WO2017128946A1 - 一种用于双氧水合成的高分散颗粒催化剂及其制备方法和应用 - Google Patents

一种用于双氧水合成的高分散颗粒催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2017128946A1
WO2017128946A1 PCT/CN2017/070717 CN2017070717W WO2017128946A1 WO 2017128946 A1 WO2017128946 A1 WO 2017128946A1 CN 2017070717 W CN2017070717 W CN 2017070717W WO 2017128946 A1 WO2017128946 A1 WO 2017128946A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
carrier
alpo
composite
molecular sieve
Prior art date
Application number
PCT/CN2017/070717
Other languages
English (en)
French (fr)
Inventor
王树东
李晓彤
苏宏久
陈海军
杨晓野
李大卫
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2017128946A1 publication Critical patent/WO2017128946A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/83Aluminophosphates [APO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/022Preparation from organic compounds
    • C01B15/023Preparation from organic compounds by the alkyl-anthraquinone process

Definitions

  • the invention belongs to the field of petrochemical industry, and particularly relates to a ruthenium hydrogenation overall catalyst and a preparation method thereof.
  • Hydrogen peroxide is an excellent chemical product. Because it produces only water and oxygen after use and does not cause secondary pollution, it is called “green chemical product”. Can be used as an oxidant, bleach, disinfectant, deoxidizer, etc., widely used in paper, chemical, environmental, electronics, aerospace and other industries. In recent years, in the new green chemical industry, such as: caprolactam, cyclohexanone, hydroquinone, propylene oxide and other products are produced with hydrogen peroxide as an oxidant, further opening up new applications of hydrogen peroxide. By the end of 2014, there were more than 50 domestic hydrogen peroxide production enterprises with more than 80 sets of equipment, and the total production capacity was nearly 10 million tons (according to 27.5%). In 2015, the domestic hydrogen peroxide production capacity will reach 11 million to 12 million tons, of which 50% will be used for supporting downstream.
  • the main methods for producing hydrogen peroxide are electrolysis, helium, air cathode, hydrogen and oxygen directification, and vacuum enrichment.
  • the ruthenium method is the most widely used method.
  • the process of producing hydrogen peroxide by the hydrazine process is as follows: first, the hydrazine in the working liquid is hydrocatalyzed with hydrogen to form hydrazine hydrazine in the presence of a catalyst.
  • the second step is an oxidation step, mainly in which anhydroquinone and oxygen, air or a mixed gas containing oxygen are oxidized to form hydrogen peroxide and helium, and finally hydrogen peroxide is separated by water extraction to obtain an aqueous hydrogen peroxide solution and a working fluid, wherein the working fluid can be returned to the above.
  • the hydrogenation catalyzes the reaction step to form a complete cycle.
  • the most commonly used working carrier in the production process is 2-ethyl hydrazine, but its low solubility in the working solvent limits its hydrogenation efficiency in the hydrogenation process as a working carrier, which is not conducive to the production of high concentration hydrogen peroxide.
  • 2-pentyl oxime has a high solubility and can significantly increase the hydrogen peroxide yield, making it a good substitute for 2-ethyl hydrazine.
  • 2-pentyl oxime due to the high cost of 2-pentyl oxime, it has not been widely used in China.
  • the industrial production equipment for hydrogen peroxide production mainly adopts a trickle bed and a slurry bed reactor.
  • the study by Santacesaria (Chem. Eng. Sci. 1999, 54, 2799-2809) and others indicates that the rhodium hydrogenation reaction is a mass transfer diffusion controlled reaction, and the control step is the rate at which H 2 is transferred from the gas phase to the liquid working fluid. liquid phase H 2 transmitted to the transfer rate of the solid catalyst surface.
  • the trickle bed is operated under a flat push flow.
  • the surface layer of the catalyst is very thin, and the total liquid layer resistance is smaller than that of other types of three-phase reactors, and a higher conversion rate can be obtained, and there is no flooding problem in the cocurrent operation.
  • a trickle bed reactor using a particulate catalyst is suitable for the rhodium hydrogenation reaction.
  • most of the domestic hydrogen peroxide enterprises adopt the technology of Liming Chemical Research Institute, and the trickle bed reactor is used for production.
  • the ruthenium hydrogenation catalyst used in the process is mainly Pd/Al 2 O 3 catalyst, the metal Pd loading is between 0.3% and 0.6%, and the catalyst space time yield is 3.0-3.6g H2O2 / (g Cat ⁇ d) (100%), the production capacity is low.
  • the hydrogen control range is between 7.0 and 7.5 g/L, and the mass fraction of the obtained hydrogen peroxide is mostly controlled at 27.5%.
  • the concentration of hydrogen peroxide required in the industrial production process is generally 50%. The hydrogen peroxide produced currently needs to be concentrated after evaporation, rectification, etc., and the energy consumption and equipment cost are increased.
  • Slurry beds are a form of reactor that is rapidly developing and widely used in the industrial production of hydrogen peroxide.
  • the patent US20030165422 teaches that a slurry bed reactor is suitable for the rhodium hydrogenation reaction.
  • the bed type is suspended in a liquid medium by a very small (5-200 ⁇ m) solid catalyst, and is reacted by dispersing a gas and dispersing it in a liquid.
  • the structure is simple, and the heat transfer and mass transfer performance are excellent.
  • the catalyst particles used in the slurry bed reactor are small, and the phase boundary area of the gas-liquid-solid three-phase is large (can be as high as 3280-16400 m 2 /m 3 ), so the reaction and mass transfer of the catalyst particles of the trickle bed are faster and higher.
  • the catalyst utilization rate is followed. Secondly, the catalyst in the slurry bed is intensely mixed in the bed, the temperature and concentration distribution of the particles in the whole bed are uniform, the heat transfer coefficient of the inner wall of the bed core is relatively high, and the heat capacity of the whole bed is compared. Large and stable. Therefore, the production intensity of the slurry bed per unit volume is higher than that of the trickle bed, and the mass fraction of the hydrogen peroxide product can reach 40%; in addition, the catalyst content of the slurry bed device is relatively small, and the consumption is low, Low operating costs.
  • the slurry bed reactor is therefore suitable for the hydrogenation of hydrazine in the production of high concentrations of hydrogen peroxide.
  • catalysts suitable for the production of high concentrations of hydrogen peroxide in slurry bed reactors have rarely been reported.
  • microporous zeolite molecular sieves have been widely used in refining and petrochemical processes as well as environmental protection and automobile exhaust gas treatment due to their adjustable acidity, high thermal stability and hydrothermal stability, but their pore diameters are relatively high. Small (generally less than 2 nm) limits its application.
  • multi-stage pore materials with high reactivity and mass transfer characteristics have been widely used in the field of catalysts.
  • Xiao Fengshou et al. J. Am. Chem. Soc, 2011, 133, 15346-15349) proposed that in a multi-stage pore structure carrier, microporous channels are beneficial for increasing the dispersion of active metals and facilitating hydrogen atom overflow.
  • the mesoporous channel provides a diffusion channel for the reactant molecules and the product molecules, which facilitates mass transfer in the pores of the carrier, effectively avoids the formation of a large amount of by-products, and further improves the catalyst.
  • the selectivity For the rhodium hydrogenation reaction, the strong acidity and micropores of the molecular sieve facilitate the hydrogen atom overflow, enhance the H 2 dissociation, and help to increase the single-pass activity of the rhodium hydrogenation reaction and the concentration of hydrogen peroxide in the product.
  • suitable mesopores can provide mass transfer channels for the products, effectively reducing the formation and accumulation of by-products, improving selectivity, and avoiding side reactions. Deliberately reducing the conversion rate of the reaction helps to further increase the concentration of hydrogen peroxide in the product.
  • the diffusion and transport of ruthenium molecules are limited when the molecular shape-selecting effect is exerted, thereby affecting the catalytic efficiency.
  • researchers In order to overcome the shortcomings of the diffusion limitation caused by the small pore size of conventional zeolite molecular sieves, researchers generally adopt the following methods: First, increase the zeolite pore size.
  • the third method is multi-stage tunnel assembly and construction of gradient pore structure.
  • the main methods are dealuminization desiliconization modification, hard template method and soft template method.
  • the price of the template agent is high, the preparation method is poor in generality, and the synthesis conditions are harsh, and most of the current industrial applications have not been realized.
  • the present invention is directed to a relatively large molecular weight of ruthenium in the hydrogenation process of ruthenium, and a high-dispersion supported noble metal catalyst having a multi-stage pore structure of a composite support containing a molecular sieve-oxide coating is proposed.
  • the pore structure is advantageous for enhancing the mass transfer of the components, improving the diffusion rate of the components in the pores, and at the same time enhancing the hydrogen overflow and increasing the reactivity. It is suitable for the hydrogenation reaction of the mass transfer control process.
  • the object of the present invention is to provide a highly dispersed supported catalyst for hydrogen peroxide production of hydrogen peroxide and a preparation method thereof, thereby improving single-pass hydrogen efficiency and Effective enthalpy selectivity and further reduce the precious metal content.
  • the highly dispersed supported particulate catalyst prepared in the invention has a molecular sieve-oxide carrier having a multi-stage pore structure and is suitable for the rhodium hydrogenation reaction.
  • microporous channels mainly provided by molecular sieves are beneficial to increase the dispersion of active metals, and are beneficial to hydrogen atom overflow, thereby increasing the hydrogenation activity of the catalyst and reducing the amount of precious metals used; and the mesopores provide diffusion for reactants and products.
  • the channel is beneficial to the mass transfer in the pores, and the mass production of by-products is effectively avoided, thereby improving the selectivity of the catalyst.
  • the present invention provides the following technical solutions:
  • the invention provides a highly dispersed particulate catalyst for hydrogen peroxide synthesis, a preparation method thereof and an application thereof.
  • the present invention provides a highly dispersed particulate catalyst for hydrogen peroxide synthesis, characterized in that the catalyst comprises a catalytically active component, a catalyst auxiliary and a catalyst composite carrier, wherein:
  • the catalytically active component is selected from one or a combination of two of the platinum group noble metals Pd, Pt; the content of the catalytically active component is 0.01-2.00wt based on the total weight of the catalyst. %, in the bimetal combination, the content of Pd is 50%, 100%, preferably 70% to 100% by weight of the total weight of the supporting metal;
  • the catalyst provided by the invention is a composite of I composition and II, which accounts for 58-99.89 wt.% of the total weight of the catalyst.
  • the composition of I in the molecular sieve-oxide composite catalyst carrier is mainly one or several kinds of AlPO series, SAPO series and silicate zinc silicate molecular sieve, phosphate, accounting for 5.0 of the total weight of the carrier. -99.0%, preferably 15-75%.
  • composition II of the composite catalyst carrier is mainly one of a mixture of one or more of Al 2 O 3 , SiO 2 , CeO 2 , TiO 2 and ZrO 2 , and accounts for 1.0-95.0 of the total weight of the carrier. %, preferably 25-85%.
  • the above catalyst active component and catalyst auxiliary agent are supported on a composite support to prepare a particulate catalyst.
  • the catalyst provided by the invention is characterized in that: the AlPO series molecular sieve in the composite catalyst carrier is mainly one or several of AlPO-5, AlPO-8, AlPO-11, AlPO-31, AlPO-34 and AlPO-52. kind.
  • the catalyst provided by the invention is characterized in that: the SAPO series molecular sieves in the composite catalyst carrier are mainly one or more of SAPO-5, SAPO-11, SAPO-31, SAPO-34 and SAPO-56.
  • the catalyst provided by the present invention is characterized in that the aluminum phosphate molecular sieve in the composite catalyst carrier is mainly one or more of VPI-5 and JDF-20.
  • the catalyst provided by the present invention is characterized in that the zinc silicate salt molecular sieve in the composite catalyst carrier is mainly one or more of VPI-7, VPI-8 and CIT-6.
  • the catalyst provided by the present invention wherein: the composite catalyst support mainly phosphate AlPO 4, LaPO 4, YPO 4 , CePO 4, Ba 2 P 2 O 7, CaP 2 O 7, ZrP 2 O 7 in the One or several.
  • the catalyst provided by the invention is characterized in that: the silicate in the composite catalyst carrier is mainly one or more of CaSiO 3 , BaSiO 3 and Al 2 (SiO 3 ) 2 ,
  • the catalyst provided by the present invention is characterized in that the oxide in the composite catalyst carrier is derived from a mixture of one or more of Al 2 O 3 , SiO 2 , CeO 2 , TiO 2 , ZrO 2 , or from Water-soluble salts of Al, Si, Ce, Ti and Zr elements.
  • the catalyst provided by the invention is characterized in that the water-soluble salts of Al in the composite catalyst carrier are mainly Al(NO 3 ) 3 , Al 2 (SO 4 ) 3 , AlCl 3 , NaAlO 2 , Al (Oi-Pr) ) 3 or two or more;
  • the catalyst provided by the invention is characterized in that: the water-soluble salt of Si in the composite catalyst carrier is mainly Na 2 SiO 3 , water glass (modulus is 1.5-3.2), (CH 3 O) 4 Si, (C 2 H 5 O) 4 Si, (CH 3 ) 3 SiCl one or more.
  • the catalyst provided by the invention is characterized in that: the water-soluble salts of Ce in the composite catalyst carrier are mainly Ce(NO 3 ) 3 , Ce(NO 3 ) 4 , Ce(NH 4 ) 2 (NO 3 ) 6 , One or more of CeCl 3 .
  • the catalyst provided by the invention is characterized in that the water-soluble salt of Ti in the composite catalyst carrier is mainly one or two of Ti(NO 3 ) 4 , TiCl 4 , Ti(SO 4 ) 2 and TiOSO 4 . the above.
  • the catalyst provided by the present invention is characterized in that the water-soluble salt of Zr in the composite catalyst carrier is mainly one or more of ZrCl 4 , Zr(NO 3 ) 4 and ZrO(NO 3 ) 2 .
  • the catalyst provided by the present invention has a crystallite size of the catalyst active component metal ranging from 1 to 10 nm; preferably from 1 to 5 nm.
  • the catalyst preparation method provided by the invention comprises the following steps:
  • the steps 1) and 2) may be carried out stepwise or in combination.
  • the step 1) is one or more of AlPO series molecular sieve, SAPO series molecular sieve, aluminum phosphate molecular sieve, zinc silicate molecular sieve, phosphate and silicate with Al 2 O 3 , SiO 2.
  • a powder of one or more of CeO 2 , TiO 2 , and ZrO 2 is mixed, and a hetero-type composite carrier having a particle size of 1-10 mm is prepared by tableting.
  • AlPO series molecular sieves SAPO series molecular sieves, aluminum phosphate molecular sieves, zinc silicate molecular sieves, phosphates and silicates with Al 2 O 3 , SiO 2 , CeO 2 , TiO 2.
  • ZrO 2 are mixed and slowly sprayed into the dilute hydrosol solution of the corresponding element, and after being rotated into spherical particles, the particle size is 1-10 mm.
  • AlPO series molecular sieves SAPO series molecular sieves, aluminum phosphate molecular sieves, zinc silicate molecular sieves, phosphates and silicates with Al 2 O 3 , SiO 2 , CeO 2 , TiO 2 , one or a mixture of ZrO 2 , adding a small amount of the corresponding element of the hydrosol solution and deionized water, stirring to form an aqueous solution slurry or a slurry obtained by wet ball milling, which is formed by oil column method A spherical carrier having a particle size of from 1 to 10 mm.
  • AlPO series molecular sieves SAPO series molecular sieves, aluminum phosphate molecular sieves, zinc silicate molecular sieves, phosphates and silicates and elements containing Al, Si, Ce, Ti and Zr
  • the water-soluble salts are mixed, and a small amount of the corresponding element of the hydrosol solution and deionized water are added, and then uniformly stirred to form a cement, which is formed by extrusion and dried and calcined.
  • the resulting shaped particles have a particle size of from 1 to 10 mm.
  • the catalyst support prepared by the above process is suitable for use in a trickle bed reactor.
  • the step 1) is to use AlPO series molecular sieves, SAPO series molecular sieves, aluminum phosphate molecular sieves, zinc silicate molecular sieves, phosphates and silicates.
  • AlPO series molecular sieves SAPO series molecular sieves
  • aluminum phosphate molecular sieves aluminum phosphate molecular sieves
  • zinc silicate molecular sieves phosphates and silicates.
  • One or more of them are mixed with one or more of Al 2 O 3 , SiO 2 , CeO 2 , TiO 2 , ZrO 2 and formed by a ball milling method.
  • the ball mill has a rotational speed of 200-600 rpm, a ball milling time of 1-10 h, and a particle size of 1-200 ⁇ m, preferably 5-150 ⁇ m.
  • AlPO series molecular sieves SAPO series molecular sieves, aluminum phosphate molecular sieves, zinc silicate molecular sieves, phosphates and silicates with Al 2 O 3 , SiO 2 , CeO 2 , TiO 2 , one or a mixture of ZrO 2 , adding a small amount of the corresponding element of the hydrosol solution and deionized water, stirring to form an aqueous solution slurry, spray drying and forming.
  • the obtained particles have a particle diameter of from 1 to 200 ⁇ m, preferably from 5 to 150 ⁇ m.
  • the water-soluble salts are mixed to form an aqueous slurry, which is formed by ball milling and calcined.
  • the ball mill has a rotation speed of 200 to 600 rpm, a ball milling time of 1-10 h, and a particle diameter of the obtained particles of from 1 to 200 ⁇ m, preferably from 5 to 150 ⁇ m.
  • the calcination temperature is from 250 to 750 ° C, preferably from 300 to 600 ° C.
  • AlPO series molecular sieves SAPO series molecular sieves, aluminum phosphate molecular sieves, zinc silicate molecular sieves, phosphates and silicates and elements containing Al, Si, Ce, Ti and Zr
  • the water-soluble salts are mixed to form an aqueous slurry, and the slurry is spray-molded and fired.
  • the obtained particles have a particle diameter of from 1 to 200 ⁇ m, preferably from 5 to 150 ⁇ m.
  • the calcination temperature is from 250 to 750 ° C, preferably from 300 to 600 ° C.
  • the macroscopic particle size of the molecular sieve and the oxide has a great influence on the mechanical strength of the molding. If the molecular sieve and the oxide particle have a particle diameter of more than 10 ⁇ m, the machine for forming the particle carrier in the later stage is formed. The mechanical strength is low and it is difficult to meet the industrial application requirements.
  • the suitable particle diameter of the particles of the molecular sieve and the oxide is between 0.1 and 10 ⁇ m, preferably 0.2 to 5 ⁇ m, especially for the preparation of the slurry bed particle catalyst, strictly controlling the composition of I and II.
  • the carrier of the present invention has a particle size of between 0.2 and 5 ⁇ m, which would otherwise greatly reduce the strength of the particulate catalyst and increase the cost of the catalyst.
  • the catalyst preparation method provided by the present invention is to immerse the composite carrier particles A in an aqueous solution of a catalyst auxiliary agent, and after drying and calcining, to obtain a catalyst precursor B, this step is repeated until a desired catalyst auxiliary agent is obtained. the amount.
  • the catalyst auxiliary agent in an amount of the catalyst auxiliary agent required is directly dissolved in the aqueous solution slurry of the carrier in the step 1), and after the slurry is dried, calcined and shaped, the catalyst precursor B is obtained.
  • the catalyst preparation method provided by the invention should be consistent, which is beneficial to increase the strength of the catalyst particles.
  • the catalyst provided by the invention is characterized in that the water-soluble salts of the catalyst auxiliary are LaCl 3 , La(NO 3 ) 3 , La 2 (SO 4 ) 3 , NdCl 3 , Nd(NO 3 ) 3 , PrCl 3 , Pr (NO 3 ) 3 , Ba(NO 3 ) 2 , BaCl 2 , Ca(NO 3 ) 2 , CaCl 2 , Mg(NO 3 ) 2 , MgCl 2 , KNO 3 and K 2 (CO 3 ) 2 Or two or more.
  • the water-soluble salts of the catalyst auxiliary are LaCl 3 , La(NO 3 ) 3 , La 2 (SO 4 ) 3 , NdCl 3 , Nd(NO 3 ) 3 , PrCl 3 , Pr (NO 3 ) 3 , Ba(NO 3 ) 2 , BaCl 2 , Ca(NO 3 ) 2 , CaCl 2 , Mg(NO 3 ) 2
  • the catalyst preparation method provided by the present invention wherein the step 3) is a platinum group noble metal catalytically active component, is carried on the catalyst precursor B by impregnation of the precursor aqueous solution of the noble metal component, and is dried and calcined.
  • the oxidation state catalyst C this step can be repeated until the required loading amount is obtained; wherein the oxidation state catalyst C has a calcination temperature of 250 to 500 ° C, preferably 300 to 400 ° C.
  • the precursor aqueous solution of the precious metal component is mainly PdCl 2 , Pd(NO 3 ) 2 , H 2 PdCl 4 , Pd(NH 3 ) 4 Cl 2 , Na 2 PdCl 4 , Pd ( One or more of acac) 2 , PtCl 2 , PtCl 4 , and H 2 PtCl 6 ;
  • the catalyst preparation method provided by the present invention, the step 4) the reduction mode of the oxidation state catalyst C is at least one of a hydrogen atmosphere, a formaldehyde solution, a sodium borohydride solution, and a hydrazine hydrate solution.
  • the catalyst provided by the invention is applied to the process of catalytic hydrogenation of hydrogen peroxide to produce hydrogen peroxide.
  • the hydrazine working carrier used in the hydrazine catalytic hydrogenation production is one of 2-ethyl hydrazine, 2-pentyl hydrazine and 2-isobutyl hydrazine or the above several working carriers. The mixture is combined.
  • the present invention provides a highly dispersed supported particulate catalyst for a rhodium hydrogenation process for hydrogen peroxide production, the molecular sieve-oxide support having a multi-stage pore structure suitable for the rhodium hydrogenation reaction.
  • the microporous channels mainly provided by the molecular sieves are beneficial to increase the dispersion of the active precious metals, and at the same time, facilitate the overflow of hydrogen atoms, thereby increasing the hydrogenation activity of the catalyst and reducing the amount of precious metals used; and the mesopores provide diffusion for the reactants and products.
  • the channel is beneficial to the mass transfer in the pores, and the mass production of by-products is effectively avoided, thereby improving the selectivity of the catalyst.
  • the highly dispersed supported particulate catalyst of the present invention has high catalytic activity and good stability.
  • Figure 1 is a transmission electron micrograph of Catalyst A.
  • the performance evaluation of the catalyst was carried out using a small trickle bed tubular reactor and a full slurry bed mixed tank reactor, respectively.
  • the three working fluids used in the experimental evaluation, the working fluid solvent and the working carrier are shown in Table 1.
  • the concentration of 2-ethyl hydrazine was 120 g/L, and the solvent was a mixed solvent of a heavy aromatic hydrocarbon and a trioctyl phosphate volume of 3:1.
  • the system temperature is 40 ° C and the system control pressure is 0.3 MPa (gauge pressure).
  • the volume of the tubular reactor was 20 ml, and a catalyst having a volume of about 1 ml was placed inside the reactor, and the bottom of the catalyst was fixed with quartz sand.
  • the catalyst used in the pilot test was prepared by pulverization granulation.
  • the hydrogen flow rate at the catalyst evaluation was 3 ml/min, and the working liquid flow rate was 0.3 ml/min.
  • the full-mixed reactor has a volume of 200 ml and a built-in paddle and gas distributor.
  • a catalyst having a volume of approximately 1 ml was placed inside the reactor.
  • the evaluation was carried out by continuous feed and discharge, with a total liquid volume of 150 ml, a feed rate of 0.3 ml/min, and a hydrogen flow rate of 300 ml/min.
  • the catalysts obtained in Examples 1-8 were subjected to a trickle bed tubular reactor, and the catalysts obtained in Examples 9-16 were subjected to a slurry bed full-mix reactor.
  • the oxidation catalyst was reduced in 20 ml of formaldehyde solution (0.1 M), the reduction temperature was controlled at 60 ° C, the reduction time was 1 h, and then rinsed with deionized water and then dried at room temperature to obtain catalyst A.
  • the oxidation catalyst was subjected to reduction in a H 2 atmosphere at a reduction temperature of 60 ° C and a reduction time of 24 h to obtain a catalyst B.
  • the oxidation catalyst was placed in a NaBH 4 solution (10 wt%) for reduction, the reduction time was 1 h, the reduction temperature was 30 degrees, and then rinsed with deionized water and then dried at room temperature to obtain a catalyst C.
  • the oxidation catalyst was reduced in a hydrazine hydrate solution (20 wt%), and the reduction time was 2 h at normal temperature, and then rinsed with deionized water and dried at room temperature to obtain a catalyst D.
  • a solution was prepared by dissolving 0.06 g of Pr(NO 3 ) 3 ⁇ 6H 2 O in 5 ml of deionized water, and the calcined particles were immersed in the solution for 4 h.
  • a solution was prepared by dissolving 0.06 g of La(NO 3 ) 3 ⁇ 6H 2 O in 5 ml of deionized water, and the calcined particles were immersed in the solution for 4 h.
  • the oxidation catalyst was reduced in 20 ml of formaldehyde solution (0.1 M), and reduced at a temperature of 60 ° C for 1 h, then rinsed with deionized water and dried at room temperature to obtain a catalyst F.
  • the oxidation catalyst was reduced in 20 ml of hydrazine hydrate solution (20 wt%), and reduced at room temperature for 2 h, then rinsed with deionized water and dried at room temperature to obtain catalyst G.
  • the oxidation catalyst was reduced in 20 ml of formaldehyde solution (0.1 M), the reduction temperature was 60 ° C, the reduction time was 1 h, and then rinsed with deionized water and then dried at room temperature to obtain catalyst I.
  • the oxidation catalyst was placed in a hydrazine hydrate solution (20 wt%) at room temperature for reduction for 2 h, and then rinsed with deionized water and dried at room temperature to obtain a catalyst K.
  • the oxidation catalyst is placed in a NaBH 4 solution (10 wt%) for reduction, and reduced at room temperature for 1 hour, and then rinsed with deionized water and then dried at room temperature to obtain a catalyst L.
  • a solution was prepared by dissolving 0.06 g of Pr(NO 3 ) 3 ⁇ 6H 2 O in 5 ml of deionized water, and the calcined particles were immersed in the solution for 4 h.
  • the oxidation catalyst was reduced in 20 ml of hydrazine hydrate solution (20 wt%), and reduced at room temperature for 2 h, then rinsed with deionized water and dried at room temperature to obtain catalyst M.
  • the oxidation catalyst was reduced in 20 ml of formaldehyde solution (0.1 M), and reduced at a temperature of 60 ° C for 1 h, then rinsed with deionized water and dried at room temperature to obtain catalyst N.
  • the oxidized catalyst was reduced in 20 ml of hydrazine hydrate solution (20 wt%), and reduced at room temperature for 2 h, then rinsed with deionized water and dried at room temperature to obtain catalyst O.
  • the catalyst of the invention is mainly composed of one or two kinds of noble metals Pd and Pt, and is supported on a composite carrier of AlPO series, SAPO series and silicate zinc molecular sieve, phosphate and oxide to form a catalyst.
  • the catalyst carrier of the invention has a microporous-mesoporous composite multi-stage pore structure, wherein the micropores are beneficial to increase the dispersion degree of the active metal and the hydrogen atom overflow, thereby improving the hydrogenation activity of the catalyst and reducing the amount of precious metal;
  • the reactants and products provide diffusion channels, which facilitate mass transfer in the pores, effectively avoiding the formation of a large amount of by-products, thereby improving the selectivity of the catalyst.
  • AlPO series, SAPO series and silicate zincate molecular sieves, phosphate and oxide composite carriers are easy to modify, adjust the acidity and alkalinity, and help to further improve the performance of the catalyst.
  • AlPO series, SAPO series and silicate zinc molecular sieves have good hydrothermal stability of phosphate, which is beneficial to improve the stability of the catalyst.
  • the catalyst of the invention can be used in the process of catalytic hydrogenation of hydrogen peroxide to produce hydrogen peroxide in a trickle bed or slurry bed, wherein the reaction temperature is 40 ° C, the pressure is 0.4 MPa, and the liquid space velocity is 18 h -1 , 2-ethyl hydrazine
  • the space-time yield of the working droplet bed reactor can reach 0.7-2.7kg H2O2 (100%) g Pd -1 d -1
  • the space-time yield of the slurry bed reactor can reach 0.8-3.2kg H2O2 (100%) g Pd -1 d -1
  • 2-pentyl hydrazine working solution in the trickle bed reactor and slurry bed reactor space-time yield can reach the trickle bed reactor space-time yield can reach 0.8-2.9kg H2O2 (100% ) g Pd -1 d -1 and 1.1-3.5kg H2O2 (100%) g Pd -1 d -1, two space-time yield values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种用于双氧水合成的高分散颗粒催化剂及其制备方法和应用。该催化剂以贵金属 Pd、Pt 中的一种或者两种组合为主要活性组分,担载于 AlPO 系列、 SAPO系列及硅锌酸盐分子筛,磷酸盐和氧化物的复合载体上制成催化剂。催化剂载体具有微孔-介孔复合的多级孔结构,复合载体易于改性,调节酸碱性,有助于进一步提高催化剂的性能。

Description

一种用于双氧水合成的高分散颗粒催化剂及其制备方法和应用 技术领域
本发明属于石油化工领域,具体涉及一种蒽醌加氢整体催化剂及其制备方法。
背景技术
双氧水是一种优良的化工产品,由于它在使用后只产生水和氧气,不造成二次污染,因此被称为“绿色化工产品”。可作为氧化剂、漂白剂、消毒剂、脱氧剂等,广泛应用于造纸、化工、环保、电子、航天等行业。近年来,在新型的绿色化工领域中,如:己内酰胺,环己酮,对苯二酚,环氧丙烷等产品生产过程均以双氧水作为氧化剂,进一步开拓了双氧水新的应用领域。截至2014年底,国内双氧水生产企业共有50余家,装置80余套,总产能已近1000万吨(按27.5%折算)。2015年,国内双氧水产能将达到1100万~1200万吨,其中50%多用于配套下游。
生产双氧水的方法主要有:电解法、蒽醌法、空气阴极法、氢氧直接化合法以及真空富集法等,其中蒽醌法是应用最为广泛的方法。蒽醌法生产双氧水的过程如下:首先是工作液中的蒽醌在催化剂存在的情况下,和氢气进行加氢催化反应生成蒽氢醌。其次是氧化步骤,主要是蒽氢醌和氧气、空气或者含有氧气的混合气体发生氧化反应生成双氧水和蒽醌,最后通过水萃取分离双氧水得到双氧水水溶液和工作液,其中的工作液可以返回到上述的加氢催化反应步骤,从而形成一个完整的循环过程。目前,生产过程中最常用的工作载体为2-乙基蒽醌,但由于其在工作溶剂中溶解度低,限制了其作为工作载体时加氢过程氢效,不利于生产高浓度双氧水。2-戊基蒽醌因溶解度高,能够显著提高双氧水产率,成为了2-乙基蒽醌的良好替代品。但是由于2-戊基蒽醌的成本较高,目前未在国内得到广泛应用。
目前蒽醌法制备双氧水工业生产装置主要采用滴流床和浆态床反应器。Santacesaria(Chem.Eng.Sci.1999,54,2799-2809)等人的研究指出蒽醌加氢反应为传质扩散控制的反应,控制步骤在于H2从气相传递到液体工作液中的速率与液相中的H2传递到固体催化剂表面的传递速率。滴流床在平推流下操作,催化剂表面液层很薄,其总液层阻力较其它类型的三相反应器小,可获得较高转化率,且并流操作不存在液泛问题。此外滴流床中催化剂机械磨损小,催化剂消耗量少。因而使用颗粒催化剂的滴流床反应器适用于蒽醌加氢反应。目前国内大部的双氧水企业采用的是黎明化工研究院的技术,选用滴流床反应器进行生产。该工艺中使用的蒽醌加氢催化剂主要为Pd/Al2O3催化剂,金属Pd负载量为0.3%-0.6%之间,催化剂时空产率为3.0-3.6gH2O2/(gCat·d)(100%),生产能力偏低。此外,由于Pd/Al2O3催化剂的选择性较差,反应过程中会产生大量副产物,降低了蒽氢醌的产率,同时使得蒽醌原料的循环回收率下降,因而实际生产过程中一般控制氢效范围在7.0-7.5g/L之间,所得双氧水的质量分数大部分控制在27.5%。但是,工业生产过程中所需要的双氧水浓度一般为50%,目前生产的双氧水需要经过蒸发、精馏等过程提浓后才能使用,增加了能耗和设备成本。
浆态床则是双氧水工业生产中发展迅速和应用广泛的一种反应器形式。专利US20030165422中指出浆态床反应器适用于蒽醌加氢反应。该床型是以非常小的(5-200μm)固体催化剂悬浮于液体介质中,通入气体并使其分散于液体中发生反应,其结构简单,传热、传质性能优良。浆态床反应器中采用的催化剂颗粒小,气液固三相的相界面积大(可以高达3280-16400m2/m3),因此比滴流床的催化剂颗粒的反应、传质快,提高了催化剂的利用率;其次,浆态床中催化剂在床内混合激烈,颗粒在全床内的温度和浓度分布均一,床层核内壁换热面积的传热系数比较高,全床的热容量比较大,稳定性高。因此,单位体积设备的浆态床生产强度要高于滴流床,双氧水产 品质量分数可以达到40%;此外浆态床装置一次性投入的催化剂含量相对少,而采用陆续补加,消耗低,运行费用低。因而浆态床反应器适用于生产高浓度双氧水的蒽醌加氢反应。但适用于浆态床反应器生产高浓度双氧水的催化剂鲜有报道。
近年来,微孔沸石分子筛由于其具有可调变的酸性、高热稳定性和水热稳定性使其在炼油和石油化工过程以及环保和汽车尾气处理等领域有着广泛的应用,但因其孔径较小(一般小于2nm)限制了其应用。与此同时具有高反应活性和传质特性的多级孔材料应用于催化剂领域的研究得到了广泛的关注。肖丰收等人(J.Am.Chem.Soc,2011,133,15346-15349)提出在多级孔结构的载体中,微孔孔道有利于提高活性金属的分散度,同时有利于氢原子溢流,从而提高催化剂的加氢活性,减少贵金属的用量;介孔孔道为反应物分子和产物分子提供扩散通道,有利于其在载体孔内的传质,有效避免了副产物大量生成,进而提高催化剂的选择性。对于蒽醌加氢反应,分子筛的强酸性和微孔有利于氢原子溢流,加强了H2解离,有助于提高蒽醌加氢反应的单程活性和产物中双氧水的浓度,同时还可降低贵金属使用量,降低投资;由于蒽醌分子尺寸较大,合适的介孔孔道可为其和产物提供传质通道,有效减少副产物的生成和积累,提高选择性,避免了为抑制副反应而刻意降低反应转化率的情况,有助于进一步提高产物中双氧水的浓度。但是,由于其孔径限制,在发挥分子择形效应时,蒽醌分子的扩散和传输会受到限制,从而影响催化效率。为了克服常规沸石分子筛小孔径带来的扩散限制方面的缺点,研究者通常采用以下方法:一是增大沸石孔径。如研究中发现的许多新类型的大孔径沸石如UTD-1,CIT-5和ITQ-21等和介孔分子筛SBA-15,MCM-41等,但是这些材料由于存在合成成本高,合成工艺复杂不易放大等问题,而且形成的大孔径为相对较小的介孔(2-4nm),无法满足加氢选择性的要求,因而目前绝大多数未实现工业应用。第二种方法是减小沸石晶粒尺寸制备纳米沸石。但是纳米沸石的合成存在沸石分子筛过滤分离困难的问题,而且精确控制沸石尺寸是难点。第三种方法是多级孔道组装与构建梯度孔结构,主要方法有脱铝脱硅改性、硬模板法和软模板法,但由于改性后骨架结构不稳定、硬模板法孔道连通性差、软模板法中模板剂价格高昂、制备方法通用性差、合成条件苛刻,目前绝大多数也未实现工业应用。
目前为止,由于可调孔径介孔分子筛的合成存在难以控制介孔尺度、以及成本高等缺点,因而难以满足工业的需求。鉴于此,本发明针对蒽醌加氢过程中蒽醌分子比较大的特点,提出了含有分子筛-氧化物涂层的复合载体具有多级孔结构的高分散负载型贵金属催化剂。其提出的催化剂结构中,孔道结构有利于强化组分的质量传递,改善组分在孔道内的扩散速率,同时能够加强氢溢流,提高反应活性。适合于传质控制过程的蒽醌加氢反应。
发明内容
针对现有技术存在的加氢效率低,选择性差的不足之处,本发明的目的在于提供一种用于蒽醌加氢生产双氧水的高分散负载型催化剂及其制备方法,提高单程氢效和有效蒽醌的选择性,并进一步降低贵金属的含量。本发明中制备的高分散负载型颗粒催化剂,其分子筛-氧化物载体具有多级孔结构,适用于蒽醌加氢反应。其中主要由分子筛提供的微孔孔道有利于提高活性金属的分散度,同时有利于氢原子溢流,从而提高催化剂的加氢活性,降低贵金属使用量;而介孔孔道为反应物和产物提供扩散通道,有利于其孔内的传质,有效避免了副产物大量生成,进而提高催化剂的选择性。
为了实现本发明的上述目的,本发明提供了如下技术方案:
本发明提供了一种用于双氧水合成的高分散颗粒催化剂、其制备方法及应用。
本发明提供了一种用于双氧水合成的高分散颗粒催化剂,其特征在于:该催化剂包括催化活性组分、催化剂助剂和催化剂复合载体,其中:
本发明提供的催化剂,所述催化活性组分选自铂族贵金属Pd、Pt中的一种或两种的组合;催化活性组分的含量以贵金属单质计,占催化剂总重量的0.01-2.00wt%,在双金属组合中,Pd的含量以单质计,占担载金属总重量的50-100%,优选70-100%;
本发明提供的催化剂,所述催化剂复合载体为I组成和II的复合物,占催化剂总重的58-99.89wt.%。
本发明提供的催化剂,所述分子筛-氧化物复合催化剂载体中I组成主要为为将AlPO系列、SAPO系列及硅锌酸盐分子筛,磷酸盐中的一种或几种,占载体总重量的5.0-99.0%,优选15-75%。
本发明提供的催化剂,所述复合催化剂载体中II组成主要为Al2O3、SiO2、CeO2、TiO2、ZrO2中的一种或几种的混合物,占载体总重量的1.0-95.0%,优选25-85%。
以上催化剂活性组分和催化剂助剂担载在复合载体上制备形成颗粒催化剂。
本发明提供的催化剂,其特征在于:所述复合催化剂载体中AlPO系列分子筛主要为AlPO-5,AlPO-8,AlPO-11,AlPO-31,AlPO-34,AlPO-52中的一种或几种。
本发明提供的催化剂,其特征在于:所述复合催化剂载体中SAPO系列分子筛主要为SAPO-5,SAPO-11,SAPO-31,SAPO-34,SAPO-56中的一种或几种。
本发明提供的催化剂,其特征在于:所述复合催化剂载体中磷酸铝盐类分子筛主要为VPI-5,JDF-20中的一种或几种。
本发明提供的催化剂,其特征在于:所述复合催化剂载体中硅酸锌盐类分子筛主要为VPI-7,VPI-8,CIT-6中的一种或几种。
本发明提供的催化剂,其特征在于:所述复合催化剂载体中磷酸盐主要为AlPO4,LaPO4,YPO4,CePO4,Ba2P2O7,CaP2O7,ZrP2O7中的一种或几种。
本发明提供的催化剂,其特征在于:所述复合催化剂载体中硅酸盐主要为CaSiO3,BaSiO3,Al2(SiO3)2中的一种或几种,
本发明提供的催化剂,其特征在于:所述复合催化剂载体中氧化物来自于Al2O3、SiO2、CeO2、TiO2、ZrO2中的一种或几种的混合物,或者来自于含Al、Si、Ce、Ti和Zr元素的水溶性盐类。
本发明提供的催化剂,其特征在于:所述复合催化剂载体中Al的水溶性盐类主要为Al(NO3)3、Al2(SO4)3、AlCl3、NaAlO2、Al(O-i-Pr)3中的一种或两种以上;
本发明提供的催化剂,其特征在于:所述复合催化剂载体中Si的水溶性盐类主要为Na2SiO3,水玻璃(模数为1.5-3.2),(CH3O)4Si,(C2H5O)4Si,(CH3)3SiCl中的一种或两种以上。
本发明提供的催化剂,其特征在于:所述复合催化剂载体中Ce的水溶性盐类主要为Ce(NO3)3,Ce(NO3)4,Ce(NH4)2(NO3)6,CeCl3中的一种或两种以上。
本发明提供的催化剂,其特征在于:所述复合催化剂载体中Ti的水溶性盐类主要为Ti(NO3)4,TiCl4,Ti(SO4)2,TiOSO4中的一种或两种以上。
本发明提供的催化剂,其特征在于:所述复合催化剂载体中Zr的水溶性盐类主要为ZrCl4,Zr(NO3)4,ZrO(NO3)2中的一种或两种以上。
本发明提供的催化剂,其所述催化剂活性组分金属的晶粒尺寸范围为1-10nm;其中优选为1-5nm。
本发明提供的催化剂制备方法,包括下述步骤:
1)将所述催化剂中的分子筛和无机氧化物载体混合后成型,得到催化剂分子筛及复合载体颗粒A;
2)将所述的催化剂助剂担载在上述步骤1)得到的分子筛及复合载体上,经过干燥和焙烧,得到催化剂前体B;
3)将所述的铂族贵金属活性组分担载到上述步骤2)得到的催化剂前体B上,经过干燥和焙烧,制成氧化态催化剂C;
4)将3)的氧化态催化剂C进行还原,最终得到催化剂D。
本发明提供的催化剂制备方法,所述步骤1)和步骤2)可分步进行,也可合并进行。
其中所述步骤1)为将AlPO系列分子筛、SAPO系列分子筛,磷酸铝盐类分子筛、硅酸锌盐类分子筛,磷酸盐和硅酸盐中中的一种或几种与Al2O3、SiO2、CeO2、TiO2、ZrO2中的一种或几种的粉末混合,采用压片的方式制备出颗粒大小为1-10mm的异型复合载体。
或者为将AlPO系列分子筛、SAPO系列分子筛,磷酸铝盐类分子筛、硅酸锌盐类分子筛,磷酸盐和硅酸盐中的一种或几种与Al2O3、SiO2、CeO2、TiO2、ZrO2中的一种或几种混合,缓缓喷入相应元素的稀水溶胶溶液,经过转动成球型颗粒,颗粒粒径为1-10mm。
或者为将AlPO系列分子筛、SAPO系列分子筛,磷酸铝盐类分子筛、硅酸锌盐类分子筛,磷酸盐和硅酸盐中的一种或几种与Al2O3、SiO2、CeO2、TiO2、ZrO2中的一种或几种混合,加入少量相应元素的水溶胶溶液和去离子水后搅拌均匀形成水溶液浆料或者采用湿法球磨的方式得到的浆料,采用油柱法成型得到的颗粒粒径为1-10mm的圆球载体。
或者为将AlPO系列分子筛、SAPO系列分子筛,磷酸铝盐类分子筛、硅酸锌盐类分子筛,磷酸盐和硅酸盐中的一种或几种与含Al、Si、Ce、Ti和Zr元素的水溶性盐类混合,加入少量相应元素的水溶胶溶液和去离子水后搅拌均匀形成胶泥,使用挤条法成型后干燥焙烧。所得异形颗粒粒径为1-10mm。
以上所述方法制备的催化剂载体适用于滴流床反应器。
适用于浆态床反应器的催化剂载体的制备过程中,所述步骤1)为将AlPO系列分子筛、SAPO系列分子筛,磷酸铝盐类分子筛、硅酸锌盐类分子筛,磷酸盐和硅酸盐中的一种或几种与Al2O3、SiO2、CeO2、TiO2、ZrO2中的一种或几种混合,使用球磨法成型。球磨机转速为200-600rpm,球磨时间为1-10h,颗粒粒径为1-200μm,优选5-150μm。
或者为将AlPO系列分子筛、SAPO系列分子筛,磷酸铝盐类分子筛、硅酸锌盐类分子筛,磷酸盐和硅酸盐中的一种或几种与Al2O3、SiO2、CeO2、TiO2、ZrO2中的一种或几种混合,加入少量相应元素的水溶胶溶液和去离子水后搅拌均匀形成水溶液浆料后喷雾干燥成型。所得颗粒粒径为1-200μm,优选5-150μm。
或者为将AlPO系列分子筛、SAPO系列分子筛,磷酸铝盐类分子筛、硅酸锌盐类分子筛,磷酸盐和硅酸盐中的一种或几种与含Al、Si、Ce、Ti和Zr元素的水溶性盐类混合形成水溶液浆料,将浆料经过球磨法成型后并焙烧。球磨机转速为200-600rpm,球磨时间为1-10h,所得颗粒粒径为1-200μm,优选5-150μm。焙烧温度为250-750℃,优选300-600℃。
或者为将AlPO系列分子筛、SAPO系列分子筛,磷酸铝盐类分子筛、硅酸锌盐类分子筛,磷酸盐和硅酸盐中的一种或几种与含Al、Si、Ce、Ti和Zr元素的水溶性盐类混合形成水溶液浆料,将浆料喷雾成型并焙烧。所得颗粒粒径为1-200μm,优选5-150μm。焙烧温度为250-750℃,优选300-600℃。
在制备过程中,分子筛和氧化物的宏观颗粒大小对成型的机械强度有很大的影响,如果分子筛和氧化物颗粒粒径大于10μm的时候,造成后期成型的颗粒载体的机 械强度低,难以满足工业化的应用要求。在本发明中,分子筛和氧化物的颗粒的适宜粒径均为0.1-10μm之间,其中优选0.2-5μm,尤其是对于浆态床颗粒催化剂的制备过程中,严格控制I组成和II组成的颗粒尺度,然而要得到尺度很小的载体材料,制备的成本和难度将会加大。因此,本发明提供的载体的颗粒尺度在0.2-5μm之间,否则将会大大降低颗粒催化剂的强度以及增加催化剂的成本。
本发明提供的催化剂制备方法,所述步骤2)为将复合载体颗粒A浸渍于催化剂助剂水溶液中,经过干燥和焙烧,得到催化剂前体B,此步骤重复进行直到得到需要的催化剂助剂上载量。
或者将按所需要的催化剂助剂上载量的催化剂助剂在步骤1)中直接溶于载体的水溶液浆料中,浆料经过干燥和焙烧和成型后,得到催化剂前体B。
本发明提供的催化剂制备方法,所述步骤1)中分子筛与氧化物混合前粒度应保持一致,有利于提高催化剂颗粒的强度。
本发明提供的催化剂,特征在于:催化剂助剂的水溶性盐类为LaCl3,La(NO3)3,La2(SO4)3,NdCl3,Nd(NO3)3,PrCl3,Pr(NO3)3,Ba(NO3)2,BaCl2,Ca(NO3)2,CaCl2,Mg(NO3)2,MgCl2,KNO3和K2(CO3)2中的一种或两种以上。
本发明提供的催化剂制备方法,所述步骤3)为铂族贵金属催化活性组分时是通过贵金属组分的前驱体水溶液以浸渍的方式担载在催化剂前驱体B上,经过干燥和焙烧,制成氧化态催化剂C;此步骤可以重复进行直到获得需要的担载量;其中氧化态催化剂C的焙烧温度为250-500℃,优选300-400℃。
本发明提供的催化剂制备方法,所述贵金属组分的前驱体水溶液主要为PdCl2、Pd(NO3)2、H2PdCl4、Pd(NH3)4Cl2、Na2PdCl4、Pd(acac)2、PtCl2、PtCl4、H2PtCl6中的一种或两种以上;
本发明提供的催化剂制备方法,所述步骤4)氧化态催化剂C的还原方式为氢气气氛,甲醛溶液,硼氢化钠溶液,水合肼溶液中的至少一种。
本发明提供的催化剂,应用于蒽醌催化加氢生产双氧水的过程。所述的蒽醌催化加氢生产中使用的蒽醌工作载体为2-乙基蒽醌,2-戊基蒽醌和2-异丁基蒽醌中的一种或者是上述几种工作载体的混合物组合而成。
本发明的催化剂和制备方法有如下特性:
针对双氧水生产的蒽醌加氢工艺过程,本发明提供一种高分散的负载型颗粒催化剂,其分子筛-氧化物载体具有多级孔结构,适用于蒽醌加氢反应。其中主要由分子筛提供的微孔孔道有利于提高活性贵金属的分散度,同时有利于氢原子溢流,从而提高催化剂的加氢活性,降低贵金属使用量;而介孔孔道为反应物和产物提供扩散通道,有利于其孔内的传质,有效避免了副产物大量生成,进而提高催化剂的选择性。本发明中的高分散负载型颗粒催化剂催化活性高,稳定性好。
附图说明
图1为催化剂A的透射电子显微镜照片。
图2为催化剂I的透射电子显微镜照片。
具体实施方式
以下实施实例将对本发明给予进一步的说明,但并不因此而限制本发明。
催化剂的性能评价分别采用小型的滴流床管式反应器和全浆态床混釜反应器进行。实验评价中采用的三种工作液,工作液溶剂和工作载体如表1所示。2-乙基蒽醌的浓度为120g/L,溶剂采用重芳烃和磷酸三辛脂体积为3:1的混合溶剂。***温度为40℃,***控制压力为0.3MPa(表压)。
表1蒽醌工作液成分表
Figure PCTCN2017070717-appb-000001
管式反应器的容积为20ml,取体积大约为1ml的催化剂置于反应器内部,催化剂的底部用石英砂填充固定。小试实验中采用的催化剂为粉碎造粒法制备。催化剂评价时氢气流量为3ml/min,工作液流量为0.3ml/min。
全混釜反应器体积为200ml,内置搅拌桨和气体分布器。取体积大约为1ml的催化剂置于反应器内部。评价采用连续进出料方式,总液量为150ml,进料速度为0.3ml/min,氢气流量为300ml/min。
实施例1-8所得催化剂采用滴流床管式反应器,实施例9-16所得催化剂采用浆态床全混釜反应器。
实施例1:
a)称取0.2g AlPO-11,0.8g Al2O3,混合均匀后压片造粒,压片压力为5MPa,颗粒粒度为20-30目。
b)取3mg La(NO3)3·6H2O溶于5ml水中形成La(NO3)3溶液,将步骤1)所得的颗粒浸渍于此溶液,浸渍时间2h,然后80℃烘干12h制得载体。
c)取0.5g载体浸渍于1ml浓度为0.6mg/ml的H2PtCl6溶液(以Pt计),浸渍时间为2h。
d)80℃干燥12h后于400℃焙烧2h,即得氧化态催化剂。
e)将氧化态催化剂置于20ml甲醛溶液(0.1M)中还原,还原温度控制在60℃,还原时间为1h,后用去离子水冲洗后常温晾干得到催化剂A。
TEM照片见图1,催化剂加氢性能评价结果见表2。
实施例2:
a)称取0.4g SAPO-34,0.6g SiO2,0.1g硅溶胶(40wt%)和20ml去离子水,混合均匀后80℃干燥、造粒,颗粒粒度为10-20目。
b)取0.64g Mg(NO3)2·6H2O溶于5ml水中形成Mg(NO3)2溶液,将步骤1)所得的颗粒浸渍于此溶液,浸渍时间2h,然后80℃烘干12h制得载体。
c)取0.5g载体浸渍于1ml浓度为3mg/ml的H2PdCl4溶液(以Pd计),浸渍时间为2h。
d)80℃干燥12h后于300℃焙烧2h,即得氧化态催化剂。
e)将氧化态催化剂置于H2气氛中还原,还原温度为60℃,还原时间为24h后得到催化剂B。
催化剂加氢性能评价结果见表2。
实施例3:
a)称取0.6g VPI-5,0.4g CeO2,0.1g铈溶胶(10wt.%),0.52g Nd(NO3)3·6H2O和20ml去离子水混合均匀后120℃干燥、造粒制得载体,颗粒粒度为10-20目。
b)取0.5g载体浸渍于1ml浓度为3mg/ml的Pd(NO3)2溶液(以Pd计),浸渍时间为2h。
c)60℃真空干燥12h后于250℃焙烧2h,即得氧化态催化剂。
d)将氧化态催化剂置于NaBH4溶液(10wt%)中还原,还原时间为1h,还原温度为30度,后用去离子水冲洗后常温晾干得到催化剂C。
催化剂加氢性能评价结果见表2。
实施例4:
a)称取0.6g VPI-8,1.48g Ti(NO3)4,0.68g Ba(NO3)2和20ml去离子水混合均匀后120℃干燥、造粒,颗粒粒度为40-60目。
b)将所得颗粒于500℃焙烧4h,制得载体颗粒。
c)取0.5g载体浸渍于1ml浓度为1.2mg/ml的Pd(NH3)4Cl2溶液(以Pd计),浸渍时间为2h。
d)60℃真空干燥12h后于350℃焙烧2h,即得氧化态催化剂。
e)将氧化态催化剂置于水合肼溶液(20wt%)中还原,常温下还原时间为2h,后用去离子水冲洗后常温晾干得到催化剂D。
催化剂加氢性能评价结果见表2。
实施例5:
a)称取0.9g SAPO-5,0.28g Zr(NO3)4﹒5H2O与20ml去离子水混合均匀后120℃干燥、造粒,颗粒粒度为60-80目。
b)将所得颗粒于500℃焙烧4h。
c)取0.06g Pr(NO3)3·6H2O溶于5ml去离子水中制成溶液,将焙烧后的颗粒浸渍于此溶液中,浸渍时间4h。
d)上述颗粒于120℃干燥后,400℃焙烧2h制得载体颗粒。
e)取0.5g载体浸渍于1ml浓度为0.6mg/ml的Pd(NH3)4Cl2溶液(以Pd计),浸渍时间为2h。
f)60℃真空干燥12h后,再将颗粒浸渍于1ml浓度为0.6mg/ml的Pt(NH3)4Cl2溶液(以Pt计),浸渍时间为2h。
g)再次于60℃真空干燥12h,后于350℃焙烧2h,即得氧化态催化剂。
h)将氧化态催化剂置于20ml水合肼溶液(20wt%)中,常温还原,还原时间为2h,后用去离子水冲洗后常温晾干得到催化剂E。
催化剂加氢性能评价结果见表2。
实施例6:
a)称取0.2g AlPO4,0.8g Al2O3,与20ml去离子水混合均匀后120℃干燥、造粒,颗粒粒度为60-80目。
b)将所得颗粒于500℃焙烧4h。
c)取0.06g La(NO3)3·6H2O溶于5ml去离子水中制成溶液,将焙烧后的颗粒浸渍于此溶液中,浸渍时间4h。
d)上述颗粒于120℃干燥后,400℃焙烧2h制得载体颗粒。
e)取0.5g载体浸渍于1ml浓度为0.6mg/ml的H2PtCl6溶液(以Pt计),浸渍时间为2h。
f)80℃干燥12h后于400℃焙烧2h,即得氧化态催化剂。
g)将氧化态催化剂置于20ml甲醛溶液(0.1M)中还原,在温度为60℃下,还原1h,后用去离子水冲洗后常温晾干得到催化剂F。
催化剂加氢性能评价结果见表2。
实施例7:
a)称取0.6g JDF-20,1.48g Ti(NO3)4,0.06g Pr(NO3)3·6H2O和20ml去离子水混合均匀后120℃干燥、造粒,颗粒粒度为40-60目。
b)将所得颗粒于400℃焙烧4h,制得载体颗粒。
c)取0.5g载体浸渍于1ml浓度为1.2mg/ml的H2PtCl6溶液(以Pt计),浸渍 时间为2h。
d)常温干燥12h后于400℃焙烧2h,即得氧化态催化剂。
e)将氧化态催化剂置于20ml水合肼溶液(20wt%)中还原,常温还原2h,后用去离子水冲洗后常温晾干得到催化剂G。
催化剂加氢性能评价结果见表2。
实施例8:
a)称取0.4g SAPO-52,0.6g SiO2,0.1g硅溶胶(40wt%)和20ml去离子水,混合均匀后80℃干燥、造粒,颗粒粒度为10-20目。
b)取0.24g Ca(NO3)2·4H2O溶于5ml水中形成Ca(NO3)2溶液,将步骤1)所得的颗粒浸渍于此溶液,浸渍时间2h,然后80℃烘干12h制得载体。
c)取0.5g载体浸渍于1ml浓度为3mg/ml的Pd(NH3)4(NO3)2溶液(以Pd计),浸渍时间为2h。
d)80℃干燥12h后于300℃焙烧2h,即得氧化态催化剂。
e)将氧化态催化剂置于H2气氛中还原,还原温度为60℃,还原24h后得到催化剂H。
催化剂加氢性能评价结果见表2。
实施例9:
a)称取0.2g CePO4,0.8g Al2O3,5ml H2O混合均匀后使用球磨机球磨,球磨机转速300rpm,球磨时间6h。所得球磨浆料于80℃干燥12h。
b)取3mg Mg(NO3)3﹒6H2O溶于5ml水中形成Mg(NO3)3溶液,将步骤1)所得的颗粒浸渍于此溶液,浸渍时间2h,然后80℃烘干12h制得载体。
c)取0.5g载体浸渍于1ml浓度为0.6mg/ml的H2PtCl6溶液(以Pt计),浸渍时间为2h。
d)80℃干燥12h后于400℃焙烧2h,即得氧化态催化剂。
e)将氧化态催化剂置于20ml甲醛溶液(0.1M)中还原,还原温度为60℃,还原时间为1h,后用去离子水冲洗后常温晾干得到催化剂I。
TEM照片见图2,催化剂加氢性能评价结果见表2。
实施例10:
a)称取0.4g SAPO-11,0.6g SiO2,0.1g硅溶胶(40wt%)和20ml去离子水,混合均匀后使用喷雾干燥法造粒。
b)取0.24g La(NO3)2·4H2O溶于5ml水中形成La(NO3)2溶液,将步骤1)所得的颗粒浸渍于此溶液,浸渍时间2h,然后80℃烘干12h制得载体。
c)取0.5g载体浸渍于1ml浓度为3mg/ml的H2PdCl4溶液(以Pd计),浸渍时间为2h。
d)80℃干燥12h后于300℃焙烧2h,即得氧化态催化剂。
e)将氧化态催化剂置于H2气氛中还原,还原温度为60℃,还原24h后得到催化剂J。
催化剂加氢性能评价结果见表2。
实施例11:
a)称取0.6g VPI-7,1.48g Ti(NO3)4,0.68g Ba(NO3)2和10ml去离子水混合均匀后使用球磨机球磨,球磨机转速为500rpm,球磨时间为2h。
b)将所得球磨浆料先于80℃干燥12h,后于500℃焙烧4h,制得载体颗粒。
c)取0.5g载体浸渍于1ml浓度为1.2mg/ml的Pd(NH3)4Cl2溶液(以Pd计),浸渍时间为2h。
d)60℃真空干燥12h后于350℃焙烧2h,即得氧化态催化剂。
e)将氧化态催化剂置于水合肼溶液(20wt%)中常温还原,还原时间为2h,后用去离子水冲洗后常温晾干得到催化剂K。
催化剂加氢性能评价结果见表2。
实施例12:
a)称取0.6g SAPO-5,0.4g CeO2,0.1g铈溶胶(10wt%),0.52g Nd(NO3)3·6H2O和20ml去离子水混合均匀后使用球磨机球磨,球磨机转速为300rpm,球磨时间为3h。所得球磨浆料于80℃干燥12h。
b)取0.5g载体浸渍于1ml浓度为3mg/ml的Pd(NO3)2溶液(以Pd计),浸渍时间为2h。
c)60℃真空干燥12h后于250℃焙烧2h,即得氧化态催化剂。
d)将氧化态催化剂置于NaBH4溶液(10wt%)中还原,常温下,还原1h,后用去离子水冲洗后常温晾干得到催化剂L。
催化剂加氢性能评价结果见表2。
实施例13:
a)称取0.9g CIT-6,0.28g Zr(NO3)4﹒5H2O与10ml去离子水混合均匀后使用喷雾干燥法造粒。
b)将所得颗粒于500℃焙烧4h。
c)取0.06g Pr(NO3)3·6H2O溶于5ml去离子水中制成溶液,将焙烧后的颗粒浸渍于此溶液中,浸渍时间4h。
d)上述颗粒于120℃干燥后,400℃焙烧2h制得载体颗粒。
e)取0.5g载体浸渍于1ml浓度为1.2mg/ml的Pd(NH3)4Cl2溶液(以Pd计),浸渍时间为2h。
f)60℃真空干燥12h后,再将颗粒浸渍于1ml浓度为0.6mg/ml的Pt(NH3)4Cl2溶液(以Pt计),浸渍时间为2h。
g)再次于60℃真空干燥12h,后于350℃焙烧2h,即得氧化态催化剂。
h)将氧化态催化剂置于20ml水合肼溶液(20wt%)中还原,常温下,还原2h,后用去离子水冲洗后常温晾干得到催化剂M。
催化剂加氢性能评价结果见表2。
实施例14:
a)称取0.2g AlPO-8,0.8g Al2O3,与20ml去离子水混合均匀后使用球磨机球磨,球磨机转速为300rpm,球磨时间为16h,所得球磨浆料于80℃干燥12h,然后于500℃焙烧4h。
b)取0.06g La(NO3)3﹒6H2O溶于5ml去离子水中制成溶液,将焙烧后的颗粒浸渍于此溶液中,浸渍时间4h。
c)上述颗粒于120℃干燥后,400℃焙烧2h制得载体颗粒。
d)取0.5g载体浸渍于1ml浓度为0.6mg/ml的H2PtCl6溶液(以Pt计),浸渍时间为2h。
e)80℃干燥12h后于400℃焙烧2h,即得氧化态催化剂。
f)将氧化态催化剂置于20ml甲醛溶液(0.1M)中还原,在温度为60℃的时候,还原1h,后用去离子水冲洗后常温晾干得到催化剂N。
催化剂加氢性能评价结果见表2。
实施例15:
a)称取0.6g JDF-20,1.48g Ti(NO3)4,0.06g Pr(NO3)3·6H2O和10ml去离子 水混合均匀后使用喷雾干燥法造粒。
b)将所得颗粒于400℃焙烧4h,制得载体颗粒。
c)取0.5g载体浸渍于1ml浓度为1.2mg/ml的H2PtCl6溶液(以Pt计),浸渍时间为2h。
d)常温干燥12h后于400℃焙烧2h,即得氧化态催化剂。
e)将氧化态催化剂置于20ml水合肼溶液(20wt%)中还原,常温下,还原2h,后用去离子水冲洗后常温晾干得到催化剂O。
催化剂加氢性能评价结果见表2。
实施例16:
a)称取0.4g Zr2P2O7,0.6g SiO2,0.1g硅溶胶(40wt%)和10ml去离子水,混合均匀后使用球磨机球磨,球磨机转速为300rpm,球磨时间为8h,所得球磨浆料于80℃干燥12h。
b)取0.64g Mg(NO3)2·6H2O溶于5ml水中形成Mg(NO3)2溶液,将步骤1)所得的颗粒浸渍于此溶液,浸渍时间2h,然后80℃烘干12h制得载体。
c)取0.5g载体浸渍于1ml浓度为3mg/ml的Pd(NH3)4(NO3)2溶液(以Pd计),浸渍时间为2h。
d)80℃干燥12h后于300℃焙烧2h,即得氧化态催化剂。
e)将氧化态催化剂置于H2气氛中还原,还原温度为60℃,还原24h后得到催化剂P。
催化剂加氢性能评价结果见表2。
表2催化剂加氢性能表
Figure PCTCN2017070717-appb-000002
本发明催化剂以贵金属Pd、Pt中的一种或者两种组合为主要活性组分,担载于AlPO系列、SAPO系列及硅锌酸盐分子筛,磷酸盐和氧化物的复合载体上制成催化剂。本发明催化剂载体具有微孔-介孔复合的多级孔结构,其中微孔有利于提高活性金属的分散度和氢原子溢流,从而提高催化剂的加氢活性,减小贵金属用量;介孔为反应物和产物提供扩散通道,有利于其孔内的传质,有效避免了副产物的大量生成,进而提高催化剂的选择性。其次,AlPO系列、SAPO系列及硅锌酸盐分子筛,磷酸盐和氧化物的复合载体易于改性,调节酸碱性,有助于进一步提高催化剂的性能。此外,AlPO系列、SAPO系列及硅锌酸盐分子筛,磷酸盐的水热稳定性好,有利于提高催化剂的稳定性。本发明催化剂可用于滴流床或浆态床蒽醌催化加氢生产双氧水过程中,其中,在反应温度40℃,压力为0.4MPa,液体空速18h-1条件下,2-乙基蒽醌工作液滴流床 反应器时空收率可以达到0.7-2.7kgH2O2(100%)gPd -1d-1,浆态床反应器时空收率可以达到0.8-3.2kgH2O2(100%)gPd -1d-1,2-戊基蒽醌工作液在滴流床反应器和浆态床反应器时空收率分别可以达到滴流床反应器时空收率可以达到0.8-2.9kgH2O2(100%)gPd -1d-1和1.1-3.5kgH2O2(100%)gPd -1d-1,两个数值高于目前工业中固定床颗粒催化剂的时空收率1.0-1.8kgH2O2(100%)gPd -1d-1

Claims (10)

  1. 一种用于双氧水合成的高分散颗粒催化剂,其特征在于:该催化剂包括催化活性组分、催化剂助剂和催化剂复合载体,其中:
    1)所述催化活性组分选自铂族贵金属Pd、Pt中的一种或两种的组合;催化活性组分的含量以贵金属单质计,占催化剂总重量的0.01-2.00wt%;
    2)所述催化剂助剂选自La2O3、Nd2O3、Pr2O3、BaO、CaO、MgO、K2O中的一种或二种以上,占催化剂总重的0.10-40.00wt%;
    3)所述催化剂复合载体为由分子筛与氧化物组成的复合物,占催化剂总重的58.0-99.89wt%
  2. 按照权利要求1所述的颗粒催化剂,其特征在于:所述复合催化剂载体主要包括I II两部分,其中I组成为AlPO系列分子筛、SAPO系列分子筛,磷酸铝盐类分子筛,硅酸锌盐类分子筛,磷酸盐和硅酸盐中的一种或二种以上,占复合载体总重量的15.0-99.0wt%;
    所述复合催化剂载体中II组成主要为Al2O3、SiO2、CeO2、TiO2、ZrO2中的一种或二种以上的混合物,占复合载体总重量的1.0-85.0wt%。
  3. 按照权利要求2所述的颗粒催化剂,其特征在于:所述复合催化剂载体中载体I组成主要为AlPO系列分子筛、SAPO系列分子筛,磷酸铝盐类分子筛,硅酸锌盐类分子筛,磷酸盐和硅酸盐中的一种或二种以上,具体为AlPO-5,AlPO-8,AlPO-11,AlPO-31,AlPO-34,AlPO-52,SAPO-5,SAPO-11,SAPO-31,SAPO-34,SAPO-56,VPI-5,JDF-20,VPI-7,VPI-8,CIT-6,AlPO4,LaPO4,YPO4,CePO4,Ba2P2O7,CaP2O7,ZrP2O7,CaSiO3,BaSiO3,Al2(SiO3)2中的一种或二种以上。
  4. 按照权利要求1所述的颗粒催化剂,其特征在于:所述催化活性组分选自Pd、Pt的双金属组合中,Pd的含量以单质计,占担载金属总重量的50%-小于100%。
  5. 一种权利要求1-4任一所述的催化剂的制备方法,其特征在于:该方法包括下述步骤:
    1)a、将所述催化剂复合载体中的I组成与II组成混合后成型,得到催化剂复合载体颗粒A;
    b、将所述的催化剂助剂担载在上述步骤1)得到的复合载体上,经过干燥和焙烧,得到催化剂前体B;
    c、将所述的铂族贵金属活性组分担载到上述步骤2)得到的催化剂前体B上,经过干燥和焙烧,制成氧化态催化剂C;
    或者2)是采用催化剂混合载体和活性组分的前驱体制备成浆料或者膏状物,然后直接成型形成催化剂;然后经过干燥、焙烧制备成氧化态催化剂C;
    3)将1)或2)的氧化态催化剂C进行还原,最终得到催化剂D。
  6. 按照权利要求5所述的催化剂的制备方法,催化剂复合载体的I组成中的AlPO系列、SAPO系列及硅锌酸盐分子筛,磷酸盐和硅酸盐中的一种或二种以上的颗粒大小为0.1-10μm,优选0.2-5μm;II组成中的Al2O3、SiO2、CeO2、TiO2、ZrO2的中的一种或二种以上,颗粒大小为0.1-10μm,优选0.2-5μm;
    催化剂助剂的水溶性盐类为LaCl3,La(NO3)3,La2(SO4)3,NdCl3,Nd(NO3)3,PrCl3,Pr(NO3)3,Ba(NO3)2,BaCl2,Ca(NO3)2,CaCl2,Mg(NO3)2,MgCl2,KNO3和K2CO3中的一种或两种以上;
    所述贵金属组分的前驱体水溶液主要为PdCl2、Pd(NO3)2、H2PdCl4、Pd(NH3)4Cl2、Na2PdCl4、Pd(acac)2、PtCl2、PtCl4、H2PtCl6中的一种或两种以上。
  7. 按照权利要求5所述的催化剂的制备方法,其特征在于:
    所述步骤1)a的载体成型方法主要包括压片法,油柱法,滚球法,挤条法,喷雾干燥法等一种或二种以上;
    所述步骤1)b为将复合载体颗粒A浸渍于催化剂助剂水溶液中,经过干燥和焙烧之后得到催化剂前体B,此步骤不重复或重复进行直到得到需要的催化剂助剂上载量;
    或所述步骤1)b为将按所需要的催化剂助剂上载量的催化剂助剂在步骤1)中直接溶于载体的水溶液浆料中,浆料经过干燥和焙烧和成型后,得到催化剂前体B;
    所述步骤1)c为将含铂族贵金属催化活性组分的前驱体水溶液以浸渍的方式担载在催化剂前驱体B上,经过干燥和焙烧,制成氧化态催化剂C;此步骤不重复或可以重复进行直到获得需要的担载量;
    或者,将含铂族贵金属催化活性组分的前驱体水溶液直接与载体浆料混合,通过喷雾干燥直接成型后干燥和焙烧,制成氧化态催化剂C。
  8. 按照权利要求5或7所述的催化剂的制备方法,其特征在于:所述催化剂焙烧温度为200-600℃,优选300-550℃;焙烧时间为1h-10h,优选1h-6h。所述步骤4)氧化态催化剂C的还原方式为氢气气氛,甲醛溶液,硼氢化钠溶液,水合肼溶液中的至少一种。
  9. 一种权利要求1-4任一所述的催化剂在蒽醌催化加氢生产双氧水中的应用。
  10. 按照权利要求9所述的蒽醌催化加氢生产中的应用,蒽醌工作载体为2-戊基蒽醌,2-乙基蒽醌和2-异丁基蒽醌中的一种或二种以上混合。
PCT/CN2017/070717 2016-01-27 2017-01-10 一种用于双氧水合成的高分散颗粒催化剂及其制备方法和应用 WO2017128946A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610057332.2 2016-01-27
CN201610057332.2A CN107008492A (zh) 2016-01-27 2016-01-27 一种用于双氧水合成的高分散颗粒催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2017128946A1 true WO2017128946A1 (zh) 2017-08-03

Family

ID=59397383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070717 WO2017128946A1 (zh) 2016-01-27 2017-01-10 一种用于双氧水合成的高分散颗粒催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN107008492A (zh)
WO (1) WO2017128946A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113731484A (zh) * 2021-08-26 2021-12-03 武汉理工大学 一种Pd基等级孔介孔-微孔TS-1分子筛单晶催化剂及其制备方法
CN114618477A (zh) * 2020-12-10 2022-06-14 中国科学院大连化学物理研究所 一种催化剂及其制备方法、应用
CN115591543A (zh) * 2021-07-09 2023-01-13 中国石油化工股份有限公司(Cn) 制备甲烷氧化偶联成型催化剂的方法、成型催化剂和它们的应用及制备碳二烃的方法
CN116037085A (zh) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 一种大孔氧化铝载体及其制备方法
CN116037139A (zh) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 加氢脱金属催化剂及其制备方法
CN116037139B (zh) * 2021-10-28 2024-05-31 中国石油化工股份有限公司 加氢脱金属催化剂及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109833896B (zh) * 2017-11-29 2022-04-12 中国科学院大连化学物理研究所 一种高分散贵金属浆态床加氢催化剂的制备方法
CN109939705B (zh) * 2019-04-15 2021-09-28 福建农林大学 一种用于光催化还原二氧化碳的多元生物质复合气凝胶材料及其制备方法
CN112898111B (zh) * 2019-12-03 2022-04-01 中国石化集团金陵石油化工有限责任公司 一种将双烯烃加氢制成单烯烃的方法
CN113694962B (zh) * 2021-09-30 2023-06-13 中化泉州石化有限公司 一种用于加氢裂化尾油的异构脱蜡催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972305A (en) * 1997-09-30 1999-10-26 Korea Research Institute Of Chemical Technology Direct manufacturing method of hydrogen peroxide
CN1990100A (zh) * 2005-12-27 2007-07-04 中国石油化工股份有限公司 一种蒽醌加氢催化剂
CN101497040A (zh) * 2008-02-03 2009-08-05 中国科学院大连化学物理研究所 一种用于双氧水生产的整体催化剂及其制备和应用
CN104368374A (zh) * 2014-09-24 2015-02-25 中国科学院大连化学物理研究所 一种用于双氧水合成的高分散整体催化剂及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103285934A (zh) * 2012-03-01 2013-09-11 中国石油天然气股份有限公司 一种含分子筛的馏分油加氢脱酸催化剂载体及其制备方法
CN104368336A (zh) * 2013-08-14 2015-02-25 中国科学院大连化学物理研究所 用于戊基蒽醌法生产双氧水过程的整体催化剂及制备方法
CN103691437A (zh) * 2013-12-30 2014-04-02 江苏金桥盐化集团有限责任公司 一种担载型金属钯催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972305A (en) * 1997-09-30 1999-10-26 Korea Research Institute Of Chemical Technology Direct manufacturing method of hydrogen peroxide
CN1990100A (zh) * 2005-12-27 2007-07-04 中国石油化工股份有限公司 一种蒽醌加氢催化剂
CN101497040A (zh) * 2008-02-03 2009-08-05 中国科学院大连化学物理研究所 一种用于双氧水生产的整体催化剂及其制备和应用
CN104368374A (zh) * 2014-09-24 2015-02-25 中国科学院大连化学物理研究所 一种用于双氧水合成的高分散整体催化剂及其制备方法和应用

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114618477A (zh) * 2020-12-10 2022-06-14 中国科学院大连化学物理研究所 一种催化剂及其制备方法、应用
CN114618477B (zh) * 2020-12-10 2023-06-20 中国科学院大连化学物理研究所 一种催化剂及其制备方法、应用
CN115591543A (zh) * 2021-07-09 2023-01-13 中国石油化工股份有限公司(Cn) 制备甲烷氧化偶联成型催化剂的方法、成型催化剂和它们的应用及制备碳二烃的方法
CN115591543B (zh) * 2021-07-09 2023-10-13 中国石油化工股份有限公司 制备甲烷氧化偶联成型催化剂的方法、成型催化剂和它们的应用及制备碳二烃的方法
CN113731484A (zh) * 2021-08-26 2021-12-03 武汉理工大学 一种Pd基等级孔介孔-微孔TS-1分子筛单晶催化剂及其制备方法
CN113731484B (zh) * 2021-08-26 2024-04-12 武汉理工大学 一种Pd基等级孔介孔-微孔TS-1分子筛单晶催化剂及其制备方法
CN116037085A (zh) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 一种大孔氧化铝载体及其制备方法
CN116037139A (zh) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 加氢脱金属催化剂及其制备方法
CN116037139B (zh) * 2021-10-28 2024-05-31 中国石油化工股份有限公司 加氢脱金属催化剂及其制备方法
CN116037085B (zh) * 2021-10-28 2024-06-04 中国石油化工股份有限公司 一种大孔氧化铝载体及其制备方法

Also Published As

Publication number Publication date
CN107008492A (zh) 2017-08-04

Similar Documents

Publication Publication Date Title
WO2017128946A1 (zh) 一种用于双氧水合成的高分散颗粒催化剂及其制备方法和应用
CN104368374B (zh) 一种用于双氧水合成的高分散整体催化剂及其制备方法和应用
CN104001505B (zh) 类三明治空心结构金属氧化物@贵金属纳米粒子@金属氧化物催化剂、制备方法及其用途
Jiang et al. One-step semi-continuous cyclohexanone production via hydrogenation of phenol in a submerged ceramic membrane reactor
US11242257B2 (en) Synthesis of fibrous nano-silica spheres with controlled particle size, fibre density, and various textural properties
CN109999902B (zh) 封装型铂族亚纳米金属负载多孔级钛硅分子筛催化剂及其制备和应用
CN110124729B (zh) 一种用于浆态床费托合成的包覆型催化剂及其制备方法
CN108855197B (zh) 丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法
JP3590854B2 (ja) 担持触媒の製造方法
CN109092326B (zh) 一种核壳状钨酸镍微球负载钯催化剂及其制备方法和应用
CN109833901A (zh) 一种高分散负载型浆态床加氢颗粒催化剂及其制备方法
CN111715226A (zh) 一种草酸酯气相加氢制乙二醇的纳米催化剂及制备方法
CN101491758B (zh) 用于生产苯乙烯过程中氢气选择性氧化反应的催化剂
CN109745977A (zh) 丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法
CN108067220A (zh) 一种双氧水合成用负载型催化剂及其制备方法和应用
CN111905755A (zh) 一种用于2,2,4,4-四甲基-1,3-环丁二酮加氢的催化剂及其制备方法、应用
WO2019148551A1 (zh) 一种Ni基催化剂微球的制备方法及其用途
CN108855198B (zh) 丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法
WO2023160593A1 (zh) 用于丙烯氢氧环氧化的物理混合式催化剂及制备方法和应用
CN109382131B (zh) 丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法
JP4411740B2 (ja) 担持触媒及びその製造方法
CN110732342A (zh) 载体为具有三维立方和六方孔道结构的绿泥石复合材料的异丁烷脱氢催化剂及其制法和应用
JP4595158B2 (ja) 担持触媒及びその製造方法
CN111054384A (zh) 有机液体储氢材料脱氢的催化剂及其制备方法
CN109382134B (zh) 丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17743561

Country of ref document: EP

Kind code of ref document: A1