WO2017130572A1 - Hard coating-covered member - Google Patents

Hard coating-covered member Download PDF

Info

Publication number
WO2017130572A1
WO2017130572A1 PCT/JP2016/086117 JP2016086117W WO2017130572A1 WO 2017130572 A1 WO2017130572 A1 WO 2017130572A1 JP 2016086117 W JP2016086117 W JP 2016086117W WO 2017130572 A1 WO2017130572 A1 WO 2017130572A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride layer
nitrogen concentration
less
film
hard coating
Prior art date
Application number
PCT/JP2016/086117
Other languages
French (fr)
Japanese (ja)
Inventor
兼司 山本
克友 三浦
敦史 西部
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016142705A external-priority patent/JP6762790B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2017130572A1 publication Critical patent/WO2017130572A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/01Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Definitions

  • the present invention relates to a hard coating member.
  • Patent Document 1 discloses a technique in which a nitride layer is formed by ion nitriding the surface of a mold and a TiN film is coated on the nitride layer.
  • Patent Document 2 discloses a technique for forming a nitride layer on the surface of a substrate in an extrusion die and then forming an aluminum nitride (AlN) film as a protective film for preventing oxidation of the nitride layer. Yes.
  • AlN aluminum nitride
  • Patent Document 1 by performing ion nitriding so that a fragile compound layer such as Fe 4 N ( ⁇ ′ phase) or Fe 2-3 N ( ⁇ phase) is not formed in the nitride layer, the nitride layer and TiN Although it has been proposed to improve the adhesion with the film, the effect of improving the adhesion is not sufficient only by suppressing the formation of the fragile layer. For this reason, in order to be able to cope with the more severe use environment in recent years, an improvement measure for further improving the adhesion between the base material and the hard film is necessary.
  • a fragile compound layer such as Fe 4 N ( ⁇ ′ phase) or Fe 2-3 N ( ⁇ phase)
  • An object of the present invention is to provide a hard film covering member in which the adhesion of a hard film formed on the nitride layer is improved in an iron base material having a nitride layer formed on the surface layer portion.
  • the hard film covering member is made of an iron-based material, and includes a base material in which a nitride layer is formed on a surface layer portion, a metal nitride, a metal carbonitride, or a metal carbide, on the nitride layer. And a hard coating formed on the substrate.
  • the maximum nitrogen concentration in the nitride layer is 10 at% or more and 25 at% or less.
  • the hardness of the hard film is 1000HV or more and 1700HV or less.
  • a hard film covering member comprises a base material having a nitride layer formed on a surface layer portion thereof, a metal nitride, a metal carbonitride, or a metal carbide. And a hard coating formed on the substrate.
  • the average nitrogen concentration in the region from the outermost surface of the nitride layer to a depth of 5 ⁇ m is 8 at% or more and 20 at% or less.
  • the hardness of the hard film is 1000HV or more and 1700HV or less.
  • a hard film covering member includes a base material having a nitride layer formed on a surface layer portion thereof, a metal nitride, a metal carbonitride, or a metal carbide. And a hard coating formed thereon.
  • the maximum nitrogen concentration in the nitride layer is 10 at% or more and 25 at% or less.
  • the hardness of the hard film is 1000HV or more and 1700HV or less.
  • a hard film covering member comprises a base material having a nitride layer formed on a surface layer portion thereof, a metal nitride, a metal carbonitride, or a metal carbide. And a hard coating formed on the layer.
  • the average nitrogen concentration in the region from the outermost surface of the nitride layer to a depth of 5 ⁇ m is 8 at% or more and 20 at% or less.
  • the hardness of the hard film is 1000HV or more and 1700HV or less.
  • the present inventor improves adhesion of a hard film in a member in which a hard film made of metal nitride, metal carbonitride or metal carbide is coated as a wear-resistant layer on a nitride layer of a base material made of an iron-based material.
  • the nitrogen concentration is controlled so that a compound layer such as Fe 4 N ( ⁇ ′ phase) or Fe 2-3 N ( ⁇ phase) is not formed in the nitride layer, and the hardness of the hard coating is controlled.
  • the present invention has been conceived with attention.
  • the maximum nitrogen concentration in the nitride layer is controlled to be 10 at% or more and 25 at% or less, or the average nitrogen concentration in the surface layer portion (region from the outermost surface to a depth of 5 ⁇ m) of the nitride layer is It is controlled to 8 at% or more and 20 at% or less.
  • the maximum nitrogen concentration is less than 10 at% or the average nitrogen concentration is less than 8 at%, the hardness of the nitrided layer decreases because the nitrogen concentration is too low.
  • the maximum nitrogen concentration in the nitride layer is controlled in the range of 10 at% to 25 at%, or the average nitrogen concentration in the surface layer portion of the nitride layer is controlled in the range of 8 at% to 20 at%. To do.
  • the maximum nitrogen concentration is more preferably less than 20 at%, and further preferably less than 15 at%. Further, the average nitrogen concentration in the surface layer part is more preferably less than 13 at%.
  • the adhesion of the hard film can be improved to some extent by suppressing the formation of a compound layer such as Fe 4 N ( ⁇ ′ phase) or Fe 2-3 N ( ⁇ phase) in the nitride layer.
  • the effect is not enough. Therefore, in the present embodiment, by controlling the hardness of the hard film formed on the nitride layer to 1000 HV or more and 1700 HV or less, the adhesion of the hard film is dramatically improved as compared with the case where only the nitrogen concentration is controlled. Yes.
  • the hardness of the nitride layer formed on the iron base is 1000 to 1200 HV.
  • the hardness difference between the nitride layer and the hard film can be reduced to 700 HV or less while suppressing the film from becoming too soft.
  • transformation behavior of a base material when an external stress is added and a hard film becomes small, and the adhesiveness of a hard film can be improved further.
  • the hardness of the hard coating is more preferably 1600 HV or less, and further preferably 1500 HV or less.
  • the hardness of the hard film is more preferably 1200 HV or more.
  • iron-based material is a concept including pure iron, steel, and cast iron, and is preferably alloy tool steel used for a mold or a cutting tool.
  • maximum nitrogen concentration is the nitrogen concentration at the outermost surface of the nitride layer, and the nitrogen concentration distribution in the depth direction of the nitride layer is measured using a glow discharge optical emission analyzer (GD-OES). Can be measured.
  • the “average nitrogen concentration” is obtained by calculating the average value of the nitrogen concentration in the region from the outermost surface to the depth of 5 ⁇ m in the depth-wise nitrogen concentration distribution measured using GD-OES. .
  • the “hardness” of the hard coating is Vickers hardness (HV) and can be measured according to the JIS standard Vickers hardness test method.
  • the iron-based material may contain 4 wt% or more of Cr.
  • Cr forms a carbide such as Cr 7 C 3 .
  • Cr carbide Cr 7 C 3
  • Cr nitride due to the difference in free energy of formation of carbide and nitride, and carbon is converted into free carbon with this reaction. Released. And this free carbon becomes a starting point, and it becomes easy to produce a crack in a base material.
  • the reaction in which chromium carbide is changed to nitride is more likely to occur when the nitrogen concentration is higher. Therefore, also from the viewpoint of suppressing such a reaction, the maximum nitrogen concentration in the nitride layer is preferably less than 20 at%.
  • a mold 1 is for press-molding a metal plate 7 that is a member to be pressed, and includes an upper mold (first mold) 2 and a lower mold (second mold). 3).
  • the upper mold 2 and the lower mold 3 are arranged apart from each other in the vertical direction (arrow in FIG. 1).
  • the upper mold 2 is formed with a convex portion 4 protruding to the lower mold 3 side, and the lower mold 3 is formed with a concave portion 5 recessed on the opposite side to the upper mold 2.
  • the convex part 4 and the recessed part 5 are formed in the shape and magnitude
  • the upper mold 2 and the lower mold 3 are configured to move relative to each other in a direction toward or away from each other by a driving force from a driving source (not shown). More specifically, the lower mold 3 is installed on a horizontal plane, and the upper mold 2 is configured to move downward toward the lower mold 3. And as shown in FIG. 1, the metal plate 7 is installed so that the opening of the recessed part 5 may be covered. In this state, by lowering the upper mold 2 while fixing the position of the lower mold 3, the metal plate 7 is pressed by the convex portion 4, and the metal plate 7 is bent along the groove shape of the concave portion 5. Can do.
  • the mold 1 is not limited to the bending mold shown in FIG. 1, and may be another press mold such as a punching die, a drawing die, or a compression die.
  • the mold 1 has a base material 10 made of an iron-based material and a hard coating 11 formed on the surface of the base material 10.
  • the base material 10 is made of an alloy tool steel for a mold having excellent wear resistance and impact resistance.
  • JIS standard SKD11 C concentration: 1.40 to 1.60 wt%, Si concentration: 0.40 wt% or less
  • Mn concentration: 0.60 wt% or less P concentration: 0.030 wt% or less
  • Mo concentration 0.80 to 1.20 wt %
  • V concentration 0.20 to 0.50 wt%) or the like.
  • a nitride layer 10 ⁇ / b> A is formed on the surface layer portion of the substrate 10.
  • the nitride layer 10A is a layer formed by intrusion and solid solution of nitrogen atoms from the surface of the base material 10 into the crystal lattice of the base metal, and has a predetermined thickness in the depth direction from the outermost surface of the base material 10.
  • the nitride layer 10A is formed by various nitriding methods such as a gas nitriding method, a gas soft nitriding method, a salt bath nitriding method, or a plasma nitriding method.
  • the hardness (Vickers hardness) of the nitride layer 10A is 1000 to 1200 HV.
  • the nitride layer 10A is formed by diffusing nitrogen atoms in the depth direction from the outermost surface of the substrate 10 toward the inside. For this reason, the nitrogen concentration has a distribution that gradually decreases from the outermost surface of the substrate 10 toward the inside. For this reason, in the nitride layer 10A, the nitrogen concentration on the outermost surface is the maximum nitrogen concentration. In the present embodiment, the maximum nitrogen concentration is controlled within the range of 10 at% or more and 25 at% or less by controlling the conditions at the time of nitriding treatment or by polishing the surface of the substrate 10 after nitriding treatment. Yes. Further, the average nitrogen concentration in the surface layer portion of the nitride layer 10A is controlled within the range of 8 at% or more and 20 at% or less.
  • the surface layer portion of the nitride layer 10A means a region from the outermost surface of the nitride layer 10A to a position having a depth of 5 ⁇ m in the depth direction perpendicular to the outermost surface.
  • FIG. 2 is a graph schematically showing a nitrogen concentration distribution in the depth direction of the nitride layer 10A in the present embodiment.
  • the horizontal axis of the graph indicates the depth direction position ( ⁇ m) of the nitride layer 10A, and the vertical axis indicates the nitrogen concentration (at%).
  • the hatched portion in the graph indicates a region (surface layer portion) from the outermost surface of the nitride layer 10A to a depth of 5 ⁇ m, and the alternate long and short dash line indicates the average value of nitrogen concentration in the surface layer portion.
  • the maximum nitrogen concentration (Max.), which is the nitrogen concentration on the outermost surface of the nitride layer 10A, is controlled within a range of 10 at% or more and 25 at% or less, and in the surface layer portion of the nitride layer 10A.
  • the average nitrogen concentration (Ave.) is controlled within the range of 8 at% or more and 20 at% or less.
  • the hardness of the nitride layer 10A decreases because the nitrogen concentration is too low.
  • a compound layer such as Fe 4 N ( ⁇ ′ phase) or Fe 2-3 N ( ⁇ phase) in the nitride layer 10A Many are formed. Formation of such a compound layer makes it easier for the nitride layer 10A to crack, and as a result, the adhesion of the hard coating 11 to the nitride layer 10A decreases.
  • the maximum nitrogen concentration in the nitride layer 10A is controlled in the range of 10 at% to 25 at%, and the average nitrogen concentration in the surface layer portion is controlled in the range of 8 at% to 20 at%.
  • a decrease in the hardness of the nitride layer 10A can be suppressed, and a decrease in the adhesion of the hard coating 11 due to the formation of a compound layer such as a ⁇ ′ phase or an ⁇ phase can be prevented.
  • the maximum nitrogen concentration is preferably less than 20 at%.
  • the maximum nitrogen concentration in the nitride layer 10A is preferably less than 20 at%.
  • the hard coating 11 is a coating formed on the nitride layer 10A in order to improve the wear resistance and durability of the mold 1, and is made of an IVB group atom such as Ti, a VB group atom such as V, or Cr. It consists of nitrides of group VIB atoms (TiN, VN, CrN).
  • the hard coating 11 is formed by a physical vapor deposition method (PVD) such as an ion plating method or a sputtering method using the above metal material as a target and using a nitrogen gas as a film forming gas, and particularly, arc ion plating. It is preferably formed by the (AIP) method.
  • the hard coating 11 has a Vickers hardness of 1000 HV to 1700 HV.
  • the hard coating 11 is made of a polycrystal of a metal nitride such as TiN, VN, or CrN, and the upper limit value of the Vickers hardness is controlled to 1700 HV by coarsening the crystal grains. Yes. That is, in the hard film 11, the crystal grains are larger than the film whose upper limit value of Vickers hardness exceeds 1700 HV. Further, the hardness of the hard coating 11 can be controlled by the voltage condition of AIP in the film forming process described later.
  • the hard film 11 formed on the nitride layer 10A is preferably made of a metal nitride from the viewpoint of affinity with the nitride layer 10A. However, if the hardness of the metal carbide or metal carbonitride is 1700 HV or less, nitriding is performed. The adhesion to the layer 10A can be improved. Examples of the material of the hard coating 11 include CrN, TiN, VN, and ZrN. CrN is most preferable because it can be controlled to a hardness close to the nitride layer 10A.
  • the hard coating 11 may have a multilayer structure, a coating having a hardness of 1700 HV or less may be formed on the nitride layer 10A, and a coating having a hardness exceeding 1700 HV may be formed thereon.
  • excellent adhesion to the nitride layer 10A can be obtained, the hardness of the film on the outermost surface can be increased, and the durability of the film can be further improved.
  • the hardness of the nitride layer 10A is about 1000 to 1200 HV. For this reason, by setting the upper limit value of the hardness of the hard coating 11 to 1700 HV, the hardness difference between the hard coating 11 and the nitride layer 10A can be reduced to 700 HV or less. Thus, by making the hardness of the hard coating 11 and the nitride layer 10A closer, the difference in deformation behavior between the base material 10 and the hard coating 11 can be reduced. For this reason, it is possible to prevent the hard coating 11 from being peeled off from the base material 10 even when a large stress is applied due to intense sliding with the metal plate 7 during press forming.
  • the hardness of the hard coating 11 is preferably 1600 HV or less, and more preferably 1500 HV or less.
  • a base material 10 made of cold mold steel such as SKD11 material is prepared and installed in a gas nitriding furnace (not shown). Then, ammonia gas and hydrogen gas are respectively introduced into the furnace. At this time, the introduction amount of each gas is adjusted so that the ratio of ammonia gas in the mixed gas is 10 vol% or more and 15 vol% or less, and the total pressure in the furnace is about 140 Pa.
  • the interior of the furnace is heated by a heater or the like until a temperature atmosphere of about 450 ° C. is reached.
  • the ammonia gas dissociates as represented by the reaction formula 2NH 3 ⁇ 2N + 3H 2 , and N atoms are generated.
  • the generated N atoms are adsorbed on the surface of the base material 10 and diffuse toward the inside of the base material 10.
  • the nitride layer 10 ⁇ / b> A having a predetermined depth is formed in the surface layer portion of the substrate 10.
  • the nitrogen concentration at the outermost surface of the nitride layer 10A (that is, the maximum nitrogen concentration) and the average nitrogen concentration in the surface layer portion can be adjusted.
  • the maximum nitrogen concentration in the nitride layer 10A is adjusted to a range of 10 at% to 25 at% and the average nitrogen concentration is 8 at% or more by adjusting the ratio of ammonia gas to a range of 10 vol% or more and 15 vol% or less. It can be adjusted to a range of 20 at% or less. Thereby, it is possible to prevent a large number of compound layers such as ⁇ ′ phase and ⁇ phase from being formed in the nitride layer 10A.
  • the nitrogen concentration at the outermost surface of the nitride layer 10A is reduced to 25 at% or less by performing polishing after nitriding, and the surface layer portion The average nitrogen concentration can be reduced to 20 at% or less.
  • projection type polishing in which an abrasive is projected onto the outermost surface of the nitride layer 10A, grinding wheel polishing using a grinding stone, or the like can be used.
  • the nitride layer 10A in which the maximum nitrogen concentration is controlled in the range of 10 at% or more and 25 at% or less and the average nitrogen concentration is controlled in the range of 8 at% or more and 20 at% or less is formed in the surface layer portion of the substrate 10. It is formed. Thereby, the nitriding process is completed.
  • FIG. 3 shows the configuration of the film forming apparatus 6 used for forming the hard film 11. First, the configuration of the film forming apparatus 6 will be described with reference to FIG.
  • the film forming apparatus 6 includes a chamber 21, a plurality (two) of arc power supplies 22 and a sputtering power supply 23, a stage 24, a bias power supply 25, a plurality of (four) heaters 26, and a discharge DC power supply 27. And an AC power supply 28 for heating the filament.
  • the chamber 21 is provided with a gas exhaust port 21 ⁇ / b> A for evacuating and a gas supply port 21 ⁇ / b> B for supplying gas into the chamber 21.
  • Connected to the arc power source 22 is an arc evaporation source 22A on which a deposition target is disposed.
  • the sputtering power source 23 is connected to a sputtering evaporation source 23A on which a film-forming target is disposed.
  • the stage 24 is configured to be rotatable and has a support surface for supporting the substrate 10 that is the film formation target.
  • the bias power source 25 applies a bias to the substrate 10 through the stage 24.
  • the film forming process of the hard coating 11 on the substrate 10 will be described.
  • the base material 10 after the nitriding treatment is set on the stage 24.
  • a target such as Cr is set on the arc evaporation source 22A.
  • This target may be made by powder metallurgy or may be made by melt metallurgy.
  • the inside of the chamber 21 is depressurized to a predetermined pressure by exhausting from the gas exhaust port 21A.
  • argon (Ar) gas is introduced into the chamber 21 from the gas supply port 21 ⁇ / b> B, and the substrate 10 is heated to a predetermined temperature by the heater 26.
  • the surface of the base material 10 is etched by Ar ions for a predetermined time, and an oxide film or the like formed on the surface of the base material 10 is removed (cleaning).
  • nitrogen (N 2 ) gas is introduced into the chamber 21 from the gas supply port 21B.
  • a predetermined arc current is supplied to the arc evaporation source 22A to start arc discharge, thereby evaporating the target.
  • nitrogen introduced into the chamber 21 is thermally decomposed to generate N atoms.
  • Cr and N accumulate on the surface of the base material 10, and the hard film 11 made of CrN is formed.
  • the hardness of the film can be controlled by controlling the bias voltage applied to the substrate 10. For example, by setting the bias voltage to about 30 V or less, the crystal grains of CrN become coarse, and a film having a hardness of 1700 HV or less can be obtained. Thereby, it can form into a film so that the hard membrane
  • the film thickness of the hard coating 11 reaches a desired value, the supply of the arc current to the arc evaporation source 22A is stopped. Thereafter, the inside of the chamber 21 is opened to the atmosphere, and the substrate 10 after film formation is taken out of the chamber 21.
  • the hard film 11 is formed on the base material 10 by the process as described above.
  • the hard coating 11 is formed by the sputtering method
  • the Cr target is set in the sputter evaporation source 23A. Then, by applying predetermined power from the sputtering power source 23 to the sputtering evaporation source 23A to evaporate the target, the hard coating 11 can be formed as in the case of the arc ion plating described above.
  • FIG. 4 is a perspective view of the cutting tool 1A
  • FIG. 5 is a cross-sectional view of the cutting tool 1A showing how the work material 100 is cut.
  • the cutting tool 1A is an insert (cutting edge portion) that is used by being attached to the tip portion of a handle portion (shank), and its planar shape is a square shape as shown in FIG.
  • the cutting tool 1A has a rake face 31 that is a part to be scooped up into the work material 100, and a flank face 32 that is a part that is escaped to avoid contact with the work material. A portion where the rake face 31 and the flank face 32 are connected is a cutting edge 33.
  • the cutting tool 1 ⁇ / b> A has a base material 10 and a hard coating 11.
  • the base material 10 is made of an alloy tool steel for cutting, and a nitride layer 10A is formed on the surface layer portion.
  • the hard film 11 is formed so as to cover the nitride layer 10A.
  • the maximum nitrogen concentration in the nitride layer 10A is 10 at% or more and 25 at% or less, and the average nitrogen concentration in the surface layer portion is 8 at% or more and 20 at% or less.
  • the Vickers hardness of the hard film 11 is 1000HV or more and 1700HV or less.
  • the present invention can be similarly applied not only to such an insert but also to various cutting tools such as a drill and an end mill.
  • the maximum nitrogen concentration of the nitride layer 10A is controlled within the range of 10 at% or more and 25 at% or less, and the average nitrogen concentration in the surface layer portion of the nitride layer 10A is 8 at% or more and 20 at% or less.
  • the present invention is not limited to this.
  • the maximum nitrogen concentration (Max.) Is controlled within the range of 10 at% or more and 25 at% or less
  • the average nitrogen concentration (Ave.) of the surface layer portion exceeds 20 at%. Also good. Further, as shown in the graph of FIG.
  • the average nitrogen concentration (Ave.) of the surface layer portion is controlled within the range of 8 at% or more and 20 at% or less, while the maximum nitrogen concentration (Max.) Exceeds 25 at%. May be.
  • the surface layer portion which is a region from the outermost surface of the nitride layer 10A to the depth of 5 ⁇ m, is indicated by hatching, and the average nitrogen concentration in the surface layer portion is It is shown with a dashed-dotted line.
  • the hard film-coated member of the present invention is not limited to the mold 1 and the cutting tool 1A described in the first and second embodiments, and may be a jig for plastic working such as a shear mold, or a metal material.
  • the present invention can also be applied to various machine parts that require high wear resistance by sliding.
  • test piece 40 mm ⁇ 40 mm ⁇ 10 mm having a chemical component of JIS standard SKD11 was prepared as a base material, and the surface was subjected to mirror polishing. Then, this test piece was placed in a gas nitriding furnace and subjected to gas nitriding treatment under the following conditions to form a nitride layer on the surface layer portion.
  • Processing temperature 450 ° C
  • Gas Hydrogen-ammonia mixed gas (Ammonia: 5 vol% or more and 20 vol% or less)
  • Total pressure 140Pa
  • Processing time 12 hours
  • the specimens 5 to 13 and 31 to 34 were subjected to projection-type polishing after nitriding.
  • the test pieces 14 to 17 were subjected to a polishing process by grinding with a grindstone.
  • the nitrogen concentration distribution in the depth direction in the nitride layer was measured using GD-OES (measurement elements were N, C, Cr, Fe, O), and the nitrogen concentration (at%) was measured based on this distribution.
  • GD-OES measurement elements were N, C, Cr, Fe, O
  • a hard film was formed on the base material after the nitriding treatment by the AIP method using the film forming apparatus 6 shown in FIG.
  • the conditions of AIP are as follows.
  • Nitrogen pressure 4Pa Substrate bias: 10-100V Arc current: 150A Temperature: 400 ° C
  • the base material 10 after the nitriding treatment was set on the stage 24, and targets such as Cr, Ti, and Al were set on the arc evaporation source 22A.
  • nitrogen gas is introduced into the chamber 21, and an arc current is started to flow through the arc evaporation source 22 ⁇ / b> A, thereby starting arc discharge.
  • a film 11 was formed.
  • Ti and Al targets were set on the two arc evaporation sources 22A, respectively, and these were simultaneously discharged to form a film.
  • Cr and Al targets were set on the two arc evaporation sources 22A, respectively, and these were simultaneously discharged to form a film.
  • No. In No. 26 a film was formed using a Ti target and a hydrocarbon gas such as methane gas.
  • the film thickness was 5 ⁇ m.
  • the film thickness of the lower film was 1 ⁇ m, and the film thickness of the upper film was 4 ⁇ m.
  • Indenter Diamond indenter (tip radius: 200 ⁇ m) Load range: 0 to 100 N (For samples with close contact of 100 N or more, the upper limit of the load range is 150 N) Load increasing speed: 100 N / min Indenter moving speed: 10 mm / min
  • the adhesion (N) was improved in the case of 1700 HV or less as compared with the case where the Vickers hardness of the hard film exceeded 1700 HV (No. 22 to 26). No. In 27 to 30, the hardness of the upper layer film exceeds 1700 HV, but the hardness of the lower layer film in contact with the nitride layer is 1700 HV or less, and good adhesion (N) is confirmed. It was. From the above results, while satisfying at least one of the range where the maximum nitrogen concentration in the nitride layer is 10 at% or more and 25 at% or less and the average nitrogen concentration is 8 at% or more and 20 at% or less, the hardness of the hard coating is 1000 HV or more. It became clear that the adhesiveness of a hard film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Provided is a hard coating-covered member wherein, on an iron substrate with a nitride layer formed on the surface layer, the adhesiveness of a hard coating formed on the nitride layer is improved. A mold 1 (hard coating-covered member) is provided with: a substrate 10, which is made of a ferrous material and on the surface layer of which a nitride layer 10A is formed; and a hard coating 11, which is made of CrN (metal nitride) and is formed on the nitride layer 10A. In said mold 1, the maximum nitrogen concentration in the nitride layer 10A is 10 at% to 25 at%. The Vickers hardness of the hard coating 11 is 1000 HV to 1700 HV.

Description

硬質皮膜被覆部材Hard coating coated member
 本発明は、硬質皮膜被覆部材に関する。 The present invention relates to a hard coating member.
 従来、金属材料を加工する工具として金型などの塑性加工用治工具や切削工具などがあるが、これらの工具は金属材料との激しい摺動環境で使用されることから、高度な耐摩耗性や耐久性が要求される。これに対して、窒化チタン(TiN)などのセラミックス皮膜を工具の表面にコーティングすることにより、工具の耐摩耗性を向上させることが知られている。 Conventionally, there are jigs and other tools for machining metal materials and cutting tools as tools for processing metal materials, but these tools are used in a severe sliding environment with metal materials, so they have high wear resistance. And durability is required. On the other hand, it is known to improve the wear resistance of the tool by coating the surface of the tool with a ceramic film such as titanium nitride (TiN).
 下記特許文献1には、金型の表面にイオン窒化を施すことにより窒化層を形成し、当該窒化層上にTiN膜をコーティングする技術が開示されている。また下記特許文献2には、押し出し加工用のダイスにおいて基材の表面に窒化層を形成し、その後窒化層の酸化を防止する保護膜として窒化アルミニウム(AlN)膜を形成する技術が開示されている。 Patent Document 1 below discloses a technique in which a nitride layer is formed by ion nitriding the surface of a mold and a TiN film is coated on the nitride layer. Patent Document 2 below discloses a technique for forming a nitride layer on the surface of a substrate in an extrusion die and then forming an aluminum nitride (AlN) film as a protective film for preventing oxidation of the nitride layer. Yes.
 下記特許文献1では、窒化層中においてFeN(γ’相)やFe2-3N(ε相)などの脆弱な化合物層が形成されないようにイオン窒化を行うことにより、窒化層とTiN膜との密着性を改善することが提案されているが、このように脆弱層の形成を抑制するだけでは密着性向上の効果が十分ではない。このため、近年のより過酷な使用環境にも対応できるようにするため、基材と硬質皮膜の密着性を一層向上させるための改善策が必要である。 In the following Patent Document 1, by performing ion nitriding so that a fragile compound layer such as Fe 4 N (γ ′ phase) or Fe 2-3 N (ε phase) is not formed in the nitride layer, the nitride layer and TiN Although it has been proposed to improve the adhesion with the film, the effect of improving the adhesion is not sufficient only by suppressing the formation of the fragile layer. For this reason, in order to be able to cope with the more severe use environment in recent years, an improvement measure for further improving the adhesion between the base material and the hard film is necessary.
特開平5-98422号公報Japanese Patent Laid-Open No. 5-98422 特開平9-184060号公報JP-A-9-184060
 本発明の目的は、表層部に窒化層が形成された鉄基材において、当該窒化層上に形成された硬質皮膜の密着性が改善された硬質皮膜被覆部材を提供することである。 An object of the present invention is to provide a hard film covering member in which the adhesion of a hard film formed on the nitride layer is improved in an iron base material having a nitride layer formed on the surface layer portion.
 本発明の一局面に係る硬質皮膜被覆部材は、鉄系材料からなり、表層部に窒化層が形成された基材と、金属窒化物、金属炭窒化物又は金属炭化物からなり、前記窒化層上に形成された硬質皮膜と、を備える。前記窒化層における最大窒素濃度が10at%以上25at%以下である。前記硬質皮膜の硬度が1000HV以上1700HV以下である。 The hard film covering member according to one aspect of the present invention is made of an iron-based material, and includes a base material in which a nitride layer is formed on a surface layer portion, a metal nitride, a metal carbonitride, or a metal carbide, on the nitride layer. And a hard coating formed on the substrate. The maximum nitrogen concentration in the nitride layer is 10 at% or more and 25 at% or less. The hardness of the hard film is 1000HV or more and 1700HV or less.
 本発明の他局面に係る硬質皮膜被覆部材は、鉄系材料からなり、表層部に窒化層が形成された基材と、金属窒化物、金属炭窒化物又は金属炭化物からなり、前記窒化層上に形成された硬質皮膜と、を備える。前記窒化層の最表面から5μmの深さまでの領域における平均窒素濃度が8at%以上20at%以下である。前記硬質皮膜の硬度が1000HV以上1700HV以下である。 A hard film covering member according to another aspect of the present invention comprises a base material having a nitride layer formed on a surface layer portion thereof, a metal nitride, a metal carbonitride, or a metal carbide. And a hard coating formed on the substrate. The average nitrogen concentration in the region from the outermost surface of the nitride layer to a depth of 5 μm is 8 at% or more and 20 at% or less. The hardness of the hard film is 1000HV or more and 1700HV or less.
本発明の実施形態1における金型の構成を示す図である。It is a figure which shows the structure of the metal mold | die in Embodiment 1 of this invention. 窒化層における深さ方向の窒素濃度分布の一例を示すグラフである。It is a graph which shows an example of the nitrogen concentration distribution of the depth direction in a nitride layer. 本発明の実施形態1における硬質皮膜の成膜装置の構成を示す図である。It is a figure which shows the structure of the film-forming apparatus of the hard film in Embodiment 1 of this invention. 本発明の実施形態2における切削工具の構成を示す斜視図である。It is a perspective view which shows the structure of the cutting tool in Embodiment 2 of this invention. 本発明の実施形態2における切削工具の構成を示す断面図である。It is sectional drawing which shows the structure of the cutting tool in Embodiment 2 of this invention. 窒化層における深さ方向の窒素濃度分布の一例を示すグラフである。It is a graph which shows an example of the nitrogen concentration distribution of the depth direction in a nitride layer. 窒化層における深さ方向の窒素濃度分布の一例を示すグラフである。It is a graph which shows an example of the nitrogen concentration distribution of the depth direction in a nitride layer.
 まず、本実施形態に係る硬質皮膜被覆部材の概要について説明する。 First, an outline of the hard coating member according to this embodiment will be described.
 本発明の一実施形態に係る硬質皮膜被覆部材は、鉄系材料からなり、表層部に窒化層が形成された基材と、金属窒化物、金属炭窒化物又は金属炭化物からなり、前記窒化層上に形成された硬質皮膜と、を備える。前記窒化層における最大窒素濃度が10at%以上25at%以下である。前記硬質皮膜の硬度が1000HV以上1700HV以下である。 A hard film covering member according to an embodiment of the present invention includes a base material having a nitride layer formed on a surface layer portion thereof, a metal nitride, a metal carbonitride, or a metal carbide. And a hard coating formed thereon. The maximum nitrogen concentration in the nitride layer is 10 at% or more and 25 at% or less. The hardness of the hard film is 1000HV or more and 1700HV or less.
 本発明の他の実施形態に係る硬質皮膜被覆部材は、鉄系材料からなり、表層部に窒化層が形成された基材と、金属窒化物、金属炭窒化物又は金属炭化物からなり、前記窒化層上に形成された硬質皮膜と、を備える。前記窒化層の最表面から5μmの深さまでの領域における平均窒素濃度が8at%以上20at%以下である。前記硬質皮膜の硬度が1000HV以上1700HV以下である。 A hard film covering member according to another embodiment of the present invention comprises a base material having a nitride layer formed on a surface layer portion thereof, a metal nitride, a metal carbonitride, or a metal carbide. And a hard coating formed on the layer. The average nitrogen concentration in the region from the outermost surface of the nitride layer to a depth of 5 μm is 8 at% or more and 20 at% or less. The hardness of the hard film is 1000HV or more and 1700HV or less.
 本発明者は、鉄系材料からなる基材の窒化層上に金属窒化物、金属炭窒化物又は金属炭化物からなる硬質皮膜を耐摩耗層としてコーティングした部材において、硬質皮膜の密着性を改善するための方策について鋭意検討を行った。その結果、窒化層においてFeN(γ’相)やFe2-3N(ε相)などの化合物層が多く形成されないように窒素濃度を制御すると共に、硬質皮膜の硬度を制御することに着目して本発明に想到した。 The present inventor improves adhesion of a hard film in a member in which a hard film made of metal nitride, metal carbonitride or metal carbide is coated as a wear-resistant layer on a nitride layer of a base material made of an iron-based material. We have eagerly examined the measures for this. As a result, the nitrogen concentration is controlled so that a compound layer such as Fe 4 N (γ ′ phase) or Fe 2-3 N (ε phase) is not formed in the nitride layer, and the hardness of the hard coating is controlled. The present invention has been conceived with attention.
 本実施形態に係る硬質皮膜被覆部材では、窒化層における最大窒素濃度が10at%以上25at%以下に制御され、又は窒化層の表層部(最表面から5μmの深さまでの領域)における平均窒素濃度が8at%以上20at%以下に制御されている。最大窒素濃度が10at%未満又は平均窒素濃度が8at%未満である場合には、窒素濃度が低すぎるために窒化層の硬度が低下する。一方で、最大窒素濃度が25at%を超える場合又は平均窒素濃度が20at%を超える場合には、窒素濃度が高すぎるために窒化層においてFeN(γ’相)やFe2-3N(ε相)などの化合物層が多く形成される。その結果、窒化層に割れによって硬質皮膜の密着性が低下する。これに対して、本実施形態では、窒化層における最大窒素濃度を10at%以上25at%以下の範囲に制御し、又は窒化層の表層部における平均窒素濃度を8at%以上20at%以下の範囲に制御する。これにより、窒化層の硬度低下を抑制すると共に窒化層と硬質皮膜との密着性の低下を防ぐことができる。また化合物層の形成をより確実に抑制する観点から、最大窒素濃度は20at%未満であることがより好ましく、15at%未満であることがさらに好ましい。また表層部における平均窒素濃度は、13at%未満であることがより好ましい。 In the hard film covering member according to this embodiment, the maximum nitrogen concentration in the nitride layer is controlled to be 10 at% or more and 25 at% or less, or the average nitrogen concentration in the surface layer portion (region from the outermost surface to a depth of 5 μm) of the nitride layer is It is controlled to 8 at% or more and 20 at% or less. When the maximum nitrogen concentration is less than 10 at% or the average nitrogen concentration is less than 8 at%, the hardness of the nitrided layer decreases because the nitrogen concentration is too low. On the other hand, when the maximum nitrogen concentration exceeds 25 at% or the average nitrogen concentration exceeds 20 at%, the nitrogen concentration is too high, and therefore, in the nitride layer, Fe 4 N (γ ′ phase) or Fe 2-3 N ( Many compound layers such as ε phase are formed. As a result, the adhesion of the hard coating is reduced by cracking in the nitride layer. On the other hand, in the present embodiment, the maximum nitrogen concentration in the nitride layer is controlled in the range of 10 at% to 25 at%, or the average nitrogen concentration in the surface layer portion of the nitride layer is controlled in the range of 8 at% to 20 at%. To do. As a result, it is possible to prevent a decrease in the hardness of the nitride layer and to prevent a decrease in the adhesion between the nitride layer and the hard film. Further, from the viewpoint of more reliably suppressing the formation of the compound layer, the maximum nitrogen concentration is more preferably less than 20 at%, and further preferably less than 15 at%. Further, the average nitrogen concentration in the surface layer part is more preferably less than 13 at%.
 このように、窒化層においてFeN(γ’相)やFe2-3N(ε相)などの化合物層の形成を抑制することにより硬質皮膜の密着性をある程度改善することができるが、その効果は十分ではない。そこで本実施形態では、窒化層上に形成される硬質皮膜の硬度を1000HV以上1700HV以下に制御することにより、窒素濃度のみを制御した場合に比べて硬質皮膜の密着性が飛躍的に改善されている。 Thus, the adhesion of the hard film can be improved to some extent by suppressing the formation of a compound layer such as Fe 4 N (γ ′ phase) or Fe 2-3 N (ε phase) in the nitride layer. The effect is not enough. Therefore, in the present embodiment, by controlling the hardness of the hard film formed on the nitride layer to 1000 HV or more and 1700 HV or less, the adhesion of the hard film is dramatically improved as compared with the case where only the nitrogen concentration is controlled. Yes.
 通常、鉄基材に形成される窒化層の硬度は1000~1200HVである。これに対して、硬質皮膜の硬度を1000HV以上1700HV以下にすることにより、皮膜が柔らかくなり過ぎることを抑制しつつ、窒化層と硬質皮膜との硬度差を700HV以下にまで小さくすることができる。これにより、外部応力が加わった時の基材と硬質皮膜との変形挙動の差が小さくなり、硬質皮膜の密着性を一層改善することができる。また窒化層との硬度差をより小さくする観点から、硬質皮膜の硬度は1600HV以下であることがより好ましく、1500HV以下であることがさらに好ましい。また皮膜の変形量が大きくなり過ぎるのを抑制する観点から、硬質皮膜の硬度は1200HV以上であることがより好ましい。 Usually, the hardness of the nitride layer formed on the iron base is 1000 to 1200 HV. On the other hand, by setting the hardness of the hard film to 1000 HV or more and 1700 HV or less, the hardness difference between the nitride layer and the hard film can be reduced to 700 HV or less while suppressing the film from becoming too soft. Thereby, the difference of the deformation | transformation behavior of a base material when an external stress is added and a hard film becomes small, and the adhesiveness of a hard film can be improved further. Further, from the viewpoint of reducing the hardness difference with the nitride layer, the hardness of the hard coating is more preferably 1600 HV or less, and further preferably 1500 HV or less. Further, from the viewpoint of suppressing the deformation amount of the film from becoming too large, the hardness of the hard film is more preferably 1200 HV or more.
 ここで「鉄系材料」とは、純鉄、鋼及び鋳鉄を含む概念であり、金型や切削工具に用いられる合金工具鋼であることが好ましい。また「最大窒素濃度」とは、窒化層の最表面における窒素濃度であり、グロー放電発光分析装置(GD-OES)を用いて窒化層の深さ方向における窒素濃度分布を測定し、当該分布を用いて測定することができる。また「平均窒素濃度」は、GD-OESを用いて測定される深さ方向の窒素濃度分布において、最表面から深さ5μmの位置までの領域で窒素濃度の平均値を算出することにより得られる。また硬質皮膜の「硬度」は、ビッカース硬さ(HV)であり、JIS規格のビッカース硬さ試験方法に従って測定することができる。 Here, “iron-based material” is a concept including pure iron, steel, and cast iron, and is preferably alloy tool steel used for a mold or a cutting tool. The “maximum nitrogen concentration” is the nitrogen concentration at the outermost surface of the nitride layer, and the nitrogen concentration distribution in the depth direction of the nitride layer is measured using a glow discharge optical emission analyzer (GD-OES). Can be measured. The “average nitrogen concentration” is obtained by calculating the average value of the nitrogen concentration in the region from the outermost surface to the depth of 5 μm in the depth-wise nitrogen concentration distribution measured using GD-OES. . The “hardness” of the hard coating is Vickers hardness (HV) and can be measured according to the JIS standard Vickers hardness test method.
 上記硬質皮膜被覆部材において、前記鉄系材料は、4wt%以上のCrを含有していてもよい。 In the hard coating member, the iron-based material may contain 4 wt% or more of Cr.
 通常、Crを含有する鉄基材において、CrはCrなどの炭化物を形成している。この基材に対して窒化処理を行った場合、炭化物と窒化物の形成自由エネルギーの差異によりCr炭化物(Cr)がCr窒化物に変化し、この反応に伴って炭素がフリーカーボンとして放出される。そして、このフリーカーボンが起点となって基材において割れが生じ易くなる。このようにクロム炭化物が窒化物に変わる反応は、窒素濃度が高い方がより起こり易くなる。従って、このような反応を抑制する観点からも、窒化層における最大窒素濃度は20at%未満であることが好ましい。 Usually, in an iron base material containing Cr, Cr forms a carbide such as Cr 7 C 3 . When this substrate is nitrided, Cr carbide (Cr 7 C 3 ) is changed to Cr nitride due to the difference in free energy of formation of carbide and nitride, and carbon is converted into free carbon with this reaction. Released. And this free carbon becomes a starting point, and it becomes easy to produce a crack in a base material. Thus, the reaction in which chromium carbide is changed to nitride is more likely to occur when the nitrogen concentration is higher. Therefore, also from the viewpoint of suppressing such a reaction, the maximum nitrogen concentration in the nitride layer is preferably less than 20 at%.
 以下、図面に基づいて、本発明の実施形態につき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
 <実施形態1>
 (硬質皮膜被覆部材の構成)
 まず、本発明の実施形態1に係る硬質皮膜被覆部材としての金型1について説明する。図1に示すように、金型1は、被プレス部材である金属板7をプレス成形するためのものであって、上金型(第1金型)2と、下金型(第2金型)3と、を有する。上金型2及び下金型3は、上下方向(図1中矢印)に互いに離れて配置されている。上金型2には下金型3側に出っ張った凸部4が形成されており、下金型3には上金型2と反対側に凹む凹部5が形成されている。凸部4及び凹部5は、互いに嵌合可能な形状及び大きさに形成されている。
<Embodiment 1>
(Configuration of hard coating member)
First, the metal mold | die 1 as a hard film coating | coated member which concerns on Embodiment 1 of this invention is demonstrated. As shown in FIG. 1, a mold 1 is for press-molding a metal plate 7 that is a member to be pressed, and includes an upper mold (first mold) 2 and a lower mold (second mold). 3). The upper mold 2 and the lower mold 3 are arranged apart from each other in the vertical direction (arrow in FIG. 1). The upper mold 2 is formed with a convex portion 4 protruding to the lower mold 3 side, and the lower mold 3 is formed with a concave portion 5 recessed on the opposite side to the upper mold 2. The convex part 4 and the recessed part 5 are formed in the shape and magnitude | size which can be mutually fitted.
 上金型2及び下金型3は、不図示の駆動源からの駆動力によって互いに接近する方向又は離れる方向に相対移動するように構成されている。より具体的には、下金型3は水平面に設置され、上金型2が下金型3に向かって下方に可動するように構成されている。そして、図1に示すように金属板7が凹部5の開口を覆うように設置される。この状態で下金型3の位置を固定しつつ上金型2を下降させることにより、凸部4によって金属板7を押圧し、金属板7を凹部5の溝形状に沿って曲げ加工することができる。なお、金型1は、図1に示す曲げ型に限定されず、抜き型、絞り型又は圧縮型などの他のプレス金型であってもよい。 The upper mold 2 and the lower mold 3 are configured to move relative to each other in a direction toward or away from each other by a driving force from a driving source (not shown). More specifically, the lower mold 3 is installed on a horizontal plane, and the upper mold 2 is configured to move downward toward the lower mold 3. And as shown in FIG. 1, the metal plate 7 is installed so that the opening of the recessed part 5 may be covered. In this state, by lowering the upper mold 2 while fixing the position of the lower mold 3, the metal plate 7 is pressed by the convex portion 4, and the metal plate 7 is bent along the groove shape of the concave portion 5. Can do. The mold 1 is not limited to the bending mold shown in FIG. 1, and may be another press mold such as a punching die, a drawing die, or a compression die.
 金型1は、鉄系材料からなる基材10と、基材10の表面上に形成された硬質皮膜11と、を有する。基材10は、耐摩耗性や耐衝撃性に優れた金型用の合金工具鋼からなり、例えばJIS規格SKD11(C濃度:1.40~1.60wt%、Si濃度:0.40wt%以下、Mn濃度:0.60wt%以下、P濃度:0.030wt%以下、S濃度:0.030wt%以下、Cr濃度:11.00~13.00wt%、Mo濃度:0.80~1.20wt%、V濃度:0.20~0.50wt%)などの冷間金型用鋼や熱間金型用鋼などからなる。 The mold 1 has a base material 10 made of an iron-based material and a hard coating 11 formed on the surface of the base material 10. The base material 10 is made of an alloy tool steel for a mold having excellent wear resistance and impact resistance. For example, JIS standard SKD11 (C concentration: 1.40 to 1.60 wt%, Si concentration: 0.40 wt% or less) Mn concentration: 0.60 wt% or less, P concentration: 0.030 wt% or less, S concentration: 0.030 wt% or less, Cr concentration: 11.00 to 13.00 wt%, Mo concentration: 0.80 to 1.20 wt %, V concentration: 0.20 to 0.50 wt%) or the like.
 基材10の表層部には、窒化層10Aが形成されている。窒化層10Aは、基材10の表面から素地金属の結晶格子内に窒素原子が侵入して固溶することにより形成された層であり、基材10の最表面から深さ方向において所定の厚みを有する。窒化層10Aは、ガス窒化法、ガス軟窒化法、塩浴窒化法、又はプラズマ窒化法などの種々の窒化処理法によって形成されている。また窒化層10Aの硬度(ビッカース硬さ)は、1000~1200HVとなっている。 A nitride layer 10 </ b> A is formed on the surface layer portion of the substrate 10. The nitride layer 10A is a layer formed by intrusion and solid solution of nitrogen atoms from the surface of the base material 10 into the crystal lattice of the base metal, and has a predetermined thickness in the depth direction from the outermost surface of the base material 10. Have The nitride layer 10A is formed by various nitriding methods such as a gas nitriding method, a gas soft nitriding method, a salt bath nitriding method, or a plasma nitriding method. Further, the hardness (Vickers hardness) of the nitride layer 10A is 1000 to 1200 HV.
 窒化層10Aは、基材10の最表面から内部に向かって深さ方向に窒素原子が拡散することにより形成される。このため、窒素濃度は基材10の最表面から内部に向かって徐々に小さくなる分布を有する。このため、窒化層10Aにおいては、最表面の窒素濃度が最大窒素濃度となっている。本実施形態では、窒化処理時の条件を制御することによって又は窒化処理後において基材10の表面に研磨処理を施すことによって、最大窒素濃度が10at%以上25at%以下の範囲内に制御されている。また、窒化層10Aの表層部における平均窒素濃度が8at%以上20at%以下の範囲内に制御されている。窒化層10Aの表層部とは、窒化層10Aの最表面から当該最表面に垂直な深さ方向において深さ5μmの位置までの領域を意味する。 The nitride layer 10A is formed by diffusing nitrogen atoms in the depth direction from the outermost surface of the substrate 10 toward the inside. For this reason, the nitrogen concentration has a distribution that gradually decreases from the outermost surface of the substrate 10 toward the inside. For this reason, in the nitride layer 10A, the nitrogen concentration on the outermost surface is the maximum nitrogen concentration. In the present embodiment, the maximum nitrogen concentration is controlled within the range of 10 at% or more and 25 at% or less by controlling the conditions at the time of nitriding treatment or by polishing the surface of the substrate 10 after nitriding treatment. Yes. Further, the average nitrogen concentration in the surface layer portion of the nitride layer 10A is controlled within the range of 8 at% or more and 20 at% or less. The surface layer portion of the nitride layer 10A means a region from the outermost surface of the nitride layer 10A to a position having a depth of 5 μm in the depth direction perpendicular to the outermost surface.
 図2は、本実施形態における窒化層10Aの深さ方向の窒素濃度分布を模式的に示したグラフである。グラフ横軸は窒化層10Aの深さ方向の位置(μm)を示し、縦軸は窒素濃度(at%)を示している。またグラフ中の斜線部は窒化層10Aの最表面から5μmの深さまでの領域(表層部)を示し、一点鎖線は当該表層部における窒素濃度の平均値を示している。グラフの通り、本実施形態では、窒化層10Aの最表面における窒素濃度である最大窒素濃度(Max.)が10at%以上25at%以下の範囲内に制御されると共に、窒化層10Aの表層部における平均窒素濃度(Ave.)が8at%以上20at%以下の範囲内に制御されている。 FIG. 2 is a graph schematically showing a nitrogen concentration distribution in the depth direction of the nitride layer 10A in the present embodiment. The horizontal axis of the graph indicates the depth direction position (μm) of the nitride layer 10A, and the vertical axis indicates the nitrogen concentration (at%). The hatched portion in the graph indicates a region (surface layer portion) from the outermost surface of the nitride layer 10A to a depth of 5 μm, and the alternate long and short dash line indicates the average value of nitrogen concentration in the surface layer portion. As shown in the graph, in this embodiment, the maximum nitrogen concentration (Max.), Which is the nitrogen concentration on the outermost surface of the nitride layer 10A, is controlled within a range of 10 at% or more and 25 at% or less, and in the surface layer portion of the nitride layer 10A. The average nitrogen concentration (Ave.) is controlled within the range of 8 at% or more and 20 at% or less.
 窒化層10Aにおける最大窒素濃度が10at%未満又は平均窒素濃度が8at%未満である場合には窒素濃度が低すぎるため窒化層10Aの硬度が低下する。一方で、最大窒素濃度が25at%を超える場合又は平均窒素濃度が20at%を超える場合には窒化層10AにおいてFeN(γ’相)やFe2-3N(ε相)などの化合物層が多く形成される。このような化合物層の形成によって窒化層10Aの割れが生じ易くなり、その結果窒化層10Aに対する硬質皮膜11の密着性が低下する。 If the maximum nitrogen concentration in the nitride layer 10A is less than 10 at% or the average nitrogen concentration is less than 8 at%, the hardness of the nitride layer 10A decreases because the nitrogen concentration is too low. On the other hand, when the maximum nitrogen concentration exceeds 25 at% or the average nitrogen concentration exceeds 20 at%, a compound layer such as Fe 4 N (γ ′ phase) or Fe 2-3 N (ε phase) in the nitride layer 10A Many are formed. Formation of such a compound layer makes it easier for the nitride layer 10A to crack, and as a result, the adhesion of the hard coating 11 to the nitride layer 10A decreases.
 本実施形態では、窒化層10Aにおける最大窒素濃度が10at%以上25at%以下の範囲に制御されると共に、表層部の平均窒素濃度が8at%以上20at%以下の範囲に制御されている。これにより、窒化層10Aの硬度低下を抑制し、且つγ’相やε相などの化合物層の形成による硬質皮膜11の密着性低下を防ぐことができる。このため、X線回折測定により窒化層10Aの結晶構造解析を行った場合、γ’相やε相に基づくピークが小さく又はピークが観測されない。またγ’相やε相の形成をより確実に抑制する観点から、最大窒素濃度は20at%未満であることが好ましい。 In the present embodiment, the maximum nitrogen concentration in the nitride layer 10A is controlled in the range of 10 at% to 25 at%, and the average nitrogen concentration in the surface layer portion is controlled in the range of 8 at% to 20 at%. Thereby, a decrease in the hardness of the nitride layer 10A can be suppressed, and a decrease in the adhesion of the hard coating 11 due to the formation of a compound layer such as a γ ′ phase or an ε phase can be prevented. For this reason, when the crystal structure analysis of the nitride layer 10A is performed by X-ray diffraction measurement, the peak based on the γ ′ phase and the ε phase is small or no peak is observed. Further, from the viewpoint of more reliably suppressing the formation of the γ ′ phase and the ε phase, the maximum nitrogen concentration is preferably less than 20 at%.
 また本実施形態のように、4wt%以上のCrを含有する鋼材(例えばSKD11材)を基材10として用いた場合には、窒化層10Aを形成する窒化処理の際にCr炭化物(Cr)がCr窒化物に変化し、これに伴って炭素がフリーカーボンとして母材中に放出される。このフリーカーボンは、基材10における割れの起点となり、窒素濃度が高い方がより析出し易い。従って、このようなフリーカーボンの析出を抑制する観点からも、窒化層10Aにおける最大窒素濃度は20at%未満であることが好ましい。 Further, as in the present embodiment, when a steel material (for example, SKD11 material) containing 4 wt% or more of Cr is used as the base material 10, Cr carbide (Cr 7 C) is formed during the nitriding treatment for forming the nitride layer 10 </ b> A. 3 ) changes to Cr nitride, and carbon is released into the base material as free carbon. This free carbon becomes a starting point of cracking in the base material 10, and the higher the nitrogen concentration, the easier it is to precipitate. Therefore, also from the viewpoint of suppressing such free carbon deposition, the maximum nitrogen concentration in the nitride layer 10A is preferably less than 20 at%.
 硬質皮膜11は、金型1の耐摩耗性や耐久性を向上させるために窒化層10A上に形成された皮膜であり、TiなどのIVB族原子、VなどのVB族原子、又はCrなどのVIB族原子の窒化物(TiN、VN、CrN)からなる。硬質皮膜11は、上記金属材料をターゲットとして使用し、且つ窒素ガスを成膜ガスとして用いたイオンプレーティング法やスパッタリング法などの物理蒸着法(PVD)により形成されており、特にアークイオンプレーティング(AIP)法により形成されていることが好ましい。 The hard coating 11 is a coating formed on the nitride layer 10A in order to improve the wear resistance and durability of the mold 1, and is made of an IVB group atom such as Ti, a VB group atom such as V, or Cr. It consists of nitrides of group VIB atoms (TiN, VN, CrN). The hard coating 11 is formed by a physical vapor deposition method (PVD) such as an ion plating method or a sputtering method using the above metal material as a target and using a nitrogen gas as a film forming gas, and particularly, arc ion plating. It is preferably formed by the (AIP) method.
 硬質皮膜11は、ビッカース硬さが1000HV以上1700HV以下となっている。具体的には、硬質皮膜11は、TiN、VN、CrNなどの金属窒化物の多結晶体により構成されており、結晶粒を粗大化させることによってビッカース硬さの上限値が1700HVに制御されている。つまり、硬質皮膜11においては、ビッカース硬さの上限値が1700HVを超える皮膜よりも結晶粒が大きくなっている。また硬質皮膜11の硬さは、後述する成膜プロセスにおけるAIPの電圧条件によって制御することができる。 The hard coating 11 has a Vickers hardness of 1000 HV to 1700 HV. Specifically, the hard coating 11 is made of a polycrystal of a metal nitride such as TiN, VN, or CrN, and the upper limit value of the Vickers hardness is controlled to 1700 HV by coarsening the crystal grains. Yes. That is, in the hard film 11, the crystal grains are larger than the film whose upper limit value of Vickers hardness exceeds 1700 HV. Further, the hardness of the hard coating 11 can be controlled by the voltage condition of AIP in the film forming process described later.
 窒化層10A上に形成する硬質皮膜11は、窒化層10Aとの親和性の観点から金属窒化物からなるものが好ましいが、金属炭化物や金属炭窒化物でも硬さが1700HV以下であれば、窒化層10Aに対する密着性を向上させることができる。硬質皮膜11の材料としては、例えばCrN、TiN、VN及びZrNなどが挙げられるが、窒化層10Aに近い硬さに制御可能なことからCrNが最も好ましい。 The hard film 11 formed on the nitride layer 10A is preferably made of a metal nitride from the viewpoint of affinity with the nitride layer 10A. However, if the hardness of the metal carbide or metal carbonitride is 1700 HV or less, nitriding is performed. The adhesion to the layer 10A can be improved. Examples of the material of the hard coating 11 include CrN, TiN, VN, and ZrN. CrN is most preferable because it can be controlled to a hardness close to the nitride layer 10A.
 また硬質皮膜11を多層構造とし、硬さが1700HV以下の皮膜を窒化層10A上に接触するように形成し、その上に硬さが1700HVを超える皮膜を形成してもよい。これにより、窒化層10Aに対する優れた密着性が得られると共に、最表面における皮膜の硬さを高くすることが可能となり、膜の耐久性をより向上させることができる。 Alternatively, the hard coating 11 may have a multilayer structure, a coating having a hardness of 1700 HV or less may be formed on the nitride layer 10A, and a coating having a hardness exceeding 1700 HV may be formed thereon. As a result, excellent adhesion to the nitride layer 10A can be obtained, the hardness of the film on the outermost surface can be increased, and the durability of the film can be further improved.
 前述の通り、窒化層10Aの硬度は1000~1200HV程度である。このため、硬質皮膜11の硬さの上限値を1700HVにすることにより、硬質皮膜11と窒化層10Aの硬度差を700HV以下にまで小さくすることができる。このように、硬質皮膜11と窒化層10Aの硬度を近づけることにより、基材10と硬質皮膜11との変形挙動の差を小さくすることができる。このため、プレス成形時において金属板7との激しい摺動により大きな応力が加わった時でも、硬質皮膜11が基材10から剥がれることを防止できる。つまり本実施形態では、硬質皮膜11の硬度を1000HV以上1700HV以下にすることによって、皮膜が柔らかくなり過ぎるのを抑制しつつ、基材10に対する硬質皮膜11の密着性を大きく改善することができる。また窒化層10Aに対する硬度差をより小さくする観点から、硬質皮膜11の硬度は1600HV以下であることが好ましく、1500HV以下であることがより好ましい。 As described above, the hardness of the nitride layer 10A is about 1000 to 1200 HV. For this reason, by setting the upper limit value of the hardness of the hard coating 11 to 1700 HV, the hardness difference between the hard coating 11 and the nitride layer 10A can be reduced to 700 HV or less. Thus, by making the hardness of the hard coating 11 and the nitride layer 10A closer, the difference in deformation behavior between the base material 10 and the hard coating 11 can be reduced. For this reason, it is possible to prevent the hard coating 11 from being peeled off from the base material 10 even when a large stress is applied due to intense sliding with the metal plate 7 during press forming. In other words, in the present embodiment, by setting the hardness of the hard coating 11 to 1000 HV or more and 1700 HV or less, the adhesion of the hard coating 11 to the substrate 10 can be greatly improved while suppressing the coating from becoming too soft. Further, from the viewpoint of further reducing the hardness difference with respect to the nitride layer 10A, the hardness of the hard coating 11 is preferably 1600 HV or less, and more preferably 1500 HV or less.
 (硬質皮膜被覆部材の作製)
 次に、基材10の窒化処理プロセス及び硬質皮膜11の成膜プロセスについて説明する。本実施形態では、アンモニアガスを窒素原として用いたガス窒化法により基材10の表層部に窒化層10Aが形成され、その後AIP法により窒化層10Aを覆うように硬質皮膜11が形成される場合について説明する。
(Production of hard coating coated member)
Next, the nitriding process of the base material 10 and the film forming process of the hard film 11 will be described. In the present embodiment, when the nitride layer 10A is formed on the surface layer portion of the substrate 10 by the gas nitriding method using ammonia gas as the nitrogen source, and then the hard coating 11 is formed so as to cover the nitride layer 10A by the AIP method. Will be described.
 まず、SKD11材などの冷間金型用鋼からなる基材10が準備され、不図示のガス窒化炉内に設置される。そして、アンモニアガス及び水素ガスがそれぞれ炉内に導入される。このとき、混合ガス中におけるアンモニアガスの割合が10vol%以上15vol%以下となり、且つ炉内の全圧力が140Pa程度となるように各ガスの導入量が調整される。 First, a base material 10 made of cold mold steel such as SKD11 material is prepared and installed in a gas nitriding furnace (not shown). Then, ammonia gas and hydrogen gas are respectively introduced into the furnace. At this time, the introduction amount of each gas is adjusted so that the ratio of ammonia gas in the mixed gas is 10 vol% or more and 15 vol% or less, and the total pressure in the furnace is about 140 Pa.
 次に、ヒータなどによって炉内が約450℃の温度雰囲気になるまで加熱される。これにより、アンモニアガスは、2NH→2N+3H、の反応式で表されるように解離し、N原子が生成する。そして、生成したN原子は基材10の表面に吸着し、基材10の内部に向かって拡散する。これにより、基材10の表層部において所定の深さを有する窒化層10Aが形成される。 Next, the interior of the furnace is heated by a heater or the like until a temperature atmosphere of about 450 ° C. is reached. As a result, the ammonia gas dissociates as represented by the reaction formula 2NH 3 → 2N + 3H 2 , and N atoms are generated. The generated N atoms are adsorbed on the surface of the base material 10 and diffuse toward the inside of the base material 10. Thereby, the nitride layer 10 </ b> A having a predetermined depth is formed in the surface layer portion of the substrate 10.
 本実施形態では、混合ガス中におけるアンモニアガスの割合を調整することにより、窒化層10Aの最表面における窒素濃度(つまり最大窒素濃度)及び表層部の平均窒素濃度を調整することができる。具体的には、アンモニアガスの割合を10vol%以上15vol%以下の範囲にすることにより、窒化層10Aにおける最大窒素濃度を10at%以上25at%以下の範囲に調整すると共に平均窒素濃度を8at%以上20at%以下の範囲に調整することができる。これにより、窒化層10Aにおいてγ’相やε相などの化合物層が多く形成されるのを防ぐことができる。 In the present embodiment, by adjusting the ratio of ammonia gas in the mixed gas, the nitrogen concentration at the outermost surface of the nitride layer 10A (that is, the maximum nitrogen concentration) and the average nitrogen concentration in the surface layer portion can be adjusted. Specifically, the maximum nitrogen concentration in the nitride layer 10A is adjusted to a range of 10 at% to 25 at% and the average nitrogen concentration is 8 at% or more by adjusting the ratio of ammonia gas to a range of 10 vol% or more and 15 vol% or less. It can be adjusted to a range of 20 at% or less. Thereby, it is possible to prevent a large number of compound layers such as γ ′ phase and ε phase from being formed in the nitride layer 10A.
 またアンモニアガスの割合が15vol%を超える条件下(例えば20vol%)でも、窒化処理後に研磨処理を施すことにより、窒化層10Aの最表面における窒素濃度を25at%以下にまで低減させ、また表層部の平均窒素濃度を20at%以下にまで低減させることができる。研磨処理の方法としては、窒化層10Aの最表面に研磨材を投射する投射型研磨や、砥石を用いた砥石研磨などを用いることができる。このようにして、最大窒素濃度が10at%以上25at%以下の範囲に制御されると共に、平均窒素濃度が8at%以上20at%以下の範囲に制御された窒化層10Aが基材10の表層部に形成される。これにより、窒化処理が完了する。 Further, even under conditions where the ratio of ammonia gas exceeds 15 vol% (for example, 20 vol%), the nitrogen concentration at the outermost surface of the nitride layer 10A is reduced to 25 at% or less by performing polishing after nitriding, and the surface layer portion The average nitrogen concentration can be reduced to 20 at% or less. As a method for the polishing treatment, projection type polishing in which an abrasive is projected onto the outermost surface of the nitride layer 10A, grinding wheel polishing using a grinding stone, or the like can be used. In this way, the nitride layer 10A in which the maximum nitrogen concentration is controlled in the range of 10 at% or more and 25 at% or less and the average nitrogen concentration is controlled in the range of 8 at% or more and 20 at% or less is formed in the surface layer portion of the substrate 10. It is formed. Thereby, the nitriding process is completed.
 次に、窒化層10Aが形成された基材10上に硬質皮膜11が形成される。図3は、硬質皮膜11の成膜に使用される成膜装置6の構成を示している。まず成膜装置6の構成について、図3を参照して説明する。 Next, the hard coating 11 is formed on the base material 10 on which the nitride layer 10A is formed. FIG. 3 shows the configuration of the film forming apparatus 6 used for forming the hard film 11. First, the configuration of the film forming apparatus 6 will be described with reference to FIG.
 成膜装置6は、チャンバー21と、複数(2つ)のアーク電源22及びスパッタ電源23と、ステージ24と、バイアス電源25と、複数(4つ)のヒータ26と、放電用直流電源27と、フィラメント加熱用交流電源28と、を有する。チャンバー21には、真空排気するためのガス排気口21Aと、チャンバー21内にガスを供給するためのガス供給口21Bと、が設けられている。アーク電源22には、成膜用のターゲットが配置されるアーク蒸発源22Aが接続されている。スパッタ電源23には、成膜用のターゲットが配置されるスパッタ蒸発源23Aが接続されている。ステージ24は、回転可能に構成され、被成膜物である基材10を支持するための支持面を有する。バイアス電源25は、ステージ24を通して基材10にバイアスを印加する。 The film forming apparatus 6 includes a chamber 21, a plurality (two) of arc power supplies 22 and a sputtering power supply 23, a stage 24, a bias power supply 25, a plurality of (four) heaters 26, and a discharge DC power supply 27. And an AC power supply 28 for heating the filament. The chamber 21 is provided with a gas exhaust port 21 </ b> A for evacuating and a gas supply port 21 </ b> B for supplying gas into the chamber 21. Connected to the arc power source 22 is an arc evaporation source 22A on which a deposition target is disposed. The sputtering power source 23 is connected to a sputtering evaporation source 23A on which a film-forming target is disposed. The stage 24 is configured to be rotatable and has a support surface for supporting the substrate 10 that is the film formation target. The bias power source 25 applies a bias to the substrate 10 through the stage 24.
 次に、基材10上への硬質皮膜11の成膜プロセスについて説明する。まず、窒化処理後の基材10がステージ24上にセットされる。一方、Crなどのターゲットがアーク蒸発源22Aにセットされる。このターゲットは、粉末冶金により造られたものでもよいし、溶融冶金により造られたものでもよい。 Next, the film forming process of the hard coating 11 on the substrate 10 will be described. First, the base material 10 after the nitriding treatment is set on the stage 24. On the other hand, a target such as Cr is set on the arc evaporation source 22A. This target may be made by powder metallurgy or may be made by melt metallurgy.
 次に、ガス排気口21Aから排気されることでチャンバー21内が所定の圧力まで減圧される。次に、ガス供給口21Bからアルゴン(Ar)ガスがチャンバー21内に導入され、ヒータ26により基材10が所定の温度にまで加熱される。そして、基材10の表面がArイオンにより所定時間エッチングされ、基材10の表面に形成された酸化皮膜などが除去される(クリーニング)。 Next, the inside of the chamber 21 is depressurized to a predetermined pressure by exhausting from the gas exhaust port 21A. Next, argon (Ar) gas is introduced into the chamber 21 from the gas supply port 21 </ b> B, and the substrate 10 is heated to a predetermined temperature by the heater 26. Then, the surface of the base material 10 is etched by Ar ions for a predetermined time, and an oxide film or the like formed on the surface of the base material 10 is removed (cleaning).
 次に、窒素(N)ガスがガス供給口21Bからチャンバー21内に導入される。そして、アーク蒸発源22Aに所定のアーク電流を流してアーク放電を開始させることにより、ターゲットを蒸発させる。またチャンバー21内に導入された窒素が熱分解され、N原子が生成する。これにより、Cr及びNが基材10の表面上に堆積し、CrNからなる硬質皮膜11が成膜される。このとき、基材10に印加するバイアス電圧を制御することにより、皮膜の硬さを制御することができる。例えば、バイアス電圧を30V以下程度にすることにより、CrNの結晶粒が粗大化し、1700HV以下の硬さの皮膜を得ることができる。これにより、硬質皮膜11が硬くなり過ぎないように成膜することができる。 Next, nitrogen (N 2 ) gas is introduced into the chamber 21 from the gas supply port 21B. Then, a predetermined arc current is supplied to the arc evaporation source 22A to start arc discharge, thereby evaporating the target. Further, nitrogen introduced into the chamber 21 is thermally decomposed to generate N atoms. Thereby, Cr and N accumulate on the surface of the base material 10, and the hard film 11 made of CrN is formed. At this time, the hardness of the film can be controlled by controlling the bias voltage applied to the substrate 10. For example, by setting the bias voltage to about 30 V or less, the crystal grains of CrN become coarse, and a film having a hardness of 1700 HV or less can be obtained. Thereby, it can form into a film so that the hard membrane | film | coat 11 may not become hard too much.
 そして、硬質皮膜11の膜厚が所望の値に達した後、アーク蒸発源22Aへのアーク電流の供給が停止される。その後、チャンバー21内が大気開放され、成膜後の基材10がチャンバー21の外に取り出される。以上のようなプロセスにより、基材10上に硬質皮膜11が成膜される。 Then, after the film thickness of the hard coating 11 reaches a desired value, the supply of the arc current to the arc evaporation source 22A is stopped. Thereafter, the inside of the chamber 21 is opened to the atmosphere, and the substrate 10 after film formation is taken out of the chamber 21. The hard film 11 is formed on the base material 10 by the process as described above.
 またスパッタリング法によって硬質皮膜11を成膜する場合には、Crターゲットがスパッタ蒸発源23Aにセットされる。そして、スパッタ電源23からスパッタ蒸発源23Aに所定の電力を投入してターゲットを蒸発させることにより、前述のアークイオンプレーティングの場合と同様に硬質皮膜11を成膜することができる。 Further, when the hard coating 11 is formed by the sputtering method, the Cr target is set in the sputter evaporation source 23A. Then, by applying predetermined power from the sputtering power source 23 to the sputtering evaporation source 23A to evaporate the target, the hard coating 11 can be formed as in the case of the arc ion plating described above.
 <実施形態2>
 次に、本発明の実施形態2に係る硬質皮膜被覆部材としての切削工具1Aについて説明する。
<Embodiment 2>
Next, a cutting tool 1A as a hard film covering member according to Embodiment 2 of the present invention will be described.
 図4は切削工具1Aの斜視図であり、図5は被削材100を切削する様子を示す切削工具1Aの断面図である。切削工具1Aは、柄部(シャンク)の先端部に取り付けて使用されるインサート(刃先部)であって、図4に示すように平面形状が四角形状となっている。切削工具1Aは、被削材100に食い込んですくい上げる部分であるすくい面31と、被削材との接触を避けるために逃がされた部分である逃げ面32と、を有する。当該すくい面31と逃げ面32とが繋がる部分が切れ刃33となっている。切削工具1Aは、基材10と、硬質皮膜11と、を有する。基材10は、切削用の合金工具鋼からなり、表層部に窒化層10Aが形成されている。硬質皮膜11は、窒化層10A上を覆うように形成されている。そして、上記実施形態1の金型1と同様に、窒化層10Aにおける最大窒素濃度が10at%以上25at%以下であると共に、表層部の平均窒素濃度が8at%以上20at%以下となっている。また硬質皮膜11のビッカース硬さは、1000HV以上1700HV以下となっている。 FIG. 4 is a perspective view of the cutting tool 1A, and FIG. 5 is a cross-sectional view of the cutting tool 1A showing how the work material 100 is cut. The cutting tool 1A is an insert (cutting edge portion) that is used by being attached to the tip portion of a handle portion (shank), and its planar shape is a square shape as shown in FIG. The cutting tool 1A has a rake face 31 that is a part to be scooped up into the work material 100, and a flank face 32 that is a part that is escaped to avoid contact with the work material. A portion where the rake face 31 and the flank face 32 are connected is a cutting edge 33. The cutting tool 1 </ b> A has a base material 10 and a hard coating 11. The base material 10 is made of an alloy tool steel for cutting, and a nitride layer 10A is formed on the surface layer portion. The hard film 11 is formed so as to cover the nitride layer 10A. Similarly to the mold 1 of the first embodiment, the maximum nitrogen concentration in the nitride layer 10A is 10 at% or more and 25 at% or less, and the average nitrogen concentration in the surface layer portion is 8 at% or more and 20 at% or less. Moreover, the Vickers hardness of the hard film 11 is 1000HV or more and 1700HV or less.
 これにより、切削工具1Aにおいても、上記実施形態1の金型1と同様に窒化層10Aと硬質皮膜11との間の高い密着性が確保されている。このため、硬質な材料からなる被削材100を高速で加工する場合や少ない潤滑油で加工する場合など、過酷な使用環境下においても硬質皮膜11の剥がれを防止することができる。なお、このようなインサートだけでなく、ドリルやエンドミルなどの種々の切削工具においても同様に適用することができる。 Thereby, also in the cutting tool 1A, high adhesion between the nitride layer 10A and the hard coating 11 is ensured as in the mold 1 of the first embodiment. For this reason, peeling of the hard coating 11 can be prevented even under severe use environments, such as when the work material 100 made of a hard material is processed at a high speed or when processed with a small amount of lubricating oil. Note that the present invention can be similarly applied not only to such an insert but also to various cutting tools such as a drill and an end mill.
 <その他実施形態>
 上記実施形態1,2では、窒化層10Aの最大窒素濃度が10at%以上25at%以下の範囲内に制御されると共に、窒化層10Aの表層部における平均窒素濃度が8at%以上20at%以下の範囲内に制御される場合について説明したが、これに限定されない。図6のグラフに示すように、最大窒素濃度(Max.)が10at%以上25at%以下の範囲内に制御される一方で、表層部の平均窒素濃度(Ave.)が20at%を超えていてもよい。また図7のグラフに示すように、表層部の平均窒素濃度(Ave.)が8at%以上20at%以下の範囲内に制御される一方で、最大窒素濃度(Max.)が25at%を超えていてもよい。なお、図6及び図7のグラフでは、図2のグラフと同様に、窒化層10Aの最表面から深さ5μmまでの領域である表層部が斜線により示され、当該表層部における平均窒素濃度が一点鎖線で示されている。
<Other embodiments>
In the first and second embodiments, the maximum nitrogen concentration of the nitride layer 10A is controlled within the range of 10 at% or more and 25 at% or less, and the average nitrogen concentration in the surface layer portion of the nitride layer 10A is 8 at% or more and 20 at% or less. However, the present invention is not limited to this. As shown in the graph of FIG. 6, while the maximum nitrogen concentration (Max.) Is controlled within the range of 10 at% or more and 25 at% or less, the average nitrogen concentration (Ave.) of the surface layer portion exceeds 20 at%. Also good. Further, as shown in the graph of FIG. 7, the average nitrogen concentration (Ave.) of the surface layer portion is controlled within the range of 8 at% or more and 20 at% or less, while the maximum nitrogen concentration (Max.) Exceeds 25 at%. May be. In the graphs of FIGS. 6 and 7, as in the graph of FIG. 2, the surface layer portion, which is a region from the outermost surface of the nitride layer 10A to the depth of 5 μm, is indicated by hatching, and the average nitrogen concentration in the surface layer portion is It is shown with a dashed-dotted line.
 本発明の硬質皮膜被覆部材は、上記実施形態1,2で説明した金型1及び切削工具1Aに限定されず、せん断型などの塑性加工用治工具であってもよいし、金属材料との摺動により高い耐摩耗性が要求される各種機械部品にも適用することができる。 The hard film-coated member of the present invention is not limited to the mold 1 and the cutting tool 1A described in the first and second embodiments, and may be a jig for plastic working such as a shear mold, or a metal material. The present invention can also be applied to various machine parts that require high wear resistance by sliding.
 鉄基材の表層部に形成された窒化層に対する硬質皮膜の密着性に関して、本発明の効果を確認する実験を行った。 An experiment was conducted to confirm the effect of the present invention with respect to the adhesion of the hard film to the nitride layer formed on the surface portion of the iron substrate.
 (窒化処理)
 JIS規格SKD11の化学成分を有する試験片(40mm×40mm×10mm)を基材として準備し、表面に鏡面研磨処理を施した。そして、この試験片をガス窒化炉内に配置し、以下の条件でガス窒化処理を施すことにより表層部に窒化層を形成した。
(Nitriding treatment)
A test piece (40 mm × 40 mm × 10 mm) having a chemical component of JIS standard SKD11 was prepared as a base material, and the surface was subjected to mirror polishing. Then, this test piece was placed in a gas nitriding furnace and subjected to gas nitriding treatment under the following conditions to form a nitride layer on the surface layer portion.
 処理温度:450℃
 ガス:水素-アンモニア混合ガス(アンモニア:5vol%以上20vol%以下)
 全圧力:140Pa
 処理時間:12時間
 下記の表1において、No.5~13,31~34の試験片に対しては窒化処理後に投射型の研磨処理を施し、No.14~17の試験片に対しては砥石研磨による研磨処理を施した。またGD-OESを用いて窒化層における深さ方向の窒素濃度分布を測定し(測定元素はN、C、Cr、Fe、O)、この分布に基づいて窒素濃度(at%)を測定した。またX線回折測定を用いてFeN(γ’相)又はFe2-3N(ε相)の化合物層に基づくピークの有無を確認することにより、これらの化合物層が形成されているか否かを確認した。
Processing temperature: 450 ° C
Gas: Hydrogen-ammonia mixed gas (Ammonia: 5 vol% or more and 20 vol% or less)
Total pressure: 140Pa
Processing time: 12 hours In Table 1 below, The specimens 5 to 13 and 31 to 34 were subjected to projection-type polishing after nitriding. The test pieces 14 to 17 were subjected to a polishing process by grinding with a grindstone. Further, the nitrogen concentration distribution in the depth direction in the nitride layer was measured using GD-OES (measurement elements were N, C, Cr, Fe, O), and the nitrogen concentration (at%) was measured based on this distribution. Whether or not these compound layers are formed by confirming the presence or absence of a peak based on the compound layer of Fe 4 N (γ ′ phase) or Fe 2-3 N (ε phase) using X-ray diffraction measurement. I confirmed.
 (硬質皮膜の成膜)
 窒化処理後の基材に対して、図3に示した成膜装置6を用いたAIP法により硬質皮膜を形成した。AIPの条件は以下の通りである。
(Hard coating)
A hard film was formed on the base material after the nitriding treatment by the AIP method using the film forming apparatus 6 shown in FIG. The conditions of AIP are as follows.
 窒素圧:4Pa
 基材バイアス:10~100V
 アーク電流:150A
 温度:400℃
 まず、窒化処理後の基材10をステージ24上にセットし、Cr、Ti、Alなどのターゲットをアーク蒸発源22Aにセットした。そして、Arイオンエッチングにより基材10の表面をクリーニングした後、チャンバー21内に窒素ガスを導入し、アーク蒸発源22Aにアーク電流を流してアーク放電を開始させることにより、基材10上に硬質皮膜11を成膜した。
Nitrogen pressure: 4Pa
Substrate bias: 10-100V
Arc current: 150A
Temperature: 400 ° C
First, the base material 10 after the nitriding treatment was set on the stage 24, and targets such as Cr, Ti, and Al were set on the arc evaporation source 22A. Then, after cleaning the surface of the base material 10 by Ar ion etching, nitrogen gas is introduced into the chamber 21, and an arc current is started to flow through the arc evaporation source 22 </ b> A, thereby starting arc discharge. A film 11 was formed.
 硬質皮膜11としては、表1のNo.1~34に示す種類のものをそれぞれ成膜した。表1のNo.24の「Ti0.5Al0.5」の表記は、TiとAlの原子比がそれぞれ0.5であることを示し、No.25,28,29,31も同様である。また表1のNo.27の「CrN/TiN」の表記は、CrNとTiNの積層膜であることを意味し、No.28~30も同様である。 As the hard coating 11, No. 1 in Table 1 was used. Films of the types shown in 1 to 34 were formed. No. in Table 1 24, “Ti0.5Al0.5” indicates that the atomic ratio of Ti and Al is 0.5. The same applies to 25, 28, 29, and 31. No. 1 in Table 1 27, “CrN / TiN” means a laminated film of CrN and TiN. The same applies to 28-30.
 No.1~22,33,34では、CrターゲットとNガスを用いて成膜し、表1に示す通り基材10に印加するバイアス(V)を調整することにより皮膜の硬さ(HV)を変化させた。 No. In Nos. 1 to 22, 33, and 34, film formation was performed using a Cr target and N 2 gas, and the hardness (HV) of the film was adjusted by adjusting the bias (V) applied to the substrate 10 as shown in Table 1. Changed.
 No.23では、TiターゲットとNガスを用いて成膜した。No.24では、Ti,Alターゲットを2つのアーク蒸発源22Aにそれぞれセットし、これらを同時に放電させて成膜を行った。No.25では、Cr,Alターゲットを2つのアーク蒸発源22Aにそれぞれセットし、これらを同時に放電させて成膜を行った。No.26では、Tiターゲットとメタンガスなどの炭化水素ガスを用いて成膜した。No.27では、CrターゲットとNガスを用いてCrNを成膜した後、TiターゲットとNガスを用いてTiNを成膜した。No.28では、CrターゲットとNガスを用いてCrNを成膜した後、Ti,AlターゲットとNガスを用いてTiAlNを成膜した。No.29では、CrターゲットとNガスを用いてCrNを成膜した後、Cr,AlターゲットとNガスを用いてCrAlNを成膜した。No.30では、CrターゲットとNガスを用いてCrNを成膜した後、Tiターゲットとメタンガスなどの炭化水素ガスを用いてTiCを成膜した。No.31では、Crターゲットとメタンガスなどの炭化水素ガス及び窒素ガスとを用いてCrCNを成膜した。No.32では、Crターゲットとメタンガスなどの炭化水素ガスを用いてCrCを成膜した。 No. In No. 23, a film was formed using a Ti target and N 2 gas. No. 24, Ti and Al targets were set on the two arc evaporation sources 22A, respectively, and these were simultaneously discharged to form a film. No. In No. 25, Cr and Al targets were set on the two arc evaporation sources 22A, respectively, and these were simultaneously discharged to form a film. No. In No. 26, a film was formed using a Ti target and a hydrocarbon gas such as methane gas. No. In No. 27, after CrN was formed using a Cr target and N 2 gas, TiN was formed using a Ti target and N 2 gas. No. In No. 28, after CrN was formed using a Cr target and N 2 gas, TiAlN was formed using a Ti, Al target and N 2 gas. No. In 29, after forming a CrN using a Cr target and N 2 gas was formed CrAlN with Cr, Al target and N 2 gas. No. In No. 30, a CrN film was formed using a Cr target and N 2 gas, and then a TiC film was formed using a Ti target and a hydrocarbon gas such as methane gas. No. In No. 31, a CrCN film was formed using a Cr target, a hydrocarbon gas such as methane gas, and a nitrogen gas. No. In No. 32, CrC was formed using a Cr target and a hydrocarbon gas such as methane gas.
 No.1~26,31~34では膜厚を5μmとし、No.27~30では下層側の皮膜の膜厚を1μm、上層側の皮膜の膜厚を4μmとした。 No. For Nos. 1 to 26 and 31 to 34, the film thickness was 5 μm. In 27 to 30, the film thickness of the lower film was 1 μm, and the film thickness of the upper film was 4 μm.
 (スクラッチ試験)
 硬質皮膜を成膜した試験片に対して、以下の条件でスクラッチ試験を行うことにより、皮膜の密着性を確認した。表1に評価結果を示す。
(Scratch test)
The test piece on which the hard film was formed was subjected to a scratch test under the following conditions to confirm the adhesion of the film. Table 1 shows the evaluation results.
 圧子:ダイヤモンド圧子(先端半径:200μm)
 荷重範囲:0~100N(密着が100N以上のサンプルに対しては荷重範囲の上限を150Nにして実施)
 荷重増加速度:100N/分
 圧子移動速度:10mm/分 
Indenter: Diamond indenter (tip radius: 200 μm)
Load range: 0 to 100 N (For samples with close contact of 100 N or more, the upper limit of the load range is 150 N)
Load increasing speed: 100 N / min Indenter moving speed: 10 mm / min
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(考察)
 表1に示される通り、(i)窒化層の最表面における窒素濃度(最大窒素濃度)が25at%を超えると共に平均窒素濃度が20at%を超え、窒化層中にγ’相及びε相が形成される場合(No.1,5)及び(ii)最大窒素濃度が10%未満であると共に平均窒素濃度が8at%未満である場合(No.4,12,17)に比べて、(iii)最大窒素濃度が10at%以上25at%以下の範囲及び(iv)平均窒素濃度が8at%以上20at%以下の範囲、の少なくとも一方の条件を満たした場合において、密着性(N)が向上した。また硬質皮膜のビッカース硬さが1700HVを超える場合(No.22~26)に比べて、1700HV以下の場合にも密着性(N)が向上した。またNo.27~30では、上層側の皮膜の硬さが1700HVを超えているが、窒化層と接触する下層側の皮膜の硬さが1700HV以下となっており、良好な密着性(N)が確認された。以上の結果より、窒化層における最大窒素濃度が10at%以上25at%以下の範囲及び平均窒素濃度が8at%以上20at%以下の範囲の少なくとも一方の条件を満たすと共に、硬質皮膜の硬さを1000HV以上1700HV以下にすることにより、硬質皮膜の密着性が向上することが明らかとなった。
(Discussion)
As shown in Table 1, (i) the nitrogen concentration (maximum nitrogen concentration) on the outermost surface of the nitride layer exceeds 25 at% and the average nitrogen concentration exceeds 20 at%, and a γ ′ phase and an ε phase are formed in the nitride layer. When (No. 1, 5) and (ii) the maximum nitrogen concentration is less than 10% and the average nitrogen concentration is less than 8 at% (No. 4, 12, 17), (iii) Adhesion (N) was improved when at least one of the conditions where the maximum nitrogen concentration was 10 at% or more and 25 at% or less and (iv) the average nitrogen concentration was 8 at% or more and 20 at% or less was satisfied. Also, the adhesion (N) was improved in the case of 1700 HV or less as compared with the case where the Vickers hardness of the hard film exceeded 1700 HV (No. 22 to 26). No. In 27 to 30, the hardness of the upper layer film exceeds 1700 HV, but the hardness of the lower layer film in contact with the nitride layer is 1700 HV or less, and good adhesion (N) is confirmed. It was. From the above results, while satisfying at least one of the range where the maximum nitrogen concentration in the nitride layer is 10 at% or more and 25 at% or less and the average nitrogen concentration is 8 at% or more and 20 at% or less, the hardness of the hard coating is 1000 HV or more. It became clear that the adhesiveness of a hard film | membrane improves by making it 1700HV or less.

Claims (5)

  1.  鉄系材料からなり、表層部に窒化層が形成された基材と、
     金属窒化物、金属炭窒化物又は金属炭化物からなり、前記窒化層上に形成された硬質皮膜と、を備え、
     前記窒化層における最大窒素濃度が10at%以上25at%以下であり、
     前記硬質皮膜の硬度が1000HV以上1700HV以下であることを特徴とする、硬質皮膜被覆部材。
    A base material made of an iron-based material and having a nitride layer formed on the surface layer,
    A metal nitride, a metal carbonitride or a metal carbide, and a hard coating formed on the nitride layer,
    The maximum nitrogen concentration in the nitride layer is 10 at% or more and 25 at% or less,
    The hard film covering member, wherein the hardness of the hard film is 1000 HV or more and 1700 HV or less.
  2.  鉄系材料からなり、表層部に窒化層が形成された基材と、
     金属窒化物、金属炭窒化物又は金属炭化物からなり、前記窒化層上に形成された硬質皮膜と、を備え、
     前記窒化層の最表面から5μmの深さまでの領域における平均窒素濃度が8at%以上20at%以下であり、
     前記硬質皮膜の硬度が1000HV以上1700HV以下であることを特徴とする、硬質皮膜被覆部材。
    A base material made of an iron-based material and having a nitride layer formed on the surface layer,
    A metal nitride, a metal carbonitride or a metal carbide, and a hard coating formed on the nitride layer,
    The average nitrogen concentration in the region from the outermost surface of the nitride layer to a depth of 5 μm is 8 at% or more and 20 at% or less,
    The hard film covering member, wherein the hardness of the hard film is 1000 HV or more and 1700 HV or less.
  3.  前記窒化層と前記硬質皮膜との硬度差が700HV以下であることを特徴とする、請求項1又は2に記載の硬質皮膜被覆部材。 The hard film covering member according to claim 1 or 2, wherein a hardness difference between the nitride layer and the hard film is 700 HV or less.
  4.  前記鉄系材料は、4wt%以上のCrを含有することを特徴とする、請求項1又は2に記載の硬質皮膜被覆部材。 The hard film-coated member according to claim 1 or 2, wherein the iron-based material contains 4 wt% or more of Cr.
  5.  前記鉄系材料は、4wt%以上のCrを含有することを特徴とする、請求項3に記載の硬質皮膜被覆部材。 The hard film-coated member according to claim 3, wherein the iron-based material contains 4 wt% or more of Cr.
PCT/JP2016/086117 2016-01-26 2016-12-05 Hard coating-covered member WO2017130572A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-012149 2016-01-26
JP2016012149 2016-01-26
JP2016-142705 2016-07-20
JP2016142705A JP6762790B2 (en) 2016-01-26 2016-07-20 Hard film covering member

Publications (1)

Publication Number Publication Date
WO2017130572A1 true WO2017130572A1 (en) 2017-08-03

Family

ID=59397585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086117 WO2017130572A1 (en) 2016-01-26 2016-12-05 Hard coating-covered member

Country Status (1)

Country Link
WO (1) WO2017130572A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301282A (en) * 2002-04-10 2003-10-24 Kobe Steel Ltd Sliding member superior in sliding characteristic under high contact pressure
JP2007100517A (en) * 2005-09-30 2007-04-19 Mitsubishi Electric Corp Hermetic compressor
JP2013221203A (en) * 2012-04-18 2013-10-28 Dowa Thermotech Kk Nitrided steel member and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301282A (en) * 2002-04-10 2003-10-24 Kobe Steel Ltd Sliding member superior in sliding characteristic under high contact pressure
JP2007100517A (en) * 2005-09-30 2007-04-19 Mitsubishi Electric Corp Hermetic compressor
JP2013221203A (en) * 2012-04-18 2013-10-28 Dowa Thermotech Kk Nitrided steel member and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5234931B2 (en) Hard coating member and molding tool
US6767627B2 (en) Hard film, wear-resistant object and method of manufacturing wear-resistant object
US6656186B2 (en) Bone saw blade and a method for manufacturing a bone saw blade
KR100753738B1 (en) Hard coating, target for forming hard coating, and method for forming hard coating
JP6410797B2 (en) Coated cutting tool and manufacturing method thereof
JP6525310B2 (en) Coated tools
WO2004076710A1 (en) Amorphous carbon film, process for producing the same and amorphous carbon film-coated material
WO2014157688A1 (en) Coated cutting tool and method for producing same
JP2005042146A (en) Coating with high abrasion resistance and high hardness
Damerchi et al. Effects of functionally graded TiN layer and deposition temperature on the structure and surface properties of TiCN coating deposited on plasma nitrided H13 steel by PACVD method
JP6555796B2 (en) Coated cutting tool
WO2017163972A1 (en) Hard coating, hard coating-covered member, and method for producing hard coating
JP3697221B2 (en) High wear and hardness coating with excellent high temperature oxidation resistance
JP2018059146A (en) Hard film, hard film coated member, and production method of hard film
JP6267604B2 (en) Hard coating, method for forming the same, and die for hot forming of steel sheet
Keleş et al. Determining the critical loads of V and Nb doped ternary TiN-based coatings deposited using CFUBMS on steels
JP6762790B2 (en) Hard film covering member
JP5389474B2 (en) Spheroidal graphite cast iron material having hard coating, press mold, and method for producing spheroidal graphite cast iron material having hard coating
Chen et al. Annealing and oxidation study of Mo–Ru hard coatings on tungsten carbide
WO2017130572A1 (en) Hard coating-covered member
JP4808972B2 (en) Surface coated cutting tool
WO2010084982A1 (en) Member coated with hard film and jig for forming
JP5987152B2 (en) Molded product and manufacturing method thereof
WO2020075356A1 (en) Cutting tool and manufacturing method therefor
JP5402155B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888156

Country of ref document: EP

Kind code of ref document: A1