WO2017135208A1 - Electrolyzed water generation device and electrolyzed water server comprising same - Google Patents

Electrolyzed water generation device and electrolyzed water server comprising same Download PDF

Info

Publication number
WO2017135208A1
WO2017135208A1 PCT/JP2017/003287 JP2017003287W WO2017135208A1 WO 2017135208 A1 WO2017135208 A1 WO 2017135208A1 JP 2017003287 W JP2017003287 W JP 2017003287W WO 2017135208 A1 WO2017135208 A1 WO 2017135208A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
electrolyzed
channel
electrode chamber
chamber
Prior art date
Application number
PCT/JP2017/003287
Other languages
French (fr)
Japanese (ja)
Inventor
孝士 橘
Original Assignee
株式会社日本トリム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本トリム filed Critical 株式会社日本トリム
Publication of WO2017135208A1 publication Critical patent/WO2017135208A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an electrolyzed water generating device that provides electrolyzed water generated by electrolysis and an electrolyzed water server including the same.
  • an electrolyzed water generating apparatus that generates electrolyzed water in which hydrogen is dissolved by electrolysis is known (for example, see Patent Document 1).
  • the electrolyzed water generating device disclosed in Patent Document 1 the amount of water supplied to the second electrode chamber is limited to effectively use water.
  • the present invention has been devised in view of the above circumstances, and an electrolyzed water generating apparatus capable of efficiently performing electrolysis in an electrolytic cell and increasing the dissolved hydrogen concentration while achieving effective use of water.
  • the main purpose is to provide an electrolyzed water server equipped with it.
  • the electrolyzed water generating apparatus is divided into a first electrode chamber in which a first power feeding body is disposed and a second electrode chamber in which a second power feeding body is disposed, and water is separated by a diaphragm.
  • An electrolysis chamber that generates electrolyzed water by electrolysis, a first water supply channel that is connected to the first electrode chamber and supplies water to be electrolyzed to the first electrode chamber, and is connected to the first electrode chamber
  • a water level detecting means for detecting a water level in the exhaust channel or the parallel water channel is provided in the exhaust channel or the parallel water channel.
  • the water level detecting means is provided below a location where the parallel water channel communicates with the exhaust channel.
  • a second water supply path for supplying water to be electrolyzed to the second pole chamber and the parallel water channel, and a water supply control for controlling water supply from the second water channel It is desirable to have a valve.
  • An electrolyzed water server is an electrolyzed water server comprising the electrolyzed water generating device according to any one of claims 1 to 5, wherein the electrolyzed water generated in the first electrode chamber is obtained.
  • the tank further includes a storage tank, and a circulation water channel for circulating the electrolytic water between the tank and the electrolysis chamber.
  • the electrolyzed water server according to the present invention may further include a heating unit that heats water in the tank and a hot water channel that supplies the hot water heated by the heating unit to the exhaust channel and the parallel channel. desirable.
  • the electrolyzed water server further includes an exhaust unit that is provided in the exhaust passage and separates and discharges only the gas from the fluid in the exhaust passage.
  • an electrolysis chamber having a diaphragm, a first electrode chamber and a second electrode chamber, a first water supply channel and a water discharge channel connected to the first electrode chamber, and a second An exhaust passage connected to the polar chamber and a parallel water passage are provided.
  • the gas generated by the electrolysis in the first electrode chamber dissolves in the electrolyzed water, and is sent out from the first electrode chamber via the water discharge channel together with the electrolyzed water, and can be used.
  • the gas generated by electrolysis in the second electrode chamber is discharged from the second electrode chamber through the exhaust path.
  • the gas in the second electrode chamber is pushed upward by the pressure of the water filled in the parallel channel that connects the exhaust channel and the lower end of the second electrode chamber, and moves to the exhaust channel.
  • the gas generated in the second electrode is discharged from the second electrode chamber without supplying water to the second electrode chamber during electrolysis. Therefore, sufficient water is supplied to the surface of the second power feeder, and electrolysis in the electrolytic chamber is efficiently performed. Thereby, the utilization efficiency of water is increased to the limit, and the dissolved concentration of gas generated in the first electrode chamber is easily increased.
  • the electrolyzed water server according to the second invention of the present invention it is possible to efficiently increase the dissolved concentration of the gas dissolved in the electrolyzed water stored in the tank while effectively utilizing water.
  • FIG. 6 is a diagram illustrating the operation of each unit and the flow of water in the electrolyzed water generation mode of the hydrogen water server, following FIG. 5.
  • FIG. 7 is a diagram illustrating the operation of each unit and the flow of water in the electrolyzed water generation mode of the hydrogen water server, following FIG. 6. It is a figure which shows the operation
  • FIG. 10 is a diagram illustrating the operation of each unit and the flow of water in the sterilization mode of the hydrogen water server, following FIG. 9.
  • FIG. 1 shows a schematic configuration of an electrolyzed water generating apparatus 1 according to an embodiment of the first invention.
  • the electrolyzed water generating device 1 includes an electrolyzer 4, a first water supply channel 11a, a water discharge channel 12, an exhaust channel 13, and a parallel water channel 14.
  • the electrolytic cell 4 generates electrolytic hydrogen water by electrolyzing the supplied water.
  • the electrolytic cell 4 includes an electrolysis chamber 40, a first power feeding body 41, a second power feeding body 42, and a diaphragm 43.
  • the electrolytic chamber 40 is divided by a diaphragm 43 into a first electrode chamber 40A on the first power feeder 41 side and a second electrode chamber 40B on the second power feeder 42 side.
  • first power supply body 41 and the second power supply body 42 for example, a surface in which a platinum plating layer is formed on a surface of a net-like metal such as an expanded metal made of titanium or the like is applied.
  • a net-like first power supply body 41 and second power supply body 42 can distribute water to the surface of the diaphragm 43 while sandwiching the diaphragm 43, and promote electrolysis in the electrolytic chamber 40.
  • One of the first power supply 41 and the second power supply 42 is applied as an anode power supply, and the other is applied as a cathode power supply. Water is supplied to both the first electrode chamber 40 ⁇ / b> A and the second electrode chamber 40 ⁇ / b> B of the electrolysis chamber 40, and a direct current voltage is applied to the first power supply body 41 and the second power supply body 42. Electrolysis occurs.
  • the diaphragm 43 for example, a solid polymer film made of a fluorine-based resin having a sulfonic acid group is appropriately used. On both surfaces of the diaphragm 43, plating layers made of platinum are formed. The plating layer of the diaphragm 43 is in contact with and electrically connected to the first power feeding body 41 and the second power feeding body 42. The diaphragm 43 allows ions generated by electrolysis to pass through. The first power supply body 41 and the second power supply body 42 are electrically connected via the diaphragm 43.
  • the diaphragm 43 made of a solid polymer material is applied, the dissolved hydrogen concentration can be increased without increasing the pH value of the electrolytic hydrogen water.
  • Such electrolytic hydrogen water is suitable for reducing oxidative stress of patients in dialysis treatment, for example.
  • Electrolysis of water in the electrolysis chamber 40 generates hydrogen gas and oxygen gas.
  • the first power supply 41 is applied as a cathode power supply
  • hydrogen gas is generated in the first electrode chamber 40A
  • electrolytic hydrogen water in which the hydrogen gas is dissolved is generated.
  • the second electrode chamber 40B oxygen gas is generated, and electrolytic oxygen water in which the oxygen gas is dissolved is generated.
  • the first power supply body 41 is applied as an anode power supply body
  • oxygen gas is generated in the first electrode chamber 40A, and electrolytic oxygen water in which the oxygen gas is dissolved is generated.
  • the second electrode chamber 40B hydrogen gas is generated, and electrolytic hydrogen water in which the hydrogen gas is dissolved is generated.
  • the first water supply channel 11a is connected to the first pole chamber 40A.
  • the first water supply channel 11a supplies water to be electrolyzed to the first pole chamber 40A.
  • the drainage channel 12 is connected to the first pole chamber 40A. The drainage channel 12 sends the electrolyzed water electrolyzed in the first electrode chamber 40A from the first electrode chamber 40A.
  • the first water supply channel 11 communicates with the lower end portion of the first pole chamber 40A
  • the water discharge channel 12 communicates with the upper end portion of the first electrode chamber 40A.
  • the exhaust passage 13 extends upward from the upper end of the second electrode chamber 40B.
  • the exhaust path 13 discharges the gas generated by electrolysis in the second electrode chamber 40B from the second electrode chamber 40B.
  • the gas generated by electrolysis in the second electrode chamber 40B becomes a fine bubble and moves to the upper part of the second electrode chamber 40B.
  • gas can be discharged from the second electrode chamber 40B.
  • the parallel water channel 14 is provided along the second polar chamber 40B.
  • the parallel water channel 14 connects the exhaust channel 13 and the lower end of the second pole chamber 40B.
  • the parallel water channel 14 is connected to the 2nd pole chamber 40B via the 2nd water supply channel 11b mentioned later.
  • the parallel water channel 14 may be directly connected to the second electrode chamber 40B.
  • FIG. 2 shows a circuit for supplying an electrolytic current to the power feeders 41 and 42.
  • the electrolytic current I supplied to the power feeding bodies 41 and 42 is controlled by the control unit 6.
  • the control unit 6 controls each unit such as the power feeders 41 and 42.
  • the control unit 6 includes, for example, a CPU (Central Processing Unit) that executes various arithmetic processes, information processing, and the like, a program that controls the operation of the CPU, and a memory that stores various information.
  • a CPU Central Processing Unit
  • the control unit 6 controls the polarities of the first power supply 41 and the second power supply 42, for example.
  • desired electrolyzed water out of the electrolyzed hydrogen water or the electrolyzed oxygen water flows from the first electrode chamber 40A through the water outlet 12. And is available for use.
  • first power feeding body 41 is applied as a cathode power feeding body
  • first power feeding body 41 is applied as an anode power feeding body.
  • Current detection means 44 is provided in the current supply line between the first power feeder 41 and the control unit 6.
  • the current detection unit 44 may be provided in a current supply line between the second power feeder 42 and the control unit 6.
  • the current detection unit 44 detects the electrolytic current I supplied to the power feeding bodies 41 and 42 and outputs an electric signal corresponding to the value to the control unit 6.
  • the control unit 6 controls the DC voltage applied to the first power supply body 41 and the second power supply body 42 based on, for example, the electric signal output from the current detection means 44. More specifically, the control unit 6 controls the first power supply body 41 and the second power supply body 41 so that the electrolysis current I detected by the current detection unit 44 becomes a desired value according to the preset dissolved hydrogen concentration.
  • the DC voltage applied to the power feeding body 42 is feedback controlled. For example, when the electrolysis current I is excessive, the control unit 6 decreases the voltage, and when the electrolysis current I is excessive, the control unit 6 increases the voltage. Thereby, the electrolysis current I supplied to the 1st electric power feeder 41 and the 2nd electric power feeder 42 is controlled appropriately.
  • the oxygen gas O generated by electrolysis in the second electrode chamber 40B is exhausted from the second electrode chamber 40B through the exhaust passage 13.
  • the oxygen gas O in the second electrode chamber 40B is pushed upward by the pressure of the water filled in the parallel water channel 14 that allows the exhaust channel 13 and the lower end of the second electrode chamber 40B to communicate with each other. Move to.
  • the oxygen gas O generated in the second electrode chamber 40B is discharged from the second electrode chamber 40B without supplying water to the second electrode chamber 40B being electrolyzed. Therefore, sufficient water is supplied to the surface of the second power feeder 42, and electrolysis in the electrolysis chamber 40 is efficiently performed. Thereby, the utilization efficiency of water is increased to the limit, and the dissolved hydrogen concentration of the electrolytic hydrogen water generated in the first electrode chamber 40A is easily increased.
  • the water in the second electrode chamber 40B is decomposed into oxygen and consumed by electrolysis.
  • the water filled in the exhaust passage 13 and the parallel water passage 14 flows into the second electrode chamber 40B, and the water consumed by the electrolysis is supplemented. Therefore, the water level in the exhaust passage 13 and the parallel water passage 14 gradually decreases as the electrolysis progresses.
  • the water in the electrolysis chamber 40 serves as a raw material for electrolysis and has a function of cooling the diaphragm 43 that generates heat by Joule heat. Therefore, when the said water level falls further and falls from the upper end part of the 2nd pole chamber 40B, there exists a possibility that the temperature of the diaphragm 43 may rise excessively and the diaphragm 43 may be damaged. However, in this embodiment, damage to the diaphragm 43 is suppressed by monitoring the water level in the exhaust passage 13.
  • the exhaust passage 13 is provided with a water level detection means 28 for detecting the water level in the exhaust passage 13. Since the water level in the exhaust passage 13 and the water level in the parallel water passage 14 are equivalent, the water level detection means 28 may be provided in the parallel water passage 14. In this case, the water level detection means 28 detects the water level in the parallel water channel 14.
  • the water level detection means 28 includes, for example, an optical liquid level sensor 28a (see FIG. 2).
  • the exhaust path 13 has translucency at least at a location facing the liquid level sensor 28a.
  • the liquid level sensor 28a detects the water level in the exhaust passage 13 by irradiating the exhaust passage 13 with infrared light and detecting the transmitted light. For example, when the detection area of the liquid level sensor 28a is filled with water, infrared light is refracted and not detected. On the other hand, when the detection area of the liquid level sensor 28a is not filled with water, infrared light is detected.
  • the liquid level sensor 28 a photoelectrically converts the infrared light transmitted through the exhaust passage 13 and outputs an electrical signal corresponding to the value to the control unit 6.
  • the control unit 6 controls the operation of the electrolytic cell 4 based on the electrical signal output from the liquid level sensor 28a. For example, when the water level in the exhaust passage 13 is lower than the detection region of the liquid level sensor 28a, the control unit 6 stops supplying the electrolytic current I to the first power supply body 41 and the second power supply body 42. Thereby, the electrolysis in the electrolysis chamber 40 is stopped, further lowering of the water level in the exhaust passage 13 is suppressed, and damage to the diaphragm 43 can be suppressed.
  • the control unit 6 stops the operation of the electrolytic cell 4.
  • the liquid level sensor 28 a is provided below the location where the parallel water channel 14 communicates with the exhaust channel 13. Thereby, it is possible to continuously operate the electrolytic cell 4 for a long time.
  • the electrolyzed water generating apparatus 1 includes a second water supply passage 11b and a water supply control valve 25.
  • the second water supply passage 11b is connected to the lower end of the second pole chamber 40B.
  • the second water supply channel 11 b supplies water to be electrolyzed to the second pole chamber 40 ⁇ / b> B and the parallel water channel 14.
  • the water supply control valve 25 controls water supply from the second water supply path 11b to the second pole chamber 40B.
  • an electromagnetic valve that opens and closes using electromagnetic force as a driving force can be applied to the water supply control valve 25.
  • the operation of the water supply control valve 25 is controlled by the control unit 6. For example, when electrolysis is performed in the electrolytic cell 4, the water supply control valve 25 is closed. Thereby, the water supply to the 2nd pole chamber 40B is stopped, and the utilization efficiency of water is raised to the limit. Even in this case, the oxygen gas generated in the second electrode chamber 40B is discharged by the water pressure in the parallel water channel 14 described above, so that the dissolved hydrogen concentration of the electrolytic hydrogen water generated in the first electrode chamber 40A is increased. .
  • the water supply control valve 25 is provided below the location where the parallel water channel 14 communicates with the second water supply channel 11b. Thereby, water is replenished to the 2nd polar chamber 40B from the parallel water channel 14 according to consumption of the water in the 2nd polar chamber 40B accompanying electrolysis.
  • the control unit 6 opens the water supply control valve 25 after stopping the electrolysis in the electrolytic cell 4. Thereby, the water supply from the 2nd water supply path 11b to the 2nd pole chamber 40B is restarted, and the water level in the exhaust path 13 returns to the original height.
  • FIG. 3 shows a schematic configuration of the hydrogen water server 100 according to the embodiment of the second invention.
  • FIG. 4 shows the electrical configuration of the hydrogen water server 100.
  • the hydrogen water server 100 is an apparatus that includes the electrolyzed water generating device 1 and stores the electrolyzed hydrogen water in which hydrogen generated by the electrolyzed water generating device 1 is dissolved so as to be provided as needed.
  • the electrolytic hydrogen water provided by the hydrogen water server 100 can be used as drinking or cooking water.
  • the hydrogen water server 100 equipped with the electrolyzed water generating apparatus 1 of the first invention it is possible to efficiently increase the dissolved hydrogen concentration of the electrolyzed hydrogen water stored in the tank 3 while effectively using water.
  • the hydrogen water server 100 further includes a water purification filter 2, a tank 3, an operation unit 5, a circulation water channel 15, and a water discharge channel 16.
  • the water filter 2 purifies the water supplied to the tank 3.
  • the water purification filter 2 is configured to be replaceable by attaching to and detaching from the main body of the hydrogen water server 100.
  • the water purification filter 2 is provided in the water inlet 10 on the upstream side of the tank 3.
  • Raw water is supplied to the water inlet 10.
  • As the raw water tap water is generally used, but well water, ground water, and the like can be used.
  • the water inlet 10 has a water inlet valve 21.
  • the water inlet valve 21 controls the amount of water flow to the hydrogen water server 100.
  • the water purification filter 2 of the present embodiment includes a prefilter 2A, a carbon (activated carbon) filter 2B, and a hollow fiber membrane filter 2C.
  • the pre-filter 2A, the carbon (activated carbon) filter 2B, and the hollow fiber membrane filter 2C are each configured to be exchangeable by attaching to and detaching from the main body of the hydrogen water server 100.
  • the pre-filter 2A is arranged on the most upstream side, and removes a material of 0.5 ⁇ m or more contained in raw water, for example.
  • the carbon filter 2B is disposed on the downstream side of the prefilter 2A, and removes the substance that has passed through the prefilter 2A by adsorption.
  • the hollow fiber membrane filter 2C is disposed on the downstream side of the carbon filter 2B, and removes, for example, a 0.1 ⁇ m or more substance that has passed through the pre-filter 2A and the carbon filter 2B.
  • Tank 3 stores the water that has passed through the water purification filter 2.
  • the control unit 6 appropriately maintains the amount of water stored in the tank 3 by controlling the opening and closing of the water inlet valve 21 based on the electrical signal output from the water amount sensor 31.
  • the water amount sensor 31 is provided in the upper part of the tank 3.
  • the water amount sensor 31 has, for example, a float that floats on water. Similar to the liquid level sensor 28a, the water amount sensor 31 may be an optical sensor.
  • the water amount sensor 31 is provided in the upper part of the tank 3 and outputs an electrical signal to that effect to the control unit 6 when the amount of water stored in the tank 3 is substantially full.
  • the control unit 6 controls the water inlet valve 21 to be in an open state when it does not receive an electric signal indicating that the water level is in the above-described state from the water amount sensor 31. Thereby, the tank 3 is appropriately replenished with water, and the amount of stored water is maintained appropriately.
  • the water stored in the tank 3 is supplied to the electrolytic cell 4 through the upstream circulation channel 15 and electrolyzed, and then returns to the tank 3 through the downstream circulation channel 15. Accordingly, the tank 3 stores the electrolytic hydrogen water generated in the first electrode chamber 40A.
  • the circulating water channel 15 circulates the electrolytic water between the tank 3 and the electrolysis chamber 40.
  • the circulation water channel 15 includes the first water supply channel 11 a and the water discharge channel 12 of the electrolyzed water generating device 1. Further, the second water supply passage 11 b and the exhaust passage 13 of the electrolyzed water generating apparatus 1 can also function as the circulation water passage 15.
  • a flow rate sensor 27A is provided in the first water supply path 11a, and a flow rate sensor 27B is provided in the second water supply path 11b.
  • the flow sensor 27A detects the amount of water flowing through the first water supply channel 11a.
  • the flow sensor 27B detects the amount of water flowing through the second water supply channel 11b.
  • Circulating water channel 15 includes circulating water channels 15a, 15b and 15c.
  • the circulating water channel 15 a supplies water to be electrolyzed to the electrolyzed water generator 1.
  • the circulating water channel 15a is connected to the tank 3 at one upstream end, and branches to the first water supplying channel 11a and the second water supplying channel 11b at the other downstream end.
  • a pump 22 is provided in the circulation water channel 15a. The pump 22 drives the water in the circulation water channel 15 to circulate in the circulation water channel 15. By performing electrolysis in the electrolytic cell 4 while circulating water in the circulation channel 15, the dissolved hydrogen concentration of the water stored in the tank 3 is increased.
  • One end of the circulating water channel 15 b is connected to the water discharge channel 12 via the flow channel switching valve 23, and the other end is connected to the tank 3.
  • the electrolytic hydrogen water generated in the first electrode chamber 40A returns to the tank 3 through the circulation water channel 15b and the water discharge channel 12.
  • the circulation water channel 15 c is connected to the exhaust channel 13.
  • the tip of the circulating water channel 15c is arranged inside the tank 3 and is positioned lower than the circulating water channel 15b.
  • Exhaust means 24 is provided at the tip of the exhaust passage 13.
  • the exhaust means 24 separates and discharges only the gas from the fluid in the exhaust path 13.
  • the oxygen gas generated in the second electrode chamber 40B is exhausted by the exhaust means 24.
  • the water discharge path 16 is a flow path for discharging the hydrogen water generated in the first polar chamber 40A.
  • the water discharge path 16 of the present embodiment is connected to the water discharge path 12 via the flow path switching valve 23. Thereby, the structure of the hydrogen water server 100 is simplified.
  • a so-called three-way valve can be applied to the flow path switching valve 23.
  • the flow path switching valve 23 is controlled by the control unit 6 according to the operation mode of the hydrogen water server 100, and switches part or all of the flow path downstream from the water discharge path 12 to the circulation water path 15 b or the water discharge path 16. That is, in the mode in which the electrolytic hydrogen water is generated, the entire flow path downstream from the water discharge path 12 is the circulation water path 15b. In the mode of discharging the electrolytic hydrogen water, a part or all of the flow path on the downstream side of the water discharge path 12 is switched to the water discharge path 16. Thereby, switching of a flow path can be realized with a simple configuration.
  • the water discharge path 16 may be directly connected to the first pole chamber 40A.
  • a water outlet 16 a is provided at the front end side of the water discharge path 16.
  • a space in which the cup 500 or the like can be placed is formed below the water discharge port 16a, and a tray 16b for collecting water spilled from the cup 500 is provided.
  • the operation unit 5 shown in FIG. 4 includes a switch operated by a user, a touch panel for detecting capacitance, or the like (not shown).
  • the user can set the operation mode of the hydrogen water server 100 to be described later, for example, by operating the operation unit 5.
  • the operation unit 5 When the operation unit 5 is operated by the user, the operation unit 5 outputs a corresponding electrical signal to the control unit 6.
  • the control unit 6 controls each unit of the hydrogen water server 100 according to the electric signal input from the operation unit 5.
  • the control unit 6 controls the drive voltage of the pump 22. At this time, the control unit 6 controls the drive voltage of the pump 22 while monitoring the flow rate detected by the flow rate sensor 27A. Thereby, the hydrogen water stored in the tank 3 circulates in the circulating water path 15 between the tank 3 and the first pole chamber 40A. Further, the control unit 6 applies an electrolytic voltage to the first power feeding body 41 and the second power feeding body 42. Thereby, the electrolyzed water supplied to the electrolysis chamber 40 is further electrolyzed, and the dissolved hydrogen concentration of the hydrogen water stored in the tank 3 can be maintained high.
  • the control unit 6 stops applying the electrolytic voltage to the first power supply body 41 and the second power supply body 42. Thereby, the application of the electrolysis voltage in a state where the electrolyzed water is not sufficiently supplied to the electrolysis chamber 40 can be prevented.
  • the control unit 6 When the hydrogen water stored in the tank 3 is consumed, based on the electrical signal output from the water amount sensor 31, the control unit 6 opens the water inlet valve 21 and the tank 3 is replenished with water from the water inlet 10. The At this time, since the dissolved hydrogen concentration of the hydrogen water stored in the tank 3 decreases, the control unit 6 uses the circulating water channel 15 between the tank 3 and the first pole chamber 40A to store the hydrogen water stored in the tank 3. While circulating again, electrolysis is performed in the electrolysis chamber 40 to increase the dissolved hydrogen concentration.
  • a cooling device 7 is connected to the tank 3.
  • the cooling device 7 cools the tank 3 by cooling the refrigerant and supplying it to the outer wall of the tank 3.
  • the operation of the cooling device 7 is controlled by the control unit 6.
  • the hydrogen water stored in the tank 3 is cooled to a desired temperature by the cooling device 7. Accordingly, it is possible to provide cooled hydrogen water as needed according to the user's request, and the usability of the hydrogen water server 100 is improved.
  • the hydrogen water stored in the tank 3 is periodically replaced under the control of the control unit 6.
  • the replacement of the hydrogen water first, the hydrogen water stored in the tank 3 is discharged, and then new water is supplied from the water inlet 10 to the tank 3.
  • the drain 3 for discharging the hydrogen water is connected to the tank 3.
  • the tank 3 and the drainage channel 17 are connected via a part of the circulation channel 15a.
  • the tank 3 and the drainage channel 17 may be configured to be directly connected.
  • the drainage channel 17 is provided with a drainage valve 26.
  • the drain valve 26 is controlled by the control unit 6 to open and close. When the drain valve 26 is opened, the hydrogen water stored in the tank 3 is discharged from the drain port 17a.
  • the tray portion 16b is connected to the drainage channel 17 through the water channel 16c.
  • the water collected by the tray part 13b is discharged from the drainage channel 17 through the water channel 16c.
  • the tank 3 is provided with a heater (heating means) 8 for heating water.
  • the heater 8 generates heat due to Joule heat, and heats the water stored in the tank 3.
  • a heater (heating means) 8 ⁇ / b> A is provided between the tank 3 of the circulation water channel 15 and the pump 22.
  • the heater 8 ⁇ / b> A is provided in a part of the pipe constituting the circulation water channel 15.
  • the heater 8 ⁇ / b> A generates heat due to Joule heat and heats the water in the circulation water channel 15.
  • the heaters 8 and 8A are controlled by the control unit 6. Only one of the heaters 8 and 8A may be applied as the heating means.
  • the controller 6 controls the heaters 8 and 8A to heat the water stored in the tank 3 and the water in the circulation channel 15. As a result, hot water is generated in the tank 3 and the circulating water channel 15, the inside of the tank 3 and the circulating water channel 15 is sterilized by the hot water, and propagation of bacteria and the like is suppressed.
  • the hydrogen water server 100 generates hydrogen water by electrolysis and stores it in the tank 3 as an operation mode, an “electrolyzed water generation mode” for storing the hydrogen water stored in the tank 3, and a “water discharge mode” for discharging the hydrogen water stored in the tank 3. And “sterilization mode” for sterilizing the electrolytic cell 4 and the like.
  • FIGS. 8 to 10 show the operation of each part of the hydrogen water server 100 and the flow of water in the electrolyzed water generation mode.
  • the region filled with water is indicated by hatching (hereinafter, the same applies to FIGS. 8 to 10).
  • the flow path on the circulating water path 15b side of the flow path switching valve 23 is opened, and the flow path on the water discharge path 16 side is closed. Moreover, the water supply control valve 25 of the 2nd water supply path 11b is closed. Further, the drain valve 26 is closed, and the water inlet valve 21 is appropriately opened and closed according to the amount of water stored in the tank 3.
  • the water level h in the exhaust passage 13 is equivalent to the tank 3.
  • electrolysis occurs in the first electrode chamber 40A and the second electrode chamber 40B.
  • the hydrogen gas generated in the first electrode chamber 40A is collected in the tank 3 while being dissolved in the electrolyzed water, and the dissolved hydrogen concentration in the water in the tank 3 is increased.
  • the oxygen gas O generated in the second electrode chamber 40B becomes bubbles and is exhausted through the exhaust passage 13 and the exhaust means 24.
  • the oxygen gas O in the second electrode chamber 40B is pushed upward by the pressure of the water filled in the parallel water passage 14 and moves to the exhaust passage 13.
  • the oxygen gas O generated in the second electrode chamber 40B is supplied to the second electrode chamber 40B without electrolysis without supplying water to the second electrode chamber 40B being electrolyzed (that is, without causing water flow in the second electrode chamber 40B). It is discharged from the polar chamber 40B. Therefore, sufficient water is supplied to the surface of the second power feeder 42, and electrolysis in the electrolysis chamber 40 is efficiently performed.
  • the water supply control valve 25 since the water supply control valve 25 is closed, the water in the second electrode chamber 40B does not return to the tank 3 via the exhaust passage 13 and the circulation water passage 15c. Therefore, the increase in the dissolved hydrogen concentration of the water in the tank 3 is not hindered by the inflow of water in the second electrode chamber 40B, and the dissolved hydrogen concentration of the electrolytic hydrogen water can be easily increased.
  • the control unit 6 stops the pump 22, and the first power feeding body 41 and the second power feeding.
  • the application of the electrolysis voltage to the body 42 is stopped.
  • the control part 6 opens the water supply control valve 25, and water is supplied to the 2nd pole chamber 40B and the parallel water channel 14 from the 2nd water supply channel 11b, and the water level h of the exhaust channel 13 is the initial stage which is shown by FIG. Return to the state.
  • the driving of the pump 22 may be used in combination. In this case, the water level h in the exhaust passage 13 returns to the initial state in a shorter time.
  • the application of the electrolysis voltage to the 1st electric power feeder 41 and the 2nd electric power feeder 42 may be continued.
  • FIG. 8 shows the operation of each part of the hydrogen water server 100 and the flow of water in the water discharge mode.
  • the flow path of the electrolytic hydrogen water that has passed through the first electrode chamber 40A is switched by the flow path switching valve 23 from the state of the electrolyzed water generation mode shown in FIGS. That is, in the water discharge mode, the flow path on the circulating water path 15b side is closed and the flow path on the water discharge path 16 side is opened.
  • the control unit 6 may be configured to apply an electrolytic voltage to the first power supply body 41 and the second power supply body 42.
  • FIGS. 9 and 10 show the operation of each part of the hydrogen water server 100 in the sterilization mode and the flow of water in time series.
  • the sterilization mode the water in the tank 3 and the circulating water channel 15 is heated and circulated, and each part such as the tank 3, the electrolytic cell 4, the circulating water channel 15 and the like is sterilized by heating.
  • the circulating water channel 15 supplies the hot water heated by the heaters 8 and 8A to the electrolysis chamber 40, the first water supply channel 11a, the second water supply channel 11b, the water discharge channel 12, the exhaust channel 13, and the parallel water channel 14. Functions as a waterway. Thereby, propagation of bacteria and the like in each part in the hydrogen water server 100 is suppressed.
  • the sterilization mode is periodically executed under the control of the control unit 6. For example, the sterilization mode is executed every day at midnight. For example, the time period for executing the sterilization mode can be appropriately set by the user operating the operation unit 5.
  • the exhaust passage 13, the parallel water passage 14, and the circulation water passage 15c are also filled with hot water.
  • the exhaust means 24 provided at the tip of the exhaust passage 13 keeps hot water in the exhaust passage 13 and prevents water leakage from the tip of the exhaust passage 13.
  • the state of the flow path switching valve 23 and the drain valve 26 is controlled by the control unit 6 in the same manner as in the initial electrolyzed water generation mode. That is, the flow path on the circulating water path 15b side of the flow path switching valve 23 is opened, and the flow path on the water discharge path 16 side is closed. The drain valve 26 is closed. Further, in the sterilization mode, the water supply control valve 25 is opened.
  • the flow rate of hot water supplied to the second electrode chamber 40B is set to be equal to the flow rate of hot water supplied to the first electrode chamber 40A. Thereby, the same amount of hot water as that of the first electrode chamber 40A is supplied to the second electrode chamber 40B, and the second electrode chamber 40B, the flow rate sensor 27B, the second water supply channel 11b, the circulating water channel 15c, and the like can be sufficiently sterilized. .
  • the water stored in the tank 3 and the water in the circulation water channel 15 are heated by controlling the heaters 8 and 8A, the water stored in the tank 3 from the drain channel 17 is opened by opening the drain valve 26 in advance. A part of may be discharged. In this case, since the amount of water to be heated is small, heating can be completed in a short time and with a small amount of power.
  • the hot water in the tank 3 in the sterilization mode contains water vapor.
  • the upper region of the tank 3 where hot water resulting from the reduction of the amount of water stored in the tank 3 is not immersed is sterilized with water vapor.
  • the water amount sensor 31 and the ceiling wall 33 are sterilized with water vapor.
  • the temperature of hot water is preferably 75 ° C. or higher, for example.
  • the control unit 6 turns off the heaters 8 and 8A, ends the heating, and ends the driving of the pump 22.
  • FIG. 10 shows, the drain valve 26 is opened and hot water is discharged
  • the flow path on the circulating water path 15 b side of the flow path switching valve 23 is closed, and the flow path on the water discharge path 16 side is opened, whereby hot water is discharged from the water discharge path 16.
  • the water discharge path 16 and the drainage path 17 are sterilized by the hot water passing through the water discharge path 16 and the drainage path 17.
  • the hot water discharged from the water discharge port 16a is collected by the tray part 16b, passes through the water channel 16c, and reaches the drainage channel 17. Thereby, the saucer part 16b and the water channel 16c are sterilized.
  • the control unit 6 controls the drive voltage of the pump 22 while monitoring the flow rate detected by the flow rate sensors 27A and 27B. Thereby, the amount of hot water flowing through the circulation channel 15 and the electrolytic cell 4 is managed by the control unit 6.
  • the control part 6 can grasp
  • the control unit 6 stops the pump 22. Thereby, the hot water in the second electrode chamber 40 ⁇ / b> B and the parallel water channel 14 is discharged from the drainage channel 17.
  • an ultraviolet LED (ultraviolet irradiation means) 34 is provided on the top wall 33 of the tank 3.
  • the ultraviolet LED 34 is a light emitting diode that is controlled by the control unit 6 to emit ultraviolet rays.
  • the inside of the tank 3 is sterilized by the ultraviolet rays emitted from the ultraviolet LED 34.
  • the ultraviolet LED 34 may be provided in the circulating water channel 15 or the electrolytic cell 4 in addition to the tank 3.
  • the ultraviolet LED 34 can be turned on in the electrolyzed water generation mode and the sterilization mode.
  • the ultraviolet LED 34 may be configured to be constantly or periodically lit.
  • the electrolyzed water generating apparatus 1 is divided into at least a first electrode chamber 40A in which the first power feeding body 41 is disposed and a second electrode chamber 40B in which the second power feeding body 42 is disposed by the diaphragm 43, and An electrolysis chamber 40 that generates electrolyzed water by electrolyzing water, a first water supply path 11a that is connected to the first electrode chamber 40A and supplies water to be electrolyzed to the first electrode chamber 40A, and a first electrode A discharge channel 12 that is connected to the chamber 40A and sends electrolyzed electrolyzed water from the first electrode chamber 40A, and extends upward from the upper end of the second electrode chamber 40B. What is necessary is just to provide the exhaust path 13 discharged

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

An electrolyzed water generation device 1 comprising: an electrolysis chamber 40 that generates electrolyzed water by electrolyzing water and is divided by a partitioning membrane 43, which is a solid polymer membrane, into a first polar chamber 40A having a first power feeder 41 arranged therein and a second polar chamber 40B having a second power feeder 42 arranged therein; a first water supply path 11a connected to the first polar chamber 40A and supplying water to be electrolyzed to the first polar chamber 40A; a water outlet path 12 connected to the first polar chamber 40A and sending out electrolyzed water that has been electrolyzed from the first polar chamber 40A; a discharge path 13 extending upwards from the upper end of the second polar chamber 40B and discharging gas generated by electrolysis from the second polar chamber 40B; and a parallel water path 14 provided along the second polar chamber 40B and connecting the discharge path 13 and the lower end of the second polar chamber 40B.

Description

電解水生成装置及びそれを備えた電解水サーバーElectrolyzed water generating apparatus and electrolyzed water server equipped with the same
 本発明は、電気分解によって生成された電解水を提供する電解水生成装置及びそれを備えた電解水サーバーに関する。 The present invention relates to an electrolyzed water generating device that provides electrolyzed water generated by electrolysis and an electrolyzed water server including the same.
 従来、電気分解によって水素が溶け込んだ電解水を生成する電解水生成装置が知られている(例えば、特許文献1参照)。上記特許文献1に開示されている電解水生成装置では、第2極室に供給される水量を制限して水の有効利用が図られている。 Conventionally, an electrolyzed water generating apparatus that generates electrolyzed water in which hydrogen is dissolved by electrolysis is known (for example, see Patent Document 1). In the electrolyzed water generating device disclosed in Patent Document 1, the amount of water supplied to the second electrode chamber is limited to effectively use water.
 しかしながら、第2極室に供給される水が制限された場合、第2極室では電解水の溶存ガス濃度が飽和して、電解水に溶け込めなかった気泡状態のガスが大量に発生する。この現象は、隔膜に固体高分子膜を用いた場合、顕著に発生する。さらにこの場合、第2極室の水流が抑制されるので、気泡状態のガスは、電解水と共に第2極室から排出され難くなり、第2極室には気泡状態のガスが滞留することとなる。このような気泡状態のガスが第2給電体の表面等に付着した状態で滞留すると、第2給電体の表面に供給される水が減少するため、電解室での電気分解が著しく抑制されるおそれがある。 However, when the water supplied to the second electrode chamber is restricted, the dissolved gas concentration of the electrolyzed water is saturated in the second electrode chamber, and a large amount of gas in a bubble state that cannot be dissolved in the electrolyzed water is generated. This phenomenon occurs remarkably when a solid polymer film is used as the diaphragm. Further, in this case, since the water flow in the second electrode chamber is suppressed, the gas in the bubble state is difficult to be discharged from the second electrode chamber together with the electrolytic water, and the gas in the bubble state is retained in the second electrode chamber. Become. If such a gas in a bubble state stays attached to the surface of the second power feeder, water supplied to the surface of the second power feeder is reduced, so that electrolysis in the electrolysis chamber is remarkably suppressed. There is a fear.
特開2015-29929号公報JP 2015-29929 A
 本発明は、以上のような実状に鑑み案出されたもので、水の有効利用を図りつつ、電解槽での電気分解を効率よく行ない溶存水素濃度を高めることができる電解水生成装置及びにそれを備えた電解水サーバーを提供することを主たる目的としている。 The present invention has been devised in view of the above circumstances, and an electrolyzed water generating apparatus capable of efficiently performing electrolysis in an electrolytic cell and increasing the dissolved hydrogen concentration while achieving effective use of water. The main purpose is to provide an electrolyzed water server equipped with it.
 本発明の第1発明に係る電解水生成装置は、隔膜によって第1給電体が配された第1極室と第2給電体が配された第2極室とに区切られ、かつ、水を電気分解することにより電解水を生成する電解室と、前記第1極室に接続され、前記第1極室に電気分解される水を供給する第1給水路と、前記第1極室に接続され、電気分解された電解水を前記第1極室から送出する出水路と、前記第2極室の上端部から上方にのび、電気分解によって生じた気体を前記第2極室から排出する排気路と、前記第2極室に沿って設けられ、前記排気路と前記第2極室の下端部とを連通させる並行水路とを備えることを特徴とする。 The electrolyzed water generating apparatus according to the first aspect of the present invention is divided into a first electrode chamber in which a first power feeding body is disposed and a second electrode chamber in which a second power feeding body is disposed, and water is separated by a diaphragm. An electrolysis chamber that generates electrolyzed water by electrolysis, a first water supply channel that is connected to the first electrode chamber and supplies water to be electrolyzed to the first electrode chamber, and is connected to the first electrode chamber And a discharge channel for delivering electrolyzed electrolyzed water from the first electrode chamber, and an exhaust gas extending upward from the upper end of the second electrode chamber and discharging gas generated by electrolysis from the second electrode chamber. It is provided with a parallel water channel which is provided along a channel and the 2nd polar chamber, and connects the exhaust channel and the lower end part of the 2nd polar chamber.
 本発明に係る前記電解水生成装置において、前記排気路又は前記並行水路には、前記排気路内又は前記並行水路内の水位を検出するための水位検出手段が設けられていることが望ましい。 In the electrolyzed water generating apparatus according to the present invention, it is preferable that a water level detecting means for detecting a water level in the exhaust channel or the parallel water channel is provided in the exhaust channel or the parallel water channel.
 本発明に係る前記電解水生成装置において、前記水位検出手段は、前記並行水路が前記排気路に連通する箇所よりも下方に設けられていることが望ましい。 In the electrolyzed water generating apparatus according to the present invention, it is preferable that the water level detecting means is provided below a location where the parallel water channel communicates with the exhaust channel.
 本発明に係る前記電解水生成装置において、前記第2極室及び前記並行水路に電気分解される水を供給するための第2給水路と、前記第2給水路からの給水を制御する給水制御弁とを有することが望ましい。 In the electrolyzed water generating apparatus according to the present invention, a second water supply path for supplying water to be electrolyzed to the second pole chamber and the parallel water channel, and a water supply control for controlling water supply from the second water channel It is desirable to have a valve.
 本発明の第2発明に係る電解水サーバーは、請求項1乃至5のいずれかに記載の電解水生成装置を備えた電解水サーバーであって、前記第1極室で生成された電解水を貯えるタンクと、前記タンクと前記電解室との間で電解水を循環させる循環水路とをさらに備えることを特徴とする。 An electrolyzed water server according to a second invention of the present invention is an electrolyzed water server comprising the electrolyzed water generating device according to any one of claims 1 to 5, wherein the electrolyzed water generated in the first electrode chamber is obtained. The tank further includes a storage tank, and a circulation water channel for circulating the electrolytic water between the tank and the electrolysis chamber.
 本発明に係る前記電解水サーバーにおいて、前記タンク内の水を加熱する加熱手段と、前記加熱手段によって加熱された熱水を前記排気路及び前記並行水路に供給する熱水路をさらに備えることが望ましい。 The electrolyzed water server according to the present invention may further include a heating unit that heats water in the tank and a hot water channel that supplies the hot water heated by the heating unit to the exhaust channel and the parallel channel. desirable.
 本発明に係る前記電解水サーバーにおいて、前記排気路に設けられ、前記排気路内の流体から気体のみを分離して排出する排気手段をさらに備えることが望ましい。 In the electrolyzed water server according to the present invention, it is preferable that the electrolyzed water server further includes an exhaust unit that is provided in the exhaust passage and separates and discharges only the gas from the fluid in the exhaust passage.
 本発明の第1発明に係る電解水生成装置では、隔膜、第1極室及び第2極室を有する電解室と、第1極室に接続された第1給水路及び出水路と、第2極室に接続された排気路及び並行水路とを備える。第1極室での電気分解によって生成された気体は、電解水に溶け込み、電解水と共に出水路を介して第1極室から送出され、利用可能となる。 In the electrolyzed water generating apparatus according to the first aspect of the present invention, an electrolysis chamber having a diaphragm, a first electrode chamber and a second electrode chamber, a first water supply channel and a water discharge channel connected to the first electrode chamber, and a second An exhaust passage connected to the polar chamber and a parallel water passage are provided. The gas generated by the electrolysis in the first electrode chamber dissolves in the electrolyzed water, and is sent out from the first electrode chamber via the water discharge channel together with the electrolyzed water, and can be used.
 一方、第2極室で電気分解によって生成された気体は、排気路を介して第2極室から排出される。このとき、排気路と第2極室の下端部とを連通させる並行水路に充填された水の圧力によって、第2極室内の気体が上方に押し上げられ、排気路に移動する。これにより、電気分解中の第2極室に水を供給することなく、第2極で生じた気体が第2極室から排出される。従って、第2給電体の表面に十分な水が供給され、電解室内での電気分解が効率よく実行される。これにより、水の利用効率が極限まで高められると共に、第1極室で生ずる気体の溶存濃度が容易に高められる。 On the other hand, the gas generated by electrolysis in the second electrode chamber is discharged from the second electrode chamber through the exhaust path. At this time, the gas in the second electrode chamber is pushed upward by the pressure of the water filled in the parallel channel that connects the exhaust channel and the lower end of the second electrode chamber, and moves to the exhaust channel. Thus, the gas generated in the second electrode is discharged from the second electrode chamber without supplying water to the second electrode chamber during electrolysis. Therefore, sufficient water is supplied to the surface of the second power feeder, and electrolysis in the electrolytic chamber is efficiently performed. Thereby, the utilization efficiency of water is increased to the limit, and the dissolved concentration of gas generated in the first electrode chamber is easily increased.
 本発明の第2発明に係る電解水サーバーでは、水の有効利用を図りつつ、タンクに貯えられる電解水に溶け込んだ気体の溶存濃度を効率よく高めることが可能となる。 In the electrolyzed water server according to the second invention of the present invention, it is possible to efficiently increase the dissolved concentration of the gas dissolved in the electrolyzed water stored in the tank while effectively utilizing water.
本発明の第1発明に係る電解水生成装置の一実施形態の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of one Embodiment of the electrolyzed water generating apparatus which concerns on 1st invention of this invention. 図1の電解水生成装置の電気的構成を示すブロック図である。It is a block diagram which shows the electrical structure of the electrolyzed water generating apparatus of FIG. 図1の電解水生成装置を備えた水素水サーバーの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the hydrogen water server provided with the electrolyzed water generating apparatus of FIG. 図3の水素水サーバーの電気的構成を示すブロック図である。It is a block diagram which shows the electrical constitution of the hydrogen water server of FIG. 図4の水素水サーバーの電解水生成モードでの各部の動作及び水の流れを示す図である。It is a figure which shows the operation | movement of each part and the flow of water in the electrolyzed water production | generation mode of the hydrogen water server of FIG. 図5に続き、水素水サーバーの電解水生成モードでの各部の動作及び水の流れを示す図である。FIG. 6 is a diagram illustrating the operation of each unit and the flow of water in the electrolyzed water generation mode of the hydrogen water server, following FIG. 5. 図6に続き、水素水サーバーの電解水生成モードでの各部の動作及び水の流れを示す図である。FIG. 7 is a diagram illustrating the operation of each unit and the flow of water in the electrolyzed water generation mode of the hydrogen water server, following FIG. 6. 図3の水素水サーバーの吐水モードでの各部の動作及び水の流れを示す図である。It is a figure which shows the operation | movement of each part and the flow of water in the water discharge mode of the hydrogen water server of FIG. 図3の水素水サーバーの殺菌モードでの各部の動作及び水の流れを示す図である。It is a figure which shows the operation | movement of each part and the flow of water in the disinfection mode of the hydrogenous water server of FIG. 図9に続き、水素水サーバーの殺菌モードでの各部の動作及び水の流れを示す図である。FIG. 10 is a diagram illustrating the operation of each unit and the flow of water in the sterilization mode of the hydrogen water server, following FIG. 9.
 以下、本発明の実施の一形態が図面に基づき説明される。
 図1は、第1発明の実施形態である電解水生成装置1の概略構成を示している。電解水生成装置1は、電解槽4と、第1給水路11aと、出水路12と、排気路13と、並行水路14とを備える。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of an electrolyzed water generating apparatus 1 according to an embodiment of the first invention. The electrolyzed water generating device 1 includes an electrolyzer 4, a first water supply channel 11a, a water discharge channel 12, an exhaust channel 13, and a parallel water channel 14.
 電解槽4は、供給された水を電気分解することにより電解水素水を生成する。電解槽4は、電解室40と、第1給電体41と、第2給電体42と、隔膜43とを有している。電解室40は、隔膜43によって、第1給電体41側の第1極室40Aと、第2給電体42側の第2極室40Bとに区切られる。 The electrolytic cell 4 generates electrolytic hydrogen water by electrolyzing the supplied water. The electrolytic cell 4 includes an electrolysis chamber 40, a first power feeding body 41, a second power feeding body 42, and a diaphragm 43. The electrolytic chamber 40 is divided by a diaphragm 43 into a first electrode chamber 40A on the first power feeder 41 side and a second electrode chamber 40B on the second power feeder 42 side.
 第1給電体41及び第2給電体42には、例えば、チタニウム等からなるエクスパンドメタル等の網状金属の表面に白金のめっき層が形成されたものが適用されている。このような網状の第1給電体41及び第2給電体42は、隔膜43を挟持しながら、隔膜43の表面に水を行き渡らせることができ、電解室40内での電気分解を促進する。 As the first power supply body 41 and the second power supply body 42, for example, a surface in which a platinum plating layer is formed on a surface of a net-like metal such as an expanded metal made of titanium or the like is applied. Such a net-like first power supply body 41 and second power supply body 42 can distribute water to the surface of the diaphragm 43 while sandwiching the diaphragm 43, and promote electrolysis in the electrolytic chamber 40.
 第1給電体41及び第2給電体42の一方は陽極給電体として適用され、他方は陰極給電体として適用される。電解室40の第1極室40A及び第2極室40Bの両方に水が供給され、第1給電体41及び第2給電体42に直流電圧が印加されることにより、電解室40内で水の電気分解が生ずる。 One of the first power supply 41 and the second power supply 42 is applied as an anode power supply, and the other is applied as a cathode power supply. Water is supplied to both the first electrode chamber 40 </ b> A and the second electrode chamber 40 </ b> B of the electrolysis chamber 40, and a direct current voltage is applied to the first power supply body 41 and the second power supply body 42. Electrolysis occurs.
 隔膜43には、例えば、スルホン酸基を有するフッ素系樹脂からなる固体高分子膜等が適宜用いられている。隔膜43の両面には、白金からなるめっき層が形成されている。隔膜43のめっき層と第1給電体41及び第2給電体42とは、当接し、電気的に接続される。隔膜43は、電気分解で生じたイオンを通過させる。隔膜43を介して第1給電体41と第2給電体42とが電気的に接続される。固体高分子材料からなる隔膜43が適用される場合、電解水素水のpH値を上昇させることなく、溶存水素濃度を高めることができる。このような電解水素水は、例えば、透析治療での患者の酸化ストレスの低減に好適とされている。 For the diaphragm 43, for example, a solid polymer film made of a fluorine-based resin having a sulfonic acid group is appropriately used. On both surfaces of the diaphragm 43, plating layers made of platinum are formed. The plating layer of the diaphragm 43 is in contact with and electrically connected to the first power feeding body 41 and the second power feeding body 42. The diaphragm 43 allows ions generated by electrolysis to pass through. The first power supply body 41 and the second power supply body 42 are electrically connected via the diaphragm 43. When the diaphragm 43 made of a solid polymer material is applied, the dissolved hydrogen concentration can be increased without increasing the pH value of the electrolytic hydrogen water. Such electrolytic hydrogen water is suitable for reducing oxidative stress of patients in dialysis treatment, for example.
 電解室40内で水が電気分解されることにより、水素ガス及び酸素ガスが発生する。例えば、第1給電体41が陰極給電体として適用される場合、第1極室40Aでは、水素ガスが発生し、水素ガスが溶け込んだ電解水素水が生成される。一方、第2極室40Bでは、酸素ガスが発生し、酸素ガスが溶け込んだ電解酸素水が生成される。第1給電体41が陽極給電体として適用される場合、第1極室40Aでは、酸素ガスが発生し、酸素ガスが溶け込んだ電解酸素水が生成される。一方、第2極室40Bでは、水素ガスが発生し、水素ガスが溶け込んだ電解水素水が生成される。 Electrolysis of water in the electrolysis chamber 40 generates hydrogen gas and oxygen gas. For example, when the first power supply 41 is applied as a cathode power supply, hydrogen gas is generated in the first electrode chamber 40A, and electrolytic hydrogen water in which the hydrogen gas is dissolved is generated. On the other hand, in the second electrode chamber 40B, oxygen gas is generated, and electrolytic oxygen water in which the oxygen gas is dissolved is generated. When the first power supply body 41 is applied as an anode power supply body, oxygen gas is generated in the first electrode chamber 40A, and electrolytic oxygen water in which the oxygen gas is dissolved is generated. On the other hand, in the second electrode chamber 40B, hydrogen gas is generated, and electrolytic hydrogen water in which the hydrogen gas is dissolved is generated.
 第1給水路11aは、第1極室40Aに接続されている。第1給水路11aは、第1極室40Aに電気分解される水を供給する。出水路12は、第1極室40Aに接続されている。出水路12は、第1極室40Aで電気分解された電解水を第1極室40Aから送出する。 The first water supply channel 11a is connected to the first pole chamber 40A. The first water supply channel 11a supplies water to be electrolyzed to the first pole chamber 40A. The drainage channel 12 is connected to the first pole chamber 40A. The drainage channel 12 sends the electrolyzed water electrolyzed in the first electrode chamber 40A from the first electrode chamber 40A.
 本実施形態では、第1給水路11は、第1極室40Aの下端部と連通し、出水路12は、第1極室40Aの上端部と連通している。これにより、第1極室40Aの下部から上部に大局的な水の流れが生ずる。そして、第1極室40Aで電気分解によって発生した気体は、微小な気泡となって第1極室40Aの上部に移動する。従って、気体の移動方向と大局的に水が流れる方向とが一致するため、気体が水に溶け込みやすくなり、溶存水素濃度が容易に高められる。 In the present embodiment, the first water supply channel 11 communicates with the lower end portion of the first pole chamber 40A, and the water discharge channel 12 communicates with the upper end portion of the first electrode chamber 40A. Thereby, a general flow of water is generated from the lower part to the upper part of the first electrode chamber 40A. The gas generated by the electrolysis in the first electrode chamber 40A becomes a fine bubble and moves to the upper part of the first electrode chamber 40A. Therefore, since the moving direction of the gas coincides with the direction in which water flows globally, the gas can easily dissolve in water, and the dissolved hydrogen concentration can be easily increased.
 排気路13は、第2極室40Bの上端部から上方にのびる。排気路13は、第2極室40Bで電気分解によって生じた気体を第2極室40Bから排出する。第2極室40Bで電気分解によって発生した気体は、微小な気泡となって第2極室40Bの上部に移動する。本実施形態では、第2極室40Bの上端部に排気路13が連通しているので、気体が第2極室40Bから排出されうる。 The exhaust passage 13 extends upward from the upper end of the second electrode chamber 40B. The exhaust path 13 discharges the gas generated by electrolysis in the second electrode chamber 40B from the second electrode chamber 40B. The gas generated by electrolysis in the second electrode chamber 40B becomes a fine bubble and moves to the upper part of the second electrode chamber 40B. In the present embodiment, since the exhaust path 13 communicates with the upper end portion of the second electrode chamber 40B, gas can be discharged from the second electrode chamber 40B.
 並行水路14は、第2極室40Bに沿って設けられている。並行水路14は、排気路13と第2極室40Bの下端部とを連通させる。本実施形態では、並行水路14は、後述する第2給水路11bを介して第2極室40Bに接続されている。並行水路14は、第2極室40Bに直接的に接続されていてもよい。 The parallel water channel 14 is provided along the second polar chamber 40B. The parallel water channel 14 connects the exhaust channel 13 and the lower end of the second pole chamber 40B. In this embodiment, the parallel water channel 14 is connected to the 2nd pole chamber 40B via the 2nd water supply channel 11b mentioned later. The parallel water channel 14 may be directly connected to the second electrode chamber 40B.
 図2は、給電体41、42に電解電流を供給するための回路を示している。給電体41、42に供給される電解電流Iは、制御部6によって制御される。 FIG. 2 shows a circuit for supplying an electrolytic current to the power feeders 41 and 42. The electrolytic current I supplied to the power feeding bodies 41 and 42 is controlled by the control unit 6.
 制御部6は、給電体41、42等の各部の制御を司る。制御部6は、例えば、各種の演算処理、情報処理等を実行するCPU(Central Processing Unit)及びCPUの動作を司るプログラム及び各種の情報を記憶するメモリ等を有している。 The control unit 6 controls each unit such as the power feeders 41 and 42. The control unit 6 includes, for example, a CPU (Central Processing Unit) that executes various arithmetic processes, information processing, and the like, a program that controls the operation of the CPU, and a memory that stores various information.
 制御部6は、例えば、第1給電体41及び第2給電体42の極性を制御する。制御部6が第1給電体41及び第2給電体42の極性を相互に変更することにより、電解水素水又は電解酸素水のうち所望の電解水が、第1極室40Aから出水路12を介して送出され、利用可能となる。 The control unit 6 controls the polarities of the first power supply 41 and the second power supply 42, for example. When the control unit 6 changes the polarities of the first power supply body 41 and the second power supply body 42 to each other, desired electrolyzed water out of the electrolyzed hydrogen water or the electrolyzed oxygen water flows from the first electrode chamber 40A through the water outlet 12. And is available for use.
 以下、特に断りのない限り、第1給電体41が陰極給電体として適用される場合について説明するが、第1給電体41が陽極給電体として適用される場合についても同様である。 Hereinafter, the case where the first power feeding body 41 is applied as a cathode power feeding body will be described unless otherwise specified, but the same applies to the case where the first power feeding body 41 is applied as an anode power feeding body.
 第1給電体41と制御部6との間の電流供給ラインには、電流検出手段44が設けられている。電流検出手段44は、第2給電体42と制御部6との間の電流供給ラインに設けられていてもよい。電流検出手段44は、給電体41、42に供給する電解電流Iを検出し、その値に相当する電気信号を制御部6に出力する。 Current detection means 44 is provided in the current supply line between the first power feeder 41 and the control unit 6. The current detection unit 44 may be provided in a current supply line between the second power feeder 42 and the control unit 6. The current detection unit 44 detects the electrolytic current I supplied to the power feeding bodies 41 and 42 and outputs an electric signal corresponding to the value to the control unit 6.
 制御部6は、例えば、電流検出手段44から出力された電気信号に基づいて、第1給電体41及び第2給電体42に印加する直流電圧を制御する。より具体的には、制御部6は、予め設定された溶存水素濃度に応じて、電流検出手段44によって検出される電解電流Iが所望の値となるように、第1給電体41及び第2給電体42に印加する直流電圧をフィードバック制御する。例えば、電解電流Iが過大である場合、制御部6は、上記電圧を減少させ、電解電流Iが過小である場合、制御部6は、上記電圧を増加させる。これにより、第1給電体41及び第2給電体42に供給する電解電流Iが適切に制御される。 The control unit 6 controls the DC voltage applied to the first power supply body 41 and the second power supply body 42 based on, for example, the electric signal output from the current detection means 44. More specifically, the control unit 6 controls the first power supply body 41 and the second power supply body 41 so that the electrolysis current I detected by the current detection unit 44 becomes a desired value according to the preset dissolved hydrogen concentration. The DC voltage applied to the power feeding body 42 is feedback controlled. For example, when the electrolysis current I is excessive, the control unit 6 decreases the voltage, and when the electrolysis current I is excessive, the control unit 6 increases the voltage. Thereby, the electrolysis current I supplied to the 1st electric power feeder 41 and the 2nd electric power feeder 42 is controlled appropriately.
 図1に示されるように、第2極室40Bで電気分解によって生成された酸素ガスOは、排気路13を介して第2極室40Bから排出される。このとき、排気路13と第2極室40Bの下端部とを連通させる並行水路14に充填された水の圧力によって、第2極室40B内の酸素ガスOが上方に押し上げられ、排気路13に移動する。これにより、電気分解中の第2極室40Bに水を供給することなく、第2極室40Bで生じた酸素ガスOが第2極室40Bから排出される。従って、第2給電体42の表面に十分な水が供給され、電解室40内での電気分解が効率よく実行される。これにより、水の利用効率が極限まで高められると共に、第1極室40Aで生成される電解水素水の溶存水素濃度が容易に高められる。 As shown in FIG. 1, the oxygen gas O generated by electrolysis in the second electrode chamber 40B is exhausted from the second electrode chamber 40B through the exhaust passage 13. At this time, the oxygen gas O in the second electrode chamber 40B is pushed upward by the pressure of the water filled in the parallel water channel 14 that allows the exhaust channel 13 and the lower end of the second electrode chamber 40B to communicate with each other. Move to. Thus, the oxygen gas O generated in the second electrode chamber 40B is discharged from the second electrode chamber 40B without supplying water to the second electrode chamber 40B being electrolyzed. Therefore, sufficient water is supplied to the surface of the second power feeder 42, and electrolysis in the electrolysis chamber 40 is efficiently performed. Thereby, the utilization efficiency of water is increased to the limit, and the dissolved hydrogen concentration of the electrolytic hydrogen water generated in the first electrode chamber 40A is easily increased.
 ところで、第2極室40B内の水は、電気分解によって酸素に分解され消費される。本実施形態では、排気路13及び並行水路14に充填されている水が第2極室40Bに流入し、電気分解により消費された水が補われる。従って、排気路13内及び並行水路14内の水位は、電気分解の進行に伴い、徐々に低下する。 By the way, the water in the second electrode chamber 40B is decomposed into oxygen and consumed by electrolysis. In the present embodiment, the water filled in the exhaust passage 13 and the parallel water passage 14 flows into the second electrode chamber 40B, and the water consumed by the electrolysis is supplemented. Therefore, the water level in the exhaust passage 13 and the parallel water passage 14 gradually decreases as the electrolysis progresses.
 電解室40内の水は、電気分解の原料となると共に、ジュール熱により発熱する隔膜43を冷却する機能を有する。従って、上記水位がさらに低下して、第2極室40Bの上端部よりも低下する場合、隔膜43の温度が過度に上昇し、隔膜43が損傷するおそれがある。しかしながら、本実施形態では、排気路13内の水位を監視することにより、隔膜43の損傷が抑制される。 The water in the electrolysis chamber 40 serves as a raw material for electrolysis and has a function of cooling the diaphragm 43 that generates heat by Joule heat. Therefore, when the said water level falls further and falls from the upper end part of the 2nd pole chamber 40B, there exists a possibility that the temperature of the diaphragm 43 may rise excessively and the diaphragm 43 may be damaged. However, in this embodiment, damage to the diaphragm 43 is suppressed by monitoring the water level in the exhaust passage 13.
 すなわち、排気路13には、排気路13内の水位を検出するための水位検出手段28が設けられている。排気路13内の水位と並行水路14内の水位とは同等であるので、水位検出手段28は、並行水路14に設けられていてもよい。この場合、水位検出手段28は、並行水路14内の水位を検出する。 That is, the exhaust passage 13 is provided with a water level detection means 28 for detecting the water level in the exhaust passage 13. Since the water level in the exhaust passage 13 and the water level in the parallel water passage 14 are equivalent, the water level detection means 28 may be provided in the parallel water passage 14. In this case, the water level detection means 28 detects the water level in the parallel water channel 14.
 水位検出手段28は、例えば、光学式の液面センサー28a(図2参照)を含む。排気路13は、少なくとも液面センサー28aの面する箇所で透光性を有する。液面センサー28aは、排気路13に赤外線光を照射し、その透過光を検出することにより、排気路13内の水位を検出する。例えば、液面センサー28aの検出領域に水が満たされている場合、赤外線光は屈折し、検出されない。一方、液面センサー28aの検出領域に水が満たされていない場合、赤外線光は検出される。 The water level detection means 28 includes, for example, an optical liquid level sensor 28a (see FIG. 2). The exhaust path 13 has translucency at least at a location facing the liquid level sensor 28a. The liquid level sensor 28a detects the water level in the exhaust passage 13 by irradiating the exhaust passage 13 with infrared light and detecting the transmitted light. For example, when the detection area of the liquid level sensor 28a is filled with water, infrared light is refracted and not detected. On the other hand, when the detection area of the liquid level sensor 28a is not filled with water, infrared light is detected.
 排気路13を透過する赤外線光を用いて排気路13内の水位を検出する光学式(非接触)の液面センサー28aでは、排気路13内にセンサー等が配されることがないため、排気路13内での雑菌の発生・繁殖が抑制されうる。 In the optical (non-contact) liquid level sensor 28 a that detects the water level in the exhaust passage 13 using infrared light that passes through the exhaust passage 13, no sensor or the like is disposed in the exhaust passage 13. Generation | occurrence | production and propagation of various bacteria in the path | route 13 can be suppressed.
 液面センサー28aは、排気路13を透過した赤外線光を光電変換し、その値に相当する電気信号を制御部6に出力する。制御部6は、液面センサー28aから出力された電気信号に基づいて、電解槽4の動作を制御する。例えば、排気路13内の水位が、液面センサー28aの検出領域よりも低下した場合、制御部6は、第1給電体41及び第2給電体42への電解電流Iの供給を停止する。これにより、電解室40での電気分解が停止され、排気路13内の水位のさらなる低下が抑制され、隔膜43の損傷が抑制されうる。 The liquid level sensor 28 a photoelectrically converts the infrared light transmitted through the exhaust passage 13 and outputs an electrical signal corresponding to the value to the control unit 6. The control unit 6 controls the operation of the electrolytic cell 4 based on the electrical signal output from the liquid level sensor 28a. For example, when the water level in the exhaust passage 13 is lower than the detection region of the liquid level sensor 28a, the control unit 6 stops supplying the electrolytic current I to the first power supply body 41 and the second power supply body 42. Thereby, the electrolysis in the electrolysis chamber 40 is stopped, further lowering of the water level in the exhaust passage 13 is suppressed, and damage to the diaphragm 43 can be suppressed.
 なお、何らかの事情により、隔膜43が破損した場合には、第2極室40Bの水が第1極室40Aに流れ込み、排気路13内の水位が低下する。本実施形態では、このような異常が生じた場合にあっても、排気路13内の水位が低下したことを液面センサー28aが検出し、水位が第2極室40Bの上端部まで低下する前に、制御部6が電解槽4の動作を停止させる。 In addition, when the diaphragm 43 is damaged for some reason, the water in the second electrode chamber 40B flows into the first electrode chamber 40A, and the water level in the exhaust passage 13 is lowered. In the present embodiment, even when such an abnormality occurs, the liquid level sensor 28a detects that the water level in the exhaust passage 13 has dropped, and the water level drops to the upper end of the second electrode chamber 40B. Before, the control unit 6 stops the operation of the electrolytic cell 4.
 本実施形態では、液面センサー28aは、並行水路14が排気路13に連通する箇所よりも下方に設けられている。これにより、長時間にわたって電解槽4を連続して運転することが可能となる。 In the present embodiment, the liquid level sensor 28 a is provided below the location where the parallel water channel 14 communicates with the exhaust channel 13. Thereby, it is possible to continuously operate the electrolytic cell 4 for a long time.
 電解水生成装置1は、第2給水路11bと、給水制御弁25とを有する。第2給水路11bは、第2極室40Bの下端部に接続されている。第2給水路11bは、第2極室40B及び並行水路14に電気分解される水を供給する。 The electrolyzed water generating apparatus 1 includes a second water supply passage 11b and a water supply control valve 25. The second water supply passage 11b is connected to the lower end of the second pole chamber 40B. The second water supply channel 11 b supplies water to be electrolyzed to the second pole chamber 40 </ b> B and the parallel water channel 14.
 給水制御弁25は、第2給水路11bから第2極室40Bへの給水を制御する。給水制御弁25には、例えば、電磁力を原動力として開閉動作する電磁弁が適用されうる。給水制御弁25の動作は、制御部6によって制御される。例えば、電解槽4にて電気分解を行なっているとき、給水制御弁25は閉じられている。これにより、第2極室40Bへの給水が停止され、水の利用効率が極限まで高められる。この場合にあっても、第2極室40Bで発生した酸素ガスが上述した並行水路14の水圧によって排出されるので、第1極室40Aで生成される電解水素水の溶存水素濃度は高められる。 The water supply control valve 25 controls water supply from the second water supply path 11b to the second pole chamber 40B. For example, an electromagnetic valve that opens and closes using electromagnetic force as a driving force can be applied to the water supply control valve 25. The operation of the water supply control valve 25 is controlled by the control unit 6. For example, when electrolysis is performed in the electrolytic cell 4, the water supply control valve 25 is closed. Thereby, the water supply to the 2nd pole chamber 40B is stopped, and the utilization efficiency of water is raised to the limit. Even in this case, the oxygen gas generated in the second electrode chamber 40B is discharged by the water pressure in the parallel water channel 14 described above, so that the dissolved hydrogen concentration of the electrolytic hydrogen water generated in the first electrode chamber 40A is increased. .
 給水制御弁25は、並行水路14が第2給水路11bに連通する箇所よりも下方に設けられている。これにより、電気分解に伴う第2極室40B内の水の消費に応じて、並行水路14から第2極室40Bに水が補充される。 The water supply control valve 25 is provided below the location where the parallel water channel 14 communicates with the second water supply channel 11b. Thereby, water is replenished to the 2nd polar chamber 40B from the parallel water channel 14 according to consumption of the water in the 2nd polar chamber 40B accompanying electrolysis.
 なお、制御部6は、電解槽4での電気分解を停止した後、給水制御弁25を開く。これにより、第2給水路11bから第2極室40Bへの給水が再開され、排気路13内の水位が元の高さに復帰する。 The control unit 6 opens the water supply control valve 25 after stopping the electrolysis in the electrolytic cell 4. Thereby, the water supply from the 2nd water supply path 11b to the 2nd pole chamber 40B is restarted, and the water level in the exhaust path 13 returns to the original height.
 図3は、第2発明の実施形態である水素水サーバー100の概略構成を示している。図4は、水素水サーバー100の電気的構成を示している。水素水サーバー100は、電解水生成装置1を備え、電解水生成装置1によって生成された水素が溶け込んだ電解水素水を随時提供可能に貯える装置である。水素水サーバー100によって提供された電解水素水は、飲用又は料理用等の水として用いることができる。 FIG. 3 shows a schematic configuration of the hydrogen water server 100 according to the embodiment of the second invention. FIG. 4 shows the electrical configuration of the hydrogen water server 100. The hydrogen water server 100 is an apparatus that includes the electrolyzed water generating device 1 and stores the electrolyzed hydrogen water in which hydrogen generated by the electrolyzed water generating device 1 is dissolved so as to be provided as needed. The electrolytic hydrogen water provided by the hydrogen water server 100 can be used as drinking or cooking water.
 第1発明の電解水生成装置1を備えた水素水サーバー100では、水の有効利用を図りつつ、タンク3に貯えられる電解水素水の溶存水素濃度を効率よく高めることが可能となる。 In the hydrogen water server 100 equipped with the electrolyzed water generating apparatus 1 of the first invention, it is possible to efficiently increase the dissolved hydrogen concentration of the electrolyzed hydrogen water stored in the tank 3 while effectively using water.
 図3及び4に示されるように、水素水サーバー100は、浄水フィルター2と、タンク3と、操作部5と、循環水路15と、吐水路16をさらに備えている。 3 and 4, the hydrogen water server 100 further includes a water purification filter 2, a tank 3, an operation unit 5, a circulation water channel 15, and a water discharge channel 16.
 浄水フィルター2は、タンク3に供給される水を浄化する。浄水フィルター2は、水素水サーバー100の本体部に対して着脱により交換可能に構成されている。浄水フィルター2は、タンク3の上流側の入水路10に設けられている。入水路10には、原水が供給される。原水には、一般的には水道水が利用されるが、その他、例えば、井戸水、地下水等を用いることができる。入水路10は、入水弁21を有する。入水弁21は、水素水サーバー100への通水量を制御する。 The water filter 2 purifies the water supplied to the tank 3. The water purification filter 2 is configured to be replaceable by attaching to and detaching from the main body of the hydrogen water server 100. The water purification filter 2 is provided in the water inlet 10 on the upstream side of the tank 3. Raw water is supplied to the water inlet 10. As the raw water, tap water is generally used, but well water, ground water, and the like can be used. The water inlet 10 has a water inlet valve 21. The water inlet valve 21 controls the amount of water flow to the hydrogen water server 100.
 本実施形態の浄水フィルター2は、プレフィルター2A、カーボン(活性炭)フィルター2B及び中空糸膜フィルター2Cを含む。プレフィルター2A、カーボン(活性炭)フィルター2B及び中空糸膜フィルター2Cは、それぞれ水素水サーバー100の本体部に対して着脱により交換可能に構成されている。プレフィルター2Aは、最も上流側に配され、例えば原水に含まれる0.5μm以上の物質を除去する。カーボンフィルター2Bは、プレフィルター2Aの下流側に配され、プレフィルター2Aを通過した物質を吸着によって除去する。中空糸膜フィルター2Cは、カーボンフィルター2Bの下流側に配され、プレフィルター2A及びカーボンフィルター2Bを通過した例えば0.1μm以上の物質を除去する。 The water purification filter 2 of the present embodiment includes a prefilter 2A, a carbon (activated carbon) filter 2B, and a hollow fiber membrane filter 2C. The pre-filter 2A, the carbon (activated carbon) filter 2B, and the hollow fiber membrane filter 2C are each configured to be exchangeable by attaching to and detaching from the main body of the hydrogen water server 100. The pre-filter 2A is arranged on the most upstream side, and removes a material of 0.5 μm or more contained in raw water, for example. The carbon filter 2B is disposed on the downstream side of the prefilter 2A, and removes the substance that has passed through the prefilter 2A by adsorption. The hollow fiber membrane filter 2C is disposed on the downstream side of the carbon filter 2B, and removes, for example, a 0.1 μm or more substance that has passed through the pre-filter 2A and the carbon filter 2B.
 タンク3は、浄水フィルター2を通過した水を貯える。制御部6は、水量センサー31から出力された電気信号に基づいて、入水弁21の開閉を制御することにより、タンク3の貯水量を適切に維持する。図3に示されるように、水量センサー31は、タンク3の上部に設けられている。水量センサー31は、例えば、水に浮くフロート部を有する。上記液面センサー28aと同様に、水量センサー31は、光学式のセンサーであってもよい。本実施形態では、水量センサー31は、タンク3の上部に設けられ、タンク3の貯水量が略満水状態となったとき、その旨の電気信号を制御部6に出力する。 Tank 3 stores the water that has passed through the water purification filter 2. The control unit 6 appropriately maintains the amount of water stored in the tank 3 by controlling the opening and closing of the water inlet valve 21 based on the electrical signal output from the water amount sensor 31. As shown in FIG. 3, the water amount sensor 31 is provided in the upper part of the tank 3. The water amount sensor 31 has, for example, a float that floats on water. Similar to the liquid level sensor 28a, the water amount sensor 31 may be an optical sensor. In the present embodiment, the water amount sensor 31 is provided in the upper part of the tank 3 and outputs an electrical signal to that effect to the control unit 6 when the amount of water stored in the tank 3 is substantially full.
 制御部6は、水量センサー31から上述した満水状態である旨の電気信号の入力を受けていないとき、入水弁21を開放状態に制御する。これにより、タンク3に水が適宜補充され、貯水量が適切に維持される。 The control unit 6 controls the water inlet valve 21 to be in an open state when it does not receive an electric signal indicating that the water level is in the above-described state from the water amount sensor 31. Thereby, the tank 3 is appropriately replenished with water, and the amount of stored water is maintained appropriately.
 タンク3に貯えられた水は、上流側の循環水路15を介して電解槽4に供給され、電気分解された後、下流側の循環水路15を介してタンク3に戻る。従って、タンク3は、第1極室40Aで生成された電解水素水を貯える。 The water stored in the tank 3 is supplied to the electrolytic cell 4 through the upstream circulation channel 15 and electrolyzed, and then returns to the tank 3 through the downstream circulation channel 15. Accordingly, the tank 3 stores the electrolytic hydrogen water generated in the first electrode chamber 40A.
 循環水路15は、タンク3と電解室40との間で電解水を循環させる。循環水路15は、電解水生成装置1の第1給水路11a及び出水路12を含む。また、電解水生成装置1の第2給水路11b及び排気路13は、循環水路15としても機能しうる。第1給水路11aには流量センサー27Aが、第2給水路11bには流量センサー27Bがそれぞれ設けられている。流量センサー27Aは、第1給水路11aを流れる水量を検出する。流量センサー27Bは、第2給水路11bを流れる水量を検出する。 The circulating water channel 15 circulates the electrolytic water between the tank 3 and the electrolysis chamber 40. The circulation water channel 15 includes the first water supply channel 11 a and the water discharge channel 12 of the electrolyzed water generating device 1. Further, the second water supply passage 11 b and the exhaust passage 13 of the electrolyzed water generating apparatus 1 can also function as the circulation water passage 15. A flow rate sensor 27A is provided in the first water supply path 11a, and a flow rate sensor 27B is provided in the second water supply path 11b. The flow sensor 27A detects the amount of water flowing through the first water supply channel 11a. The flow sensor 27B detects the amount of water flowing through the second water supply channel 11b.
 循環水路15は、循環水路15a、15b及び15cを含む。循環水路15aは、電解水生成装置1に電気分解される水を供給する。循環水路15aは、上流の一端側でタンク3に接続され、下流の他端側で第1給水路11a及び第2給水路11bに分岐する。循環水路15aには、ポンプ22が設けられている。ポンプ22は、循環水路15内の水を駆動して、循環水路15内を循環させる。循環水路15内で水を循環させながら、電解槽4で電気分解を行なうことにより、タンク3内に貯えられた水の溶存水素濃度が高められる。 Circulating water channel 15 includes circulating water channels 15a, 15b and 15c. The circulating water channel 15 a supplies water to be electrolyzed to the electrolyzed water generator 1. The circulating water channel 15a is connected to the tank 3 at one upstream end, and branches to the first water supplying channel 11a and the second water supplying channel 11b at the other downstream end. A pump 22 is provided in the circulation water channel 15a. The pump 22 drives the water in the circulation water channel 15 to circulate in the circulation water channel 15. By performing electrolysis in the electrolytic cell 4 while circulating water in the circulation channel 15, the dissolved hydrogen concentration of the water stored in the tank 3 is increased.
 循環水路15bは、一端が流路切替弁23を介して出水路12に、他端がタンク3にそれぞれ接続されている。第1極室40Aで生成された電解水素水は、循環水路15b及び出水路12を経てタンク3に戻る。循環水路15cは、排気路13と接続されている。循環水路15cの先端部は、タンク3の内部に配され、循環水路15bより低く位置されている。 One end of the circulating water channel 15 b is connected to the water discharge channel 12 via the flow channel switching valve 23, and the other end is connected to the tank 3. The electrolytic hydrogen water generated in the first electrode chamber 40A returns to the tank 3 through the circulation water channel 15b and the water discharge channel 12. The circulation water channel 15 c is connected to the exhaust channel 13. The tip of the circulating water channel 15c is arranged inside the tank 3 and is positioned lower than the circulating water channel 15b.
 排気路13の先端部には、排気手段24が設けられている。排気手段24は、排気路13内の流体から気体のみを分離して排出する。第2極室40Bで生成された酸素ガスは、排気手段24によって排出される。 Exhaust means 24 is provided at the tip of the exhaust passage 13. The exhaust means 24 separates and discharges only the gas from the fluid in the exhaust path 13. The oxygen gas generated in the second electrode chamber 40B is exhausted by the exhaust means 24.
 吐水路16は、第1極室40Aで生成された水素水を吐水するための流路である。本実施形態の吐水路16は、流路切替弁23を介して出水路12に接続されている。これにより、水素水サーバー100の構成が簡素化される。 The water discharge path 16 is a flow path for discharging the hydrogen water generated in the first polar chamber 40A. The water discharge path 16 of the present embodiment is connected to the water discharge path 12 via the flow path switching valve 23. Thereby, the structure of the hydrogen water server 100 is simplified.
 流路切替弁23には、いわゆる三方弁が適用されうる。流路切替弁23は、水素水サーバー100の運転モードに応じて制御部6によって制御され、出水路12よりも下流側の流路の一部又は全部を循環水路15b又は吐水路16に切り替える。すなわち、電解水素水を生成するモードでは、出水路12よりも下流側の流路の全部が循環水路15bとされる。そして、電解水素水を吐水するモードでは、出水路12よりも下流側の流路の一部又は全部が吐水路16へと切り替えられる。これにより、簡素な構成で流路の切替が実現可能となる。なお、吐水路16は、第1極室40Aに直接的に接続されていてもよい。 A so-called three-way valve can be applied to the flow path switching valve 23. The flow path switching valve 23 is controlled by the control unit 6 according to the operation mode of the hydrogen water server 100, and switches part or all of the flow path downstream from the water discharge path 12 to the circulation water path 15 b or the water discharge path 16. That is, in the mode in which the electrolytic hydrogen water is generated, the entire flow path downstream from the water discharge path 12 is the circulation water path 15b. In the mode of discharging the electrolytic hydrogen water, a part or all of the flow path on the downstream side of the water discharge path 12 is switched to the water discharge path 16. Thereby, switching of a flow path can be realized with a simple configuration. The water discharge path 16 may be directly connected to the first pole chamber 40A.
 吐水路16の先端側には、吐水口16aが設けられている。吐水口16aの下方には、カップ500等を載置可能な空間が形成され、カップ500からこぼれた水を収集するための受け皿部16bが設けられている。 A water outlet 16 a is provided at the front end side of the water discharge path 16. A space in which the cup 500 or the like can be placed is formed below the water discharge port 16a, and a tray 16b for collecting water spilled from the cup 500 is provided.
 図4に示される操作部5は、ユーザーによって操作されるスイッチ又は静電容量を検出するタッチパネル等(図示せず)を有する。ユーザーは、操作部5を操作することにより、例えば、後述する水素水サーバー100の運転モードを設定することができる。ユーザーによって操作部5が操作されると、操作部5は対応する電気信号を制御部6に出力する。制御部6は、操作部5から入力された電気信号に応じて、水素水サーバー100の各部を制御する。 The operation unit 5 shown in FIG. 4 includes a switch operated by a user, a touch panel for detecting capacitance, or the like (not shown). The user can set the operation mode of the hydrogen water server 100 to be described later, for example, by operating the operation unit 5. When the operation unit 5 is operated by the user, the operation unit 5 outputs a corresponding electrical signal to the control unit 6. The control unit 6 controls each unit of the hydrogen water server 100 according to the electric signal input from the operation unit 5.
 水素水の循環にあたって、制御部6は、ポンプ22の駆動電圧を制御する。このとき、制御部6は、流量センサー27Aによって検出された流量を監視しながら、ポンプ22の駆動電圧を制御する。これにより、タンク3に貯えられた水素水が、タンク3と第1極室40Aとの間の循環水路15を循環する。さらに制御部6は、第1給電体41及び第2給電体42に電解電圧を印加する。これにより、電解室40に供給された電解水がさらに電気分解され、タンク3内に貯えられた水素水の溶存水素濃度が高く維持されうる。何らかの事情により、流量センサー27A及び27Bによって検出された流量が十分な値に満たない場合は、制御部6は、第1給電体41及び第2給電体42への電解電圧の印加を停止する。これにより、電解室40に電解水が十分に供給されていない状態での電解電圧の印加が防止されうる。 When circulating the hydrogen water, the control unit 6 controls the drive voltage of the pump 22. At this time, the control unit 6 controls the drive voltage of the pump 22 while monitoring the flow rate detected by the flow rate sensor 27A. Thereby, the hydrogen water stored in the tank 3 circulates in the circulating water path 15 between the tank 3 and the first pole chamber 40A. Further, the control unit 6 applies an electrolytic voltage to the first power feeding body 41 and the second power feeding body 42. Thereby, the electrolyzed water supplied to the electrolysis chamber 40 is further electrolyzed, and the dissolved hydrogen concentration of the hydrogen water stored in the tank 3 can be maintained high. If the flow rate detected by the flow rate sensors 27A and 27B is less than a sufficient value for some reason, the control unit 6 stops applying the electrolytic voltage to the first power supply body 41 and the second power supply body 42. Thereby, the application of the electrolysis voltage in a state where the electrolyzed water is not sufficiently supplied to the electrolysis chamber 40 can be prevented.
 タンク3に貯えられた水素水が消費されると、水量センサー31から出力された電気信号に基づいて、制御部6は、入水弁21を開放し、入水路10からタンク3に水が補充される。このとき、タンク3に貯えられた水素水の溶存水素濃度が低下するため、制御部6は、タンク3と第1極室40Aとの間の循環水路15でタンク3に貯えられた水素水を再び循環させながら、電解室40で電気分解させ、溶存水素濃度を高める。 When the hydrogen water stored in the tank 3 is consumed, based on the electrical signal output from the water amount sensor 31, the control unit 6 opens the water inlet valve 21 and the tank 3 is replenished with water from the water inlet 10. The At this time, since the dissolved hydrogen concentration of the hydrogen water stored in the tank 3 decreases, the control unit 6 uses the circulating water channel 15 between the tank 3 and the first pole chamber 40A to store the hydrogen water stored in the tank 3. While circulating again, electrolysis is performed in the electrolysis chamber 40 to increase the dissolved hydrogen concentration.
 図3に示されるように、タンク3には、冷却装置7が接続されている。冷却装置7は、冷媒を冷却してタンク3の外壁に供給することにより、タンク3を冷却する。冷却装置7の動作は、制御部6によって制御される。これにより、冷却装置7によってタンク3に貯えられた水素水が所望の温度に冷却される。従って、ユーザーの要求に応じて、冷却された水素水を随時提供することが可能となり、水素水サーバー100の使い勝手が高められる。 As shown in FIG. 3, a cooling device 7 is connected to the tank 3. The cooling device 7 cools the tank 3 by cooling the refrigerant and supplying it to the outer wall of the tank 3. The operation of the cooling device 7 is controlled by the control unit 6. Thereby, the hydrogen water stored in the tank 3 is cooled to a desired temperature by the cooling device 7. Accordingly, it is possible to provide cooled hydrogen water as needed according to the user's request, and the usability of the hydrogen water server 100 is improved.
 本実施形態では、制御部6による管理の下で、タンク3に貯えられた水素水は、定期的に入れ替えられる。水素水の入れ替えにあたっては、まず、タンク3に貯えられた水素水が排出され、その後、入水路10から新たな水がタンク3に供給される。 In the present embodiment, the hydrogen water stored in the tank 3 is periodically replaced under the control of the control unit 6. In the replacement of the hydrogen water, first, the hydrogen water stored in the tank 3 is discharged, and then new water is supplied from the water inlet 10 to the tank 3.
 タンク3には、水素水を排出するための排水路17が接続されている。本実施形態では、循環水路15aの一部を介してタンク3と排水路17とが接続されている。タンク3と排水路17とが直接的に接続される構成であってもよい。 The drain 3 for discharging the hydrogen water is connected to the tank 3. In this embodiment, the tank 3 and the drainage channel 17 are connected via a part of the circulation channel 15a. The tank 3 and the drainage channel 17 may be configured to be directly connected.
 排水路17には、排水弁26が設けられている。排水弁26は、制御部6によって制御され開閉動作する。排水弁26が開かれると、タンク3に貯えられた水素水が排水口17aから排出される。 The drainage channel 17 is provided with a drainage valve 26. The drain valve 26 is controlled by the control unit 6 to open and close. When the drain valve 26 is opened, the hydrogen water stored in the tank 3 is discharged from the drain port 17a.
 上記受け皿部16bは、水路16cを介して排水路17に接続されている。受け皿部13bによって収集された水は、水路16cを経由して排水路17から排出される。 The tray portion 16b is connected to the drainage channel 17 through the water channel 16c. The water collected by the tray part 13b is discharged from the drainage channel 17 through the water channel 16c.
 図3に示されるように、タンク3には、水を加熱するためのヒーター(加熱手段)8が設けられている。ヒーター8は、ジュール熱によって発熱し、タンク3に貯えられた水を加熱する。また、循環水路15のタンク3とポンプ22との間には、ヒーター(加熱手段)8Aが設けられている。ヒーター8Aは、循環水路15を構成する管の一部に設けられている。ヒーター8Aは、ジュール熱によって発熱し、循環水路15内の水を加熱する。ヒーター8及び8Aは、制御部6によって制御される。ヒーター8又は8Aのうち、いずれか一方のみが加熱手段として適用されていてもよい。 As shown in FIG. 3, the tank 3 is provided with a heater (heating means) 8 for heating water. The heater 8 generates heat due to Joule heat, and heats the water stored in the tank 3. A heater (heating means) 8 </ b> A is provided between the tank 3 of the circulation water channel 15 and the pump 22. The heater 8 </ b> A is provided in a part of the pipe constituting the circulation water channel 15. The heater 8 </ b> A generates heat due to Joule heat and heats the water in the circulation water channel 15. The heaters 8 and 8A are controlled by the control unit 6. Only one of the heaters 8 and 8A may be applied as the heating means.
 制御部6は、ヒーター8及び8Aを制御して、タンク3に貯えられた水及び循環水路15内の水を加熱させる。これにより、タンク3内及び循環水路15内で熱水が生成され、タンク3及び循環水路15内が熱水によって殺菌され、細菌等の繁殖が抑制される。 The controller 6 controls the heaters 8 and 8A to heat the water stored in the tank 3 and the water in the circulation channel 15. As a result, hot water is generated in the tank 3 and the circulating water channel 15, the inside of the tank 3 and the circulating water channel 15 is sterilized by the hot water, and propagation of bacteria and the like is suppressed.
 水素水サーバー100は、運転モードとして、電気分解によって水素水を生成し、タンク3に貯える「電解水生成モード」と、タンク3に貯えられた水素水を吐水する「吐水モード」と、タンク3及び電解槽4等を殺菌する「殺菌モード」とを有する。 The hydrogen water server 100 generates hydrogen water by electrolysis and stores it in the tank 3 as an operation mode, an “electrolyzed water generation mode” for storing the hydrogen water stored in the tank 3, and a “water discharge mode” for discharging the hydrogen water stored in the tank 3. And “sterilization mode” for sterilizing the electrolytic cell 4 and the like.
 図5乃至7は、電解水生成モードでの水素水サーバー100の各部の動作及び水の流れを示している。同図では、水の満たされている領域がハッチングで示されている(以下、図8乃至10においても同様とする)。 5 to 7 show the operation of each part of the hydrogen water server 100 and the flow of water in the electrolyzed water generation mode. In the figure, the region filled with water is indicated by hatching (hereinafter, the same applies to FIGS. 8 to 10).
 電解水生成モードでは、流路切替弁23の循環水路15b側の流路は開かれ、吐水路16側の流路は閉じられている。また、第2給水路11bの給水制御弁25は、閉じられている。さらに、排水弁26は閉じられ、入水弁21はタンク3の貯水量に応じて適宜開閉される。 In the electrolyzed water generation mode, the flow path on the circulating water path 15b side of the flow path switching valve 23 is opened, and the flow path on the water discharge path 16 side is closed. Moreover, the water supply control valve 25 of the 2nd water supply path 11b is closed. Further, the drain valve 26 is closed, and the water inlet valve 21 is appropriately opened and closed according to the amount of water stored in the tank 3.
 図5に示される初期状態では、排気路13内の水位hは、タンク3と同等である。ポンプ22が駆動され、第1給電体41及び第2給電体42に電解電圧が印加されると、第1極室40A及び第2極室40Bで電気分解が生じる。第1極室40Aで発生した水素ガスは、電解水に溶け込んだ状態でタンク3に回収され、タンク3内の水の溶存水素濃度が高められる。 In the initial state shown in FIG. 5, the water level h in the exhaust passage 13 is equivalent to the tank 3. When the pump 22 is driven and an electrolytic voltage is applied to the first power supply body 41 and the second power supply body 42, electrolysis occurs in the first electrode chamber 40A and the second electrode chamber 40B. The hydrogen gas generated in the first electrode chamber 40A is collected in the tank 3 while being dissolved in the electrolyzed water, and the dissolved hydrogen concentration in the water in the tank 3 is increased.
 一方、第2極室40Bで発生した酸素ガスOは、気泡となって、排気路13及び排気手段24を介して排出される。既に述べたように、本実施形態では、並行水路14に充填された水の圧力によって、第2極室40B内の酸素ガスOが上方に押し上げられ、排気路13に移動する。これにより、電気分解中の第2極室40Bに水を供給することなく、(すなわち、第2極室40Bに水流を生じさせることなく)第2極室40Bで生じた酸素ガスOが第2極室40Bから排出される。従って、第2給電体42の表面に十分な水が供給され、電解室40内での電気分解が効率よく実行される。 On the other hand, the oxygen gas O generated in the second electrode chamber 40B becomes bubbles and is exhausted through the exhaust passage 13 and the exhaust means 24. As already described, in the present embodiment, the oxygen gas O in the second electrode chamber 40B is pushed upward by the pressure of the water filled in the parallel water passage 14 and moves to the exhaust passage 13. As a result, the oxygen gas O generated in the second electrode chamber 40B is supplied to the second electrode chamber 40B without electrolysis without supplying water to the second electrode chamber 40B being electrolyzed (that is, without causing water flow in the second electrode chamber 40B). It is discharged from the polar chamber 40B. Therefore, sufficient water is supplied to the surface of the second power feeder 42, and electrolysis in the electrolysis chamber 40 is efficiently performed.
 電解水生成モードでは、給水制御弁25が閉じられているので、第2極室40B内の水は、排気路13及び循環水路15cを介してタンク3に戻ることはない。従って、第2極室40B内の水の流入によって、タンク3内の水の溶存水素濃度の上昇が阻害されることがなく、電解水素水の溶存水素濃度を容易に高めることが可能となる。 In the electrolyzed water generation mode, since the water supply control valve 25 is closed, the water in the second electrode chamber 40B does not return to the tank 3 via the exhaust passage 13 and the circulation water passage 15c. Therefore, the increase in the dissolved hydrogen concentration of the water in the tank 3 is not hindered by the inflow of water in the second electrode chamber 40B, and the dissolved hydrogen concentration of the electrolytic hydrogen water can be easily increased.
 電解水生成モードでは、給水制御弁25が閉じられていることに伴い、図6に示されるように、第2極室40B内の水は消費され、排気路13及び並行水路14の水位hが徐々に低下する。 In the electrolyzed water generation mode, as the water supply control valve 25 is closed, as shown in FIG. 6, the water in the second electrode chamber 40B is consumed, and the water level h of the exhaust passage 13 and the parallel water passage 14 is changed. Decrease gradually.
 そして、図7に示されるように、排気路13の水位hの低下が液面センサー28aによって検知されると、制御部6は、ポンプ22を停止すると共に、第1給電体41及び第2給電体42への電解電圧の印加を停止する。これにより、電解室40での電気分解が停止される。そして、制御部6は、給水制御弁25を開くことにより、第2給水路11bから第2極室40B及び並行水路14に水が供給され、排気路13の水位hが図5に示される初期状態に復帰する。給水制御弁25を開いて排気路13の水位hを初期状態に復帰させる際には、ポンプ22の駆動が併用されてもよい。この場合、より短時間で排気路13の水位hが初期状態に復帰する。また、第1給電体41及び第2給電体42への電解電圧の印加が継続されていてもよい。 Then, as shown in FIG. 7, when the decrease in the water level h in the exhaust passage 13 is detected by the liquid level sensor 28 a, the control unit 6 stops the pump 22, and the first power feeding body 41 and the second power feeding. The application of the electrolysis voltage to the body 42 is stopped. Thereby, the electrolysis in the electrolysis chamber 40 is stopped. And the control part 6 opens the water supply control valve 25, and water is supplied to the 2nd pole chamber 40B and the parallel water channel 14 from the 2nd water supply channel 11b, and the water level h of the exhaust channel 13 is the initial stage which is shown by FIG. Return to the state. When opening the water supply control valve 25 and returning the water level h of the exhaust passage 13 to the initial state, the driving of the pump 22 may be used in combination. In this case, the water level h in the exhaust passage 13 returns to the initial state in a shorter time. Moreover, the application of the electrolysis voltage to the 1st electric power feeder 41 and the 2nd electric power feeder 42 may be continued.
 図8は、吐水モードでの水素水サーバー100の各部の動作及び水の流れを示している。吐水モードでは、図5、6に示される電解水生成モードの状態から、流路切替弁23によって、第1極室40Aを通過した電解水素水の流路が切り替えられる。すなわち、吐水モードでは、循環水路15b側の流路は閉じられ、吐水路16側の流路が開かれる。この状態でポンプ22が駆動することにより、第1極室40Aを通過した電解水素水は、吐水路16に流入し、吐水口16aから吐出される。このとき、制御部6が、第1給電体41及び第2給電体42に電解電圧を印加するように、構成されていてよい。 FIG. 8 shows the operation of each part of the hydrogen water server 100 and the flow of water in the water discharge mode. In the water discharge mode, the flow path of the electrolytic hydrogen water that has passed through the first electrode chamber 40A is switched by the flow path switching valve 23 from the state of the electrolyzed water generation mode shown in FIGS. That is, in the water discharge mode, the flow path on the circulating water path 15b side is closed and the flow path on the water discharge path 16 side is opened. When the pump 22 is driven in this state, the electrolytic hydrogen water that has passed through the first electrode chamber 40A flows into the water discharge passage 16 and is discharged from the water discharge port 16a. At this time, the control unit 6 may be configured to apply an electrolytic voltage to the first power supply body 41 and the second power supply body 42.
 図9及び10は、殺菌モードでの水素水サーバー100の各部の動作及び水の流れを時系列で示している。殺菌モードでは、タンク3内及び循環水路15内の水が加熱されて循環され、タンク3、電解槽4及び循環水路15等の各部が加熱により殺菌される。このとき、循環水路15は、ヒーター8及び8Aによって加熱された熱水を電解室40、第1給水路11a、第2給水路11b、出水路12、排気路13及び並行水路14に供給する熱水路として機能する。これにより、水素水サーバー100内の各部での細菌等の繁殖が抑制される。殺菌モードは、制御部6の管理の下、定期的に実行される。例えば、殺菌モードは、毎日の深夜の時間帯等に実行される。殺菌モードを実行する時間帯等は、例えば、ユーザーが操作部5を操作して適宜設定することができる。 9 and 10 show the operation of each part of the hydrogen water server 100 in the sterilization mode and the flow of water in time series. In the sterilization mode, the water in the tank 3 and the circulating water channel 15 is heated and circulated, and each part such as the tank 3, the electrolytic cell 4, the circulating water channel 15 and the like is sterilized by heating. At this time, the circulating water channel 15 supplies the hot water heated by the heaters 8 and 8A to the electrolysis chamber 40, the first water supply channel 11a, the second water supply channel 11b, the water discharge channel 12, the exhaust channel 13, and the parallel water channel 14. Functions as a waterway. Thereby, propagation of bacteria and the like in each part in the hydrogen water server 100 is suppressed. The sterilization mode is periodically executed under the control of the control unit 6. For example, the sterilization mode is executed every day at midnight. For example, the time period for executing the sterilization mode can be appropriately set by the user operating the operation unit 5.
 殺菌モードでは、排気路13、並行水路14及び循環水路15cにも、熱水が満たされる。排気路13の先端に設けられている排気手段24は、排気路13内に熱水を留め、排気路13の先端からの水漏れを防止する。 In the sterilization mode, the exhaust passage 13, the parallel water passage 14, and the circulation water passage 15c are also filled with hot water. The exhaust means 24 provided at the tip of the exhaust passage 13 keeps hot water in the exhaust passage 13 and prevents water leakage from the tip of the exhaust passage 13.
 殺菌モードでは、制御部6によって、流路切替弁23及び排水弁26の状態は、当初電解水生成モードと同等に制御される。すなわち流路切替弁23の循環水路15b側の流路は開かれ、吐水路16側の流路は閉じられている。そして、排水弁26は閉じられている。さらに、殺菌モードでは、給水制御弁25が開かれる。この状態でポンプ22が駆動されると、第2極室40B、流量センサー27B、第2給水路11b及び循環水路15cにも十分な熱水が供給され、第2極室40B、流量センサー27B、第2給水路11b及び循環水路15c等が熱水によって加熱され殺菌される。 In the sterilization mode, the state of the flow path switching valve 23 and the drain valve 26 is controlled by the control unit 6 in the same manner as in the initial electrolyzed water generation mode. That is, the flow path on the circulating water path 15b side of the flow path switching valve 23 is opened, and the flow path on the water discharge path 16 side is closed. The drain valve 26 is closed. Further, in the sterilization mode, the water supply control valve 25 is opened. When the pump 22 is driven in this state, sufficient hot water is also supplied to the second pole chamber 40B, the flow rate sensor 27B, the second water supply path 11b, and the circulation water path 15c, and the second pole chamber 40B, the flow rate sensor 27B, The second water supply passage 11b, the circulation water passage 15c and the like are heated and sterilized by hot water.
 第2極室40Bに供給される熱水の流量は、第1極室40Aに供給される熱水の流量と同等に設定されるのが望ましい。これにより、第2極室40Bにも第1極室40Aと同量の熱水が供給され第2極室40B、流量センサー27B、第2給水路11b及び循環水路15c等が十分に殺菌されうる。 It is desirable that the flow rate of hot water supplied to the second electrode chamber 40B is set to be equal to the flow rate of hot water supplied to the first electrode chamber 40A. Thereby, the same amount of hot water as that of the first electrode chamber 40A is supplied to the second electrode chamber 40B, and the second electrode chamber 40B, the flow rate sensor 27B, the second water supply channel 11b, the circulating water channel 15c, and the like can be sufficiently sterilized. .
 なお、ヒーター8及び8Aを制御して、タンク3に貯えられた水及び循環水路15内の水を加熱するにあたっては、予め排水弁26を開いて、排水路17からタンク3に貯えられた水の一部を排出してもよい。この場合、加熱する水が少量となるため、短時間かつ少ない電力で加熱を完了させることが可能となる。 When the water stored in the tank 3 and the water in the circulation water channel 15 are heated by controlling the heaters 8 and 8A, the water stored in the tank 3 from the drain channel 17 is opened by opening the drain valve 26 in advance. A part of may be discharged. In this case, since the amount of water to be heated is small, heating can be completed in a short time and with a small amount of power.
 さらにこの場合、殺菌モードでのタンク3内の熱水は、水蒸気を含むのが望ましい。タンク3内に水蒸気が充満されることにより、タンク3の貯水量が減じられることに起因する熱水が浸かってないタンク3の上部領域が水蒸気によって殺菌される。例えば、水量センサー31及び天壁33等が水蒸気によって殺菌される。 Furthermore, in this case, it is desirable that the hot water in the tank 3 in the sterilization mode contains water vapor. By filling the tank 3 with water vapor, the upper region of the tank 3 where hot water resulting from the reduction of the amount of water stored in the tank 3 is not immersed is sterilized with water vapor. For example, the water amount sensor 31 and the ceiling wall 33 are sterilized with water vapor.
 なお、短時間で十分な殺菌効果を得るために、熱水の温度は、例えば、75℃以上が望ましい。 In addition, in order to obtain a sufficient sterilizing effect in a short time, the temperature of hot water is preferably 75 ° C. or higher, for example.
 タンク3及び電解槽4等の殺菌が完了すると、制御部6は、ヒーター8及び8Aをオフし、加熱を終了すると共に、ポンプ22の駆動を終了する。そして、図10に示されるように、排水弁26を開いて、タンク3、循環水路15及び電解槽4等から熱水を排出する。また、流路切替弁23の循環水路15b側の流路は閉じられ、吐水路16側の流路は開かれることにより、吐水路16から熱水を排出する。このとき、吐水路16及び排水路17を通過する熱水によって、吐水路16及び排水路17が殺菌される。また、吐水口16aから吐出された熱水は、受け皿部16bによって収集され、水路16cを通過して排水路17に至る。これにより、受け皿部16b及び水路16cが殺菌される。 When the sterilization of the tank 3 and the electrolytic cell 4 is completed, the control unit 6 turns off the heaters 8 and 8A, ends the heating, and ends the driving of the pump 22. And as FIG. 10 shows, the drain valve 26 is opened and hot water is discharged | emitted from the tank 3, the circulating water channel 15, and the electrolytic cell 4 grade | etc.,. Further, the flow path on the circulating water path 15 b side of the flow path switching valve 23 is closed, and the flow path on the water discharge path 16 side is opened, whereby hot water is discharged from the water discharge path 16. At this time, the water discharge path 16 and the drainage path 17 are sterilized by the hot water passing through the water discharge path 16 and the drainage path 17. Moreover, the hot water discharged from the water discharge port 16a is collected by the tray part 16b, passes through the water channel 16c, and reaches the drainage channel 17. Thereby, the saucer part 16b and the water channel 16c are sterilized.
 殺菌モードでは、制御部6は、流量センサー27A及び27Bによって検出された流量を監視しながら、ポンプ22の駆動電圧を制御する。これにより、循環水路15及び電解槽4を流れる熱水の量が制御部6によって管理される。制御部6は、循環水路15及び電解槽4を流れる熱水の量に基づいて、循環水路15及び電解槽4の殺菌の進行具合を把握し、殺菌モードを適宜終了させることができる。なお、殺菌モードの終了にあたっては、制御部6は、ポンプ22を停止させる。これにより、第2極室40B及び並行水路14内の熱水が排水路17から排出される。 In the sterilization mode, the control unit 6 controls the drive voltage of the pump 22 while monitoring the flow rate detected by the flow rate sensors 27A and 27B. Thereby, the amount of hot water flowing through the circulation channel 15 and the electrolytic cell 4 is managed by the control unit 6. The control part 6 can grasp | ascertain the progress of the sterilization of the circulating water path 15 and the electrolytic vessel 4 based on the quantity of the hot water which flows through the circulating water path 15 and the electrolytic cell 4, and can complete | finish sterilization mode suitably. Note that, at the end of the sterilization mode, the control unit 6 stops the pump 22. Thereby, the hot water in the second electrode chamber 40 </ b> B and the parallel water channel 14 is discharged from the drainage channel 17.
 図3に示されるように、本実施形態では、タンク3の天壁33に、紫外線LED(紫外線照射手段)34が設けられている。紫外線LED34は、制御部6によって制御されて紫外線を照射する発光ダイオードである。紫外線LED34から照射される紫外線によって、タンク3の内部が殺菌される。紫外線LED34は、タンク3の他、循環水路15又は電解槽4に設けられていてもよい。紫外線LED34は、上記電解水生成モード及び殺菌モードにおいて点灯させることができる。水素水サーバー100の運転中において、紫外線LED34が常時又は定期的に点灯するように構成されていてもよい。 As shown in FIG. 3, in this embodiment, an ultraviolet LED (ultraviolet irradiation means) 34 is provided on the top wall 33 of the tank 3. The ultraviolet LED 34 is a light emitting diode that is controlled by the control unit 6 to emit ultraviolet rays. The inside of the tank 3 is sterilized by the ultraviolet rays emitted from the ultraviolet LED 34. The ultraviolet LED 34 may be provided in the circulating water channel 15 or the electrolytic cell 4 in addition to the tank 3. The ultraviolet LED 34 can be turned on in the electrolyzed water generation mode and the sterilization mode. During operation of the hydrogen water server 100, the ultraviolet LED 34 may be configured to be constantly or periodically lit.
 以上、本実施形態の電解水生成装置1等が詳細に説明されたが、本発明は上記の具体的な実施形態に限定されることなく種々の態様に変更して実施される。すなわち、電解水生成装置1は、少なくとも、隔膜43によって第1給電体41が配された第1極室40Aと第2給電体42が配された第2極室40Bとに区切られ、かつ、水を電気分解することにより電解水を生成する電解室40と、第1極室40Aに接続され、第1極室40Aに電気分解される水を供給する第1給水路11aと、第1極室40Aに接続され、電気分解された電解水を第1極室40Aから送出する出水路12と、第2極室40Bの上端部から上方にのび、電気分解によって生じた気体を第2極室40Bから排出する排気路13と、第2極室40Bに沿って設けられ、排気路13と第2極室40Bの下端部とを連通させる並行水路14とを備えていればよい。 As mentioned above, although the electrolyzed water generating apparatus 1 etc. of this embodiment were demonstrated in detail, this invention is changed and implemented in various aspects, without being limited to said specific embodiment. That is, the electrolyzed water generating apparatus 1 is divided into at least a first electrode chamber 40A in which the first power feeding body 41 is disposed and a second electrode chamber 40B in which the second power feeding body 42 is disposed by the diaphragm 43, and An electrolysis chamber 40 that generates electrolyzed water by electrolyzing water, a first water supply path 11a that is connected to the first electrode chamber 40A and supplies water to be electrolyzed to the first electrode chamber 40A, and a first electrode A discharge channel 12 that is connected to the chamber 40A and sends electrolyzed electrolyzed water from the first electrode chamber 40A, and extends upward from the upper end of the second electrode chamber 40B. What is necessary is just to provide the exhaust path 13 discharged | emitted from 40B, and the parallel water path 14 provided along the 2nd polar chamber 40B, and connecting the exhaust path 13 and the lower end part of the 2nd polar chamber 40B.
  1  電解水生成装置
  3  タンク
  4  電解槽
  6  制御部
  8  ヒーター(加熱手段)
 11a 第1給水路
 11b 第2給水路
 12  出水路
 13  排気路
 14  並行水路
 15  循環水路
 24  排気手段
 25  給水制御弁
 28  水位検出手段
 40  電解室
 40A 第1極室
 40B 第2極室
 41  第1給電体
 42  第2給電体
 43  隔膜
100  水素水サーバー
DESCRIPTION OF SYMBOLS 1 Electrolyzed water production | generation apparatus 3 Tank 4 Electrolytic tank 6 Control part 8 Heater (heating means)
DESCRIPTION OF SYMBOLS 11a 1st water supply path 11b 2nd water supply path 12 Drainage path 13 Exhaust path 14 Parallel water path 15 Circulating water path 24 Exhaust means 25 Water supply control valve 28 Water level detection means 40 Electrolytic chamber 40A 1st pole room 40B 2nd pole room 41 1st electric power feeding Body 42 second power supply body 43 diaphragm 100 hydrogen water server

Claims (7)

  1.  隔膜によって第1給電体が配された第1極室と第2給電体が配された第2極室とに区切られ、かつ、水を電気分解することにより電解水を生成する電解室と、
     前記第1極室に接続され、前記第1極室に電気分解される水を供給する第1給水路と、 前記第1極室に接続され、電気分解された電解水を前記第1極室から送出する出水路と、
     前記第2極室の上端部から上方にのび、電気分解によって生じた気体を前記第2極室から排出する排気路と、
     前記第2極室に沿って設けられ、前記排気路と前記第2極室の下端部とを連通させる並行水路とを備えることを特徴とする電解水生成装置。
    An electrolysis chamber that is divided by a diaphragm into a first electrode chamber in which a first power feeder is disposed and a second electrode chamber in which a second power feeder is disposed, and generates electrolyzed water by electrolyzing water;
    A first water supply channel connected to the first electrode chamber and supplying water to be electrolyzed to the first electrode chamber; and electrolyzed electrolyzed water connected to the first electrode chamber and electrolyzed to the first electrode chamber. A drainage channel to be sent from,
    An exhaust path extending upward from the upper end of the second electrode chamber and discharging the gas generated by electrolysis from the second electrode chamber;
    An electrolyzed water generating apparatus comprising: a parallel water channel provided along the second electrode chamber and communicating the exhaust channel and a lower end portion of the second electrode chamber.
  2.  前記排気路又は前記並行水路には、前記排気路内又は前記並行水路内の水位を検出するための水位検出手段が設けられている請求項1記載の電解水生成装置。 The electrolyzed water generating apparatus according to claim 1, wherein the exhaust passage or the parallel water passage is provided with a water level detecting means for detecting a water level in the exhaust passage or the parallel water passage.
  3.  前記水位検出手段は、前記並行水路が前記排気路に連通する箇所よりも下方に設けられている請求項2記載の電解水生成装置。 The electrolyzed water generating device according to claim 2, wherein the water level detecting means is provided below a location where the parallel water channel communicates with the exhaust channel.
  4.  前記第2極室及び前記並行水路に電気分解される水を供給するための第2給水路と、前記第2給水路からの給水を制御する給水制御弁とを有する請求項1乃至3のいずれかに記載の電解水生成装置。 4. The device according to claim 1, further comprising: a second water supply channel for supplying water to be electrolyzed to the second electrode chamber and the parallel water channel; and a water supply control valve for controlling water supply from the second water channel. An electrolyzed water generator according to claim 1.
  5.  請求項1乃至4のいずれかに記載の電解水生成装置を備えた電解水サーバーであって、
     前記第1極室で生成された電解水を貯えるタンクと、前記タンクと前記電解室との間で電解水を循環させる循環水路とをさらに備えることを特徴とする電解水サーバー。
    An electrolyzed water server comprising the electrolyzed water generating device according to any one of claims 1 to 4,
    The electrolyzed water server further comprising: a tank for storing electrolyzed water generated in the first electrode chamber; and a circulation channel for circulating electrolyzed water between the tank and the electrolyzed chamber.
  6.  前記タンク内の水を加熱する加熱手段と、前記加熱手段によって加熱された熱水を前記排気路及び前記並行水路に供給する熱水路をさらに備える請求項5記載の電解水サーバー。 6. The electrolyzed water server according to claim 5, further comprising a heating means for heating water in the tank, and a hot water passage for supplying hot water heated by the heating means to the exhaust passage and the parallel water passage.
  7.  前記排気路に設けられ、前記排気路内の流体から気体のみを分離して排出する排気手段をさらに備える請求項6記載の電解水サーバー。 The electrolyzed water server according to claim 6, further comprising an exhaust means provided in the exhaust path and configured to separate and discharge only a gas from a fluid in the exhaust path.
PCT/JP2017/003287 2016-02-05 2017-01-31 Electrolyzed water generation device and electrolyzed water server comprising same WO2017135208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-020685 2016-02-05
JP2016020685A JP6232087B2 (en) 2016-02-05 2016-02-05 Electrolyzed water generating apparatus and electrolyzed water server equipped with the same

Publications (1)

Publication Number Publication Date
WO2017135208A1 true WO2017135208A1 (en) 2017-08-10

Family

ID=59500445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003287 WO2017135208A1 (en) 2016-02-05 2017-01-31 Electrolyzed water generation device and electrolyzed water server comprising same

Country Status (2)

Country Link
JP (1) JP6232087B2 (en)
WO (1) WO2017135208A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069189A (en) * 2016-11-01 2018-05-10 株式会社日本トリム Electrolyzed water server
WO2018084117A1 (en) * 2016-11-01 2018-05-11 株式会社日本トリム Electrolyzed water server
US20210238066A1 (en) * 2020-01-30 2021-08-05 Michael Schelch Disinfection device and method for performing disinfection cycles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108344772B (en) * 2017-12-29 2023-07-11 宁波欧琳科技股份有限公司 Method and system for detecting purified water tank electrolyte sheet
JP2019209285A (en) * 2018-06-06 2019-12-12 株式会社日本トリム Hydrogen gas dissolution device
JP2021094275A (en) * 2019-12-18 2021-06-24 株式会社日本トリム Hydrogen addition device and sterilization method for hydrogen addition device
JP6871454B1 (en) * 2020-04-02 2021-05-12 株式会社日本トリム Electrolyzed water generator and washing water generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256254A (en) * 1994-03-22 1995-10-09 Hoshizaki Electric Co Ltd Apparatus for forming electrolytic ionic water
JPH11253943A (en) * 1998-03-06 1999-09-21 Hoshizaki Electric Co Ltd Electrolytic water generator
JP2003071449A (en) * 2001-09-06 2003-03-11 Jipukomu Kk Method and apparatus for making alkali ion water
JP2004107775A (en) * 2002-09-20 2004-04-08 Fuji Electric Holdings Co Ltd Water electrolysis device and operation method thereof
JP2005105289A (en) * 2003-09-24 2005-04-21 Shinwa Kogyo Kk Hydrogen water feeder
WO2012060078A1 (en) * 2010-11-01 2012-05-10 有限会社ターナープロセス Method and apparatus for altering oxidation reduction potential of aqueous liquid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256254A (en) * 1994-03-22 1995-10-09 Hoshizaki Electric Co Ltd Apparatus for forming electrolytic ionic water
JPH11253943A (en) * 1998-03-06 1999-09-21 Hoshizaki Electric Co Ltd Electrolytic water generator
JP2003071449A (en) * 2001-09-06 2003-03-11 Jipukomu Kk Method and apparatus for making alkali ion water
JP2004107775A (en) * 2002-09-20 2004-04-08 Fuji Electric Holdings Co Ltd Water electrolysis device and operation method thereof
JP2005105289A (en) * 2003-09-24 2005-04-21 Shinwa Kogyo Kk Hydrogen water feeder
WO2012060078A1 (en) * 2010-11-01 2012-05-10 有限会社ターナープロセス Method and apparatus for altering oxidation reduction potential of aqueous liquid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069189A (en) * 2016-11-01 2018-05-10 株式会社日本トリム Electrolyzed water server
WO2018084117A1 (en) * 2016-11-01 2018-05-11 株式会社日本トリム Electrolyzed water server
US20210238066A1 (en) * 2020-01-30 2021-08-05 Michael Schelch Disinfection device and method for performing disinfection cycles
US11981587B2 (en) * 2020-01-30 2024-05-14 Michael Schelch Disinfection device and method for performing disinfection cycles

Also Published As

Publication number Publication date
JP2017136573A (en) 2017-08-10
JP6232087B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6232087B2 (en) Electrolyzed water generating apparatus and electrolyzed water server equipped with the same
JP6219358B2 (en) Hydrogen water server
JP6216361B2 (en) Hydrogen water server
CN107635927B (en) Hydrogen rich water supplier
KR101717109B1 (en) Method for sterilizing a water supply apparatus
JP6836914B2 (en) Water treatment equipment, dialysate preparation water production equipment and hydrogen water server
JP5295753B2 (en) Ozone water generator
KR101750494B1 (en) Sodium Hypochlorite Generator that can Maintain the Optimum effectiveness by Supplying Water in Multiple Stages
WO2018084117A1 (en) Electrolyzed water server
CN109715563B (en) Hydrogen water drinking machine
JP6098919B2 (en) Sterilization water generator
JP6353594B2 (en) Hydrogen water server
JP2006207328A (en) Wash water producing device
KR101967799B1 (en) Water treatment apparatus and water treatment method
JP6506730B2 (en) Electrolyzed water server
KR20140022937A (en) Water treatment apparatus and water treatment method
JP2000185284A (en) Sterilizing device and bathtub water circulating and cleaning apparatus equipped therewith
JPH10314743A (en) Alkaline ion water generator
JP2000185287A (en) Sterilizing device and bathtub water circulating and cleaning apparatus equipped therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747364

Country of ref document: EP

Kind code of ref document: A1