WO2017130877A1 - 電波環境推定装置、電波環境推定システム、電波環境推定方法、および記録媒体 - Google Patents

電波環境推定装置、電波環境推定システム、電波環境推定方法、および記録媒体 Download PDF

Info

Publication number
WO2017130877A1
WO2017130877A1 PCT/JP2017/002052 JP2017002052W WO2017130877A1 WO 2017130877 A1 WO2017130877 A1 WO 2017130877A1 JP 2017002052 W JP2017002052 W JP 2017002052W WO 2017130877 A1 WO2017130877 A1 WO 2017130877A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
observation
radio wave
influence
degree
Prior art date
Application number
PCT/JP2017/002052
Other languages
English (en)
French (fr)
Inventor
正樹 狐塚
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017564224A priority Critical patent/JP6973085B2/ja
Priority to US16/070,334 priority patent/US20190028215A1/en
Publication of WO2017130877A1 publication Critical patent/WO2017130877A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection

Definitions

  • the present invention relates to a radio wave environment estimation device, a radio wave environment estimation system, a radio wave environment estimation method, and a recording medium.
  • Non-Patent Document 1 It has been proposed to construct a radio wave environment database by radio wave sensing for early detection of radio wave interference and sharing of radio wave resources. Since there is a limit to the number of sensors that can be installed, it is necessary to estimate the radio wave environment at a point where no sensor is installed (unobserved point) based on the radio wave environment obtained by the sensor. When estimating the radio wave environment at an unobserved point using the radio wave environment obtained by a sensor, depending on the location of the sensor, even if the operation is normal, The estimation error can be large.
  • Examples of methods for interpolating the observation amounts at a plurality of observation points to estimate the observation amount at the estimation point include the Kriging method and the IDW method (Inverse Distance Weighting).
  • the Kriging method is a technique for estimating the observation amount at the estimation point by modeling the degree of correlation with the relative distance of the observation point and obtaining a weighted average of the observation amount using a weight corresponding to the model.
  • the Kriging method is a method of modeling using data at a large number of observation points. Therefore, even when the observation amount of a certain sensor is greatly deviated from the actual value of the estimated point due to the influence of an obstacle, the influence on the final estimation result can be reduced by using the Kriging method.
  • Patent Document 1 discloses a technique for improving the accuracy of interpolation by performing a complementing process using a degree of reliability uncorrelated with the position of a sensor.
  • the observation amount at the estimation point is estimated by obtaining a weighted average of the observation amount with the reciprocal of the distance between the estimation point and each observation point as a weight.
  • the IDW method is a method of performing interpolation using a simple weighting factor using only data of adjacent observation points. Therefore, by using the IDW method, the amount of calculation required for estimating the radio wave environment is small, and the radio wave environment can be estimated at high speed.
  • An object of the present invention is to provide a radio wave environment estimation apparatus, a radio wave environment estimation system, a radio wave environment estimation method, and a program that solve the above-described problems.
  • the radio wave environment estimation apparatus is configured such that the observed quantity detected by a sensor that detects an observed quantity representing the characteristics of an electrical signal obtained by receiving a radio wave is an observed quantity at another point.
  • An influence degree evaluation unit that evaluates an influence degree indicating a degree of influence, and a position of an estimation point that is an estimation target of an observation amount, a position of the sensor, and the influence degree evaluated by the influence degree evaluation unit. Calculating a weighted average of the observation amounts detected by the sensor using a weighting factor calculating unit that calculates a weighting factor of the sensor and the weighting factor of the sensor calculated by the weighting factor calculating unit. And a weighted average unit for estimating an observation amount at the estimation point.
  • the radio wave environment estimation system includes a sensor that detects an observation amount that represents the characteristics of an electric signal obtained by receiving radio waves, and the radio wave environment estimation apparatus according to the above aspect.
  • the observed quantity detected by the sensor that detects the observed quantity representing the characteristics of the electric signal obtained by receiving the radio wave is changed to an observed quantity at another point.
  • the weighting factor of the sensor is calculated based on the evaluation of the degree of influence indicating the degree of influence exerted, the position of the estimated point to be an estimation target of the observation amount, the position of the sensor, and the evaluated degree of influence. And estimating an observation amount at the estimated point by calculating a weighted average of the observation amounts detected by the sensor using the calculated weighting factor of the sensor.
  • the recording medium is a computer, wherein the observed amount detected by a sensor for detecting an observed amount representing a characteristic of an electric signal obtained by receiving radio waves is an observed amount at another point.
  • the weighting factor of the sensor is calculated based on the evaluation of the degree of influence indicating the degree of influence on the sensor, and the position of the estimated point to be the estimation target of the observation amount, the position of the sensor and the evaluated degree of influence And estimating the observation amount at the estimated point by calculating a weighted average of the observation amounts detected by the sensor using the calculated weighting factor of the sensor. Record.
  • the radio wave environment estimation apparatus can perform high-speed estimation processing while suppressing deterioration in estimation accuracy due to the influence of obstacles around the sensor.
  • FIG. 1 is a diagram illustrating an example of device arrangement in the radio wave environment estimation system according to the first embodiment.
  • the radio wave environment estimation system 0100 analyzes the radio wave environment in an observation area that is an observation target of the radio wave environment.
  • the radio wave environment estimation system 0100 includes a plurality of sensors 0101 and a radio wave environment estimation apparatus 0102.
  • the sensor 0101 is provided at an observation point in the observation area and detects an observation amount of the radio wave environment at the installed observation point.
  • the radio wave environment estimation apparatus 0102 collects the observation amount detected by the sensor 0101 and estimates the radio wave environment in the observation area.
  • the sensor 0101 and the radio wave environment estimation device 0102 are connected via a network such as the Internet. Note that a radio base station 0103 that emits radio waves is provided in the vicinity of the observation area and the observation area.
  • FIG. 2 is a diagram illustrating a configuration of the radio wave environment estimation apparatus according to the first embodiment.
  • the radio wave environment estimation apparatus 0102 according to the first embodiment includes an observation control unit 0212, a radio wave observation information storage unit 0213, an influence degree evaluation unit 0214, an influence degree storage unit 0215, a weighting factor calculation unit 0216, and a weighting An average unit 0217 and an output unit 0218 are provided.
  • the observation control unit 0212 controls each sensor 0101.
  • the radio wave observation information storage unit 0213 acquires and stores the observation amount observed by each sensor 0101 via the network.
  • the influence degree evaluation unit 0214 shows, for each sensor 0101, an effect indicating the degree of influence of the observation amount detected by the sensor 0101 on the observation amount at other points based on the observation amount stored in the radio wave observation information storage unit 0213. Assess degree.
  • the evaluation degree is a value that does not depend on the distance between the observation point where the sensor 0101 is installed and the estimated point.
  • the influence degree storage unit 0215 stores the influence degree of each sensor 0101 evaluated by the influence degree evaluation unit 0214.
  • the weighting factor calculation unit 0216 calculates the weighting factor of each sensor 0101 based on the influence degree stored in the influence degree storage unit 0215.
  • the weighting coefficient calculated by the weighting coefficient calculating unit 0216 is smaller as the distance between the estimated point and the observation point is longer and is larger as the influence degree is larger.
  • the weighted average unit 0217 calculates the weighted average of the observation amount based on the observation amount stored in the radio wave observation information storage unit 0213 and the weighting factor calculated by the weighting factor calculation unit 0216.
  • the calculation result of the weighted average by the weighted average unit 0217 indicates the amount of observation at the estimated point.
  • the output unit 0218 outputs the calculation result of the weighted average unit 0217.
  • FIG. 3 is a diagram illustrating a configuration example of the sensor according to the first embodiment.
  • the sensor 0101 according to the first embodiment includes a reception unit 0301, an observation amount extraction unit 0302, a time information acquisition unit 0304, a position information acquisition unit 0305, and a line connection unit 0303.
  • the receiving unit 0301 receives radio waves and converts them into electrical signals.
  • the observation amount extraction unit 0302 extracts an observation amount from the electrical signal converted by the reception unit 0301.
  • the observation amount include a pair of an average value of the frequency of received radio waves and received power, a reception bandwidth, and a peak value of received power.
  • the observation amount includes the second-order dispersion, the skewness associated with the third-order moment, and the kurtosis associated with the fourth-order moment.
  • An amount may be used.
  • a statistical moment with respect to a temporal differential amount of instantaneous received power may be used.
  • other statistics such as cumulants may be used as the observation amount.
  • observation amount the voltage amplitude of the received signal, the probability density distribution function of power, the cumulative distribution function thereof, the complementary cumulative distribution function, or other distributions may be used as the observation amount.
  • the observation amount a combination of two or more examples of the observation amount described above may be used as the observation amount.
  • the time information acquisition unit 0304 acquires the current time.
  • the time information acquisition unit 0304 provides a function necessary for performing observation at the time designated by the observation control unit 0212.
  • the time information acquisition unit 0304 may acquire time information by connecting to an NTP (Network Time Protocol) server via the Internet.
  • the time information acquisition unit 0304 may acquire the time by correcting the time information indicated by the NSS (NavigationvigSatellite System) signal.
  • NTP Network Time Protocol
  • NSS Network Time Protocol
  • the observation control unit 0212 transmits a start signal to the sensor 0101 at the observation start timing, and each sensor 0101 starts observation when receiving the start signal, the sensor 0101 does not necessarily acquire time information.
  • the unit 0304 may not be provided. However, in this case, a difference occurs in the transmission time of signal transmission and reception, and there is a possibility that the observation start timing of each sensor 0101 is shifted.
  • the position information acquisition unit 0305 acquires information on the observation point where the sensor 0101 is installed.
  • the position information acquisition unit 0305 provides a function necessary for associating with which position the observed observation amount is obtained.
  • the position information acquisition unit 0305 may acquire position information by NSS.
  • the position information acquisition unit 0305 may store the position information when the sensor 0101 is installed, and read out the position information as necessary.
  • the radio wave observation information storage unit 0213 includes a database in which the identifier (ID) of the sensor 0101 is associated with the position information
  • the sensor 0101 may not include the position information acquisition unit 0305.
  • the line connection unit 0303 transmits the observation amount, time, and observation point to the radio wave environment estimation apparatus 0102 via the network line.
  • FIG. 4 is a diagram illustrating a first configuration example of the influence degree evaluation unit according to the first embodiment.
  • the influence evaluation unit 0214 according to the first configuration example includes an observation amount selection unit 0401, an observation amount estimation unit 0402, and a similarity calculation unit 0403.
  • the observation amount selection unit 0401 selects a target sensor that is an evaluation target of the degree of influence from the sensors 0101.
  • the observation amount selection unit 0401 acquires the observation amount of the selected target sensor and the observation amounts of other sensors.
  • the observation amount estimation unit 0402 estimates the observation amount detected by the target sensor based on the observation amounts of other sensors.
  • the observation amount estimation unit 0402 can estimate the observation amount detected by the target sensor using the Kriging method instead of the IDW method.
  • the similarity calculation unit 0403 calculates the similarity between the observation amount of the target sensor and the observation amount estimated by the observation amount estimation unit 0402.
  • the influence degree evaluation unit 0214 need not frequently evaluate the influence degree, and may be performed at least once when the system is started up. Therefore, even when the influence evaluation unit 0214 uses the Kriging method for calculating the influence degree, the calculation amount when the weighted average unit 0217 estimates the observation amount at the estimated point is not affected.
  • FIG. 5 is a diagram illustrating a second configuration example of the influence degree evaluation unit according to the first embodiment.
  • the influence evaluation unit 0214 according to the second configuration example further includes a radio base station information storage unit 0501 in addition to the influence evaluation unit 0214 shown in the first configuration example.
  • the wireless base station information storage unit 0501 stores information of the wireless base station 0103 that transmits the radio wave received by the target sensor.
  • the observation amount estimation unit 0402 estimates the observation amount of the target sensor based on the information stored in the radio base station information storage unit 0501.
  • the similarity calculation unit 0403 calculates the similarity between the observation amount of the target sensor and the observation amount estimated by the observation amount estimation unit 0402.
  • the observation amount estimation unit 0402 according to the second configuration example is based on the antenna height, transmission power, frequency, modulation bandwidth, modulation method, and other information of the radio base station 0103, and geographical information including terrain. Then, the observation amount of the target sensor may be estimated by performing a radio wave propagation simulation. At this time, in addition to the terrain information, by using a geographic model that considers the material and structure of the building and the height and density of the forest, the influence degree of the sensor 0101 can be determined only by the radio wave propagation simulation, regardless of actual observation. Can also be evaluated.
  • the similarity of the observation amount calculated by the similarity calculation unit 0403 include Pearson's correlation coefficient, Euclidean distance, and Manhattan distance.
  • the Pearson correlation coefficient is used as the similarity of the observed quantity, a tendency between the estimated observed quantity and the actually obtained observed quantity can be considered. Since the value range of the Pearson correlation coefficient is ⁇ 1 to +1, the similarity calculation unit 0403 may calculate a value normalized so that the value range becomes 0 or more as the influence level.
  • the Euclidean distance or the Manhattan distance is used as the similarity of the observation amount, it is treated that there is little absolute error between the estimated observation amount and the actually obtained observation amount. Note that the value range of the Euclidean distance or the Manhattan distance is 0 or more.
  • FIG. 6 is a diagram illustrating a first configuration example of the weighting coefficient calculation unit according to the first embodiment.
  • the weighting factor calculation unit 0216 according to the first configuration example includes a distance calculation unit 0601, an inverse number calculation unit 0602, and an integration unit 0603.
  • the distance calculation unit 0601 calculates the distance between the estimated point and each observation point and outputs it as an array.
  • the reciprocal calculation unit 0602 takes the reciprocal number of each element of the array output by the distance calculation unit 0601 and outputs it as an array.
  • the accumulating unit 0603 outputs, for each element of the array output from the reciprocal number calculating unit 0602, an array having as elements the value obtained by calculating the product of the influence levels of the corresponding sensors 0101.
  • the weighting factor calculation unit 0216 may not necessarily calculate the weighting factor for all the sensors 0101, but may calculate the weighting factor only for the observation point near the estimated point. As a result, the calculation is simplified, and the weight coefficient calculation unit 0216 can perform processing at high speed. Examples of how to select observation points in the vicinity of the estimated points include a method of selecting observation points that are within a distance from the estimated point, and a method of selecting a specified number of observation points in order of proximity to the estimated points.
  • FIG. 7 is a diagram illustrating a second configuration example of the weighting coefficient calculation unit according to the first embodiment.
  • the weighting factor calculation unit 0216 according to the second configuration example includes a dimension addition unit 0701, a dimension addition unit 0702, a distance calculation unit 0703, and an inverse number calculation unit 0704.
  • the dimension adding unit 0701 adds an influence degree dimension to the position coordinates of the estimated point.
  • the dimension adding unit 0702 adds an influence degree dimension to the position coordinates of the observation point.
  • the distance calculation unit 0703 calculates the distance including the degree of influence between the estimated point and each observation point based on the outputs of the dimension addition unit 0701 and the dimension addition unit 0702, and outputs the distance as an array.
  • the reciprocal calculation unit 0704 takes the reciprocal of each element of the array output by the distance calculation unit 0703 and outputs it as an array.
  • the dimension value of the influence degree added by the dimension adding unit 0702 to the position coordinates of the observation point is the influence degree of the sensor 0101 installed at the observation point evaluated in advance.
  • the possible range of the influence degree can be normalized according to how much the influence degree affects the estimation result.
  • the dimension value of the degree of influence added by the dimension adding unit 0701 to the position coordinates of the estimated point is the maximum value that the degree of influence can take.
  • FIG. 8 is a flowchart showing the operation of the first embodiment.
  • the radio wave environment estimation apparatus 0102 performs a pre-evaluation process to evaluate the degree of influence of each sensor (step S0801).
  • the observation control unit 0212 outputs an observation instruction to each sensor 0101 and acquires observation data indicating an observation amount (step S0802).
  • the radio wave observation information storage unit 0213 stores the acquired observation data.
  • the radio wave environment estimation apparatus 0102 performs a data analysis process for analyzing the collected observation data (step S0803).
  • the preliminary evaluation process in step S0801 and the data analysis process in step S0803 will be described in detail.
  • FIG. 9 is a flowchart showing the pre-evaluation process of the first embodiment.
  • the influence degree evaluation unit 0214 selects one target sensor to be the influence degree evaluation object from the sensors 0101 one by one, and the following steps S0902 to S0909 are performed. Processing is executed (step S0901). At this time, the influence degree evaluation unit 0214 may select all the sensors 0101 as target sensors, or may select only some of the sensors 0101 as target sensors.
  • the sensors 0101 are classified into a plurality of groups, and when the radio wave environment estimation system 0100 of the first embodiment is initially activated, the influence degree evaluation unit 0214 sets all the sensors 0101 as target sensors, and the normal time thereafter
  • the influence degree evaluation unit 0214 may set one group of sensors 0101 as target sensors every day.
  • the impact evaluation unit 0214 sets all sensors 0101 as target sensors.
  • the influence degree evaluation unit 0214 sets the observation frequency, the gain and bandwidth of the receiving means, and the observation start time for the target sensor selected in step S0901 (step S0902). Note that when the sensor 0101 in the vicinity of the target sensor is also observed (for example, when the influence degree evaluation unit 0214 (FIG. 4) according to the first configuration example is used), the same setting is performed for the other sensors. .
  • the observation control unit 0212 outputs an observation instruction for observing the target sensor and other sensors under the set conditions, and acquires an observation amount from the target sensor and other sensors (step S0903).
  • the influence degree evaluation unit 0214 determines whether or not there is an abnormality in the acquired observation amount (step S0904). Specifically, the influence degree evaluation unit 0214 determines whether or not the observation amount indicates a value outside a predetermined range.
  • the influence degree evaluation unit 0214 issues a warning as a sensor operation abnormality (step S0905). Further, the influence degree evaluation unit 0214 sets the influence degree of the target sensor to the lowest (for example, 0) (step S0906).
  • the influence degree evaluation unit 0214 estimates the observation amount at the observation point of the target sensor as a reference without using the observation amount detected by the target sensor. (Step S0907). Next, the influence degree evaluation unit 0214 calculates the similarity between the estimated observation amount and the observation amount actually detected by the target sensor (S0908). Then, the influence degree evaluation unit 0214 records the influence degree set in step S0906 or the similarity degree calculated in step S0908 in the influence degree storage unit 0215 together with the sensor ID as the influence degree of the target sensor (step S0909). By executing the above processing for each sensor, the influence degree storage unit 0215 stores the influence degree of each sensor 0101.
  • FIG. 10 is a flowchart illustrating data analysis processing according to the first embodiment.
  • the radio wave environment estimation device 0102 starts the data analysis process, the radio wave environment estimation device 0102 selects one estimation point that is a point where the sensor 0101 is not installed among the points to be output of the radio wave environment in the observation area one by one.
  • the processing from step S1002 to step S1003 is executed (step S1001).
  • the weighting factor calculation unit 0216 stores the weighting factor of each sensor 0101 based on the influence degree that the influence degree storage unit 0215 stores in association with the sensor 0101 and the distance from the observation point of the sensor 0101 to the estimated point. (Step S1002).
  • the weighted average unit 0217 calculates the weighted average of the observation amount based on the observation amount stored in the radio wave observation information storage unit 0213 and the weighting factor calculated by the weighting factor calculation unit 0216, thereby estimating the estimated point.
  • the observation amount at is estimated (step S1003).
  • the output unit 0218 outputs the observation amount estimated by the weighted average unit 0217 and the observation amount actually measured by the sensor 0101 ( Step S1004).
  • the radio wave environment estimation apparatus 0102 includes an influence degree evaluation unit 0214 according to the first configuration example illustrated in FIG. That is, the influence degree evaluation unit 0214 calculates the influence degree based on the observation amount of the target sensor and the observation amount of another sensor.
  • the radio wave environment estimation apparatus 0102 sets the target sensor 0101-A and the other sensors 0101-B1 to 0101-B8, then instructs observation and acquires the observation amount.
  • the observation amount observed by the target sensor 0101-A is significantly different from the observation amounts observed by the other sensors 0101-B1 to 0101-B8, and the degree of influence is evaluated low.
  • the degree of influence data is accumulated in the degree of influence storage unit 0215.
  • the radio wave environment estimation device 0102 analyzes the radio wave environment at the estimated point between the sensors 0101.
  • a process for analyzing the radio wave environment at the estimated point X in FIG. 1 at a position where the radio wave environment estimation apparatus 0102 can see the radio base station 0103-1 will be described as an example.
  • the radio wave environment estimation apparatus 0102 estimates the radio wave environment at the estimated point X by the IDW method using the observation amount of the nearby sensor 0101 including the sensor 0101-A.
  • the weighting coefficient for the observation amount observed by each sensor 0101 is a value corresponding to the degree of influence of each sensor 0101 output from the weighting coefficient calculation unit 0216 shown in FIG. 4 or FIG.
  • the weighting factor for the observation amount of the sensor 0101-A is calculated to be small according to the influence level even if the observation point of the sensor 0101-A is close to the estimation point. As a result, the influence of the observation amount of the sensor 0101-A on the estimation result of the radio wave environment is reduced.
  • the radio wave environment estimation apparatus 0102 evaluates the weighted average weight coefficient with respect to the observation result of the sensor 0101 having a low influence level. Thereby, the influence on the estimation result by the sensor 0101 having a low influence degree can be reduced.
  • the radio wave environment estimation apparatus 0102 performs radio wave environment evaluation using the Kriging method once before the start of observation as a prior evaluation, and uses the IDW method to estimate the radio wave environment at each point. Therefore, the radio wave environment estimation apparatus 0102 can execute the radio wave environment estimation in a short time. Therefore, the radio wave environment estimation apparatus 0102 can perform high-speed estimation processing while suppressing deterioration in estimation accuracy due to the influence of obstacles around the sensor 0101.
  • FIG. 11 is a diagram illustrating an example of device arrangement in the radio wave environment estimation system according to the second embodiment.
  • the radio wave environment estimation system 0100 according to the second embodiment includes an arrayed sensor 1101 instead of the sensor 0101 according to the first embodiment.
  • the arrayed sensor 1101 is a sensor that can selectively receive radio waves in an arbitrary direction.
  • the radio wave environment estimation system 0100 according to the second embodiment analyzes the radio wave environment in the observation area based on the direction in which radio waves arrive. Specifically, the radio wave environment estimation system 0100 calculates the influence degree of the arrayed sensor 1101 for each azimuth (azimuth 1 to azimuth 4), and estimates the radio wave environment at the estimated point based on the influence degree for each azimuth.
  • FIG. 12 is a diagram illustrating a configuration of a radio wave environment estimation apparatus according to the second embodiment.
  • the radio wave environment estimation apparatus 0102 according to the second embodiment replaces the influence degree evaluation unit 0214 and the influence degree storage unit 0215 in the first embodiment with a directionality influence degree evaluation unit 1211 and a directionality influence degree storage unit 1212. Is provided.
  • the directional influence degree evaluation unit 1211 evaluates the influence degree of each observed orientation for each arrayed sensor 1101.
  • the directional influence degree storage unit 1212 stores the influence degree for each direction in which the observation is performed in association with each arrayed sensor 1101.
  • FIG. 13 is a diagram illustrating a first configuration example of the arrayed sensor according to the second embodiment.
  • the arrayed sensor 1101 according to the first configuration example includes a directional antenna group 1301, an antenna switch 1302, a reception unit 0301, an observation amount extraction unit 0302, a time information acquisition unit 0304, a position information acquisition unit 0305, A line connection unit 0303.
  • the directional antenna group 1301, the antenna switch 1302, and the receiving unit 0301 are an example of a directional variable receiver.
  • the directional antenna group 1301 is composed of a plurality of directional antennas each facing a different direction.
  • Examples of directional antennas include parabolic antennas and patch antennas.
  • the antenna switch 1302 determines in which direction the radio wave is received by switching the directional antenna connected to the receiving means.
  • the antenna switch 1302 is controlled by the observation control unit 0212. Thereby, the radio wave environment estimation apparatus 0102 can obtain an influence degree corresponding to the direction in which each directional antenna is directed to one arrayed sensor 1101.
  • FIG. 14 is a diagram illustrating a second configuration example of the arrayed sensor according to the second embodiment.
  • the arrayed sensor 1101 according to the second configuration example includes an omnidirectional antenna group 1401, a phase shifter group 1402, an adder 1403, a receiver 0301, an observation amount extractor 0302, and a time information acquisition unit 0304. , A location information acquisition unit 0305 and a line connection unit 0303 are provided.
  • the omnidirectional antenna group 1401, the phase shifter group 1402, the adder 1403, and the receiver 0301 are examples of directional variable receivers.
  • An example of the omnidirectional antenna group 1401 is a dipole antenna. The radio wave received by each of the omnidirectional antenna groups 1401 is rotated in phase by the amount designated by the phase shifter group 1402.
  • the adding unit 1403 adds the respective radio waves and outputs them to the receiving unit 0301.
  • the receiving direction can be changed according to the amount of phase shift in each phase shifter constituting the phase shifter group 1402. Note that the amount of phase shift is controlled by the observation control unit 0212.
  • the radio wave environment estimation apparatus 0102 can obtain an influence degree according to directivity with respect to one arrayed sensor 1101.
  • the radio wave environment estimation system 0100 may include a radio wave environment estimation receiver that receives radio waves in an arbitrary direction by mechanically rotating a directional antenna.
  • the radio wave environment estimation system 0100 according to another embodiment applies a Butler matrix having a plurality of input / output ports as an antenna as a directivity variable receiver, and changes the arrival direction of received radio waves by switching the ports. You may use.
  • FIG. 15 is a flowchart showing the pre-evaluation process of the second embodiment.
  • the directionality influence degree evaluation unit 1211 selects one target sensor to be evaluated for the influence degree from the arrayed sensors 1101 one by one, from step S1502 shown below.
  • the process of step S1511 is executed (step S1501).
  • the directionality influence evaluation unit 1211 sets the observation frequency, the gain and bandwidth of the receiving unit, and the observation start time for the target sensor and other sensors selected in step S1501 (step S1502).
  • the observation control unit 0212 causes the target sensor and other sensors to perform observation under a set condition in a plurality of directions, and acquires observation amounts for the plurality of directions (step S1503).
  • step S1504 determines whether or not the acquired observation amount is abnormal. If there is an abnormality (step S1504: YES), the directionality impact evaluation unit 1211 A warning is given (step S1505), and the influence degree of the target sensor is set to the minimum value (step S1506).
  • the directionality influence evaluation unit 1211 estimates the observation amount for each direction obtained by the target sensor without using the result of the target sensor (step S1507). ).
  • the directionality influence evaluation unit 1211 determines each of the directions based on the transmission position of the radio wave received by the target sensor, that is, the position of the wireless base station 0103. The direction from which the arrayed sensor 1101 receives the radio wave is determined, and estimation is performed using an observation amount obtained by observing the arrayed sensor 1101 under the condition that the radio wave can be received.
  • the directionality impact evaluation unit 1211 calculates, for each azimuth, the similarity between the estimated observation amount for each azimuth and the observation amount for each azimuth actually obtained by the target sensor (step S1508). .
  • the directionality impact evaluation unit 1211 determines whether the calculated similarity is smaller than a predetermined threshold value in all directions (step S1509). When the similarity is smaller than the threshold value in all directions (step S1509: YES), an undesirable state in which the periphery of the target sensor is surrounded by an obstacle is expected.
  • a sensor location warning is output (step S1510).
  • the directionality impact evaluation unit 1211 applies the obtained impact degree to each orientation.
  • the directionality influence degree of the sensor is recorded in the directionality influence degree storage unit 1212 together with the sensor ID (step S1511).
  • the directionality influence degree data is accumulated in the directionality influence degree storage unit 1212.
  • arrayed sensor 1101-A arrayed sensor 1101-B1 to arrayed sensor 1101-B8, arrayed sensor 1101-C1 to arrayed sensor 1101-C14, and radio base station 0103-1 to radio base Station 0103-4 is arranged.
  • an obstacle 0151 is arranged between the arrayed sensor 1101-A and the radio base station 0103-1, and the radio base station 0103-1 cannot be seen from the arrayed sensor 1101-A.
  • the arrayed sensors 1101-B1 to 1101-B8 are sensors that exist within a predetermined distance from the arrayed sensor 1101-A. In this specific example, the northeast direction of arrayed sensor 1101-A is called azimuth 1, the southeast direction is azimuth 2, the southwest direction is azimuth 3, and the northwest direction is azimuth 4.
  • the radio wave environment estimation apparatus 0102 sets the target arrayed sensor 1101-A and the other arrayed sensors 1101-B1 to 1101-B8 in the pre-evaluation step, then instructs observation, and sets the observation amount. get.
  • the observed amount observed by the target arrayed sensor 1101-A is significantly different from the observed amounts observed by the other arrayed sensors 1101-B1 to 1101-B8, particularly in the direction 1, and the influence on the direction 1 Degree is rated low.
  • the degree of influence related to azimuth 2 to azimuth 4 is highly evaluated. By performing such an evaluation of the degree of influence on all the arrayed sensors 1101, the directionality influence degree data is accumulated in the directionality influence degree storage unit 1212.
  • the radio wave environment estimation apparatus 0102 analyzes the radio wave environment at the estimated point between the arrayed sensors 1101.
  • a process for analyzing the radio wave environment at the estimated point X and the estimated point Y in FIG. 11 at a position where the radio wave environment estimating apparatus 0102 can see the radio base station 0103-1 will be described as an example.
  • the radio wave environment estimating apparatus 0102 uses the directional influence degree associated with the direction from each arrayed sensor 1101 toward the estimated point X as the directional influence degree of each arrayed sensor 1101. adopt.
  • the radio wave environment is estimated using the directional influence degree of the arrayed sensor 1101-A associated with the azimuth 1.
  • the weighting factor for the observation amount of arrayed sensor 1101-A is calculated to be small according to the degree of direction influence even if the observation point of arrayed sensor 1101-A is close to the estimated point.
  • the influence of the observation amount of the arrayed sensor 1101-A on the estimation result of the radio wave environment is reduced.
  • the directional influence degree associated with the azimuth 3 is adopted as the directional influence degree of the arrayed sensor 1101-A.
  • those associated with the azimuth 3 are relatively higher than the directional influences of the azimuth 1, and therefore the radio wave environment is estimated based on a relatively large weighting factor.
  • the radio wave environment estimation apparatus 0102 performs high-speed estimation processing while suppressing deterioration in estimation accuracy due to the influence of obstacles existing around the arrayed sensor 1101, as in the first embodiment. It can be performed. Further, in the second embodiment, the radio wave environment estimation apparatus 0102 performs the estimation by effectively utilizing the observation results related to other orientations even for the arrayed sensor 1101 having a low influence degree in some orientations. Can do.
  • FIG. 16 is a diagram illustrating an example of device arrangement in the radio wave environment estimation system according to the third embodiment.
  • FIG. 17 is a diagram illustrating a configuration of a radio wave environment estimation apparatus according to the third embodiment.
  • the radio wave environment estimation system 0100 according to the third embodiment includes a broadband sensor 1601 instead of the arrayed sensor 1101 according to the second embodiment.
  • the broadband sensor 1601 is a sensor that can selectively receive radio waves in a plurality of frequency bands.
  • FIG. 18 is a diagram illustrating a configuration example of a wide range sensor according to the third embodiment.
  • the broadband sensor 1601 includes a broadband receiver 1801, an observation amount extraction unit 0302, a time information acquisition unit 0304, a position information acquisition unit 0305, and a line connection unit 0303.
  • the broadband receiving unit 1801 including the antenna is an example of a broadband receiver.
  • the broadband receiving unit 1801 selectively receives radio waves in a plurality of frequency bands. Note that the broadband receiving unit 1801 does not necessarily need to be able to selectively receive radio waves in an arbitrary direction, unlike the arrayed sensor 1101 according to the second embodiment.
  • the broadband receiver may be configured by using a plurality of antennas and receiving means that are not a single broadband.
  • FIG. 19 is a flowchart showing the pre-evaluation process of the third embodiment.
  • the directionality influence degree evaluation unit 1211 selects one target sensor to be an influence degree evaluation object from the wideband sensor 1601 one by one, from step S1902 shown below.
  • the process of step S1912 is executed (step S1901).
  • the directional influence degree evaluation unit 1211 associates the observation frequency with the azimuth by using the position information of the broadband sensor 1601 to be evaluated and the information of the position of the wireless base station 0103 and the frequency of the transmission radio wave (S1902). ).
  • the directionality influence evaluation unit 1211 sets the observation frequency, the gain and bandwidth of the receiving unit, and the observation start time for the target sensor and other sensors selected in step S1901 (step S1903).
  • the observation control unit 0212 causes the target sensor and other sensors to perform observation under a set condition for a plurality of frequencies, and acquires observation amounts for a plurality of directions (step S1904). At this time, the observation amount for each frequency is interpreted as the observation amount for each direction.
  • the directionality impact evaluation unit 1211 determines whether or not the acquired observation amount is abnormal (step S1905). If there is an abnormality (step S1905: YES), the directionality impact evaluation unit 1211 A warning is given (step S1906), and the degree of influence of the target sensor is set to the lowest value (step S1907).
  • the directionality influence evaluation unit 1211 estimates the observation amount for each direction obtained by the target sensor without using the result of the target sensor (step S1908). ). Next, the directionality influence evaluation unit 1211 calculates, for each direction, the similarity between the estimated amount of observation for each direction and the amount of observation for each direction actually obtained by the target sensor (step S1909). . Next, the directionality influence evaluation unit 1211 determines whether or not the calculated similarity is smaller than a predetermined threshold value in all directions (step S1910). When the similarity is smaller than the threshold value in all directions (step S1910: YES), an undesirable state in which the periphery of the target sensor is surrounded by an obstacle is expected. A sensor location warning is output (step S1911).
  • the directionality impact evaluation unit 1211 applies the obtained impact degree to each orientation.
  • the directionality influence degree of the sensor is recorded in the directionality influence degree storage unit 1212 together with the sensor ID (step S1912).
  • the directionality influence degree data is accumulated in the directionality influence degree storage unit 1212.
  • broadband sensor 1601-A, broadband sensor 1601-B1 to broadband sensor 1601-B8, broadband sensor 1601-C1 to broadband sensor 1601-C14, and radio base station 0103-1 to radio base Station 0103-4 is arranged. Also, an obstacle 0151 is disposed between the broadband sensor 1601-A and the radio base station 0103-1, and the radio base station 0103-1 cannot be seen from the broadband sensor 1601-A.
  • the broadband sensors 1601-B1 to 1601-B8 are sensors that exist within a predetermined distance from the broadband sensor 1601-A. In FIG. 16, four bisectors L1 to L4 are drawn.
  • the bisector L1 is a bisector of an angle formed by a line segment connecting the broadband sensor 1601-A and the radio base station 0103-4 and a line segment connecting the broadband sensor 1601-A and the radio base station 0103-1. Is a line.
  • the bisector L2 is a bisector of an angle formed by a line segment connecting the broadband sensor 1601-A and the radio base station 0103-1 and a line segment connecting the broadband sensor 1601-A and the radio base station 0103-2. Is a line.
  • the bisector L3 is a bisector of an angle formed by a line segment connecting the broadband sensor 1601-A and the radio base station 0103-3 and a line segment connecting the broadband sensor 1601-A and the radio base station 0103-3.
  • the bisector L4 is a bisector of an angle formed by a line segment connecting the broadband sensor 1601-A and the radio base station 0103-3 and a line segment connecting the broadband sensor 1601-A and the radio base station 0103-3. Is a line.
  • an azimuth including a range from the direction in which the bisector L1 extends to the direction in which the bisector L2 extends is referred to as an azimuth 1 ′.
  • An azimuth including a range from the direction in which the bisector L2 extends to the direction in which the bisector L3 extends is referred to as an azimuth 2 ′.
  • An azimuth including a range from the direction in which the bisector L3 extends to the direction in which the bisector L4 extends is referred to as an azimuth 3 ′.
  • An azimuth including a range from the direction in which the bisector L4 extends to the direction in which the bisector L1 extends is referred to as an azimuth 4 ′.
  • the direction is determined by the relative position of each broadband sensor 1601 and each wireless base station 0103. Therefore, the above description applies only to the broadband sensor 1601-A.
  • the frequency of the transmission radio wave of the radio base station 0103-1 is fA
  • the frequency of the transmission radio wave of the radio base station 0102-2 is fB
  • the frequency of the transmission radio wave of the radio base station 0103-3 is fC
  • the radio base station 0103-4 is fD.
  • the radio wave environment estimation apparatus 0102 sets the target wideband sensor 1601-A and the other wideband sensors 1601-B1 to 1601-B8, then instructs observation, and sets the observation amount. get.
  • the radio wave environment estimation apparatus 0102 performs observation for each of the frequencies fA, fB, fC, and fD when evaluating the directionality influence degree of the broadband sensor 1601-A.
  • the observation amount of the radio wave with the frequency fA is associated with the azimuth 1 ′.
  • the observation amount of the radio wave having the frequency fB is associated with the azimuth 2 ′.
  • the observation amount of the radio wave having the frequency fC is associated with the azimuth 3 ′.
  • the observation amount of the radio wave having the frequency fD is associated with the azimuth 4 ′.
  • the observation amount observed by the broadband sensor 1601-A is significantly different from the observation amounts observed by the other broadband sensors 1601-B1 to 1601-B8, particularly at the frequency fA. Therefore, the degree of influence related to the azimuth 1 ′ of the broadband sensor 1601-A is evaluated low.
  • the degree of influence on the azimuths 2 ′ to 4 ′ is highly evaluated. By performing such an evaluation of the degree of influence on all the broadband sensors 1601, the directionality influence degree data is accumulated in the directionality influence degree storage unit 1212.
  • the radio wave environment estimation apparatus 0102 analyzes the radio wave environment at an estimated point between the broadband sensors 1601.
  • processing for analyzing the radio wave environment at the estimated point X and the estimated point Y in FIG. 1 at a position where the radio wave environment estimating apparatus 0102 can see the radio base station 0103-1 will be described as an example.
  • the radio wave environment estimating apparatus 0102 uses the directional influence degree associated with the direction from each broadband sensor 1601 to the estimated point X as the directional influence degree of each broadband sensor 1601. adopt.
  • the radio wave environment is estimated using the directional influence degree of the wideband sensor 1601-A associated with the azimuth 1 ′.
  • the weighting coefficient for the observation amount of the broadband sensor 1601-A is calculated to be small according to the degree of directionality even if the observation point of the broadband sensor 1601-A is close to the estimated point.
  • the influence of the observation amount of the broadband sensor 1601-A on the estimation result of the radio wave environment is reduced.
  • the directionality influence degree associated with the azimuth 4 ′ is adopted as the directionality influence degree of the broadband sensor 1601-A.
  • the directional influence degree of the broadband sensor 1601-A the one associated with the azimuth 4 'is relatively higher than the directional influence degree of the azimuth 1, and therefore the radio wave environment is estimated based on a relatively large weighting factor. .
  • the radio wave environment estimation apparatus 0102 performs high-speed estimation processing while suppressing deterioration in estimation accuracy due to the influence of obstacles existing around the broadband sensor 1601. It can be performed.
  • the radio wave environment estimation apparatus 0102 also displays the observation results related to the other orientations with respect to the broadband sensor 1601 having a low influence degree in some orientations, as in the second embodiment. It is possible to make an estimation by making effective use.
  • the configuration of the broadband sensor 1601 is simple compared to the arrayed sensor 1101 according to the second embodiment, and therefore, the size and cost of the sensor can be suppressed as compared to the second embodiment.
  • FIG. 20 is a diagram illustrating a basic configuration of a radio wave environment estimation apparatus.
  • the basic configuration of the radio wave environment estimation apparatus 0102 is as illustrated in FIG. That is, the radio wave environment estimation apparatus 0102 has an influence degree evaluation unit 0214, a weight coefficient calculation unit 0216, and a weighted average unit 0217 as a basic configuration.
  • the influence degree evaluation unit 0214 evaluates the influence degree indicating the degree of the influence of the observation amount detected by the sensor that detects the observation amount representing the characteristic of the electric signal obtained by receiving the radio wave on the observation amount at other points. .
  • the weighting factor calculation unit 0216 calculates the weighting factor of the sensor based on the position of the estimation point that is the estimation target of the observation amount, the position of the sensor, and the influence degree evaluated by the influence degree evaluation part 0214.
  • the weighted average unit 0217 estimates the observed amount at the estimated point by calculating the weighted average of the observed amounts detected by the sensor using the sensor weighting factor calculated by the weighting factor calculating unit 0216.
  • the above-described radio wave environment estimating apparatus 0102 is mounted on a computer.
  • the operation of each processing unit described above is stored in the auxiliary storage device in the form of a program.
  • the CPU reads the program from the auxiliary storage device, develops it in the main storage device, and executes the above processing according to the program. Further, the CPU secures a storage area corresponding to each storage unit described above in the main storage device according to the program.
  • the auxiliary storage device is an example of a tangible medium that is not temporary.
  • Other examples of non-temporary tangible media include magnetic disks, magneto-optical disks, CD-ROMs (Compact Disc Read Only Memory), DVD-ROMs (Digital Versatile Disc Disc Read Only Memory) connected via an interface, Semiconductor memory etc. are mentioned.
  • the computer that has received the distribution may develop the program in a main storage device and execute the above-described processing.
  • the program may be for realizing a part of the functions described above. Further, the program may be a so-called difference file (difference program) that realizes the above-described function in combination with another program already stored in the auxiliary storage device.
  • difference file difference program

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

センサ周囲に存在する障害物の影響による推定精度の劣化を抑えつつ、高速な推定処理を行うよう、影響度評価部は、電波の受信により得られる電気信号の特徴を表す観測量を検出するセンサによって検出される観測量が他の地点における観測量に与える影響の度合いを示す影響度を評価する。重み係数算出部は、観測量の推定対象となる推定地点の位置とセンサの位置と影響度評価部によって評価された影響度とに基づいて、センサの重み係数を算出する。加重平均部は、重み係数算出部が算出したセンサの重み係数を用いて、センサによって検出された観測量の加重平均を算出することで、推定地点における観測量を推定する。

Description

電波環境推定装置、電波環境推定システム、電波環境推定方法、および記録媒体
 本発明は、電波環境推定装置、電波環境推定システム、電波環境推定方法、および記録媒体に関する。
 電波干渉の早期発見や電波資源の共用のために、電波のセンシングにより電波環境データベースを構築することが提案されている(非特許文献1)。設置できるセンサの数には限度があるため、センサによって得られた電波環境に基づいて、センサが設置されていない地点(未観測地点)の電波環境を推定する必要がある。
 あるセンサによって得られた電波環境を用いて未観測地点の電波環境を推定する場合、そのセンサの設置場所によっては、動作が正常であっても、障害物の影響により未観測地点の電波環境の推定誤差が大きくなることがある。例えば、電波の送信局を見通せる第1のセンサと、第1のセンサの近傍に設けられ、遮蔽物によって送信局を見通せない第2のセンサとがある場合について説明する。この場合に、2つのセンサの電波環境は大きく異なる。そのため、遮蔽物より送信局側の未観測地点における電波環境の観測量を、この2つのセンサの観測データを用いて推定すると、推定誤差が大きくなることが懸念される。
 複数の観測地点の観測量を補間して、推定地点における観測量を推定する方法の例としては、クリギング法とIDW法(Inverse Distance Weighting、逆距離加重法)が挙げられる。
 クリギング法は、観測地点の相対距離に対する相関の度合いをモデル化し、そのモデルに応じた重みを用いて、観測量の加重平均を求めることで、推定地点における観測量の推定を行う手法である。つまり、クリギング法は、多数の観測地点のデータを用いてモデル化を行う手法である。そのため、あるセンサの観測量が障害物の影響により推定地点の実際の値と大きくずれている場合でも、クリギング法を用いることで、最終的な推定結果への影響を小さくすることができる。なお、特許文献1には、センサの位置と無相関な信頼度を用いて補完処理を行うことで、補間の精度を高める技術が開示されている。
 IDW法は、推定地点と各観測地点との間の距離の逆数を重みとした観測量の加重平均を求めることで、推定地点における観測量の推定を行う。IDW法は、近接する観測地点のデータのみを利用して単純な重み係数を使って補間する手法である。そのため、IDW法を用いることで、電波環境の推定に掛かる計算量が少なく、かつ高速に電波環境を推定することができる。
特開2015-10927号公報
Koya Sato, Masayuki Kitamura,Kei Inage,and Takeo Fujii,"Measurement-based spectrum database for flexible spectrum management,"IEICE Trans.Commun.,vol.E98-B, no.10,pp.2004-2013,Oct.2015.
 しかしながら、クリギング法によって観測量を推定する場合、推定処理に時間がかかり、時間的に細かい粒度で推定を行うことが困難になる可能性がある。これは、クリギング法によって観測量を推定する場合、多数の観測データを用いて相関モデルを生成する必要があるためである。
 また、IDW法によって観測量を推定する場合、観測地点と推定地点との間に障害物が存在するなどの地理的な条件に応じて、推定精度が変化する可能性がある。これは、IDW法が、観測地点と推定地点との間の距離のみに基づいて推定がなされるためである。
 また、特許文献1に記載の手法で用いられるセンサの位置と無相関な信頼度は、遮蔽物の影響など、観測地点と推定地点との地理的な状況により生じる誤差を低減することができない。
 本発明の目的は、上述した課題を解決する電波環境推定装置、電波環境推定システム、電波環境推定方法、およびプログラムを提供することにある。
 本発明の第1の態様によれば、電波環境推定装置は、電波の受信により得られる電気信号の特徴を表す観測量を検出するセンサによって検出される前記観測量が他の地点における観測量に与える影響の度合いを示す影響度を評価する影響度評価部と、観測量の推定対象となる推定地点の位置と前記センサの位置と前記影響度評価部によって評価された前記影響度とに基づいて、前記センサの重み係数を算出する重み係数算出部と、前記重み係数算出部が算出した前記センサの前記重み係数を用いて、前記センサによって検出された前記観測量の加重平均を算出することで、前記推定地点における観測量を推定する加重平均部とを備える。
 本発明の第2の態様によれば、電波環境推定システムは、電波の受信により得られる電気信号の特徴を表す観測量を検出するセンサと、上記態様に係る電波環境推定装置とを備える。
 本発明の第3の態様によれば、電波環境推定方法は、電波の受信により得られる電気信号の特徴を表す観測量を検出するセンサによって検出される前記観測量が他の地点における観測量に与える影響の度合いを示す影響度を評価することと、観測量の推定対象となる推定地点の位置と前記センサの位置と評価された前記影響度とに基づいて、前記センサの重み係数を算出することと、算出された前記センサの前記重み係数を用いて、前記センサによって検出された前記観測量の加重平均を算出することで、前記推定地点における観測量を推定することとを含む。
 本発明の第4の態様によれば、記録媒体は、コンピュータに、電波の受信により得られる電気信号の特徴を表す観測量を検出するセンサによって検出される前記観測量が他の地点における観測量に与える影響の度合いを示す影響度を評価することと、観測量の推定対象となる推定地点の位置と前記センサの位置と評価された前記影響度とに基づいて、前記センサの重み係数を算出することと、算出された前記センサの前記重み係数を用いて、前記センサによって検出された前記観測量の加重平均を算出することで、前記推定地点における観測量を推定することとを実行させるプログラムを記録する。
 上記態様のうち少なくとも1つの態様によれば、電波環境推定装置は、センサ周囲に存在する障害物の影響による推定精度の劣化を抑えつつ、高速な推定処理を行うことができる。
第1の実施形態の電波環境推定システムにおける機器配置の例を示す図である。 第1の実施形態の電波環境推定装置の構成を示す図である。 第1の実施形態のセンサの構成例を示す図である。 第1の実施形態の影響度評価部の第1の構成例を示す図である。 第1の実施形態の影響度評価部の第2の構成例を示す図である。 第1の実施形態の重み係数算出部の第1の構成例を示す図である。 第1の実施形態の重み係数算出部の第2の構成例を示す図である。 第1の実施形態の動作を示す流れ図である。 第1の実施形態の事前評価処理を示す流れ図である。 第1の実施形態のデータ分析処理を示す流れ図である。 第2の実施形態の電波環境推定システムにおける機器配置の例を示す図である。 第2の実施形態の電波環境推定装置の構成を示す図である。 第2の実施形態のアレイドセンサの第1の構成例を示す図である。 第2の実施形態のアレイドセンサの第2の構成例を示す図である。 第2の実施形態の事前評価処理を示す流れ図である。 第3の実施形態の電波環境推定システムにおける機器配置の例を示す図である。 第3の実施形態の電波環境推定装置の構成を示す図である。 第3の実施形態の広範囲センサの構成例を示す図である。 第3の実施形態の事前評価処理を示す流れ図である。 電波環境推定装置の基本構成を示す図である。
 以下、図面を参照しながらいくつかの実施形態について説明する。
〈第1の実施形態〉
 図1は、第1の実施形態の電波環境推定システムにおける機器配置の例を示す図である。
 第1の実施形態に係る電波環境推定システム0100は、電波環境の観測対象である観測エリアにおける電波環境の分析を行う。電波環境推定システム0100は、複数のセンサ0101と電波環境推定装置0102とを備える。センサ0101は、観測エリア内の観測地点に設けられ、設置された観測地点における電波環境の観測量を検出する。電波環境推定装置0102は、センサ0101が検出した観測量を収集し、観測エリアにおける電波環境を推定する。センサ0101と電波環境推定装置0102とは、インターネット等のネットワークを介して接続される。なお、観測エリアおよび観測エリアの近傍には、電波を発する無線基地局0103が設けられている。
《構成の説明》
 図2は、第1の実施形態の電波環境推定装置の構成を示す図である。
 第1の実施形態に係る電波環境推定装置0102は、観測制御部0212と、電波観測情報記憶部0213と、影響度評価部0214と、影響度記憶部0215と、重み係数算出部0216と、加重平均部0217と、出力部0218とを備える。
 観測制御部0212は、各センサ0101を制御する。
 電波観測情報記憶部0213は、ネットワークを介して各センサ0101が観測した観測量を取得し、記憶する。影響度評価部0214は、電波観測情報記憶部0213が記憶する観測量に基づき、センサ0101ごとに、そのセンサ0101によって検出される観測量が他の地点における観測量に与える影響の度合いを示す影響度を評価する。なお、評価度は、センサ0101が設置された観測地点と推定地点の間の距離によらない値である。影響度記憶部0215は、影響度評価部0214によって評価された各センサ0101の影響度を記憶する。重み係数算出部0216は、影響度記憶部0215が記憶する影響度に基づいて、各センサ0101の重み係数を算出する。重み係数算出部0216が算出する重み係数は、推定地点と観測地点との間の距離が長いほど小さく、かつ影響度が大きいほど大きい値となる。加重平均部0217は、電波観測情報記憶部0213が記憶する観測量と、重み係数算出部0216が算出する重み係数とに基づいて、観測量の加重平均を算出する。加重平均部0217による加重平均の算出結果は、推定地点における観測量を示す。出力部0218は、加重平均部0217の算出結果を出力する。
 図3は、第1の実施形態のセンサの構成例を示す図である。
 第1の実施形態に係るセンサ0101は、受信部0301と、観測量抽出部0302と、時刻情報取得部0304と、位置情報取得部0305と、回線接続部0303とを備える。
 受信部0301は、電波を受信して電気信号に変換する。
 観測量抽出部0302は、受信部0301が変換した電気信号から観測量を抽出する。
観測量の具体例としては、受信電波の周波数と受信電力の平均値のペア、受信帯域幅、および受信電力のピーク値が挙げられる。また観測量として、受信電力の1次の統計モーメントである平均値だけでなく、2次モーメントである分散、3次モーメントと対応付けられる歪度、4次モーメントと対応付けられる尖度からなる観測量が用いられてもよい。また、観測量として、瞬時受信電力の時間微分量に対する統計モーメントが用いられてもよい。また、観測量として、キュムラントのような他の統計量を用いても良い。また、観測量として、受信信号の電圧振幅、電力の確率密度分布関数、その累積分布関数、相補累積分布関数、またはその他の分布が観測量として用いられてもよい。また、上記説明した観測量の例を2つ以上組み合わせたものが観測量として用いられてもよい。
 時刻情報取得部0304は、現在の時刻を取得する。時刻情報取得部0304は、観測制御部0212が指定した時刻に観測を実施するために必要な機能を提供する。例えば、時刻情報取得部0304は、インターネット経由でNTP(Network Time Protocol)サーバに接続して時刻情報を取得してもよい。また、時刻情報取得部0304は、NSS(Navigation Satellite System)信号が示す時刻情報を補正することで、時刻を取得してもよい。なお、他の実施形態において、観測制御部0212が観測開始のタイミングで開始信号をセンサ0101に送信し、各センサ0101が開始信号の受信時に観測を開始する場合、センサ0101は、必ずしも時刻情報取得部0304を備えなくてよい。ただし、この場合、信号の送受信の伝達時間に差が発生し、各センサ0101で観測開始のタイミングがずれる可能性がある。
 位置情報取得部0305は、センサ0101が設置された観測地点の情報を取得する。
位置情報取得部0305は、観測された観測量がどの位置で得られた結果かを対応付けるために必要な機能を提供する。例えば、位置情報取得部0305は、NSSにより位置情報を取得してもよい。また、位置情報取得部0305は、センサ0101の設置時に位置情報を記憶し、必要に応じて当該位置情報を読み出すものであってもよい。なお、他の実施形態において、電波観測情報記憶部0213がセンサ0101の識別子(ID)と位置情報を対応付けたデータベースを備える場合、センサ0101は位置情報取得部0305を備えなくてもよい。
 回線接続部0303は、ネットワーク回線を介して、観測量、時刻、および観測地点を電波環境推定装置0102に送信する。
 ここで、影響度評価部0214の構成例として、第1の構成例および第2の構成例を説明する。
 図4は、第1の実施形態の影響度評価部の第1の構成例を示す図である。
 第1の構成例に係る影響度評価部0214は、観測量選択部0401と、観測量推定部0402と、類似度算出部0403とを備える。
 観測量選択部0401は、センサ0101の中から、影響度の評価対象となる対象センサを選択する。観測量選択部0401は、選択した対象センサの観測量と、他のセンサの観測量を取得する。
 観測量推定部0402は、対象センサが検出する観測量を、他のセンサの観測量に基づいて推定する。対象センサの観測量を他のセンサの観測量から推定する方法としては、他のセンサのデータに誤差が含まれる場合にも推定誤差が大きく劣化しない方法を用いるとよい。具体的には、観測量推定部0402は、IDW法ではなく、クリギング法を用いて対象センサが検出する観測量を推定することができる。
 類似度算出部0403は、対象センサの観測量と、観測量推定部0402が推定した観測量との類似度を算出する。
 なお、影響度評価部0214は、影響度の評価を頻繁に実施する必要はなく、少なくともシステム立ち上げ時に一回行えばよい。したがって、影響度評価部0214が影響度の算出にクリギング法を用いる場合であっても、加重平均部0217が推定地点における観測量を推定する際の計算量には影響しない。
 図5は、第1の実施形態の影響度評価部の第2の構成例を示す図である。
 第2の構成例に係る影響度評価部0214は、第1の構成例に示した影響度評価部0214に加え、無線基地局情報記憶部0501をさらに有する。無線基地局情報記憶部0501は、対象センサが受信した電波を送信している無線基地局0103の情報を記憶する。観測量推定部0402は、無線基地局情報記憶部0501が記憶する情報に基づいて、対象センサの観測量を推定する。類似度算出部0403は、対象センサの観測量と、観測量推定部0402が推定する観測量との類似度を算出する。第2の構成例に係る観測量推定部0402は、無線基地局0103のアンテナの高さ、送信電力、周波数、変調帯域幅、変調方式、およびその他の情報と、地形を含む地理情報とに基づいて電波伝播のシミュレーションを実施することで、対象センサの観測量を推定してよい。このとき、地形情報に加えて、建築物の材質および構造、ならびに森林の高さおよび密度を考慮した地理モデルを用いることで、実際の観測によらず、電波伝播シミュレーションのみによってセンサ0101の影響度を評価することも可能である。
 類似度算出部0403が算出する観測量の類似度の具体例としては、ピアソンの相関係数、ユークリッド距離、マンハッタン距離が挙げられる。観測量の類似度としてピアソンの相関係数を用いる場合、推定された観測量と実際に得られた観測量の間の傾向を考慮することができる。ピアソンの相関係数の値域は-1~+1なので、類似度算出部0403は、値域が0以上となるように規格化した値を影響度として算出するとよい。他方、観測量の類似度としてユークリッド距離またはマンハッタン距離を用いる場合、推定された観測量と実際に得られた観測量の間に絶対的な誤差が少ないものとして扱われる。なお、ユークリッド距離またはマンハッタン距離の値域は、いずれも0以上である。
 ここで、重み係数算出部0216の構成例として、第1の構成例および第2の構成例について説明する。
 図6は、第1の実施形態の重み係数算出部の第1の構成例を示す図である。
 第1の構成例に係る重み係数算出部0216は、距離算出部0601と、逆数算出部0602と、積算部0603とを備える。
 距離算出部0601は、推定地点と各観測地点との間の距離を算出し、配列として出力する。
 逆数算出部0602は、距離算出部0601が出力する配列の各要素の逆数をとって配列として出力する。
 積算部0603は、逆数算出部0602が出力する配列の各要素に対して、対応するセンサ0101の影響度の積を計算した値を要素とする配列を出力する。
 ここで、影響度は、正の値とするとよい。また、重み係数算出部0216は、必ずしも全てのセンサ0101に対して重み係数を算出せず、推定地点の近傍の観測地点に対してのみ重み係数を算出してもよい。これによって、計算が簡易になるため、重み係数算出部0216は、高速に処理を行えるようになる。推定地点の近傍の観測地点の選び方の例としては、推定地点から距離以内にある観測地点を選ぶ方法、および指定した数の観測地点を推定地点に近い順から選ぶ方法が挙げられる。
 図7は、第1の実施形態の重み係数算出部の第2の構成例を示す図である。
 第2の構成例に係る重み係数算出部0216は、次元追加部0701と、次元追加部0702と、距離算出部0703と、逆数算出部0704とを備える。
 次元追加部0701は、推定地点の位置座標に、影響度の次元を追加する。
 次元追加部0702は、観測地点の位置座標に、影響度の次元を追加する。
 距離算出部0703は、次元追加部0701および次元追加部0702の出力に基づいて、推定地点と各観測地点の間の影響度を含めた距離を算出し、配列として出力する。
 逆数算出部0704は、距離算出部0703が出力する配列の各要素の逆数をとって配列として出力する。
 ここで、次元追加部0702が観測地点の位置座標に追加する影響度の次元の値は、事前に評価されたその観測地点に設置されたセンサ0101の影響度である。影響度の取りうる範囲は、影響度が推定結果に対してどれくらいの寄与で影響を与えるかに従って規格化することができる。また、次元追加部0701が推定地点の位置座標に追加する影響度の次元の値は、影響度のとりうる最大値とする。
 これにより、相対的に影響度の高い第1のセンサと相対的に影響度の低い第2のセンサとが、推定地点から等距離に設けられた場合においても、影響度を含めた距離は、第2のセンサより第1のセンサの方が近くなる。したがって、影響度の高いセンサ0101の重み係数は、影響度の低いセンサ0101の重み係数と比較して大きくなる。
《動作の説明》
 次に、第1の実施形態に係る電波環境推定システム0100の動作について説明する。
 図8は、第1の実施形態の動作を示す流れ図である。
 電波環境推定装置0102は、まず、各センサの影響度を評価するために事前評価処理を行う(ステップS0801)。次に、観測制御部0212は、各センサ0101に観測指示を出力し、観測量を示す観測データを取得する(ステップS0802)。電波観測情報記憶部0213は、取得された観測データを記憶する。そして、電波環境推定装置0102は、収集された観測データを分析するデータ分析処理を行う(ステップS0803)。
 以下に、ステップS0801の事前評価処理、およびステップS0803のデータ分析処理について詳細に説明する。
 図9は、第1の実施形態の事前評価処理を示す流れ図である。
 電波環境推定装置0102が事前評価処理を開始すると、影響度評価部0214は、センサ0101の中から影響度の評価対象となる対象センサを1つずつ選択し、以下に示すステップS0902からステップS0909の処理を実行する(ステップS0901)。
このとき、影響度評価部0214は、全てのセンサ0101を対象センサとして選択してもよいし、一部のセンサ0101のみを対象センサとして選択してもよい。例えば、センサ0101を複数のグループに分類しておき、第1の実施形態の電波環境推定システム0100の初期起動時には、影響度評価部0214がすべてのセンサ0101を対象センサとし、それ以降の平常時は、影響度評価部0214が1日ごとに1グループのセンサ0101を対象センサとしてもよい。なお、都市開発、自然災害、またはその他の事象により電波環境が大きく変化したことが予想される場合には、影響度評価部0214は、すべてのセンサ0101を対象センサとする。
 影響度評価部0214は、ステップS0901で選択した対象センサについて、観測する周波数、受信手段の利得や帯域幅、観測開始の時刻の設定を行う(ステップS0902)。なお、対象センサの近傍のセンサ0101の観測も行う場合(例えば、第1の構成例に係る影響度評価部0214(図4)を用いる場合)には、他のセンサについても同様の設定を行う。
 次に、観測制御部0212は、対象センサおよび他のセンサに、設定された条件で観測させる観測指示を出力し、対象センサおよび他のセンサから観測量を取得する(ステップS0903)。次に、影響度評価部0214は、取得した観測量に異常があるか否かを判定する(ステップS0904)。具体的には、影響度評価部0214は、観測量が予め定められた範囲外の値を示すか否かを判定する。取得した観測量に異常がある場合(ステップS0904:YES)影響度評価部0214は、センサ動作異常として警告を発する(ステップS0905)。また影響度評価部0214は、対象センサの影響度を最低(例えば、0)に設定する(ステップS0906)。
 他方、取得した観測量に異常がない場合(ステップS0904:NO)、影響度評価部0214は、対象センサの観測地点における観測量を、対象センサが検出した観測量を用いずに参照用として推定する(ステップS0907)。次に、影響度評価部0214は、推定した観測量と、実際に対象センサが検出した観測量との類似度を算出する(S0908)。そして、影響度評価部0214は、ステップS0906で設定した影響度、またはステップS0908で算出した類似度を、対象センサの影響度としてセンサIDと共に影響度記憶部0215に記録する(ステップS0909)。
 上記処理を各センサについて実行することで、影響度記憶部0215には、各センサ0101の影響度が記憶される。
 図10は、第1の実施形態のデータ分析処理を示す流れ図である。
 電波環境推定装置0102は、データ分析処理を開始すると、観測エリア内における電波環境の出力対象となる地点のうちセンサ0101が設置されていない地点である推定地点を1つずつ選択し、以下に示すステップS1002からステップS1003の処理を実行する(ステップS1001)。
 まず、重み係数算出部0216は、各センサ0101の重み係数を、影響度記憶部0215が当該センサ0101に関連付けて記憶する影響度と、当該センサ0101の観測地点から推定地点までの距離とに基づいて算出する(ステップS1002)。次に、加重平均部0217は、電波観測情報記憶部0213が記憶する観測量と、重み係数算出部0216が算出する重み係数とに基づいて、観測量の加重平均を算出することで、推定地点における観測量を推定する(ステップS1003)。
 加重平均部0217が、観測エリア内におけるすべての推定地点について観測量を推定すると、出力部0218は、加重平均部0217によって推定された観測量およびセンサ0101によって実測された観測量を、出力する(ステップS1004)。
 次に、第1の実施形態の動作について、図1に示す環境を想定して具体的に説明する。
図1が示す観測エリア内には、センサ0101-A、センサ0101-B1~センサ0101-B8、センサ0101-C1~センサ0101-C14、および無線基地局0103-1~無線基地局0103-4が配置されている。また、センサ0101-Aと無線基地局0103-1との間には、障害物0151が配置されており、センサ0101-Aから無線基地局0103-1を見通すことができない。また、センサ0101-B1~センサ0101-B8は、センサ0101-Aから所定距離内に存在するセンサである。
 また電波環境推定装置0102は、図4に示す第1の構成例に係る影響度評価部0214を備えるものとする。つまり、影響度評価部0214は、対象センサの観測量と他のセンサの観測量とに基づいて影響度を算出する。
 まず、電波環境推定装置0102は、事前評価のステップにおいて、対象センサ0101-Aおよび他のセンサ0101-B1~センサ0101-B8の設定を行った後、観測を指示し、観測量を取得する。対象センサ0101-Aで観測される観測量は、他のセンサ0101-B1~センサ0101-B8で観測される観測量とは大きく異なる結果となり、影響度は低く評価される。このような影響度の評価を全てのセンサに対して行うことで、影響度記憶部0215に影響度のデータが蓄積される。
 次に、電波環境推定装置0102は、センサ0101の間の推定地点での電波環境の分析を行う。ここでは、電波環境推定装置0102が無線基地局0103‐1を見通せる位置にある図1中の推定地点Xでの電波環境の分析を行う処理を例として説明する。電波環境推定装置0102は、推定地点Xでの電波環境を、センサ0101-Aを含む近傍のセンサ0101の観測量を用いてIDW法で推定する。このとき、各センサ0101で観測された観測量に対する重み係数は、図4や図5に示す重み係数算出部0216が出力する各センサ0101の影響度に応じた値となる。すなわち、センサ0101-Aの観測量に対する重み係数は、たとえセンサ0101-Aの観測地点が推定地点と近くても、影響度に応じて小さく算出される。その結果、センサ0101-Aの観測量が電波環境の推定結果に与える影響は小さくなる。
《効果の説明》
 第1の実施形態によれば、電波環境推定装置0102は、影響度の低いセンサ0101の観測結果に対する加重平均の重み係数を小さく評価する。これにより、影響度の低いセンサ0101による推定結果への影響を小さくすることができる。また、電波環境推定装置0102は、クリギング法を用いた電波環境の評価を、事前評価として観測開始前に1度行い、各地点の電波環境の推定にはIDW法を用いる。そのため、電波環境推定装置0102は、電波環境の推定の際を短時間で実行することができる。したがって、電波環境推定装置0102は、センサ0101の周囲に存在する障害物の影響による推定精度の劣化を抑えつつ、高速な推定処理を行うことができる。
〈第2の実施の形態〉
 次に、本発明の第2の実施の形態について図面を参照して詳細に説明する。
 図11は、第2の実施形態に係る電波環境推定システムにおける機器配置の例を示す図である。
 第2の実施形態に係る電波環境推定システム0100は、第1の実施形態に係るセンサ0101に代えて、アレイドセンサ1101を備える。ここで、アレイドセンサ1101は、任意の方位の電波を選択的に受信できるセンサである。第2の実施形態に係る電波環境推定システム0100は、電波の到来する方位に基づいて、観測エリアにおける電波環境の分析を行う。具体的には、電波環境推定システム0100は、アレイドセンサ1101の影響度を、方位ごと(方位1~方位4)に算出し、方位別の影響度に基づいて推定地点の電波環境を推定する。
〈構成の説明〉
 図12は、第2の実施形態の電波環境推定装置の構成を示す図である。
 第2の実施形態に係る電波環境推定装置0102は、第1の実施形態における影響度評価部0214および影響度記憶部0215に代えて、方向性影響度評価部1211と方向性影響度記憶部1212を備える。方向性影響度評価部1211は、各アレイドセンサ1101について、観測を行った方位ごとの影響度を評価する。方向性影響度記憶部1212は、各アレイドセンサ1101に関連付けて、観測を行った方位ごとの影響度を記憶する。
 ここで、アレイドセンサ1101の構成例として、第1の構成例および第2の構成例を説明する。
 図13は、第2の実施形態に係るアレイドセンサの第1の構成例を示す図である。
 第1の構成例に係るアレイドセンサ1101は、指向性アンテナ群1301と、アンテナスイッチ1302と、受信部0301と、観測量抽出部0302と、時刻情報取得部0304と、位置情報取得部0305と、回線接続部0303とを備える。
 ここで、指向性アンテナ群1301と、アンテナスイッチ1302と、受信部0301は、指向性可変受信器の一例である。指向性アンテナ群1301は、各々が異なる方向を向いた複数の指向性アンテナで構成される。指向性アンテナの例としては、パラボラアンテナやパッチアンテナが挙げられる。アンテナスイッチ1302は、受信手段に接続する指向性アンテナを切り替えることによって、どの方向の電波を受信するかを決定する。アンテナスイッチ1302は、観測制御部0212によって制御される。これにより、電波環境推定装置0102は、1つのアレイドセンサ1101に対し、各々の指向性アンテナが向いている方向に応じた影響度を得ることができる。
 図14は、第2の実施形態に係るアレイドセンサの第2の構成例を示す図である。
 第2の構成例に係るアレイドセンサ1101は、全方向性アンテナ群1401と、移相器群1402と、加算部1403と、受信部0301と、観測量抽出部0302と、時刻情報取得部0304と、位置情報取得部0305と、回線接続部0303とを備える。全方向性アンテナ群1401と、移相器群1402と、加算部1403と、受信部0301は、指向性可変受信器の一例である。全方向性アンテナ群1401の例としては、ダイポールアンテナが挙げられる。全方向性アンテナ群1401のそれぞれが受信した電波は、移相器群1402によって各々指定された分だけ位相を回転される。その後、加算部1403が各々の電波を加算して受信部0301に出力する。これにより、指定された方向からの電波のみが強調され、それ以外の方向の電波は相殺されるため、アレイドセンサ0101は、指定された方向のみの電波を受信することができる。また、受信する方向は、移相器群1402を構成する各々の移相器での移相量によって変更することができる。なお、移相量は、観測制御部0212によって制御される。これにより、電波環境推定装置0102は、1つのアレイドセンサ1101に対し、指向性に応じた影響度を得ることができる。
 なお、ここでは指向性可変受信器としてアレイドセンサ1101を用いる例を示したが、他の実施形態においては、アレイドセンサ1101以外の指向性可変受信器を用いてもよい。例えば、他の実施形態に係る電波環境推定システム0100は、指向性可変受信器として、指向性アンテナを機械的に回転させることで任意の方向の電波を受信するものを備えてもよい。また、他の実施形態に係る電波環境推定システム0100は、指向性可変受信器として、複数の入出力ポートを有するバトラーマトリックスをアンテナに応用し、ポートを切り替えることによって受信する電波の到来方向を可変とするものを用いてもよい。
〈動作の説明〉
 次に、第2の実施形態の動作について詳細に説明する。第2の実施形態の動作は、第1の実施形態の動作と比較して、事前評価処理の動作が異なる。
 図15は、第2の実施形態の事前評価処理を示す流れ図である。
 電波環境推定装置0102が事前評価処理を開始すると、方向性影響度評価部1211は、アレイドセンサ1101の中から影響度の評価対象となる対象センサを1つずつ選択し、以下に示すステップS1502からステップS1511の処理を実行する(ステップS1501)。
 方向性影響度評価部1211は、ステップS1501で選択した対象センサおよび他のセンサについて、観測する周波数、受信手段の利得や帯域幅、観測開始の時刻の設定を行う(ステップS1502)。次に、観測制御部0212は、対象センサおよび他のセンサに、設定された条件での観測を複数の方位に対して実施させ、複数の方位に対する観測量を取得する(ステップS1503)。このとき、同一時刻に同じ無線基地局0103からの電波を受信できるように制御するとよい。次に、方向性影響度評価部1211は、取得した観測量に異常があるか否かを判定し(ステップS1504)、異常があれば(ステップS1504:YES)方向性影響度評価部1211は、警告し(ステップS1505)、その対象センサの影響度を最低値とする(ステップS1506)。
 他方、観測量に異常が無い場合(ステップS1504:NO)、方向性影響度評価部1211は、対象センサで得られる方位ごとの観測量を、対象センサの結果を用いずに推定する(ステップS1507)。ここで、近傍センサで得られた観測量を利用して推定する場合、方向性影響度評価部1211は、対象センサが受信した電波の送信位置、すなわち無線基地局0103の位置に基づき、それぞれのアレイドセンサ1101がどの方向からその電波を受信するかを決定し、それぞれのアレイドセンサ1101がその電波を受信できる条件で観測して得られた観測量を用いて推定する。
 次に、方向性影響度評価部1211は、推定された方位ごとの観測量と、実際に対象センサで得られた方位ごとの観測量との類似度を、方位ごとに算出する(ステップS1508)。次に、方向性影響度評価部1211は、算出した類似度が、全ての方位において所定の閾値より小さいか否かを判定する(ステップS1509)。類似度が、全ての方位において閾値より小さい場合(ステップS1509:YES)、対象センサの周囲が障害物に囲まれているという望ましくない状態が予想されるため、方向性影響度評価部1211は、センサ設置場所の警告を出力する(ステップS1510)。
 方向性影響度評価部1211は、類似度が閾値以上である方位が存在する場合(ステップS1509:NO)、またはセンサ設置場所の警告を出力した場合、得られた方位ごとの影響度を、対象センサの方向性影響度として、センサIDと共に方向性影響度記憶部1212に記録する(ステップS1511)。
 以上の処理を、全てのアレイドセンサ1101について実行することで、方向性影響度記憶部1212に方向性影響度のデータが蓄積される。
 次に、第2の実施形態の動作について、図11に示す環境を想定して具体的に説明する。図11が示す観測エリア内には、アレイドセンサ1101-A、アレイドセンサ1101-B1~アレイドセンサ1101-B8、アレイドセンサ1101-C1~アレイドセンサ1101-C14、および無線基地局0103-1~無線基地局0103-4が配置されている。また、アレイドセンサ1101-Aと無線基地局0103-1との間には、障害物0151が配置されており、アレイドセンサ1101-Aから無線基地局0103-1を見通すことができない。また、アレイドセンサ1101-B1~アレイドセンサ1101-B8は、アレイドセンサ1101-Aから所定距離内に存在するセンサである。
 なお、本具体例においては、アレイドセンサ1101-Aの北東方向を方位1、南東方向を方位2、南西方向を方位3、北西方向を方位4とよぶ。
 まず、電波環境推定装置0102は、事前評価のステップにおいて、対象アレイドセンサ1101-Aおよび他のアレイドセンサ1101-B1~アレイドセンサ1101-B8の設定を行った後、観測を指示し、観測量を取得する。対象アレイドセンサ1101-Aで観測される観測量は、他のアレイドセンサ1101-B1~アレイドセンサ1101-B8で観測される観測量とは、特に方位1で大きく異なる結果となり、方位1に係る影響度は低く評価される。他方、方位2~方位4については、障害物が存在しないため、方位2~方位4に係る影響度は高く評価される。このような影響度の評価を全てのアレイドセンサ1101に対して行うことで、方向性影響度記憶部1212に方向性影響度のデータが蓄積される。
 次に、電波環境推定装置0102は、アレイドセンサ1101の間の推定地点での電波環境の分析を行う。ここでは、電波環境推定装置0102が無線基地局0103‐1を見通せる位置にある図11中の推定地点Xおよび推定地点Yでの電波環境の分析を行う処理を例として説明する。推定地点Xでの観測量の推定の際、電波環境推定装置0102は、各アレイドセンサ1101の方向性影響度として、各アレイドセンサ1101から推定地点Xへ向く方位に関連付けられた方向性影響度を採用する。例えば、アレイドセンサ1101-Aから推定地点Xへ向く方位は方位1であるため、アレイドセンサ1101-Aの方向性影響度のうち方位1に関連付けられたものを用いて電波環境を推定する。これにより、アレイドセンサ1101-Aの観測量に対する重み係数は、たとえアレイドセンサ1101-Aの観測地点が推定地点と近くても、方向性影響度に応じて小さく算出される。その結果、アレイドセンサ1101-Aの観測量が電波環境の推定結果に与える影響は小さくなる。
 一方、推定地点Yでの観測の際、アレイドセンサ1101-Aの方向性影響度としては、方位3に関連付けられた方向性影響度が採用される。アレイドセンサ1101-Aの方向性影響度のうち方位3に関連付けられたものは方位1の方向性影響度に対し相対的に高いため、比較的大きな重み係数に基づいて電波環境が推定される。
《効果の説明》
 第2の実施形態によれば、電波環境推定装置0102は、第1の実施形態と同様に、アレイドセンサ1101の周囲に存在する障害物の影響による推定精度の劣化を抑えつつ、高速な推定処理を行うことができる。
 また、第2の実施形態では、電波環境推定装置0102は、一部の方位で影響度が低いアレイドセンサ1101に対しても、その他の方位に係る観測結果を有効に活用して推定を行うことができる。
〈第3の実施の形態〉
《構成の説明》
 図16は、第3の実施形態に係る電波環境推定システムにおける機器配置の例を示す図である。
 図17は、第3の実施形態の電波環境推定装置の構成を示す図である。
 第3の実施形態に係る電波環境推定システム0100は、第2の実施形態に係るアレイドセンサ1101に代えて、広帯域センサ1601を備える。広帯域センサ1601は、複数の周波数帯の電波を選択的に受信できるセンサである。
 図18は、第3の実施形態の広範囲センサの構成例を示す図である。
 広帯域センサ1601は、広帯域受信部1801と、観測量抽出部0302と、時刻情報取得部0304と、位置情報取得部0305と、回線接続部0303とを備える。ここで、アンテナも含めた広帯域受信部1801は、広帯域受信器の一例である。広帯域受信部1801は、複数の周波数帯の電波を選択的に受信する。なお、広帯域受信部1801は、必ずしも第2の実施形態に係るアレイドセンサ1101のように任意の方位の電波を選択的に受信できる必要はない。なお、他の実施形態においては、広帯域受信器は、単体では広帯域ではないアンテナや受信手段を複数利用することで構成されてもよい。
《動作の説明》
 次に、第3の実施形態の動作について詳細に説明する。第3の実施形態の動作は、第3の実施形態の動作と比較して、事前評価処理の動作が異なる。
 図19は、第3の実施形態の事前評価処理を示す流れ図である。
 電波環境推定装置0102が事前評価処理を開始すると、方向性影響度評価部1211は、広帯域センサ1601の中から影響度の評価対象となる対象センサを1つずつ選択し、以下に示すステップS1902からステップS1912の処理を実行する(ステップS1901)。
 方向性影響度評価部1211は、評価対象である広帯域センサ1601の位置情報と、無線基地局0103の位置及び送信電波の周波数の情報を利用して、観測を行う周波数と方位とを対応付ける(S1902)。次に、方向性影響度評価部1211は、ステップS1901で選択した対象センサおよび他のセンサについて、観測する周波数、受信手段の利得や帯域幅、観測開始の時刻の設定を行う(ステップS1903)。次に、観測制御部0212は、対象センサおよび他のセンサに、設定された条件での観測を複数の周波数に対して実施させ、複数の方位に対する観測量を取得する(ステップS1904)。このとき、それぞれの周波数に対する観測量は、それぞれの方位に対する観測量として解釈される。次に、方向性影響度評価部1211は、取得した観測量に異常があるか否かを判定し(ステップS1905)、異常があれば(ステップS1905:YES)方向性影響度評価部1211は、警告し(ステップS1906)、その対象センサの影響度を最低値とする(ステップS1907)。
 他方、観測量に異常が無い場合(ステップS1905:NO)、方向性影響度評価部1211は、対象センサで得られる方位ごとの観測量を、対象センサの結果を用いずに推定する(ステップS1908)。次に、方向性影響度評価部1211は、推定された方位ごとの観測量と、実際に対象センサで得られた方位ごとの観測量との類似度を、方位ごとに算出する(ステップS1909)。次に、方向性影響度評価部1211は、算出した類似度が、全ての方位において所定の閾値より小さいか否かを判定する(ステップS1910)。類似度が、全ての方位において閾値より小さい場合(ステップS1910:YES)、対象センサの周囲が障害物に囲まれているという望ましくない状態が予想されるため、方向性影響度評価部1211は、センサ設置場所の警告を出力する(ステップS1911)。
 方向性影響度評価部1211は、類似度が閾値以上である方位が存在する場合(ステップS1910:NO)、またはセンサ設置場所の警告を出力した場合、得られた方位ごとの影響度を、対象センサの方向性影響度として、センサIDと共に方向性影響度記憶部1212に記録する(ステップS1912)。
 以上の処理を、全ての広帯域センサ1601について実行することで、方向性影響度記憶部1212に方向性影響度のデータが蓄積される。
 次に、第3の実施形態の動作について、図16に示す環境を想定して具体的に説明する。図16が示す観測エリア内には、広帯域センサ1601-A、広帯域センサ1601-B1~広帯域センサ1601-B8、広帯域センサ1601-C1~広帯域センサ1601-C14、および無線基地局0103-1~無線基地局0103-4が配置されている。また、広帯域センサ1601-Aと無線基地局0103-1との間には、障害物0151が配置されており、広帯域センサ1601-Aから無線基地局0103-1を見通すことができない。また、広帯域センサ1601-B1~広帯域センサ1601-B8は、広帯域センサ1601-Aから所定距離内に存在するセンサである。
 なお、図16には、4つの二等分線L1~L4が描かれている。二等分線L1は、広帯域センサ1601-Aと無線基地局0103-4を結ぶ線分と、広帯域センサ1601-Aと無線基地局0103-1とを結ぶ線分とがなす角の二等分線である。二等分線L2は、広帯域センサ1601-Aと無線基地局0103-1を結ぶ線分と、広帯域センサ1601-Aと無線基地局0103-2とを結ぶ線分とがなす角の二等分線である。二等分線L3は、広帯域センサ1601-Aと無線基地局0103-2を結ぶ線分と、広帯域センサ1601-Aと無線基地局0103-3とを結ぶ線分とがなす角の二等分線である。二等分線L4は、広帯域センサ1601-Aと無線基地局0103-3を結ぶ線分と、広帯域センサ1601-Aと無線基地局0103-4とを結ぶ線分とがなす角の二等分線である。
 ここで、二等分線L1の伸びる方向から二等分線L2の伸びる方向までの範囲を含む方位を方位1´という。二等分線L2の伸びる方向から二等分線L3の伸びる方向までの範囲を含む方位を方位2´という。二等分線L3の伸びる方向から二等分線L4の伸びる方向までの範囲を含む方位を方位3´という。二等分線L4の伸びる方向から二等分線L1の伸びる方向までの範囲を含む方位を方位4´という。なお、方位は、各広帯域センサ1601と各無線基地局0103の相対位置で決定される。そのため、前述の説明は、広帯域センサ1601-Aに対してのみ当てはまる。また、無線基地局0103-1の送信電波の周波数はfA、無線基地局0103-2の送信電波の周波数はfB、無線基地局0103-3の送信電波の周波数はfC、無線基地局0103-4の送信電波の周波数はfDである。
 まず、電波環境推定装置0102は、事前評価のステップにおいて、対象広帯域センサ1601-Aおよび他の広帯域センサ1601-B1~広帯域センサ1601-B8の設定を行った後、観測を指示し、観測量を取得する。電波環境推定装置0102は、広帯域センサ1601-Aの方向性影響度の評価に際して、周波数fA、fB、fC、fDのそれぞれについて観測を実施する。周波数fAの電波の観測量は、方位1´に関連付けられる。周波数fBの電波の観測量は、方位2´に関連付けられる。周波数fCの電波の観測量は、方位3´に関連付けられる。周波数fDの電波の観測量は、方位4´に関連付けられる。
 観測の結果、広帯域センサ1601-Aで観測される観測量は、他の広帯域センサ1601-B1~広帯域センサ1601-B8で観測される観測量とは、特に周波数fAで大きく異なる結果となる。したがって、広帯域センサ1601-Aの方位1´に係る影響度は低く評価される。他方、方位2´~方位4´については、障害物が存在しないため、方位2´~方位4´に係る影響度は高く評価される。このような影響度の評価を全ての広帯域センサ1601に対して行うことで、方向性影響度記憶部1212に方向性影響度のデータが蓄積される。
 次に、電波環境推定装置0102は、広帯域センサ1601の間の推定地点での電波環境の分析を行う。ここでは、電波環境推定装置0102が無線基地局0103‐1を見通せる位置にある図1中の推定地点Xおよび推定地点Yでの電波環境の分析を行う処理を例として説明する。推定地点Xでの観測量の推定の際、電波環境推定装置0102は、各広帯域センサ1601の方向性影響度として、各広帯域センサ1601から推定地点Xへ向く方位に関連付けられた方向性影響度を採用する。例えば、広帯域センサ1601-Aから推定地点Xへ向く方位は方位1´であるため、広帯域センサ1601-Aの方向性影響度のうち方位1´に関連付けられたものを用いて電波環境を推定する。これにより、広帯域センサ1601-Aの観測量に対する重み係数は、たとえ広帯域センサ1601-Aの観測地点が推定地点と近くても、方向性影響度に応じて小さく算出される。その結果、広帯域センサ1601-Aの観測量が電波環境の推定結果に与える影響は小さくなる。
 一方、推定地点Yでの観測の際、広帯域センサ1601-Aの方向性影響度としては、方位4´に関連付けられた方向性影響度が採用される。広帯域センサ1601-Aの方向性影響度のうち方位4´に関連付けられたものは方位1の方向性影響度に対し相対的に高いため、比較的大きな重み係数に基づいて電波環境が推定される。
《効果の説明》
 次に、本実施の形態の効果について説明する。
 第3の実施形態によれば、電波環境推定装置0102は、第1の実施形態と同様に、広帯域センサ1601の周囲に存在する障害物の影響による推定精度の劣化を抑えつつ、高速な推定処理を行うことができる。
 また、第3の実施形態では、電波環境推定装置0102は、第2の実施形態と同様に、一部の方位で影響度が低い広帯域センサ1601に対しても、その他の方位に係る観測結果を有効に活用して推定を行うことができる。また、広帯域センサ1601の構成は、第2の実施形態に係るアレイドセンサ1101と比較して単純であるため、第2の実施形態と比較し、センサのサイズおよびコストを抑えることができる。
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
〈基本構成〉
 図20は、電波環境推定装置の基本構成を示す図である。
 上述した実施形態では、電波環境推定装置0102のいくつかの実施形態について説明したが、電波環境推定装置0102の基本構成は、図20に示すとおりである。
 すなわち、電波環境推定装置0102は、影響度評価部0214と、重み係数算出部0216と、加重平均部0217とを基本構成とする。
 影響度評価部0214は、電波の受信により得られる電気信号の特徴を表す観測量を検出するセンサによって検出される観測量が他の地点における観測量に与える影響の度合いを示す影響度を評価する。
 重み係数算出部0216は、観測量の推定対象となる推定地点の位置と前記センサの位置と影響度評価部0214によって評価された影響度とに基づいて、センサの重み係数を算出する。
 加重平均部0217は、重み係数算出部0216が算出したセンサの重み係数を用いて、センサによって検出された観測量の加重平均を算出することで、推定地点における観測量を推定する。
 なお、上述の電波環境推定装置0102は、コンピュータに実装される。上述した各処理部の動作は、プログラムの形式で補助記憶装置に記憶されている。CPUは、プログラムを補助記憶装置から読み出して主記憶装置に展開し、当該プログラムに従って上記処理を実行する。また、CPUは、プログラムに従って、上述した各記憶部に対応する記憶領域を主記憶装置に確保する。
 なお、少なくとも1つの実施形態において、補助記憶装置は、一時的でない有形の媒体の一例である。一時的でない有形の媒体の他の例としては、インタフェースを介して接続される磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。また、このプログラムが通信回線によってコンピュータに配信される場合、配信を受けたコンピュータが当該プログラムを主記憶装置に展開し、上記処理を実行してもよい。
 また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。
さらに、当該プログラムは、前述した機能を補助記憶装置に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 この出願は、2016年1月25日に出願された日本出願特願2016-011695を基礎とする優先権を主張し、その開示の全てをここに取り込む。
0100 電波環境推定システム
0101 センサ
0102 電波環境推定装置
0212 観測制御部
0213 電波観測情報記憶部
0214 影響度評価部
0215 影響度記憶部
0216 重み係数算出部
0217 加重平均部
0218 出力部

Claims (10)

  1.  電波の受信により得られる電気信号の特徴を表す観測量を検出するセンサによって検出される前記観測量が他の地点における観測量に与える影響の度合いを示す影響度を評価する影響度評価手段と、
     観測量の推定対象となる推定地点の位置と前記センサの位置と前記影響度評価部によって評価された前記影響度とに基づいて、前記センサの重み係数を算出する重み係数算出手段と、
     前記重み係数算出手段が算出した前記センサの前記重み係数を用いて、前記センサによって検出された前記観測量の加重平均を算出することで、前記推定地点における観測量を推定する加重平均手段と
     を備える電波環境推定装置。
  2.  前記影響度評価手段が、前記センサが受信する前記電波の到来方向に応じて前記影響度を評価する
     請求項1に記載の電波環境推定装置。
  3.  前記センサが、受信する方向を選択的に切り替えて受信できる指向性可変受信器を備え、
     前記観測量が、前記方向の情報を含む
     請求項2に記載の電波環境推定装置。
  4.  前記センサが、任意の周波数帯の電波を選択的に受信可能な広帯域受信器を備え、
     前記影響度評価手段が、前記センサの周波数帯ごとの前記影響度を評価する
     請求項1から請求項3の何れか1項に記載の電波環境推定装置。
  5.  影響度の評価対象となる前記センサである対象センサによって検出される観測量の推定値である推定観測量を算出する観測量推定手段と、
     前記推定観測量と前記対象センサが検出した前記観測量との類似度を算出する類似度算出手段と
     をさらに備え、
     前記影響度評価手段が、前記類似度算出手段が算出した類似度に基づいて前記影響度を評価する
     請求項1から請求項4のいずれか1項に記載の電波環境推定装置。
  6.  前記観測量推定手段が、前記対象センサの推定観測量を、他のセンサの観測量に基づいて算出する
     請求項5に記載の電波環境推定装置。
  7.  前記観測量推定手段が、前記センサが受信した電波の送信元である基地局の位置と変調方式を含む情報に基づいて、前記推定観測量を算出する
     請求項5または請求項6に記載の電波環境推定装置。
  8.  電波の受信により得られる電気信号の特徴を表す観測量を検出するセンサと、
     請求項1から請求項7の何れか1項に記載の電波環境推定装置と
     を備える電波環境推定システム。
  9.  電波の受信により得られる電気信号の特徴を表す観測量を検出するセンサによって検出される前記観測量が他の地点における観測量に与える影響の度合いを示す影響度を評価することと、
     観測量の推定対象となる推定地点の位置と前記センサの位置と評価された前記影響度とに基づいて、前記センサの重み係数を算出することと、
     算出された前記センサの前記重み係数を用いて、前記センサによって検出された前記観測量の加重平均を算出することで、前記推定地点における観測量を推定することと
     を含む電波環境推定方法。
  10.  コンピュータに、
     電波の受信により得られる電気信号の特徴を表す観測量を検出するセンサによって検出される前記観測量が他の地点における観測量に与える影響の度合いを示す影響度を評価することと、
     観測量の推定対象となる推定地点の位置と前記センサの位置と評価された前記影響度とに基づいて、前記センサの重み係数を算出することと、
     算出された前記センサの前記重み係数を用いて、前記センサによって検出された前記観測量の加重平均を算出することで、前記推定地点における観測量を推定することと
     を実行させるためのプログラムを記録する記録媒体。
PCT/JP2017/002052 2016-01-25 2017-01-23 電波環境推定装置、電波環境推定システム、電波環境推定方法、および記録媒体 WO2017130877A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017564224A JP6973085B2 (ja) 2016-01-25 2017-01-23 電波環境推定装置、電波環境推定システム、電波環境推定方法、およびプログラム
US16/070,334 US20190028215A1 (en) 2016-01-25 2017-01-23 Radio environment estimation device, radio environment estimation system, radio environment estimation method, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-011695 2016-01-25
JP2016011695 2016-01-25

Publications (1)

Publication Number Publication Date
WO2017130877A1 true WO2017130877A1 (ja) 2017-08-03

Family

ID=59398090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002052 WO2017130877A1 (ja) 2016-01-25 2017-01-23 電波環境推定装置、電波環境推定システム、電波環境推定方法、および記録媒体

Country Status (3)

Country Link
US (1) US20190028215A1 (ja)
JP (1) JP6973085B2 (ja)
WO (1) WO2017130877A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019092099A (ja) * 2017-11-16 2019-06-13 日本電気株式会社 電波環境推定装置および電波環境推定方法
JP2019205068A (ja) * 2018-05-23 2019-11-28 国立研究開発法人情報通信研究機構 受信電力推定方法及びシステム
WO2019239456A1 (ja) * 2018-06-11 2019-12-19 三菱電機株式会社 環境情報管理システム、環境情報管理方法および環境情報管理プログラム
JPWO2020209253A1 (ja) * 2019-04-11 2020-10-15

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210270686A1 (en) * 2020-02-28 2021-09-02 Smart Skin Technologies Inc. Systems and methods for sensing impacts applied to an article during production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036887A (ja) * 2011-08-09 2013-02-21 Nippon Telegr & Teleph Corp <Ntt> 観測値信頼度評価装置、観測値信頼度評価方法及び観測値信頼度評価プログラム
JP2015010927A (ja) * 2013-06-28 2015-01-19 Kddi株式会社 観測値処理装置、観測値処理方法及び観測値処理プログラム
JP2015161591A (ja) * 2014-02-27 2015-09-07 Kddi株式会社 観測値処理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699544B2 (ja) * 2010-11-04 2015-04-15 日本電気株式会社 電波伝搬特性推定システム、電波伝搬特性推定方法、およびコンピュータプログラム
JP6406251B2 (ja) * 2013-07-17 2018-10-17 日本電気株式会社 物体追跡装置、物体追跡方法および物体追跡プログラム
KR101517937B1 (ko) * 2013-08-27 2015-05-06 숭실대학교산학협력단 클라이언트, 서버 및 이를 포함하는 무선 신호 지도 작성 시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036887A (ja) * 2011-08-09 2013-02-21 Nippon Telegr & Teleph Corp <Ntt> 観測値信頼度評価装置、観測値信頼度評価方法及び観測値信頼度評価プログラム
JP2015010927A (ja) * 2013-06-28 2015-01-19 Kddi株式会社 観測値処理装置、観測値処理方法及び観測値処理プログラム
JP2015161591A (ja) * 2014-02-27 2015-09-07 Kddi株式会社 観測値処理装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7130943B2 (ja) 2017-11-16 2022-09-06 日本電気株式会社 電波環境推定装置および電波環境推定方法
JP2019092099A (ja) * 2017-11-16 2019-06-13 日本電気株式会社 電波環境推定装置および電波環境推定方法
JP7096585B2 (ja) 2018-05-23 2022-07-06 国立研究開発法人情報通信研究機構 受信電力推定方法及びシステム
JP2019205068A (ja) * 2018-05-23 2019-11-28 国立研究開発法人情報通信研究機構 受信電力推定方法及びシステム
JPWO2019239456A1 (ja) * 2018-06-11 2020-09-17 三菱電機株式会社 環境情報管理システム
GB2589740A (en) * 2018-06-11 2021-06-09 Mitsubishi Electric Corp Environment information management system, environment information management method and environment information management program
GB2589740B (en) * 2018-06-11 2021-11-10 Mitsubishi Electric Corp Environmental information management system
WO2019239456A1 (ja) * 2018-06-11 2019-12-19 三菱電機株式会社 環境情報管理システム、環境情報管理方法および環境情報管理プログラム
US11844002B2 (en) 2018-06-11 2023-12-12 Mitsubishi Electric Corporation Environmental information management system
WO2020209253A1 (ja) * 2019-04-11 2020-10-15 日本電気株式会社 空間データ作成装置、空間データ作成方法及びプログラム
US20220209875A1 (en) * 2019-04-11 2022-06-30 Nec Corporation Spatial data creating apparatus, spatial data creating method, and program
JPWO2020209253A1 (ja) * 2019-04-11 2020-10-15
JP7115633B2 (ja) 2019-04-11 2022-08-09 日本電気株式会社 空間データ作成装置、空間データ作成方法及びプログラム

Also Published As

Publication number Publication date
US20190028215A1 (en) 2019-01-24
JPWO2017130877A1 (ja) 2018-11-15
JP6973085B2 (ja) 2021-11-24

Similar Documents

Publication Publication Date Title
WO2017130877A1 (ja) 電波環境推定装置、電波環境推定システム、電波環境推定方法、および記録媒体
US9769673B2 (en) Techniques for estimating a coverage area for a distributed antenna system (DAS) or a repeater system
JP2011137797A (ja) 測位システム及び測位方法
KR101234177B1 (ko) 사용자 단말의 위치 측정 방법
KR20140036007A (ko) 무선 네트워크의 커버리지 영역에서 동작 파라미터를 매핑시키기 위한 방법 및 장치
JP2010226713A (ja) セルラー無線ネットワーク内におけるマルチアンテナの配備によって得られる容量および有効範囲の利得を近似し最適化する方法
JP6933627B2 (ja) 電子装置、到来角推定システム及び信号処理方法
JP5323423B2 (ja) 方向推定システム、方向推定方法及び方向推定プログラム
Sohrabi et al. Construction of the RSRP map using sparse MDT measurements by regression clustering
JP2007101376A (ja) 電波到達状態推定システム及び電波到達状態推定方法ならびにプログラム
JP2015227846A (ja) 到来方位推定装置、到来方位推定方法およびプログラム
Perpinias et al. A measurement-based study on the use of spatial interpolation for propagation estimation
JP2017204676A (ja) アンテナ特性測定装置及びプログラム
JP7130943B2 (ja) 電波環境推定装置および電波環境推定方法
CN103607768B (zh) 一种非集中式场景下的目标设备定位方法及相关设备
JP2004061468A (ja) 空間特性を用いた多重波の到来方向推定方法及びこれを用いた受信ビーム形成装置
KR102131688B1 (ko) 확장된 타원체 맞춤을 이용한 분산 mimo 레이더를 위한 표적위치 추정방법
KR102144004B1 (ko) 타원체 맞춤을 이용한 분산 mimo 레이더를 위한 표적위치 추정방법
Sayrafian-Pour et al. Robust indoor positioning based on received signal strength
Wu et al. DorFin: WiFi fingerprint-based localization revisited
Achtzehn et al. IEEE 802.11 Wi-Fi access point density estimation with capture-recapture models
CN103702410B (zh) 目标定位的方法、装置和***
KR101859424B1 (ko) 재밍 추정 시스템 및 방법
KR20200043620A (ko) 시간율을 고려한 이동통신 시스템이 고정 시스템에 미치는 간섭 영향 평가 방법 및 장치
KR102122829B1 (ko) 확장된 brm 기법을 이용한 분산 mimo 레이더를 위한 표적위치 추정방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744107

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017564224

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744107

Country of ref document: EP

Kind code of ref document: A1