒子への単量体の浸透し易さ等に依存して変化する。したがって、単量体の適切な添加量は、液体媒体の種類や量、またポリビニルアルコールの重合度やけん化度に依存して変化するが、前記ポリビニルアルコール粒子100質量部に対して、0.4~200質量部が好ましい。上記式(III)又は式(IV)で表される単量体の量が上記範囲から外れる場合には、上記式(I)又は式(II)で表される繰り返し単位の含有量が上記範囲であるグラフト共重合体が得られないおそれがある。上記式(III)又は式(IV)で表される単量体の使用量は、1~100質量部がより好ましく、2~50質量部がさらに好ましい。 The amount of the monomer represented by the above formula (III) or formula (IV) used for graft polymerization is appropriately adjusted according to the reactivity of the monomer. As described above, the reactivity varies depending on the ease of penetration of the monomer into the polyvinyl alcohol particles. Accordingly, the appropriate addition amount of the monomer varies depending on the type and amount of the liquid medium, and also the degree of polymerization and saponification of the polyvinyl alcohol, but with respect to 100 parts by mass of the polyvinyl alcohol particles, ~ 200 parts by weight are preferred. When the amount of the monomer represented by the above formula (III) or formula (IV) is out of the above range, the content of the repeating unit represented by the above formula (I) or formula (II) is within the above range. There is a possibility that the graft copolymer is not obtained. The amount of the monomer represented by the above formula (III) or formula (IV) is more preferably 1 to 100 parts by mass, and further preferably 2 to 50 parts by mass.
  グラフト重合に用いる上記液体媒体の量は、前記ポリビニルアルコール粒子100質量部に対して、100~4000質量部が好ましく、200~2000質量部がより好ましく、300~1500質量部がさらに好ましい。 The amount of the liquid medium used for graft polymerization is preferably 100 to 4000 parts by mass, more preferably 200 to 2000 parts by mass, and further preferably 300 to 1500 parts by mass with respect to 100 parts by mass of the polyvinyl alcohol particles.
 前記ポリビニルアルコールに電離放射線を照射するとビニルアルコール単位中のメチン基の炭素原子にラジカルが発生することが確認されている。したがって、上記式(III)又は式(IV)で表される単量体が、ポリビニルアルコールの主鎖を構成するビニルアルコール単位中のメチン基の炭素原子に結合することにより、上記式(I)又は式(II)で表される繰り返し単位が形成されると考えられる。この場合の前記ポリビニルアルコールからなる主鎖と側鎖の重合体との連結部の構造を下記式A及びBにそれぞれ示す。また、前記ポリビニルアルコールに電離放射線を照射するとビニルエステル単位中のメチン基の炭素原子にもラジカルが発生すると考えられ、その場合、上記式(III)又は式(IV)で表される単量体は、当該炭素原子に結合することにより、上記式(I)又は式(II)で表される繰り返し単位が形成されると考えられる。この場合の前記ポリビニルアルコールからなる主鎖と側鎖の重合体との連結部の構造の一例を下記式C及びDにそれぞれ示す。 It has been confirmed that when the polyvinyl alcohol is irradiated with ionizing radiation, a radical is generated at the carbon atom of the methine group in the vinyl alcohol unit. Therefore, the monomer represented by the formula (III) or the formula (IV) is bonded to the carbon atom of the methine group in the vinyl alcohol unit constituting the main chain of the polyvinyl alcohol, whereby the formula (I) Or it is thought that the repeating unit represented by Formula (II) is formed. In this case, the structures of the connecting portion between the main chain composed of the polyvinyl alcohol and the side chain polymer are shown in the following formulas A and B, respectively. In addition, it is considered that when the polyvinyl alcohol is irradiated with ionizing radiation, a radical is also generated in the carbon atom of the methine group in the vinyl ester unit. In that case, the monomer represented by the above formula (III) or formula (IV) Is considered to form a repeating unit represented by the above formula (I) or (II) by bonding to the carbon atom. An example of the structure of the connecting portion between the main chain and the side chain polymer made of polyvinyl alcohol in this case is shown in the following formulas C and D, respectively.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 本発明の製造方法において、グラフト重合を行う場合の反応温度としては、好ましくは20℃~150℃、より好ましくは30℃~120℃、さらに好ましくは40℃~100℃である。反応温度が20℃を下回る場合、グラフト重合反応がほとんど進行しないおそれがある。反応温度が150℃を超える場合、アミド基の分解等が生じるおそれがある。 In the production method of the present invention, the reaction temperature for carrying out graft polymerization is preferably 20 ° C. to 150 ° C., more preferably 30 ° C. to 120 ° C., and further preferably 40 ° C. to 100 ° C. When the reaction temperature is lower than 20 ° C, the graft polymerization reaction may hardly proceed. When the reaction temperature exceeds 150 ° C., the amide group may be decomposed.
 本発明の粉末は、成形体(例えばフィルム、シート、ボード、繊維等)、塗料、接着剤、コート剤、バリア剤等の広範な用途に使用できる。 The powder of the present invention can be used in a wide range of applications such as molded bodies (eg, films, sheets, boards, fibers, etc.), paints, adhesives, coating agents, barrier agents and the like.
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、実施例、比較例中の「%」及び「部」は特に断りのない限り、それぞれ「質量%」及び「質量部」を表す。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the examples and comparative examples, “%” and “parts” represent “% by mass” and “parts by mass”, respectively, unless otherwise specified.
[変性量の算出]
 日本電子株式会社製核磁気共鳴装置「LAMBDA 500」を用い、室温でグラフト共重合体のH-NMRを測定し、変性量(グラフト共重合体中の全単量体単位に対する上記式(I)又は式(II)で表される繰り返し単位の含有量)を算出した。
[Calculation of amount of denaturation]
Using a nuclear magnetic resonance apparatus “LAMBDA 500” manufactured by JEOL Ltd., 1 H-NMR of the graft copolymer was measured at room temperature, and the amount of modification (the above formula (I for all monomer units in the graft copolymer) ) Or the content of the repeating unit represented by formula (II).
[アルカリ金属及びアルカリ土類金属の合計含有量の算出]
 株式会社リガク製走査型蛍光X線分析装置「ZSX Primus μ」を用い、グラフト共重合体からなる粉末に含まれるアルカリ金属及びアルカリ土類金属の合計量を測定した。
[Calculation of total content of alkali metals and alkaline earth metals]
The total amount of alkali metal and alkaline earth metal contained in the powder composed of the graft copolymer was measured using a scanning fluorescent X-ray analyzer “ZSX Primus μ” manufactured by Rigaku Corporation.
[数平均分子量の算出]
 昭和電工株式会社製サイズ排除高速液体クロマトグラフィー装置「GPC-101」を用い、カラム:東ソー株式会社製水系カラム「TSKgel GMPWXL」、標準試料:ポリエチレンオキシド及びポリエチレングリコール、溶媒及び移動相:0.05mol/Lリン酸緩衝液、流量:1.0mL/min、温度:40℃、検出器:RI、の条件で数平均分子量を測定した。
[Calculation of number average molecular weight]
Using a size exclusion high performance liquid chromatography apparatus “GPC-101” manufactured by Showa Denko KK, column: water column “TSKgel GMPW XL ” manufactured by Tosoh Corporation, standard sample: polyethylene oxide and polyethylene glycol, solvent and mobile phase: 0. The number average molecular weight was measured under the conditions of 05 mol / L phosphate buffer, flow rate: 1.0 mL / min, temperature: 40 ° C., detector: RI.
[平均粒子径の算出]
 株式会社堀場製作所製レーザー回折装置「LA-950V2」を用い、ポリビニルアルコール又はグラフト共重合体の粉末をメタノールに分散させた状態で体積平均粒子径を測定した。
[Calculation of average particle size]
Using a laser diffraction apparatus “LA-950V2” manufactured by HORIBA, Ltd., the volume average particle diameter was measured in a state where polyvinyl alcohol or graft copolymer powder was dispersed in methanol.
[水溶性の評価]
 室温(25℃)でイオン交換水100gに対してグラフト共重合体からなる粉末2gを添加した後、得られた混合物を撹拌(150rpm)しながら10℃/minにて100℃まで昇温させた。グラフト共重合体が完全に溶解するまで100℃で撹拌を続けた。グラフト共重合体が完全に溶解した後、加熱を停止し、室温(25℃)まで自然冷却した。このときのグラフト共重合体からなる粉末を以下の基準で評価した。
 
A:100℃に昇温後30分以内に完全に溶解し、冷却してから1日経過後も溶解した状態が維持された。
B:100℃に昇温後30分を超えてから60分までの間に完全に溶解し、冷却してから1日経過後も溶解した状態が維持された。
C:100℃に昇温後60分経過しても完全には溶解しなかった。
[Evaluation of water solubility]
After adding 2 g of the graft copolymer powder to 100 g of ion-exchanged water at room temperature (25 ° C.), the resulting mixture was heated to 100 ° C. at 10 ° C./min while stirring (150 rpm). . Stirring was continued at 100 ° C. until the graft copolymer was completely dissolved. After the graft copolymer was completely dissolved, the heating was stopped and the mixture was naturally cooled to room temperature (25 ° C.). The powder made of the graft copolymer at this time was evaluated according to the following criteria.

A: The solution was completely dissolved within 30 minutes after the temperature was raised to 100 ° C., and the dissolved state was maintained even after 1 day from cooling.
B: Completely dissolved within 30 minutes after the temperature was raised to 100 ° C. and after 60 minutes, and the dissolved state was maintained even after 1 day from cooling.
C: Even if 60 minutes passed after the temperature was raised to 100 ° C., it was not completely dissolved.
[熱物性評価]
 TA instruments株式会社製示差走査熱量測定装置「Q1000」を用い、昇温・降温速度:10℃/min、温度範囲:0℃~240℃の条件で熱物性を測定した。なお、ガラス転移温度(T)及び結晶融解温度(T)はいずれも2ndヒーティングの値を採用した。
[Thermal properties evaluation]
Using a differential scanning calorimeter “Q1000” manufactured by TA Instruments Inc., thermophysical properties were measured under the conditions of temperature rising / falling rate: 10 ° C./min, temperature range: 0 ° C. to 240 ° C. The glass transition temperature (T g ) and the crystal melting temperature (T m ) were both 2nd heating values.
[熱分解温度評価]
 株式会社リガク製熱重量測定装置「Thermo Plus TG8120」を用い、昇温速度:5℃/min、温度範囲:20℃~500℃の条件で質量変化を測定し、昇温開始時からの質量の減少率が50%に達した際の温度を熱分解温度とした。
[Pyrolysis temperature evaluation]
Using a thermogravimetric measuring device “Thermo Plus TG8120” manufactured by Rigaku Corporation, the mass change was measured under the conditions of a temperature increase rate of 5 ° C./min and a temperature range of 20 ° C. to 500 ° C. The temperature at which the reduction rate reached 50% was defined as the thermal decomposition temperature.
<製造例1>
[PVOH-1の製造]
 攪拌機、還流冷却管、アルゴン導入管及び開始剤の添加口を備えた反応器に、酢酸ビニル640質量部、メタノール273質量部を仕込み、アルゴンバブリングをしながら30分間系内をアルゴン置換した。反応器の昇温を開始し、内温が60℃となったところで、2,2’-アゾビスイソブチロニトリル0.096質量部を添加し重合を開始した。60℃で210分間重合した後、冷却して重合を停止した。続いて、30℃、減圧下でメタノールを時々添加しながら未反応のモノマーの除去を行い、ポリ酢酸ビニルのメタノール溶液を得た。次に、当該ポリ酢酸ビニルのメタノール溶液にメタノールを追加して濃度を20質量%に調製したポリ酢酸ビニルのメタノール溶液195質量部に、4.7質量部の水酸化ナトリウムメタノール溶液(濃度12.8質量%)を添加して、40℃でけん化を行った。水酸化ナトリウムメタノール溶液を添加後数分でゲル化物が生成したので、これを粉砕機にて粉砕し、40℃のまま60分間放置してけん化を進行させた。これに酢酸メチルを加えて残存するアルカリを中和した後、メタノールでソックスレー洗浄を8時間行った。さらに、40℃で終夜真空乾燥することにより、ポリビニルアルコール樹脂(粗粒)を得た。得られたポリビニルアルコール樹脂のけん化度は98.6mol%、粘度平均重合度は1700であった。さらに、得られたポリビニルアルコール樹脂を液体窒素で凍結した後、遠心粉砕機を用いて粉砕し、粉体を目開き75μm~150μmの篩で分級し、100℃の熱風乾燥機で3時間乾燥することで、ポリビニルアルコール粉末(PVOH-1)を得た。PVOH-1の水分率をハロゲン水分率計(150℃)で測定した結果、水分率は0.6質量%であった。また、平均粒子径は96μmであった。
<Production Example 1>
[Production of PVOH-1]
A reactor equipped with a stirrer, a reflux condenser, an argon inlet tube and an initiator addition port was charged with 640 parts by weight of vinyl acetate and 273 parts by weight of methanol, and the system was purged with argon for 30 minutes while bubbling with argon. The temperature of the reactor was increased, and when the internal temperature reached 60 ° C., 0.096 parts by mass of 2,2′-azobisisobutyronitrile was added to initiate polymerization. After polymerization at 60 ° C. for 210 minutes, the polymerization was stopped by cooling. Subsequently, unreacted monomers were removed while sometimes adding methanol under reduced pressure at 30 ° C. to obtain a methanol solution of polyvinyl acetate. Next, 4.7 parts by mass of sodium hydroxide methanol solution (concentration: 12.2) was added to 195 parts by mass of methanol solution of polyvinyl acetate prepared by adding methanol to the methanol solution of polyvinyl acetate to a concentration of 20% by mass. 8 mass%) was added and saponification was carried out at 40 ° C. A gelled product was formed within a few minutes after the addition of the sodium hydroxide methanol solution. This was pulverized by a pulverizer and allowed to stand for 60 minutes at 40 ° C. to allow saponification to proceed. Methyl acetate was added thereto to neutralize the remaining alkali, and then subjected to Soxhlet washing with methanol for 8 hours. Furthermore, polyvinyl alcohol resin (coarse particles) was obtained by vacuum drying at 40 ° C. overnight. The obtained polyvinyl alcohol resin had a saponification degree of 98.6 mol% and a viscosity average polymerization degree of 1700. Further, the obtained polyvinyl alcohol resin is frozen with liquid nitrogen and then pulverized with a centrifugal pulverizer, and the powder is classified with a sieve having an opening of 75 μm to 150 μm and dried with a hot air dryer at 100 ° C. for 3 hours. As a result, polyvinyl alcohol powder (PVOH-1) was obtained. As a result of measuring the moisture content of PVOH-1 with a halogen moisture meter (150 ° C.), the moisture content was 0.6 mass%. The average particle size was 96 μm.
<製造例2>
[PVOH-2の製造]
 製造例1と同様にして得られたポリ酢酸ビニルのメタノール溶液にメタノールを追加して濃度を20質量%に調製したポリ酢酸ビニルのメタノール溶液195質量部に、10.5質量部の水酸化ナトリウムメタノール溶液(濃度12.8質量%)を添加して、40℃でけん化を行った。水酸化ナトリウムメタノール溶液を添加後数分でゲル化物が生成したので、これを粉砕機にて粉砕し、40℃のまま60分間放置してけん化を進行させた。これに酢酸メチルを加えて残存するアルカリを中和した後、メタノールでよく洗浄し、ろ別してポリビニルアルコール樹脂(粗粒)を得た。さらに、ポリビニルアルコール樹脂をメタノールと水の混合液(混合比:メタノール/水=90/10、重量比)に添加し、1時間攪拌洗浄を行った。ポリビニルアルコール樹脂をろ別し、40℃で終夜真空乾燥することにより、ポリビニルアルコール樹脂(粗粒)を得た。得られたポリビニルアルコール樹脂のけん化度は99.9mol%、粘度平均重合度は1700であった。さらに、得られたポリビニルアルコール樹脂を液体窒素で凍結した後、遠心粉砕機を用いて粉砕し、粉体を目開き75μm~150μmの篩で分級し、100℃の熱風乾燥機で3時間乾燥することで、ポリビニルアルコール粉末(PVOH-2)を得た。PVOH-2の水分率をハロゲン水分率計(150℃)で測定した結果、水分率は1.2質量%であった。また、平均粒子径は102μmであった。
<Production Example 2>
[Production of PVOH-2]
10.5 parts by mass of sodium hydroxide was added to 195 parts by mass of a methanol solution of polyvinyl acetate prepared by adding methanol to the methanol solution of polyvinyl acetate obtained in the same manner as in Production Example 1 to a concentration of 20% by mass. A methanol solution (concentration 12.8% by mass) was added and saponification was performed at 40 ° C. A gelled product was formed within a few minutes after the addition of the sodium hydroxide methanol solution. This was pulverized by a pulverizer and allowed to stand for 60 minutes at 40 ° C. to allow saponification to proceed. After adding methyl acetate to this and neutralizing the remaining alkali, it wash | cleaned well with methanol, and it filtered and obtained polyvinyl alcohol resin (coarse particle). Furthermore, the polyvinyl alcohol resin was added to a mixed solution of methanol and water (mixing ratio: methanol / water = 90/10, weight ratio), followed by stirring and washing for 1 hour. The polyvinyl alcohol resin was filtered off and vacuum dried at 40 ° C. overnight to obtain a polyvinyl alcohol resin (coarse particles). The obtained polyvinyl alcohol resin had a saponification degree of 99.9 mol% and a viscosity average polymerization degree of 1700. Further, the obtained polyvinyl alcohol resin is frozen with liquid nitrogen and then pulverized with a centrifugal pulverizer, and the powder is classified with a sieve having an opening of 75 μm to 150 μm and dried with a hot air dryer at 100 ° C. for 3 hours. As a result, polyvinyl alcohol powder (PVOH-2) was obtained. As a result of measuring the moisture content of PVOH-2 with a halogen moisture meter (150 ° C.), the moisture content was 1.2 mass%. The average particle size was 102 μm.
<製造例3>
[PVOH-3の製造]
 反応器に仕込むメタノールの量を575質量部にし、重合時間を250分間に変更したこと以外は製造例1と同様にして、ポリ酢酸ビニルのメタノール溶液を得た。次に、当該ポリ酢酸ビニルのメタノール溶液にメタノールを追加して濃度を30質量%に調製したポリ酢酸ビニルのメタノール溶液124質量部に、3.7質量部の水酸化ナトリウムメタノール溶液(濃度12.8質量%)を添加したこと以外は製造例1と同様にして、ポリビニルアルコール樹脂(粗粒)を得た。得られたポリビニルアルコール樹脂のけん化度は98.5mol%、粘度平均重合度は1000であった。さらに、得られたポリビニルアルコール樹脂を液体窒素で凍結した後、遠心粉砕機を用いて粉砕し、粉体を目開き300μm~500μmの篩で分級し、100℃の熱風乾燥機で3時間乾燥することで、ポリビニルアルコール粉末(PVOH-3)を得た。PVOH-3の水分率をハロゲン水分率計(150℃)で測定した結果、水分率は1.1質量%であった。また、平均粒子径は432μmであった。
<Production Example 3>
[Production of PVOH-3]
A methanol solution of polyvinyl acetate was obtained in the same manner as in Production Example 1 except that the amount of methanol charged in the reactor was changed to 575 parts by mass and the polymerization time was changed to 250 minutes. Next, 3.7 parts by mass of a sodium hydroxide methanol solution (concentration of 12.2) was added to 124 parts by mass of methanol solution of polyvinyl acetate prepared by adding methanol to the methanol solution of polyvinyl acetate to a concentration of 30% by mass. A polyvinyl alcohol resin (coarse particles) was obtained in the same manner as in Production Example 1 except that 8% by mass) was added. The obtained polyvinyl alcohol resin had a saponification degree of 98.5 mol% and a viscosity average polymerization degree of 1,000. Further, the obtained polyvinyl alcohol resin is frozen with liquid nitrogen and then pulverized using a centrifugal pulverizer, and the powder is classified with a sieve having an opening of 300 μm to 500 μm and dried with a hot air dryer at 100 ° C. for 3 hours. As a result, polyvinyl alcohol powder (PVOH-3) was obtained. As a result of measuring the moisture content of PVOH-3 with a halogen moisture meter (150 ° C.), the moisture content was 1.1 mass%. The average particle size was 432 μm.
<製造例4>
[PVOH-4の製造]
 反応器に仕込むメタノールの量を5.3質量部にし、重合時間を180分間に変更したこと以外は製造例1と同様にして、ポリ酢酸ビニルのメタノール溶液を得た。次に、当該ポリ酢酸ビニルのメタノール溶液にメタノールを追加して濃度を10質量%に調製したポリ酢酸ビニルのメタノール溶液394質量部に、5.5質量部の水酸化ナトリウムメタノール溶液(濃度12.8質量%)を添加したこと以外は製造例1と同様にして、ポリビニルアルコール樹脂(粗粒)を得た。得られたポリビニルアルコール樹脂のけん化度は99.6mol%、粘度平均重合度は4500であった。さらに、得られたポリビニルアルコール樹脂を液体窒素で凍結した後、遠心粉砕機を用いて粉砕し、粉体を目開き300μm~500μmの篩で分級し、100℃の熱風乾燥機で3時間乾燥することで、ポリビニルアルコール粉末(PVOH-4)を得た。PVOH-4の水分率をハロゲン水分率計(150℃)で測定した結果、水分率は2.4質量%であった。また、平均粒子径は410μmであった。
<Production Example 4>
[Production of PVOH-4]
A methanol solution of polyvinyl acetate was obtained in the same manner as in Production Example 1 except that the amount of methanol charged into the reactor was 5.3 parts by mass and the polymerization time was changed to 180 minutes. Next, 5.5 parts by mass of sodium hydroxide / methanol solution (concentration 12.) was added to 394 parts by mass of methanol solution of polyvinyl acetate prepared by adding methanol to the methanol solution of polyvinyl acetate to a concentration of 10% by mass. A polyvinyl alcohol resin (coarse particles) was obtained in the same manner as in Production Example 1 except that 8% by mass) was added. The obtained polyvinyl alcohol resin had a saponification degree of 99.6 mol% and a viscosity average polymerization degree of 4500. Further, the obtained polyvinyl alcohol resin is frozen with liquid nitrogen and then pulverized using a centrifugal pulverizer, and the powder is classified with a sieve having an opening of 300 μm to 500 μm and dried with a hot air dryer at 100 ° C. for 3 hours. As a result, polyvinyl alcohol powder (PVOH-4) was obtained. As a result of measuring the moisture content of PVOH-4 with a halogen moisture meter (150 ° C.), the moisture content was 2.4% by mass. The average particle size was 410 μm.
<製造例5>
[PVOH-5の製造]
 製造例1と同様にして得られたポリビニルアルコール樹脂(粗粒)を液体窒素で凍結した後、遠心粉砕機を用いて粉砕し、粉体を目開き425μm~1200μmの篩で分級し、100℃の熱風乾燥機で3時間乾燥することで、ポリビニルアルコール粉末(PVOH-5)を得た。PVOH-5の水分率をハロゲン水分率計(150℃)で測定した結果、水分率は1.3質量%であった。また、平均粒子径は771μmであった。
<Production Example 5>
[Production of PVOH-5]
The polyvinyl alcohol resin (coarse particles) obtained in the same manner as in Production Example 1 was frozen with liquid nitrogen and then pulverized using a centrifugal pulverizer, and the powder was classified with a sieve having an opening of 425 μm to 1200 μm, and 100 ° C. Was dried with a hot air dryer for 3 hours to obtain polyvinyl alcohol powder (PVOH-5). As a result of measuring the moisture content of PVOH-5 with a halogen moisture meter (150 ° C.), the moisture content was 1.3% by mass. The average particle size was 771 μm.
<製造例6>
[PVOH-6の製造]
 反応器に仕込むメタノールの量を1257質量部にし、重合時間を240分間に変更したこと以外は製造例1と同様にして、ポリ酢酸ビニルのメタノール溶液を得た。次に、当該ポリ酢酸ビニルのメタノール溶液にメタノールを追加して濃度を40質量%に調製したポリ酢酸ビニルのメタノール溶液240質量部に、10.0質量部の水酸化ナトリウムメタノール溶液(濃度14.0質量%)を添加したこと以外は製造例1と同様にして、ポリビニルアルコール樹脂(粗粒)を得た。得られたポリビニルアルコール樹脂のけん化度は98.5mol%、粘度平均重合度は500であった。さらに、得られたポリビニルアルコール樹脂を液体窒素で凍結した後、遠心粉砕機を用いて粉砕し、粉体を目開き75μm~150μmの篩で分級し、100℃の熱風乾燥機で3時間乾燥することで、ポリビニルアルコール粉末(PVOH-6)を得た。PVOH-6の水分率をハロゲン水分率計(150℃)で測定した結果、水分率は0.6質量%であった。また、平均粒子径は99μmであった。
<Production Example 6>
[Production of PVOH-6]
A methanol solution of polyvinyl acetate was obtained in the same manner as in Production Example 1 except that the amount of methanol charged into the reactor was changed to 1257 parts by mass and the polymerization time was changed to 240 minutes. Next, methanol was added to the methanol solution of polyvinyl acetate to 240 parts by mass of the methanol solution of polyvinyl acetate prepared to a concentration of 40% by mass, and 10.0 parts by mass of sodium hydroxide methanol solution (concentration of 14. A polyvinyl alcohol resin (coarse particles) was obtained in the same manner as in Production Example 1 except that 0 mass%) was added. The obtained polyvinyl alcohol resin had a saponification degree of 98.5 mol% and a viscosity average polymerization degree of 500. Further, the obtained polyvinyl alcohol resin is frozen with liquid nitrogen and then pulverized with a centrifugal pulverizer, and the powder is classified with a sieve having an opening of 75 μm to 150 μm and dried with a hot air dryer at 100 ° C. for 3 hours. As a result, polyvinyl alcohol powder (PVOH-6) was obtained. As a result of measuring the moisture content of PVOH-6 with a halogen moisture meter (150 ° C.), the moisture content was 0.6 mass%. The average particle size was 99 μm.
<製造例7>
[PVOH-7の製造]
 けん化後に、メタノールでソックスレー洗浄を行わなかったこと以外は、製造例6と同様にして、ポリビニルアルコール樹脂(粗粒)を得た。ポリビニルアルコール樹脂のけん化度は98.5mol%、粘度平均重合度は500であった。さらに、ポリビニルアルコール樹脂を液体窒素で凍結した後、遠心粉砕機を用いて粉砕し、粉体を目開き75μm~150μmの篩で分級し、100℃の熱風乾燥機で3時間乾燥することで、ポリビニルアルコール粉末(PVOH-7)を得た。PVOH-6の水分率をハロゲン水分率計(150℃)で測定した結果、水分率は0.7質量%であった。また、平均粒子径は101μmであった。
<Production Example 7>
[Production of PVOH-7]
After the saponification, a polyvinyl alcohol resin (coarse particles) was obtained in the same manner as in Production Example 6 except that the Soxhlet washing was not performed with methanol. The saponification degree of the polyvinyl alcohol resin was 98.5 mol%, and the viscosity average polymerization degree was 500. Furthermore, after freezing polyvinyl alcohol resin with liquid nitrogen, it is pulverized using a centrifugal pulverizer, the powder is classified with a sieve having an opening of 75 μm to 150 μm, and dried with a hot air dryer at 100 ° C. for 3 hours. A polyvinyl alcohol powder (PVOH-7) was obtained. As a result of measuring the moisture content of PVOH-6 with a halogen moisture meter (150 ° C.), the moisture content was 0.7 mass%. The average particle size was 101 μm.
[実施例1]
 PVOH-1に電子線(30kGy)を照射した。次に、攪拌機、還流冷却管、アルゴン導入管及び開始剤の添加口を備えた反応器に、N-ビニルホルムアミド6.0質量部、メタノール944質量部を仕込み、アルゴンバブリングをしながら30分間系内をアルゴン置換した。ここに電子線を照射したPVOH-1を100質量部添加し、撹拌して粒子が溶液中に分散した状態で300分間加熱還流してグラフト重合を行った。その後、ろ別して粒子を回収し、40℃で終夜真空乾燥することにより、目的のグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全単量体単位のモル数に対してN-ビニルホルムアミド単位が1.1mol%導入されたグラフト共重合体であることが分かった。H-NMRの分析結果を以下に示す。ポリN-ビニルホルムアミドの良溶媒であるメタノールを用いて、得られたグラフト共重合体からなる粉末中のポリN-ビニルホルムアミドを抽出したが、抽出物中にポリN-ビニルホルムアミドは確認されなかった。また、アルカリ金属及びアルカリ土類金属の合計含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1に示す。図1に、グラフト共重合体の変性量に対してガラス転移温度をプロットした図を示す。図2に、グラフト共重合体の変性量に対して、結晶融解温度をプロットした図を示す。
[Example 1]
PVOH-1 was irradiated with an electron beam (30 kGy). Next, 6.0 parts by mass of N-vinylformamide and 944 parts by mass of methanol were charged into a reactor equipped with a stirrer, a reflux condenser, an argon inlet, and an initiator addition port, and the system was maintained for 30 minutes with argon bubbling. The inside was replaced with argon. 100 parts by mass of PVOH-1 irradiated with an electron beam was added thereto, and the mixture was stirred and heated to reflux for 300 minutes in a state where the particles were dispersed in the solution, thereby performing graft polymerization. Thereafter, the particles were collected by filtration and vacuum-dried at 40 ° C. overnight to obtain a powder made of the desired graft copolymer. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 1.1 mol% of N-vinylformamide unit was introduced with respect to the number of moles of all monomer units. It was found to be a graft copolymer. The results of 1 H-NMR analysis are shown below. Poly N-vinyl formamide was extracted from the resulting graft copolymer powder using methanol, which is a good solvent for poly N-vinyl formamide, but no poly N-vinyl formamide was found in the extract. It was. Table 1 shows the analysis results and physical property evaluation results of the total content of alkali metals and alkaline earth metals, the number average molecular weight, and the average particle diameter. FIG. 1 shows a plot of the glass transition temperature against the amount of modification of the graft copolymer. FIG. 2 shows a graph in which the crystal melting temperature is plotted against the amount of modification of the graft copolymer.
 H-NMR(500MHz,d-DMSO(TMS含有),25℃) δ(ppm):1.1-1.6(-C CH(OH)-、-C CH(OCOCH)-、-C CH(NHCOH)-)、1.9-2.1(-CHCH(OCOC )-)、3.4-4.0(-CH(OH)-、-CH(NHCOH)-)、4.1-4.7(-CHCH(O)-)、7.6-8.1(-CHCH(NCOH)-) 1 H-NMR (500 MHz, d-DMSO (including TMS), 25 ° C.) δ (ppm): 1.1-1.6 (—C H 2 CH (OH) —, —C H 2 CH (OCOCH 3 )) -, -C H 2 CH (NHCOH)-), 1.9-2.1 (-CH 2 CH (OCOC H 3 )-), 3.4-4.0 (-CH 2 C H (OH)- , -CH 2 C H (NHCOH) -), 4.1-4.7 (-CH 2 CH (O H) -), 7.6-8.1 (-CH 2 CH (N H COH) -)
[実施例2]
 N-ビニルホルムアミドの量を15質量部に、メタノールの量を985質量部に変更したこと以外は実施例1と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-ビニルホルムアミドの構成単位が4.3mol%導入されたグラフト共重合体であることが分かった。アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1、図1及び図2に示す。
[Example 2]
A powder comprising a graft copolymer was obtained in the same manner as in Example 1 except that the amount of N-vinylformamide was changed to 15 parts by mass and the amount of methanol was changed to 985 parts by mass. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 4.3 mol% of N-vinylformamide structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer. Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
[実施例3]
 N-ビニルホルムアミドの量を30質量部に、メタノールの量を970質量部に変更したこと以外は実施例1と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-ビニルホルムアミドの構成単位が9.7mol%導入されたグラフト共重合体であることが分かった。アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1、図1及び図2に示す。
[Example 3]
A powder comprising a graft copolymer was obtained in the same manner as in Example 1 except that the amount of N-vinylformamide was changed to 30 parts by mass and the amount of methanol was changed to 970 parts by mass. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 9.7 mol% of N-vinylformamide structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer. Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
[実施例4]
 N-ビニルホルムアミドの代わりにN-ビニルアセトアミド35質量部を用いたこと、反応器に仕込むメタノールの量を965質量部に変更したこと以外は実施例1と同様にしてグラフト共重合体を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-ビニルアセトアミドの構成単位が5.4mol%導入されたグラフト共重合体であることが分かった。H-NMRの分析結果を以下に示す。ポリN-ビニルアセトアミドの良溶媒であるメタノールを用いて得られたグラフト共重合体からなる粉末中のポリN-ビニルアセトアミドを抽出したが、抽出中にポリN-ビニルアセトアミドは確認されなかった。また、アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1、図1及び図2に示す。
[Example 4]
A graft copolymer was obtained in the same manner as in Example 1 except that 35 parts by mass of N-vinylacetamide was used instead of N-vinylformamide and the amount of methanol charged into the reactor was changed to 965 parts by mass. . The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 5.4 mol% of N-vinylacetamide structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer. The results of 1 H-NMR analysis are shown below. Poly N-vinylacetamide was extracted from the powder comprising the graft copolymer obtained using methanol, which is a good solvent for poly N-vinylacetamide, but no poly N-vinylacetamide was confirmed during the extraction. Further, Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
 H-NMR(500MHz,d-DMSO(TMS含有),25℃) δ(ppm):1.1-1.6(-C CH(OH)-、-C CH(OCOCH)-、-C CH(NHCOCH)-)、1.75(-CHCH(NHCOC )-)、1.9-2.1(-CHCH(OCOC )-)、3.4-4.0(-CH(OH)-、-CH(NHCOCH)-)、4.1-4.7(-CHCH(O)-)、7.0-8.0(-CHCH(NCOCH)-) 1 H-NMR (500 MHz, d-DMSO (including TMS), 25 ° C.) δ (ppm): 1.1-1.6 (—C H 2 CH (OH) —, —C H 2 CH (OCOCH 3 )) -, -C H 2 CH (NHCOCH 3 )-), 1.75 (-CH 2 CH (NHCOCH H 3 )-), 1.9-2.1 (-CH 2 CH (OCOC H 3 )-), 3.4-4.0 (-CH 2 C H (OH ) -, - CH 2 C H (NHCOCH 3) -), 4.1-4.7 (-CH 2 CH (O H) -), 7 0.0-8.0 (—CH 2 CH (N H COCH 3 ) —)
[実施例5]
 N-ビニルアセトアミドの量を70質量部に、メタノールの量を930質量部に変更したこと以外は実施例4と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-ビニルアセトアミドの構成単位が10.0mol%導入されたグラフト共重合体であることが分かった。アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1、図1及び図2に示す。
[Example 5]
A powder comprising a graft copolymer was obtained in the same manner as in Example 4 except that the amount of N-vinylacetamide was changed to 70 parts by mass and the amount of methanol was changed to 930 parts by mass. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 10.0 mol% of N-vinylacetamide structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer. Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
[実施例6]
 N-ビニルアセトアミドの量を100質量部に、メタノールの量を900質量部に変更したこと以外は実施例4と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-ビニルアセトアミドの構成単位が12.2mol%導入されたグラフト共重合体であることが分かった。アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1、図1及び図2に示す。
[Example 6]
A powder comprising a graft copolymer was obtained in the same manner as in Example 4 except that the amount of N-vinylacetamide was changed to 100 parts by mass and the amount of methanol was changed to 900 parts by mass. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 12.2 mol% of N-vinylacetamide constituent units were introduced with respect to the number of moles of all constituent units. It was found to be a graft copolymer. Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
[実施例7]
 N-ビニルホルムアミドの代わりにN-ビニルピロリドン30質量部を用いたこと、メタノールの量を970質量部に変更したこと以外は実施例1と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-ビニルピロリドンの構成単位が2.6mol%導入されたグラフト共重合体であることが分かった。H-NMRの分析結果を以下に示す。ポリN-ビニルピロリドンの良溶媒であるメタノールを用いて得られたグラフト共重合体からなる粉末中のポリN-ビニルピロリドンを抽出したが、抽出中にポリN-ビニルピロリドンは確認されなかった。また、アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1、図1及び図2に示す。
[Example 7]
A powder comprising a graft copolymer was obtained in the same manner as in Example 1 except that 30 parts by mass of N-vinylpyrrolidone was used in place of N-vinylformamide and that the amount of methanol was changed to 970 parts by mass. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 2.6 mol% of N-vinylpyrrolidone structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer. The results of 1 H-NMR analysis are shown below. Poly N-vinyl pyrrolidone was extracted from the powder comprising the graft copolymer obtained using methanol, which is a good solvent for poly N-vinyl pyrrolidone, but no poly N-vinyl pyrrolidone was confirmed during the extraction. Further, Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
H-NMR(500MHz,d-DMSO(TMS含有),25℃) δ(ppm):1.1-1.6(-C CH(OH)-、-C CH(OCOCH)-、-C CH(NCOCHCHCH)-)、1.8-2.4(-CHCH(NCOC CH)-)、1.9-2.1(-CHCH(OCOC )-)、3.0-3.2(-CHCH(NCOCHCH )-)、3.4-4.0(-CH(OH)-、-CH(NCOCHCHCH)-)、4.1-4.7(-CHCH(O)-) 1 H-NMR (500 MHz, d-DMSO (including TMS), 25 ° C.) δ (ppm): 1.1-1.6 (—C H 2 CH (OH) —, —C H 2 CH (OCOCH 3 )) -, - C H 2 CH ( NCOCH 2 CH 2 CH 2) -), 1.8-2.4 (-CH 2 CH (NCOC H 2 C H 2 CH 2) -), 1.9-2.1 (-CH 2 CH (OCOC H 3 ) -), 3.0-3.2 (-CH 2 CH (NCOCH 2 CH 2 C H 2) -), 3.4-4.0 (-CH 2 C H (OH) -, - CH 2 C H (NCOCH 2 CH 2 CH 2) -), 4.1-4.7 (-CH 2 CH (O H) -)
[実施例8]
 N-ビニルピロリドンの量を70質量部に、メタノールの量を930質量部に変更したこと以外は実施例7と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-ビニルピロリドンの構成単位が6.5mol%導入されたグラフト共重合体であることが分かった。アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1、図1及び図2に示す。
[Example 8]
A powder comprising a graft copolymer was obtained in the same manner as in Example 7 except that the amount of N-vinylpyrrolidone was changed to 70 parts by mass and the amount of methanol was changed to 930 parts by mass. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 6.5 mol% of N-vinylpyrrolidone structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer. Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
[実施例9]
 N-ビニルピロリドンの量を190質量部に、メタノールの量を900質量部に変更したこと以外は実施例7と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-ビニルピロリドンの構成単位が10.6mol%導入されたグラフト共重合体であることが分かった。アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1、図1及び図2に示す。
[Example 9]
A powder comprising a graft copolymer was obtained in the same manner as in Example 7 except that the amount of N-vinylpyrrolidone was changed to 190 parts by mass and the amount of methanol was changed to 900 parts by mass. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 10.6 mol% of N-vinylpyrrolidone structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer. Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
[実施例10]
 ポリビニルアルコール粉末としてPVOH-2を用いたこと、N-ビニルホルムアミドの代わりにN-ビニルアセトアミド23質量部を用いたこと、メタノールの量を477質量部に変更したこと以外は実施例1と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-ビニルアセトアミドの構成単位が5.5mol%導入されたグラフト共重合体であることが分かった。アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1に示す。
[Example 10]
Example 1 except that PVOH-2 was used as the polyvinyl alcohol powder, that 23 parts by mass of N-vinylacetamide was used instead of N-vinylformamide, and that the amount of methanol was changed to 477 parts by mass. Thus, a powder made of the graft copolymer was obtained. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 5.5 mol% of N-vinylacetamide structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer. Table 1 shows the results of analysis of alkali metal and alkaline earth metal content, number average molecular weight, average particle diameter, and evaluation of physical properties.
[実施例11]
 ポリビニルアルコール粉末としてPVOH-3を用いたこと、電子線の照射量を60kGyに変更したこと、N-ビニルホルムアミドの代わりにN-(2-ヒドロキシエチル)アクリルアミド5質量部を用いたこと、メタノールの量を995質量部に変更したこと以外は実施例1と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-(2-ヒドロキシエチル)アクリルアミドの構成単位が1.0mol%導入されたグラフト共重合体であることが分かった。H-NMRの分析結果を以下に示す。ポリN-(2-ヒドロキシエチル)アクリルアミドの良溶媒であるメタノールを用いて得られたグラフト共重合体中のポリN-(2-ヒドロキシエチル)アクリルアミドを抽出したが、抽出中にポリN-(2-ヒドロキシエチル)アクリルアミドは確認されなかった。また、アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1、図1及び図2に示す。
[Example 11]
Use of PVOH-3 as polyvinyl alcohol powder, change of electron beam irradiation dose to 60 kGy, use of 5 parts by mass of N- (2-hydroxyethyl) acrylamide instead of N-vinylformamide, A powder made of a graft copolymer was obtained in the same manner as in Example 1 except that the amount was changed to 995 parts by mass. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, N- (2-hydroxyethyl) acrylamide had 1 structural unit relative to the number of moles of all structural units. It was found to be a graft copolymer introduced with 0.0 mol%. The results of 1 H-NMR analysis are shown below. Poly N- (2-hydroxyethyl) acrylamide was extracted from the graft copolymer obtained using methanol which is a good solvent for poly N- (2-hydroxyethyl) acrylamide. 2-Hydroxyethyl) acrylamide was not confirmed. Further, Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
 H-NMR(500MHz,d-DMSO(TMS含有),25℃) δ(ppm):1.1-1.6(-C CH(OH)-、-C CH(OCOCH)-、-C CH(CONHCHCHOH)-)、1.9-2.1(-CHCH(OCOC )-)、3.4-4.7(-CH(OH)-、-CH(CONHCHCHOH)-、-CHCH(CONHC CHOH)-、-CHCH(CONHCH OH)-、-CHCH(O)-、-CHCH(CONHCHCH)-)、7.4(-CHCH(CONCHCHOH)-) 1 H-NMR (500 MHz, d-DMSO (including TMS), 25 ° C.) δ (ppm): 1.1-1.6 (—C H 2 CH (OH) —, —C H 2 CH (OCOCH 3 )) -, -C H 2 CH (CONHCH 2 CH 2 OH)-), 1.9-2.1 (-CH 2 CH (OCOC H 3 )-), 3.4-4.7 (-CH 2 C H (OH) -, - CH 2 C H (CONHCH 2 CH 2 OH) -, - CH 2 CH (CONHC H 2 CH 2 OH) -, - CH 2 CH (CONHCH 2 C H 2 OH) -, - CH 2 CH (O H) -, - CH 2 CH (CONHCH 2 CH 2 O H) -), 7.4 (-CH 2 CH (CON H CH 2 CH 2 OH) -)
[実施例12]
 N-ビニルホルムアミドの代わりにN-(2-ヒドロキシエチル)アクリルアミド30質量部を用いたこと、メタノールの量を970質量部に変更したこと以外は実施例1と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-(2-ヒドロキシエチル)アクリルアミドの構成単位が4.7mol%導入されたグラフト共重合体であることが分かった。アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1、図1及び図2に示す。
[Example 12]
The graft copolymer was prepared in the same manner as in Example 1 except that 30 parts by mass of N- (2-hydroxyethyl) acrylamide was used instead of N-vinylformamide and that the amount of methanol was changed to 970 parts by mass. A powder was obtained. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 4 N- (2-hydroxyethyl) acrylamide structural units were present per mole of all structural units. It was found that the graft copolymer was introduced at 7 mol%. Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
[実施例13]
 N-(2-ヒドロキシエチル)アクリルアミドの量を80質量部に、メタノールの量を920質量部に変更したこと以外は実施例12と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-(2-ヒドロキシエチル)アクリルアミドの構成単位が10.4mol%導入されたグラフト共重合体であることが分かった。アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1、図1及び図2に示す。
[Example 13]
A powder comprising a graft copolymer was obtained in the same manner as in Example 12 except that the amount of N- (2-hydroxyethyl) acrylamide was changed to 80 parts by mass and the amount of methanol to 920 parts by mass. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 10 N- (2-hydroxyethyl) acrylamide structural units were present relative to the number of moles of all structural units. It was found to be a graft copolymer introduced with .4 mol%. Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
[実施例14]
 N-ビニルホルムアミドの代わりにアクリルアミド80質量部を用いたこと、メタノールの量を920質量部に変更したこと以外は実施例1と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してアクリルアミドの構成単位が1.9mol%導入されたグラフト共重合体であることが分かった。H-NMRの分析結果を以下に示す。ポリアクリルアミドの良溶媒であるメタノールを用いて得られたグラフト共重合体中のポリアクリルアミドを抽出したが、抽出中にポリアクリルアミドは確認されなかった。また、アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1、図1及び図2に示す。
[Example 14]
A powder composed of a graft copolymer was obtained in the same manner as in Example 1 except that 80 parts by mass of acrylamide was used instead of N-vinylformamide and the amount of methanol was changed to 920 parts by mass. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, the graft copolymer in which 1.9 mol% of acrylamide structural units were introduced with respect to the number of moles of all structural units. It was found to be a polymer. The results of 1 H-NMR analysis are shown below. Polyacrylamide was extracted from the graft copolymer obtained using methanol, which is a good solvent for polyacrylamide, but polyacrylamide was not confirmed during the extraction. Further, Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
 H-NMR(500MHz,d-DMSO(TMS含有),25℃) δ(ppm):1.1-1.6(-C CH(OH)-、-C CH(OCOCH)-、-C CHCONH-)、1.9-2.1(-CHCH(OCOC )-)、3.4-4.7(-CH(OH)-、-CHCONH-、-CHCH(O)-、)、7.4(-CHCHCON -) 1 H-NMR (500 MHz, d-DMSO (including TMS), 25 ° C.) δ (ppm): 1.1-1.6 (—C H 2 CH (OH) —, —C H 2 CH (OCOCH 3 )) -, -C H 2 CHCONH 2- ), 1.9-2.1 (-CH 2 CH (OCOC H 3 )-), 3.4-4.7 (-CH 2 C H (OH)-,- CH 2 C H CONH 2 —, —CH 2 CH (O H ) —,), 7.4 (—CH 2 CHCON H 2 —)
[実施例15]
 電子線の照射量を60kGyに変更したこと、アクリルアミドの量を150質量部に、メタノールの量を850質量部に変更したこと以外は実施例14と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してアクリルアミドの構成単位が4.5mol%導入されたグラフト共重合体であることが分かった。また、アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1、図1及び図2に示す。
[Example 15]
A powder comprising a graft copolymer was obtained in the same manner as in Example 14 except that the electron beam irradiation amount was changed to 60 kGy, the amount of acrylamide was changed to 150 parts by mass, and the amount of methanol was changed to 850 parts by mass. It was. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, the graft copolymer in which 4.5 mol% of acrylamide structural units were introduced with respect to the number of moles of all structural units. It was found to be a polymer. Further, Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
[実施例16]
 電子線の照射量を90kGyに変更したこと、アクリルアミドの量を100質量部に、メタノールの量を400質量部に変更したこと以外は実施例14と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してアクリルアミドの構成単位が8.8mol%導入されたグラフト共重合体であることが分かった。また、アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1、図1及び図2に示す。
[Example 16]
A powder comprising a graft copolymer was obtained in the same manner as in Example 14 except that the electron beam irradiation amount was changed to 90 kGy, the amount of acrylamide was changed to 100 parts by mass, and the amount of methanol was changed to 400 parts by mass. It was. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 8.8 mol% of acrylamide structural units were introduced with respect to the number of moles of all structural units. It was found to be a polymer. Further, Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
[実施例17]
 ポリビニルアルコール粉末としてPVOH-4を用いたこと、電子線の照射量を90kGyに変更したこと、N-ビニルアセトアミドの量を20質量部に、メタノールの量を494質量部にそれぞれ変更したこと以外は実施例4と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-ビニルアセトアミドの構成単位が1.2mol%導入されたグラフト共重合体であることが分かった。アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1に示す。
[Example 17]
Except for using PVOH-4 as the polyvinyl alcohol powder, changing the electron beam irradiation amount to 90 kGy, changing the amount of N-vinylacetamide to 20 parts by mass, and changing the amount of methanol to 494 parts by mass. In the same manner as in Example 4, a powder made of a graft copolymer was obtained. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 1.2 mol% of N-vinylacetamide structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer. Table 1 shows the results of analysis of alkali metal and alkaline earth metal content, number average molecular weight, average particle diameter, and evaluation of physical properties.
[実施例18]
 ポリビニルアルコール粉末としてPVOH-5を用いたこと、電子線の照射量を60kGyに変更したこと以外は実施例7と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-ビニルピロリドンの構成単位が1.3mol%導入されたグラフト共重合体であることが分かった。アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1に示す。
[Example 18]
A powder made of a graft copolymer was obtained in the same manner as in Example 7 except that PVOH-5 was used as the polyvinyl alcohol powder and the electron beam irradiation amount was changed to 60 kGy. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 1.3 mol% of N-vinylpyrrolidone structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer. Table 1 shows the results of analysis of alkali metal and alkaline earth metal content, number average molecular weight, average particle diameter, and evaluation of physical properties.
[実施例19]
 ポリビニルアルコール粉末としてPVOH-6を用いたこと、電子線の照射量を60kGyに変更したこと以外は実施例4と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-ビニルアセトアミドの構成単位が6.5mol%導入されたグラフト共重合体であることが分かった。アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1に示す。
[Example 19]
A powder made of a graft copolymer was obtained in the same manner as in Example 4 except that PVOH-6 was used as the polyvinyl alcohol powder and the electron beam irradiation amount was changed to 60 kGy. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 6.5 mol% of N-vinylacetamide constituent units were introduced with respect to the number of moles of all constituent units. It was found to be a graft copolymer. Table 1 shows the results of analysis of alkali metal and alkaline earth metal content, number average molecular weight, average particle diameter, and evaluation of physical properties.
 また、得られたグラフト共重合体50質量部をラボプラストミルにて、240℃の温度で3分間、スクリュー回転速度100rpmで溶融混練し、1分ごとの混練時トルクを測定した。混錬時間に対して、トルクをプロットした結果を図3に示す。 Further, 50 parts by mass of the obtained graft copolymer was melt-kneaded at a temperature of 240 ° C. for 3 minutes at a screw rotation speed of 100 rpm in a lab plast mill, and the torque during kneading every minute was measured. The result of plotting torque against kneading time is shown in FIG.
[実施例20]
 ポリビニルアルコール粉末としてPVOH-7を用いたこと、電子線の照射量を150kGyに変更したこと、アクリルアミドの量を100質量部に、メタノールの量を400質量部にそれぞれ変更したこと以外は実施例14と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してアクリルアミドの構成単位が4.9mol%導入されたグラフト共重合体であることが分かった。アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1に示す。
[Example 20]
Example 14 except that PVOH-7 was used as the polyvinyl alcohol powder, the electron beam irradiation amount was changed to 150 kGy, the amount of acrylamide was changed to 100 parts by mass, and the amount of methanol was changed to 400 parts by mass. In the same manner as above, a powder comprising a graft copolymer was obtained. When the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.), the graft copolymer in which 4.9 mol% of acrylamide structural units were introduced with respect to the number of moles of all structural units. It was found to be a polymer. Table 1 shows the results of analysis of alkali metal and alkaline earth metal content, number average molecular weight, average particle diameter, and evaluation of physical properties.
 また、得られたグラフト共重合体50質量部をラボプラストミルにて、240℃の温度で3分間、スクリュー回転速度100rpmで溶融混練し、1分ごとの混練時トルクを測定した。混錬時間に対して、トルクをプロットした結果を図3に示す。 Further, 50 parts by mass of the obtained graft copolymer was melt-kneaded at a temperature of 240 ° C. for 3 minutes at a screw rotation speed of 100 rpm in a lab plast mill, and the torque during kneading every minute was measured. The result of plotting torque against kneading time is shown in FIG.
[比較例1]
 PVOH-1(未変性ポリビニルアルコール)を評価した。アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1に示す。
[Comparative Example 1]
PVOH-1 (unmodified polyvinyl alcohol) was evaluated. Table 1 shows the results of analysis of alkali metal and alkaline earth metal content, number average molecular weight, average particle diameter, and evaluation of physical properties.
[比較例2]
 N-ビニルアセトアミドの量を0.5質量部に、メタノールの量を995.5質量部に変更したこと以外は実施例1と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-ビニルアセトアミドの構成単位が0.1mol%導入されたグラフト共重合体であることが分かった。アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1に示す。
[Comparative Example 2]
A powder comprising a graft copolymer was obtained in the same manner as in Example 1 except that the amount of N-vinylacetamide was changed to 0.5 parts by mass and the amount of methanol was changed to 995.5 parts by mass. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 0.1 mol% of N-vinylacetamide structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer. Table 1 shows the results of analysis of alkali metal and alkaline earth metal content, number average molecular weight, average particle diameter, and evaluation of physical properties.
[比較例3]
 N-ビニルホルムアミドの量を60質量部に、メタノールの量を940質量部に変更したこと以外は実施例1と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-ビニルホルムアミドの構成単位が26.1mol%導入されたグラフト共重合体であることが分かった。アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1に示す。
[Comparative Example 3]
A powder comprising a graft copolymer was obtained in the same manner as in Example 1 except that the amount of N-vinylformamide was changed to 60 parts by mass and the amount of methanol was changed to 940 parts by mass. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 26.1 mol% of N-vinylformamide structural unit was introduced with respect to the number of moles of all structural units. It was found to be a graft copolymer. Table 1 shows the results of analysis of alkali metal and alkaline earth metal content, number average molecular weight, average particle diameter, and evaluation of physical properties.
[比較例4]
 N-ビニルホルムアミドの代わりにヒドロキシエチルメタクリレート100質量部を用いたこと、メタノールの量を900質量部に変更したこと以外は実施例1と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してヒドロキシエチルメタクリレートの構成単位が8.8mol%導入されたグラフト共重合体であることが分かった。H-NMRの分析結果を以下に示す。また、アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1、図1及び図2に示す。
[Comparative Example 4]
A powder composed of a graft copolymer was obtained in the same manner as in Example 1 except that 100 parts by mass of hydroxyethyl methacrylate was used instead of N-vinylformamide and that the amount of methanol was changed to 900 parts by mass. When the obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.), 8.8 mol% of the structural unit of hydroxyethyl methacrylate was introduced with respect to the number of moles of all the structural units. It was found to be a graft copolymer. The results of 1 H-NMR analysis are shown below. Further, Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
H-NMR(500MHz,d-DMSO(TMS含有),25℃) δ(ppm):0.6-1.1(-CHC(C )(COOCHCHOH)-)、1.1-1.6(-C CH(OH)-、-C CH(OCOCH)-)、1.7-1.9(-C C(CH)(COOCHCHOH)-)、1.9-2.1(-CHCH(OCOC )-)、3.4-4.0(-CH(OH)-、-CHC(CH)(COOC CHOH)-、-CHC(CH)(COOCH OH)-)、4.1-4.7(-CHCH(O)-)、4.8(-CHC(CH)(COOCHCH)-) 1 H-NMR (500 MHz, d-DMSO (including TMS), 25 ° C.) δ (ppm): 0.6-1.1 (—CH 2 C (C H 3 ) (COOCH 2 CH 2 OH) —), 1.1-1.6 (—C H 2 CH (OH) —, —C H 2 CH (OCOCH 3 ) —), 1.7-1.9 (—C H 2 C (CH 3 ) (COOCH 2 ) CH 2 OH)-), 1.9-2.1 (—CH 2 CH (OCOC H 3 ) —), 3.4-4.0 (—CH 2 C H (OH) —, —CH 2 C ( CH 3) (COOC H 2 CH 2 OH) -, - CH 2 C (CH 3) (COOCH 2 C H 2 OH) -), 4.1-4.7 (-CH 2 CH (O H) -) 4.8 (—CH 2 C (CH 3 ) (COOCH 2 CH 2 O H ) —)
[比較例5]
 N-ビニルホルムアミドの代わりにメチルメタクリレート10質量部を用いたこと、メタノールの量を990質量部に変更したこと以外は実施例1と同様にしてグラフト共重合体からなる粉末を得た。得られたグラフト共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してメチルメタクリレートの構成単位が2.9mol%導入されたグラフト共重合体であることが分かった。H-NMRの分析結果を以下に示す。また、アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1、図1及び図2に示す。
[Comparative Example 5]
A powder comprising a graft copolymer was obtained in the same manner as in Example 1 except that 10 parts by mass of methyl methacrylate was used instead of N-vinylformamide, and the amount of methanol was changed to 990 parts by mass. The obtained graft copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, a graft in which 2.9 mol% of methyl methacrylate structural units were introduced with respect to the number of moles of all structural units. It was found to be a copolymer. The results of 1 H-NMR analysis are shown below. Further, Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
 H-NMR(500MHz,d-DMSO(TMS含有),25℃) δ(ppm):0.6-1.1(-CHC(C )(COOCH)-)、1.1-1.6(-C CH(OH)-、-C CH(OCOCH)-、-C C(CH)(COOCH)-)、1.9-2.1(-CHCH(OCOC )-)、3.4-3.7(-CHC(CH)(COOC )-)、3.4-4.0(-CH(OH)-)、4.1-4.7(-CHCH(O)-)
[比較例6]
 PVOH-1を水に溶解し、濃度5質量%のポリビニルアルコール水溶液を調製した。ここにN-ビニルアセトアミドを、100質量部のPVOH-1に対して0.5質量部になるように溶解させた後、当該水溶液に電子線(30kGy)を照射したところ、水溶液がゲル化し、粒子状で取り出すことが出来なかった。得られたゲルの一部を乾燥し、水への溶解性を評価したが、当該ゲルは100℃に昇温後、200分経過しても完全には溶解しなかった。
1 H-NMR (500 MHz, d-DMSO (including TMS), 25 ° C.) δ (ppm): 0.6-1.1 (—CH 2 C (C H 3 ) (COOCH 3 ) —), 1.1 -1.6 (-C H 2 CH (OH)-, -C H 2 CH (OCOCH 3 )-, -C H 2 C (CH 3 ) (COOCH 3 )-), 1.9-2.1 ( -CH 2 CH (OCOC H 3) -), 3.4-3.7 (-CH 2 C (CH 3) (COOC H 3) -), 3.4-4.0 (-CH 2 C H ( OH)-), 4.1-4.7 (-CH 2 CH (O H )-)
[Comparative Example 6]
PVOH-1 was dissolved in water to prepare an aqueous polyvinyl alcohol solution having a concentration of 5% by mass. Here, N-vinylacetamide was dissolved in 100 parts by mass of PVOH-1 so as to be 0.5 parts by mass, and then the aqueous solution was irradiated with an electron beam (30 kGy). It could not be removed in the form of particles. A part of the obtained gel was dried and its solubility in water was evaluated, but the gel was not completely dissolved even after 200 minutes had passed after the temperature was raised to 100 ° C.
[比較例7]
 攪拌機、還流冷却管、アルゴン導入管、開始剤の添加口を備えた反応器に、酢酸ビニル640質量部、メタノール243質量部、N-ビニルアセトアミド9.1質量部を仕込み、アルゴンバブリングをしながら30分間系内をアルゴン置換した。これとは別に、コモノマーの逐次添加溶液(以降ディレー溶液と表記する)としてN-ビニルアセトアミドのメタノール溶液(濃度5質量%)を調製し、30分間アルゴンをバブリングした。反応器の昇温を開始し、内温が60℃となったところで、2,2’-アゾビスイソブチロニトリル0.15質量部を添加し重合を開始した。重合反応の進行中は、調製したディレー溶液を系内に滴下することで、重合溶液におけるモノマー組成(酢酸ビニルとN-ビニルアセトアミドのモル比率)が一定となるようにした。60℃で180分重合した後、冷却して重合を停止した。続いて、30℃、減圧下でメタノールを時々添加しながら未反応のモノマーの除去を行い、N-ビニルアセトアミドで変性されたポリ酢酸ビニルのメタノール溶液を得た。次に、当該ポリ酢酸ビニルのメタノール溶液にメタノールを追加して濃度を20質量%に調製したポリ酢酸ビニルのメタノール溶液489質量部に、10.0質量部の水酸化ナトリウムメタノール溶液(濃度14.0質量%)を添加して、40℃でけん化を行った。水酸化ナトリウムメタノール溶液を添加後数分でゲル化物が生成したので、これを粉砕機にて粉砕し、40℃のまま60分間放置してけん化を進行させた。これに酢酸メチルを加えて残存するアルカリを中和した後、メタノールでソックスレー洗浄を8時間行った。さらに、40℃で終夜真空乾燥することにより、N-ビニルアセトアミドで変性されたポリビニルアルコール樹脂(粗粒)を得た。当該ポリビニルアルコール樹脂のけん化度は98.7mol%であった。さらに、得られたポリビニルアルコール樹脂を液体窒素で凍結した後、遠心粉砕機を用いて粉砕し、粉体を目開き75μm~150μmの篩で分級し、N-ビニルアセトアミドで変性されたポリビニルアルコール樹脂(ランダム共重合体)の粒子(PVOH-8)を得た。得られたランダム共重合体をH-NMR(500MHz,d-DMSO,20℃)で解析したところ、全構成単位のモル数に対してN-ビニルアセトアミドの構成単位が3.8mol%導入されたランダム共重合体であることが分かった。H-NMRの分析結果を以下に示す。また、アルカリ金属及びアルカリ土類金属含有量、数平均分子量、平均粒子径の分析結果及び物性評価結果を表1、図1及び図2に示す。
[Comparative Example 7]
A reactor equipped with a stirrer, a reflux condenser, an argon inlet, and an initiator addition port was charged with 640 parts by weight of vinyl acetate, 243 parts by weight of methanol, and 9.1 parts by weight of N-vinylacetamide while carrying out argon bubbling. The system was purged with argon for 30 minutes. Separately, a methanol solution of N-vinylacetamide (concentration: 5% by mass) was prepared as a comonomer sequential addition solution (hereinafter referred to as a delay solution), and argon was bubbled for 30 minutes. The temperature of the reactor was increased, and when the internal temperature reached 60 ° C., 0.15 parts by mass of 2,2′-azobisisobutyronitrile was added to initiate polymerization. During the progress of the polymerization reaction, the prepared delay solution was dropped into the system so that the monomer composition (molar ratio of vinyl acetate and N-vinylacetamide) in the polymerization solution became constant. After polymerization at 60 ° C. for 180 minutes, the polymerization was stopped by cooling. Subsequently, unreacted monomers were removed while adding methanol occasionally at 30 ° C. under reduced pressure to obtain a methanol solution of polyvinyl acetate modified with N-vinylacetamide. Next, methanol was added to the methanol solution of polyvinyl acetate to adjust the concentration to 20% by mass, and then 489 parts by mass of the methanol solution of polyvinyl acetate was prepared. 0 mass%) was added and saponification was carried out at 40 ° C. A gelled product was formed within a few minutes after the addition of the sodium hydroxide methanol solution. This was pulverized by a pulverizer and allowed to stand for 60 minutes at 40 ° C. to allow saponification to proceed. Methyl acetate was added thereto to neutralize the remaining alkali, and then subjected to Soxhlet washing with methanol for 8 hours. Furthermore, it was vacuum-dried overnight at 40 ° C. to obtain a polyvinyl alcohol resin (coarse particles) modified with N-vinylacetamide. The saponification degree of the polyvinyl alcohol resin was 98.7 mol%. Further, the obtained polyvinyl alcohol resin is frozen with liquid nitrogen and then pulverized using a centrifugal pulverizer, and the powder is classified with a sieve having an opening of 75 μm to 150 μm and modified with N-vinylacetamide. (Random copolymer) particles (PVOH-8) were obtained. The obtained random copolymer was analyzed by 1 H-NMR (500 MHz, d-DMSO, 20 ° C.). As a result, 3.8 mol% of N-vinylacetamide constituent units were introduced with respect to the number of moles of all constituent units. It was found to be a random copolymer. The results of 1 H-NMR analysis are shown below. Further, Table 1, FIG. 1 and FIG. 2 show the analysis results of the alkali metal and alkaline earth metal content, the number average molecular weight, the average particle diameter, and the physical property evaluation results.
 H-NMR(500MHz,d-DMSO(TMS含有),25℃) δ(ppm):1.1-1.6(-C CH(OH)-、-C CH(OCOCH)-、-C CH(NHCOCH)-)、1.75(-CHCH(NHCOC )-)、1.9-2.1(-CHCH(OCOC )-)、3.4-4.0(-CH(OH)-、-CH(NHCOCH)-)、4.1-4.7(-CHCH(O)-)、7.0-8.0(-CHCH(NCOCH)-) 1 H-NMR (500 MHz, d-DMSO (including TMS), 25 ° C.) δ (ppm): 1.1-1.6 (—C H 2 CH (OH) —, —C H 2 CH (OCOCH 3 )) -, -C H 2 CH (NHCOCH 3 )-), 1.75 (-CH 2 CH (NHCOCH H 3 )-), 1.9-2.1 (-CH 2 CH (OCOC H 3 )-), 3.4-4.0 (-CH 2 C H (OH ) -, - CH 2 C H (NHCOCH 3) -), 4.1-4.7 (-CH 2 CH (O H) -), 7 0.0-8.0 (—CH 2 CH (N H COCH 3 ) —)
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 実施例1~20から明らかなように、本発明のグラフト共重合体は、高い結晶性を維持しながらガラス転移温度が上昇していることがわかる。従って、従来のポリビニルアルコール樹脂よりも高温域で優れた機械的強度を発現することが期待される。また、ポリビニルアルコール樹脂の重要な特性の一つである良好な水溶性を失っておらず、熱分解温度も高いことから、本発明のグラフト共重合体は、ポリビニルアルコール樹脂の幅広い用途に利用することができる。 As is clear from Examples 1 to 20, it can be seen that the graft copolymer of the present invention has an increased glass transition temperature while maintaining high crystallinity. Therefore, it is expected to exhibit excellent mechanical strength at a higher temperature range than conventional polyvinyl alcohol resins. Moreover, since the good water solubility which is one of the important characteristics of polyvinyl alcohol resin is not lost and the thermal decomposition temperature is high, the graft copolymer of the present invention is used for a wide range of uses of polyvinyl alcohol resin. be able to.
 実施例19のように、グラフト共重合体に含まれるアルカリ金属及びアルカリ土類金属の量が特に少ない場合には、アミド基が分解しにくく、耐熱性が特に優れていた。図3に示されるように、実施例19のグラフト共重合体は、溶融成形時に熱分解によるゲル化、トルク上昇が起こりにくく、溶融成形性に特に優れていた。 As in Example 19, when the amount of alkali metal and alkaline earth metal contained in the graft copolymer was particularly small, the amide group was difficult to decompose and the heat resistance was particularly excellent. As shown in FIG. 3, the graft copolymer of Example 19 was particularly excellent in melt moldability because gelation and torque increase due to thermal decomposition did not easily occur during melt molding.
 比較例1のように、未変性のポリビニルアルコール樹脂は、乾燥状態で80℃を超える高温領域では樹脂が軟化してしまい、当該温度域での機械的物性は期待できない。比較例2のように、グラフト鎖の含有量(変性量)が極めて少ない場合にはガラス転移温度の上昇が不十分であった。一方、比較例3のようにグラフト鎖の含有量が多すぎる場合には結晶性が低下した。比較例4のように、ポリビニルアルコールにヒドロキシエチルメタクリレートをグラフト重合した場合、ガラス転移温度はほとんど変化せず、グラフト鎖にアミド基が導入されていることがガラス転移温度の上昇に重要であることがわかる。また、比較例5のようにポリビニルアルコールに疎水的なメチルメタクリレートをグラフト重合すると水溶性が失われた。比較例6は、ポリビニルアルコールが溶解した状態でグラフト重合を行った例である。この場合、ポリビニルアルコールが架橋され、水溶性が失われた。比較例7には、N-ビニルアセトアミドをランダム共重合によってポリビニルアルコール樹脂に導入した例を示している。この場合、アミド基の効果によってガラス転移温度は上昇したが、グラフト共重合体に比べ結晶性の低下が著しかった。 As in Comparative Example 1, the unmodified polyvinyl alcohol resin softens in a high temperature region exceeding 80 ° C. in a dry state, and mechanical properties in the temperature region cannot be expected. As in Comparative Example 2, when the graft chain content (modification amount) was very small, the glass transition temperature was not sufficiently increased. On the other hand, when the graft chain content was too large as in Comparative Example 3, the crystallinity was lowered. When hydroxyethyl methacrylate is graft polymerized with polyvinyl alcohol as in Comparative Example 4, the glass transition temperature hardly changes, and it is important for the glass transition temperature to have an amide group introduced into the graft chain. I understand. Further, when hydrophobic methyl methacrylate was grafted onto polyvinyl alcohol as in Comparative Example 5, water solubility was lost. Comparative Example 6 is an example in which graft polymerization was performed in a state where polyvinyl alcohol was dissolved. In this case, polyvinyl alcohol was cross-linked and water solubility was lost. Comparative Example 7 shows an example in which N-vinylacetamide is introduced into a polyvinyl alcohol resin by random copolymerization. In this case, the glass transition temperature increased due to the effect of the amide group, but the crystallinity was significantly reduced as compared with the graft copolymer.

Claims (7)

  1.  グラフト共重合体からなる粉末であって、
     前記グラフト共重合体が、ポリビニルアルコールからなる主鎖と、下記式(I)又は式(II)で表される繰り返し単位から構成される重合体からなる側鎖とを有し、
     前記グラフト共重合体中の全単量体単位に対する下記式(I)又は式(II)で表される繰り返し単位の含有量が0.2~20mol%であり、
     平均粒子径が20~1,000μmであり、かつ
    水100gに対して2g以上完全に溶解することができる粉末。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1は、水素原子又はメチル基を表し、R2及びR3は、それぞれ独立して水素原子、又は炭素数1~10の水酸基又はアシル基を有してもよいアルキル基を表す。R2及びR3は相互に連結して環を形成していてもよい。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、R1は、上記式(I)と同じである。R4及びR5は、それぞれ独立して水素原子、又は炭素数1~10の水酸基又はアシル基を有してもよいアルキル基を表す。R4及びR5は相互に連結して環を形成していてもよい。]
    A powder comprising a graft copolymer,
    The graft copolymer has a main chain composed of polyvinyl alcohol and a side chain composed of a polymer composed of repeating units represented by the following formula (I) or formula (II):
    The content of the repeating unit represented by the following formula (I) or formula (II) with respect to all monomer units in the graft copolymer is 0.2 to 20 mol%,
    Powder having an average particle size of 20 to 1,000 μm and capable of completely dissolving 2 g or more with respect to 100 g of water.
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R1 represents a hydrogen atom or a methyl group, and R2 and R3 each independently represent a hydrogen atom, or an alkyl group which may have a hydroxyl group or acyl group having 1 to 10 carbon atoms. R2 and R3 may be connected to each other to form a ring. ]
    Figure JPOXMLDOC01-appb-C000002
    [Wherein, R 1 is the same as in the above formula (I). R4 and R5 each independently represent a hydrogen atom, or an alkyl group which may have a hydroxyl group having 1 to 10 carbon atoms or an acyl group. R4 and R5 may be connected to each other to form a ring. ]
  2.  前記グラフト共重合体が前記式(I)で表される繰り返し単位から構成される重合体からなる側鎖を有する請求項1に記載の粉末。 The powder according to claim 1, wherein the graft copolymer has a side chain composed of a polymer composed of a repeating unit represented by the formula (I).
  3.  前記グラフト共重合体がポリN-ビニルホルムアミド、ポリN-ビニルアセトアミド及びポリN-ビニルピロリドンからなる群から選択される少なくとも一種からなる側鎖を有する請求項2に記載の粉末。 The powder according to claim 2, wherein the graft copolymer has at least one side chain selected from the group consisting of poly-N-vinylformamide, poly-N-vinylacetamide, and poly-N-vinylpyrrolidone.
  4.  前記グラフト共重合体の数平均分子量が5,000~250,000である請求項1~3のいずれかに記載の粉末。 The powder according to any one of claims 1 to 3, wherein the number average molecular weight of the graft copolymer is 5,000 to 250,000.
  5.  アルカリ金属及びアルカリ土類金属の合計含有量が0.5質量%以下である請求項1~4のいずれかに記載の粉末。 The powder according to any one of claims 1 to 4, wherein the total content of alkali metal and alkaline earth metal is 0.5 mass% or less.
  6.  平均粒子径が20~1,000μmであるポリビニルアルコール粉末に電離放射線を照射する工程と、
     電離放射線が照射されたポリビニルアルコール粉末を、下記式(III)又は式(IV)で表される単量体を含む溶液中に分散させてグラフト重合を行う工程を備える請求項1~5のいずれかに記載の粉末の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    [式中、R1、R2及びR3は、上記式(I)と同じである。]
    Figure JPOXMLDOC01-appb-C000004
    [式中、R1、R4及びR5は、上記式(II)と同じである。]
    Irradiating polyvinyl alcohol powder having an average particle size of 20 to 1,000 μm with ionizing radiation;
    6. The method of carrying out graft polymerization by dispersing polyvinyl alcohol powder irradiated with ionizing radiation in a solution containing a monomer represented by the following formula (III) or formula (IV): A method for producing the powder of crab.
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, R1, R2 and R3 are the same as those in the above formula (I). ]
    Figure JPOXMLDOC01-appb-C000004
    [Wherein, R1, R4 and R5 are the same as those in the above formula (II). ]
  7.  水分率15質量%以下のポリビニルアルコール粉末に電離放射線を照射する請求項6に記載の粉末の製造方法。 The method for producing a powder according to claim 6, wherein the polyvinyl alcohol powder having a moisture content of 15% by mass or less is irradiated with ionizing radiation.
PCT/JP2017/004643 2016-02-10 2017-02-08 Powder comprising graft copolymer, and method for producing said powder WO2017138581A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-024128 2016-02-10
JP2016024128A JP2019065059A (en) 2016-02-10 2016-02-10 Powder formed of graft copolymer and method for producing the same

Publications (1)

Publication Number Publication Date
WO2017138581A1 true WO2017138581A1 (en) 2017-08-17

Family

ID=59563202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004643 WO2017138581A1 (en) 2016-02-10 2017-02-08 Powder comprising graft copolymer, and method for producing said powder

Country Status (3)

Country Link
JP (1) JP2019065059A (en)
TW (1) TW201741356A (en)
WO (1) WO2017138581A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309536A (en) * 1991-04-05 1992-11-02 Mitsubishi Paper Mills Ltd Radiation grafting process and grafted product
JPH0770229A (en) * 1993-07-07 1995-03-14 Air Prod And Chem Inc Modified polyvinyl alcohol and modifying method for polyvinyl alcohol in solid phase by free-radical grafting
JP2001348449A (en) * 2000-06-08 2001-12-18 Mitsubishi Chemicals Corp Method for manufacturing graft copolymer of n- vinylformamide
JP2006213840A (en) * 2005-02-04 2006-08-17 Dai Ichi Kogyo Seiyaku Co Ltd Polyvinyl alcohol-modified graft polymer, method for producing the same and inkjet recording medium containing the same
JP2007070493A (en) * 2005-09-07 2007-03-22 Dai Ichi Kogyo Seiyaku Co Ltd Water-soluble film
JP2007070169A (en) * 2005-09-07 2007-03-22 Dai Ichi Kogyo Seiyaku Co Ltd Glass fiber sizing agent
JP2008540761A (en) * 2005-05-13 2008-11-20 プロティスタ バイオテクノロジー アーベー Macroporous hydrogel, process for its preparation and use thereof
WO2011118598A1 (en) * 2010-03-24 2011-09-29 日本酢ビ・ポバール株式会社 Polyvinyl alcohol resin and method for producing same
JP2014088497A (en) * 2012-10-30 2014-05-15 Kuraray Co Ltd Ethylene-vinyl alcohol-based graft copolymer and its manufacturing method, metal recovery material and adhesive material using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309536A (en) * 1991-04-05 1992-11-02 Mitsubishi Paper Mills Ltd Radiation grafting process and grafted product
JPH0770229A (en) * 1993-07-07 1995-03-14 Air Prod And Chem Inc Modified polyvinyl alcohol and modifying method for polyvinyl alcohol in solid phase by free-radical grafting
JP2001348449A (en) * 2000-06-08 2001-12-18 Mitsubishi Chemicals Corp Method for manufacturing graft copolymer of n- vinylformamide
JP2006213840A (en) * 2005-02-04 2006-08-17 Dai Ichi Kogyo Seiyaku Co Ltd Polyvinyl alcohol-modified graft polymer, method for producing the same and inkjet recording medium containing the same
JP2008540761A (en) * 2005-05-13 2008-11-20 プロティスタ バイオテクノロジー アーベー Macroporous hydrogel, process for its preparation and use thereof
JP2007070493A (en) * 2005-09-07 2007-03-22 Dai Ichi Kogyo Seiyaku Co Ltd Water-soluble film
JP2007070169A (en) * 2005-09-07 2007-03-22 Dai Ichi Kogyo Seiyaku Co Ltd Glass fiber sizing agent
WO2011118598A1 (en) * 2010-03-24 2011-09-29 日本酢ビ・ポバール株式会社 Polyvinyl alcohol resin and method for producing same
JP2014088497A (en) * 2012-10-30 2014-05-15 Kuraray Co Ltd Ethylene-vinyl alcohol-based graft copolymer and its manufacturing method, metal recovery material and adhesive material using the same

Also Published As

Publication number Publication date
TW201741356A (en) 2017-12-01
JP2019065059A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP7144421B2 (en) Dispersion stabilizer for suspension polymerization and method for producing vinyl polymer using the same
JP4514836B2 (en) Vinyl alcohol polymer and film containing the same
JP7316264B2 (en) POLYVINYL ALCOHOL COMPOSITION, USES THEREOF, AND METHOD FOR PRODUCING VINYL RESIN
JP7375808B2 (en) Polyvinyl alcohol resin, manufacturing method of polyvinyl alcohol resin, dispersant, and dispersant for suspension polymerization
CN104870497B (en) The manufacture method of dispersion stabilizer for suspension polymerization and vinyl resin
TWI815920B (en) Modified vinyl alcohol polymer and its manufacturing method, as well as dispersion stabilizer for suspension polymerization and vinyl polymer&#39;s manufacturing method
PT2112171E (en) Dispersion stabilizer for suspension polymerization of vinyl compound, and method for production of vinyl compound polymer
CN109790254A (en) The modified vinyl alcohol based polymer powder of methanol content reduction and its manufacturing method and water-solubility membrane and package body
WO2015119144A1 (en) Dispersing agent for suspension polymerization of vinyl compound
WO2019160142A1 (en) Particles containing modified polyvinyl alcohol
JP7333777B2 (en) POLYVINYL ALCOHOL COMPOSITION, USES THEREOF, AND METHOD FOR PRODUCING VINYL RESIN
WO2017138581A1 (en) Powder comprising graft copolymer, and method for producing said powder
JP5525110B2 (en) Alkyl-modified vinyl alcohol polymer solution
JP7269236B2 (en) Method for producing vinyl polymer
CN111868103B (en) Dispersion stabilizer for suspension polymerization
JP7093288B2 (en) Method for producing aqueous emulsion
WO2022230828A1 (en) Vinyl alcohol polymer, powder including same, methods for producing same, paper processing agent, and dispersant for emulsion polymerization
JP2001139751A (en) Composition
JP5501913B2 (en) Production method of block copolymer
JP2001261745A (en) Method for producing ethylene-vinyl alcohol copolymer
TWI838342B (en) Dispersion stabilizer for suspension polymerization and method for producing ethylene polymer using the same
JP2020200460A (en) Polyvinyl alcohol, method for producing the same, and use of the same
JPH04296302A (en) Stabilizer for emulsion polymerization
JP2023179809A (en) Modified vinyl-alcohol-based polymer
JPH04117462A (en) Resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP