WO2017133340A1 - 下行控制信道的确定方法及装置、终端、基站 - Google Patents

下行控制信道的确定方法及装置、终端、基站 Download PDF

Info

Publication number
WO2017133340A1
WO2017133340A1 PCT/CN2016/111358 CN2016111358W WO2017133340A1 WO 2017133340 A1 WO2017133340 A1 WO 2017133340A1 CN 2016111358 W CN2016111358 W CN 2016111358W WO 2017133340 A1 WO2017133340 A1 WO 2017133340A1
Authority
WO
WIPO (PCT)
Prior art keywords
short
downlink control
control channel
tti
short tti
Prior art date
Application number
PCT/CN2016/111358
Other languages
English (en)
French (fr)
Inventor
石靖
夏树强
张雯
韩祥辉
任敏
张文峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017133340A1 publication Critical patent/WO2017133340A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications, and in particular to a method and device for determining a downlink control channel, a terminal, and a base station.
  • next-generation mobile communication technology Long Term Evolution (LTE)
  • LTE-Advance/LTE-A Long-Term Evolution Advance
  • 5G next-generation mobile communication technology
  • ultra-high speed, ultra-high capacity, ultra-high reliability, and ultra-low-latency transmission characteristics For the ultra-low latency index in 5G systems, it is currently recognized that the air interface delay is on the order of 1 ms.
  • a method for implementing ultra-low latency is to reduce the processing delay interval (TTI) of the LTE system, and the processing delay unit is sufficiently shortened to support the characteristic requirement of the 1 ms air interface delay.
  • TTI processing delay interval
  • OFDM Orthogonal Frequency Division Multiplexing
  • the method is in a 5G high frequency communication system. Both are involved in ultra-dense networks; another approach is to reduce the length of TTI by reducing the number of OFDM symbols in a single TTI as discussed by the 3rd Generation Partnership Project (3GPP).
  • 3GPP 3rd Generation Partnership Project
  • the PDCCH Physical Downlink Control Channel
  • the Enhanced Physical Downlink Control Channel uses the downlink data traffic channel ( Part of the PRB resource area in PDSCH, Physical Downlink Shared Channel).
  • the shortened TTI with fewer OFDM symbols is used as a new granularity of TTI, and the existing downlink control channel cannot support the new granularity TTI well.
  • the existing downlink control channel cannot support the problem of low latency requirements well, and an effective solution has not been proposed.
  • an embodiment of the present invention provides a method, a device, a terminal, and a base station for determining a downlink control channel.
  • a method for determining a downlink control channel including:
  • a downlink control channel carrying downlink control information in a short transmission time interval TTI where the downlink control The system channel is located in the first control area or the second control area.
  • the number of candidate sets of the downlink control channel in the short TTI is less than or equal to the LTE LTE neutron.
  • the number of candidate sets of frames, or the sum of the number of candidate sets of the respective short TTIs included in the X subframes of the downlink control channel is less than or equal to the number of candidate sets of X subframes in LTE, where X is a positive integer,
  • the number of candidate sets of the downlink control channel in the short TTI is equal to one.
  • the method further includes:
  • detecting, by the control area in the short TTI, the downlink control channel that carries the downlink control information includes:
  • the downlink control channel is received in the second control region by detecting a determined candidate location.
  • detecting, by the control area in the short TTI, the downlink control channel that carries the downlink control information includes:
  • the partial short TTI is determined by: determining, by the configuration of the base station, the partial short TTI, where the configuration signaling configured by the base station includes at least one of the following: The message block SIB, the radio resource control RRC, and the downlink control information DCI; the partial short TTI is preset; and the detected short TTI is implicitly determined according to the cell identity ID or the terminal identity UE ID or the cell radio network temporary identifier C-RNTI.
  • the method further includes:
  • the detection location of the short TTI and the short PDCCH location within the short TTI are determined by at least one of the following methods: determined by the UE ID or C-RNTI; indicated by the downlink control, DCI or RRC.
  • the indication is performed by using the DCI
  • the indication is performed by the first one of the two levels of the DCI, where the first level includes: a public or unchanged signaling bit field, and a second level DCI Detecting a location, the first level DCI is located in a first control region, and the second level DCI is located in a second control region.
  • first-level DCI is located in a first short TTI of a set of short TTIs
  • second-level DCI determines, according to the first-level DCI, that the second-level DCI is located in one or more of a set of short TTIs. Short TTI.
  • control area occupies short TTI resources by at least one of the following ways:
  • the control region is time-division multiplexed with the short physical downlink shared channel PDSCH, and occupies independent X orthogonal frequency division multiplexing OFDM symbols, where the short TTI includes N OFDM symbols, X and N are positive integers, and X Less than or equal to N;
  • the control region occupies a part of resources of X OFDM symbols, where part of the resource position of the OFDM symbol is occupied
  • the determination is performed by pre-configuration or configuration signaling delivered by the base station.
  • the configuration signaling includes: high layer signaling, such as system message block SIB or radio resource control RRC, or physical layer signaling, such as DCI or short control format indicating sCFI information;
  • the control area is frequency-division multiplexed with the short physical downlink shared channel PDSCH, and occupies a part of the short physical resource block PRB resource; wherein the occupied part of the short PRB resource location is determined by pre-configuration or configuration signaling delivered by the base station, and configured.
  • the signaling includes at least one of the following: a cell public signaling SIB, and a UE-specific signaling radio resource control RRC.
  • control area occupies a part of resources of the X OFDM symbols, including:
  • each of the S resource areas includes multiple consecutive or non-contiguous resources PRB, the number of resource regions S includes: Eth power of 2, where E is a positive integer.
  • the short CFI information is carried by the short physical control format indication channel PCFICH channel, and the short PCFICH channel occupies the resource location, in the first OFDM symbol of all or the first short TTI in a set of short TTIs,
  • the transmission is punctured and a fixed location control channel element CCE or resource element set REG or resource block RE is used.
  • control area occupies the following number of resources as a fixed value or is configured by the base station by using signaling: XPRB, short PRB, RBG.
  • the signaling is high layer signaling or physical layer signaling, such as SIB or RRC or DCI or short CFI.
  • the short CCE used by the short PDCCH includes: 2 short REGs, or 4 short REGs, or 8 short REGs, or 16 short REGs.
  • the short CCEs are composed of short REGs, short intervals of the same interval are selected.
  • the REG constitutes a short CCE, or the short CCE occupies one or more short PRBs.
  • the REs of the short REG are numbered 0 to i in the order of the pre-frequency domain or the first-frequency domain and the post-frequency domain, and the resource blocks of the same number are selected as a short REG, where the short is
  • the REs occupied by the REG pair are the remaining REs in the short PRB or the XPRB except for the RE occupied by the pilot.
  • the method for determining the number of candidate sets of each short TTI includes at least one of the following:
  • the number of candidate sets in each short TTI is the same, and is determined according to the total number of candidate sets of the X subframes divided;
  • the number of candidate sets in one or more short TTIs is greater than the number of candidate sets in the remaining short TTIs.
  • the downlink control channel when the downlink control channel is located in the second control region, determining a detection location of the short PDCCH according to the UE ID or the C-RNTI in the short TTI, where the detection location is determined by at least one of the following manners:
  • a first candidate set as a unique one of the detected locations in a search space in a short TTI, and the first candidate set locations determined in a set of short TTIs are the same;
  • the short PDCCH occupies a fixed size resource as the detection location, where the detection location is predefined or determined by RRC signaling.
  • short TTIs of different terminals occupy different short PRBs or different OFDM symbols.
  • the initial value of the scrambling sequence is determined by at least a short TTI sequence number, where the short TTI sequence number includes at least one of the following: 1 ms intraframe sequence number, wireless Intraframe number.
  • a method for determining a downlink control channel including:
  • the base station transmits the downlink control information to the terminal by using the downlink control channel in the short transmission time interval TTI, where the downlink control channel is located in the first control region or the second control region, where the downlink control channel is located in the first control region
  • the number of candidate sets of the downlink control channel in the short TTI is less than or equal to the number of candidate sets of subframes in the Long Term Evolution (LTE) system, or the number of candidate sets of the short TTIs included in the X subframes of the downlink control channel.
  • LTE Long Term Evolution
  • the sum is less than or equal to the number of candidate sets of X subframes in LTE, where X is a positive integer, and when the downlink control channel is located in the second control region, the number of candidate sets of the downlink control channel in the short TTI is equal to 1.
  • a determining apparatus for a downlink control channel which is applied to a terminal, and includes:
  • a receiving module configured to receive a downlink control channel carrying downlink control information in a short transmission time interval TTI, where the downlink control channel is located in a first control region or a second control region, where the downlink control channel is located in the first
  • the number of candidate sets of the downlink control channel in the short TTI is less than or equal to the number of candidate sets of subframes in the Long Term Evolution (LTE) system, or the candidate of each short TTI included in the X subframes of the downlink control channel.
  • LTE Long Term Evolution
  • the sum of the number of sets is less than or equal to the number of candidate sets of X subframes in LTE, where X is a positive integer, and when the downlink control channel is located in the second control region, the number of candidate sets of the downlink control channel in the short TTI is equal to 1.
  • a determining apparatus for a downlink control channel is further provided, which is applied to a base station, and includes:
  • a transmission module configured to transmit downlink control information to the terminal by using a downlink control channel in a short transmission time interval TTI, where the downlink control channel is located in the first control region or the second control region, where the downlink control channel is located in the In the first control region, the number of candidate sets of the downlink control channel in the short TTI is less than or equal to the number of candidate sets of subframes in the LTE, or the short TTIs included in the X subframes of the downlink control channel.
  • the sum of the number of candidate sets is less than or equal to the number of candidate sets of X subframes in LTE, where X is a positive integer, and when the downlink control channel is located in the second control region, the candidate set of the downlink control channel in the short TTI The number is equal to 1.
  • a terminal comprising the determining device of the downlink control channel described above.
  • a base station comprising the determining device of the downlink control channel described above.
  • a computer storage medium is further provided, and the computer storage medium may store an execution instruction for performing the implementation of the determining method of the downlink control channel in the foregoing embodiment.
  • the first control area or the second control area is determined as a downlink control channel for transmitting downlink control information, and when the downlink control channel is located in the first control region, the short TTI of the downlink control channel is The number of candidate sets is less than or equal to the number of candidate sets of subframes in LTE, or the sum of the number of candidate sets of each short TTI included in the X subframes of the downlink control channel is less than or equal to the number of candidate sets of X subframes in LTE, When the downlink control channel is located in the second control region, the number of candidate sets of the downlink control channel in the short TTI is equal to 1.
  • the existing downlink control channel cannot support the low delay.
  • the problem of demand provides a downlink control channel capable of supporting a new granularity of TTI, while at the same time reducing the complexity of blind detection in TTI.
  • FIG. 1 is a flowchart of a method for determining a downlink control channel according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a short PDCCH in a short TTI and a short PDSCH time division multiplexing independently occupying OFDM symbols according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a short PDCCH occupying OFDM symbol partial resources in a short TTI according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a manner in which a short REG occupies resources in a short TTI according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a manner in which short CCEs occupy resources in a short TTI according to an embodiment of the present invention
  • FIG. 6 is another flowchart of a method for determining a downlink control channel according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of a determining apparatus of a downlink control channel according to an embodiment of the present invention.
  • FIG. 8 is a block diagram showing another structure of a determining apparatus for a downlink control channel according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing still another structure of a determining apparatus for a downlink control channel according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a portion of resources in which a short PDCCH occupies an OFDM symbol in a short TTI according to a preferred embodiment of the present invention
  • FIG. 11 is a schematic diagram of a short PDCCH occupying a portion of short PRB resources in a short TTI with a short PDSCH in accordance with a preferred embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for determining a downlink control channel according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps:
  • Step S102 The terminal receives the downlink control channel transmission that carries the downlink control information in the short TTI, where the downlink control channel is located in the first control area or the second control area, when the downlink control channel is located in the first control area.
  • the number of candidate sets of the downlink control channel in the short TTI is less than or equal to the number of candidate sets of subframes in the Long Term Evolution (LTE) system, or the number of candidate sets of the short TTIs included in the X subframes of the downlink control channel.
  • LTE Long Term Evolution
  • the downlink control channel Determining, by the interaction process between the terminal and the base station, the first control area or the second control area as a downlink control channel for transmitting downlink control information, where the downlink control channel is located in the first control area, the downlink control channel
  • the number of candidate sets of short TTIs is less than or equal to the number of candidate sets of subframes in LTE, or the sum of the number of candidate sets of each short TTI included in the X subframes of the downlink control channel is less than or equal to X subframes in LTE.
  • the number of candidate sets, when the downlink control channel is located in the second control area, the number of candidate sets of the downlink control channel in the short TTI is equal to 1.
  • the above technical solution is adopted, and the existing downlink control channel is not well solved in the related art.
  • the problem of supporting low latency requirements provides a downlink control channel capable of supporting a new granularity of TTI, while at the same time reducing the complexity of blind detection in TTI.
  • the following technical solution may be further implemented: detecting a downlink control channel carrying the downlink control information in the control region in the short TTI, where
  • the control area includes at least one of the following: a first control area, a second control area, wherein the first control area includes a plurality of candidate positions, and the second area includes only one candidate position, and the control area is detected in the short TTI.
  • the downlink control channel carrying the downlink control information mainly has two situations: receiving the downlink control channel by detecting a plurality of candidate locations in the first control region; or receiving downlink control by using a determined candidate location in the second control region.
  • detecting a downlink control channel carrying downlink control information in a control region in a short TTI may also include the following two conditions: detecting in a control region of all short TTIs; or detecting in a control region of a partial short TTI, where Determine a partial short TTI by: determining by the configuration of the base station Said portion of the TTI is short, which is configured by the base station configuration signaling comprises at least one of the following: system information block the SIB, the RRC radio resource control, the DCI downlink control information; pre Setting the partial short TTI first; implicitly determining the detected short TTI according to the cell identity ID or the terminal identity UE ID or the cell radio network temporary identifier C-RNTI, specifically, configuring the DCI through SIB or RRC or DCI In configuration, the DCI is transmitted in a specific TTI, such as in a first short TTI in a set of short TTIs.
  • the detection position of the short TTI and the short PDCCH position in the short TTI are at least passed the following.
  • One of the modes is determined by the UE ID or C-RNTI; the DCI or RRC indication is indicated by the downlink control.
  • the control region occupies a short TTI resource by using at least one of the following modes: the control region is time division multiplexed with the short PDSCH, and occupies an independent X orthogonal frequency division multiplexing OFDM symbols, where The short TTI includes N OFDM symbols, X and N are both positive integers, and X is less than or equal to N; the control region occupies a part of the resources of the X OFDM symbols, where the OFDM symbol partial resource location is pre-configured or sent by the base station.
  • the configuration signaling is determined, and the configuration signaling is: high-level signaling, such as system message block SIB or radio resource control RRC, or physical layer signaling, such as DCI or short control format indicating sCFI information; control region and short PDSCH frequency division And occupying a part of the short physical resource block PRB resource; wherein the part of the short PRB resource location is determined by a pre-configuration or a configuration signaling sent by the base station, and the configuration signaling includes at least one of the following: a cell public signaling SIB, UE proprietary signaling RRC.
  • high-level signaling such as system message block SIB or radio resource control RRC
  • physical layer signaling such as DCI or short control format indicating sCFI information
  • control region and short PDSCH frequency division And occupying a part of the short physical resource block PRB resource wherein the part of the short PRB resource location is determined by a pre-configuration or a configuration signaling sent by the base station, and the configuration signaling includes at least one of
  • control region occupies part of the frequency domain resources of the X OFDM symbols, and may be implemented by using the following technical solution: occupying at least one of the following frequency domain resources in a specified order: short PRB, XPRB, resource block group RBG,
  • the foregoing specified sequence includes: occupying from the specified sequence number of the frequency domain resource to the configured frequency domain resource sequence number, wherein the XPRB is a short TTI with M short PRBs forming XPRB, and M is a positive integer;
  • One of the S resource areas is selected, and the selected resource area is configured as the foregoing control area, where each of the foregoing S resource areas includes a plurality of consecutive or non-contiguous short PRBs, and the number of resource areas S includes : 2 is the E power, E is a positive integer, that is, S includes 2, 4, 8, 16, ... 128.
  • the terminal detects a downlink control information downlink control channel in a short TTI, and the detection includes at least one of: blindly detecting a downlink control channel in a control area shared by multiple terminals; The detection downlink control channel is received in the control area used alone.
  • the downlink control channel may be referred to as an SPDCCH (Short PDCCH), and the short TTI is a TTI that is less than 1 ms in time.
  • the short TTI is composed of N OFDM symbols, and the number of OFDM symbols included is N. At least one of ⁇ 1, 2, 3, 4, 5, 6, 7 ⁇ .
  • the terminal detects the downlink control information downlink control channel in the control region of the short TTI, and can be implemented by: detecting in all short TTIs; detecting in a part of short TTI, specifically including: (1) short TTI configured in the base station Medium detection; the foregoing base station configuration includes configuration using SIB or RRC signaling, and configuring the terminal to perform detection in an arbitrary number or a limited number of short TTIs in a period in a certain period. (2) Detection in a predefined or fixed short TTI. For example, the short TTI is divided by 2 OFDM symbols, and the base station uses 70 bits to configure which TTIs of 70 short TTIs in the 10 ms period require some terminal detection by using RRC signaling.
  • the resource usage mode of the SPDCCH in the short TTI includes a time division multiplexing mode (Time Division Multiplexing, TDM) Time Division Multiplexing, Frequency Division Multiplexing (FDM) frequency division multiplexing, where the FDM mode is occupied by a part of the short PRB occupied by the eNB, and the TDM mode occupies an independent OFDM symbol or a part of resources occupying the OFDM symbol.
  • TDM Time Division Multiplexing
  • FDM Frequency Division Multiplexing
  • FIG. 2 is a schematic diagram of the short PDCCH in the short TTI and the short PDSCH time division multiplexing independently occupying the OFDM symbol according to the embodiment of the present invention; as shown in FIG. 2, the bandwidth occupied by the short TTI
  • the SPDCCH region occupies the first OFDM symbol in the short TTI.
  • the physical layer signaling is that the short CFI information is carried by the short physical control format indication channel PCFICH channel, and the short PCFICH channel occupies the resource location, including: all or the first short TTI in a set of short TTIs
  • the punctured transmission uses a fixed-position control channel unit CCE or a resource element set REG or a resource block RE, and the control area occupies a fixed value of the following resources or is configured by the base station by specifying signaling.
  • the short CCE used by the short PDCCH includes: 2 short REGs, 4 A short REG, 8 short REGs, and 16 short REGs, or the short CCEs occupy a specified number of RE resources.
  • the short CCEs are composed of short REGs, the short REGs of the same interval are selected to form a short CCE, or the short CCE. Take up one or more short PRBs.
  • the short REG pair is occupied by the RE pre-frequency domain or the pre-frequency domain, and the time domain is 0 to i, and the resource block with the same number is selected as a short REG, wherein the short REG pair is occupied.
  • RE is the remaining RE except the RE occupied by the pilot in the above short PRB or the above XPRB.
  • a further improvement of the foregoing technical solution in the embodiment of the present invention is that, when the downlink control channel is located in the first control area, the method for determining the number of candidate sets of each short TTI includes at least one of the following: in a short TTI, each short TTI The number of candidate sets is the same, and is determined according to the total number of candidate sets of X subframes divided; the number of candidate sets is allocated according to different durations of a set of short TTIs; among the set of short TTIs, candidate sets of one or more short TTIs The number is more than the number of candidate sets in the remaining short TTIs.
  • the detection location of the short PDCCH is determined according to the user equipment identity UE ID or the cell radio network temporary identifier C-RNTI in the short TTI, where the foregoing is determined by at least one of the following manners. Detecting location: determining a first candidate set as the only detected location in the search space in the short TTI; determining the first candidate set as the only detected location in the search space in the short TTI, and determining in a set of short TTIs The first candidate set location is the same; the short PDCCH occupies a fixed size resource as the above detected location, wherein the detected location is predefined or determined by RRC signaling.
  • the time domain detection location of the short TTI may be determined by the following technical solutions: all the short TTIs, the monitoring locations determined by the base station configuration, and the detected locations determined according to the UE ID or the C-RNTI, where the configuration signaling configured by the base station includes at least One of the following: RRC or SIB, when using DCI configuration, DCI is transmitted in a specific TTI, such as in a short TTI The first short TTI is transmitted.
  • the detection position of the short TTI and the short PDCCH position within the short TTI are determined by at least one of the following methods: determined by the UE ID or the C-RNTI; and indicated by the downlink control by the DCI or the RRC.
  • the indication when the indication is performed by using the DCI, the indication is performed by using a first level of the two levels of the DCI, where the first level includes: a public or unchanged signaling bit field, and a second level.
  • the first stage performs blind detection
  • the second level does not perform blind detection.
  • the short TTIs of different terminals occupy different short PRBs or occupy different OFDM symbols.
  • it may be the first level in the two-level DCI, the first level includes the public/unchanged signaling bit field and the specific detection location of the second-level DCI, and the second-level DCI includes the UE-specific PDSCH scheduling parameters.
  • the first-level DCI still needs blind detection, and the second-level DCI does not need blind detection, so all possible blind detection times/candidate sets can be allocated to the detection of the first-level DCI.
  • the location of the second level DCI is located in the scheduled PDSCH location. That is, the location occupied by the PDSCH is not exceeded, and the first-level DCI is located in the first TTI of a set of short TTIs or in the Legacy PDCCH region.
  • the second level DCI is located in a portion of the short TTI in a set of short TTIs.
  • the short PDCCH region occupies the first X OFDM symbol partial frequency domain resources, and the specific occupied frequency domain resource location is configured by the base station, which can be understood as occupying X OFDM symbols independently, preferably occupying consecutive first X OFDM symbols in the short TTI. However, it is not excluded to occupy consecutive X OFDM symbols, which is not limited by the implementation of the present invention.
  • the base station configures part of the frequency domain resources of the first X OFDM symbols in the system bandwidth, or configures part of the frequency domain resources for the first X OFDM symbols in the short TTI bandwidth (less than the system bandwidth), FIG. 3 is according to the present invention.
  • the SPDCCH of the embodiment occupies a part of resources of the OFDM symbol in the short TTI.
  • the configuration signaling used by the base station is carried by the SPCFICH, or by MIB or SIB or RRC or DCI signaling.
  • the short PDCCH region occupies part of the frequency domain resources of the first X OFDM symbols, including at least one of the following manners:
  • sPRB Starting from the lowest or highest sequence number of sPRB/XPRB/RBG (hereinafter referred to as sPRB), occupying the sPRB sequence number configured by the base station, and configuring the sPRB sequence number from the set ⁇ sPRB i1, sPRB i2, ..., sPRB ix ⁇ One of them is selected, and the number of elements in the set is preferably 2 or 4 or 8 or 16.
  • the base station selects one of the predefined x resource regions as the SPDCCH region, and each of the x resource regions includes a continuous (or discontinuous-second preferred) sPRB, and the number of resource regions x is preferred. 2 or 4 or 8 or 16.
  • Each resource region contains the same number of sPRBs (or different - less preferred). The sPRBs contained in each resource region do not overlap (or overlap - less preferred).
  • the short PCFICH channel carries the sCFI information to notify a part of the frequency domain resources of the first X OFDM symbols, and the manner in which the channel occupies the resource location includes: playing in the first OFDM symbol in all or the first short TTI in a set of short TTIs. Hole transmission, using fixed location CCE or REG or RE resources.
  • the first OFDM symbol refers to the entire OFDM symbol in the system bandwidth, or is configured for OFDM symbols (ie, truncated OFDM symbols) in the short TTI bandwidth (less than the system bandwidth).
  • the fixed location is a CCE or REG or RE resource that is continuously or discretely selected in the frequency domain.
  • the short TTI refers to a set of short TTIs that are divided according to the granularity of the short TTI by X 1ms subframes.
  • a specific number of short TTIs is related to a specific division of short TTIs, and a number of short TTIs are divided by X numbers of different N or different ⁇ N1, N2, ... ⁇ OFDM symbols in X 1ms subframes, where X is positive
  • the integers, N and ⁇ N1, N2, ... ⁇ are integers from 1 to 7; for example, a set of short TTIs are divided in a 1 ms subframe, such as 4 for 14 OFDM symbols in a Normal Cyclic Prefix (NCP) 3, 4, 3 OFDM symbols are divided into a total of 4 short TTIs, or divided into 2 short TTIs by 2 OFDM symbols; or a set of short TTIs in 2ms subframes, such as 28 in NCP
  • the OFDM symbols are divided into 7 short TTIs in order of gran
  • Continuous selection is preferably continuously selected from the system bandwidth or for the shortest or highest frequency domain location CCE or REG or RE number used in the short TTI bandwidth.
  • the discrete selection preferably selects a fixed number of CCE or REG or RE resources from the system bandwidth or medium interval for the frequency domain location in the short TTI bandwidth.
  • FDM when the SPDCCH uses resources in the FDM mode in the short TTI, the partial sPRB in the short TTI is used. Resources.
  • the sPRB resource location determining manner used includes: (1) a partial sPRB occupied by the eNB configuration; (2) a fixed or predefined sPRB location.
  • the short PDCCH region uses a part of the sPRB resource in the short TTI, and the minimum occupied unit is 1 XPRB or sPRB or RBG, and actually occupies Y XPRBs or sPRBs or RBGs.
  • the meaning of the XPRB is as follows:
  • the short sPRB is composed of M sPRBs.
  • RBG is a resource block group, and different system bandwidths have different values.
  • the short TTI location of the SPDCCH is the short TTI or the partial short TTI, and the partial short TTI location is determined by the base station configuration, that is, the short TTI is configured to have the SPDCCH.
  • the configuration signaling includes SIB or RRC.
  • the frequency domain location of the SPDCCH is configured by using the XPRB or the sPRB or the RBG set as a fixed location or a base station, and the specific number is fixed or the base station is configured.
  • the fixed mode includes that all TTIs use the same frequency domain location or implicitly determine the frequency domain location of the SPDCCH within the short TTI according to the short TTI index.
  • the base station configuration mode can configure different frequency domain locations according to different short TTIs, or configure the same frequency domain location.
  • the number of XPRBs or sPRBs or RBGs included in the XPRB or sPRB or RBG set is fixed or configured by the base station, and the number is preferably at least one of the sets ⁇ 1, 2, 4, 6, 8, 10 ⁇ .
  • the configuration signaling includes RRC or SIB; the SPDCCH uses the SCCE as the control channel unit, the SCCE includes two 4 or 8 or 16 SREGs, or the SCCE directly uses a certain number of RE resources.
  • the SREG is in the RE other than the RE, and the time domain is the time domain number 0-i. The number is the same as an SREG, and the value of i is at least the set ⁇ 1, 3, 7, 15 ⁇ . One.
  • the SCCE has the SREG composition, it is preferable to select the SREG to form the SCCE at equal intervals. If the SREG has 8 and the SCCE consists of 2 SREGs, the SCCE index 0 is composed of SREG indexes 0 and 4.
  • FIG. 4 is a schematic diagram of a short RETI (SREG) occupying resource in a short TTI according to an embodiment of the present invention.
  • XPRB 3sPRB
  • SCCE subcarrier code
  • FIG. 5 is a schematic diagram of a short CTI (SCCE) occupying resource in a short TTI according to an embodiment of the present invention.
  • the short TTI includes 4 OFDM symbols, and the SCCE occupies the entire sPRB in the XPRB.
  • the SCCE occupies multiple sPRBs, such as occupying 2 sPRBs.
  • the blind detection mode adopts a search space manner, and the total number of blind detections of a set of short TTIs in the short TTI granularity of X 1 ms subframes does not exceed the maximum number of blind detections in X 1 ms subframes of LTE. with. For example, the sum of the number of each short TTI candidate set in the 1 ms subframe does not exceed the number of candidate sets in the LTE 1 ms subframe.
  • the method for determining the number of candidate sets in each short TTI in the search space includes at least one of the following:
  • the number of candidate sets in each short TTI in a set of short TTIs is the same and is determined according to the total number of candidate sets of X 1ms subframes divided. For example, if the total number of candidate sets of X 1 ms subframes is S, the number of candidate sets in each short TTI is , where n represents the number of short TTIs divided.
  • the number of candidate sets is allocated according to the different durations of a set of short TTIs. For example, four short TTIs are allocated according to 4-3-4-3 OFDM symbols in a 1 ms subframe, and the number of candidate sets in each short TTI is proportionally allocated according to 4:3:4:3, and then the number of candidate sets is 1 ms.
  • the number of candidate sets in each short TTI is 4, 3, 4, and 3, respectively.
  • the number of candidate sets in one or more short TTIs in a set of short TTIs is greater than the number of candidate sets in the remaining short TTIs.
  • the number of the first short TTI candidate sets is greater than the number of subsequent short TTI candidate sets.
  • the number of candidate sets in the first short TTI in a set of short TTIs is greater than the number of candidate sets in the remaining short TTIs.
  • 4 short TTIs are allocated in a 1 ms subframe, and the number of candidate sets in the first short TTI is 7.
  • the number of candidate sets in the following three short TTIs is 3.
  • the search space of the first short TTI supports the detection of the first-level DCI of the two-level DCI, or both the detection of CSS and the USS, and the search space of the subsequent short TTI.
  • the detection of the second-level DCI of the two-level DCI is supported, or only the detection of the USS is supported.
  • the above two levels of DCI are mainly from DCI or fast and slow DCI. That is, the first level and the second level DCI together form the completed scheduling control information, and the first level DCI includes the common control information part or the infrequently changed part, and the second level DCI includes different scheduling information between the UEs or frequently changed. section.
  • the aggregation level corresponding to the candidate set may be fixed or configured by the base station.
  • the configuration uses SIB or RRC.
  • k no longer indicates the subframe number, but indicates the short TTI sequence number, for example, the short TTI sequence number in the 1ms subframe, or the short TTI sequence number in one radio frame, or
  • L represents the aggregation level
  • k represents the number of CCEs in the short TTI index k
  • i 0, ...
  • L-1 represents the CCE included in the aggregation level:
  • the unique SPDCCH detection position is determined according to the UE ID or the C-RNTI in the short TTI, and no blind detection is performed.
  • the method includes: (1) searching for the first candidate set in the space, and each TTI hash iterating the first position. (2) The first position of each TTI is the same, and it is suitable for the use of the entire OFDM symbol with a persistent blocking problem but for the CFI indicating the OFDM symbol partial frequency domain position. (3)
  • the SPDCCH occupies a fixed-size resource and is UE-specific uniquely determined.
  • the detected short TTI is configured by the base station or determined according to the UE ID or the C-RNTI.
  • the configuration signaling is RRC or SIB.
  • the detected short TTI is not every short TTI, but is configured by RRC signaling which short TTI is to be detected in a certain duration T ms, using (T/X) ⁇ (L/N Bits, where L is the number of OFDM symbols included in X 1ms subframes, and N is the number of OFDM symbols included in the short TTI.
  • the terminal implicitly determines the detected short TTI according to the UE ID or the C-RNTI value and the possible base station configuration related parameters.
  • the related parameters of the configuration are sometimes long T and the density factor m.
  • Duration T is preferably a set ⁇ 10, 20, 40, 80 ⁇ At least one of them.
  • the terminal performs SPDCCH detection on the determined candidate set. That is, the detection is performed at a determined candidate set position with a determined aggregation level and a determined candidate set.
  • the CCE starting position calculated when L is fixed is the unique position where the UE detects the SPDCCH, and no other candidate sets are blindly detected.
  • the detection locations of different UEs are distinguished by C-RNTI.
  • Method 2 Reduce processing complexity and reduce processing delay based on Method 1.
  • the calculated positions are the same in each TTI. If the SPDCCHs of the two UEs collide in a certain TTI, the CPDCCH always collides (RNTI is unchanged and L is unchanged), and the SPDCCH occupies 1 OFDM symbol part of the frequency domain. In the location mode, since the total number of CCEs of each TTI is different, two UE collisions in TTI i do not necessarily collide in TTI i+1.
  • the SPDCCH occupies a fixed size resource and is UE-specific uniquely determined.
  • the SPDCCH uses a fixed resource size in the first OFDM symbol, such as L CCEs, that is, 9L REGs, and considering the simple processing, the short TTI uses a total of N REGs in the bandwidth X MHz to Select 9 REGs at equal intervals to form 1CCE.
  • n RNTI mod N CCE,k , k n TTI .
  • a partial bandwidth is used, and the number of REGs and CCEs is determined according to the partial bandwidth.
  • FIG. 6 is another flowchart of a method for determining a downlink control channel according to an embodiment of the present invention, as shown in FIG. , including the following steps:
  • Step S602 The base station transmits downlink control information to the terminal by using a downlink control channel in a short transmission time interval TTI, where the downlink control channel is located in the first control area or the second control area, where the downlink control channel is located in the
  • TTI transmission time interval
  • the number of candidate sets of the downlink control channel in the short TTI is less than or equal to the number of candidate sets of subframes in the Long Term Evolution (LTE) system, or the short TTIs of the downlink control channel included in the X subframes.
  • LTE Long Term Evolution
  • the sum of the number of candidate sets is less than or equal to the number of candidate sets of X subframes in LTE, where X is a positive integer, and the number of candidate sets of the downlink control channel in the short TTI when the downlink control channel is located in the second control region Equal to 1.
  • the first control area or the second control area Determining, by the foregoing interaction process between the base station and the terminal, the first control area or the second control area as a downlink control channel for transmitting downlink control information, where the downlink control channel is located in the first control area, where the downlink control channel is located
  • the number of candidate sets of short TTIs is less than or equal to the number of candidate sets of subframes in LTE, or the number of downlink control channels is X.
  • the sum of the number of candidate sets of the short TTIs included in the frame is less than or equal to the number of candidate sets of X subframes in the LTE.
  • the number of candidate sets of the downlink control channel in the short TTI is equal to one.
  • the above technical solution solves the problem that the existing downlink control channel cannot support the low delay requirement in the related art, and provides a downlink control channel capable of supporting the new granularity TTI, and at the same time, can also Reduce the complexity of blind detection in TTI.
  • the base station side transmits the SPDCCH
  • multiple short PDCCHs in the short TTI are allowed to be multiplexed and scrambled, and multiplexed to be multiplexed in the short TTI.
  • the scrambling is in short TTI or subframe.
  • the initial value of the scrambling sequence can be considered at least one of the following ways:
  • the short TTI is 0-6 in the 1ms subframe, and the scrambling initial value determination method includes:
  • n TTI 0, 1, ..., 6.
  • the scrambling initial value determination manner includes:
  • n TTI 0, 1, ..., 69.
  • nTTI 0, 1, ..., 69.
  • the scrambling sequence of the intra-frame TTI is not divided, and the scrambling sequence is still divided in units of subframes.
  • the short TTI of only 2 OFDM symbols is taken as an example, and the method for using the short TTI of the remaining length of 1-7 symbols is similar.
  • two short TTIs are divided by seven OFDM symbols.
  • seven short TTIs are replaced by two short TTIs, and n TTI represents 0, 1 in a 1 ms subframe or 0, 1, ..., 19 in a radio frame.
  • 6 short TTIs are divided.
  • 7 short TTIs are replaced by 6 short TTIs, and n TTI is 0, 1, ..., 5 in a 1 ms subframe or 0, 1, ... in a radio frame. 59.
  • FIG. 7 is a structural block diagram of a determining apparatus of a downlink control channel according to an embodiment of the present invention. As shown in Figure 7, the device includes:
  • the receiving module 70 is configured to receive a downlink control channel that carries downlink control information in the TTI, where the downlink control channel is located in the first control region or the second control region, when the downlink control channel is located in the first control region
  • the number of candidate sets of the downlink control channel in the short TTI is less than or equal to the number of candidate sets of subframes in the Long Term Evolution (LTE) system, or the number of candidate sets of the short TTIs included in the X subframes of the downlink control channel.
  • LTE Long Term Evolution
  • the receiving module 70 Determining, by the receiving module 70, the first control area or the second control area as a downlink control channel for transmitting downlink control information, and when the downlink control channel is located in the first control region, the short TTI of the downlink control channel
  • the number of candidate sets is less than or equal to the number of candidate sets of subframes in LTE, or the sum of the number of candidate sets of each short TTI included in the X subframes of the downlink control channel is less than or equal to the number of candidate sets of X subframes in LTE.
  • the number of candidate sets of the downlink control channel in the short TTI is equal to 1. According to the foregoing technical solution, the existing downlink control channel cannot be supported by the related art.
  • the problem of extended demand provides a downlink control channel capable of supporting a new granularity of TTI, while at the same time reducing the complexity of blind detection in TTI.
  • FIG. 8 is a block diagram of another structure of a determining apparatus for a downlink control channel according to an embodiment of the present invention.
  • the apparatus further includes: a detecting module 72 configured to detect a downlink control channel carrying the downlink control information in a control region in a short TTI,
  • the control area includes: a first control area, a second control area, where the detecting module 72 includes: a first detecting unit 720 configured to blindly detect the downlink control channel in the first control area; or a second
  • the detecting unit 722 is configured to non-blindly detect the downlink control channel in the second control area
  • the angle detecting unit 72 includes: a third detecting unit 724 configured to detect in all control areas of the short TTI; or
  • the fourth detecting unit 726 is configured to detect in the control region of the partial short TTI, wherein the partial short TTI is determined by determining the partial short TTI by the configuration of the base station; and setting the partial short TTI in advance.
  • An embodiment of the present invention further provides a terminal, including the foregoing determining apparatus for a downlink control channel.
  • FIG. 9 is a block diagram showing still another structure of a determining apparatus for a downlink control channel according to an embodiment of the present invention. As shown in Figure 9, the device includes:
  • the transmission module 90 is configured to transmit downlink control information to the terminal by using a downlink control channel in a short transmission time interval TTI, where the downlink control channel is located in the first control region or the second control region, where the downlink control channel is located
  • TTI transmission time interval
  • the number of candidate sets of the downlink control channel in the short TTI is less than or equal to the number of candidate sets of subframes in the Long Term Evolution (LTE) system, or the short intervals included in the X subframes of the downlink control channel.
  • LTE Long Term Evolution
  • the sum of the number of candidate sets of the TTI is less than or equal to the number of candidate sets of X subframes in the LTE, where X is a positive integer, and the downlink control channel is a candidate in the short TTI when the downlink control channel is located in the second control region.
  • the number of sets is equal to 1.
  • the short TTI of the downlink control channel The number of candidate sets is less than or equal to the number of candidate sets of subframes in LTE, or the sum of the number of candidate sets of each short TTI included in the X subframes of the downlink control channel is less than or equal to the number of candidate sets of X subframes in LTE.
  • the number of candidate sets of the downlink control channel in the short TTI is equal to 1.
  • the embodiment of the invention further provides a base station, which comprises the determining device of the downlink control channel described above.
  • the base station sends the downlink control information to the UE by using the SPDCCH, and the SPDCCH occupies the resource in the TDM manner in the short TTI.
  • the NCP network control protocol is taken as an example.
  • the short TTI includes two OFDM symbols, and seven short TTIs are divided into two OFDM symbols in a 1 ms subframe. Or, four short TTIs are divided according to a 4-3-4-3 OFDM symbol structure in a 1 ms subframe. Or, 7 short TTIs are divided according to 4 OFDM symbols in a 2 ms subframe.
  • the SPDCCH region occupies the first X OFDM symbols in the system bandwidth or the first X OFDM symbols in the short TTI bandwidth (less than the system bandwidth). Wherein, if the short TTI includes N OFDM symbols, X ⁇ N, X preferably takes a value of 1. The value of X can be fixed or configured by the base station.
  • the SPDCCH occupies the first OFDM symbol in a short TTI. For example, the short TTI includes 2 OFDM symbols.
  • the bandwidth used by the short TTI is the system bandwidth (all resources are used by the short TTI user) or part of the system bandwidth (legacy UE and short TTI users occupy part of the system bandwidth respectively). Domain resource).
  • the resource overlapping with the Legacy PDCCH is used by the priority legacy PDCCH.
  • the base station side transmits the SPDCCH
  • multiple SPDCCHs in the short TTI are allowed to be multiplexed and scrambled, and multiplexed to be multiplexed in the short TTI.
  • mapping to a resource unit it is only mapped to the first OFDM symbol used by the SPDCCH in the short TTI.
  • the candidate set in the USS is blindly detected in each short TTI, or the SPDCCH is directly detected in the determined resource location by using the non-blind mode.
  • the UE determines the detection start position in each short TTI according to the value of its own C-RNTI. If the first location is not its own SPDCCH, the detection continues at the next candidate set location.
  • the terminal detects the SPDCCH in the short TTI configured by the base station, for example, 10 short TTIs detected by the total of 70 short TTIs in the base station configuration 10 ms. And determining the determined location in a short TTI, for example, detecting only the first candidate set location of the search space, where L is fixed to 1, and determining the SPDCCH of the terminal according to the UE ID or the C-RNTI.
  • the SPDCCH is used in the TDM manner in the short TTI, so that each short TTI can use the downlink control channel and is simple to implement, at the cost of a large overhead. And reduce the delay while reducing the maximum number of blind detection or non-blind detection to reduce terminal complexity.
  • the base station sends the downlink control information to the UE by using the SPDCCH, and the SPDCCH is part of the frequency domain resources of the first X OFDM symbols in the short TTI.
  • the NCP is taken as an example.
  • the short TTI includes 2 OFDM symbols, and 7 short TTIs are divided into 2 OFDM symbols in a 1 ms subframe. Or, four short TTIs are divided according to a 4-3-4-3 OFDM symbol structure in a 1 ms subframe. Or, 7 short TTIs are divided according to 4 OFDM symbols in a 2 ms subframe.
  • the SPDCCH region occupies the first X OFDM symbols in the system bandwidth or the first X OFDM symbols in the short TTI bandwidth (less than the system bandwidth). Wherein, if the short TTI includes N OFDM symbols, X ⁇ N, X preferably takes a value of 1. The value of X can be fixed or configured by the base station.
  • the SPDCCH occupies the first OFDM symbol in a short TTI. For example, the short TTI includes 2 OFDM symbols.
  • FIG. 10 is a schematic diagram of a portion of resources of an SPDCCH occupying OFDM symbols in a short TTI according to a preferred embodiment of the present invention. As shown in FIG. 10, the bandwidth used by the short TTI is Bandwidth.
  • the system bandwidth (all resources are used by short TTI users) or part of the system bandwidth (legacy UE and short TTI users occupy part of the frequency domain resources in the system bandwidth).
  • the base station configures part of the frequency domain resources of the first X OFDM symbols in the system bandwidth, or Partial frequency domain resources for the first X OFDM symbols in the short TTI bandwidth (less than the system bandwidth).
  • the configuration signaling used by the base station is carried by the SPCFICH.
  • the SPCFICH channel carries sCFI information to inform part of the frequency domain resources of the first X OFDM symbols.
  • the channel occupies the resource location in a manner of puncturing transmission in the first OFDM symbol in the short TTI, using a fixed location CCE or REG or RE resource.
  • the fixed location is a CCE or REG or RE resource that is continuously or discretely selected in the frequency domain. For example, occupy 3 REGs with the lowest frequency domain location number.
  • the SPDCCH area occupies the first OFDM symbol part of the frequency domain resource, and the sPRB range is used by the sCFI to indicate the specific sPRB range, starting from the sPRB sequence number sPRB 0, occupying the sPRB sequence number configured by the base station, and configuring the sPRB sequence number from the set ⁇
  • the sPRB 19, sPRB 39, sPRB 79, sPRB 99 ⁇ selects a frequency domain range in the first OFDM symbol occupied by the SPDCCH in the configuration of different short TTIs.
  • the resource overlapping with the Legacy PDCCH is used by the priority legacy PDCCH.
  • the base station side transmits the SPDCCH
  • multiple SPDCCHs in the short TTI are allowed to be multiplexed and scrambled, and multiplexed to be multiplexed in the short TTI.
  • mapping to a resource unit it is only mapped to the first OFDM symbol used by the SPDCCH in the short TTI.
  • the candidate set in the USS is blindly detected in each short TTI, or the SPDCCH is directly detected in the determined resource location by using the non-blind mode.
  • the UE determines the detection start position in each short TTI according to the value of its own C-RNTI. If the first location is not its own SPDCCH, the detection continues at the next candidate set location. At this time, the number of CCEs in the short TTI varies according to different sCFI configurations.
  • the SPDCCH is used in the TDM optimization manner in the short TTI, so that each short TTI can use the downlink control channel and the control overhead is controllable, and the size of the SPDCCH region is configured by the eNB. And reduce the delay while reducing the maximum number of blind detection or non-blind detection to reduce terminal complexity.
  • the base station sends the downlink control information to the UE through the SPDCCH, and the SPDCCH occupies part of the sPRB in the short TTI.
  • the NCP is taken as an example.
  • the short TTI includes 2 OFDM symbols, and 7 short TTIs are divided into 2 OFDM symbols in a 1 ms subframe. Or, four short TTIs are divided according to a 4-3-4-3 OFDM symbol structure in a 1 ms subframe. Or, 7 short TTIs are divided according to 4 OFDM symbols in a 2 ms subframe.
  • the SPDCCH region occupies part of the sPRB.
  • the short TTI includes 2 OFDM symbols.
  • the minimum occupied unit of the SPDCCH is 1 XPRB
  • the search space is configured by the base station.
  • the meaning of XPRB is as follows:
  • the short TTI is composed of a number of sPRBs.
  • the terminal detects the SPDCCH at each short TTI.
  • the detected frequency domain location is the frequency domain location configured by the base station.
  • the configuration XPRB set contains 2 XPRBs and is located in XPRB indexes 0 and 1. And the same XPRB set frequency domain location is used within a certain timing length (for example, 40 ms).
  • FIG. 11 is a schematic diagram of the SPDCCH occupying part of the sPRB resource in the short TTI and the SPDSCH frequency division multiplexing.
  • the base station side transmits the SPDCCH
  • multiple SPDCCHs in the short TTI are allowed to be multiplexed and scrambled, and multiplexed to be multiplexed in the short TTI.
  • QPSK modulation is used, and layer mapping and precoding are performed using open loop/closed loop precoding or spatial diversity transmission. Finally, only when mapped to a resource unit, it is mapped to the SCCE(s) used by the SPDCCH in the XPRB set.
  • the candidate set in the USS is blindly detected in each short TTI, or the SPDCCH is directly detected in the determined resource location by using the non-blind mode.
  • the UE determines the detection start position in each short TTI according to the value of its own C-RNTI. If the first location is not its own SPDCCH, the detection continues at the next candidate set location. At this time, the number of CCEs in the short TTI varies according to different sCFI configurations.
  • the SPDCCH is used in the FDM mode in the short TTI, so that each short TTI can flexibly use the downlink control channel and the control overhead is controllable, and the eNB configures the size of the SPDCCH region. And reduce the delay while reducing the maximum number of blind detection or non-blind detection to reduce terminal complexity.
  • the technical solution of the embodiment of the present invention can achieve the following technical effects: the downlink control channel usage problem in the new granular short TTI including fewer OFDM symbols is solved, and the detection complexity can be reduced, and the new granularity is short TTI. In the case of a correspondingly obtained short RTT delay, low-latency communication requirements are guaranteed.
  • a storage medium is further provided, wherein the software includes the above-mentioned software, including but not limited to: an optical disk, a floppy disk, a hard disk, an erasable memory, and the like.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the foregoing technical solution provided by the embodiment of the present invention may be applied to determining a downlink control channel, by determining a first control region or a second control region as a downlink control channel for transmitting downlink control information, where the downlink control channel is located
  • the number of candidate sets of short TTIs of the downlink control channel is less than or equal to the number of candidate sets of subframes in LTE, or candidate sets of short TTIs included in the X subframes of the downlink control channel.
  • the sum of the numbers is less than or equal to the number of candidate sets of X subframes in LTE.
  • the number of candidate sets of the downlink control channel in the short TTI is equal to 1, and the related technical solution is used to solve the related technology.
  • the existing downlink control channel does not well support the problem of low latency requirements, and provides a downlink control channel capable of supporting a new granularity TTI. At the same time, it is also possible to reduce the complexity of blind detection in TTI.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种下行控制信道的确定方法及装置、终端、基站,其中,所述下行控制信道的确定方法包括:终端接收短TTI中承载下行控制信息的下行控制信道,其中,下行控制信道位于第一控制区域或第二控制区域,在下行控制信道位于第一控制区域时,下行控制信道在短TTI中的候选集数量小于或者等于LTE中子帧的候选集数量,或下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,其中X为正整数,在下行控制信道位于第二控制区域时,下行控制信道在短TTI中的候选集数量等于1。采用本发明提供的技术方案,解决了现有下行控制信道不能很好的支持低时延需求。

Description

下行控制信道的确定方法及装置、终端、基站 技术领域
本发明涉及通信领域,具体而言,涉及一种下行控制信道的确定方法及装置、终端、基站。
背景技术
随着***移动通信技术(4G,the 4th Generation mobile communication technology)长期演进(LTE,Long-Term Evolution)/高级长期演进(LTE-Advance/LTE-A,Long-Term Evolution Advance)***商用的日益完善,对下一代移动通信技术即第五代移动通信技术(5G,the 5th Generation mobile communication technology)的技术指标要求也越来越高。业内普遍认为,下一代移动通信***应具有超高速率、超高容量、超高可靠性、以及超低延时传输特性等特征。对于5G***中超低时延的指标目前公认的为空口时延约1ms的数量级。
相关技术中,存在一种实现超低时延的方法是通过减少LTE***的发送时间间隔(TTI,Transmission Time Interval),充分缩短处理时延单元,以支持上述1ms空口时延的特性需求。目前存在两种缩小TTI的方法,一种是通过扩大正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)***的子载波间隔来缩小单个OFDM符号的时长,该方法在5G的高频通信***和超密集网络中均有涉及;另一种方法是目前第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)所讨论的通过减少单个TTI中OFDM符号的数量来减小TTI长度,该方法的好处是可以和现有的LTE***完全兼容。
现有LTE***中下行控制信道(PDCCH,Physical Downlink Control Channel)占用***带宽中前0-4个OFDM符号的资源区域,增强下行控制信道(EPDCCH,Enhanced Physical Downlink Control Channel)使用下行数据业务信道(PDSCH,Physical Downlink Shared Channel)中部分PRB资源区域。相对于现有1ms TTI长度的子帧,含有较少OFDM符号的缩短TTI作为一种新粒度的TTI,现有下行控制信道不能很好的支持新粒度TTI。
针对相关技术中,现有的下行控制信道不能很好的支持低时延需求的问题,尚未提出有效的解决方案。
发明内容
为了解决上述技术问题,本发明实施例提供了一种下行控制信道的确定方法及装置、终端、基站。
根据本发明的一个实施例,提供了一种下行控制信道的确定方法,包括:
终端接收短发送时间间隔TTI中承载下行控制信息的下行控制信道,其中,所述下行控 制信道位于第一控制区域或第二控制区域,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道在短TTI中的候选集数量小于或者等于长期演进***LTE中子帧的候选集数量,或所述下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,其中X为正整数,在所述下行控制信道位于第二控制区域时,所述下行控制信道在短TTI中的候选集数量等于1。
进一步地,所述终端接收短发送时间间隔TTI中承载下行控制信息的下行控制信道之前,所述方法还包括:
在短TTI中的控制区域检测承载所述下行控制信息的下行控制信道,其中,所述控制区域包括以下至少之一:第一控制区域、第二控制区域,所述第一控制区域中含有多个候选位置,所述第二控制区域中仅含有一个候选位置。
进一步地,在短TTI中的控制区域检测承载下行控制信息的下行控制信道,包括:
在所述第一控制区域中通过检测多个候选位置接收所述下行控制信道;或
在所述第二控制区域中通过检测确定的一个候选位置接收所述下行控制信道。
进一步地,在短TTI中的控制区域检测承载所述下行控制信息的下行控制信道,包括:
在所有短TTI的控制区域中检测;或
在部分短TTI的控制区域中检测,其中,通过以下方式确定所述部分短TTI:通过基站的配置确定所述部分短TTI,其中,通过基站进行配置的配置信令包括以下至少之一:***消息块SIB、无线资源控制RRC、下行控制信息DCI;预先设定所述部分短TTI;根据小区标识ID或终端标识UE ID或小区无线网络临时标识C-RNTI隐含确定检测的短TTI。
进一步地,所述方法还包括:
在第二控制区域检测时,短TTI的检测位置以及短TTI内的短PDCCH位置由至少通过以下方式之一确定:通过UE ID或C-RNTI确定;由下行控制指示DCI或RRC指示。
进一步地,在使用DCI进行指示时,通过所述DCI两级中的第一级进行指示,其中,所述第一级包括:公有的或未改变的信令比特域,以及第二级DCI的检测位置,所述第一级DCI位于第一控制区域,所述第二级DCI位于第二控制区域。
进一步地,所述第一级DCI位于一组短TTI中的首个短TTI中,所述第二级DCI根据第一级DCI确定该第二级DCI位于一组短TTI中其中一个或多个短TTI。
进一步地,所述控制区域至少通过以下方式之一占用短TTI资源:
所述控制区域与短物理下行共享信道PDSCH时分复用,且占用独立的X个正交频分复用OFDM符号,其中,短TTI包括N个OFDM符号,X和N均为正整数,且X小于或等于N;
所述控制区域占用X个OFDM符号的部分资源,其中,占用OFDM符号部分资源位置 通过预先配置或基站下发的配置信令进行确定。所述配置信令包括:高层信令,如***消息块SIB或无线资源控制RRC,或物理层信令,如DCI或短控制格式指示sCFI信息;
所述控制区域与短物理下行共享信道PDSCH频分复用,且占用部分短物理资源块PRB资源;其中,占用部分短PRB资源位置通过预先配置或基站下发的配置信令的方式确定,配置信令包括以下至少之一:小区公有信令SIB、UE专有信令无线资源控制RRC。
进一步地,所述控制区域占用X个OFDM符号的部分资源,包括:
对至少以下频域资源之一按照指定顺序占用部分频域资源:短PRB、XPRB、资源块组RBG,其中,所述指定顺序包括:从所述频域资源的指定序号开始占用至配置的频域资源序号,所述XPRB为短TTI中以M个短PRB组成XPRB,M为正整数;
通过基站在预定义的S个资源区域中选择一个,并将选择出的资源区域配置为所述控制区域,其中,所述S个资源区域中每个资源区域包含连续或非连续的多个短PRB,资源区域个数S包括:2的E次方,其中,E为正整数。
进一步地,所述短CFI信息由短物理控制格式指示信道PCFICH信道承载,短PCFICH信道占用资源位置的方式包括:在一组短TTI中的全部或首个短TTI中的首个OFDM符号中,打孔传输且使用固定位置的控制信道单元CCE或资源元素集合REG或资源块RE。
进一步地,所述控制区域占用以下资源的数量为固定值或由基站通过信令进行配置:XPRB、短PRB、RBG。其中,所述信令为高层信令或物理层信令,如SIB或RRC或DCI或短CFI。
进一步地,所述短PDCCH使用的短CCE包含:2个短REG,或4个短REG,或8个短REG,或16个短REG,当短CCE由短REG组成时,选取相同间隔的短REG组成短CCE,或,所述短CCE占用一个或多个短PRB。
进一步地,所述短REG对占用的RE以先频域后时域或者先时域后频域的顺序编号为0至i,对编号相同的资源块选取作为一个短REG,其中,所述短REG对占用的RE为在所述短PRB或所述XPRB中,除导频占用的RE外的其余RE。
进一步地,所述下行控制信道位于所述第一控制区域时,各个短TTI的候选集数量确定方式至少包括以下之一:
一组短TTI中,各个短TTI内候选集数量相同,且根据划分的X个子帧的总候选集数量确定;
按照一组短TTI的时长比例或一组短TTI所包含的OFDM数目比例分配所述候选集数量;
一组短TTI中,一个或多个短TTI中的候选集数量多于其余短TTI中的候选集数量。
进一步地,所述下行控制信道位于所述第二控制区域时,在短TTI中根据UE ID或C-RNTI确定短PDCCH的检测位置,其中,至少通过以下方式之一确定所述检测位置:
在短TTI中的搜索空间中确定首个候选集作为唯一的所述检测位置;
在短TTI中的搜索空间中确定首个候选集作为唯一的所述检测位置,并且一组短TTI中确定的所述首个候选集位置相同;
所述短PDCCH占用固定大小的资源作为所述检测位置,其中,所述检测位置预定义或通过RRC信令确定。
进一步地,不同终端的短TTI占用不同短PRB或不同的OFDM符号。
进一步地,所述下行控制信道对应的聚合等级包括:固定的一种或多种聚合等级、由基站配置的一种或多种聚合等级,其中,所述聚合等级选自集合L={1、2、4、8、16、24、32}。
进一步地,所述下行控制信道在短TTI内复用和加扰时,加扰序列初始值至少通过短TTI序号进行确定,其中,短TTI序号至少包括以下之一:1ms子帧内序号,无线帧内序号。
根据本发明的另一个实施例,还提供了一种下行控制信道的确定方法,包括:
基站通过短发送时间间隔TTI中的下行控制信道向终端传输下行控制信息,其中,所述下行控制信道位于第一控制区域或第二控制区域,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道在短TTI中的候选集数量小于或者等于长期演进***LTE中子帧的候选集数量,或所述下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,其中X为正整数,在所述下行控制信道位于第二控制区域时,所述下行控制信道在短TTI中的候选集数量等于1。
根据本发明的另一个实施例,还提供了一种下行控制信道的确定装置,应用于终端,包括:
接收模块,设置为接收短发送时间间隔TTI中承载下行控制信息的下行控制信道,其中,所述下行控制信道位于第一控制区域或第二控制区域,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道在短TTI中的候选集数量小于或者等于长期演进***LTE中子帧的候选集数量,或所述下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,其中X为正整数,在所述下行控制信道位于第二控制区域时,所述下行控制信道在短TTI中的候选集数量等于1。
根据本发明的另一个实施例,还提供了一种下行控制信道的确定装置,应用于基站,包括:
传输模块,设置为通过短发送时间间隔TTI中的下行控制信道向终端传输下行控制信息,其中,所述下行控制信道位于第一控制区域或第二控制区域,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道在短TTI中的候选集数量小于或者等于长期演进***LTE中子帧的候选集数量,或所述下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,其中X为正整数,在所述下行控制信道位于第二控制区域时,所述下行控制信道在短TTI中的候选集数量等于1。
根据本发明的另一个实施例,还提供了一种终端,包括以上所述的下行控制信道的确定装置。
根据本发明的另一个实施例,还提供了一种基站,包括以上所述的下行控制信道的确定装置。
在本发明实施例中,还提供了一种计算机存储介质,该计算机存储介质可以存储有执行指令,该执行指令用于执行上述实施例中的下行控制信道的确定方法的实现。
通过本发明实施例,确定第一控制区域或第二控制区域作为发送下行控制信息的下行控制信道,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道的短TTI的候选集数量小于或者等于LTE中子帧的候选集数量,或所述下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,在下行控制信道位于第二控制区域时,下行控制信道在短TTI中的候选集数量等于1,采用上述技术方案,解决了相关技术中,现有的下行控制信道不能很好的支持低时延需求的问题,提供了一种能够支持新粒度TTI的下行控制信道,与此同时,还能够降低TTI中的盲检复杂度。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为根据本发明实施例的下行控制信道的确定方法的流程图;
图2为根据本发明实施例的短PDCCH在短TTI中与短PDSCH时分复用独立占用OFDM符号的示意图;
图3为根据本发明实施例的短PDCCH在短TTI中占用OFDM符号部分资源的示意图;
图4为根据本发明实施例的短TTI中短REG占用资源的方式示意图;
图5为根据本发明实施例的短TTI中短CCE占用资源的方式示意图;
图6为根本发明实施例的下行控制信道的确定方法的另一流程图;
图7为根据本发明实施例的下行控制信道的确定装置的结构框图;
图8为根据本发明实施例的下行控制信道的确定装置的另一结构框图;
图9为根据本发明实施例的下行控制信道的确定装置的又一结构框图;
图10为根据本发明优选实施例的短PDCCH在短TTI中占用OFDM符号的部分资源的示意图;
图11为根据本发明优选实施例的短PDCCH在短TTI中与短PDSCH频分复用占用部分短PRB资源的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
在本发明实施例中,还提供了一种下行控制信道的确定方法,图1为根据本发明实施例的下行控制信道的确定方法的流程图,如图1所示,包括以下步骤:
步骤S102,终端接收短TTI中承载下行控制信息的下行控制信道传输,其中,所述下行控制信道位于第一控制区域或第二控制区域,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道在短TTI中的候选集数量小于或者等于长期演进***LTE中子帧的候选集数量,或所述下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,其中X为正整数,在所述下行控制信道位于第二控制区域时,所述下行控制信道在短TTI中的候选集数量等于1。
通过终端和基站之间的交互过程,确定第一控制区域或第二控制区域作为发送下行控制信息的下行控制信道,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道的短TTI的候选集数量小于或者等于LTE中子帧的候选集数量,或所述下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,在下行控制信道位于第二控制区域时,下行控制信道在短TTI中的候选集数量等于1,采用上述技术方案,解决了相关技术中,现有的下行控制信道不能很好的支持低时延需求的问题,提供了一种能够支持新粒度TTI的下行控制信道,与此同时,还能够降低TTI中的盲检复杂度。
可选地,接收基站根据短发送时间间隔TTI中的下行控制信道传输的下行控制信息之前,还可以执行以下技术方案:在短TTI中的控制区域检测承载下行控制信息的下行控制信道,其中,上述控制区域包括以下至少之一:第一控制区域、第二控制区域,其中,第一控制区域中含有多个候选位置,第二区域中仅含有一个候选位置,在短TTI中的控制区域检测承载下行控制信息的下行控制信道,主要存在以下两种情况:在第一控制区域中通过检测多个候选位置接收上述下行控制信道;或在第二控制区域中通过确定的一个候选位置接收下行控制信道;或在短TTI中的控制区域检测承载下行控制信息的下行控制信道,还可以包括以下两种情况:在所有短TTI的控制区域中检测;或在部分短TTI的控制区域中检测,其中,通过以下方式确定部分短TTI:通过基站的配置确定上述部分短TTI,其中,通过基站进行配置的配置信令包括以下至少之一:***消息块SIB、无线资源控制RRC、下行控制信息DCI;预 先设定所述部分短TTI;根据小区标识ID或终端标识UE ID或小区无线网络临时标识C-RNTI隐含确定检测的短TTI,具体的,可通过SIB或RRC或DCI配置,在使用DCI配置时,DCI在特定的TTI传输,如在一组短TTI中的首个短TTI中传输,在第二控制区域检测时,短TTI的检测位置以及短TTI内的短PDCCH位置由至少通过以下方式之一确定:通过UE ID或C-RNTI确定;由下行控制指示DCI或RRC指示。
在本发明实施例的可选示例中,控制区域至少通过以下方式之一占用短TTI资源:控制区域与短PDSCH时分复用,且占用独立的X个正交频分复用OFDM符号,其中,短TTI包括N个OFDM符号,X和N均为正整数,且X小于或等于N;控制区域占用X个OFDM符号的部分资源,其中,占用OFDM符号部分资源位置通过预先配置或基站下发的配置信令进行确定,配置信令为:高层信令,如***消息块SIB或无线资源控制RRC,或物理层信令,如DCI或短控制格式指示sCFI信息;控制区域与短PDSCH频分复用,且占用部分短物理资源块PRB资源;其中,占用部分短PRB资源位置通过预先配置或基站下发的配置信令的方式确定,配置信令包括以下至少之一:小区公有信令SIB、UE专有信令RRC。
进一步地,控制区域占用X个OFDM符号的部分频域资源,可以通过以下技术方案实现:对至少以下频域资源之一按照指定顺序占用部分频域资源:短PRB、XPRB、资源块组RBG,其中,上述指定顺序包括:从上述频域资源的指定序号开始占用至配置的频域资源序号,上述XPRB为短TTI中以M个短PRB组成XPRB,M为正整数;通过基站在预定义的S个资源区域中选择一个,并将选择出的资源区域配置为上述控制区域,其中,上述S个资源区域中每个资源区域包含连续或非连续的多个短PRB,资源区域个数S包括:2的E次方,E为正整数,即S包括2、4、8、16、……128。
以下结合一示例对上述技术方案进行说明,终端在短TTI中控制区域检测承载下行控制信息下行控制信道,检测包括以下至少之一:在多终端共享的控制区域中盲检测下行控制信道;在终端独自使用的控制区域中接收检测下行控制信道。
需要说明的是,本发明实施例中的英文简称的首个字母S又可以理解为short的简称,但不限定所有英文简称的理解情况。
其中,下行控制信道又可称为SPDCCH(Short PDCCH),上述短TTI为时间上小于1ms的TTI,对于应用于LTE***而言,短TTI由N个OFDM符号组成,包含的OFDM符号数目N为{1、2、3、4、5、6、7}中的至少一种。
进一步,终端在短TTI中控制区域检测承载下行控制信息下行控制信道,可以通过以下方案实现:在所有短TTI中检测;在部分短TTI中检测,具体包括:(1)在基站配置的短TTI中检测;上述基站配置包括使用SIB或RRC信令进行配置,以一定周期配置终端在周期中任意数量或有限集合数量的短TTI中执行检测。(2)在预定义或固定的短TTI中检测。例如,以2个OFDM符号划分短TTI,基站通过RRC信令使用70bit配置10ms周期中70个短TTI中哪些TTI需要某个终端检测。
上述SPDCCH在short TTI中资源使用方式包括时分复用模式(Time Division Multiplexing, TDM)时分复用、频分复用模式(Frequency Division Multiplexing,FDM)频分复用方式,其中FDM方式由eNB配置占用的部分短PRB,TDM方式占用独立的OFDM符号或者占用OFDM符号的部分资源,占用OFDM符号部分资源由CFI通知SPDCCH占用的频带位置。
当占用TDM时:上述SPDCCH在short TTI中以TDM方式使用资源时,SPDCCH区域占用***带宽中前X个OFDM符号,或用于short TTI带宽(小于***带宽)中的前X个OFDM符号。其中,若short TTI包含N个OFDM符号,X≤N,X优选取值为1。X取值可以固定或由基站配置,图2为根据本发明实施例的短PDCCH在短TTI中与短PDSCH时分复用独立占用OFDM符号的示意图;如图2所示,在short TTI占用的带宽中,SPDCCH区域占用short TTI中的第一个OFDM符号。同时short TTI中资源与Legacy PDCCH区域重叠时,优先Legacy PDCCH传输(次优选打掉部分Legacy PDCCH中资源传输short TTI中控制信道或业务信道)。
在本发明实施例中,上述物理层信令为短CFI信息由短物理控制格式指示信道PCFICH信道承载,短PCFICH信道占用资源位置的方式包括:在一组短TTI中的全部或首个短TTI中的首个OFDM符号中,打孔传输且使用固定位置的控制信道单元CCE或资源元素集合REG或资源块RE,上述控制区域占用以下资源的数量为固定值或由基站通过指定信令进行配置:X PRB、短PRB、RBG,其中,所述信令为高层信令或物理层信令,如SIB或RRC或DCI或短CFI;上述短PDCCH使用的短CCE包含:2个短REG、4个短REG、8个短REG、16个短REG,或,上述短CCE占用指定数量的RE资源,当短CCE由短REG组成时,选取相同间隔的短REG组成短CCE,或,上述短CCE占用一个或多个短PRB。
进一步地,上述短REG对占用的RE先频域后时域或者先频域后时域的编号为0至i,对编号相同的资源块选取作为一个短REG,其中,上述短REG对占用的RE为在上述短PRB或上述XPRB中,除导频占用的RE外的其余RE。
本发明实施例对上述技术方案的进一步改进在于,上述下行控制信道位于上述第一控制区域时,各个短TTI的候选集数量确定方式至少包括以下之一:一组短TTI中,各个短TTI内候选集数量相同,且根据划分的X个子帧的总候选集数量确定;按照一组短TTI的不同时长比例分配上述候选集数量;一组短TTI中,一个或多个短TTI中的候选集数量多于其余短TTI中的候选集数量。
其中,上述下行控制信道位于上述第二控制区域时,在短TTI中根据用户设备标识UE ID或小区无线网络临时标识C-RNTI确定短PDCCH的检测位置,其中,至少通过以下方式之一确定上述检测位置:在短TTI中的搜索空间中确定首个候选集作为唯一的上述检测位置;在短TTI中的搜索空间中确定首个候选集作为唯一的上述检测位置,并且一组短TTI中确定的首个候选集位置相同;短PDCCH占用固定大小的资源作为上述检测位置,其中,检测位置预定义或通过RRC信令确定。
短TTI的时域检测位置可以通过以下技术方案确定:所有短TTI,由基站配置确定的监测位置,根据UE ID或C-RNTI进行确定的检测位置,其中,上述基站配置的配置信令至少包括以下之一:RRC或SIB,在使用DCI配置时,DCI在特定的TTI传输,如在一组短TTI中 的首个短TTI中传输。其中,在采用非盲检方式时,短TTI的检测位置以及短TTI内的短PDCCH位置由至少通过以下方式之一确定:通过UE ID或C-RNTI确定;由下行控制指示DCI或RRC指示。
在本发明实施例中,在使用DCI进行指示时,通过上述DCI两级中的第一级进行指示,其中,上述第一级包括:公有的或未改变的信令比特域,以及第二级DCI的检测位置,上述第一级进行盲检,上述第二级不进行盲检,为了适应不同优先级的时延需求,不同终端的短TTI占用不同短PRB,或占用不同的OFDM符号,具体地,在使用DCI时,可以是两级DCI中的第一级,第一级包括公有的/未改变的信令比特域以及第二级DCI的具体检测位置,第二级DCI包含UE-specific的PDSCH调度参数。
其中第一级DCI仍需要盲检,第二级DCI无需盲检,因此可以将可能的盲检测次数/候选集全部分配给第一级DCI的检测。第二级DCI的位置位于调度的PDSCH位置之中。即不超过PDSCH占用的位置,第一级DCI位于一组短TTI中的第一个TTI,或者位于Legacy PDCCH区域。第二级DCI位于一组短TTI中的部分短TTI中。
进一步,短PDCCH区域占用前X个OFDM符号部分频域资源,具体占用的频域资源位置由基站配置,可以理解为独立占用X个OFDM符号,优选在短TTI中占用连续的前X个OFDM符号,但也不排除占用连续的后X个OFDM符号,本发明实施对此不作限定。
具体的,基站配置***带宽中前X个OFDM符号的部分频域资源,或配置用于short TTI带宽(小于***带宽)中的前X个OFDM符号的部分频域资源,图3为根据本发明实施例的SPDCCH在短TTI中占用OFDM符号的部分资源的示意图,如图3所示,基站使用的配置信令通过SPCFICH承载,或由MIB或SIB或RRC或DCI信令承载。
其中,短PDCCH区域占用前X个OFDM符号部分频域资源,包括至少以下方式之一:
(1)从sPRB/XPRB/RBG(后续描述以sPRB为例)序号最低或最高开始,占用至基站配置的sPRB序号,配置的sPRB序号优选从集合{sPRB i1,sPRB i2,…,sPRB ix}中选择其一,集合中元素个数优选2或4或8或16个。
(2)基站在预定义的x个资源区域中选择其一配置为SPDCCH区域,x个资源区域中每个资源区域包含连续(或非连续——次优选)的sPRB,资源区域个数x优选2或4或8或16个。每个资源区域所包含的sPRB数量相同(或不同——次优选)。每个资源区域所包含的sPRB不重叠(或重叠——次优选)。
其中,短PCFICH信道承载sCFI信息通知前X个OFDM符号的部分频域资源,该信道占用资源位置的方式包括:在一组short TTI中的全部或首个short TTI中的首个OFDM符号中打孔传输,使用固定位置的CCE或REG或RE资源。其中首个OFDM符号中指***带宽中的整个OFDM符号,或配置用于short TTI带宽(小于***带宽)中的OFDM符号(即截短的OFDM符号)。其中固定位置为频域上连续或离散选取的CCE或REG或RE资源。其中,上述一组short TTI指以X个1ms子帧按照short TTI的粒度划分出的一组短TTI。这里,上述 一组短TTI的具体数量与短TTI具体划分有关,在X个1ms子帧中以相同的N个或不同的{N1、N2、…}个OFDM符号数目划分若干个短TTI,其中X为正整数,N和{N1、N2、…}为1至7的整数;例如在1ms子帧中划分一组短TTI,如在常规循环前缀(Normal Cyclic Prefix,NCP)时对14个OFDM符号以4、3、4、3个OFDM符号划分为共计4个短TTI,或以2个OFDM符号划分为共计7个短TTI;或者在2ms子帧中划分一组短TTI,如在NCP时对28个OFDM符号以4个OFDM符号为粒度顺序划分为7个短TTI。
连续选取优选从***带宽或用于short TTI带宽中频域位置CCE或REG或RE编号最低或最高开始连续选取。离散选取优选从***带宽或用于short TTI带宽中频域位置中等间隔的选取固定数量的CCE或REG或RE资源。
上述短PDCCH使用CCE作为控制信道单元,使用的聚合等级包括AL=1、2、4、8CCE至少之一,FDM时:上述SPDCCH在short TTI中以FDM方式使用资源时,使用short TTI中部分sPRB资源。所使用的sPRB资源位置确定方式包括:(1)由eNB配置占用的部分sPRB;(2)固定或预定义的sPRB位置。其中,sPRB含义可以解释为:以short TTI为单位截短LTE***中PRB pair后得到的基本单位。例如在N=2时,sPRB在频域上包含12个子载波,时域上包含2个OFDM符号。
需要说明的是,上述下行控制信道对应的聚合等级包括:固定的一种或多种聚合等级、由基站配置的一种或多种聚合等级,其中,上述聚合等级选自集合L={1、2、4、8、16、24、32}。
上述短PDCCH区域使用short TTI中部分sPRB资源,最小占用单位为1个XPRB或sPRB或RBG,实际占用Y个XPRB或sPRB或RBG。其中,XPRB含义解释:short TTI中以M个sPRB组成XPRB,XPRB占用资源大小与LTE PRB pair资源大小相同,如含有168RE(normal CP时),即M的取值与short TTI长度成反比。例如:N=2时,此时M=7个sPRB构成1个XPRB。RBG为资源块组,不同***带宽取值不同。
上述SPDCCH所在short TTI位置为所有short TTI或者部分short TTI,其中部分short TTI位置通过基站配置确定,即配置部分short TTI才有SPDCCH。配置信令包括SIB或RRC。
上述SPDCCH所在频域位置使用XPRB或sPRB或RBG set为固定位置或基站配置,具体数量固定或基站配置。其中固定方式包括所有TTI使用相同的频域位置或根据short TTI index隐含确定short TTI内的SPDCCH所在频域位置。基站配置方式可以按照不同short TTI配置不同频域位置,或者配置相同的频域位置。XPRB或sPRB或RBG set包含的XPRB或sPRB或RBG数量固定或由基站配置,数量优选集合{1、2、4、6、8、10}中至少之一。配置信令包括RRC或SIB;上述SPDCCH使用SCCE作为控制信道单元,SCCE包含2个4或8个或16个SREG,或者SCCE直接使用一定数量的RE资源。SREG在sPRB或XPRB中在导频占用RE以外的RE中先频域后时域编号0-i,编号相同的作为一个SREG,i取值为集合{1、3、7、15}中至少之一。当SCCE有SREG组成时,优选等间隔选取SREG组成SCCE,如SREG有8个,SCCE由2个SREG组成,则SCCE index 0由SREG index 0、4组成。
例如,图4为根据本发明实施例的短TTI中短REG(SREG)占用资源的方式示意图,如图4所示,以short TTI包含4个OFDM符号为例,XPRB=3sPRB,SREG编号0-7,编号相同的作为一个SREG。此时一个XPRB中有4个SCCE时,则由2个SREG组成一个SCCE,例如按照等间隔选取的原则,SREG0和SREG4组成SCCE0。
当SCCE直接使用一定数量的RE资源时,优选SCCE占用1个sPRB或sPRB的整数倍。图5为根据本发明实施例的短TTI中短CCE(SCCE)占用资源的方式示意图,如图5所示,short TTI包含4个OFDM符号,在XPRB中SCCE占用整个sPRB。再例如,Short TTI包含2个OFDM符号时,SCCE占用多个sPRB,如占用2个sPRB。
在本发明实例中的盲检方式采用搜索空间方式,以X个1ms子帧按照short TTI粒度划分出一组short TTI的总盲检次数不超过LTE的X个1ms子帧中最大盲检次数之和。例如:1ms子帧中各个short TTI候选集数量之和不超过LTE 1ms子帧中候选集数量。
搜索空间中各个short TTI中候选集数量确定方式包括以下至少之一:
(1)一组short TTI中各个short TTI内候选集数量相同且根据划分的X个1ms子帧的总候选集数量确定。如,X个1ms子帧的总候选集数量为S个,则每个short TTI中的候选集数量为
Figure PCTCN2016111358-appb-000001
个,其中,n表示划分出的short TTI个数。例如:NCP时,以UE专有搜索空间USS为例,1ms子帧(X=1)按照short TTI粒度N=2划分出7个short TTI,则每个short TTI中候选集数量为
Figure PCTCN2016111358-appb-000002
个。2ms子帧(X=2)按照short TTI粒度N=4划分出7个short TTI,则每个short TTI中候选集数量为
Figure PCTCN2016111358-appb-000003
个。
(2)按照一组short TTI的不同时长比例分配候选集数量。如1ms子帧中按照4-3-4-3个OFDM符号划分出4个short TTI,各个short TTI中候选集数量按照4:3:4:3进行比例分配候选集数量,则1ms子帧中各个short TTI中候选集数量分别为4、3、4、3个。
(3)一组short TTI中其中一个或多个short TTI中的候选集数量多于其余short TTI中的候选集数量。优选,首个short TTI候选集数量多于后续short TTI候选集数量。例如:一组short TTI中首个short TTI中的候选集数量多于后续其余short TTI中候选集数量,如1ms子帧中划分4个short TTI,其中首个short TTI中候选集数量为7,后续3个short TTI中候选集数量均为3.优选,首个short TTI的搜索空间支持两级DCI的第一级DCI的检测,或同时支持CSS与USS的检测,而后续short TTI的搜索空间支持两级DCI的第二级DCI的检测,或仅支持USS的检测。上述两级DCI为主从DCI或快慢DCI。即第一级与第二级DCI共同构成完成的调度控制信息,第一级DCI包含公共控制信息部分或不频繁改变的部分,第二级DCI中包含UE之间不同的调度信息或频繁改变的部分。
候选集所对应的聚合等级可以固定或由基站配置。聚合等级优选集合L={1、2、4、8、16、24、32}(E)CCE/SCCE中至少之一。配置使用SIB或RRC。
具体的,以USS为例,1ms中以2个OFDM符号粒度划分7个short TTI,支持不超过现 有1ms子帧的最大盲检次数。此时不增加1ms时间内的最大盲检次数,相应的聚合等级和候选集数量需要进一步限制,按照等分候选集原则,每个short TTI存在2个候选集。例如:每个short TTI中聚合等级仅支持AL=1CCE且候选集支持2个。此时考虑到short TTI用于小覆盖场景,信道质量较好,无需使用大聚合等级。
搜索空间定义中k不再表示子帧序号,而表示short TTI序号,例如1ms子帧中的short TTI序号,或者1个无线帧中short TTI序号,或者,
以X个1ms子帧划分出的一组short TTI中的short TTI序号。L表示聚合等级,m=0,…M(L),表示候选集,NCCE,k表示short TTI index k中的CCE数量,i=0,…,L-1表示聚合等级包含的CCE:
Figure PCTCN2016111358-appb-000004
Yk=(A·Yk-1)mod D
Y-1=nRNTI≠0,A=39827,D=65537and k=nTTI,其中,Yk表示短TTI#k中检测CCE的起始位置。
例如,搜索空间候选集如表1所示,其中聚合等级以L=1CCE为例,可以固定或由基站配置具体的聚合等级。
表1 SPDCCH候选集
Figure PCTCN2016111358-appb-000005
而非盲检方式,在short TTI中根据UE ID或C-RNTI确定唯一的SPDCCH检测位置,不再进行盲检测。方法包括:(1)搜索空间中首个候选集,各个TTI hash迭代首个位置。(2)各个TTI首个位置相同,对于使用整个OFDM符号有一直阻塞问题但对于CFI指示OFDM符号部分频域位置时比较适用。(3)SPDCCH占用固定大小的资源,并且UE-specific唯一确定。
即非盲检方式,检测的short TTI由基站配置或根据UE ID或C-RNTI进行确定。配置信令为RRC或SIB。例如,对于USS中的SPDCCH检测,检测的short TTI不是每个short TTI,而是通过RRC信令配置一定时长T ms中哪些short TTI是要检测的,使用(T/X)×(L/N)bits,其中L为X个1ms子帧中包含的OFDM符号数,N表示short TTI所包含的OFDM符号数。或者终端根据UE ID或C-RNTI取值以及可能的基站配置相关参数隐含确定检测的short TTI。例如,配置的相关参数有时长T以及密度因子m,此时在时长T中检测的short TTI Index n可以表示为(以C-RNTI为例):n=C-RNTI mod((T/X)×(L/N)/m)。其中m可以取大于0的数,如集合{1/8、1/6、1/4、1/2、1、2、4、8、10}中至少之一。时长T优选集合{10、20、40、80} 中至少之一。
对于盲检方案实际上在每个short TTI中盲检候选位置已经很少,很接近非盲检了。对于非盲检方案,终端在确定的候选集上进行SPDCCH的检测。即在确定的候选集位置上以一种确定的聚合等级和一个确定的候选集进行检测。
方法1:仍采用Rel-8PDCCH搜索空间,且k=nTTI,在L一定的情况下计算出的CCE起始位置即为UE检测SPDCCH的唯一位置,不再盲检其他候选集。此时聚合等级使用固定L=1CCE,或聚合等级L通过RRC信令配置。不同UE的检测位置由C-RNTI区分。
方法2:在方法1的基础上减少处理复杂度,降低处理时延。不再进行TTI间hash迭代,Yk=nRNTI且k=nTTI。此时对于SPDCCH纯TDM方式,则各个TTI中计算位置相同,若两个UE的SPDCCH在某一TTI碰撞则一直碰撞(RNTI不变且L不变),对于SPDCCH占用1个OFDM符号部分频域位置方式,由于各个TTI总CCE数量不同,则在TTI i两个UE碰撞在TTI i+1中不一定碰撞。
方法3:SPDCCH占用固定大小的资源,并且UE-specific唯一确定。SPDCCH在第一个OFDM符号中使用固定的资源大小,如L个CCE,即9L个REG,并且考虑处理简单,short TTI使用带宽X MHz中共计N个REG,以
Figure PCTCN2016111358-appb-000006
等间隔选取9个REG组成1CCE,共计
Figure PCTCN2016111358-appb-000007
个CCE。即检测位置为
Figure PCTCN2016111358-appb-000008
例如:纯TDM方式时,使用20MHz带宽,共计200个REG(有CRS时),L=1,共计22个CCE,每个CCE为按照步长为22等间隔选取9个REG组成,检测SPDCCH的具***置为nRNTImod NCCE,k,k=nTTI。对于SPDCCH占用1个OFDM符号部分频域位置方式,使用部分带宽,REG和CCE数量根据部分带宽进行确定。
为了完善上述技术方案,在本发明实施例中,还提供了一种下行控制信道的确定方法,图6为根本发明实施例的下行控制信道的确定方法的另一流程图,如图6所示,包括以下步骤:
步骤S602:基站通过短发送时间间隔TTI中的下行控制信道向终端传输下行控制信息,其中,所述下行控制信道位于第一控制区域或第二控制区域,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道在短TTI中的候选集数量小于或者等于长期演进***LTE中子帧的候选集数量,或所述下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,其中X为正整数,在所述下行控制信道位于第二控制区域时,所述下行控制信道在短TTI中的候选集数量等于1。
通过基站与终端的上述交互过程,确定第一控制区域或第二控制区域作为发送下行控制信息的下行控制信道,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道的短TTI的候选集数量小于或者等于LTE中子帧的候选集数量,或所述下行控制信道在X个子 帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,在下行控制信道位于第二控制区域时,下行控制信道在短TTI中的候选集数量等于1,采用上述技术方案,解决了相关技术中,现有的下行控制信道不能很好的支持低时延需求的问题,提供了一种能够支持新粒度TTI的下行控制信道,与此同时,还能够降低TTI中的盲检复杂度。
基站侧发送SPDCCH时允许短TTI内多个短PDCCH复用和加扰,复用为在short TTI中复用。加扰时以short TTI或子帧为单位,其中加扰序列初始值具体可以考虑以下方式至少之一:
需要说明的是,短TTI序号至少包括以下之一:1ms子帧内序号,无线帧内序号,例如TTI=2个OFDM时,1ms子帧中划分出7个短TTI。短TTI在1ms子帧内序号为0-6,加扰初始值确定方式包括:
(1)现有方式,
Figure PCTCN2016111358-appb-000009
——不区分子帧内TTI的加扰序列,仍以子帧为单位区分加扰序列。
(2)基于TTI,
Figure PCTCN2016111358-appb-000010
——仅区分1ms中7个不同TTI的加扰序列,nTTI=0,1,…,6。
(3)基于TTI,
Figure PCTCN2016111358-appb-000011
——区分无线帧中共计70个TTI的加扰序列,nTTI=0,1,…,6。
TTI=2个OFDM时,1ms子帧中划分出7个短TTI,短TTI在无线帧内序号为0-69,加扰初始值确定方式包括:
基于TTI,
Figure PCTCN2016111358-appb-000012
——区分无线帧中共计70个TTI的加扰序列,nTTI=0,1,…,69。
基于TTI,
Figure PCTCN2016111358-appb-000013
——仅区分1ms中7个不同TTI的加扰序列,nTTI=0,1,…,69。
基于子帧,
Figure PCTCN2016111358-appb-000014
——不区分子帧内TTI的加扰序列,仍以子帧为单位区分加扰序列。
说明,上述仅以2个OFDM符号的短TTI为例,对于1-7符号的其余长度的短TTI,使用方法类似。例如以7个OFDM符号划分出2个短TTI,上述公式中将7个短TTI换为2个短TTI,nTTI表示1ms子帧中0,1或无线帧中0,1,…,19。例如1ms TTI中划分出6个短TTI,上述公式中将7个短TTI换为6个短TTI,nTTI表示1ms子帧中0,1,…,5或无线帧中0,1,…,59。
对于(1)~(3),当短PDCCH以FDM方式占用部分SPRB时,对于使用UE专有扰码序列时,将
Figure PCTCN2016111358-appb-000015
换为
Figure PCTCN2016111358-appb-000016
其中该参数由RRC配置,其中m可以始终为0,或m=0或1且 由基站配置,表示搜索空间集合。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必需的。
在本实施例中还提供了一种下行控制信道的确定装置,应用于终端,用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述,下面对该装置中涉及到的模块进行说明。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。图7为根据本发明实施例的下行控制信道的确定装置的结构框图。如图7所示,该装置包括:
接收模块70,设置为接收TTI中承载下行控制信息的下行控制信道,其中,所述下行控制信道位于第一控制区域或第二控制区域,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道在短TTI中的候选集数量小于或者等于长期演进***LTE中子帧的候选集数量,或所述下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,其中X为正整数,在所述下行控制信道位于第二控制区域时,所述下行控制信道在短TTI中的候选集数量等于1。
通过接收模块70的作用,确定第一控制区域或第二控制区域作为发送下行控制信息的下行控制信道,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道的短TTI的候选集数量小于或者等于LTE中子帧的候选集数量,或所述下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,在下行控制信道位于第二控制区域时,下行控制信道在短TTI中的候选集数量等于1,采用上述技术方案,解决了相关技术中,现有的下行控制信道不能很好的支持低时延需求的问题,提供了一种能够支持新粒度TTI的下行控制信道,与此同时,还能够降低TTI中的盲检复杂度。
图8为根据本发明实施例的下行控制信道的确定装置的另一结构框图,上述装置还包括:检测模块72,设置为在短TTI中的控制区域检测承载上述下行控制信息的下行控制信道,其中,上述控制区域包括:第一控制区域、第二控制区域,其中,检测模块72,包括:第一检测单元720,设置为在上述第一控制区域中盲检测上述下行控制信道;或第二检测单元722,设置为在上述第二控制区域中非盲检测上述下行控制信道,换一角度理解,检测模块72包括:第三检测单元724,设置为在所有短TTI的控制区域中检测;或第四检测单元726,设置为在部分短TTI的控制区域中检测,其中,通过以下方式确定上述部分短TTI:通过上述基站的配置确定上述部分短TTI;预先设定上述部分短TTI。
本发明实施例还提供了一种终端,包括上述所述的下行控制信道的确定装置。
在本实施例中还提供了一种下行控制信道的确定装置,应用于基站,用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述,下面对该装置中涉及到的模块进行说明。 如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。图9为根据本发明实施例的下行控制信道的确定装置的又一结构框图。如图9所示,该装置包括:
传输模块90,设置为通过短发送时间间隔TTI中的下行控制信道向终端传输下行控制信息,其中,所述下行控制信道位于第一控制区域或第二控制区域,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道在短TTI中的候选集数量小于或者等于长期演进***LTE中子帧的候选集数量,或所述下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,其中X为正整数,在所述下行控制信道位于第二控制区域时,所述下行控制信道在短TTI中的候选集数量等于1。
通过传输模块90的作用,确定第一控制区域或第二控制区域作为发送下行控制信息的下行控制信道,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道的短TTI的候选集数量小于或者等于LTE中子帧的候选集数量,或所述下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,在下行控制信道位于第二控制区域时,下行控制信道在短TTI中的候选集数量等于1,采用上述技术方案,解决了相关技术中,现有的下行控制信道不能很好的支持低时延需求的问题,提供了一种能够支持新粒度TTI的下行控制信道,与此同时,还能够降低TTI中的盲检复杂度。
本发明实施例还提供了一种基站,包括以上所述的下行控制信道的确定装置。
为了更好的理解上述下行控制信道的确定过程以及下行控制信道的确定过程,以下结合优选实施例进行说明,但不用于限定本发明的保护范围。
优选实施例1
基站通过SPDCCH承载下行控制信息发送给UE,所述SPDCCH在short TTI中以TDM方式占用资源。本实施例以NCP网络控制协议为例,此时short TTI包含2个OFDM符号,并在1ms子帧以2个OFDM符号划分出7个short TTI。或者在1ms子帧中按照4-3-4-3个OFDM符号结构划分出4个short TTI。或者在2ms子帧中按照4个OFDM符号划分出7个short TTI。
SPDCCH区域占用***带宽中前X个OFDM符号,或用于short TTI带宽(小于***带宽)中的前X个OFDM符号。其中,若short TTI包含N个OFDM符号,X≤N,X优选取值为1。X取值可以固定或由基站配置。SPDCCH在短TTI中占用第一个OFDM符号。以短TTI包含2个OFDM符号为例,此时short TTI使用的带宽Bandwidth为***带宽(全部资源是short TTI用户使用)或***带宽的一部分(legacy UE与short TTI用户分别占用***带宽中一部分频域资源)。其中与Legacy PDCCH重叠的资源,优先Legacy PDCCH使用。
此时SPDCCH与PDCCH占用1个OFDM符号时资源粒度、聚合等级、搜索空间使用相同结构。即以REG构成的CCE作为基本聚合等级AL,多种AL=1、2、4、8可用,具体使用的聚合等级固定或由基站配置。
基站侧发送SPDCCH时允许short TTI内多个SPDCCH复用和加扰,复用为在short TTI中复用。加扰时以short TTI或子帧为单位,其中加扰序列初始值具体可以考虑基于TTI确定,
Figure PCTCN2016111358-appb-000017
即区分无线帧中共计70个TTI的加扰序列,nTTI=0,1,…,6。
对加扰后的序列,使用QPSK调制,使用SFBC发送分集传输方式进行层映射与预编码。最后在映射至资源单元时仅映射至short TTI中SPDCCH使用的第一个OFDM符号中。
终端解调时在每个short TTI中盲检测USS中可能的候选集,或者采用非盲检方式直接在确定的资源位置检测SPDCCH。盲检测时每个short TTI中聚合等级仅支持AL=1CCE且候选集支持2个。此时UE根据自己的C-RNTI取值确定各个short TTI中检测起始位置。若首个位置不是自己的SPDCCH则在下一个候选集位置继续检测。
Figure PCTCN2016111358-appb-000018
Yk=(A·Yk-1)mod D
Y-1=nRNTI≠0,A=39827,D=65537and k=nTTI
对于非盲检方式,终端在基站配置的short TTI中检测SPDCCH,例如基站配置10ms中共计70个short TTI中检测确定的其中10个short TTI。并且在某个short TTI中检测确定的位置,例如仅检测搜索空间的首个候选集位置,此时L固定为1,根据UE ID或C-RNTI确定是该终端的SPDCCH。
通过本实施例的方案,通过在短TTI中以TDM方式使用SPDCCH,使得每个短TTI均可以使用下行控制信道并且实施简单,代价是开销较大。并且降低时延的同时减少最大盲检次数或采用非盲检方式以降低终端复杂度。
优选实施例2
基站通过SPDCCH承载下行控制信息发送给UE,上述SPDCCH在short TTI中前X个OFDM符号的部分频域资源。本实施例以NCP为例,此时short TTI包含2个OFDM符号,并在1ms子帧以2个OFDM符号划分出7个short TTI。或者在1ms子帧中按照4-3-4-3个OFDM符号结构划分出4个short TTI。或者在2ms子帧中按照4个OFDM符号划分出7个short TTI。
SPDCCH区域占用***带宽中前X个OFDM符号,或用于short TTI带宽(小于***带宽)中的前X个OFDM符号。其中,若short TTI包含N个OFDM符号,X≤N,X优选取值为1。X取值可以固定或由基站配置。SPDCCH在短TTI中占用第一个OFDM符号。以短TTI包含2个OFDM符号为例,图10为根据本发明优选实施例的SPDCCH在短TTI中占用OFDM符号的部分资源的示意图,如图10所示,此时short TTI使用的带宽Bandwidth为***带宽(全部资源是short TTI用户使用)或***带宽的一部分(legacy UE与short TTI用户分别占用***带宽中一部分频域资源)。基站配置***带宽中前X个OFDM符号的部分频域资源,或配 置用于short TTI带宽(小于***带宽)中的前X个OFDM符号的部分频域资源。其中,基站使用的配置信令通过SPCFICH承载。SPCFICH信道承载sCFI信息通知前X个OFDM符号的部分频域资源,该信道占用资源位置的方式为在short TTI中的首个OFDM符号中打孔传输,使用固定位置的CCE或REG或RE资源。其中固定位置为频域上连续或离散选取的CCE或REG或RE资源。例如,占用频域位置编号最低的3个REG。其中,上述SPDCCH区域占用前X个OFDM符号部分频域资源由sCFI使用2bit指示具体占用的sPRB范围,从sPRB序号最低sPRB 0开始,占用至基站配置的sPRB序号,配置的sPRB序号优选从集合{sPRB 19,sPRB 39,sPRB 79,sPRB 99}(***带宽20MHz)中选择其一配置不同short TTI中的SPDCCH占用的第一个OFDM符号中的频域范围。
其中与Legacy PDCCH重叠的资源,优先Legacy PDCCH使用。
此时SPDCCH与PDCCH占用1个OFDM符号时资源粒度、聚合等级、搜索空间使用相同结构。即以REG构成的CCE作为基本聚合等级AL,多种AL=1、2、4、8可用,具体使用的聚合等级固定或由基站配置。
基站侧发送SPDCCH时允许short TTI内多个SPDCCH复用和加扰,复用为在short TTI中复用。加扰时以short TTI或子帧为单位,其中加扰序列初始值基于TTI确定,
Figure PCTCN2016111358-appb-000019
即仅区分1ms中7个不同TTI的加扰序列,nTTI=0,1,…,6。
对加扰后的序列,使用QPSK调制,使用SFBC发送分集传输方式进行层映射与预编码。最后在映射至资源单元时仅映射至short TTI中SPDCCH使用的第一个OFDM符号中。
终端解调时在每个short TTI中盲检测USS中可能的候选集,或者采用非盲检方式直接在确定的资源位置检测SPDCCH。盲检测时每个short TTI中聚合等级仅支持AL=1CCE且候选集支持2个。此时UE根据自己的C-RNTI取值确定各个short TTI中检测起始位置。若首个位置不是自己的SPDCCH则在下一个候选集位置继续检测。此时short TTI中CCE数量根据不同的sCFI配置不同而不同。
Figure PCTCN2016111358-appb-000020
Yk=(A·Yk-1)mod D
Y-1=nRNTI≠0,A=39827,D=65537and k=nTTI
对于非盲检方式,终端在所有short TTI中检测SPDCCH。并且在short TTI中检测确定的位置,例如仅检测搜索空间的首个候选集位置,此时L固定为1,根据UE ID或C-RNTI确定是该终端的SPDCCH。并且不再进行TTI间hash迭代,Yk=nRNTI且k=nTTI。对于SPDCCH占用1个OFDM符号部分频域位置方式,由于各个TTI总CCE数量不同,则在TTI i两个UE碰撞在TTI i+1中不一定碰撞。
通过本实施例的方案,通过在短TTI中以TDM优化方式使用SPDCCH,使得每个短TTI均可以使用下行控制信道并且控制开销可控,由eNB配置SPDCCH区域的大小。并且降低时延的同时减少最大盲检次数或采用非盲检方式以降低终端复杂度。
优选实施例3
基站通过SPDCCH承载下行控制信息发送给UE,上述SPDCCH在short TTI中占用部分sPRB。本实施例以NCP为例,此时short TTI包含2个OFDM符号,并在1ms子帧以2个OFDM符号划分出7个short TTI。或者在1ms子帧中按照4-3-4-3个OFDM符号结构划分出4个short TTI。或者在2ms子帧中按照4个OFDM符号划分出7个short TTI。
SPDCCH区域占用部分sPRB。以短TTI包含2个OFDM符号为例,此时SPDCCH最小占用单位为1个XPRB,搜索空间由基站配置XPRB set。(XPRB含义解释:short TTI中以若干个sPRB组成XPRB,XPRB占用资源大小优选与LTE PRB pair资源大小相同,例如:N=2时,1XPRB=7sPRB。或者统一定义XPRB大小,如1XPRB=10PRB。)
终端在每个short TTI都检测SPDCCH。检测的频域位置为基站配置的频域位置,例如配置XPRB set包含2个XPRB并且位于XPRB index 0和1。并且在一定时长内(如40ms),使用配置相同的XPRB set频域位置,图11为SPDCCH在短TTI中与SPDSCH频分复用占用部分sPRB资源的示意图。
此时SPDCCH与EPDCCH占用PRB set中的ECCE资源时的资源粒度、聚合等级、搜索空间使用相同结构。即以EREG构成的ECCE作为基本聚合等级AL,多种AL=1、2、4、8、16、24、32可用,具体使用的聚合等级固定或由基站配置。
基站侧发送SPDCCH时允许short TTI内多个SPDCCH复用和加扰,复用为在short TTI中复用。加扰时以short TTI或子帧为单位,其中加扰序列初始值基于TTI确定,
Figure PCTCN2016111358-appb-000021
即仅区分1ms中7个不同TTI的加扰序列,nTTI=0,1,…,6。
对加扰后的序列,使用QPSK调制,使用开环/闭环预编码,或空间分集传输方式进行层映射与预编码。最后在映射至资源单元时仅映射至XPRB set中SPDCCH使用的SCCE(s)。
终端解调时在每个short TTI中盲检测USS中可能的候选集,或者采用非盲检方式直接在确定的资源位置检测SPDCCH。盲检测时每个short TTI中聚合等级仅支持AL=1CCE且候选集支持2个。此时UE根据自己的C-RNTI取值确定各个short TTI中检测起始位置。若首个位置不是自己的SPDCCH则在下一个候选集位置继续检测。此时short TTI中CCE数量根据不同的sCFI配置不同而不同。
对于非盲检方式,终端在所有short TTI中检测SPDCCH。并且在short TTI中检测确定的位置,例如仅检测搜索空间的首个候选集位置,此时L固定为1,根据UE ID或C-RNTI确定是该终端的SPDCCH。并且不再进行TTI间hash迭代,Yk=nRNTI且k=nTTI
通过本实施例的方案,通过在短TTI中以FDM方式使用SPDCCH,使得每个短TTI均可以灵活使用下行控制信道并且控制开销可控,由eNB配置SPDCCH区域的大小。并且降低时延的同时减少最大盲检次数或采用非盲检方式以降低终端复杂度。
综上所述,本发明实施例的技术方案可以达到以下技术效果:解决了包含较少OFDM符号的新粒度短TTI中的下行控制信道使用问题同时可以降低检测复杂度,可以在新粒度短TTI的情况下相应的获得较短的RTT时延,保证低时延通信需求。
在另外一个实施例中,还提供了一种软件,该软件用于执行上述实施例及优选实施方式中描述的技术方案。
在另外一个实施例中,还提供了一种存储介质,该存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的对象在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例提供的上述技术方案,可以应用于下行控制信道的确定过程中,通过确定第一控制区域或第二控制区域作为发送下行控制信息的下行控制信道,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道的短TTI的候选集数量小于或者等于LTE中子帧的候选集数量,或所述下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,在下行控制信道位于第二控制区域时,下行控制信道在短TTI中的候选集数量等于1,采用上述技术方案,解决了相关技术中,现有的下行控制信道不能很好的支持低时延需求的问题,提供了一种能够支持新粒度TTI的下行控制信道, 与此同时,还能够降低TTI中的盲检复杂度。

Claims (23)

  1. 一种下行控制信道的确定方法,包括:
    终端接收短发送时间间隔TTI中承载下行控制信息的下行控制信道,其中,所述下行控制信道位于第一控制区域或第二控制区域,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道在短TTI中的候选集数量小于或者等于长期演进***LTE中子帧的候选集数量,或所述下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,其中X为正整数,在所述下行控制信道位于第二控制区域时,所述下行控制信道在短TTI中的候选集数量等于1。
  2. 根据权利要求1所述的方法,其中,所述终端接收短发送时间间隔TTI中承载下行控制信息的下行控制信道之前,所述方法还包括:
    在短TTI中的控制区域检测承载所述下行控制信息的下行控制信道,其中,所述控制区域包括以下至少之一:第一控制区域、第二控制区域,所述第一控制区域中含有多个候选位置,所述第二控制区域中仅含有一个候选位置。
  3. 根据权利要求2所述的方法,其中,在短TTI中的控制区域检测承载下行控制信息的下行控制信道,包括:
    在所述第一控制区域中通过检测多个候选位置接收所述下行控制信道;或
    在所述第二控制区域中通过检测确定的一个候选位置接收所述下行控制信道。
  4. 根据权利要求2所述的方法,其中,在短TTI中的控制区域检测承载所述下行控制信息的下行控制信道,包括:
    在所有短TTI的控制区域中检测;或
    在部分短TTI的控制区域中检测,其中,通过以下方式确定所述部分短TTI:通过基站的配置确定所述部分短TTI,其中,通过基站进行配置的配置信令包括以下至少之一:***消息块SIB、无线资源控制RRC、下行控制信息DCI;预先设定所述部分短TTI;根据小区标识ID或终端标识UE ID或小区无线网络临时标识C-RNTI隐含确定检测的短TTI。
  5. 根据权利要求4所述的方法,其中,所述方法还包括:
    在第二控制区域检测时,短TTI的检测位置以及短TTI内的短PDCCH位置由至少通过以下方式之一确定:通过UE ID或C-RNTI确定;由下行控制指示DCI或RRC指示。
  6. 根据权利要求5所述的方法,其中,在使用DCI进行指示时,通过所述DCI两级中的第一级进行指示,其中,所述第一级包括:公有的或未改变的信令比特域,以及第二级DCI的检测位置,所述第一级DCI位于第一控制区域,所述第二级DCI位于第二控制区域。
  7. 根据权利要求6所述的方法,其中,所述第一级DCI位于一组短TTI中的首个短TTI中,所述第二级DCI根据第一级DCI确定该第二级位于一组短TTI中其中一个或多个短TTI。
  8. 根据权利要求2至7任一项所述的方法,其中,所述控制区域至少通过以下方式之一占用短TTI资源:
    所述控制区域与短物理下行共享信道PDSCH时分复用,且占用独立的X个正交频分复用OFDM符号,其中,短TTI包括N个OFDM符号,X和N均为正整数,且X小于或等于N;
    所述控制区域占用X个OFDM符号的部分资源,其中,占用OFDM符号部分资源位置通过预先配置或基站下发的配置信令进行确定,所述配置信令包括:高层信令或物理层信令;
    所述控制区域与短物理下行共享信道PDSCH频分复用,且占用部分短物理资源块PRB资源;其中,占用部分短PRB资源位置通过预先配置或基站下发的配置信令的方式确定,配置信令包括以下至少之一:小区公有信令SIB、UE专有信令无线资源控制RRC。
  9. 根据权利要求8所述的方法,其中,所述控制区域占用X个OFDM符号的部分资源,包括:
    对至少以下频域资源之一按照指定顺序占用部分频域资源:短PRB、XPRB、资源块组RBG,其中,所述指定顺序包括:从所述频域资源的指定序号开始占用至配置的频域资源序号,所述XPRB为短TTI中以M个短PRB组成XPRB,M为正整数;
    通过基站在预定义的S个资源区域中选择一个,并将选择出的资源区域配置为所述控制区域,其中,所述S个资源区域中每个资源区域包含连续或非连续的多个短PRB,资源区域个数S包括:2的E次方,其中,E为正整数。
  10. 根据权利要求8所述的方法,其中,所述物理层信令为短CFI信息,且所述短CFI信息由短物理控制格式指示信道PCFICH信道承载,短PCFICH信道占用资源位置的方式包括:在一组短TTI中的全部或首个短TTI中的首个OFDM符号中,打孔传输且使用固定位置的控制信道单元CCE或资源元素集合REG或资源块RE。
  11. 根据权利要求8所述的方法,其中,所述控制区域占用以下资源的数量为固定值或由基站通过信令进行配置:XPRB、短PRB、RBG。
  12. 根据权利要求1所述的方法,其中,短PDCCH使用的短CCE包含:2个短REG,或4个短REG,或8个短REG,或16个短REG,当短CCE由短REG组成时,选取相同间隔的短REG组成短CCE,或,所述短CCE占用一个或多个短PRB。
  13. 根据权利要求12所述的方法,其中,所述短REG对占用的RE以先频域后时域或者先时域后频域的顺序编号为0至i,对编号相同的资源块选取作为一个短REG,其中,所述短REG对占用的RE为在所述短PRB或XPRB中,除导频占用的RE外的其余RE。
  14. 根据权利要求1所述的方法,其中,所述下行控制信道位于所述第一控制区域时,各个短TTI的候选集数量确定方式至少包括以下之一:
    一组短TTI中,各个短TTI内候选集数量相同,且根据划分的X个子帧的总候选集数量确定;
    按照一组短TTI的时长比例或一组短TTI所包含的OFDM数目比例分配所述候选集数量;
    一组短TTI中,一个或多个短TTI中的候选集数量多于其余短TTI中的候选集数量。
  15. 根据权利要求1所述的方法,其中,所述下行控制信道位于所述第二控制区域时,在短TTI中根据UE ID或C-RNTI确定短PDCCH的检测位置,其中,至少通过以下方式之一确定所述检测位置:
    在短TTI中的搜索空间中确定首个候选集作为唯一的所述检测位置;
    在短TTI中的搜索空间中确定首个候选集作为唯一的所述检测位置,并且一组短TTI中确定的所述首个候选集位置相同;
    所述短PDCCH占用固定大小的资源作为所述检测位置,其中,所述检测位置预定义或通过RRC信令确定。
  16. 根据权利要求1所述的方法,其中,不同终端的短TTI占用不同短PRB或不同的OFDM符号。
  17. 根据权利要求1所述的方法,其中,所述下行控制信道对应的聚合等级包括:固定的一种或多种聚合等级、由基站配置的一种或多种聚合等级,其中,所述聚合等级选自集合L={1、2、4、8、16、24、32}。
  18. 根据权利要求1所述的方法,其中,
    所述下行控制信道在短TTI内复用和加扰时,加扰序列初始值至少通过短TTI序号进行确定,其中,短TTI序号至少包括以下之一:1ms子帧内序号,无线帧内序号。
  19. 一种下行控制信道的确定方法,包括:
    基站通过短发送时间间隔TTI中的下行控制信道向终端传输下行控制信息,其中,所述下行控制信道位于第一控制区域或第二控制区域,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道在短TTI中的候选集数量小于或者等于长期演进***LTE中子帧的候选集数量,或所述下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,其中X为正整数,在所述下行控制信道位于第二控制区域时,所述下行控制信道在短TTI中的候选集数量等于1。
  20. 一种下行控制信道的确定装置,应用于终端,包括:
    接收模块,设置为接收短发送时间间隔TTI中承载下行控制信息的下行控制信道,其中,所述下行控制信道位于第一控制区域或第二控制区域,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道在短TTI中的候选集数量小于或者等于长期演 进***LTE中子帧的候选集数量,或所述下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,其中X为正整数,在所述下行控制信道位于第二控制区域时,所述下行控制信道在短TTI中的候选集数量等于1。
  21. 一种下行控制信道的确定装置,应用于基站,包括:
    传输模块,设置为通过短发送时间间隔TTI中的下行控制信道向终端传输下行控制信息,其中,所述下行控制信道位于第一控制区域或第二控制区域,在所述下行控制信道位于所述第一控制区域时,所述下行控制信道在短TTI中的候选集数量小于或者等于长期演进***LTE中子帧的候选集数量,或所述下行控制信道在X个子帧中包含的各个短TTI的候选集数量之和小于或者等于LTE中X个子帧的候选集数量,其中X为正整数,在所述下行控制信道位于第二控制区域时,所述下行控制信道在短TTI中的候选集数量等于1。
  22. 一种终端,包括:权利要求20所述的装置。
  23. 一种基站,包括:权利要求21所述的装置。
PCT/CN2016/111358 2016-02-05 2016-12-21 下行控制信道的确定方法及装置、终端、基站 WO2017133340A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610082245.2A CN107046713B (zh) 2016-02-05 2016-02-05 下行控制信道的确定方法及装置、终端、基站
CN201610082245.2 2016-02-05

Publications (1)

Publication Number Publication Date
WO2017133340A1 true WO2017133340A1 (zh) 2017-08-10

Family

ID=59499359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111358 WO2017133340A1 (zh) 2016-02-05 2016-12-21 下行控制信道的确定方法及装置、终端、基站

Country Status (2)

Country Link
CN (1) CN107046713B (zh)
WO (1) WO2017133340A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733379B (zh) * 2019-03-18 2021-07-11 聯發科技股份有限公司 訊號輔助干擾消除或抑制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017166191A1 (zh) * 2016-03-31 2017-10-05 华为技术有限公司 一种信号处理方法以及网络设备
CN110995629B (zh) * 2016-07-15 2022-06-21 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN113541907B (zh) * 2018-02-08 2022-07-26 展讯通信(上海)有限公司 下行控制信息的检测方法、装置及用户设备
CN111865479B (zh) * 2019-04-28 2022-04-05 华为技术有限公司 一种通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771462A (zh) * 2008-12-31 2010-07-07 华为技术有限公司 一种多载波***中下行控制信道资源分配方法及设备
US20130301597A1 (en) * 2011-01-26 2013-11-14 Lg Electronics Inc. Method for transmitting and receiving downlink control information in wireless communication system and device therefor
CN103546233A (zh) * 2012-07-12 2014-01-29 电信科学技术研究院 一种盲检方式确定方法、盲检方法及装置
CN103580796A (zh) * 2012-08-03 2014-02-12 中兴通讯股份有限公司 一种增强物理下行控制信道的接收、发送方法及相应装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150836A2 (ko) * 2011-05-03 2012-11-08 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 이를 위한 장치
EP2693677A1 (en) * 2012-08-02 2014-02-05 Fujitsu Limited E-PDCCH for LTE Advanced wireless communication
WO2015147568A1 (ko) * 2014-03-26 2015-10-01 엘지전자 주식회사 무선접속시스템에서 디스커버리 신호 송수신 방법 및 이를 지원하는 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771462A (zh) * 2008-12-31 2010-07-07 华为技术有限公司 一种多载波***中下行控制信道资源分配方法及设备
US20130301597A1 (en) * 2011-01-26 2013-11-14 Lg Electronics Inc. Method for transmitting and receiving downlink control information in wireless communication system and device therefor
CN103546233A (zh) * 2012-07-12 2014-01-29 电信科学技术研究院 一种盲检方式确定方法、盲检方法及装置
CN103580796A (zh) * 2012-08-03 2014-02-12 中兴通讯股份有限公司 一种增强物理下行控制信道的接收、发送方法及相应装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733379B (zh) * 2019-03-18 2021-07-11 聯發科技股份有限公司 訊號輔助干擾消除或抑制方法

Also Published As

Publication number Publication date
CN107046713B (zh) 2022-12-02
CN107046713A (zh) 2017-08-15

Similar Documents

Publication Publication Date Title
WO2021078275A1 (en) Systems and methods for data transmission in an inactive state
US10623155B2 (en) Uplink channel transmitting method and user device, and uplink channel receiving method and base station
ES2772693T3 (es) Supervisión de un canal de control de banda estrecha para un sistema de banda ancha para reducir el consumo de energía
CN113692059B (zh) 无线通信***中的方法和设备
JP6163554B2 (ja) 端末装置、基地局装置、および通信方法
JP6162244B2 (ja) 端末装置、基地局装置、および通信方法
RU2734860C1 (ru) Индикация сигналов в сетях беспроводной связи
KR102033442B1 (ko) 공통 검색 공간 및 ue 특정 검색 공간을 블라인드 검출하기 위한 방법 및 장치
US20180234998A1 (en) Downlink control information receiving method and user equipment, and downlink control information transmission method and base station
WO2016119455A1 (zh) 下行控制信息dci的配置、下行数据的接收方法及装置
JP6446743B2 (ja) 端末、基地局、および、通信方法
US20160338018A1 (en) Communication System
US10602389B2 (en) Method for reporting channel state information of terminal in wireless communication system and device using the method
JP6417614B2 (ja) 端末装置、基地局装置、および、通信方法
EP3281351B1 (en) Efficient transmission of uplink control channel information
WO2015046358A1 (ja) 端末、基地局、および通信方法
RU2719350C1 (ru) Сигнализация о конфигурации опорного сигнала демодуляции для передач в коротком tti восходящей линии связи
WO2017133340A1 (zh) 下行控制信道的确定方法及装置、终端、基站
WO2018141180A1 (zh) 控制信息的传输方法、接收方法、装置、基站及终端
WO2013104305A1 (zh) 一种控制信道传输、接收方法及基站、用户设备
WO2019052455A1 (zh) 数据信道参数配置方法及装置
WO2017193377A1 (zh) 下行控制信息的发送方法、检测方法和设备
WO2016070675A1 (zh) 下行信息发送、下行信息接收方法及装置
BR112019019000A2 (pt) método de configuração de direção de transmissão, dispositivo, e sistema
US11291029B2 (en) Scheduling information transmission method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889146

Country of ref document: EP

Kind code of ref document: A1