WO2017132953A1 - Laa-lte***中pusch的传输方法和用户设备 - Google Patents

Laa-lte***中pusch的传输方法和用户设备 Download PDF

Info

Publication number
WO2017132953A1
WO2017132953A1 PCT/CN2016/073542 CN2016073542W WO2017132953A1 WO 2017132953 A1 WO2017132953 A1 WO 2017132953A1 CN 2016073542 W CN2016073542 W CN 2016073542W WO 2017132953 A1 WO2017132953 A1 WO 2017132953A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
pusch
carrier
base station
unlicensed carrier
Prior art date
Application number
PCT/CN2016/073542
Other languages
English (en)
French (fr)
Inventor
李晓翠
徐凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/073542 priority Critical patent/WO2017132953A1/zh
Priority to CN201680024974.0A priority patent/CN107534528B/zh
Priority to US15/760,096 priority patent/US20180263029A1/en
Priority to EP16888778.4A priority patent/EP3334078B1/en
Publication of WO2017132953A1 publication Critical patent/WO2017132953A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the embodiments of the present invention relate to a communication technology, and in particular, to a method for transmitting a Physical Uplink Shared Channel (PUSCH) in a LAA-LTE system, and a User Equipment (UE).
  • PUSCH Physical Uplink Shared Channel
  • LAA-LTE LAA-LTE system
  • UE User Equipment
  • the spectrum used by wireless communication systems is divided into two categories, a licensed spectrum and an unlicensed spectrum.
  • a licensed spectrum For commercial mobile communication systems, operators need to auction the licensed spectrum, and then obtain the authorization to use the corresponding spectrum to carry out mobile communication operations.
  • Unlicensed spectrum does not require auctions, and anyone can legally use unlicensed spectrum, such as Wireless Fidelity (WiFi) devices in the 2.4 GHz and 5 GHz bands.
  • WiFi Wireless Fidelity
  • the carrier on the licensed spectrum is called the authorized carrier
  • the carrier on the unlicensed spectrum is called the unlicensed carrier.
  • LAA-LTE Lens-Assisted Access Using Long Term Evolution
  • LBT Listen Before Talk
  • CSMA Carrier Sense Multiple Access
  • the UE cannot obtain the unlicensed carrier for uplink transmission at any time. Therefore, even if the UE receives the uplink grant, the UE may not preempt the uplink resource when the uplink data needs to be transmitted. If the UE waits for the next available unlicensed carrier to resend, the delay will be too long.
  • the embodiment of the present invention provides a PUSCH transmission method and a user equipment in a LAA-LTE system.
  • the UE uses the alternate carrier or uses the first unlicensed carrier to delay 1 to
  • the m subframes send the PUSCH to the base station, thereby reducing the delay of the UE transmitting the uplink data.
  • a first aspect of the present invention provides a method for transmitting a PUSCH in a LAA-LTE system, where a UE receives an uplink grant message on a first unlicensed carrier or a subframe n of an authorized carrier, and determines, according to the uplink grant message, a first unlicensed carrier.
  • the PUSCH is transmitted on the subframe n+k.
  • the UE determines the spare carrier, and then transmits the PUSCH to the base station using the backup carrier.
  • the UE waits for the uplink grant to send the uplink data again, and uses the backup carrier to send the PUSCH, which can reduce the delay for the UE to send the uplink data.
  • the UE determines that the authorized carrier is the standby carrier, and uses the subframe n+k of the authorized carrier.
  • the base station transmits the PUSCH, and the UE still uses the subframe n+k to transmit the PUSCH, thereby reducing the delay in transmitting the uplink data by the UE.
  • the UE when the UCI is included in the PUSCH, and the subframe n+k of the authorized carrier is unavailable, or when the UCI is not included in the PUSCH, the UE is not authorized to use the USI.
  • the spare carrier is determined in the carrier.
  • the UE determines that the second unlicensed carrier available for the subframe n+k is the standby carrier, and then sends the PUSCH to the base station by using the subframe n+k of the second unlicensed carrier.
  • the UE determines that the first unlicensed carrier is a standby carrier, and sends the subframe to the base station by using any one of a subframe n+k+1 to a subframe n+k+m of the first unlicensed carrier.
  • the PUSCH, m is a maximum delay window, and the value ranges from a positive integer greater than or equal to 2, and the maximum delay window is configured by the base station.
  • a second aspect of the present invention provides a method for transmitting a PUSCH in a LAA-LTE system, where a UE receives an uplink grant message on a first unlicensed carrier or a subframe n of an authorized carrier, and determines, according to the uplink grant message, a first unlicensed carrier. Transmitting the PUSCH on the subframe n+k, when the first unlicensed carrier is unavailable on the subframe n+k, the UE uses the subframe n+k+1 of the first unlicensed carrier to the subframe n+k+m Any one of the subframes transmits a PUSCH to the base station. The maximum delay of the m subframes is transmitted by the PUSCH. Compared with the prior art, the UE waits for the next uplink grant to send the uplink data, and the uplink data transmission delay can be reduced.
  • the UE utilizes a subframe of the first unlicensed carrier Any one of the subframes from n+k+1 to the subframe n+k+m transmits the PUSCH to the base station, where the UE is in the subframe n+k+1 to the subframe n+k+m of the first unlicensed carrier.
  • the UE attempts to send the PUSCH to the base station in sequence, and if the PUSCH is successfully sent in any one of the subframes, the process ends; if no PUSCH is successfully transmitted in one subframe, the UE abandons sending the PUSCH to the base station.
  • a third aspect of the present invention provides a UE, where the UE includes a determining module and a sending module, where the determining module is configured to determine a spare carrier when the first unlicensed carrier is unavailable in the subframe n+k, and the sending module is configured to use the alternate carrier.
  • the PUSCH is transmitted to the base station. Before determining the backup carrier, the UE receives the uplink grant message sent by the base station on the first unlicensed carrier or the subframe n of the authorized carrier, and determines to send on the subframe n+k of the first unlicensed carrier according to the uplink grant message. PUSCH. Compared with the prior art, the UE waits for the uplink grant to send the uplink data again, and uses the backup carrier to send the PUSCH, which can reduce the delay for the UE to send the uplink data.
  • the determining module determines that the authorized carrier is the standby carrier, and the sending module uses the subframe n of the authorized carrier. +k sends a PUSCH to the base station. Since the UE still uses the subframe n+k to transmit the PUSCH, the delay in transmitting the uplink data by the UE is reduced.
  • the determining module determines that the second unlicensed carrier available for the subframe n+k is the standby carrier, and the sending module sends the PUSCH to the base station by using the subframe n+k of the second unlicensed carrier.
  • the determining module determines that the first unlicensed carrier is a standby carrier, and the sending module uses one of the subframes n+k+1 to the subframe n+k+m of the first unlicensed carrier.
  • the base station sends a PUSCH, where m is the maximum delay window, and the value ranges from a positive integer greater than or equal to 2.
  • a fourth aspect of the present invention provides a UE, where the UE includes a determining module and a sending module, where the determining module is configured to determine whether the first unlicensed carrier is available in the subframe n+k, and the sending module is configured to determine, by the determining module, the first non- When the authorized carrier is unavailable on the subframe n+k, the PUSCH is transmitted to the base station by using any one of the subframe n+k+1 to the subframe n+k+m of the first unlicensed carrier.
  • the UE waits for the uplink grant to send the uplink data again, and sends the PUSCH with the maximum delay of m subframes, which can reduce the delay for the UE to send the uplink data.
  • the sending module is specifically configured to: at the first The sub-frame n+k+1 to the sub-frame n+k+m of the unlicensed carrier sequentially try to send the PUSCH to the base station. If the PUSCH is successfully sent in any one of the subframes, the process ends; if no sub-frame transmits the PUSCH successfully, then Abandoning the transmission of the PUSCH to the base station.
  • a fifth aspect of the present invention provides a UE, where the UE includes a processor, a memory, a transmitter, a receiver, and a system bus.
  • the memory, the transmitter, and the receiver are connected to the processor through the system bus and complete communication with each other.
  • the receiver is configured to receive an uplink grant message sent by the base station, where the processor is configured to determine a backup carrier when the first unlicensed carrier is unavailable in the subframe n+k, and the transmitter is configured to send the PUSCH to the base station by using the backup carrier.
  • the manner in which the processor determines the alternate carrier is in accordance with the manner provided by the first aspect of the present invention.
  • the UE waits for the uplink grant to send the uplink data again, and uses the backup carrier to send the PUSCH, which can reduce the delay for the UE to send the uplink data.
  • a sixth aspect of the present invention provides a UE, which includes a processor, a memory, a transmitter, a receiver, and a system bus.
  • the memory, the transmitter, and the receiver are connected to the processor through the system bus and complete communication with each other.
  • Execute instructions on the storage computer The receiver is configured to receive an uplink grant message sent by the base station, where the processor is configured to determine whether the first unlicensed carrier is available in the subframe n+k, and the transmitter is configured to use when the first unlicensed carrier is unavailable in the subframe n+k.
  • the UE waits for the uplink grant to send the uplink data again, and sends the PUSCH with the maximum delay of m subframes, which can reduce the delay for the UE to send the uplink data.
  • An embodiment of the present invention provides a PUSCH transmission method and user equipment in a LAA-LTE system, where the method includes: when a first unlicensed carrier is unavailable in a subframe n+k, the UE determines a spare carrier, and the UE uses the alternate carrier. Transmitting the PUSCH to a base station. Or, when the first unlicensed carrier is unavailable on the subframe n+k, the UE sends the subframe to the base station by using any one of the subframe n+k+1 to the subframe n+k+m of the first unlicensed carrier. PUSCH. The delay of transmitting the uplink data by the UE is reduced by using the alternate carrier or delaying the transmission of the PUSCH by 1 to m subframes.
  • 1 is a schematic diagram of a correspondence between an uplink grant message and uplink data
  • FIG. 2 is a flowchart of a method for transmitting a PUSCH in an LAA-LTE system according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of a method for transmitting a PUSCH in an LAA-LTE system according to Embodiment 2 of the present invention
  • FIG. 4 is a schematic diagram of a UE transmitting a PUSCH from an unlicensed carrier to a licensed carrier;
  • 5 is a schematic diagram of a UE delaying transmission of a PUSCH on the same unlicensed carrier
  • FIG. 6 is a schematic diagram of a UE transmitting a PUSCH from a first unlicensed carrier to a second unlicensed carrier;
  • FIG. 7 is a flowchart of a method for transmitting a PUSCH in an LAA-LTE system according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic structural diagram of a UE according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic structural diagram of a UE according to Embodiment 5 of the present invention.
  • FIG. 10 is a schematic structural diagram of a UE according to Embodiment 6 of the present invention.
  • FIG. 11 is a schematic structural diagram of a UE according to Embodiment 7 of the present invention.
  • FIG. 1 is a schematic diagram of a correspondence between an uplink grant message and an uplink data.
  • the base station sends an uplink grant message on a subframe n of the downlink channel, and the UE receives an uplink grant message on the downlink subframe n. Then the UE sends the uplink number in subframe n+4. according to. If the base station transmits the uplink grant information on the subframe n+3, the UE transmits the uplink data on the subframe n+7.
  • FDD Frequency Division Duplexing
  • the base station still sends the uplink grant information in the subframe n, but because the LBT needs to preempt the unlicensed carrier, it is likely that the UE does not occupy the uplink channel in the subframe n+4, then the UE needs Wait until the next time you get the upstream channel and then send the upstream data, causing the delay to be too long.
  • FIG. 2 is a flowchart of a method for transmitting a PUSCH in a LAA-LTE system according to Embodiment 1 of the present invention. As shown in FIG. 2, the method provided in this embodiment includes the following steps:
  • Step 101 When the first unlicensed carrier is unavailable on the subframe n+k, the UE determines the spare carrier.
  • the UE may receive the uplink grant message sent by the base station before determining the backup carrier, and the base station may send the uplink grant message to the UE by using the first unlicensed carrier or the authorized carrier, where the uplink grant information is used to indicate that the UE can send the uplink data, and the UE only receives the uplink data.
  • the uplink authorization message can send the uplink data.
  • n is the subframe number or system frame number of the uplink grant message sent by the UE to the base station, and the value ranges from 0 to a positive integer.
  • the UE After receiving the uplink grant message, the UE determines a subframe for transmitting the PUSCH according to the uplink grant message, where n+k is a sequence number or a system frame number of the subframe in which the UE sends the PUSCH on the first unlicensed carrier according to the uplink grant message, k Is a positive integer. For example, if the value of k is 4, the UE transmits uplink data on subframe n+4.
  • the uplink authorization message may include the information about the first unlicensed carrier, and the UE determines, according to the information about the first unlicensed carrier included in the uplink authorization information, that the uplink PUSCH is sent by using the first unlicensed carrier. Alternatively, the first unlicensed carrier is allocated when the UE accesses the network.
  • the UE After receiving the uplink authorization information, the UE monitors whether the first unlicensed carrier is idle in the subframe n+k according to the LBT mechanism. If the UE detects that the first unlicensed carrier is idle in the subframe n+k, the first unauthorized The carrier is available on subframe n+k, and the UE may transmit the PUSCH to the base station on subframe n+k using the first unlicensed carrier. If the UE monitors that the first authorized carrier is busy on the subframe n+k, the first unlicensed carrier is unavailable on the subframe n+k, and the UE cannot use the first unlicensed carrier in the subframe n+k. The PUSCH is transmitted to the base station.
  • the UE re-determines a spare carrier, which may be an authorized carrier. Carrier or unlicensed carrier.
  • the alternate carrier may be the first unlicensed carrier, or may be other unlicensed carriers except the first unlicensed carrier.
  • the backup carrier is the first unlicensed carrier, the UE cannot transmit the PUSCH on the subframe n+k, but needs to send the PUSCH within a certain delay window.
  • Step 102 The UE sends the PUSCH to the base station by using the backup carrier.
  • the UE determines the alternate carrier, and uses the backup carrier to send the PUSCH to the base station.
  • the method reduces the delay in transmitting the uplink data by the UE.
  • FIG. 3 is a flowchart of a method for transmitting a PUSCH in a LAA-LTE system according to Embodiment 2 of the present invention. As shown in FIG. 3, the method provided in this embodiment may include the following steps:
  • Step 201 The UE receives an uplink grant message sent by the base station in the subframe n.
  • Step 202 The UE determines, according to the uplink grant message, that the PUSCH is sent on the subframe n+k of the first unlicensed carrier.
  • Step 203 When the first unlicensed carrier is unavailable in the subframe n+k, and the PUSCH includes uplink control information (UCI), the UE determines whether the subframe n+k of the authorized carrier is available.
  • UCI uplink control information
  • the PUSCH can carry both uplink data and UCI.
  • the UCI usually includes: Scheduling Request, Hybrid Automatic Repeat reQuest (HARQ) acknowledgment character/negative acknowledgment (ACK/NACK), and channel status.
  • HARQ Hybrid Automatic Repeat reQuest
  • ACK/NACK Hybrid Automatic Repeat reQuest
  • the channel state information (CSI) includes a channel quality indication (CQI), a precoding matrix indicator (PMI), and a rank indication (RI).
  • the SR is used to request the uplink UL-SCH resource from the base station, and the HARQ ACK/NACK is used to perform HARQ acknowledgment on the downlink data sent on the PDSCH, and the CSI is used to inform the base station of the quality of the downlink channel, so that the base station performs downlink scheduling.
  • the UCI can also be transmitted in a Physical Uplink Control Channel (PUCCH). For the UE, the UE knows when the UCI is transmitted on the PUSCH and when it is transmitted on the PUCCH.
  • PUCCH Physical Uplink Control Channel
  • step 204 When the subframe n+k of the authorized carrier is available, step 204 is performed, and when the subframe n+k of the authorized carrier is unavailable, step 205 is performed.
  • Step 204 The UE determines that the authorized carrier is a standby carrier.
  • the UE preferentially selects the authorized carrier as the backup carrier. Because the USCH is included in the PUSCH, the UCI is critical for the uplink transmission. To ensure that the base station can receive the UCI in time and accurately, the UE preferentially selects the authorization.
  • the carrier is a spare carrier.
  • Step 205 The UE determines an alternate carrier from the unlicensed carriers that are allowed to be used.
  • Step 206 When the first unlicensed carrier is unavailable on the subframe n+k, and the USCH is not included in the PUSCH, the UE determines the spare carrier from the allowed unlicensed carriers.
  • the UE determines the spare carrier from the allowed unlicensed carriers, and is specifically divided into The following two situations:
  • the UE determines that the first unlicensed carrier is a spare carrier.
  • the UE determines that the unlicensed carrier that is allowed to be used is the standby carrier, and the unlicensed carrier that is allowed to be used is the first unlicensed carrier, that is, only the first for the UE. Unlicensed carriers are available. When the number of unlicensed carriers allowed to be used by the UE is multiple, the UE may also determine that the first unlicensed carrier is a spare carrier.
  • the UE determines that the second unlicensed carrier available for the subframe n+k is the spare carrier.
  • the UE determines, from among the plurality of unlicensed carriers that are allowed to be used, that the second unlicensed carrier that is available for one subframe n+k is the standby carrier, and the second unlicensed carrier The frequency used is different from the frequency used by the first unlicensed carrier.
  • Step 207 The UE sends the PUSCH to the base station by using the backup carrier.
  • the UE sends the PUSCH to the base station by using the backup carrier. Specifically, the UE sends the PUSCH to the base station by using the subframe n+k of the authorized carrier.
  • 4 is a schematic diagram of a UE transmitting a PUSCH from an unlicensed carrier to a licensed carrier. As shown in FIG. 4, the first unlicensed carrier is unavailable on the subframe n+k, and the UE transmits the PUSCH across the carrier to the authorized carrier. The subframe n+k of the authorized carrier is available, and the UE still transmits the PUSCH on the subframe n+k. For the UE, there is no need to delay the transmission of the uplink data.
  • the UE uses the backup carrier to send the PUSCH to the base station, where the UE uses the subframe n+k+1 to n+k+m of the first unlicensed carrier.
  • Any one of the subframes transmits a PUSCH to the base station, where the m value refers to a subframe span of the subframe n+k+1 to the subframe n+k+m, or refers to a sub-frame n+k+1 to the sub-frame
  • the number of subframes included in the frame n+k+m, m may be referred to as a maximum delay window, and the value ranges from a positive integer greater than or equal to 2.
  • the maximum delay window refers to a subframe span that allows the UE to attempt to transmit a PUSCH to the base station, or a window composed of a plurality of subframes that allow the UE to attempt to transmit a PUSCH to the base station.
  • the maximum delay window m is configured by the base station.
  • the m value may be configured by using a Radio Resource Control (RRC) signaling, and may be a semi-static configuration.
  • RRC Radio Resource Control
  • the UE sequentially attempts to send the PUSCH to the base station in the subframe n+k+1 to the subframe n+k+m of the first unlicensed carrier, if the subframe n+k+1 to the subframe n+k+ The PUSCH is successfully sent in any subframe of m, and the process ends. If the PUSCH is not successfully transmitted in all the subframes of the subframe n+k+1 to the subframe n+k+m, the UE abandons the transmission of the current PUSCH to the base station.
  • 5 is a schematic diagram of a UE delaying transmission of a PUSCH on the same unlicensed carrier. As shown in FIG.
  • the first unlicensed carrier is unavailable on the subframe n+k, and then the UE is in the subframe n of the first unlicensed carrier.
  • an attempt is made to transmit a PUSCH to the base station.
  • the base station can continuously monitor whether there is an uplink on the subframe n+k+1 to n+k+m of the first unlicensed carrier.
  • the data is transmitted, and the base station can know the sending position of the uplink data of the UE.
  • the UE sends the PUSCH to the base station by using the backup carrier. Specifically, the UE sends the PUSCH to the base station by using the subframe n+k of the second unlicensed carrier.
  • 6 is a schematic diagram of a UE transmitting a PUSCH from a first unlicensed carrier to a second unlicensed carrier. As shown in FIG. 6, the first unlicensed carrier is unavailable in the subframe n+k, and the UE crosses the carrier to the second. The PUSCH is transmitted on the unlicensed carrier. Since the UE still transmits the PUSCH on the subframe n+k, it is not necessary for the UE to delay the transmission of the uplink data.
  • the UE determines that the authorized carrier is the standby uplink carrier, and uses the subframe n+k of the authorized carrier to send the PUSCH to the base station, in the PUSCH.
  • the UE determines the spare carrier from the allowed unlicensed carriers, and uses the backup carrier to transmit the PUSCH to the base station, which can be reduced.
  • the UE transmits the delay of the PUSCH to the base station.
  • the alternate carrier can also be determined by other methods.
  • the UE does not determine whether the UCI is included in the PUSCH, but directly determines whether the subframe n+k of the authorized carrier is available.
  • the UE determines that the authorized carrier is the standby carrier, and the UE uses the authorization.
  • the PUSCH is transmitted to the base station on the subframe n+k of the carrier.
  • the UE determines the spare carrier from the unlicensed carriers that are allowed to be used.
  • the method for determining the backup carrier from the unlicensed carrier that is allowed to be used by the UE refer to the related description in Embodiment 2, and details are not described herein again.
  • FIG. 7 is a flowchart of a method for transmitting a PUSCH in an LAA-LTE system according to Embodiment 3 of the present invention. As shown in FIG. 7, the method provided in this embodiment includes the following steps:
  • Step 301 The UE receives an uplink grant message sent by the base station in the subframe n.
  • n is the sequence number or system frame number of the subframe in which the UE receives the uplink grant message sent by the base station, and the value ranges from 0 to a positive integer.
  • Step 302 The UE determines, according to the uplink grant message, that the PUSCH is sent on the subframe n+k of the first unlicensed carrier.
  • n+k is a sequence number or a system frame number of the subframe in which the UE sends the PUSCH on the first unlicensed carrier according to the uplink grant message, where k is a positive integer.
  • Step 303 When the first unlicensed carrier is unavailable on the subframe n+k, the UE uses the subframe n+k+1 of the first unlicensed carrier to any one of the subframes n+k+m to the base station. Send PUSCH.
  • the value of m refers to a subframe span of a subframe n+k+1 to a subframe n+k+m, or a sub-frame from a sub-frame n+k+1 to a sub-frame n+k+m
  • the number of frames, m can be called the maximum delay window, and its value ranges from positive integers greater than or equal to 2.
  • the maximum delay window refers to a subframe span that allows the UE to attempt to transmit a PUSCH to the base station, or a window composed of a plurality of subframes that allow the UE to attempt to transmit a PUSCH to the base station.
  • the maximum delay window m is configured by the base station.
  • the m value can be configured through RRC signaling, and can be a semi-static configuration.
  • the UE sequentially attempts to send the PUSCH to the base station in the subframe n+k+1 to the subframe n+k+m of the first unlicensed carrier, if the subframe n+k+1 to the subframe n+k+ The PUSCH is successfully sent in any subframe of m, and the process ends. If the PUSCH is not successfully transmitted in all the subframes of the subframe n+k+1 to the subframe n+k+m, the UE abandons the transmission of the current PUSCH to the base station.
  • the UE uses the subframe n+k+1 of the first unlicensed carrier to any one of the subframes n+k+m.
  • the PUSCH is transmitted to the base station. Compared with the prior art, the UE waits for the next uplink grant to send the uplink data, and can reduce the delay of the uplink data transmission.
  • FIG. 8 is a schematic structural diagram of a UE according to Embodiment 4 of the present invention.
  • the UE provided in this embodiment includes: a determining module 11 and a sending module 12.
  • the determining module 11 is configured to determine the alternate carrier when the first unlicensed carrier is not available on the subframe n+k.
  • the sending module 12 is configured to send the PUSCH to the base station by using the backup carrier.
  • n is the sequence number or the system frame number of the subframe in which the UE receives the uplink grant message sent by the base station, and the value ranges from 0 to a positive integer, where n+k is determined by the UE according to the uplink grant message.
  • the determining module 11 is specifically configured to: when the UCI is included in the PUSCH, and the subframe n+k of the licensed carrier is available, determine that the authorized carrier is the spare carrier.
  • the sending module 12 is specifically configured to: send the PUSCH to the base station by using a subframe n+k of the authorized carrier.
  • the determining module 11 is specifically configured to: when the UCI is included in the PUSCH, and the subframe n+k of the authorized carrier is unavailable, or when the UCI is not included in the PUSCH
  • the spare carrier is determined from the unlicensed carriers that are allowed to be used.
  • the determining module 11 is specifically configured to: determine that the second unlicensed carrier available in the subframe n+k is the standby carrier, where the sending module 12 is specific. Transmitting the PUSCH to the base station using a subframe n+k of the second unlicensed carrier. Alternatively, the determining module 11 determines that the first unlicensed carrier is the spare carrier, and the corresponding sending module 12 uses a subframe n+k+1 to a subframe n+k of the first unlicensed carrier. Any one of the sub-frames of the +m is sent to the base station, and the m is a maximum delay window, and the value ranges from a positive integer greater than or equal to 2. The maximum delay window m is configured by the base station.
  • the sending module is specific. For: sequentially attempting to the base on a subframe n+k+1 to a subframe n+k+m of the first unlicensed carrier
  • the station transmits the PUSCH, and if the PUSCH is successfully sent in any one of the subframes, the process ends; if none of the subframes transmits the PUSCH successfully, the PUSCH is discarded from being sent to the base station.
  • the UE in this embodiment may be used to perform the methods in the first embodiment and the second embodiment.
  • the specific implementation manners and technical effects are similar, and details are not described herein again.
  • FIG. 9 is a schematic structural diagram of a UE according to Embodiment 5 of the present invention.
  • the UE provided in this embodiment includes: a determining module 21 and a sending module 22.
  • the determining module 21 is configured to determine whether the first unlicensed carrier is available on the subframe n+k.
  • the sending module 22 is configured to use the subframe n+k+1 to the subframe n+ of the first unlicensed carrier when the determining module 21 determines that the first unlicensed carrier is unavailable on the subframe n+k Any one of k+m transmits the PUSCH to the base station.
  • n is the sequence number or system frame number of the subframe in which the UE receives the uplink grant message sent by the base station, and the value ranges from 0 to a positive integer
  • n+k is determined by the UE according to the uplink grant message.
  • the sending module 22 is specifically configured to: in the subframe n+k+1 to the subframe n+k+m of the first unlicensed carrier, sequentially try to send the PUSCH to the base station, if The PUSCH is successfully sent on any one of the subframes, and the process ends; if no one subframe transmits the PUSCH successfully, the PUSCH is sent to the base station.
  • the UE in this embodiment may be used to perform the method in the third embodiment, and the specific implementation manners and technical effects are similar, and details are not described herein again.
  • the UE 300 provided in this embodiment includes: a processor 31, a memory 32, a transmitter 33, a receiver 34, and a system bus 35.
  • the memory 32, the transmitter 33 and the receiver 34 are connected to the processor 31 via the system bus 35 for communication with each other, the memory 32 for storing computer execution instructions, and the receiver 34 for receiving a base station.
  • Sending an uplink grant message the processor 31 is configured to determine a backup carrier when the first unlicensed carrier is unavailable in the subframe n+k, and the transmitter 33 is configured to send, by using the spare carrier, the base station PUSCH.
  • n is the sequence number or system of the subframe in which the UE receives the uplink grant message sent by the base station a frame number, in the range of 0 or a positive integer
  • n+k is a sequence number or a system frame number of the subframe in which the UE sends the PUSCH on the first unlicensed carrier according to the uplink grant message.
  • k is a positive integer.
  • the processor 31 is specifically configured to: when the USCH is included in the PUSCH, and the subframe n+k of the licensed carrier is available, determining that the authorized carrier is the spare carrier, where the transmitter is specific For transmitting the PUSCH to the base station by using a subframe n+k of the authorized carrier.
  • the processor 31 is specifically configured to: when the UCI is included in the PUSCH, and the subframe n+k of the authorized carrier is unavailable, or when the UCI is not included in the PUSCH
  • the spare carrier is determined from the unlicensed carriers that are allowed to be used.
  • the processor 31 determines that the second unlicensed carrier that is available in the subframe n+k is the spare carrier, and the transmitter 33 is specifically configured to: use the subframe of the second unlicensed carrier. n+k transmits the PUSCH to the base station.
  • the processor 31 determines that the first unlicensed carrier is the spare carrier, and the transmitter 33 is specifically configured to: use a subframe n+k+ of the first unlicensed carrier Any one of the sub-frames n+k+m transmits the PUSCH to the base station, where m is a maximum delay window, and the value ranges from a positive integer greater than or equal to 2, and the maximum delay window m It is configured by the base station.
  • the transmitter 33 is specifically configured to: in the subframe n+k+1 to the subframe n+k+m of the first unlicensed carrier, sequentially try to send the PUSCH to the base station, if The PUSCH is successfully sent on any one of the subframes, and the process ends; if no one subframe transmits the PUSCH successfully, the PUSCH is sent to the base station.
  • the UE in this embodiment may be used to perform the methods in the first embodiment and the second embodiment.
  • the specific implementation manners and technical effects are similar, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of a UE according to Embodiment 7 of the present invention.
  • the UE 400 provided in this embodiment includes: a processor 41, a memory 42, a transmitter 43, a receiver 44, and a system bus 45.
  • the memory 42, the transmitter 43, and the receiver 44 are connected to the processor 41 via the system bus 45 and perform communication with each other, the memory 42 is for storing computer execution instructions, and the receiver 44 is for receiving a base station.
  • the processor 41 is configured to determine whether the first unlicensed carrier is available in the subframe n+k, and the transmitter 43 is configured to: when the first unlicensed carrier is in the subframe n+k Use the above when not available Any one of subframes n+k+1 to subframes n+k+m of an unlicensed carrier transmits a physical uplink shared channel PUSCH to the base station.
  • n is the sequence number or system frame number of the subframe in which the UE receives the uplink grant message sent by the base station, and the value ranges from 0 to a positive integer, where n+k is determined by the UE according to the uplink grant message.
  • the transmitter 43 is specifically configured to: in the subframe n+k+1 to the subframe n+k+m of the first unlicensed carrier, sequentially try to send the PUSCH to the base station, if The PUSCH is successfully sent on any one of the subframes, and the process ends; if no one subframe transmits the PUSCH successfully, the PUSCH is sent to the base station.
  • the UE in this embodiment may be used to perform the method in the third embodiment, and the specific implementation manners and technical effects are similar, and details are not described herein again.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种LAA-LTE***中PUSCH的传输方法和用户设备,所述方法包括:当第一非授权载波在子帧n+k上不可用时,UE确定备用载波,UE使用备用载波向基站发送所述PUSCH。或者,当第一非授权载波在子帧n+k上不可用时,UE利用第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向基站发送PUSCH。通过使用备用载波或者延迟1至m个子帧发送PUSCH,降低了UE发送上行数据的时延。

Description

LAA-LTE***中PUSCH的传输方法和用户设备 技术领域
本发明实施例涉及通信技术,尤其涉及一种LAA-LTE***中物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)的传输方法和用户设备(User Equipment,简称UE)。
背景技术
无线通信***使用的频谱分为两类,授权频谱(licensed spectrum)和非授权频谱(unlicensed spectrum)。对于商用的移动通信***,运营商需要拍卖授权频谱,获得授权后才可以使用相应的频谱开展移动通信的运营活动。非授权频谱不需要拍卖,任何人都可以合法的使用非授权频谱,比如在2.4GHz和5GHz频带上的无线保真(Wireless Fidelity,简称WiFi)设备。授权频谱上的载波称为授权载波,非授权频谱上的载波称为非授权载波。随着通信技术的发展,无线通信网络中传输的信息量日益增加,抢占非授权频谱传输信息,可以提高无线通信网络中的数据吞吐量,更好地满足用户的需求。
在长期演进的授权辅助接入(Licensed-Assisted Access Using Long Term Evolution,LAA-LTE)***中,LAA-LTE***的UE通过说前先听(listen before talk,简称LBT)机制使用信道资源,LBT是一种载波监听多路访问(Carrier Sense Multiple Access,简称CSMA)技术。传统的LTE***中,如果UE在子帧n接收到上行授权(UL grant),那么UE在子帧n+4发送上行数据。
在LAA***中,UE不能随时获得非授权载波进行上行传输,所以即使UE接收到了上行授权,但当需要传输上行数据时,UE可能并没有抢占到上行资源。如果UE等待下次可获得的非授权载波再发送,会导致延迟时间过长。
发明内容
本发明实施例提供一种LAA-LTE***中PUSCH的传输方法和用户设备,当第一非授权载波在子帧n+k上不可用时,UE使用备用载波或使用第一非授权载波延迟1至m个子帧向基站发送PUSCH,从而降低了UE发送上行数据的时延。
本发明第一方面提供一种LAA-LTE***中PUSCH的传输方法,UE在第一非授权载波或者授权载波的子帧n上接收上行授权消息,根据该上行授权消息确定在第一非授权载波的子帧n+k上发送PUSCH,当第一非授权载波在子帧n+k上不可用时,UE确定备用载波,然后使用备用载波向基站发送PUSCH。相比于现有技术中UE等待下次获取上行授权再发送上行数据,使用备用载波发送PUSCH,可以降低UE发送上行数据的时延。
在第一方面的一种可能的实现方式中,当PUSCH中包含UCI时,且授权载波的子帧n+k可用时,UE确定授权载波为备用载波,使用授权载波的子帧n+k向基站发送PUSCH,由于UE仍然使用子帧n+k发送PUSCH,从而降低了UE发送上行数据的时延。
在第一方面的另一种可能的实现方式中,当PUSCH中包含UCI时,且授权载波的子帧n+k不可用时,或者,当PUSCH中不包含UCI时,UE从允许使用的非授权载波中确定备用载波。一种实现方式中,UE确定子帧n+k可用的第二非授权载波为备用载波,然后使用第二非授权载波的子帧n+k向基站发送PUSCH。另一种实现方式中,UE确定第一非授权载波为备用载波,利用第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向基站发送所述PUSCH,m为最大时延窗口,取值范围为大于或等于2的正整数,并且该最大时延窗口由基站配置。
本发明第二方面提供一种LAA-LTE***中PUSCH的传输方法,UE在第一非授权载波或者授权载波的子帧n上接收上行授权消息,根据该上行授权消息确定在第一非授权载波的子帧n+k上发送PUSCH,当第一非授权载波在子帧n+k上不可用时,UE利用第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向基站发送PUSCH。最大延迟m个子帧发送PUSCH,相比于现有技术中UE等待下次获取上行授权再发送上行数据,可以降低上行数据发送的延迟。
在本发明第一方面和第二方面中,UE利用第一非授权载波的子帧 n+k+1至子帧n+k+m中的任一个子帧向基站发送PUSCH,具体为:UE在第一非授权载波的子帧n+k+1至子帧n+k+m上依次尝试向基站发送PUSCH,如果在任一个子帧上发送PUSCH成功,流程结束;如果没有一个子帧发送PUSCH成功,则UE放弃向基站发送PUSCH。
本发明第三方面提供一种UE,该UE包括确定模块和发送模块,确定模块用于当第一非授权载波在子帧n+k上不可用时,确定备用载波,发送模块用于使用备用载波向基站发送PUSCH。确定模块在确定备用载波之前,UE在第一非授权载波或者授权载波的子帧n上接收基站发送的上行授权消息,根据上行授权消息确定在第一非授权载波的子帧n+k上发送PUSCH。相比于现有技术中UE等待下次获取上行授权再发送上行数据,使用备用载波发送PUSCH,可以降低UE发送上行数据的时延。
在第三方面的一种可能的实现方式中,当PUSCH中包含UCI时,且授权载波的子帧n+k可用时,确定模块确定授权载波为备用载波,发送模块使用授权载波的子帧n+k向基站发送PUSCH。由于UE仍然使用子帧n+k发送PUSCH,从而降低了UE发送上行数据的时延。
在第三方面的另一种可能的实现方式中,当PUSCH中包含UCI时,且授权载波的子帧n+k不可用时,或者,当PUSCH中不包含UCI时,确定模块从允许使用的非授权载波中确定备用载波。一种实现方式中,确定模块确定子帧n+k可用的第二非授权载波为备用载波,发送模块使用第二非授权载波的子帧n+k向基站发送PUSCH。另一种实现方式中,确定模块确定第一非授权载波为备用载波,发送模块利用第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向基站发送PUSCH,m为最大时延窗口,取值范围为大于或等于2的正整数。
本发明第四方面提供一种UE,该UE包括确定模块和发送模块,确定模块用于确定第一非授权载波在子帧n+k上是否可用,发送模块用于当确定模块确定第一非授权载波在子帧n+k上不可用时,利用第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向基站发送PUSCH。相比于现有技术中UE等待下次获取上行授权再发送上行数据,最大延迟m个子帧发送PUSCH,可以降低UE发送上行数据的时延。
在第三方面和第四方面的实现方式中,发送模块具体用于:在第一 非授权载波的子帧n+k+1至子帧n+k+m上依次尝试向基站发送PUSCH,如果在任一个子帧上发送PUSCH成功,流程结束;如果没有一个子帧发送PUSCH成功,则放弃向基站发送PUSCH。
本发明第五方面提供一种UE,该UE包括处理器、存储器、发送器、接收器和***总线,存储器、发送器和接收器通过***总线与处理器连接并完成相互间的通信,存储器用于存储计算机执行指令。接收器用于接收基站发送的上行授权消息,处理器用于当第一非授权载波在子帧n+k上不可用时确定备用载波,发送器用于使用备用载波向基站发送PUSCH。处理器确定备用载波的方式参照本发明第一方面提供的方式。相比于现有技术中UE等待下次获取上行授权再发送上行数据,使用备用载波发送PUSCH,可以降低UE发送上行数据的时延。
本发明第六方面提供一种UE,该UE包括处理器、存储器、发送器、接收器和***总线,存储器、发送器和接收器通过***总线与处理器连接并完成相互间的通信,存储器用于存储计算机执行指令。接收器用于接收基站发送的上行授权消息,处理器用于确定第一非授权载波在子帧n+k上是否可用,发送器用于当第一非授权载波在子帧n+k上不可用时,利用第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向基站发送PUSCH,发送器的具体发送方式参照本发明第二方面的实现方式。相比于现有技术中UE等待下次获取上行授权再发送上行数据,最大延迟m个子帧发送PUSCH,可以降低UE发送上行数据的时延。
本发明实施例提供一种LAA-LTE***中PUSCH的传输方法和用户设备,所述方法包括:当第一非授权载波在子帧n+k上不可用时,UE确定备用载波,UE使用备用载波向基站发送所述PUSCH。或者,当第一非授权载波在子帧n+k上不可用时,UE利用第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向基站发送PUSCH。通过使用备用载波或者延迟1至m个子帧发送PUSCH,降低了UE发送上行数据的时延。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易 见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为上行授权消息和上行数据之间的对应关系的示意图;
图2为本发明实施例一提供的LAA-LTE***中PUSCH的传输方法的流程图;
图3为本发明实施例二提供的LAA-LTE***中PUSCH的传输方法的流程图;
图4为UE从非授权载波跨载波到授权载波发送PUSCH的示意图;
图5为UE在同一个非授权载波上延迟发送PUSCH的示意图;
图6为UE从第一非授权载波跨载波到第二非授权载波发送PUSCH的示意图;
图7为本发明实施例三提供的LAA-LTE***中PUSCH的传输方法的流程图;
图8为本发明实施例四提供的UE的结构示意图;
图9为本发明实施例五提供的UE的结构示意图;
图10为本发明实施例六提供的UE的结构示意图;
图11为本发明实施例七提供的UE的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
传统的LTE***中,在频分双工(Frequency Division Duplexing,简称FDD)情况下,如果UE在子帧n接收到上行授权消息,那么UE在子帧n+4发送上行数据。图1为上行授权消息和上行数据之间的对应关系的示意图,如图1所示,基站在下行信道的子帧n上发送上行授权消息,UE在下行子帧n上接收到上行授权消息,然后UE在子帧n+4上发送上行数 据。若基站在子帧n+3上接发送上行授权信息,那么UE在子帧n+7上发送上行数据。而在LAA***中,假如基站仍然是在子帧n发送了上行授权信息,但由于需要进行LBT抢占非授权载波,因此很可能UE在子帧n+4上没有占用到上行信道,那么UE需要等到下次获得上行信道,再发送上行数据,导致时延过长。
为了解决现有技术的问题,本发明实施例提供一种LAA-LTE***中PUSCH的传输方法,图2为本发明实施例一提供的LAA-LTE***中PUSCH的传输方法的流程图,如图2所示,本实施例提供的方法包括以下步骤:
步骤101、当第一非授权载波在子帧n+k上不可用时,UE确定备用载波。
UE在确定备用载波之前,会接收基站发送的上行授权消息,基站可以通过第一非授权载波或者授权载波向UE发送上行授权消息,上行授权信息用于指示UE可以发送上行数据,UE只有接收到上行授权消息,才能发送上行数据。其中,n为UE接收基站发送的上行授权消息的子帧序号或者***帧号,取值范围为0或正整数。
UE在接收到上行授权消息后,根据上行授权消息确定发送PUSCH的子帧,n+k为UE根据上行授权消息确定在第一非授权载波上发送PUSCH的子帧的序号或者***帧号,k为正整数。例如,k的取值为4,那么UE在子帧n+4上发送上行数据。可选的,上行授权消息中可以包括第一非授权载波的信息,UE根据上行授权信息中包括的第一非授权载波的信息确定使用第一非授权载波发送上行PUSCH。或者,第一非授权载波是UE在接入网络时分配的。
UE接收到上行授权信息后,按照LBT机制监听第一非授权载波在子帧n+k上是否空闲,如果UE监听到第一非授权载波在子帧n+k上空闲,那么第一非授权载波在子帧n+k上可用,UE可以使用第一非授权载波在子帧n+k上向基站发送PUSCH。如果UE监听到第一授权载波在子帧n+k上忙碌,那么第一非授权载波在子帧n+k上不可用,此时UE不能使用第一非授权载波在子帧n+k上向基站发送PUSCH。
本实施例中,UE会重新确定一个备用载波,该备用载波可以为授权 载波或非授权载波。当该备用载波为非授权载波时,该备用载波可以是第一非授权载波,也可以是除第一非授权载波外的其他非授权载波。当该备用载波为第一非授权载波时,UE不能在子帧n+k上发送PUSCH,而需要在一定的延时窗口内发送PUSCH。
步骤102、UE使用备用载波向基站发送PUSCH。
本实施例中,当第一非授权载波在子帧n+k上不可用时,UE确定备用载波,使用备用载波向基站发送PUSCH。所述方法当第一非授权载波在子帧n+k上不可用时,降低了UE发送上行数据的时延。
在上述实施例一的基础上,本发明实施例二提供一种LAA-LTE***中PUSCH的传输方法,图3为本发明实施例二提供的LAA-LTE***中PUSCH的传输方法的流程图,如图3所示,本实施例提供的方法可以包括以下步骤:
步骤201、UE在子帧n接收基站发送的上行授权消息。
步骤202、UE根据上行授权消息确定在第一非授权载波的子帧n+k上发送PUSCH。
步骤203、当第一非授权载波在子帧n+k上不可用,且PUSCH中包含上行控制信息(uplink control information,简称UCI)时,UE判断授权载波的子帧n+k是否可用。
PUSCH既能承载上行数据,也能承载UCI,UCI通常包括:调度请求(Scheduling Request)、混合自动重传请求(Hybrid Automatic Repeat reQuest,简称HARQ)确认字符/否定应答(ACK/NACK)和信道状态信息(Channel State Information,简称CSI),CSI包括信道质量指示(channel quality indication,简称CQI)、预编码矩阵指示(Precoding Matrix Indicator,简称PMI)和秩指示(rank indication,简称RI)。
SR用于向基站请求上行UL-SCH资源,HARQ ACK/NACK用于对在PDSCH上发送的下行数据进行HARQ确认,CSI用于告诉基站下行信道的质量,以便于基站进行下行调度。UCI除了可以在PUSCH上传输外,还可以在物理上行链路控制信道(Physical Uplink Control Channel,简称PUCCH)中传输,对于UE来说,UE知道UCI什么时候在PUSCH传输,什么时候在PUCCH传输。
当授权载波的子帧n+k可用时,执行步骤204,当授权载波的子帧n+k不可用时,执行步骤205。
步骤204、UE确定授权载波为备用载波。
如果授权载波的子帧n+k可用,那么UE优先选用授权载波作为备用载波,因为PUSCH中包含UCI,UCI对于上行传输很关键,为了保证基站能够及时准确的接收到UCI,所以UE优先选用授权载波为备用载波。
步骤205、UE从允许使用的非授权载波中确定备用载波。
步骤206、当第一非授权载波在子帧n+k上不可用,且PUSCH中不包含UCI时,UE从允许使用的非授权载波中确定备用载波。
本实施例中,当PUSCH中包含UCI时,且授权载波的子帧n+k不可用时,或者,当PUSCH中不包含UCI时,UE从允许使用的非授权载波中确定备用载波,具体分为以下两种情况:
(1)UE确定第一非授权载波为备用载波。
当UE允许使用的非授权载波的数量为1个时,UE确定允许使用的非授权载波为备用载波,这时允许使用的非授权载波为第一非授权载波,即对于UE来说只有第一非授权载波可用。当UE允许使用的非授权载波的数量为多个时,UE也可以确定第一非授权载波为备用载波。
(2)UE确定子帧n+k可用的第二非授权载波为备用载波。
当UE允许使用的非授权载波的数量为多个时,UE从允许使用的多个非授权载波中确定一个子帧n+k可用的的第二非授权载波为备用载波,第二非授权载波使用的频率与第一非授权载波使用的频率不同。
步骤207、UE使用备用载波向基站发送PUSCH。
(1)当UE确定授权载波为备用载波时,UE使用备用载波向基站发送PUSCH具体为:UE使用授权载波的子帧n+k上向基站发送PUSCH。图4为UE从非授权载波跨载波到授权载波发送PUSCH的示意图,如图4所示,第一非授权载波在子帧n+k上不可用,UE跨载波到授权载波上发送PUSCH,由于授权载波的子帧n+k可用,UE仍然在子帧n+k上发送PUSCH,对于UE来说,不需要延迟上行数据的发送。
(2)当UE确定第一非授权载波为备用载波时,UE使用备用载波向基站发送PUSCH具体为:UE利用第一非授权载波的子帧n+k+1至n+k+m 中的任一个子帧向基站发送PUSCH,其中,m值是指子帧n+k+1至子帧n+k+m的子帧跨度,或者是指从子帧n+k+1至子帧n+k+m中所包含的子帧个数,m可以称作最大时延窗口,其取值范围为大于或等于2的正整数。最大时延窗口是指允许UE尝试向基站发送PUSCH的一个子帧跨度,或者是指允许UE尝试向基站发送PUSCH的多个子帧组成的一个窗口。最大延时窗口m是由基站配置的,可选的,该m值可以通过无线资源控制协议(Radio Resource Control,简称RRC)信令进行配置,可以是半静态的配置。
具体的,UE在第一非授权载波的子帧n+k+1至子帧n+k+m上依次尝试向基站发送PUSCH,如果在子帧n+k+1至子帧n+k+m的任一个子帧上发送PUSCH成功,流程结束。如果在子帧n+k+1至子帧n+k+m的所有子帧都没有发送PUSCH成功,则UE放弃向基站发送此次的PUSCH。图5为UE在同一个非授权载波上延迟发送PUSCH的示意图,如图5所示,第一非授权载波在子帧n+k上不可用,那么UE在第一非授权载波的子帧n+k+1至n+k+m上尝试向基站发送PUSCH,这种情况下,基站可以在第一非授权载波的子帧n+k+1至n+k+m上持续监测是否有上行数据发送,此时基站可以获知UE上行数据的发送位置。
(3)当UE确定第二非授权载波为备用载波时,UE使用备用载波向基站发送PUSCH具体为:UE使用第二非授权载波的子帧n+k上向基站发送PUSCH。图6为UE从第一非授权载波跨载波到第二非授权载波发送PUSCH的示意图,如图6所示,第一非授权载波在子帧n+k上不可用,UE跨载波到第二非授权载波上发送PUSCH,由于UE仍然在子帧n+k上发送PUSCH,对于UE来说,不需要延迟上行数据的发送。
本实施例中,当PUSCH中包含UCI时,且授权载波的子帧n+k可用时,UE确定授权载波为备用上行载波,使用授权载波的子帧n+k向基站发送PUSCH,当PUSCH中包含上行UCI时,且授权载波的子帧n+k不可用时,或者,当PUSCH中不包含UCI时,UE从允许使用的非授权载波中确定备用载波,使用备用载波向基站发送PUSCH,可以降低第一非授权载波在子帧n+k上不可用时,UE向基站发送PUSCH的时延。
需要说明的是,实施例二中列举的只是一种确定备用载波的方法, 对于UE来说,还可以通过其他方法确定备用载波。例如,UE不再判断PUSCH中是否包含UCI,而是直接确定授权载波的子帧n+k是否可用,当授权载波的子帧n+k可用时,UE确定授权载波为备用载波,UE使用授权载波的子帧n+k上向基站发送PUSCH。当授权载波的子帧n+k不可用时,UE从允许使用的非授权载波中确定备用载波。UE从允许使用的非授权载波中确定备用载波的方法参照实施例二中的相关描述,这里不再赘述。
图7为本发明实施例三提供的LAA-LTE***中PUSCH的传输方法的流程图,如图7所示,本实施例提供的方法包括以下步骤:
步骤301、UE在子帧n接收基站发送的上行授权消息。
其中,n为UE接收基站发送的上行授权消息的子帧的序号或***帧号,取值范围为0或正整数。
步骤302、UE根据上行授权消息确定在第一非授权载波的子帧n+k上发送PUSCH。
n+k为UE根据上行授权消息确定在第一非授权载波上发送PUSCH的子帧的序号或***帧号,k为正整数。
步骤303、当第一非授权载波在子帧n+k上不可用时,UE利用第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向基站发送PUSCH。
其中,m值是指子帧n+k+1至子帧n+k+m的子帧跨度,或者是指从子帧n+k+1至子帧n+k+m中所包含的子帧个数,m可以称作最大时延窗口,其取值范围为大于或等于2的正整数。最大时延窗口是指允许UE尝试向基站发送PUSCH的一个子帧跨度,或者是指允许UE尝试向基站发送PUSCH的多个子帧组成的一个窗口。最大延时窗口m是由基站配置的,可选的,该m值可以通过RRC信令进行配置,可以是一个半静态的配置
具体的,UE在第一非授权载波的子帧n+k+1至子帧n+k+m上依次尝试向基站发送PUSCH,如果在子帧n+k+1至子帧n+k+m的任一个子帧上发送PUSCH成功,流程结束。如果在子帧n+k+1至子帧n+k+m的所有子帧都没有发送PUSCH成功,则UE放弃向基站发送此次的PUSCH。
本实施例中,当第一非授权载波在子帧n+k上不可用时,UE利用第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向基站发送PUSCH。相比于现有技术中UE等待下次获取上行授权再发送上行数据,可以降低上行数据发送的延迟。
图8为本发明实施例四提供的UE的结构示意图,如图8所示,本实施例提供的UE包括:确定模块11和发送模块12。确定模块11用于当第一非授权载波在子帧n+k上不可用时,确定备用载波。发送模块12用于使用所述备用载波向所述基站发送PUSCH。
其中,n为所述UE接收基站发送的上行授权消息的子帧的序号或者***帧号,取值范围为0或正整数,n+k为所述UE根据所述上行授权消息确定在所述第一非授权载波上发送所述PUSCH的子帧的序号或者***帧号,k为正整数。
可选的,所述确定模块11具体用于:当所述PUSCH中包含UCI时,且授权载波的子帧n+k可用时,确定所述授权载波为所述备用载波。相应的,所述发送模块12具体用于:使用所述授权载波的子帧n+k向所述基站发送所述PUSCH。
可选的,所述确定模块11具体用于:当所述PUSCH中包含所述UCI时,且所述授权载波的子帧n+k不可用时,或者,当所述PUSCH中不包含所述UCI时,从允许使用的非授权载波中确定所述备用载波。
在从允许使用的非授权载波中确定所述备用载波时,所述确定模块11具体用于:确定子帧n+k可用的第二非授权载波为所述备用载波,所述发送模块12具体用于使用所述第二非授权载波的子帧n+k向所述基站发送所述PUSCH。或者,所述确定模块11确定所述第一非授权载波为所述备用载波,相应的所述发送模块12利用所述第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向所述基站发送所述PUSCH,m为最大时延窗口,取值范围为大于或等于2的正整数,所述最大延时窗口m是所述基站配置的。
在利用所述第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向所述基站发送所述PUSCH时,可选的,所述发送模块具体用于:在所述第一非授权载波的子帧n+k+1至子帧n+k+m上依次尝试向所述基 站发送所述PUSCH,如果在任一个子帧上发送所述PUSCH成功,流程结束;如果没有一个子帧发送所述PUSCH成功,则放弃向所述基站发送所述PUSCH。
本实施例的UE,可用于执行实施例一和实施例二的方法,具体实现方式和技术效果类似,这里不再赘述。
图9为本发明实施例五提供的UE的结构示意图,如图9所示,本实施例提供的UE包括:确定模块21和发送模块22。确定模块21用于确定第一非授权载波在子帧n+k上是否可用。发送模块22用于当所述确定模块21确定所述第一非授权载波在子帧n+k上不可用时,利用所述第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向所述基站发送所述PUSCH。
其中,n为所述UE接收基站发送的上行授权消息的子帧的序号或者***帧号,取值范围为0或正整数,n+k为所述UE根据所述上行授权消息确定在第一非授权载波上发送所述PUSCH的子帧的序号或者***帧号,k为正整数,m为最大时延窗口,取值范围为大于或等于2的正整数,所述最大延时窗口m是所述基站配置的。
可选的,所述发送模块22具体用于:在所述第一非授权载波的子帧n+k+1至子帧n+k+m上依次尝试向所述基站发送所述PUSCH,如果在任一个子帧上发送所述PUSCH成功,流程结束;如果没有一个子帧发送所述PUSCH成功,则放弃向所述基站发送所述PUSCH。
本实施例的UE,可用于执行实施例三的方法,具体实现方式和技术效果类似,这里不再赘述。
图10为本发明实施例六提供的UE的结构示意图,如图10所示,本实施例提供的UE300包括:处理器31、存储器32、发送器33、接收器34和***总线35,所述存储器32、发送器33和接收器34通过所述***总线35与所述处理器31连接并完成相互间的通信,所述存储器32用于存储计算机执行指令,所述接收器34用于接收基站发送的上行授权消息,所述处理器31用于当第一非授权载波在子帧n+k上不可用时,确定备用载波,所述发送器33用于使用所述备用载波向所述基站发送PUSCH。其中,n为所述UE接收基站发送的所述上行授权消息的子帧的序号或者系 统帧号,取值范围为0或正整数,n+k为所述UE根据所述上行授权消息确定在所述第一非授权载波上发送所述PUSCH的子帧的序号或者***帧号,k为正整数。
可选的,所述处理器31具体用于:当所述PUSCH中包含UCI时,且授权载波的子帧n+k可用时,确定所述授权载波为所述备用载波,所述发送器具体用于:使用所述授权载波的子帧n+k向所述基站发送所述PUSCH。
可选的,所述处理器31具体用于:当所述PUSCH中包含所述UCI时,且所述授权载波的子帧n+k不可用时,或者,当所述PUSCH中不包含所述UCI时,从允许使用的非授权载波中确定所述备用载波。一种实现方式中,所述处理器31确定子帧n+k可用的第二非授权载波为所述备用载波,所述发送器33具体用于:使用所述第二非授权载波的子帧n+k向所述基站发送所述PUSCH。另一种实现方式中,所述处理器31确定所述第一非授权载波为所述备用载波,所述发送器33具体用于:利用所述第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向所述基站发送所述PUSCH,m为最大时延窗口,取值范围为大于或等于2的正整数,所述最大延时窗口m是所述基站配置的。
可选的,所述发送器33具体用于:在所述第一非授权载波的子帧n+k+1至子帧n+k+m上依次尝试向所述基站发送所述PUSCH,如果在任一个子帧上发送所述PUSCH成功,流程结束;如果没有一个子帧发送所述PUSCH成功,则放弃向所述基站发送所述PUSCH。
本实施例的UE,可用于执行实施例一和二的方法,具体实现方式和技术效果类似,这里不再赘述。
图11为本发明实施例七提供的UE的结构示意图,如图11所示,本实施例提供的UE400包括:处理器41、存储器42、发送器43、接收器44和***总线45,所述存储器42、发送器43和接收器44通过所述***总线45与所述处理器41连接并完成相互间的通信,所述存储器42用于存储计算机执行指令,所述接收器44用于接收基站发送的上行授权消息,所述处理器41用于确定第一非授权载波在子帧n+k上是否可用,所述发送器43用于当所述第一非授权载波在子帧n+k上不可用时,利用所述第 一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向所述基站发送物理上行共享信道PUSCH。
其中,n为所述UE接收基站发送的所述上行授权消息的子帧的序号或者***帧号,取值范围为0或正整数,n+k为所述UE根据所述上行授权消息确定在第一非授权载波上发送所述PUSCH的子帧的序号或者***帧号,k为正整数,m为最大时延窗口,取值范围为大于或等于2的正整数,所述最大延时窗口m是所述基站配置的。
可选的,所述发送器43具体用于:在所述第一非授权载波的子帧n+k+1至子帧n+k+m上依次尝试向所述基站发送所述PUSCH,如果在任一个子帧上发送所述PUSCH成功,流程结束;如果没有一个子帧发送所述PUSCH成功,则放弃向所述基站发送所述PUSCH。
本实施例的UE,可用于执行实施例三的方法,具体实现方式和技术效果类似,这里不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (30)

  1. 一种长期演进的授权辅助接入LAA-LTE***中物理上行共享信道PUSCH的传输方法,其特征在于,包括:
    当第一非授权载波在子帧n+k上不可用时,UE确定备用载波,所述UE使用所述备用载波向所述基站发送所述PUSCH;
    其中,n为所述UE接收基站发送的上行授权消息的子帧的序号,取值范围为0或正整数,n+k为所述UE根据所述上行授权消息确定在所述第一非授权载波上发送所述PUSCH的子帧的序号,k为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述UE确定备用载波,包括:
    当所述PUSCH中包含上行控制信息UCI时,且授权载波的子帧n+k可用时,所述UE确定所述授权载波为所述备用载波;
    所述UE使用所述备用载波向所述基站发送所述PUSCH,包括:
    所述UE使用所述授权载波的子帧n+k向所述基站发送所述PUSCH。
  3. 根据权利要求1所述的方法,其特征在于,所述UE确定备用载波,包括:
    当所述PUSCH中包含所述UCI时,且所述授权载波的子帧n+k不可用时,或者,当所述PUSCH中不包含所述UCI时,所述UE从允许使用的非授权载波中确定所述备用载波。
  4. 根据权利要求3所述的方法,其特征在于,所述UE从允许使用的非授权载波中确定所述备用载波,包括:
    所述UE确定子帧n+k可用的第二非授权载波为所述备用载波;
    所述UE使用所述备用载波向所述基站发送所述PUSCH,包括:
    所述UE使用所述第二非授权载波的子帧n+k向所述基站发送所述PUSCH。
  5. 根据权利要求3所述的方法,其特征在于,所述UE从允许使用的非授权载波中确定所述备用载波,包括:
    所述UE确定所述第一非授权载波为所述备用载波;
    所述UE使用所述备用载波向所述基站发送PUSCH,包括:
    所述UE利用所述第一非授权载波的子帧n+k+1至子帧n+k+m中的任 一个子帧向所述基站发送所述PUSCH,m为最大时延窗口,取值范围为大于或等于2的正整数。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述UE利用所述第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向所述基站发送所述PUSCH,包括:
    所述UE在所述第一非授权载波的子帧n+k+1至子帧n+k+m上依次尝试向所述基站发送所述PUSCH,如果在任一个子帧上发送所述PUSCH成功,流程结束;如果没有一个子帧发送所述PUSCH成功,则所述UE放弃向所述基站发送所述PUSCH。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述最大延时窗口m是所述基站配置的。
  8. 一种长期演进的授权辅助接入LAA-LTE***中物理上行共享信道PUSCH的传输方法,其特征在于,包括:
    当第一非授权载波在子帧n+k上不可用时,用户设备UE利用所述第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向所述基站发送所述PUSCH;
    其中,n为所述UE接收基站发送的上行授权消息的子帧的序号,取值范围为0或正整数,n+k为所述UE根据所述上行授权消息确定在第一非授权载波上发送所述PUSCH的子帧的序号,k为正整数,m为最大时延窗口,取值范围为大于或等于2的正整数。
  9. 根据权利要求8所述的方法,其特征在于,所述UE利用所述第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向所述基站发送所述PUSCH,包括:
    所述UE在所述第一非授权载波的子帧n+k+1至子帧n+k+m上依次尝试向所述基站发送所述PUSCH,如果在任一个子帧上发送所述PUSCH成功,流程结束;如果没有一个子帧发送所述PUSCH成功,则所述UE放弃向所述基站发送所述PUSCH。
  10. 根据权利要求8或9所述的方法,其特征在于,所述最大延时窗口m是所述基站配置的。
  11. 一种用户设备UE,其特征在于,包括:
    确定模块,用于当第一非授权载波在子帧n+k上不可用时,确定备用载波;
    发送模块,用于使用所述备用载波向所述基站发送物理上行共享信道PUSCH;
    其中,n为所述UE接收基站发送的上行授权消息的子帧的序号,取值范围为0或正整数,n+k为所述UE根据所述上行授权消息确定在所述第一非授权载波上发送所述PUSCH的子帧的序号,k为正整数。
  12. 根据权利要求11所述的UE,其特征在于,所述确定模块具体用于:
    当所述PUSCH中包含上行控制信息UCI时,且授权载波的子帧n+k可用时,确定所述授权载波为所述备用载波;
    所述发送模块具体用于:使用所述授权载波的子帧n+k向所述基站发送所述PUSCH。
  13. 根据权利要求11所述的UE,其特征在于,所述确定模块具体用于:
    当所述PUSCH中包含所述UCI时,且所述授权载波的子帧n+k不可用时,或者,当所述PUSCH中不包含所述UCI时,从允许使用的非授权载波中确定所述备用载波。
  14. 根据权利要求13所述的UE,其特征在于,所述确定模块具体用于:确定子帧n+k可用的第二非授权载波为所述备用载波;
    所述发送模块具体用于:使用所述第二非授权载波的子帧n+k向所述基站发送所述PUSCH。
  15. 根据权利要求13所述的UE,其特征在于,所述确定模块具体用于:确定所述第一非授权载波为所述备用载波;
    所述发送模块具体用于:利用所述第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向所述基站发送所述PUSCH,m为最大时延窗口,取值范围为大于或等于2的正整数。
  16. 根据权利要求11-15中任一项所述的UE,其特征在于,所述发送模块具体用于:
    在所述第一非授权载波的子帧n+k+1至子帧n+k+m上依次尝试向所 述基站发送所述PUSCH,如果在任一个子帧上发送所述PUSCH成功,流程结束;如果没有一个子帧发送所述PUSCH成功,则放弃向所述基站发送所述PUSCH。
  17. 根据权利要求11-16中任一项所述的UE,其特征在于,所述最大延时窗口m是所述基站配置的。
  18. 一种用户设备UE,其特征在于,包括:
    确定模块,用于确定第一非授权载波在子帧n+k上是否可用;
    发送模块,用于当所述确定模块确定所述第一非授权载波在子帧n+k上不可用时,利用所述第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向所述基站发送物理上行共享信道PUSCH;
    其中,n为所述UE接收基站发送的上行授权消息的子帧的序号,取值范围为0或正整数,n+k为所述UE根据所述上行授权消息确定在第一非授权载波上发送所述PUSCH的子帧的序号,k为正整数,m为最大时延窗口,取值范围为大于或等于2的正整数。
  19. 根据权利要求18所述的UE,其特征在于,所述发送模块具体用于:
    在所述第一非授权载波的子帧n+k+1至子帧n+k+m上依次尝试向所述基站发送所述PUSCH,如果在任一个子帧上发送所述PUSCH成功,流程结束;如果没有一个子帧发送所述PUSCH成功,则放弃向所述基站发送所述PUSCH。
  20. 根据权利要求18或19所述的UE,其特征在于,所述最大延时窗口m是所述基站配置的。
  21. 一种用户设备UE,其特征在于,包括:处理器、存储器、发送器、接收器和***总线,所述存储器、发送器和接收器通过所述***总线与所述处理器连接并完成相互间的通信,所述存储器用于存储计算机执行指令;
    所述接收器,用于接收基站发送的上行授权消息;
    所述处理器,用于当第一非授权载波在子帧n+k上不可用时,确定备用载波;
    所述发送器,用于使用所述备用载波向所述基站发送物理上行共享 信道PUSCH;
    其中,n为所述UE接收基站发送的所述上行授权消息的子帧的序号,取值范围为0或正整数,n+k为所述UE根据所述上行授权消息确定在所述第一非授权载波上发送所述PUSCH的子帧的序号,k为正整数。
  22. 根据权利要求21所述的UE,其特征在于,所述处理器具体用于:
    当所述PUSCH中包含上行控制信息UCI时,且授权载波的子帧n+k可用时,确定所述授权载波为所述备用载波;
    所述发送器具体用于:使用所述授权载波的子帧n+k向所述基站发送所述PUSCH。
  23. 根据权利要求21所述的UE,其特征在于,所述处理器具体用于:
    当所述PUSCH中包含所述UCI时,且所述授权载波的子帧n+k不可用时,或者,当所述PUSCH中不包含所述UCI时,从允许使用的非授权载波中确定所述备用载波。
  24. 根据权利要求23所述的UE,其特征在于,所述处理器具体用于:
    确定子帧n+k可用的第二非授权载波为所述备用载波;
    所述发送器具体用于:使用所述第二非授权载波的子帧n+k向所述基站发送所述PUSCH。
  25. 根据权利要求23所述的UE,其特征在于,所述处理器具体用于:
    确定所述第一非授权载波为所述备用载波;
    所述发送器具体用于:利用所述第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向所述基站发送所述PUSCH,m为最大时延窗口,取值范围为大于或等于2的正整数。
  26. 根据权利要求21-25中任一项所述的UE,其特征在于,所述发送器具体用于:
    在所述第一非授权载波的子帧n+k+1至子帧n+k+m上依次尝试向所述基站发送所述PUSCH,如果在任一个子帧上发送所述PUSCH成功,流 程结束;如果没有一个子帧发送所述PUSCH成功,则放弃向所述基站发送所述PUSCH。
  27. 根据权利要求21-26中任一项所述的UE,其特征在于,所述最大延时窗口m是所述基站配置的。
  28. 一种用户设备UE,其特征在于,包括:处理器、存储器、发送器、接收器和***总线,所述存储器、发送器和接收器通过所述***总线与所述处理器连接并完成相互间的通信,所述存储器用于存储计算机执行指令;
    所述接收器,用于接收基站发送的上行授权消息;
    所述处理器,用于确定第一非授权载波在子帧n+k上是否可用;
    所述发送器,用于当所述第一非授权载波在子帧n+k上不可用时,利用所述第一非授权载波的子帧n+k+1至子帧n+k+m中的任一个子帧向所述基站发送物理上行共享信道PUSCH;
    其中,n为所述UE接收基站发送的所述上行授权消息的子帧的序号,取值范围为0或正整数,n+k为所述UE根据所述上行授权消息确定在第一非授权载波上发送所述PUSCH的子帧的序号,k为正整数,m为最大时延窗口,取值范围为大于或等于2的正整数。
  29. 根据权利要求28所述的UE,其特征在于,所述发送器具体用于:
    在所述第一非授权载波的子帧n+k+1至子帧n+k+m上依次尝试向所述基站发送所述PUSCH,如果在任一个子帧上发送所述PUSCH成功,流程结束;如果没有一个子帧发送所述PUSCH成功,则放弃向所述基站发送所述PUSCH。
  30. 根据权利要求28或29所述的UE,其特征在于,所述最大延时窗口m是所述基站配置的。
PCT/CN2016/073542 2016-02-04 2016-02-04 Laa-lte***中pusch的传输方法和用户设备 WO2017132953A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/073542 WO2017132953A1 (zh) 2016-02-04 2016-02-04 Laa-lte***中pusch的传输方法和用户设备
CN201680024974.0A CN107534528B (zh) 2016-02-04 2016-02-04 Laa-lte***中pusch的传输方法和用户设备
US15/760,096 US20180263029A1 (en) 2016-02-04 2016-02-04 Method For Transmitting PUSCH In LAA-LTE System And User Equipment
EP16888778.4A EP3334078B1 (en) 2016-02-04 2016-02-04 Pusch transmission method and user equipment in laa-lte system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073542 WO2017132953A1 (zh) 2016-02-04 2016-02-04 Laa-lte***中pusch的传输方法和用户设备

Publications (1)

Publication Number Publication Date
WO2017132953A1 true WO2017132953A1 (zh) 2017-08-10

Family

ID=59499163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073542 WO2017132953A1 (zh) 2016-02-04 2016-02-04 Laa-lte***中pusch的传输方法和用户设备

Country Status (4)

Country Link
US (1) US20180263029A1 (zh)
EP (1) EP3334078B1 (zh)
CN (1) CN107534528B (zh)
WO (1) WO2017132953A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075960A (zh) * 2018-07-06 2018-12-21 北京小米移动软件有限公司 信息传输方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3855812B1 (en) * 2016-08-08 2022-10-05 LG Electronics Inc. Method and device for reporting csi
CN113727458A (zh) * 2017-05-26 2021-11-30 华为技术有限公司 一种发送数据的方法和通信设备
US10560957B2 (en) * 2018-06-20 2020-02-11 Qualcomm Incorporated Out-of-sync grant handling in a wireless communication system
EP4093077A4 (en) * 2020-01-17 2023-09-27 Ntt Docomo, Inc. COMMUNICATION DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931958A (zh) * 2009-06-25 2010-12-29 大唐移动通信设备有限公司 提供主载频的方法、无线网络控制器及基站
WO2015131686A1 (zh) * 2014-08-22 2015-09-11 中兴通讯股份有限公司 一种在非授权载波上发送发现信号的方法、装置及接入点
CN105306180A (zh) * 2014-07-28 2016-02-03 上海朗帛通信技术有限公司 一种laa通信方法和装置
CN105307180A (zh) * 2015-09-25 2016-02-03 宇龙计算机通信科技(深圳)有限公司 一种基于laa***的数据传输方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185642B (zh) * 2011-05-12 2014-10-15 电信科学技术研究院 发送配置信息和选择发射天线的方法、***及设备
US9883404B2 (en) * 2013-06-11 2018-01-30 Qualcomm Incorporated LTE/LTE—A uplink carrier aggregation using unlicensed spectrum
US9872233B2 (en) * 2014-06-02 2018-01-16 Intel IP Corporation Devices and method for retrieving and utilizing neighboring WLAN information for LTE LAA operation
US9930654B2 (en) * 2015-03-17 2018-03-27 Motorola Mobility Llc Method and apparatus for scheduling user equipment uplink transmissions on an unlicensed carrier
EP3280205A4 (en) * 2015-04-02 2018-11-14 NTT DoCoMo, Inc. User terminal, wireless base station, and wireless communication method
WO2017126940A1 (en) * 2016-01-21 2017-07-27 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink control information in carrier aggregation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931958A (zh) * 2009-06-25 2010-12-29 大唐移动通信设备有限公司 提供主载频的方法、无线网络控制器及基站
CN105306180A (zh) * 2014-07-28 2016-02-03 上海朗帛通信技术有限公司 一种laa通信方法和装置
WO2015131686A1 (zh) * 2014-08-22 2015-09-11 中兴通讯股份有限公司 一种在非授权载波上发送发现信号的方法、装置及接入点
CN105307180A (zh) * 2015-09-25 2016-02-03 宇龙计算机通信科技(深圳)有限公司 一种基于laa***的数据传输方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "LBT Operation for LAA Uplink", 3GPP TSG-RAN WG2 MEETING #89BIS R2-151175, 24 April 2015 (2015-04-24), XP050953246 *
See also references of EP3334078A4 *
SONY: "LM Measurements and Carrier Selection Procedure", 3GPP TSG-RAN WG2 MEETING #91BIS R2-154885, 9 October 2015 (2015-10-09), XP051024117 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075960A (zh) * 2018-07-06 2018-12-21 北京小米移动软件有限公司 信息传输方法及装置
WO2020006745A1 (zh) * 2018-07-06 2020-01-09 北京小米移动软件有限公司 信息传输方法及装置
CN113411902A (zh) * 2018-07-06 2021-09-17 北京小米移动软件有限公司 信息传输方法及装置
CN113411902B (zh) * 2018-07-06 2023-04-11 北京小米移动软件有限公司 信息传输方法及装置
US11800547B2 (en) 2018-07-06 2023-10-24 Beijing Xiaomi Mobile Software Co., Ltd. Information transmission method and device

Also Published As

Publication number Publication date
EP3334078A1 (en) 2018-06-13
CN107534528B (zh) 2020-03-20
EP3334078B1 (en) 2020-01-01
CN107534528A (zh) 2018-01-02
US20180263029A1 (en) 2018-09-13
EP3334078A4 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
CN110138514B (zh) 一种进行混合自动重传请求反馈的方法和终端
JP6257759B2 (ja) マルチキャリア環境内における無線リンク性能を向上させるためのシステム及び方法
US20230379089A1 (en) Sl harq buffer management for nr vehicular communication
JP7163343B2 (ja) 無線ネットワークノード、無線デバイス、及びそれらで実行される方法
US8687582B2 (en) Method and device for transmitting semi-persistent scheduling data
US20220294591A1 (en) Apparatus and Method of Harq-Ack Feedback
WO2017132953A1 (zh) Laa-lte***中pusch的传输方法和用户设备
CN103636270B (zh) 一种调度下行数据传输的方法和装置
WO2012019416A1 (zh) 一种选择物理上行共享信道的方法及用户设备
WO2017133012A1 (zh) 一种上行控制信息传输的方法及装置
WO2017197949A1 (zh) 一种数据传输的控制方法及相关设备
TW201937969A (zh) 上行控制資訊的傳輸方法、接收方法、終端、基地台及裝置
WO2014048297A1 (zh) 功率确定方法、用户设备和基站
EP3295735B1 (en) Method and apparatus for control information transmission
JP7074974B2 (ja) アンライセンススペクトル上のアップリンク割り当て
KR20170055534A (ko) 확인응답 정보를 송신하기 위한 방법, 장치, 및 디바이스
WO2019029287A1 (zh) Pucch传输方法、用户设备和装置
WO2021031042A1 (zh) 信号发送和接收方法以及装置
CN108293244B (zh) 无线通信***中的冲突避免
JP2022554261A (ja) 電力割り当て方法及び装置
JP2023052740A (ja) 物理的上りリンク制御チャネルの衝突を扱うための装置および方法
US11974265B2 (en) Use of priority mismatch indication for uplink transmission for wireless networks
WO2021083247A1 (zh) 上行传输的方法、上行传输指示的方法和设备
US10938522B2 (en) Low latency service feedback
WO2021087926A1 (zh) 上行信号的发送和接收方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888778

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15760096

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE