WO2017132960A1 - 一种上行信号的传输方法、ue及基站 - Google Patents

一种上行信号的传输方法、ue及基站 Download PDF

Info

Publication number
WO2017132960A1
WO2017132960A1 PCT/CN2016/073564 CN2016073564W WO2017132960A1 WO 2017132960 A1 WO2017132960 A1 WO 2017132960A1 CN 2016073564 W CN2016073564 W CN 2016073564W WO 2017132960 A1 WO2017132960 A1 WO 2017132960A1
Authority
WO
WIPO (PCT)
Prior art keywords
time point
sending
cca
transmission time
uplink signal
Prior art date
Application number
PCT/CN2016/073564
Other languages
English (en)
French (fr)
Inventor
杨美英
李�远
官磊
马莎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/073564 priority Critical patent/WO2017132960A1/zh
Priority to CN201680081189.9A priority patent/CN108605357A/zh
Publication of WO2017132960A1 publication Critical patent/WO2017132960A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access

Definitions

  • the present invention relates to the field of communications, and in particular, to a method for transmitting an uplink signal, a UE, and a base station.
  • the spectrum includes unlicensed spectrum and licensed spectrum.
  • the resource is larger than the licensed spectrum resource.
  • a variety of wireless communication systems coexist on the unlicensed spectrum, for example, LAA (Licensed-Assisted Access) and Wi-Fi coexist in the 5 GHz band.
  • LAA Licensed-Assisted Access
  • Wi-Fi coexist in the 5 GHz band.
  • LBT Listen Before Talk
  • the LAA UL (uplink) transmission generally uses multi-user scheduling.
  • the UE transmits uplink data based on the scheduling of the eNB.
  • the UE needs to listen to the wireless channel before transmitting the uplink data. Only the UE that is scheduled by the eNB and whose channel listening result is idle can perform signal transmission.
  • the LBT mechanism and parameters of the UEs participating in the channel competition are different, and/or the channel propagation conditions are different, which may cause different UEs to send uplink data at different times, so that the UE that sends the first will
  • the UE that is sent later causes interference, so that the channel sounding result of the UE that is transmitted later is busy, so that uplink data transmission cannot be performed, and the UEs interfere with each other.
  • Embodiments of the present invention provide a method for transmitting an uplink signal, a UE, and a base station, which reduce mutual interference caused when different UEs simultaneously transmit uplink signals.
  • a method for transmitting an uplink signal including:
  • the base station determines a first transmission time point for the user equipment UE in the set of candidate transmission time points.
  • the first sending time point is that the UE sends the current uplink message earliest The time of the number.
  • the time point at which the current uplink signal is sent earliestly refers to the earliest time point at which the UE allows to transmit the current uplink signal.
  • the UE does not allow the uplink signal to be sent even if the CCA succeeds before the first transmission time point, but waits until the first transmission time point sends the current uplink signal or sends the current between the first transmission time point and the second transmission time point.
  • the second transmission time point here is after the first transmission time point, and is a transmission time point at which the UE sends the useful signal in the current uplink signal.
  • the first transmission time point belongs to a candidate transmission time point set
  • the candidate transmission time point set includes at least two candidate transmission time points, that is, the first transmission time point has multiple possibilities.
  • the base station determines the first sending time point according to the time when the reference UE sends the uplink signal. Specifically, the LBT parameters of each scheduled UE (such as a random backoff initial value, a random backoff amplitude value, and a random backoff start time) are recorded, so the base station can determine that each scheduled UE completes the CCA (clear) Channel assessment, the measurement of the clearance channel (the random backoff initial value minus zero), can determine that a UE that has completed the CCA random backoff is the reference UE, and refers to the first time point.
  • the LBT parameters of each scheduled UE such as a random backoff initial value, a random backoff amplitude value, and a random backoff start time
  • the time point at which the reference UE completes the CCA random backoff is such that the first transmission time point is as close as possible to the time point at which the reference UE completes the CCA random backoff.
  • the base station can determine the time point at which the reference UE obtains the channel usage right and immediately transmits the uplink signal, and can determine the first transmission time point of the earliest uplink signal to be sent to other UEs scheduled according to the time point at which the reference UE sends the uplink signal.
  • the actual transmission time point at which the UE sends the uplink signal is as close as possible to the time point at which the reference UE transmits the uplink signal, so that each UE is aligned as possible.
  • the base station further determines a second transmission time point; the second transmission time point is a transmission time point of the useful signal in the current uplink signal, and the second transmission time point is not earlier than the first transmission time point.
  • the useful signal here refers to the effective information that the UE actually transmits to the base station, and does not include the padding information.
  • the second transmission time point can be understood as the time point that the UE determines that the UE sends the current uplink signal, but may not be the time point when the UE actually sends the current uplink signal.
  • the base station sends a notification message to the UE to indicate the first sending time.
  • the UE sends the current uplink signal according to the first sending time point and the second sending time point. It should be noted that if the base station indicates the first transmission time point by using the notification information, the UE determines the second transmission time point, and acquires the first transmission time point according to the notification information.
  • the base station receives the current uplink signal sent by the UE from the second sending time point.
  • the UE does not necessarily send the current uplink signal at the second transmission time point, the base station must start receiving the uplink signal at the second transmission time point.
  • the time point at which the UE transmits an uplink signal depends on the time indicated by the base station scheduling the UL scheduling information (ie, UL grant) of the UE.
  • the base station n transmits UL scheduling information at a time
  • the UE transmits the UL signal at time n+k.
  • the UE In the LAA, after the base station transmits the UL scheduling information, the UE also needs to listen to the used channel, and judges whether the channel usage right is obtained according to the result of the channel listening.
  • the UE can only send an uplink signal after the UE is scheduled by the base station and the channel usage right is obtained. Therefore, the existing LTE uplink scheduling does not indicate the moment when the UE actually transmits the uplink signal.
  • the UE because the channel conditions of the scheduled UEs are different, and the LBT parameters are different, the time at which each UE sends the uplink signal is different. Therefore, the UE may perform channel measurement when other UEs occupy the channel, and the UE considers that the channel is unavailable.
  • the uplink signal is not transmitted at the time of uplink signal transmission, thereby causing mutual interference between UEs that are not simultaneously transmitted.
  • the base station may determine a first transmission time point at which the UE can transmit the current uplink signal, and a second transmission time point at which the UE sends the useful signal in the current uplink signal, and indicate to the UE the first transmission time point and/or
  • the second transmission time point is such that the UE determines the actual transmission time point of the current uplink signal according to the first transmission time point and the second transmission time point, that is, the UE adjusts the actual transmission time point according to the indication of the base station, so that the first time determined by the base station Sending time point close to the reference UE to complete the CCA random return
  • the time point of the retreat so the actual transmission time point of the current uplink signal determined by the UE according to the first transmission time point and the second transmission time point is also the time point at which the CCA random backoff is completed near the reference UE, so that each UE can be indicated as much as possible.
  • uplink signal transmission is performed to reduce mutual interference between UEs.
  • the candidate transmission time point is a time point at which the current uplink signal is sent immediately after the detection in the CCA time window is successful, and a pre-configured first time point is sent after the CCA time window is successfully detected. And sending any one of the pre-configured second time points of the current uplink time after the detection in the CCA time window is successful.
  • the UE may perform a random backoff (backoff counter reduction) of the CCA in the CCA time window, or may perform channel sensing with a one shot duration.
  • the pre-configured first time point may be a time point immediately after the self-defer is sent after the CCA time window is successfully detected, and the pre-configured second time point may be after the padding is performed after the CCA time window is successfully detected.
  • the time point of immediate transmission, in short, the first time point is different from the second time point.
  • immediate transmission is used to illustrate that if the time point of the random backoff of the CCA is successful at the sub-frame (or symbol) boundary, the so-called immediate transmission starts from the subframe boundary (or symbol boundary); if CCA The time of successful random backoff is not at the sub-frame (or symbol) boundary, and can be started by self-rewinding to this sub-frame boundary (or symbol boundary).
  • the first preset duration and the second preset duration may be relative times, for example, the start time is the first symbol of the nth subframe, and the duration is 0.5 us. It may also be an absolute time, for example, the start time is the first symbol of the nth subframe, and the end time is the fifth symbol of the nth subframe.
  • the UE may perform padding (ie, send a padding signal to the base station), or may perform a self-defer operation, which may or may not listen to the channel.
  • the CCA can be padded for a certain period of time during the random backoff process, or it can be a complete uninterrupted random backoff process.
  • the method further includes:
  • the base station sends contention window information to the UE, the contention window information is used to indicate a fallback initial value, and the backoff initial value is used for random backoff of the idle channel assessment.
  • the UE determines a fallback initial value according to the contention window information, and performs a random backoff of the idle channel assessment CCA.
  • the UE may determine a fallback initial value according to the contention window information. For example, the base station and the UE maintain the same contention window, and the contention window includes four back-off initial values, which are represented by 00, 01, 10, and 11, respectively, where 00, 01, 10, and 11 are contention window information, if the base station If the indication is 00, the UE may determine its corresponding initial value of the backoff according to 00.
  • the base station and the UE maintain the correspondence between the contention window information and the initial value in advance, for example, the initial values of the backoff corresponding to 00, 01, 10, and 11, respectively.
  • the corresponding relationship maintained by the two is the same, and the same contention window information corresponds to the same backoff initial value at both the base station and the UE.
  • the base station sends the fallback initial value to the UE, where the fallback initial value is used for random backoff of the idle channel assessment.
  • the UE may perform random backoff of the idle channel assessment CCA according to the backoff initial value.
  • the UE starts to perform CCA on the channel at a specific time (which may be indicated by the base station), and once the measured signal strength value is lower than the threshold, the initial value of the fallback is subtracted.
  • a certain value (the above-mentioned back-off amplitude value), continue to CCA, and measure that the signal strength value is lower than the threshold value and continue to subtract a certain value, so reciprocating until the initial value of the retreat is reduced to zero.
  • the method further includes:
  • a method for transmitting an uplink signal including:
  • the UE acquires a first transmission time point, where the first transmission time point is a time point at which the UE first sends a current uplink signal, and the first transmission time point belongs to a candidate transmission time point set, and the candidate transmission time point
  • the set includes at least two candidate transmission time points.
  • the time point at which the current uplink signal is sent earliestly refers to the earliest time point at which the UE allows to transmit the current uplink signal.
  • the UE is before the first transmission time point If the CCA is successful, the uplink signal is not allowed to be sent, but the current uplink signal is sent at the first transmission time point or the current uplink signal is sent between the first transmission time point and the second transmission time point.
  • the second transmission time point here is after the first transmission time point, and is a transmission time point at which the UE sends the useful signal in the current uplink signal.
  • the second transmission time point may be obtained by the UE according to the indication of the base station, or may be a time point that is customary in the LTE system, such as a subframe boundary, a symbol boundary, and the like.
  • the UE is to perform a CCA operation with an uplink channel
  • the UE determines an actual transmission time point of the current uplink signal according to the first sending time point and the result of the CCA operation.
  • the actual transmission time point that is, the time point at which the UE actually performs uplink transmission, may be earlier than the time point at which the UE transmits the useful signal in the current uplink signal.
  • the candidate transmission time point is a time point at which the current uplink signal is sent immediately after the detection in the CCA time window is successful, and a pre-configured first time point is sent after the CCA time window is successfully detected. And sending any one of the pre-configured second time points of the current uplink time after the detection in the CCA time window is successful.
  • the UE may perform a random backoff (backoff counter reduction) of the CCA in the CCA time window, or may perform channel sensing with a one shot duration.
  • the pre-configured first time point may be a time point immediately after the self-defer is sent after the CCA time window is successfully detected, and the pre-configured second time point may be after the padding is performed after the CCA time window is successfully detected.
  • the time point of immediate transmission, in short, the first time point is different from the second time point.
  • the first transmission time point is a time point determined by the base station to transmit the current uplink signal
  • the UE determines the actual transmission time point of the current uplink signal according to the first transmission time point and the result of the CCA operation, that is, the UE according to the base station.
  • the indication adjusts the actual transmission time point.
  • the first transmission time point determined by the base station is close to the reference UE to complete the CCA random backoff time (that is, the channel usage right is obtained to immediately send the uplink signal) Therefore, the actual transmission time point of the current uplink signal determined by the UE according to the first transmission time point and the second transmission time point is also a time point when the reference UE completes the CCA random backoff, so that each UE can be instructed as much as possible.
  • uplink signal transmission is performed to reduce mutual interference between UEs.
  • the method further includes:
  • the second sending time point is a sending time point of the useful signal in the current uplink signal; and the second sending time point is not earlier than the first sending time point, And the second transmission time point may be after the actual transmission time point of the UE.
  • the performing, by the UE, the performing CCA operation by using the uplink channel includes:
  • the UE determines a fallback initial value, and performs a random backoff of the CCA according to the fallback initial value.
  • the so-called random backoff of CCA that is, the UE performs channel interception for a certain period of time, and when the channel is idle, the initial value of the back-off of the counter is subtracted by a certain value, and so on, until the initial value of the back-off is reduced to zero, that is, the UE Obtain channel usage rights.
  • Determining, by the UE, the actual sending time point of the current uplink signal according to the first sending time point and the result of the CCA operation including:
  • the UE determines an actual transmission time point of the current uplink signal according to the first sending time point and the second sending time point and the result of the random backoff.
  • Determining, by the UE, the actual sending time point of the current uplink signal according to the first sending time point, the second sending time point, and the result of the random backing specifically:
  • the UE determines that the actual sending time point is not earlier than the first sending time point. That is, the UE randomly rolls back successfully before the first transmission time point (ie, The machine backoff initial value is reduced to zero), and the time transmission time point is at least after the first transmission time point, and preferably, the time transmission time point is the first transmission time point.
  • the UE determines that the actual sending time point is not earlier than The time point at which the random backoff is successful is not later than the second sending time point. That is to say, the UE randomly returns randomly between the first sending time point and the second sending time point, and the time sending time point is between the time point when the random backing succeeds and the second sending time point.
  • the UE receives the contention window information sent by the base station, and determines the fallback initial value according to the contention window information; the contention window information is used to indicate the fallback initial value;
  • the UE receives the initial value of the backoff sent by the base station
  • the UE acquires contention window information, and determines the fallback initial value according to the contention window information.
  • the acquiring, by the UE, the first sending time point specifically includes:
  • the UE receives the notification message sent by the base station, and obtains the first sending time point and the second sending time point according to the notification message.
  • the UE receives the notification message sent by the base station, and obtains the first sending time point and the second sending time point according to the notification message.
  • the notification message may carry the first transmission time point and the second transmission time point, and the UE parses the notification message today, and acquires the first transmission time point and the second transmission time point; or, the notification And the indication information indicating the first sending time point and the second sending time point carried by the message, the UE acquiring the notification message according to the indication information to carry the first sending time point and the second sending time point.
  • the notification message carries the first sending time point, and the UE parses the notification message to obtain the first sending time point;
  • the notification information carried in the message indicating the first sending time point the UE acquires the first sending time point according to the indication information, and the UE determines the second sending time point by itself, and the second sending time point may be a subframe.
  • the LTE system such as the boundary (or symbol boundary) is scheduled to be a common point in time.
  • the method further includes:
  • the UE determines that the actual transmission time point is earlier than the second transmission time point, the UE sends the current uplink signal between the actual transmission time point and the second transmission time point. And filling a signal, sending the useful signal in the current uplink signal from the second transmission time point.
  • the content of the padding signal is not limited, and the sequence, the reference signal, the data information, and the like may be transmitted.
  • the padding signal is sent between the actual transmission time point and the second transmission time point because the UE actually determines the actual transmission time point according to the indication of the base station. Before the second transmission time point, in order to avoid interference caused by the CCA result of other UEs, the UE needs to occupy the channel from the actual transmission time point, but the actual transmission time point is different from the second transmission time point here, so the useful signal cannot be transmitted.
  • the channel can be occupied by sending a padding signal padding.
  • the performing, by the UE, the performing CCA operation by using the uplink channel specifically includes:
  • the UE performs CCA in a first CCA time window before the first sending time point;
  • Determining, by the UE, the actual sending time point of the current uplink signal according to the first sending time point and the result of the CCA operation including:
  • the UE determines that the actual transmission time point is the first transmission time point.
  • the to-be-used uplink channel is idle, and the channel can be obtained. Use rights.
  • the UE performs CCA in the second CCA time window before the third transmission time point;
  • the third transmission time point is after the first transmission time point and before the second transmission time point;
  • the UE determines that the actual transmission time point is the third transmission time point.
  • the third transmission time point belongs to the candidate transmission time point set.
  • the uplink signal is in a current burst time window
  • the abrupt time window includes the transmission of the downlink signal and the uplink signal.
  • the method further includes:
  • the base station may indicate the transmission duration of the current uplink signal, and the base station may determine the end time of the current uplink signal according to the actual transmission time point and the transmission duration indicated by the base station.
  • a base station including:
  • a determining unit configured to determine a first sending time point for the user equipment UE in the set of candidate sending time points; the first sending time point is a time point at which the UE sends the current uplink signal earliest, the first sending time point Belong to the set of candidate transmission time points,
  • the candidate transmission time point set includes at least two candidate transmission time points;
  • the determining unit is further configured to: determine a second sending time point; the second sending time point is a sending time point of the useful signal in the current uplink signal; the second sending time point is not earlier than the first a transmission time point;
  • a sending unit configured to send a notification message to the UE to indicate the first sending time point and the second sending time point, or send a notification message to the UE to indicate the first sending time point;
  • a receiving unit configured to receive, according to the second sending time point, the current uplink signal sent by the UE
  • the candidate transmission time point is a time point at which the current uplink signal is sent immediately after the detection in the CCA time window is successful, and a pre-configured first time point is sent after the CCA time window is successfully detected. And sending any one of the pre-configured second time points of the current uplink time after the detection in the CCA time window is successful.
  • the base station may determine a first transmission time point at which the UE can transmit the current uplink signal, and a second transmission time point at which the UE sends the useful signal in the current uplink signal, and indicate to the UE the first transmission time point and/or
  • the second transmission time point is such that the UE determines the actual transmission time point of the current uplink signal according to the first transmission time point and the second transmission time point, that is, the UE adjusts the actual transmission time point according to the indication of the base station, so that the first time determined by the base station
  • the sending time point is close to the time point at which the reference UE completes the CCA random backoff.
  • the actual sending time point of the current uplink signal determined by the UE according to the first sending time point and the second sending time point is also the time when the CCA random backoff is completed close to the reference UE. Point, so that each UE can be instructed to perform uplink signal transmission as much as possible, thereby reducing mutual interference between UEs.
  • the sending unit is further configured to: after sending the notification message to the UE, send contention window information to the UE, the contention window The information is used to indicate a fallback initial value, and the fallback initial value is used for random backoff of the idle channel assessment;
  • the sending unit is further configured to send the current uplink signal to the UE End time point.
  • a user equipment UE including:
  • An acquiring unit configured to acquire a first sending time point, where the first sending time point is a time point at which the UE first sends a current uplink signal, where the first sending time point belongs to a set of candidate sending time points, and the candidate sending time
  • the set of time points includes at least two candidate transmission time points;
  • a channel evaluation unit configured to perform an idle channel evaluation CCA operation by using an uplink channel
  • a determining unit configured to determine an actual sending time point of the current uplink signal according to the first sending time point and a result of the CCA operation
  • a sending unit configured to send the current uplink signal by using the uplink channel to be used from the actual sending time point
  • the candidate transmission time point is a time point at which the current uplink signal is sent immediately after the detection in the CCA time window is successful, and a pre-configured first time point is sent after the CCA time window is successfully detected. And sending any one of the pre-configured second time points of the current uplink time after the detection in the CCA time window is successful.
  • the first transmission time point is a time point determined by the base station to transmit the current uplink signal
  • the UE determines the actual transmission time point of the current uplink signal according to the first transmission time point and the result of the CCA operation, that is, the UE according to the base station.
  • the indication adjusts the actual transmission time point.
  • the UE determines, according to the first sending time point and the second sending time point, that the first sending time point determined by the base station is close to the time point at which the reference UE completes the CCA random backoff, that is, the time point at which the channel usage right is immediately transmitted.
  • the actual transmission time point of the current uplink signal is also the time point when the reference UE completes the CCA random backoff, so that each UE can be instructed to perform uplink signal transmission as much as possible, thereby reducing mutual interference between the UEs.
  • the acquiring unit is further configured to acquire a second sending time point, the second sending, before the channel determining unit performs a CCA operation
  • the time point is a transmission time point of the useful signal in the current uplink signal; the second transmission time point is not earlier than the first transmission time point.
  • the channel assessment unit is specifically configured to determine a fallback initial value, and according to the fallback initial value Perform a random backoff of the CCA;
  • the determining unit is configured to determine an actual sending time point of the current uplink signal according to the first sending time point and the second sending time point and the result of the random backoff.
  • the determining unit is specifically configured to: if the random backoff of the CCA is successful Point no later than the first sending time point, determining that the actual sending time point is not earlier than the first sending time point;
  • the first receiving unit is configured to receive contention window information sent by the base station
  • the channel evaluation unit is configured to determine the fallback initial value according to the contention window information; the contention window information is used to indicate the fallback initial value;
  • the second receiving unit is configured to receive a notification message sent by the base station
  • the acquiring unit is specifically configured to: acquire the first sending time point and the second sending time point according to the notification message received by the second receiving unit;
  • the first transmission time point is obtained.
  • the sending unit is further configured to: Determining, by the determining unit, that the actual sending time point is earlier than the second sending time point, sending a filling signal in the current uplink signal between the actual sending time point and the second sending time point, The second transmission time point begins to transmit the useful signal in the current uplink signal.
  • the channel evaluation unit is specifically configured to: use a first CCA time before the first sending time point CCA in the window;
  • the determining unit is specifically configured to: if the signal energy detected by the channel evaluation unit in the first CCA time window is not higher than an energy threshold, determine that the actual sending time point is the first sending time point .
  • the channel evaluation unit is further configured to: if the signal is detected in the first CCA time window The energy is higher than the energy threshold, and the CCA is performed in the second CCA time window before the third transmission time point; the third transmission time point is after the first transmission time point and in the Before the sending time point;
  • the determining unit is specifically configured to: if the signal energy detected by the channel assessment unit in the second CCA time window is not higher than the energy threshold, determine that the actual transmission time point is the third sending Time point.
  • the third transmission time point belongs to the candidate transmission time point set.
  • the uplink signal is in a current burst Within the time window, the abrupt time window includes the transmission of the downlink signal and the uplink signal.
  • the eleventh possible implementation manner of the fourth aspect further includes a third receiving unit,
  • the third receiving unit is configured to receive an end time point of the current uplink signal sent by the base station.
  • the acquiring unit is further configured to acquire an end time point of the current uplink signal according to the first sending time point.
  • a base station including:
  • a determining unit configured to determine a first sending time point for the user equipment UE in the set of candidate sending time points; the first sending time point is a time point at which the UE sends the current uplink signal earliest, the first sending time point A candidate transmission time point set, where the candidate transmission time point set includes at least two candidate transmission time points;
  • the determining unit is further configured to: determine a second sending time point; the second sending time point is a sending time point of the useful signal in the current uplink signal; the second sending time point is not earlier than the first a transmission time point;
  • a sending unit configured to send a notification message to the UE to indicate the first sending time point and the second sending time point, or send a notification message to the UE to indicate the first sending time point;
  • a receiving unit configured to receive, according to the second sending time point, the current uplink signal sent by the UE
  • the candidate transmission time point is a time point at which the current uplink signal is sent immediately after the detection in the CCA time window is successful, and a pre-configured first time point is sent after the CCA time window is successfully detected. And sending any one of the pre-configured second time points of the current uplink time after the detection in the CCA time window is successful.
  • the base station may determine a first transmission time point at which the UE can transmit the current uplink signal, and a second transmission time point at which the UE sends the useful signal in the current uplink signal, and indicate to the UE the first transmission time point and/or a second sending time point, so that the UE determines the current uplink signal according to the first sending time point and the second sending time point.
  • the actual transmission time point that is, the UE adjusts the actual transmission time point according to the indication of the base station, so that the UE transmits the time point of the CCA random backoff because the first transmission time point determined by the base station is close to the reference UE, so the UE according to the first transmission time point and the The actual transmission time point of the current uplink signal determined by the second transmission time point is also the time point when the reference UE completes the CCA random backoff, so that each UE can be instructed to perform uplink signal transmission as much as possible, thereby reducing mutual interference between the UEs.
  • the base station may determine a first transmission time point at which the UE can transmit the current uplink signal, and a second transmission time point at which the UE sends the useful signal in the current uplink signal, and indicate to the UE the first transmission time point and/or
  • the second transmission time point is such that the UE determines the actual transmission time point of the current uplink signal according to the first transmission time point and the second transmission time point, that is, the UE adjusts the actual transmission time point according to the indication of the base station, so that the first time determined by the base station
  • the sending time point is close to the time point at which the reference UE completes the CCA random backoff.
  • the actual sending time point of the current uplink signal determined by the UE according to the first sending time point and the second sending time point is also the time when the CCA random backoff is completed close to the reference UE. Point, so that each UE can be instructed to perform uplink signal transmission as much as possible, thereby reducing mutual interference between UEs.
  • the sending unit is further configured to: after sending the notification message to the UE, send contention window information to the UE, the contention window The information is used to indicate a fallback initial value, and the fallback initial value is used for random backoff of the idle channel assessment;
  • the sending unit is further configured to send the current uplink signal to the UE End time point.
  • a user equipment UE including:
  • An acquiring unit configured to acquire a first sending time point, where the first sending time point is a time point at which the UE first sends a current uplink signal, where the first sending time point belongs to a set of candidate sending time points, and the candidate sending time
  • the set of time points includes at least two candidates Select the time of transmission;
  • a channel evaluation unit configured to perform an idle channel evaluation CCA operation by using an uplink channel
  • a determining unit configured to determine an actual sending time point of the current uplink signal according to the first sending time point and a result of the CCA operation
  • a sending unit configured to send the current uplink signal by using the uplink channel to be used from the actual sending time point
  • the candidate transmission time point is a time point at which the current uplink signal is sent immediately after the detection in the CCA time window is successful, and a pre-configured first time point is sent after the CCA time window is successfully detected. And sending any one of the pre-configured second time points of the current uplink time after the detection in the CCA time window is successful.
  • the first transmission time point is a time point determined by the base station to transmit the current uplink signal
  • the UE determines the actual transmission time point of the current uplink signal according to the first transmission time point and the result of the CCA operation, that is, the UE according to the base station.
  • the indication adjusts the actual transmission time point.
  • the UE determines, according to the first sending time point and the second sending time point, that the first sending time point determined by the base station is close to the time point at which the reference UE completes the CCA random backoff, that is, the time point at which the channel usage right is immediately transmitted.
  • the actual transmission time point of the current uplink signal is also the time point when the reference UE completes the CCA random backoff, so that each UE can be instructed to perform uplink signal transmission as much as possible, thereby reducing mutual interference between the UEs.
  • the acquiring unit is further configured to: before the channel assessment unit performs a CCA operation, acquire a second sending time point, where the second sending The time point is a transmission time point of the useful signal in the current uplink signal; the second transmission time point is not earlier than the first transmission time point.
  • the channel measurement unit is specifically configured to determine a fallback initial value, and according to the rollback initial value Perform a random backoff of the CCA;
  • the determining unit is configured to determine an actual sending time point of the current uplink signal according to the first sending time point and the second sending time point and the result of the random backoff.
  • the determining unit is specifically configured to: if the random backoff of the CCA is successful Point no later than the first sending time point, determining that the actual sending time point is not earlier than the first sending time point;
  • the first receiving unit is configured to receive contention window information sent by the base station
  • the channel evaluation unit is configured to determine the fallback initial value according to the contention window information; the contention window information is used to indicate the fallback initial value;
  • the second receiving unit is configured to receive a notification message sent by the base station
  • the acquiring unit is specifically configured to: acquire the first sending time point and the second sending time point according to the notification message received by the second receiving unit;
  • the first transmission time point is obtained.
  • the sending unit is further configured to: Determining, by the determining unit, that the actual sending time point is earlier than the second sending time point, sending between the actual sending time point and the second sending time point The padding signal in the current uplink signal starts to send the useful signal in the current uplink signal from the second transmission time point.
  • the channel evaluation unit is specifically configured to: use a first CCA time before the first sending time point CCA in the window;
  • the determining unit is specifically configured to: if the signal energy detected by the channel evaluation unit in the first CCA time window is not higher than an energy threshold, determine that the actual sending time point is the first sending time point .
  • the channel evaluation unit is further configured to: if the signal is detected in the first CCA time window The energy is higher than the energy threshold, and the CCA is performed in the second CCA time window before the third transmission time point; the third transmission time point is after the first transmission time point and in the Before the sending time point;
  • the determining unit is specifically configured to: if the signal energy detected by the channel assessment unit in the second CCA time window is not higher than the energy threshold, determine that the actual transmission time point is the third sending Time point.
  • the third sending time point belongs to the candidate sending time point set.
  • the uplink signal is in a current burst time window
  • the abrupt time window includes the transmission of the downlink signal and the uplink signal.
  • the eleventh possible implementation manner of the sixth aspect further includes a third receiving unit,
  • the third receiving unit is configured to receive an end time point of the current uplink signal sent by the base station.
  • the acquiring unit is further configured to acquire an end time point of the current uplink signal according to the first sending time point.
  • FIG. 1a is a schematic diagram of UE alignment transmission according to an embodiment of the present invention.
  • FIG. 1b is a schematic diagram of UE unaligned transmission according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of interaction in a communication system according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic flowchart of a method for transmitting an uplink signal according to Embodiment 2 of the present invention
  • FIG. 4 is a schematic diagram of a first transmission time point according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of a second transmission time point according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic flowchart of a method for transmitting an uplink signal according to Embodiment 3 of the present invention.
  • FIG. 7 is a structural block diagram of a base station according to Embodiment 4 of the present invention.
  • FIG. 8 is a structural block diagram of a UE according to Embodiment 5 of the present invention.
  • FIG. 9 is a block diagram showing another structure of a UE according to Embodiment 5 of the present invention.
  • FIG. 10 is a block diagram showing another structure of a UE according to Embodiment 5 of the present invention.
  • FIG. 11 is a block diagram showing another structure of a UE according to Embodiment 5 of the present invention.
  • Multi-user scheduling In the LTE communication system, in the same subframe, multiple communication terminals can simultaneously transmit signals or receive signals on the spectrum resources. That is, each user occupies part of the frequency domain resources, so that multiple users can be simultaneously multiplexed with spectrum resources.
  • Channel Listening Before a node occupies a channel to transmit a signal, it first needs to detect the channel.
  • the detection mode may include energy detection, signal detection, and the like.
  • Base station eNB or cell or access network device: Typically, it is a signal sender in the downlink communication link. In the uplink communication link, it is a signal receiver, and a sender of control information (transmitter control information).
  • the UE (terminal) is typically the sender of the signal in the uplink communication link.
  • the downlink communication link is the receiver of the signal.
  • the communication node obtains the permission to transmit signals on the channel in some way, and can be considered to obtain the right to use the channel.
  • the base station allocates channel resources through a scheduling algorithm, and the nodes that are scheduled are considered to have obtained channel usage rights.
  • the UE specifically complies with the communication mechanism of the first listening and the subsequent transmission, and if the detection channel result is idle and data transmission is possible, it can also be regarded as obtaining the channel usage right.
  • the UE For LAA UL (uplink) transmission, the UE needs to listen to the radio channel before the signal is transmitted. Only the UE that is scheduled by the base station and whose channel listening result is idle (that is, obtains the channel usage right) can perform signal transmission.
  • the LBT parameters of each scheduled UE for example, the initial value of the random backoff is different, the energy detection threshold for determining the busy state of the channel, the channel measurement condition, etc.
  • the time at which each UE sends a signal may be different, so that the node that performs the first transmission causes interference to the node that is sent later, so that after the node that is sent later is interfered, the channel listening result is busy, and thus the signal transmission cannot be performed, that is, between the UEs. Blocking each other.
  • FIG. 1a It is assumed that UE1, UE2, UE3, and UE4 are scheduled by the base station in subframe n. Before the data transmission at n+k time, each UE needs to perform a listening channel. If the channel is idle during the listening time, it is random. The backoff counter is subtracted from a certain value. Until the backoff counter is reduced to zero, the UE obtains the channel usage right, and the UE can send the uplink signal (that is, the PPDU in FIG. 1a).
  • the backoff counter is simultaneously reduced to zero, and the backoff counter will send the uplink signal at the same time, so there is no mutual interference between the UEs.
  • the parameters may be different.
  • the backoff counter configuration is different, so that the UE with a small backoff counter backoff initial value may be first reduced to zero, so that the UE performs signaling first. Referring to Figure 1a, for example UE2, UE3.
  • the UE2 and the UE3 that are the first ones will cause interference to the UE1 and the UE4 that are performing channel interception, so that the channel listening result of the UE1 and the UE4 is busy, so that the UE1 and the UE4 cannot obtain the channel usage right, and thus the signal cannot be transmitted.
  • the principle of the present invention is that the base station indicates to the UE that the UE can transmit the first uplink time point of the current uplink signal, and the UE determines the current uplink signal according to the first sending time point and the second sending time point (the time point when the UE sends the useful signal).
  • the actual transmission time point that is, the UE adjusts the actual transmission time point according to the indication of the base station, so that the UE transmits the time point of the CCA random backoff because the first transmission time point determined by the base station is close to the reference UE, so the UE according to the first transmission time point and
  • the actual transmission time point of the current uplink signal determined by the second transmission time point is also a time point when the reference UE completes the CCA random backoff, so that each UE can be instructed to perform uplink signal transmission as much as possible, thereby reducing mutual interference between the UEs.
  • the embodiment of the invention provides a communication system. As shown in FIG. 2, the communication system includes a base station 10 and at least one UE 20.
  • the embodiment of the present invention uses a UE scheduled by the base station as an example to describe a method for transmitting an uplink signal according to an embodiment of the present invention.
  • the base station 10 includes a processor 101, a transmitter 102, and a receiver 103, and a memory 104.
  • the UE 20 includes a processor 201, a transmitter 202, and a receiver 203 and a memory 204.
  • processor 101 and the processor 201 may be a central processing unit (English: central processing unit, abbreviated as CPU).
  • Transmitter 102, transmitter 202 can be implemented by a light emitter, an electrical transmitter, a wireless transmitter, or any combination thereof.
  • the light emitter can be a small form-factor pluggable transceiver (SFP) transmitter (English: transceiver), and the enhanced small form-factor pluggable (English: enhanced small form-factor pluggable, Abbreviation: SFP+) Transmitter or 10 Gigabit small form-factor pluggable (XFP) transmitter.
  • the electric transmitter can be an Ethernet (English: Ethernet) network connection Port controller (English: network interface controller, abbreviation: NIC).
  • the wireless transmitter can be a wireless network interface controller (English: wireless network interface controller, abbreviation: WNIC).
  • the receiver 103 and the receiver 203 can be implemented by an optical receiver, an electrical receiver, a wireless receiver, or any combination thereof.
  • the optical receiver can be a small package pluggable receiver, an enhanced small package pluggable receiver or a 10 gigabit small package pluggable receiver.
  • the electrical receiver can be an Ethernet network interface controller.
  • the wireless receiver can be a wireless network interface controller.
  • a memory 104 (memory 204) for storing program code and transmitting the program code to the processor 101 (processor 201), the processor 101 (processor 201) executing the following instructions in accordance with the program code.
  • the memory 104 may include a volatile memory (English: volatile memory), such as random-access memory (abbreviation: RAM); the memory 104 (memory 204) may also include non-volatile Memory (English: non-volatile memory), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or Solid state drive (English: solid-state drive, abbreviation: SSD).
  • the memory 104 (memory 204) may also include a combination of the above types of memories.
  • the method for transmitting an uplink signal includes the following steps:
  • the processor 101 determines a first transmission time point and a second transmission time point.
  • the first transmission time point is determined by the base station for the UE in the set of candidate transmission time points, and the first transmission time point is a time point at which the UE sends the current uplink signal earliest.
  • the candidate transmission time point set includes at least two candidate transmission time points.
  • the second transmission time point is a transmission time point of the useful signal in the current uplink signal.
  • the time point at which the current uplink signal is sent earliestly refers to the earliest time point at which the UE allows to transmit the current uplink signal.
  • the UE does not allow the uplink signal to be sent even if the CCA succeeds before the first transmission time point, but waits until the first transmission time point sends the current uplink signal or sends between the first transmission time point and the second transmission time point. Send the current uplink signal.
  • the second transmission time point here is after the first transmission time point, and is a transmission time point at which the UE sends the useful signal in the current uplink signal.
  • the so-called CCA success means that the UE detects that the signal energy is not higher than the energy threshold in the CCA time window, or the UE retreats the initial value in the CCA time window to zero.
  • the transmitter 102 sends a notification to the UE to indicate the first sending time point and the second sending time point.
  • the UE sends the current uplink signal according to the first sending time point and the second sending time point.
  • the notification message sent by the transmitter 102 to the UE may only indicate the first transmission time point, and the processor 201 of the UE determines a custom time point as the second transmission time point.
  • the receiver 203 receives the notification message, and the processor 201 acquires the first sending time point and the second sending time point.
  • the processor 201 acquires the first sending time point and the second sending time point according to the notification information. Alternatively, after obtaining the first transmission time point according to the notification information, it is determined that one subframe boundary (or symbol boundary) is the second transmission time point.
  • the processor 201 is to perform a CCA operation on the uplink channel.
  • the initial value of the fallback may be determined, and the random backoff of the idle channel evaluation CCA may be performed according to the backoff initial value determined by the determining unit.
  • the processor 201 needs to acquire the first transmission time point and the second transmission time point.
  • the CCA is performed within the CCA time window, where the processor 201 only needs to acquire the first transmission time point.
  • the processor 201 determines an actual transmission time point of the current uplink signal according to the first sending time point and the second sending time point and a result of the CCA operation.
  • the transmitter 102 sends a notification message to the UE to indicate only the first transmission time point, where the processor 201 determines a second transmission time point. And determining, according to the first sending time point and the second sending time point, and the result of the random backing, the current uplink letter. The actual transmission time point of the number.
  • the notification information only indicates the first transmission time point, where the processor 201 is based on the first transmission time point and the first CCA time window.
  • the detection result determines the actual transmission time point of the current uplink signal.
  • the transmitter 202 sends the current uplink signal by using the uplink channel to be used from the actual transmission time point.
  • the receiver 103 receives the current uplink signal sent by the UE from the second sending time point.
  • the candidate transmission time point is a time point at which the current uplink signal is sent immediately after the detection in the CCA time window is successful, and a pre-configured first time is sent after the CCA time window is successfully detected. Sending any one of the pre-configured second time points of the current uplink time after a time point and a successful detection in the CCA time window.
  • the UE may perform a random backoff (backoff counter reduction) of the CCA in the CCA time window, or may perform channel sensing with a one shot duration.
  • the pre-configured first time point may be a time point immediately after the self-defer is sent after the CCA time window is successfully detected, and the pre-configured second time point may be after the padding is performed after the CCA time window is successfully detected.
  • the time point of immediate transmission, in short, the first time point is different from the second time point.
  • application scenarios of the method provided by the embodiment of the present invention may include the following:
  • Scenario 1 The macro station and the small station work on the licensed spectrum and the unlicensed spectrum respectively by carrier aggregation.
  • the small station and the macro station are connected by an ideal backhaul link.
  • Scenario 2 The macro station works in the licensed spectrum, and the small station works on the licensed spectrum and the unlicensed spectrum through carrier aggregation.
  • the licensed spectrum and the unlicensed spectrum of the small station are connected by an ideal backhaul link.
  • the small station and the macro station are connected by an ideal or non-ideal backhaul link.
  • Scenario 3 The small station works on the licensed spectrum and the unlicensed spectrum through carrier aggregation.
  • the licensed spectrum and the unlicensed spectrum of the small station are connected by an ideal backhaul link.
  • the macro station does not have a wide range of coverage services.
  • the base station in the embodiment of the present invention may be a macro station in the foregoing three scenarios, and the information transmission between the UE and the UE may be performed by using an authorized spectrum or by using an unlicensed spectrum.
  • the base station may determine that the UE may send the first transmission time point of the current uplink signal, and indicate the first transmission time point and the second transmission time point to the UE, so that the UE is according to the first
  • the sending time point determines the actual transmission time point of the current uplink signal, that is, the UE adjusts the actual transmission time point according to the indication of the base station, so that the UE determines that the first transmission time point is close to the reference UE and completes the CCA random backoff time, so the UE
  • the actual transmission time point of the current uplink signal determined according to the first transmission time point is also a time point when the reference UE completes the CCA random backoff, so that each UE can be instructed to perform uplink signal transmission as much as possible, thereby reducing mutual interference between UEs.
  • the UE is not allowed to send an uplink signal even if the CCA succeeds before the first transmission time point, and may wait until the first transmission time point or the The current uplink signal is transmitted after the first transmission time point and before the second transmission time point.
  • An embodiment of the present invention provides a method for transmitting an uplink signal. As shown in FIG. 3, the method includes the following steps:
  • the base station determines a first sending time point and a second sending time point.
  • the first sending time point is a time point at which the UE first sends the current uplink signal
  • the second sending time point is a time point at which the UE sends the useful signal in the current uplink signal.
  • the useful signal here refers to the actual transmission of the UE to the base station. Valid information, not including padding information.
  • the second transmission time point can be understood as the time point that the UE determines that the UE sends the current uplink signal, but may not be the time point when the UE actually sends the current uplink signal.
  • the time point at which the current uplink signal is sent earliestly refers to the earliest time point at which the UE allows to transmit the current uplink signal.
  • the UE does not allow the uplink signal to be sent even if the CCA succeeds before the first transmission time point, but waits until the first transmission time point sends the current uplink signal or sends the current between the first transmission time point and the second transmission time point.
  • the second transmission time point here is after the first transmission time point, and is a transmission time point at which the UE sends the useful signal in the current uplink signal.
  • the first sending time point is determined by the base station for the user equipment UE in the set of candidate transmission time points.
  • the first transmission time point belongs to a candidate transmission time point set, and the candidate transmission time point set includes at least two candidate transmission time points.
  • the candidate transmission time point is a time point at which the current uplink signal is sent immediately after the detection in the CCA time window is successful, and a pre-configured first time point and CCA for transmitting the current uplink signal after the CCA time window is successfully detected. After the detection in the time window is successful, any one of the pre-configured second time points of the current uplink time is sent.
  • the UE may perform a CCA random backoff (backoff counter reduction) in the CCA time window, and the so-called CCA time window detection success may be that the random backoff initial value is reduced to zero.
  • the UE can also perform channel sounding with one shot in the CCA time window.
  • the so-called CCA time window detection succeeds in detecting that the signal energy is not higher than the energy threshold in the CCA time window.
  • the pre-configured first time point may be a time point immediately after the self-defer is sent after the CCA time window is successfully detected, and the pre-configured second time point may be after the padding is performed after the CCA time window is successfully detected.
  • the time point of immediate transmission in short, the first time point is different from the second time point.
  • immediate transmission is used to illustrate that if the time point of the random backoff of the CCA is successful at the sub-frame (or symbol) boundary, the so-called immediate transmission starts from the subframe boundary (or symbol boundary); if CCA The time point for the successful random backoff is not at the sub-frame (or symbol) boundary, but also has to be sent by self-defer to the sub-frame boundary (or symbol boundary).
  • the first preset duration and the second preset duration may be relative times, for example, the start time is the first symbol of the nth subframe, and the duration is 0.5 us. It may also be an absolute time, for example, the start time is the first symbol of the nth subframe, and the end time is the fifth symbol of the nth subframe.
  • the UE may perform padding (ie, send a padding signal to the base station), or may perform a self-defer operation, which may or may not listen to the channel.
  • the CCA can be padded for a certain period of time during the random backoff process, or it can be a complete uninterrupted random backoff process.
  • the first preset duration and the second preset duration may be fixed time intervals, for example, 16 us, 25 us, or a predefined fixed time interval obtained by other UEs. It can also be a variable time interval. For example, depending on the type of service, the time interval can be m(us)+N*slot(us), where m is a fixed time interval, depending on signal processing time and transmission sum. Receive signal delay, for example, 16us. N is a non-negative integer, and the value of different service types N may be different.
  • a slot is a basic unit of time interval, for example, 9us.
  • the first preset duration and the second preset duration may be defined by the base station side, and are notified or indicated to the UE by the base station. Or the UE's own definition. Or, when the base station notifies the UE that the reserved channel information ends, the time interval from the end of the reserved channel information to the subframe boundary (or the symbol boundary or the slot boundary) is the time interval.
  • the base station may determine that each scheduled UE completes the CCA random backoff. (that is, the time when the initial value of the random backoff is reduced to zero), it may be determined that a UE that has completed the CCA random backoff is a reference UE, and when the first time point is determined, the reference UE is referenced to complete the CCA random backoff.
  • the time point is such that the first transmission time point is as close as possible to the time point at which the reference UE completes the CCA random backoff.
  • the UE is caused to send according to the first sending time point and the second sending time
  • the current uplink signal is transmitted at a time point.
  • the base station only indicates the first transmission time point by using the notification information
  • the UE may obtain the first transmission time point according to the notification information, and the UE may determine the second transmission time point by itself, which may be a convention in the LTE system.
  • the time point is determined as the second transmission time point, such as a subframe boundary, a symbol boundary, and the like.
  • the UE may be a UE scheduled by an eNB (ie, the base station). Specifically, the eNB may schedule a UE waiting to transmit a UL signal (uplink signal) by using an uplink scheduling (UL grant).
  • the UL grant can be carried on an unlicensed carrier and/or an authorized carrier.
  • the UE acquires a first sending time point and a second sending time point.
  • the UE receives the notification message sent by the base station, and obtains the first sending time point and/or the second sending time point according to the notification message.
  • the notification message may carry the first transmission time point and/or the second transmission time point
  • the UE parses the notification message, and acquires the first transmission time point and/or the second transmission time point.
  • the indication information indicating the first sending time point and/or the second sending time point carried by the notification message the UE acquiring the notification information according to the indication information to carry the first sending time point and/or the second Send time point.
  • the base station indicates the first transmission time point
  • the UE itself determines the second transmission time point. That is to say, the second transmission time point may be acquired by the UE according to the indication of the base station, or may be a time point conventionally established in the LTE system, such as a subframe boundary, a symbol boundary, and the like.
  • the first transmission time point is in the subframe n, but not the subframe boundary, and the boundary of the subframe n may be determined as the second transmission time point.
  • the first sending time point may be a time point at which the current uplink signal is sent immediately after the CPA random backoff success (backoff counter is reduced to zero), as shown in FIG. 4, the first sending time point corresponding to UE1.
  • the time point at which the current uplink signal is sent immediately after one shot is executed may be, as shown in FIG. 4, the first transmission time point corresponding to UE2, and UE2 may perform channel sounding during one shot or may not perform channel sounding.
  • the base station sends a fallback initial value or contention window information to the UE.
  • the base station sends contention window (CW) information to the UE, so that the UE determines a backoff initial value according to the contention window information, and performs random backoff of the idle channel evaluation CCA; After indicating the back-off initial value, the UE may determine a back-off initial value according to the contention window information.
  • the base station and the UE maintain the same contention window, and the contention window includes four back-off initial values, which are represented by 00, 01, 10, and 11, respectively, where 00, 01, 10, and 11 are contention window information, if the base station If the indication is 00, the UE may determine its corresponding initial value of the backoff according to 00.
  • the base station sends the back-off initial value to the UE, so that the UE performs random back-off of the idle channel assessment CCA according to the back-off initial value.
  • the base station may also send the contention window information to the UE, and the UE determines a back-off initial value according to the multiple back-off initial values included in the contention window information sent by the base station.
  • the length of the rollback time Q may be predefined, for example, 1 us, 9 us, or the like, or a variable length of time.
  • the length of time may be configured to be different according to different service types.
  • the UE performs a random backoff of the CCA according to the initial value of the backoff.
  • the UE may receive the initial value of the backoff sent by the base station and perform random backoff of the CCA according to the initial value of the backoff.
  • the initial value of the fallback is determined according to the contention window information sent by the base station.
  • the UE When the UE detects that the inactive channel is idle, it subtracts a value from the initial value of the backoff, and detects that the inactive channel is idle again, and then subtracts the value until the initial value of the backoff is reduced to zero. (ie, the random backoff of CCA is successful).
  • the UE determines an actual sending time point of the current uplink signal according to the first sending time point, the second sending time point, and the result of the random backoff.
  • the actual transmission time point that is, the time point at which the UE actually performs uplink transmission may be earlier than the time point at which the UE transmits the useful signal in the current uplink signal.
  • the UE determines that the actual sending time point is not earlier than the first sending time point. That is to say, even if the random backoff of the CCA is successful before the first transmission time point, the UE needs to wait at the first transmission time point to start transmitting the current uplink signal.
  • the actual transmission time point is the first transmission time point.
  • the UE determines that the actual sending time point is not earlier than The time point at which the random backoff is successful is not later than the second sending time point. That is, when the UE completes the random backoff of the CCA between the first transmission time point and the second transmission time point (the initial value of the backoff is reduced to zero), the actual transmission time point of the UE is at the time when the random backoff succeeds. Two transmission time points between. Preferably, the actual transmission time point is the second transmission time point.
  • the actual transmission time point C is after the first transmission time point A, or between the first transmission time point A and the second transmission time point B.
  • the UE sends the current uplink signal by using the uplink channel to be used from the actual sending time point.
  • the base station receives, according to the second sending time point, the current uplink signal sent by the UE.
  • the base station must start receiving the uplink signal at the second transmission time point.
  • the time point at which the UE transmits an uplink signal depends on the time indicated by the base station scheduling the UL scheduling information (ie, UL grant) of the UE.
  • the base station n transmits UL scheduling information at a time
  • the UE transmits the UL signal at time n+k.
  • the value of k is related to the subframe configuration. Once the self-detection configuration is fixed, the k value is fixed.
  • the UE In the LAA, after the base station transmits the UL scheduling information, the UE also needs to listen to the used channel, and judges whether the channel usage right is obtained according to the result of the channel listening.
  • the UE can only send an uplink signal after the UE is scheduled by the base station and the channel usage right is obtained. Therefore, the existing LTE uplink scheduling does not indicate the moment when the UE actually transmits the uplink signal.
  • the UE because the channel conditions of the scheduled UEs are different, and the LBT parameters are different, the time at which each UE sends the uplink signal is different. Therefore, the UE may perform channel measurement when other UEs occupy the channel, and the UE considers that the channel is unavailable.
  • the uplink signal is not transmitted at the time of uplink signal transmission, thereby causing mutual interference between UEs that are not simultaneously transmitted.
  • the base station may determine a first transmission time point at which the UE can transmit the current uplink signal, and a second transmission time point at which the UE sends the useful signal in the current uplink signal, and indicate to the UE the first transmission time point and/or
  • the second transmission time point is such that the UE determines the actual transmission time point of the current uplink signal according to the first transmission time point and the second transmission time point, that is, the UE adjusts the actual transmission time point according to the indication of the base station, so that the first time determined by the base station
  • the sending time point is close to the time point at which the reference UE completes the CCA random backoff.
  • the actual sending time point of the current uplink signal determined by the UE according to the first sending time point and the second sending time point is also the time when the CCA random backoff is completed close to the reference UE. Point, so that each UE can be instructed to perform uplink signal transmission as much as possible, thereby reducing mutual interference between UEs.
  • the base station sends an end time point of the current uplink signal to the UE.
  • the UE receives the end time point of the current uplink signal sent by the base station.
  • the UE acquires an end time point of the current uplink signal according to the first sending time point.
  • the base station may indicate the transmission duration of the current uplink signal, and the base station may determine the end time of the current uplink signal according to the actual transmission time point and the transmission duration indicated by the base station.
  • the UE determines that the actual transmission time point is earlier than the second transmission time point, the UE is in the actual transmission time point to the second transmission time point. Transmitting a padding signal in the current uplink signal, and transmitting a useful signal in the current uplink signal from the second transmission time point.
  • the content of the padding signal is not limited herein, and may be a sequence, a reference signal, data information, etc., and the padding signal is sent between the actual transmission time point and the second transmission time point, because the actual transmission time determined by the UE according to the indication of the base station.
  • the UE Before the second transmission time point, in order not to cause interference to other UEs performing CCA, the UE needs to occupy the channel from the actual transmission time point, but the actual transmission time point is different from the second transmission time point, so it cannot be sent useful.
  • the signal can be occupied by sending a padding signal padding.
  • the UE may send the padding by reserving the wireless channel.
  • the starting time of the reserved wireless channel may be a subframe boundary, a slot boundary, a symbol boundary, and any time position in one subframe. For example, after the UE randomly returns, the UE immediately sends the padding time through the reserved wireless channel.
  • the end time of the reserved radio channel information may be a subframe boundary, a slot boundary, a symbol boundary, and an arbitrary time position of the subframe.
  • the information included in the padding sent by the UE through the reserved wireless channel can be obtained by the following methods: a dynamic signaling notification sent by the UE through the base station (eg, UL grant), and/or a semi-static, static signaling (eg, broadcast letter today)
  • the radio resource control information RRC obtains the information.
  • the base station may determine a first transmission time point at which the UE can transmit the current uplink signal, and a second transmission time point at which the UE sends the useful signal in the current uplink signal, and indicate to the UE.
  • the first sending time point and/or the second sending time point so that the UE determines the actual sending time point of the current uplink signal according to the first sending time point and the second sending time point, that is, the UE adjusts the actual sending time point according to the indication of the base station, In this way, since the first transmission time point determined by the base station is close to the time point at which the reference UE completes the CCA random backoff, the actual transmission time point of the current uplink signal determined by the UE according to the first transmission time point and the second transmission time point. It is also a point in time when the reference UE completes the CCA random backoff, so that each UE can be instructed to perform uplink signal transmission as much as possible, thereby reducing mutual interference between UEs.
  • the present invention also provides a method for transmitting an uplink signal. As shown in FIG. 6, the method includes the following steps:
  • the base station determines a first sending time point.
  • the base station sends a notification message to the UE to indicate the first sending time point.
  • the UE acquires a first sending time point.
  • the UE performs CCA in a first CCA time window before the first sending time point.
  • the first CCA time window may be a time interval before the first transmission time point, and energy measurement is performed within the CCA time window. If the energy measured by the UE in the first CCA time window is higher than an energy threshold, the UE may perform the CCA time window again at any time point between the first transmission time point and the second transmission time point. The energy measurement inside, that is, step S306 is performed.
  • the UE performs CCA in the second CCA time window before the third transmission time point; if the UE is in If the signal energy detected in the second CCA time window is not higher than the energy threshold, it is determined that the actual transmission time point is the third transmission time point.
  • the third transmission time point is after the first transmission time point and before the second transmission time point.
  • the second transmission time point may be that the base station indicates to the UE by the notification information in step S302, or may be one subframe boundary (or symbol boundary) determined by the UE before step S306.
  • the UE measures energy in a CCA time window before each symbol between the first time point and the second time point, and at the same time at the first time point and the second time point Do not do the CCA process at other points in time. Until the energy measured in the CCA time window is not higher than the energy threshold, the actual data transmission time is not earlier than the second transmission time point.
  • the UE sends the current uplink signal by using the uplink channel to be used from the actual transmission time point.
  • the base station receives the current uplink signal sent by the UE, starting from a second sending time point.
  • the second transmission time point is a time point determined by the base station to send the useful signal in the current uplink signal by the UE.
  • the useful signal here refers to the effective information that the UE actually transmits to the base station, and does not include the padding information.
  • the second transmission time point can be understood as the time point that the UE determines that the UE sends the current uplink signal, but may not be the time point when the UE actually sends the current uplink signal.
  • the implementation manner of performing channel measurement detection signal energy in the CCA time window is applied to a scenario in which the current uplink signal is sent in a current burst time window.
  • the transmission time window includes a downlink signal and a transmission of the uplink signal. Outside the burst time window, it does not apply.
  • the base station may determine that the UE may send the first transmission time point of the current uplink signal, and indicate the first transmission time point and/or the second transmission time point to the UE, so that the UE according to the UE
  • the first transmission time point determines the actual transmission time point of the current uplink signal, that is, the UE adjusts the actual transmission time point according to the indication of the base station, so that the first transmission time point determined by the base station is close to the reference UE to complete the CCA random backoff time point (That is, the time point at which the channel usage right immediately transmits the uplink signal is obtained.
  • the actual transmission time point of the current uplink signal determined by the UE according to the first transmission time point is also the time point at which the CCA random backoff is completed close to the reference UE, so that each can be instructed.
  • the UE performs uplink signal transmission as much as possible to reduce mutual interference between UEs.
  • the embodiment of the present invention provides a base station 40.
  • the base station 40 includes a determining unit 401, a sending unit 402, and a receiving unit 403.
  • a determining unit 401 configured to be a user equipment UE in the set of candidate transmission time points Determining a first transmission time point; the first transmission time point is a time point at which the UE sends the current uplink signal earliest, the first transmission time point belongs to a candidate transmission time point set, and the candidate transmission time point set includes at least Two candidate transmission time points.
  • the determining unit 401 is further configured to determine a second sending time point; the second sending time point is a sending time point of the useful signal in the current uplink signal.
  • the sending unit 402 is configured to send a notification message to the UE to indicate the first sending time point and the second sending time point, or send a notification message to the UE to indicate the first sending time point, so that The UE sends the current uplink signal according to the first sending time point and the second sending time point.
  • the receiving unit 403 is configured to receive, according to the second sending time point, the current uplink signal sent by the UE.
  • the candidate transmission time point is a time point at which the current uplink signal is sent immediately after the detection in the CCA time window is successful, and a pre-configured first time point is sent after the CCA time window is successfully detected. And sending any one of the pre-configured second time points of the current uplink time after the detection in the CCA time window is successful.
  • the UE may perform a random backoff (backoff counter reduction) of the CCA in the CCA time window, or may perform channel sensing with a one shot duration.
  • the pre-configured first time point may be a time point immediately after the self-defer is sent after the CCA time window is successfully detected, and the pre-configured second time point may be after the padding is performed after the CCA time window is successfully detected.
  • the time point of immediate transmission, in short, the first time point is different from the second time point.
  • the time point at which the current uplink signal is sent earliestly refers to the earliest time point at which the UE allows to transmit the current uplink signal.
  • the UE does not allow the uplink signal to be sent even if the CCA succeeds before the first transmission time point, but waits until the first transmission time point sends the current uplink signal or sends the current between the first transmission time point and the second transmission time point.
  • the second transmission time point here is after the first transmission time point, and is a transmission time point at which the UE sends the useful signal in the current uplink signal.
  • the sending unit 402 is further configured to send a notification message to the UE, and then The UE sends the contention window information, so that the UE determines the fallback initial value according to the contention window information, and performs a random backoff of the idle channel assessment CCA; the contention window information is used to indicate the fallback initial value.
  • the sending unit 402 is further configured to send an end time point of the current uplink signal to the UE.
  • the sending unit 402 in this embodiment may be the transmitter 102 of the base station; the receiving unit 403 may be the receiver 103 of the base station, and the transmitter 102 may also be integrated with the receiver 103 to form a transceiver.
  • the determining unit 401 may be a separately set processor 101, or may be integrated in a processor of the base station, or may be stored in the memory 104 of the base station in the form of program code, and is called by a certain processor of the base station. The function of the above determining unit 401 is performed.
  • the processor described herein may be a central processing unit (CPU) or an application specific integrated circuit (ASIC).
  • the base station may determine that the UE may send the first transmission time point of the current uplink signal, and the second transmission time point that the UE sends the useful signal in the current uplink signal, and indicate the first transmission time point to the UE. And the second transmission time point, so that the UE determines the actual transmission time point of the current uplink signal according to the first transmission time point and the second transmission time point, that is, the UE adjusts the actual transmission time point according to the indication of the base station, so that the base station determines The first transmission time point is close to the time point at which the reference UE completes the CCA random backoff.
  • the actual transmission time point of the current uplink signal determined by the UE according to the first transmission time point and the second transmission time point is also close to the reference UE to complete the CCA random return.
  • the time point of the retreat so that each UE can be instructed to perform uplink signal transmission as much as possible, thereby reducing mutual interference between UEs.
  • the embodiment of the present invention provides a UE 50.
  • the UE 50 includes an acquiring unit 501, a channel evaluating unit 502, a determining unit 503, and a sending unit 504.
  • the acquiring unit 501 is configured to acquire a first sending time point, where the first sending time point is a time point at which the UE sends the current uplink signal, and the first sending time point belongs to a set of candidate sending time points, where the candidate The set of transmission time points includes at least two candidate transmission time points.
  • the channel evaluation unit 502 is configured to perform an idle channel evaluation CCA operation with the uplink channel.
  • the determining unit 503 is configured to determine an actual sending time point of the current uplink signal according to the first sending time point and the result of the CCA operation.
  • the sending unit 504 is configured to send the current uplink signal by using the uplink channel to be used from the actual transmission time point.
  • the candidate transmission time point is a time point at which the current uplink signal is sent immediately after the detection in the CCA time window is successful, and a pre-configured first time point is sent after the CCA time window is successfully detected. And sending any one of the pre-configured second time points of the current uplink time after the detection in the CCA time window is successful.
  • the time point at which the current uplink signal is sent earliestly refers to the earliest time point at which the UE allows to transmit the current uplink signal.
  • the UE does not allow the uplink signal to be sent even if the CCA succeeds before the first transmission time point, but waits until the first transmission time point sends the current uplink signal or sends the current between the first transmission time point and the second transmission time point.
  • the second transmission time point here is after the first transmission time point, and is a transmission time point at which the UE sends the useful signal in the current uplink signal.
  • the acquiring unit 501 is further configured to: before the channel assessment unit performs the CCA operation, acquire a second transmission time point, where the second transmission time point is a transmission time point of the useful signal in the current uplink signal; The second transmission time point is not earlier than the first transmission time point.
  • the channel evaluation unit 502 is specifically configured to: determine a backoff initial value, and perform a random backoff of the CCA according to the backoff initial value;
  • the determining unit 503 is specifically configured to determine an actual sending time point of the current uplink signal according to the first sending time point and the second sending time point and the result of the random backoff.
  • the determining unit 503 is specifically configured to: if the time point of the random backoff of the CCA is successful, not later than the first sending time point, determining that the actual sending time point is not earlier than the first sending time point ;
  • the UE 50 further includes a first receiving unit 505.
  • the first receiving unit 505 is configured to receive contention window information sent by the base station.
  • the channel evaluation unit 502 is specifically configured to: determine the fallback initial value according to the contention window information; and the contention window information is used to indicate the fallback initial value;
  • the first receiving unit 505 receives the back-off initial value sent by the base station, and the channel estimating unit 502 determines the back-off initial value received by the first receiving unit 505 as the back-off initial value;
  • the channel evaluation unit 502 acquires contention window information, and determines the fallback initial value according to the contention window information.
  • the UE 50 further includes a second receiving unit 506.
  • the second receiving unit 506 is configured to receive a notification message sent by the base station
  • the obtaining unit 501 is specifically configured to acquire, according to the notification information received by the second receiving unit 506, the first sending time point and the second sending time point;
  • the first transmission time point is obtained.
  • the sending unit 504 is further configured to: if the determining unit 503 determines that the actual sending time point is earlier than the second sending time point, between the actual sending time point and the second sending time point Transmitting a padding signal in the current uplink signal, and transmitting a useful signal in the current uplink signal from the second transmission time point.
  • the channel evaluation unit 502 is specifically configured to perform CCA in a first CCA time window before the first transmission time point.
  • the determining unit 503 is specifically configured to: if the signal energy detected by the channel assessment unit in the first CCA time window is not higher than an energy threshold, determine the location The actual transmission time point is the first transmission time point.
  • the channel evaluation unit 502 is further configured to: if the signal energy detected in the first CCA time window is higher than the energy threshold, in the second CCA time window before the third transmission time point Performing CCA; the third transmission time point is after the first transmission time point and before the second transmission time point.
  • the determining unit 503 is specifically configured to: if the signal energy detected by the channel assessment unit in the second CCA time window is not higher than the energy threshold, determine that the actual transmission time point is the third Send time point.
  • the third transmission time point belongs to the candidate transmission time point set. Additionally, the uplink signal is within a current burst time window, and the abrupt time window includes transmission of a downlink signal and the uplink signal.
  • the UE 50 further includes a third receiving unit 507.
  • the third receiving unit 507 is configured to receive an end time point of the current uplink signal sent by the base station.
  • the obtaining unit 501 is further configured to acquire an end time point of the current uplink signal according to the first sending time point.
  • the sending unit 504 in this embodiment may be the transmitter 203 of the UE, and the first receiving unit 505, the second receiving unit 506, and the third receiving unit 507 may be the receiver 202 of the UE.
  • the obtaining unit 501, the determining unit 503, and the channel evaluating unit 502 may be separately set up by the processor 201, or may be integrated in a processor of the UE, or may be stored in the memory 204 of the UE in the form of program code.
  • the functions of the above obtaining unit 501, determining unit 503, and channel evaluating unit 502 are called and executed by a certain processor of the UE.
  • the processor described herein can be a central processing unit or a specific integrated circuit.
  • the UE provided by the embodiment of the present invention can obtain the first transmission time point of the current uplink signal, and determine the actual transmission time point of the current uplink signal according to the first transmission time point and the result of the CCA operation, that is, the UE adjusts according to the indication of the base station.
  • the actual transmission time point is such that, since the first transmission time point determined by the base station is close to the time point at which the reference UE completes the CCA random backoff, the actual transmission time point of the current uplink signal determined by the UE according to the first transmission time point is also close to the reference UE.
  • Complete the CCA random retreat At the time point, it is possible to instruct each UE to perform uplink signal transmission as much as possible, thereby reducing mutual interference between UEs.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a readable storage medium. Based on such understanding, the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a device (which may be a microcontroller, chip, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种上行信号的传输方法、UE及基站,涉及通信领域,用于指示UE尽可能同时进行上行信号发送,能够减少UE之间的相互干扰。包括:基站为UE确定第一发送时间点及第二发送时间点;所述第一发送时间点为所述UE最早发送当前上行信号的时间点,第二发送时间点是所述当前上行信号中的有用信号的发送时间点;第二发送时间点不早于第一发送时间点;基站向UE发送通知信令指示第一发送时间点和第二发送时间点,或向UE发送通知信令指示第一发送时间点。UE根据第一发送时间点和第二发送时间点确定发送所述当前上行信号的实际发送时间点。UE从实际发送时间点开始发送当前上行信号,基站从所述第二发送时间点开始接收所述当前上行信号。

Description

一种上行信号的传输方法、UE及基站 技术领域
本发明涉及通信领域,尤其涉及一种上行信号的传输方法、UE及基站。
背景技术
频谱包括未授权频谱以及授权频谱。资源要大于授权频谱资源。在未授权频谱上共存有多种无线通信制式,例如,在5GHz频段上共存有LAA(Licensed-Assisted Access,授权频谱辅助接入)和Wi-Fi。为了保证LAA和Wi-Fi的共存,引入了Listen Before Talk(LBT,先听后发)机制。即LAA节点在信号发送之前,先进行信道侦听,只有侦听到信道空闲,才能发送信号。
LAA UL(uplink,上行链路)传输一般采用多用户调度,UE基于eNB的调度发送上行数据,同时,UE在发送上行数据之前,需要对无线信道进行侦听。只有被eNB调度到的,且信道侦听结果是空闲的UE才能进行信号发送。
而参与信道竞争的UE(被eNB调度的UE)的LBT机制和参数不尽相同,和/或信道传播条件不同,都会造成各个UE发送上行数据的时刻可能不同,从而先进行发送的UE会对后发送的UE造成干扰,使得后发送的UE信道侦听结果为忙,从而不能进行上行数据发送,造成UE之间互相干扰。
发明内容
本发明的实施例提供一种上行信号的传输方法、UE及基站,减少不同UE同时发送上行信号时造成的相互干扰。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,公开了一种上行信号的传输方法,包括:
首先,基站在候选发送时间点集合中为用户设备UE确定第一发送时间点。所述第一发送时间点为所述UE最早发送当前上行信 号的时间点。其中,该最早发送当前上行信号的时间点,指的是UE允许发送当前上行信号的最早时间点。UE在该第一发送时间点之前即使CCA成功也不允许发送上行信号,而是等到该第一发送时间点发送当前上行信号或在该第一发送时间点与第二发送时间点之间发送当前上行信号。这里的第二发送时间点在第一发送时间点之后,是UE发送所述当前上行信号中的有用信号的发送时间点。
另外,所述第一发送时间点属于候选发送时间点集合,所述候选发送时间点集合包括至少两个候选发送时间点,也就是说第一发送时间点有多种可能。
需要说明的是,基站是根据参考UE发送上行信号的时刻确定所述第一发送时间点的。具体地,记录有各个被调度的UE的LBT参数(如:随机回退初始值、随机回退幅度值、随机回退起始时刻),因此基站可以确定出各个被调度的UE完成CCA(clear channel assessment,净空信道评测)随机回退(即随机回退初始值减为零)的时间点,可以确定某个完成CCA随机回退较晚的UE为参考UE,在确定第一时间点时参考了该参考UE完成CCA随机回退的时间点,使得第一发送时间点尽可能靠近该参考UE完成CCA随机回退的时间点。总之,基站能够确定参考UE获得信道使用权即刻发送上行信号的时间点,也就能够根据参考UE发送上行信号的时间点为被调度的其他UE确定出一个最早发送上行信号的第一发送时间点,以使得UE发送上行信号的实际发送时间点尽可能靠近参考UE发送上行信号的时间点,使得各个UE尽可能对齐发送。
另外,基站还会确定第二发送时间点;所述第二发送时间点是所述当前上行信号中的有用信号的发送时间点,所述第二发送时间点不早于所述第一发送时间点。这里的有用信号是指UE实际要向基站传输的有效信息,并不包括填充信息。第二发送时间点可以理解为是基站认定的UE发送当前上行信号的时间点,但有可能并不是UE实际发送所述当前上行信号的时间点。
其次,所述基站向所述UE发送通知信今指示所述第一发送时 间点和所述第二发送时间点,或向所述UE发送通知信今指示所述第一发送时间点。所述UE根据所述第一发送时间点和所述第二发送时间点发送所述当前上行信号。需要说明的是若基站通过通知信今指示第一发送时间点,UE则确定第二发送时间点,并根据通知信今获取第一发送时间点。
最后,所述基站从所述第二发送时间点开始接收所述UE发送的所述当前上行信号。这里,虽然UE并不一定在所述第二发送时间点发送所述当前上行信号,但基站一定会在所述第二发送时间点开始接收上行信号。
现有LTE中,UE发送上行信号(即UL信号)的时间点,取决于基站调度该UE的UL调度信息(即UL grant)指示的时间。示例的,基站n时刻发送UL调度信息,UE则在n+k时刻发送UL信号。其中,对于某一通信模式而言,k值是固定不变的。如:对于FDD(Frequency Division Duplexing,频分双工)而言,k=4。
在LAA中,基站发送UL调度信息之后,UE还需要对待用信道进行侦听,根据信道侦听的结果来判断是否获得信道使用权。只有当UE被基站调度且获得信道使用权后,该UE才能发送上行信号。因此,现有LTE上行调度并不能指示UE实际发送上行信号的时刻。另外,由于被调度的UE的信道条件不同、LBT参数不同等,都会使得各个UE发送上行信号的时刻不同,因此UE可能在其他UE占用信道时进行信道测量,该UE认为信道不可用,在应该进行上行信号发送的时刻不会发送上行信号,从而造成不同时发送的UE之间的相互干扰。
本发明中,基站可以确定UE可以最早发送当前上行信号的第一发送时间点,以及UE发送当前上行信号中的有用信号的第二发送时间点,并向UE指示第一发送时间点和/或第二发送时间点,使得UE根据第一发送时间点和第二发送时间点确定当前上行信号的实际发送时间点,即UE根据基站的指示调整实际发送时间点,这样,由于基站确定的第一发送时间点靠近参考UE完成CCA随机回 退的时间点,因此UE根据第一发送时间点和第二发送时间点确定的当前上行信号的实际发送时间点也是靠近参考UE完成CCA随机回退的时间点,这样就可以指示各个UE尽可能同时进行上行信号发送,减少UE之间的相互干扰。
其中,所述候选发送时间点是CCA时间窗内检测成功后立即发送所述当前上行信号的时间点、所述CCA时间窗内检测成功后发送所述当前上行信号的预配置的第一时间点以及CCA时间窗内检测成功后发送所述当前上行时刻的预配置的第二时间点中的任一个时间点。
具体地,UE在CCA时间窗可以进行CCA的随机回退(backoff counter减减),也可以是进行时长为one shot的信道侦听。预配置的第一时间点可以是所述CCA时间窗内检测成功后进行self-defer后立即发送的时间点,预配置的第二时间点可以是所述CCA时间窗内检测成功后进行padding后立即发送的时间点,总之,第一时间点与第二时间点是不同的。
这里,对上述“立即发送”做以说明,若CCA的随机回退成功的时间点在子帧(或符号)边界,所谓立即发送即从这个子帧边界(或符号边界)开始发送;若CCA的随机回退成功的时间点不在在子帧(或符号)边界,则可以通过自回退到这个子帧边界(或符号边界)才开始发送。
这里的第一预设时长、第二预设时长可以是相对时间,如:起始时刻为第n子帧的第1个符号,时长为0.5us。也可以是绝对时间,如:起始时刻为第n子帧的第1个符号,结束时刻为第n子帧的第5个符号。第一预设时长、第二预设时长内UE可以进行padding(即向基站发送填充信号),也可以进行self-defer(自回退)操作,可以侦听信道,也可以不侦听信道。
另外,需要说明的是,CCA的随机回退过程中可以进行一定时长的padding,也可以是完整的不间断的随机回退过程。
结合第一方面,在第一方面的第一种可能的实现方式中,所述 基站向所述UE发送通知信今之后,所述方法还包括:
所述基站向所述UE发送竞争窗口信息,所述竞争窗口信息用于指示回退初始值,所述回退初始值用于空闲信道测评的随机回退。所述UE根据所述竞争窗口信息确定回退初始值,进行空闲信道测评CCA的随机回退。UE可以根据竞争窗口信息确定出一个回退初始值。示例的,基站与UE维护了相同的竞争窗口,竞争窗口包括四个回退初始值,分别用00、01、10、11表示,其中00、01、10、11均为竞争窗口信息,若基站指示00,UE则可以根据00确定出其对应的回退初始值。当然,基站与UE预先维护了竞争窗口信息与初始值的对应关系,如:00、01、10、11分别对应的回退初始值。二者维护的对应关系是相同的,同一个竞争窗口信息在基站与UE均对应相同的回退初始值。
或,所述基站向所述UE发送所述回退初始值,所述回退初始值用于空闲信道测评的随机回退。UE可以根据所述回退初始值进行空闲信道测评CCA的随机回退。
另外,对CCA的随机回退做以解释说明,UE在特定时刻(可以是基站指示的)开始对信道进行CCA,一旦测量到信号强度值低于门限值,则将回退初始值减去一定数值(上述回退幅度值),继续进行CCA,测量到信号强度值低于门限值则继续减去一定数值,如此往复,直至回退初始值减为零。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述方法还包括:
所述基站向所述UE发送所述当前上行信号的结束时间点。
第二方面,公开了一种上行信号的传输方法,包括:
首先,UE获取第一发送时间点,所述第一发送时间点为所述UE最早发送当前上行信号的时间点,所述第一发送时间点属于候选发送时间点集合,所述候选发送时间点集合包括至少两个候选发送时间点。其中,该最早发送当前上行信号的时间点,指的是UE允许发送当前上行信号的最早时间点。UE在该第一发送时间点之前即 使CCA成功也不允许发送上行信号,而是等到该第一发送时间点发送当前上行信号或在该第一发送时间点与第二发送时间点之间发送当前上行信号。这里的第二发送时间点在第一发送时间点之后,是UE发送所述当前上行信号中的有用信号的发送时间点。
其中,第二发送时间点可以是UE根据基站的指示获取的,也可以是LTE***中约定俗成的时间点,如:子帧边界、符号边界等。
其次,所述UE对待用上行信道执行CCA操作;
最后,所述UE根据所述第一发送时间点以及所述CCA操作的结果确定所述当前上行信号的实际发送时间点。所谓实际发送时间点即UE实际进行上行发送的时间点,可以早于UE发送当前上行信号中的有用信号的时间点。
所述UE从所述实际发送时间点开始通过所述对待用上行信道发送所述当前上行信号。
其中,所述候选发送时间点是CCA时间窗内检测成功后立即发送所述当前上行信号的时间点、所述CCA时间窗内检测成功后发送所述当前上行信号的预配置的第一时间点以及CCA时间窗内检测成功后发送所述当前上行时刻的预配置的第二时间点中的任一个时间点。
具体地,UE在CCA时间窗可以进行CCA的随机回退(backoff counter减减),也可以是进行时长为one shot的信道侦听。预配置的第一时间点可以是所述CCA时间窗内检测成功后进行self-defer后立即发送的时间点,预配置的第二时间点可以是所述CCA时间窗内检测成功后进行padding后立即发送的时间点,总之,第一时间点与第二时间点是不同的。
本发明中,第一发送时间点是基站确定的UE可以最早发送当前上行信号的时间点,UE根据第一发送时间点以及CCA操作的结果确定当前上行信号的实际发送时间点,即UE根据基站的指示调整实际发送时间点。由于基站确定的第一发送时间点靠近参考UE完成CCA随机回退的时间点(即获得信道使用权即刻发送上行信号 的时间点),因此UE根据第一发送时间点和第二发送时间点确定的当前上行信号的实际发送时间点也是靠近参考UE完成CCA随机回退的时间点,这样就可以指示各个UE尽可能同时进行上行信号发送,减少UE之间的相互干扰。
结合第二方面,在第二方面的第一种可能的实现方式中,
所述UE对待用上行信道执行CCA操作之前,所述方法还包括:
所述UE获取第二发送时间点,所述第二发送时间点是所述当前上行信号中的有用信号的发送时间点;所述第二发送时间点不早于所述第一发送时间点,且所述第二发送时间点可以在UE的实际发送时间点之后。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述UE对待用上行信道执行CCA操作具体包括:
所述UE确定回退初始值,并根据所述回退初始值进行CCA的随机回退。所谓CCA的随机回退,即UE进行一定时间的信道侦听,侦听到信道空闲则将计数器的回退初始值减去一定数值,如此往复,直至回退初始值减为零,也就是UE获得信道使用权。
所述UE根据所述第一发送时间点以及所述CCA操作的结果确定所述当前上行信号的实际发送时间点,包括:
所述UE根据所述第一发送时间点和所述第二发送时间点以及所述随机回退的结果确定所述当前上行信号的实际发送时间点。
结合第二方面的第一或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,
所述UE根据所述第一发送时间点和所述第二发送时间点以及所述随机回退的结果确定所述当前上行信号的实际发送时间点具体包括:
如果所述CCA的随机回退成功的时间点不晚于所述第一发送时间点,所述UE则确定所述实际发送时间点不早于所述第一发送时间点。也就是说,UE在第一发送时间点之前随机回退成功(即随 机回退初始值减为零),时间发送时间点至少在第一发送时间点之后,优选地,时间发送时间点是第一发送时间点。
或,如果所述CCA的随机回退成功的时间点晚于所述第一发送时间点且不晚于所述第二发送时间点,所述UE则确定所述实际发送时间点不早于所述随机回退成功的时间点且不晚于所述第二发送时间点。也就是说,UE在第一发送时间点与第二发送时间点之间随机回退成功,时间发送时间点在随机回退成功的时间点与第二发送时间点之间。
结合第二方面的第一至第三种可能的实现实现方式,在第二方面的第四种可能的实现方式中,
所述UE接收所述基站发送的竞争窗口信息,根据所述竞争窗口信息确定所述回退初始值;所述竞争窗口信息用于指示所述回退初始值;
或,所述UE接收所述基站发送的所述回退初始值;
或,所述UE获取竞争窗口信息,根据所述竞争窗口信息确定所述回退初始值。
结合第二方面或第二方面的第一至第四种可能的实现方式中的任一种,在第二方面第五种可能的实现方式中,
所述UE获取第一发送时间点具体包括:
所述UE接收基站发送的通知信今,根据所述通知信今获取述第一发送时间点和所述第二发送时间点。
或,所述UE接收基站发送的通知信今,根据所述通知信今获取述第一发送时间点和所述第二发送时间点。
在此,可以是通知信今携带第一发送时间点和所述第二发送时间点,UE解析所述有通知信今,获取第一发送时间点和所述第二发送时间点;或者,通知信今携带的指示第一发送时间点和所述第二发送时间点的指示信息,UE根据该指示信息获取通知信今携带第一发送时间点和所述第二发送时间点。当然,也可以是通知信今携带第一发送时间点,UE解析所述有通知信今,获取第一发送时间点; 或者,通知信今携带的指示第一发送时间点的指示信息,UE根据该指示信息获取第一发送时间点,此时UE会自己确定第二发送时间点,第二发送时间点可以是子帧边界(或符号边界)等LTE***预定俗称的时间点。
结合第二方面的第三种可能的实现方式,在第二方面的第六种可能的实现方式中,所述方法还包括包括:
若所述UE确定所述实际发送时间点早于所述第二发送时间点,所述UE则在所述实际发送时间点至所述第二发送时间点之间发送所述当前上行信号中的填充信号,从所述第二发送时间点开始发送所述当前上行信号中的有用信号。
这里不限定填充信号的内容,可以序列、参考信号、数据信息等,之所以在实际发送时间点与第二发送时间点之间发送填充信号,是由于UE根据基站的指示确定的实际发送时间点在第二发送时间点之前,为了不对其他UE进行CCA的结果造成干扰,UE需要从实际发送时间点开始占用信道,但是此处实际发送时间点与第二发送时间点不同,因此不能发送有用信号,可以通过发送填充信号padding来占用信道。
结合第二方面的第一种可能的实现方式,在第二方面的第七种可能的实现方式中,
所述UE对待用上行信道执行CCA操作具体包括:
所述UE在所述第一发送时间点之前的第一CCA时间窗内进行CCA;
所述UE根据所述第一发送时间点和所述CCA操作的结果确定所述当前上行信号的实际发送时间点,包括:
如果所述UE在所述第一CCA时间窗内检测到的信号能量不高于能量门限,所述UE则确定所述实际发送时间点为所述第一发送时间点。
在此,只要UE在所述第一CCA时间窗内检测到的信号能量不高于能量门限,就可以确定待用上行信道为空闲,即可获得该信道 的使用权。
结合第二方面的第七种可能的实现方式,在第二方面的第八种可能的实现方式中,
若所述UE在所述第一CCA时间窗内检测到的信号能量高于所述能量门限,所述UE则在所述在第三发送时间点之前的第二CCA时间窗内进行CCA;所述第三发送时间点在所述第一发送时间点之后且在所述第二发送时间点之前;
若所述UE在所述第二CCA时间窗内检测到的信号能量不高于所述能量门限,所述UE则确定所述实际发送时间点为所述第三发送时间点。
结合第二方面的第八种可能的实现方式,在第二方面的第九种可能的实现方式中,
所述第三发送时间点属于所述候选发送时间点集合。
结合第二方面的第七至第九种可能的实现方式中的任一种,在第二方面的第十种可能的实现方式中,所述上行信号在当前的突发时间窗内,所述突然时间窗包括下行信号和所述上行信号的传输。
结合第二方面或第二方面的第一至第十种可能的实现方式中的任一种,在第二方面的第十一种可能的实现方式中,所述方法还包括:
所述UE接收所述基站发送的所述当前上行信号的结束时间点;或,
所述UE根据所述第一发送时间点获取所述当前上行信号的结束时间点。可以是基站指示了当前上行信号的传输时长,基站根据实际发送时间点以及基站指示的传输时长,就可以确定出当前上行信号的结束时刻。
第三方面,公开了一种基站,包括:
确定单元,用于在候选发送时间点集合中为用户设备UE确定第一发送时间点;所述第一发送时间点为所述UE最早发送当前上行信号的时间点,所述第一发送时间点属于候选发送时间点集合, 所述候选发送时间点集合包括至少两个候选发送时间点;
所述确定单元还用于,确定第二发送时间点;所述第二发送时间点是所述当前上行信号中的有用信号的发送时间点;所述第二发送时间点不早于所述第一发送时间点;
发送单元,用于向所述UE发送通知信今指示所述第一发送时间点和所述第二发送时间点,或向所述UE发送通知信今指示所述第一发送时间点;
接收单元,用于从所述第二发送时间点开始接收所述UE发送的所述当前上行信号;
其中,所述候选发送时间点是CCA时间窗内检测成功后立即发送所述当前上行信号的时间点、所述CCA时间窗内检测成功后发送所述当前上行信号的预配置的第一时间点以及CCA时间窗内检测成功后发送所述当前上行时刻的预配置的第二时间点中的任一个时间点。
本发明中,基站可以确定UE可以最早发送当前上行信号的第一发送时间点,以及UE发送当前上行信号中的有用信号的第二发送时间点,并向UE指示第一发送时间点和/或第二发送时间点,使得UE根据第一发送时间点和第二发送时间点确定当前上行信号的实际发送时间点,即UE根据基站的指示调整实际发送时间点,这样,由于基站确定的第一发送时间点靠近参考UE完成CCA随机回退的时间点,因此UE根据第一发送时间点和第二发送时间点确定的当前上行信号的实际发送时间点也是靠近参考UE完成CCA随机回退的时间点,这样就可以指示各个UE尽可能同时进行上行信号发送,减少UE之间的相互干扰。
结合第三方面,在第三方面的第一种可能的实现方式中,所述发送单元还用于,向所述UE发送通知信今之后,向所述UE发送竞争窗口信息,所述竞争窗口信息用于指示回退初始值,所述回退初始值用于空闲信道测评的随机回退;
或,向所述UE发送所述回退初始值,所述回退初始值用于空 闲信道测评的随机回退。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第一种可能的实现方式中,所述发送单元还用于,向所述UE发送所述当前上行信号的结束时间点。
第四方面,公开了一种用户设备UE,包括:
获取单元,用于获取第一发送时间点,所述第一发送时间点为所述UE最早发送当前上行信号的时间点,所述第一发送时间点属于候选发送时间点集合,所述候选发送时间点集合包括至少两个候选发送时间点;
信道评测单元,用于对待用上行信道执行空闲信道评测CCA操作;
确定单元,用于根据所述第一发送时间点以及所述CCA操作的结果确定所述当前上行信号的实际发送时间点;
发送单元,用于从所述实际发送时间点开始通过所述对待用上行信道发送所述当前上行信号;
其中,所述候选发送时间点是CCA时间窗内检测成功后立即发送所述当前上行信号的时间点、所述CCA时间窗内检测成功后发送所述当前上行信号的预配置的第一时间点以及CCA时间窗内检测成功后发送所述当前上行时刻的预配置的第二时间点中的任一个时间点。
本发明中,第一发送时间点是基站确定的UE可以最早发送当前上行信号的时间点,UE根据第一发送时间点以及CCA操作的结果确定当前上行信号的实际发送时间点,即UE根据基站的指示调整实际发送时间点。由于基站确定的第一发送时间点靠近参考UE完成CCA随机回退的时间点(即获得信道使用权即刻发送上行信号的时间点),因此UE根据第一发送时间点和第二发送时间点确定的当前上行信号的实际发送时间点也是靠近参考UE完成CCA随机回退的时间点,这样就可以指示各个UE尽可能同时进行上行信号发送,减少UE之间的相互干扰。
结合第四方面,在第四方面的第一种可能的实现方式中,所述获取单元还用于,在所述信道测评单元执行CCA操作之前,获取第二发送时间点,所述第二发送时间点是所述当前上行信号中的有用信号的发送时间点;所述第二发送时间点不早于所述第一发送时间点。
结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述信道测评单元具体用于,确定回退初始值,并根据所述回退初始值进行CCA的随机回退;
所述确定单元具体用于,根据所述第一发送时间点和所述第二发送时间点以及所述随机回退的结果确定所述当前上行信号的实际发送时间点。
结合第四方面的第一或第二种可能的实现方式中,在第四方面的第三种可能的实现方式中,所述确定单元具体用于,如果所述CCA的随机回退成功的时间点不晚于所述第一发送时间点,则确定所述实际发送时间点不早于所述第一发送时间点;
或,如果所述CCA的随机回退成功的时间点晚于所述第一发送时间点且不晚于所述第二发送时间点,则确定所述实际发送时间点不早于所述随机回退成功的时间点且不晚于所述第二发送时间点。
结合第四方面的第一或第二或第三种可能的实现方式中,在第四方面的第四种可能的实现方式中,还包括第一接收单元,
所述第一接收单元用于,接收所述基站发送的竞争窗口信息;
所述信道测评单元具体用于,根据所述竞争窗口信息确定所述回退初始值;所述竞争窗口信息用于指示所述回退初始值;
或,接收所述基站发送的所述回退初始值;
或,获取竞争窗口信息,根据所述竞争窗口信息确定所述回退初始值。
结合第四方面或第四方面的第一至第四种可能的实现方式中的任一种,在第四方面的第五种可能的实现方式中,还包括第二接收单元,
所述第二接收单元用于,接收基站发送的通知信今;
所述获取单元具体用于,根据所述第二接收单元接收的所述通知信今获取述第一发送时间点和所述第二发送时间点;
或,根据所述通知信今获取述第一发送时间点。
结合第四方面或第四方面的第一至第五种可能的实现方式中的任一种,在第四方面的第六种可能的实现方式中,所述发送单元还用于,若所述确定单元确定所述实际发送时间点早于所述第二发送时间点,则在所述实际发送时间点至所述第二发送时间点之间发送所述当前上行信号中的填充信号,从所述第二发送时间点开始发送所述当前上行信号中的有用信号。
结合第四方面的第一种可能的实现方式,在第四方面的第七种可能的实现方式中,所述信道测评单元具体用于,在所述第一发送时间点之前的第一CCA时间窗内进行CCA;
所述确定单元具体用于,如果所述信道测评单元在所述第一CCA时间窗内检测到的信号能量不高于能量门限,则确定所述实际发送时间点为所述第一发送时间点。
结合第四方面的第七种可能的实现方式,在第四方面的第八种可能的实现方式中,所述信道测评单元还用于,若在所述第一CCA时间窗内检测到的信号能量高于所述能量门限,则在所述在第三发送时间点之前的第二CCA时间窗内进行CCA;所述第三发送时间点在所述第一发送时间点之后且在所述第二发送时间点之前;
所述确定单元具体用于,若所述信道测评单元在所述第二CCA时间窗内检测到的信号能量不高于所述能量门限,则确定所述实际发送时间点为所述第三发送时间点。
结合第四方面的第八种可能的实现方式,在第四方面的第九种可能的实现方式中,所述第三发送时间点属于所述候选发送时间点集合。
结合第四方面的第七至第九种可能的实现方式种的任一种,在第四方面的第十种可能的实现方式中,所述上行信号在当前的突发 时间窗内,所述突然时间窗包括下行信号和所述上行信号的传输。
结合第四方面的第七至第十种可能的实现方式种的任一种,在第四方面的第十一种可能的实现方式中,还包括第三接收单元,
所述第三接收单元用于,接收所述基站发送的所述当前上行信号的结束时间点;或,
所述获取单元还用于,根据所述第一发送时间点获取所述当前上行信号的结束时间点。
第五方面,公开了一种基站,包括:
确定单元,用于在候选发送时间点集合中为用户设备UE确定第一发送时间点;所述第一发送时间点为所述UE最早发送当前上行信号的时间点,所述第一发送时间点属于候选发送时间点集合,所述候选发送时间点集合包括至少两个候选发送时间点;
所述确定单元还用于,确定第二发送时间点;所述第二发送时间点是所述当前上行信号中的有用信号的发送时间点;所述第二发送时间点不早于所述第一发送时间点;
发送单元,用于向所述UE发送通知信今指示所述第一发送时间点和所述第二发送时间点,或向所述UE发送通知信今指示所述第一发送时间点;
接收单元,用于从所述第二发送时间点开始接收所述UE发送的所述当前上行信号;
其中,所述候选发送时间点是CCA时间窗内检测成功后立即发送所述当前上行信号的时间点、所述CCA时间窗内检测成功后发送所述当前上行信号的预配置的第一时间点以及CCA时间窗内检测成功后发送所述当前上行时刻的预配置的第二时间点中的任一个时间点。
本发明中,基站可以确定UE可以最早发送当前上行信号的第一发送时间点,以及UE发送当前上行信号中的有用信号的第二发送时间点,并向UE指示第一发送时间点和/或第二发送时间点,使得UE根据第一发送时间点和第二发送时间点确定当前上行信号的 实际发送时间点,即UE根据基站的指示调整实际发送时间点,这样,由于基站确定的第一发送时间点靠近参考UE完成CCA随机回退的时间点,因此UE根据第一发送时间点和第二发送时间点确定的当前上行信号的实际发送时间点也是靠近参考UE完成CCA随机回退的时间点,这样就可以指示各个UE尽可能同时进行上行信号发送,减少UE之间的相互干扰。
本发明中,基站可以确定UE可以最早发送当前上行信号的第一发送时间点,以及UE发送当前上行信号中的有用信号的第二发送时间点,并向UE指示第一发送时间点和/或第二发送时间点,使得UE根据第一发送时间点和第二发送时间点确定当前上行信号的实际发送时间点,即UE根据基站的指示调整实际发送时间点,这样,由于基站确定的第一发送时间点靠近参考UE完成CCA随机回退的时间点,因此UE根据第一发送时间点和第二发送时间点确定的当前上行信号的实际发送时间点也是靠近参考UE完成CCA随机回退的时间点,这样就可以指示各个UE尽可能同时进行上行信号发送,减少UE之间的相互干扰。
结合第五方面,在第五方面的第一种可能的实现方式中,所述发送单元还用于,向所述UE发送通知信今之后,向所述UE发送竞争窗口信息,所述竞争窗口信息用于指示回退初始值,所述回退初始值用于空闲信道测评的随机回退;
或,向所述UE发送所述回退初始值,所述回退初始值用于空闲信道测评的随机回退。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第一种可能的实现方式中,所述发送单元还用于,向所述UE发送所述当前上行信号的结束时间点。
第六方面,公开了一种用户设备UE,包括:
获取单元,用于获取第一发送时间点,所述第一发送时间点为所述UE最早发送当前上行信号的时间点,所述第一发送时间点属于候选发送时间点集合,所述候选发送时间点集合包括至少两个候 选发送时间点;
信道评测单元,用于对待用上行信道执行空闲信道评测CCA操作;
确定单元,用于根据所述第一发送时间点以及所述CCA操作的结果确定所述当前上行信号的实际发送时间点;
发送单元,用于从所述实际发送时间点开始通过所述对待用上行信道发送所述当前上行信号;
其中,所述候选发送时间点是CCA时间窗内检测成功后立即发送所述当前上行信号的时间点、所述CCA时间窗内检测成功后发送所述当前上行信号的预配置的第一时间点以及CCA时间窗内检测成功后发送所述当前上行时刻的预配置的第二时间点中的任一个时间点。
本发明中,第一发送时间点是基站确定的UE可以最早发送当前上行信号的时间点,UE根据第一发送时间点以及CCA操作的结果确定当前上行信号的实际发送时间点,即UE根据基站的指示调整实际发送时间点。由于基站确定的第一发送时间点靠近参考UE完成CCA随机回退的时间点(即获得信道使用权即刻发送上行信号的时间点),因此UE根据第一发送时间点和第二发送时间点确定的当前上行信号的实际发送时间点也是靠近参考UE完成CCA随机回退的时间点,这样就可以指示各个UE尽可能同时进行上行信号发送,减少UE之间的相互干扰。
结合第六方面,在第六方面的第一种可能的实现方式中,所述获取单元还用于,在所述信道测评单元执行CCA操作之前,获取第二发送时间点,所述第二发送时间点是所述当前上行信号中的有用信号的发送时间点;所述第二发送时间点不早于所述第一发送时间点。
结合第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,所述信道测评单元具体用于,确定回退初始值,并根据所述回退初始值进行CCA的随机回退;
所述确定单元具体用于,根据所述第一发送时间点和所述第二发送时间点以及所述随机回退的结果确定所述当前上行信号的实际发送时间点。
结合第六方面的第一或第二种可能的实现方式中,在第六方面的第三种可能的实现方式中,所述确定单元具体用于,如果所述CCA的随机回退成功的时间点不晚于所述第一发送时间点,则确定所述实际发送时间点不早于所述第一发送时间点;
或,如果所述CCA的随机回退成功的时间点晚于所述第一发送时间点且不晚于所述第二发送时间点,则确定所述实际发送时间点不早于所述随机回退成功的时间点且不晚于所述第二发送时间点。
结合第六方面的第一或第二或第三种可能的实现方式中,在第六方面的第四种可能的实现方式中,还包括第一接收单元,
所述第一接收单元用于,接收所述基站发送的竞争窗口信息;
所述信道测评单元具体用于,根据所述竞争窗口信息确定所述回退初始值;所述竞争窗口信息用于指示所述回退初始值;
或,接收所述基站发送的所述回退初始值;
或,获取竞争窗口信息,根据所述竞争窗口信息确定所述回退初始值。
结合第六方面或第六方面的第一至第四种可能的实现方式中的任一种,在第六方面的第五种可能的实现方式中,还包括第二接收单元,
所述第二接收单元用于,接收基站发送的通知信今;
所述获取单元具体用于,根据所述第二接收单元接收的所述通知信今获取述第一发送时间点和所述第二发送时间点;
或,根据所述通知信今获取述第一发送时间点。
结合第六方面或第六方面的第一至第五种可能的实现方式中的任一种,在第六方面的第六种可能的实现方式中,所述发送单元还用于,若所述确定单元确定所述实际发送时间点早于所述第二发送时间点,则在所述实际发送时间点至所述第二发送时间点之间发送 所述当前上行信号中的填充信号,从所述第二发送时间点开始发送所述当前上行信号中的有用信号。
结合第六方面的第一种可能的实现方式,在第六方面的第七种可能的实现方式中,所述信道测评单元具体用于,在所述第一发送时间点之前的第一CCA时间窗内进行CCA;
所述确定单元具体用于,如果所述信道测评单元在所述第一CCA时间窗内检测到的信号能量不高于能量门限,则确定所述实际发送时间点为所述第一发送时间点。
结合第六方面的第七种可能的实现方式,在第六方面的第八种可能的实现方式中,所述信道测评单元还用于,若在所述第一CCA时间窗内检测到的信号能量高于所述能量门限,则在所述在第三发送时间点之前的第二CCA时间窗内进行CCA;所述第三发送时间点在所述第一发送时间点之后且在所述第二发送时间点之前;
所述确定单元具体用于,若所述信道测评单元在所述第二CCA时间窗内检测到的信号能量不高于所述能量门限,则确定所述实际发送时间点为所述第三发送时间点。
结合第六方面的第八种可能的实现方式,在第六方面的第九种可能的实现方式中,所述第三发送时间点属于所述候选发送时间点集合。
结合第六方面的第七至第九种可能的实现方式种的任一种,在第六方面的第十种可能的实现方式中,所述上行信号在当前的突发时间窗内,所述突然时间窗包括下行信号和所述上行信号的传输。
结合第六方面的第七至第十种可能的实现方式种的任一种,在第六方面的第十一种可能的实现方式中,还包括第三接收单元,
所述第三接收单元用于,接收所述基站发送的所述当前上行信号的结束时间点;或,
所述获取单元还用于,根据所述第一发送时间点获取所述当前上行信号的结束时间点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为本发明实施例提供的UE对齐发送示意图;
图1b为本发明实施例提供的UE未对齐发送示意图;
图2为本发明实施例1提供的通信***中的交互示意图;
图3为本发明实施例2提供的上行信号的传输方法的流程示意图;
图4为本发明实施例2提供的第一发送时间点的示意图;
图5为本发明实施例2提供的第二发送时间点的示意图;
图6为本发明实施例3提供的上行信号的传输方法的流程示意图;
图7为本发明实施例4提供的基站的结构框图;
图8为本发明实施例5提供的UE的结构框图;
图9为本发明实施例5提供的UE的另一结构框图;
图10为本发明实施例5提供的UE的另一结构框图;
图11为本发明实施例5提供的UE的另一结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
首先,对本发明涉及的几个概念做以解释说明。多用户调度:LTE通信***中,在同一个子帧中,频谱资源上可以同时有多个通信终端进行信号发送,或是信号接收。即每个用户占用部分频域资源,从而可以同时容纳多个用户同时复用频谱资源。
信道侦听(CCA):节点占用信道发送信号之前,首先要对信道进行检测,检测方式可以有能量检测,信号检测等。
基站(eNB或小区或接入网设备):通常,在下行通信链路中是信号发送方。在上行通信链路中是信号接收方,以及控制信息(发射方控制信今)等的发送方。
UE(终端)通常,在上行通信链路中是信号的发送方。在下行通信链路中是信号的接收方。
信道使用权:通信节点通过某种方式获得了在信道传输信号的许可,即可被认为获得了该信道的使用权。例如,基站通过调度算法,分配信道资源,被调度上的节点,则可被视为获得了信道使用权。在本发明中,特指UE遵守先听后发的通信机制,检测信道结果是空闲,可以进行数据发送,则也可被视为获得了信道使用权。
对于LAA UL(uplink,上行链路)传输中,UE在信号发送之前,需要对无线信道进行侦听。只有被基站调度到的,且信道侦听结果是空闲的UE(即获得信道使用权)才能进行信号发送。而每个被调度的UE的LBT参数(如:随机回退初始值不同,判断信道忙闲的能量检测门限、信道测量条件等)存在差异,会造成各个UE获得信道使用权的时刻不同,因此各个UE发送信号的时刻可能不同,从而先进行发送的节点对后发送的节点造成干扰,使得后发送的节点由于受到干扰后,信道侦听结果为忙,从而不能进行信号发送,即UE之间互相阻碍(blocking)。
具体地,参考图1a。假设UE1、UE2、UE3、UE4,在子帧n被基站调度,在n+k时刻数据发送之前,每个UE需要进行侦听信道,如果在侦听时间内,如果检测到信道空闲,则随机回退计数器(backoff counter)减去一定数值。直至backoff counter一直减到零,UE获得了信道使用权,UE可以发送上行信号(即图1a中的PPDU),若UE1、UE2、UE3、UE4的LBT参数均相同,UE1、UE2、UE3、UE4的backoff counter同时减到零,backoff counter就会同时发送上行信号,则UE之间不存在互相的干扰。但是,由于各个UE的LBT 参数可能不同,例如,backoff counter配置不同,使得backoff counter回退初始值小的UE可能先减到零,从而该UE先进行信号发送。参考图1a,例如UE2、UE3。此时先发的UE2、UE3,会对正在进行信道侦听的UE1、UE4造成干扰,使得UE1、UE4的信道侦听结果为忙,从而UE1、UE4不能获得信道使用权,从而不能发送信号。
本发明的原理在于,基站向UE指示UE可以最早发送当前上行信号的第一发送时间点,UE根据第一发送时间点和第二发送时间点(UE发送有用信号的时间点)确定当前上行信号的实际发送时间点,即UE根据基站的指示调整实际发送时间点,这样,由于基站确定的第一发送时间点靠近参考UE完成CCA随机回退的时间点,因此UE根据第一发送时间点和第二发送时间点确定的当前上行信号的实际发送时间点也是靠近参考UE完成CCA随机回退的时间点,这样就可以指示各个UE尽可能同时进行上行信号发送,减少UE之间的相互干扰。
实施例1:
本发明实施例提供一种通信***,如图2所示,所述通信***包括基站10和至少一个UE20。本发明实施例以一个被所述基站调度的UE为例,介绍本发明实施例提供的上行信号的传输方法。
如图2所示,所述基站10包括处理器101、发射器102以及接收器103以及存储器104。所述UE20包括处理器201、发射器202以及接收器203以及存储器204。
需要说明的是,其中,处理器101、处理器201可以为中央处理器(英文:central processing unit,缩写:CPU)。
发射器102、发射器202可以由光发射器,电发射器,无线发射器或其任意组合实现。例如,光发射器可以是小封装可插拔(英文:small form-factor pluggable transceiver,缩写:SFP)发射器(英文:transceiver),增强小封装可插拔(英文:enhanced small form-factor pluggable,缩写:SFP+)发射器或10吉比特小封装可插拔(英文:10Gigabit small form-factor pluggable,缩写:XFP)发射器。电发射器可以是以太网(英文:Ethernet)网络接 口控制器(英文:network interface controller,缩写:NIC)。无线发射器可以是无线网络接口控制器(英文:wireless network interface controller,缩写:WNIC)。
接收器103、接收器203可以由光接收器,电接收器,无线接收器或其任意组合实现。例如,光接收器可以是小封装可插拔接收器,增强小封装可插拔接收器或10吉比特小封装可插拔接收器。电接收器可以是以太网网络接口控制器。无线接收器可以是无线网络接口控制器。
存储器104(存储器204),用于存储程序代码,并将该程序代码传输给该处理器101(处理器201),处理器101(处理器201)根据程序代码执行下述指令。存储器104(存储器204)可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器104(存储器204)也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD)。存储器104(存储器204)还可以包括上述种类的存储器的组合。
参考图2,本发明提供的上行信号的传输方法包括以下步骤:
S1、处理器101确定第一发送时间点、第二发送时间点。
其中,第一发送时间点是基站为UE在在候选发送时间点集合中确定的,所述第一发送时间点为所述UE最早发送当前上行信号的时间点。所述候选发送时间点集合包括至少两个候选发送时间点。另外,所述第二发送时间点是所述当前上行信号中的有用信号的发送时间点。
需要说明的是,该最早发送当前上行信号的时间点,指的是UE允许发送当前上行信号的最早时间点。UE在该第一发送时间点之前即使CCA成功也不允许发送上行信号,而是等到该第一发送时间点发送当前上行信号或在该第一发送时间点与第二发送时间点之间发 送当前上行信号。这里的第二发送时间点在第一发送时间点之后,是UE发送所述当前上行信号中的有用信号的发送时间点。
其中,所谓CCA成功即UE在CCA时间窗内检测到信号能量不高于能量门限,或UE在CCA时间窗内回退初始值减为零。
S2、发射器102向所述UE发送通知信今指示所述第一发送时间点和所述第二发送时间点。
这样,使得所述UE根据所述第一发送时间点和所述第二发送时间点发送所述当前上行信号。
在此,发射器102向所述UE发送的通知信今可以仅指示所述第一发送时间点,UE的处理器201确定出一个约定俗成的时间点作为第二发送时间点。
S3、接收器203接收通知信今,处理器201获取第一发送时间点和第二发送时间点。
具体实现中,处理器201根据通知信今获取第一发送时间点和第二发送时间点。或者,根据通知信今获取第一发送时间点后,确定一个子帧边界(或符号边界)为第二发送时间点。
S4、处理器201对待用上行信道执行CCA操作。
具体地,可以是确定回退初始值,根据所述确定单元确定的所述回退初始值进行空闲信道评测CCA的随机回退。此时,处理器201需要获取第一发送时间点和第二发送时间点。
或者,在CCA时间窗内进行CCA,在此处理器201仅需获取第一发送时间点。
S5、处理器201根据所述第一发送时间点和所述第二发送时间点以及所述CCA操作的结果确定所述当前上行信号的实际发送时间点。
需要说明的是,若CCA操作为CCA的随机回退,发射器102向所述UE发送通知信今仅指示所述第一发送时间点,在此处理器201确定出一个第二发送时间点,进而根据所述第一发送时间点和所述第二发送时间点以及所述随机回退的结果确定所述当前上行信 号的实际发送时间点。
另外,若CCA操作为在第一CCA时间窗内进行CCA,通知信今仅指示所述第一发送时间点,在此处理器201根据所述第一发送时间点以及第一CCA时间窗内的检测结果确定所述当前上行信号的实际发送时间点。
具体地,如果所述CCA的随机回退成功的时间点不晚于所述第一发送时间点,则确定所述实际发送时间点不早于所述第一发送时间点;
或,如果所述CCA的随机回退成功的时间点晚于所述第一发送时间点且不晚于所述第二发送时间点,则确定所述实际发送时间点不早于所述随机回退成功的时间点且不晚于所述第二发送时间点。
S6、发射器202从所述实际发送时间点开始通过所述对待用上行信道发送所述当前上行信号。
S7、接收器103从所述第二发送时间点开始接收所述UE发送的所述当前上行信号。
需要说明的是,所述候选发送时间点是CCA时间窗内检测成功后立即发送所述当前上行信号的时间点、所述CCA时间窗内检测成功后发送所述当前上行信号的预配置的第一时间点以及CCA时间窗内检测成功后发送所述当前上行时刻的预配置的第二时间点中的任一个时间点。
具体地,UE在CCA时间窗可以进行CCA的随机回退(backoff counter减减),也可以是进行时长为one shot的信道侦听。预配置的第一时间点可以是所述CCA时间窗内检测成功后进行self-defer后立即发送的时间点,预配置的第二时间点可以是所述CCA时间窗内检测成功后进行padding后立即发送的时间点,总之,第一时间点与第二时间点是不同的。
另外,本发明实施例提供的方法的应用场景可以包括以下几种:
场景一:宏站和小站通过载波聚合的方式分别工作在授权频谱和未授权频谱上。小站和宏站通过理想回传链路相连。
场景二:宏站工作在授权频谱,小站通过载波聚合的方式分别工作在授权频谱和未授权频谱上。小站的授权频谱和非授权频谱通过理想回传链路相连。小站和宏站通过理想或非理想回传链路相连。
场景三:小站通过载波聚合的方式分别工作在授权频谱和未授权频谱上。小站的授权频谱和非授权频谱通过理想回传链路相连。该场景下,宏站没有大范围的覆盖服务。
其中,本发明实施例所述的基站可以是上述三种场景中的宏站,与UE之间的信息传输可以通过授权频谱进行,也可以通过非授权频谱进行。
本发明实施例提供的上行信号的传输方法,基站可以确定UE可以最早发送当前上行信号的第一发送时间点,并向UE指示第一发送时间点和第二发送时间点,使得UE根据第一发送时间点确定当前上行信号的实际发送时间点,即UE根据基站的指示调整实际发送时间点,这样,由于基站确定的第一发送时间点靠近参考UE完成CCA随机回退的时间点,因此UE根据第一发送时间点确定的当前上行信号的实际发送时间点也是靠近参考UE完成CCA随机回退的时间点,这样就可以指示各个UE尽可能同时进行上行信号发送,减少UE之间的相互干扰。需要说明的是,对于该最早可以发送的第一发送时间点,是说UE在该第一发送时间点之前即使CCA成功也是不允许发送上行信号的,而可以等到该第一发送时间点或该第一发送时间点之后且在第二发送时间点之前发送当前上行信号。
实施例2:
本发明实施例提供一种上行信号的传输方法,如图3所示,所述方法包括以下步骤:
301、基站确定第一发送时间点以及第二发送时间点。
其中,所述第一发送时间点为UE最早发送当前上行信号的时间点,所述第二发送时间点是所述UE发送所述当前上行信号中的有用信号的时间点。这里的有用信号是指UE实际要向基站传输的 有效信息,并不包括填充信息。第二发送时间点可以理解为是基站认定的UE发送当前上行信号的时间点,但有可能并不是UE实际发送所述当前上行信号的时间点。
需要说明的是,该最早发送当前上行信号的时间点,指的是UE允许发送当前上行信号的最早时间点。UE在该第一发送时间点之前即使CCA成功也不允许发送上行信号,而是等到该第一发送时间点发送当前上行信号或在该第一发送时间点与第二发送时间点之间发送当前上行信号。这里的第二发送时间点在第一发送时间点之后,是UE发送所述当前上行信号中的有用信号的发送时间点。
具体地,所述第一发送时间点是基站在候选发送时间点集合中为用户设备UE确定的。所述第一发送时间点属于候选发送时间点集合,所述候选发送时间点集合包括至少两个候选发送时间点。所述候选发送时间点是CCA时间窗内检测成功后立即发送所述当前上行信号的时间点、所述CCA时间窗内检测成功后发送所述当前上行信号的预配置的第一时间点以及CCA时间窗内检测成功后发送所述当前上行时刻的预配置的第二时间点中的任一个时间点。
具体地,UE在CCA时间窗可以进行CCA的随机回退(backoff counter减减),所谓CCA时间窗内检测成功可以是随机回退初始值减为零。UE在CCA时间窗也可以进行时长为one shot的信道侦听,所谓CCA时间窗内检测成功为在CCA时间窗内侦听到信号能量不高于能量门限。预配置的第一时间点可以是所述CCA时间窗内检测成功后进行self-defer后立即发送的时间点,预配置的第二时间点可以是所述CCA时间窗内检测成功后进行padding后立即发送的时间点,总之,第一时间点与第二时间点是不同的。
这里,对上述“立即发送”做以说明,若CCA的随机回退成功的时间点在子帧(或符号)边界,所谓立即发送即从这个子帧边界(或符号边界)开始发送;若CCA的随机回退成功的时间点不在在子帧(或符号)边界,也得通过自回退(self-defer)等到这个子帧边界(或符号边界)才开始发送。
这里的第一预设时长、第二预设时长可以是相对时间,如:起始时刻为第n子帧的第1个符号,时长为0.5us。也可以是绝对时间,如:起始时刻为第n子帧的第1个符号,结束时刻为第n子帧的第5个符号。第一预设时长、第二预设时长内UE可以进行padding(即向基站发送填充信号),也可以进行self-defer(自回退)操作,可以侦听信道,也可以不侦听信道。另外,需要说明的是,CCA的随机回退过程中可以进行一定时长的padding,也可以是完整的不间断的随机回退过程。第一预设时长、第二预设时长可以是固定的时间间隔,例如,16us,25us,或是其他UE获得的预定义的固定的时间间隔。也可以是可变的时间间隔,例如,根据业务类型不同,时间间隔可以是m(us)+N*slot(us),其中,m是一个固定的时间间隔,取决于信号处理时间以及发送和接收信号时延,例如,16us。N是非负的整数,不同的业务类型N的取值可以不同。slot是一个时间间隔基本单位,例如,9us。
第一预设时长、第二预设时长(时间间隔)可以是基站侧定义的,由基站通知或指示给UE的。或是UE自己定义的。或是基站通知UE预留信道信息结束的时刻,预留信道信息结束的时刻到子帧边界(或符号边界,或是时隙边界)即为该时间间隔。
由于基站记录有各个被调度的UE的LBT参数(如:随机回退初始值、随机回退幅度值、随机回退起始时刻),因此基站可以确定出各个被调度的UE完成CCA随机回退(即随机回退初始值减为零)的时间点,可以确定某个完成CCA随机回退较晚的UE为参考UE,在确定第一时间点时参考了该参考UE完成CCA随机回退的时间点,使得第一发送时间点尽可能靠近该参考UE完成CCA随机回退的时间点。
302、所述基站向UE发送通知信今指示所述第一发送时间点和所述第二发送时间点,或向UE发送通知信今指示所述第一发送时间点。
这样,使得所述UE根据所述第一发送时间点和所述第二发送 时间点发送所述当前上行信号。需要说明的是若基站通过通知信今仅指示第一发送时间点,UE可以根据通知信今获取第一发送时间点,另外,UE可以自己确定出第二发送时间点,可以将LTE***中约定俗成的时间点确定为所述第二发送时间点,如:子帧边界、符号边界等。
其中,UE可以是被eNB(即所述基站)调度的UE。具体地,eNB可以通过上行调度信今(UL grant)调度等待发送UL信号(上行信号)的UE。UL grant可以承载在非授权载波和/或授权载波。
303、UE获取第一发送时间点和第二发送时间点。
具体地,所述UE接收基站发送的通知信今,根据所述通知信今获取述第一发送时间点和/或所述第二发送时间点。
在此,可以是通知信今携带第一发送时间点和/或所述第二发送时间点,UE解析所述有通知信今,获取第一发送时间点和/或所述第二发送时间点;或者,通知信今携带的指示第一发送时间点和/或所述第二发送时间点的指示信息,UE根据该指示信息获取通知信今携带第一发送时间点和/或所述第二发送时间点。
或者,基站指示了第一发送时间点,UE自身确定出第二发送时间点。也就是说,第二发送时间点可以是UE根据基站的指示获取的,也可以是LTE***中约定俗成的时间点,如:子帧边界、符号边界等。示例的,第一发送时间点在子帧n,但不是子帧边界,可以确定子帧n的边界为所述第二发送时间点。
参考图4,所述第一发送时间点可以是CCA的随机回退成功(backoff counter减到零)后立即发送所述当前上行信号的时间点,如图4中UE1对应的第一发送时间点。也可以是执行one shot之后立即发送所述当前上行信号的时间点,如图4中UE2对应的第一发送时间点,UE2在one shot期间可以进行信道侦听,也可以不进行信道侦听。也可以是CCA一段时间,进行一段时间padding,接着在进行CCA一段时间直至CCA的随机回退成功后立即发送所述当前上行信号的时间点,如图4中UE3对应的第一发送时间点。也可 以是CCA的随机回退成功后进行第二预设时长的padding(或self-defer)后立即发送所述当前上行信号的时间点,如图4中UE4对应的第一发送时间点。
304、基站向UE发送回退初始值或竞争窗口信息。
所述基站向所述UE发送竞争窗口(Contention Window,CW)信息,以便所述UE根据所述竞争窗口信息确定回退初始值,进行空闲信道测评CCA的随机回退;所述竞争窗口信息用于指示所述回退初始值,UE可以根据竞争窗口信息确定出一个回退初始值。示例的,基站与UE维护了相同的竞争窗口,竞争窗口包括四个回退初始值,分别用00、01、10、11表示,其中00、01、10、11均为竞争窗口信息,若基站指示00,UE则可以根据00确定出其对应的回退初始值。
或,所述基站向所述UE发送所述回退初始值,以便所述UE根据所述回退初始值进行空闲信道测评CCA的随机回退。
当然,基站也可以向UE发送竞争窗口信息,UE根据在基站发送的竞争窗口信息包括的多个回退初始值中确定一个回退初始值。
另外,除了指示UE回退初始值或竞争窗口信息外,还可以指示初始回退时间长度Q,UE根据回退初始值与回退时间长度Q确定一个初始时长N(N=回退初始值×时间长度Q),UE进行CCA的随机回退时,初始时长N减Q,如此往复,直至回退时间长度(backoff counter)减为零。回退时间长度Q,可以是预定义的,例如,1us,9us等,或是可变的时间长度,例如,根据不同的业务类型,时间长度可以配置为不同的取值。
305、UE根据回退初始值进行CCA的随机回退。
其中,UE可以接收基站发送的回退初始值并根据该回退初始值进行CCA的随机回退。或者,根据基站发送的竞争窗口信息确定回退初始值。
UE检测到待用信道为空闲则将回退初始值减去一个数值,再次检测到待用信道为空闲时,再减去该数值,直至回退初始值减为零 (即CCA的随机回退成功)。
306、所述UE根据所述第一发送时间点和所述第二发送时间点以及所述随机回退的结果确定所述当前上行信号的实际发送时间点。
其中,所谓实际发送时间点即UE实际进行上行发送的时间点,可以早于UE发送当前上行信号中的有用信号的时间点。
具体地,如果所述CCA的随机回退成功的时间点不晚于所述第一发送时间点,所述UE则确定所述实际发送时间点不早于所述第一发送时间点。也就是说,即使UE在第一发送时间点之前CCA的随机回退成功,UE也需要至少等到第一发送时间点才开始发送所述当前上行信号。优选地,实际发送时间点为所述第一发送时间点。
或,如果所述CCA的随机回退成功的时间点晚于所述第一发送时间点且不晚于所述第二发送时间点,所述UE则确定所述实际发送时间点不早于所述随机回退成功的时间点且不晚于所述第二发送时间点。即,当UE在第一发送时间点与第二发送时间点之间完成CCA的随机回退(回退初始值减为零),则UE实际发送时间点在随机回退成功的时间点于第二发送时间点之间。优选地,实际发送时间点为所述第二发送时间点。
示例的,参考图5,实际发送时间点C在第一发送时间点A之后,或者在第一发送时间点A与第二发送时间点B之间。
307、UE从所述实际发送时间点开始通过所述对待用上行信道发送所述当前上行信号。
308、基站从所述第二发送时间点开始接收所述UE发送的所述当前上行信号。
这里,虽然UE并不一定在所述第二发送时间点发送所述当前上行信号,但基站一定会在所述第二发送时间点开始接收上行信号。
现有LTE中,UE发送上行信号(即UL信号)的时间点,取决于基站调度该UE的UL调度信息(即UL grant)指示的时间。示例的,基站n时刻发送UL调度信息,UE则在n+k时刻发送UL信号。 其中,对于某一通信模式而言,k值是固定不变的。如:对于FDD而言,k=4。或者,k的取值和子帧配置有关,一旦自侦配置固定,则k值固定。
在LAA中,基站发送UL调度信息之后,UE还需要对待用信道进行侦听,根据信道侦听的结果来判断是否获得信道使用权。只有当UE被基站调度且获得信道使用权后,该UE才能发送上行信号。因此,现有LTE上行调度并不能指示UE实际发送上行信号的时刻。另外,由于被调度的UE的信道条件不同、LBT参数不同等,都会使得各个UE发送上行信号的时刻不同,因此UE可能在其他UE占用信道时进行信道测量,该UE认为信道不可用,在应该进行上行信号发送的时刻不会发送上行信号,从而造成不同时发送的UE之间的相互干扰。
本发明中,基站可以确定UE可以最早发送当前上行信号的第一发送时间点,以及UE发送当前上行信号中的有用信号的第二发送时间点,并向UE指示第一发送时间点和/或第二发送时间点,使得UE根据第一发送时间点和第二发送时间点确定当前上行信号的实际发送时间点,即UE根据基站的指示调整实际发送时间点,这样,由于基站确定的第一发送时间点靠近参考UE完成CCA随机回退的时间点,因此UE根据第一发送时间点和第二发送时间点确定的当前上行信号的实际发送时间点也是靠近参考UE完成CCA随机回退的时间点,这样就可以指示各个UE尽可能同时进行上行信号发送,减少UE之间的相互干扰。
在本发明的优选实施例中,基站向所述UE发送所述当前上行信号的结束时间点。当然,UE会接收所述基站发送的所述当前上行信号的结束时间点。
另外,所述UE根据所述第一发送时间点获取所述当前上行信号的结束时间点。可以是基站指示了当前上行信号的传输时长,基站根据实际发送时间点以及基站指示的传输时长,就可以确定出当前上行信号的结束时刻。
在本发明的优选实施例中,若所述UE确定所述实际发送时间点早于所述第二发送时间点,所述UE则在所述实际发送时间点至所述第二发送时间点之间发送所述当前上行信号中的填充信号,从所述第二发送时间点开始发送所述当前上行信号中的有用信号。
这里不限定填充信号的内容,可以是序列、参考信号、数据信息等,之所以在实际发送时间点与第二发送时间点之间发送填充信号,是由于UE根据基站的指示确定的实际发送时间点在第二发送时间点之前,为了不对其他UE进行CCA的结果造成干扰,UE需要从实际发送时间点开始占用信道,但是此处实际发送时间点与第二发送时间点不同,因此不能发送有用信号,可以通过发送填充信号padding来占用信道。
另外,需要说明的是,UE可以通过预留无线信道来发送上述padding。预留无线信道的起始时刻,可以是子帧边界,时隙(slot)边界,符号边界,一个子帧中任意的时间位置。例如,UE随机回退成功后,UE立即通过预留无线信道发送padding的时刻。预留无线信道信息的结束时刻,可以是子帧边界,时隙(slot)边界,符号边界,子帧的任意时间位置。
UE通过预留无线信道发送的padding包括的信息可以通过以下几种方式获取:UE通过基站发送的动态信今通知(如:UL grant)、和/或半静态,静态信今(例如广播信今、无线资源控制信今RRC)获取该信息。
本发明实施例提供的上行信号的传输方法,基站可以确定UE可以最早发送当前上行信号的第一发送时间点,以及UE发送当前上行信号中的有用信号的第二发送时间点,并向UE指示第一发送时间点和/或第二发送时间点,使得UE根据第一发送时间点和第二发送时间点确定当前上行信号的实际发送时间点,即UE根据基站的指示调整实际发送时间点,这样,由于基站确定的第一发送时间点靠近参考UE完成CCA随机回退的时间点,因此UE根据第一发送时间点和第二发送时间点确定的当前上行信号的实际发送时间点 也是靠近参考UE完成CCA随机回退的时间点,这样就可以指示各个UE尽可能同时进行上行信号发送,减少UE之间的相互干扰。
实施例3:
本发明还提供一种上行信号的传输方法,如图6所示,所述方法包括以下步骤:
S301、基站确定第一发送时间点。
S302、所述基站向UE发送通知信今指示所述第一发送时间点。
S303、UE获取第一发送时间点。
S304、UE在所述第一发送时间点之前的第一CCA时间窗内进行CCA。
S305、所述UE在所述第一CCA时间窗内检测到的信号能量不高于能量门限,所述UE则确定所述实际发送时间点为所述第一发送时间点。
所述第一CCA时间窗,可以是第一发送时间点前的时间间隔,在该CCA时间窗内进行能量测量。如果所述UE在所述第一CCA时间窗内测到的能量高于能量门限,则所述UE可以在第一发送时间点到第二发送时间点之间的任意时间点再次进行CCA时间窗内的能量测量,即进行步骤S306。
S306、若UE在所述第一CCA时间窗内检测到的信号能量高于所述能量门限,UE则在所述在第三发送时间点之前的第二CCA时间窗内进行CCA;若UE在所述第二CCA时间窗内检测到的信号能量不高于所述能量门限,则确定所述实际发送时间点为所述第三发送时间点。
其中,所述第三发送时间点在所述第一发送时间点之后且在所述第二发送时间点之前。在此,第二发送时间点可以是基站在步骤S302中通过通知信今指示给UE的,也可以是UE在步骤S306之前确定出的一个子帧边界(或符号边界)等。
或者,所述UE在第一时间点至第二时间点之间的每个符号之前的CCA时间窗口内测量能量,且同时在第一时间点和第二时间点 之间的其他时间点不做CCA过程。直到在CCA时间窗口内测到的能量不高于能量门限,则实际数据发送时间不早于第二发送时间点。
S307、UE从所述实际发送时间点开始通过所述对待用上行信道发送所述当前上行信号。
S308、基站从第二发送时间点开始接收所述UE发送的所述当前上行信号。
其中,所述第二发送时间点是基站确定的所述UE发送所述当前上行信号中的有用信号的时间点。这里的有用信号是指UE实际要向基站传输的有效信息,并不包括填充信息。第二发送时间点可以理解为是基站认定的UE发送当前上行信号的时间点,但有可能并不是UE实际发送所述当前上行信号的时间点。
需要说明的是,本实施例提供的UE在所述CCA时间窗内进行信道测量检测信号能量的实现方式,应用于所述当前上行信号在当前的突发时间窗内发送的场景,所述突发时间窗包括下行信号和所述上行信号的传输。在突发时间窗外,则不适用。
本发明实施例提供的上行信号的传输方法,基站可以确定UE可以最早发送当前上行信号的第一发送时间点,并向UE指示第一发送时间点和/或第二发送时间点,使得UE根据第一发送时间点确定当前上行信号的实际发送时间点,即UE根据基站的指示调整实际发送时间点,这样,由于基站确定的第一发送时间点靠近参考UE完成CCA随机回退的时间点(即获得信道使用权即刻发送上行信号的时间点),因此UE根据第一发送时间点确定的当前上行信号的实际发送时间点也是靠近参考UE完成CCA随机回退的时间点,这样就可以指示各个UE尽可能同时进行上行信号发送,减少UE之间的相互干扰。
实施例4:
本发明实施例提供一种基站40,如图7所示,所述基站40包括:确定单元401、发送单元402以及接收单元403。
确定单元401,用于在候选发送时间点集合中为用户设备UE 确定第一发送时间点;所述第一发送时间点为所述UE最早发送当前上行信号的时间点,所述第一发送时间点属于候选发送时间点集合,所述候选发送时间点集合包括至少两个候选发送时间点。
所述确定单元401还用于,确定第二发送时间点;所述第二发送时间点是所述当前上行信号中的有用信号的发送时间点。
发送单元402,用于向所述UE发送通知信今指示所述第一发送时间点和所述第二发送时间点,或向所述UE发送通知信今指示所述第一发送时间点,以便所述UE根据所述第一发送时间点和所述第二发送时间点发送所述当前上行信号。
接收单元403,用于从所述第二发送时间点开始接收所述UE发送的所述当前上行信号。
其中,所述候选发送时间点是CCA时间窗内检测成功后立即发送所述当前上行信号的时间点、所述CCA时间窗内检测成功后发送所述当前上行信号的预配置的第一时间点以及CCA时间窗内检测成功后发送所述当前上行时刻的预配置的第二时间点中的任一个时间点。
具体地,UE在CCA时间窗可以进行CCA的随机回退(backoff counter减减),也可以是进行时长为one shot的信道侦听。预配置的第一时间点可以是所述CCA时间窗内检测成功后进行self-defer后立即发送的时间点,预配置的第二时间点可以是所述CCA时间窗内检测成功后进行padding后立即发送的时间点,总之,第一时间点与第二时间点是不同的。
需要说明的是,该最早发送当前上行信号的时间点,指的是UE允许发送当前上行信号的最早时间点。UE在该第一发送时间点之前即使CCA成功也不允许发送上行信号,而是等到该第一发送时间点发送当前上行信号或在该第一发送时间点与第二发送时间点之间发送当前上行信号。这里的第二发送时间点在第一发送时间点之后,是UE发送所述当前上行信号中的有用信号的发送时间点。
所述发送单元402还用于,向所述UE发送通知信今之后,向 所述UE发送竞争窗口信息,以便所述UE根据所述竞争窗口信息确定回退初始值,进行空闲信道测评CCA的随机回退;所述竞争窗口信息用于指示所述回退初始值。
或,向所述UE发送所述回退初始值,以便所述UE根据所述回退初始值,进行空闲信道测评CCA的随机回退。
所述发送单元402还用于,向所述UE发送所述当前上行信号的结束时间点。
需要说明的是,本实施例中的发送单元402可以为基站的发射器102;接收单元403可以是基站的接收器103,发射器102也可以与接收器103集成在一起形成收发器。另外。确定单元401可以为单独设立的处理器101,也可以集成在基站的某一个处理器中实现,此外,也可以程序代码的形式存储于基站的存储器104中,由基站的某一个处理器调用并执行以上确定单元401的功能。这里所述的处理器可以是一个中央处理器(Central Processing Unit,CPU),或是特定集成电路(Application Specific Integrated Circuit,ASIC)。
本发明实施例提供的基站,可以确定UE可以最早发送当前上行信号的第一发送时间点,以及UE发送当前上行信号中的有用信号的第二发送时间点,并向UE指示第一发送时间点和/或第二发送时间点,使得UE根据第一发送时间点和第二发送时间点确定当前上行信号的实际发送时间点,即UE根据基站的指示调整实际发送时间点,这样,由于基站确定的第一发送时间点靠近参考UE完成CCA随机回退的时间点,因此UE根据第一发送时间点和第二发送时间点确定的当前上行信号的实际发送时间点也是靠近参考UE完成CCA随机回退的时间点,这样就可以指示各个UE尽可能同时进行上行信号发送,减少UE之间的相互干扰。
实施例5:
本发明实施例提供一种UE50,如图8所示,所述UE50包括:获取单元501、信道测评单元502、确定单元503以及发送单元504。
获取单元501,用于获取第一发送时间点,所述第一发送时间点为所述UE最早发送当前上行信号的时间点,所述第一发送时间点属于候选发送时间点集合,所述候选发送时间点集合包括至少两个候选发送时间点。
信道评测单元502,用于对待用上行信道执行空闲信道评测CCA操作。
确定单元503,用于根据所述第一发送时间点以及所述CCA操作的结果确定所述当前上行信号的实际发送时间点。
发送单元504,用于从所述实际发送时间点开始通过所述对待用上行信道发送所述当前上行信号。
其中,所述候选发送时间点是CCA时间窗内检测成功后立即发送所述当前上行信号的时间点、所述CCA时间窗内检测成功后发送所述当前上行信号的预配置的第一时间点以及CCA时间窗内检测成功后发送所述当前上行时刻的预配置的第二时间点中的任一个时间点。
需要说明的是,该最早发送当前上行信号的时间点,指的是UE允许发送当前上行信号的最早时间点。UE在该第一发送时间点之前即使CCA成功也不允许发送上行信号,而是等到该第一发送时间点发送当前上行信号或在该第一发送时间点与第二发送时间点之间发送当前上行信号。这里的第二发送时间点在第一发送时间点之后,是UE发送所述当前上行信号中的有用信号的发送时间点。
所述获取单元501还用于,在所述信道测评单元执行CCA操作之前,获取第二发送时间点,所述第二发送时间点是所述当前上行信号中的有用信号的发送时间点;所述第二发送时间点不早于所述第一发送时间点。
所述信道测评单元502具体用于,确定回退初始值,并根据所述回退初始值进行CCA的随机回退;
所述确定单元503具体用于,根据所述第一发送时间点和所述第二发送时间点以及所述随机回退的结果确定所述当前上行信号的实际发送时间点。
所述确定单元503具体用于,如果所述CCA的随机回退成功的时间点不晚于所述第一发送时间点,则确定所述实际发送时间点不早于所述第一发送时间点;
或,如果所述CCA的随机回退成功的时间点晚于所述第一发送时间点且不晚于所述第二发送时间点,则确定所述实际发送时间点不早于所述随机回退成功的时间点且不晚于所述第二发送时间点。
如图9所示,所述UE50还包括第一接收单元505,
所述第一接收单元505用于,接收所述基站发送的竞争窗口信息。
所述信道测评单元502具体用于,根据所述竞争窗口信息确定所述回退初始值;所述竞争窗口信息用于指示所述回退初始值;
或,第一接收单元505接收所述基站发送的所述回退初始值,所述信道测评单元502将第一接收单元505接收的回退初始值确定为所述回退初始值;
或,信道测评单元502获取竞争窗口信息,根据所述竞争窗口信息确定所述回退初始值。
如图10所示,所述UE50还包括第二接收单元506。
所述第二接收单元506用于,接收基站发送的通知信今;
所述获取单元501具体用于,根据所述第二接收单元506接收的所述通知信今获取述第一发送时间点和所述第二发送时间点;
或,根据所述通知信今获取述第一发送时间点。
所述发送单元504还用于,若所述确定单元503确定所述实际发送时间点早于所述第二发送时间点,则在所述实际发送时间点至所述第二发送时间点之间发送所述当前上行信号中的填充信号,从所述第二发送时间点开始发送所述当前上行信号中的有用信号。
所述信道测评单元502具体用于,在所述第一发送时间点之前的第一CCA时间窗内进行CCA。
所述确定单元503具体用于,如果所述信道测评单元在所述第一CCA时间窗内检测到的信号能量不高于能量门限,则确定所 述实际发送时间点为所述第一发送时间点。
所述信道测评单元502还用于,若在所述第一CCA时间窗内检测到的信号能量高于所述能量门限,则在所述在第三发送时间点之前的第二CCA时间窗内进行CCA;所述第三发送时间点在所述第一发送时间点之后且在所述第二发送时间点之前。
所述确定单元503具体用于,若所述信道测评单元在所述第二CCA时间窗内检测到的信号能量不高于所述能量门限,则确定所述实际发送时间点为所述第三发送时间点。
需要说明的是,所述第三发送时间点属于所述候选发送时间点集合。另外,所述上行信号在当前的突发时间窗内,所述突然时间窗包括下行信号和所述上行信号的传输。
如图11所示,所述UE50还包括第三接收单元507。
所述第三接收单元507用于,接收所述基站发送的所述当前上行信号的结束时间点;或,
所述获取单元501还用于,根据所述第一发送时间点获取所述当前上行信号的结束时间点。
需要说明的是,本实施例中的发送单元504可以为UE的发射器203,第一接收单元505、第二接收单元506、第三接收单元507可以是UE的接收器202。另外。获取单元501、确定单元503以及信道测评单元502可以为单独设立的处理器201,也可以集成在UE的某一个处理器中实现,此外,也可以程序代码的形式存储于UE的存储器204中,由UE的某一个处理器调用并执行以上获取单元501、确定单元503以及信道测评单元502的功能。这里所述的处理器可以是一个中央处理器,或是特定集成电路。
本发明实施例提供的UE,可以获取最早发送当前上行信号的第一发送时间点,根据第一发送时间点以及CCA操作的结果确定当前上行信号的实际发送时间点,即UE根据基站的指示调整实际发送时间点,这样,由于基站确定的第一发送时间点靠近参考UE完成CCA随机回退的时间点,因此UE根据第一发送时间点确定的当前上行信号的实际发送时间点也是靠近参考UE完成CCA随机回退的 时间点,这样就可以指示各个UE尽可能同时进行上行信号发送,减少UE之间的相互干扰。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (30)

  1. 一种上行信号的传输方法,其特征在于,包括:
    基站在候选发送时间点集合中为用户设备UE确定第一发送时间点;所述第一发送时间点为所述UE最早发送当前上行信号的时间点,所述第一发送时间点属于候选发送时间点集合,所述候选发送时间点集合包括至少两个候选发送时间点;
    所述基站确定第二发送时间点;所述第二发送时间点是所述当前上行信号中的有用信号的发送时间点;所述第二发送时间点不早于所述第一发送时间点;
    所述基站向所述UE发送通知信令指示所述第一发送时间点和所述第二发送时间点,或向所述UE发送通知信令指示所述第一发送时间点;
    所述基站从所述第二发送时间点开始接收所述UE发送的所述当前上行信号;
    其中,所述候选发送时间点是CCA时间窗内检测成功后立即发送所述当前上行信号的时间点、所述CCA时间窗内检测成功后发送所述当前上行信号的预配置的第一时间点以及CCA时间窗内检测成功后发送所述当前上行时刻的预配置的第二时间点中的任一个时间点。
  2. 根据权利要求1所述的方法,其特征在于,所述基站向所述UE发送通知信令之后,所述方法还包括:
    所述基站向所述UE发送竞争窗口信息,所述竞争窗口信息用于指示回退初始值,所述回退初始值用于空闲信道测评的随机回退;
    或,所述基站向所述UE发送回退初始值,所述回退初始值用于空闲信道测评的随机回退。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述基站向所述UE发送所述当前上行信号的结束时间点。
  4. 一种上行信号的传输方法,其特征在于,包括:
    用户设备UE获取第一发送时间点,所述第一发送时间点为所述UE最早发送当前上行信号的时间点;所述第一发送时间点属于候选发送时间点集合,所述候选发送时间点集合包括至少两个候选发送时间点;
    所述UE执行空闲信道评测CCA操作;
    所述UE根据所述第一发送时间点以及所述CCA操作的结果确定所述当前上行信号的实际发送时间点;
    所述UE从所述实际发送时间点开始发送所述当前上行信号;
    其中,所述候选发送时间点是CCA时间窗内检测成功后立即发送所述当前上行信号的时间点、所述CCA时间窗内检测成功后发送所述当前上行信号的预配置的第一时间点以及CCA时间窗内检测成功后发送所述当前上行时刻的预配置的第二时间点中的任一个时间点。
  5. 根据权利要求4所述的方法,其特征在于,所述UE对待用上行信道执行CCA操作之前,所述方法还包括:
    所述UE获取第二发送时间点,所述第二发送时间点是所述当前上行信号中的有用信号的发送时间点;所述第二发送时间点不早于所述第一发送时间点。
  6. 根据权利要求5所述的方法,其特征在于,所述UE对待用上行信道执行CCA操作具体包括:
    所述UE确定回退初始值,并根据所述回退初始值进行CCA的随机回退;
    所述UE根据所述第一发送时间点以及所述CCA操作的结果确定所述当前上行信号的实际发送时间点,包括:
    所述UE根据所述第一发送时间点和所述第二发送时间点以及所述随机回退的结果确定所述当前上行信号的实际发送时间点。
  7. 根据权利要求5或6所述的方法,其特征在于,所述UE根据所述第一发送时间点和所述第二发送时间点以及所述随机回退的结果确定所述当前上行信号的实际发送时间点具体包括:
    如果所述CCA的随机回退成功的时间点不晚于所述第一发送时间点,所述UE则确定所述实际发送时间点不早于所述第一发送时间点;
    或,如果所述CCA的随机回退成功的时间点晚于所述第一发送时间点且不晚于所述第二发送时间点,所述UE则确定所述实际发送时间点不早于所述随机回退成功的时间点且不晚于所述第二发送时间点。
  8. 根据权利要求5-7任一项所述的方法,其特征在于,所述UE确定回退初始值具体包括:
    所述UE接收所述基站发送的竞争窗口信息,根据所述竞争窗口信息确定所述回退初始值;所述竞争窗口信息用于指示所述回退初始值;
    或,所述UE接收所述基站发送的所述回退初始值;
    或,所述UE获取竞争窗口信息,根据所述竞争窗口信息确定所述回退初始值。
  9. 根据权利要求4-8任一项所述的方法,其特征在于,所述UE获取第一发送时间点具体包括:
    所述UE接收基站发送的通知信令,根据所述通知信令获取述第一发送时间点和所述第二发送时间点;
    或,所述UE接收基站发送的通知信令,根据所述通知信令获取述第一发送时间点。
  10. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    若所述UE确定所述实际发送时间点早于所述第二发送时间点,所述UE则在所述实际发送时间点至所述第二发送时间点之间发送所述当前上行信号中的填充信号,从所述第二发送时间点开始发送所述当前上行信号中的有用信号。
  11. 根据权利要求5所述的方法,其特征在于,所述UE执行CCA操作具体包括:
    所述UE在所述第一发送时间点之前的第一CCA时间窗内进行 CCA;
    所述UE根据所述第一发送时间点和所述CCA操作的结果确定所述当前上行信号的实际发送时间点,包括:
    如果所述UE在所述第一CCA时间窗内检测到的信号能量不高于能量门限,所述UE则确定所述实际发送时间点为所述第一发送时间点。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    若所述UE在所述第一CCA时间窗内检测到的信号能量高于所述能量门限,所述UE则在所述在第三发送时间点之前的第二CCA时间窗内进行CCA;所述第三发送时间点在所述第一发送时间点之后且在所述第二发送时间点之前;
    若所述UE在所述第二CCA时间窗内检测到的信号能量不高于所述能量门限,所述UE则确定所述实际发送时间点为所述第三发送时间点。
  13. 根据权利要求12所述的方法,其特征在于,所述第三发送时间点属于所述候选发送时间点集合。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,
    所述上行信号在当前的突发时间窗内,所述突然时间窗包括下行信号和所述上行信号的传输。
  15. 根据权利要求4-14任一项所述的方法,其特征在于,所述方法还包括:
    所述UE接收所述基站发送的所述当前上行信号的结束时间点;或,
    所述UE根据所述第一发送时间点获取所述当前上行信号的结束时间点。
  16. 一种基站,其特征在于,包括:
    确定单元,用于在候选发送时间点集合中为用户设备UE确定第一发送时间点;所述第一发送时间点为所述UE最早发送当前上行信 号的时间点,所述第一发送时间点属于候选发送时间点集合,所述候选发送时间点集合包括至少两个候选发送时间点;
    所述确定单元还用于,确定第二发送时间点;所述第二发送时间点是所述当前上行信号中的有用信号的发送时间点;所述第二发送时间点不早于所述第一发送时间点;
    发送单元,用于向所述UE发送通知信令指示所述第一发送时间点和所述第二发送时间点,或向所述UE发送通知信令指示所述第一发送时间点;
    接收单元,用于从所述第二发送时间点开始接收所述UE发送的所述当前上行信号;
    其中,所述候选发送时间点是CCA时间窗内检测成功后立即发送所述当前上行信号的时间点、所述CCA时间窗内检测成功后发送所述当前上行信号的预配置的第一时间点以及CCA时间窗内检测成功后发送所述当前上行时刻的预配置的第二时间点中的任一个时间点。
  17. 根据权利要求16所述的基站,其特征在于,所述发送单元还用于,向所述UE发送通知信令之后,向所述UE发送竞争窗口信息,所述竞争窗口信息用于指示回退初始值,所述回退初始值用于空闲信道测评的随机回退;
    或,向所述UE发送所述回退初始值,所述竞争窗口信息用于指示回退初始值,所述回退初始值用于空闲信道测评的随机回退。
  18. 根据权利要求16或17所述的基站,其特征在于,所述发送单元还用于,向所述UE发送所述当前上行信号的结束时间点。
  19. 一种用户设备UE,其特征在于,包括:
    获取单元,用于获取第一发送时间点,所述第一发送时间点为所述UE最早发送当前上行信号的时间点,所述第一发送时间点属于候选发送时间点集合,所述候选发送时间点集合包括至少两个候选发送时间点;
    信道评测单元,用于对待用上行信道执行空闲信道评测CCA操 作;
    确定单元,用于根据所述第一发送时间点以及所述CCA操作的结果确定所述当前上行信号的实际发送时间点;
    发送单元,用于从所述实际发送时间点开始通过所述对待用上行信道发送所述当前上行信号;
    其中,所述候选发送时间点是CCA时间窗内检测成功后立即发送所述当前上行信号的时间点、所述CCA时间窗内检测成功后发送所述当前上行信号的预配置的第一时间点以及CCA时间窗内检测成功后发送所述当前上行时刻的预配置的第二时间点中的任一个时间点。
  20. 根据权利要求19所述的UE,其特征在于,所述获取单元还用于,在所述信道测评单元执行CCA操作之前,获取第二发送时间点,所述第二发送时间点是所述当前上行信号中的有用信号的发送时间点;所述第二发送时间点不早于所述第一发送时间点。
  21. 根据权利要求20所述的UE,其特征在于,所述信道测评单元具体用于,确定回退初始值,并根据所述回退初始值进行CCA的随机回退;
    所述确定单元具体用于,根据所述第一发送时间点和所述第二发送时间点以及所述随机回退的结果确定所述当前上行信号的实际发送时间点。
  22. 根据权利要求20或21所述的UE,其特征在于,所述确定单元具体用于,如果所述CCA的随机回退成功的时间点不晚于所述第一发送时间点,则确定所述实际发送时间点不早于所述第一发送时间点;
    或,如果所述CCA的随机回退成功的时间点晚于所述第一发送时间点且不晚于所述第二发送时间点,则确定所述实际发送时间点不早于所述随机回退成功的时间点且不晚于所述第二发送时间点。
  23. 根据权利要求20-22任一项所述的UE,其特征在于,还包括第一接收单元,
    所述第一接收单元用于,接收所述基站发送的竞争窗口信息;
    所述信道测评单元具体用于,根据所述竞争窗口信息确定所述回退初始值;所述竞争窗口信息用于指示所述回退初始值;
    或,接收所述基站发送的所述回退初始值;
    或,获取竞争窗口信息,根据所述竞争窗口信息确定所述回退初始值。
  24. 根据权利要求19-23任一项所述的UE,其特征在于,还包括第二接收单元,
    所述第二接收单元用于,接收基站发送的通知信令;
    所述获取单元具体用于,根据所述第二接收单元接收的所述通知信令获取述第一发送时间点和所述第二发送时间点;
    或,根据所述通知信令获取述第一发送时间点。
  25. 根据权利要求19-24任一项所述的UE,其特征在于,所述发送单元还用于,若所述确定单元确定所述实际发送时间点早于所述第二发送时间点,则在所述实际发送时间点至所述第二发送时间点之间发送所述当前上行信号中的填充信号,从所述第二发送时间点开始发送所述当前上行信号中的有用信号。
  26. 根据权利要求20所述的UE,其特征在于,所述信道测评单元具体用于,在所述第一发送时间点之前的第一CCA时间窗内进行CCA;
    所述确定单元具体用于,如果所述信道测评单元在所述第一CCA时间窗内检测到的信号能量不高于能量门限,则确定所述实际发送时间点为所述第一发送时间点。
  27. 根据权利要求26所述的UE,其特征在于,所述信道测评单元还用于,若在所述第一CCA时间窗内检测到的信号能量高于所述能量门限,则在所述在第三发送时间点之前的第二CCA时间窗内进行CCA;所述第三发送时间点在所述第一发送时间点之后且在所述第二发送时间点之前;
    所述确定单元具体用于,若所述信道测评单元在所述第二CCA 时间窗内检测到的信号能量不高于所述能量门限,则确定所述实际发送时间点为所述第三发送时间点。
  28. 根据权利要求27所述的UE,其特征在于,所述第三发送时间点属于所述候选发送时间点集合。
  29. 根据权利要求26-28任一项所述的UE,其特征在于,所述上行信号在当前的突发时间窗内,所述突然时间窗包括下行信号和所述上行信号的传输。
  30. 根据权利要求19-29任一项所述的UE,其特征在于,还包括第三接收单元,
    所述第三接收单元用于,接收所述基站发送的所述当前上行信号的结束时间点;或,
    所述获取单元还用于,根据所述第一发送时间点获取所述当前上行信号的结束时间点。
PCT/CN2016/073564 2016-02-04 2016-02-04 一种上行信号的传输方法、ue及基站 WO2017132960A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/073564 WO2017132960A1 (zh) 2016-02-04 2016-02-04 一种上行信号的传输方法、ue及基站
CN201680081189.9A CN108605357A (zh) 2016-02-04 2016-02-04 一种上行信号的传输方法、ue及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073564 WO2017132960A1 (zh) 2016-02-04 2016-02-04 一种上行信号的传输方法、ue及基站

Publications (1)

Publication Number Publication Date
WO2017132960A1 true WO2017132960A1 (zh) 2017-08-10

Family

ID=59499114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073564 WO2017132960A1 (zh) 2016-02-04 2016-02-04 一种上行信号的传输方法、ue及基站

Country Status (2)

Country Link
CN (1) CN108605357A (zh)
WO (1) WO2017132960A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104539405A (zh) * 2015-01-28 2015-04-22 深圳酷派技术有限公司 信道检测方法、信道检测***、基站和终端
CN104717686A (zh) * 2015-03-31 2015-06-17 深圳酷派技术有限公司 一种未授权频段的信道检测方法及网元设备
CN105101446A (zh) * 2015-06-30 2015-11-25 宇龙计算机通信科技(深圳)有限公司 一种用于非授权频段的冲突避免方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010282562B2 (en) * 2009-08-12 2015-04-02 Interdigital Patent Holdings, Inc. Method and apparatus for contention-based uplink data transmission
CN104349490A (zh) * 2013-08-08 2015-02-11 华为技术有限公司 调度方法及装置
CN105072690B (zh) * 2015-09-06 2018-08-28 魅族科技(中国)有限公司 基于非授权频谱的数据传输方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104539405A (zh) * 2015-01-28 2015-04-22 深圳酷派技术有限公司 信道检测方法、信道检测***、基站和终端
CN104717686A (zh) * 2015-03-31 2015-06-17 深圳酷派技术有限公司 一种未授权频段的信道检测方法及网元设备
CN105101446A (zh) * 2015-06-30 2015-11-25 宇龙计算机通信科技(深圳)有限公司 一种用于非授权频段的冲突避免方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussion on LBT for UL transmission R1-156768", 3GPP TSG RAN WG1 MEETING #83, 22 November 2015 (2015-11-22), XP051022493 *

Also Published As

Publication number Publication date
CN108605357A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
RU2745833C1 (ru) Процедура произвольного доступа при многолучевом распространении при выполнении хендовера
KR102587368B1 (ko) 공유 스펙트럼에서의 라디오 링크 모니터링
US10826758B2 (en) Method and apparatus for control resource monitoring considering beam failure recovery in a wireless communication system
TWI745779B (zh) 在非授權頻譜上處理通訊方法及相關通訊裝置
JP6449488B2 (ja) 共有周波数スペクトルのためのチャネルフィードバック報告
US20210274555A1 (en) Methods, apparatus and systems for system access in unlicensed spectrum
US11589384B2 (en) Data transmission method, terminal device, and network device
KR20190139848A (ko) 트리거 조건을 기반으로 하는 무선 네트워크에서의 지연 핸드오버 실행
JP2020519120A (ja) 送信適合およびグラントフリーアクセス
WO2017028044A1 (zh) 一种减少资源冲突的方法及ue
CN113615279B (zh) 无线链路管理方法及相关设备
WO2017166212A1 (zh) 信号传输方法、终端设备、接入网设备以及信号传输***
US12004217B2 (en) Random access preamble sending method, random access preamble receiving method, and communications apparatus
US20220150980A1 (en) Ue, network node and methods for handling 2-step and 4-step random access procedures
EP3687258B1 (en) Collision avoidance with synchronized transmission
WO2020064333A1 (en) Selecting a bandwidth part (bwp)
US11570824B2 (en) Methods and devices for random access
WO2016119219A1 (zh) 通信方法、基站和用户设备
EP4000328A1 (en) Method for physical layer access control based on a pilot hopping sequence
US20220394757A1 (en) Two-step rach transmissions using guard band in unlicensed spectrum
US11490422B2 (en) Methods, terminal device and base station for channel sensing in unlicensed spectrum
US20220338273A1 (en) Methods, ue and network node for handling prach configurations
WO2017132960A1 (zh) 一种上行信号的传输方法、ue及基站
WO2018093305A1 (en) Method and access node for controlling uplink transmissions in a wireless network
WO2022069095A1 (en) Transceiver device and scheduling device involved in transmission of small data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888785

Country of ref document: EP

Kind code of ref document: A1