WO2017128724A1 - 二次电池充电方法 - Google Patents

二次电池充电方法 Download PDF

Info

Publication number
WO2017128724A1
WO2017128724A1 PCT/CN2016/098467 CN2016098467W WO2017128724A1 WO 2017128724 A1 WO2017128724 A1 WO 2017128724A1 CN 2016098467 W CN2016098467 W CN 2016098467W WO 2017128724 A1 WO2017128724 A1 WO 2017128724A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
current
charge
voltage
Prior art date
Application number
PCT/CN2016/098467
Other languages
English (en)
French (fr)
Inventor
骆福平
曾巧
党琦
方占召
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Publication of WO2017128724A1 publication Critical patent/WO2017128724A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention belongs to the field of battery technology, and more particularly to a secondary battery charging method.
  • the battery energy density continues to expand, but the battery energy density is limited by the battery volume, and the expansion space is getting smaller and smaller. Under the limited energy density, the charging speed of the battery can be improved, which can effectively meet the user's demand for battery power. Therefore, batteries that can be quickly charged will stand out in the future.
  • a constant current constant voltage charging method is generally used, that is, after charging a battery to a certain voltage with a constant current, constant voltage charging is performed at the voltage.
  • the charging method using the pulse current that is, after charging for a certain period of time with a large current, discharges the battery once, thereby completing charging of the battery.
  • the constant current and constant voltage charging method will cause the battery polarization to accumulate continuously, and the battery itself has a certain internal resistance. Therefore, in the constant current charging process, the battery will not only continue to generate heat, but also the heat generation rate will be faster and faster. The battery temperature rises sharply, resulting in deterioration of battery performance and safety.
  • the charging method of the pulse current uses a constant pulse current to charge the battery, although the polarization accumulation phenomenon is improved to some extent, and the temperature rise is lowered, but the charging speed is slow. Therefore, the charging method in the prior art cannot meet the charging speed requirement of the battery while improving the polarization accumulation and lowering the temperature rise.
  • An object of the present invention is to provide a secondary battery charging method having an ideal charging speed by overcoming the deficiencies of the prior art.
  • the present invention provides a secondary battery charging method including the following steps:
  • Step 1 Set a set of decreasing charging current values ⁇ Ic1, Ic2, Ic3, ..., Icn ⁇ , a set of discharge current values ⁇ Id1, Id2, Id3, ..., Idn ⁇ , a set of charging time values ⁇ tc1, tc2, tc3, ..., tcn ⁇ , a set of discharge time values ⁇ td1, td2, td3, ..., tdn ⁇ , and a set of sequentially increasing charge cutoff voltage values ⁇ U1, U2, U3,... ..., Un ⁇ , where Ic1>Id1, Ic2>Id2, whil, Icn>Idn;
  • Step 2 Charging the battery, the charging current is Ic1, the charging time is tc1, then discharging the battery, the discharging current is Id1, the discharging time is td1, and so on, until the battery voltage reaches U1;
  • the charging current is Ic2
  • the charging time is tc2
  • discharging the battery is Id2
  • the discharging time is td2 and so on, until the battery voltage reaches U2;
  • the step 1 further includes the steps of setting the constant voltage charging voltage V0 and the charging off current Im, and after the step 2, further comprising charging the battery with V0 constant voltage until The step of the battery current reaching Im.
  • the charging current values ⁇ Ic1, Ic2, Ic3, ..., Icn ⁇ are in the range of 0.2C to 5C.
  • the charging time value ⁇ tc1, tc2, tc3, ..., tcn ⁇ is in the range of 0.1 s to 30 s.
  • the discharge current values ⁇ Id1, Id2, Id3, ..., Idn ⁇ are in the range of 0C to 0.2C.
  • the discharge time values ⁇ td1, td2, td3, ..., tdn ⁇ are in the range of 0.01 s to 5 s.
  • the charge cutoff voltage value ⁇ U1, U2, U3, ..., Un ⁇ is in the range of 3V to 5V.
  • the charge cutoff current Im is 0.01 C to 0.1 C.
  • the respective charging time values in the set of charging time values ⁇ tc1, tc2, tc3, ..., tcn ⁇ are the same or not identical.
  • the respective discharge time values in the set of discharge time values ⁇ td1, td2, td3, ..., tdn ⁇ are the same or not identical.
  • the last charge cutoff voltage value Un is the same as or different from the constant voltage charge voltage V0.
  • the battery is a lithium ion battery, a lithium metal battery, a lead acid battery, a nickel separator battery, a nickel hydrogen battery, a lithium sulfur battery, a lithium air battery, or a sodium ion battery.
  • the method further comprises the step of placing the battery in an environment of 0 to 60 ° C, and this step is completed before the second step.
  • the secondary battery charging method of the present invention has at least the following beneficial technical effects: using a pulse charging method with a gradually decreasing amplitude, effectively improving polarization accumulation during battery charging, and reducing battery temperature rise, significantly Increased battery charging speed.
  • 1 is a graph showing a charging current of a secondary battery charging method of the present invention.
  • FIG. 2 is a graph showing a charging current according to Embodiment 1 of the present invention.
  • Fig. 3 is a graph showing the charging current of Comparative Example 1 of the present invention.
  • Example 4 is a comparison diagram of charging currents of Example 1 and Comparative Example 1 of the present invention.
  • Figure 6 is a comparison diagram of battery SOCs of Example 1 of the present invention and Comparative Example 1.
  • Figure 7 is a graph showing the comparison of the surface temperatures of the cells of Example 1 of the present invention and Comparative Example 1.
  • the secondary battery charging method of the present invention includes the following steps.
  • Step 2 Charging the battery, the charging current is Ic1, the charging time is tc1, then discharging the battery, the discharging current is Id1, the discharging time is td1, and so on, until the battery voltage reaches U1;
  • Step 3 Charge the battery with a constant voltage V0 until the battery current reaches the charge cut-off current Im.
  • the battery system used in the examples and comparative examples was a battery system in which LiCoO 2 was used as a cathode and graphite was used as an anode.
  • C is a unit of magnification with respect to the nominal capacity of the battery. For example, when the nominal capacity of the battery is 1000 mAh and the battery is discharged at a current of 0.5 C, the discharge current is 500 mA. At 25 ° C, the battery has a full charge capacity of 3750 mAh.
  • Embodiment 1 the specific steps of Embodiment 1 are as follows:
  • step 2) until the battery voltage reaches 4.15V;
  • step 4) until the battery voltage reaches 4.25V;
  • step 6) Repeat step 6) until the battery voltage reaches 4.4V;
  • Embodiment 2 The specific steps of Embodiment 2 are as follows:
  • step 2) until the battery voltage reaches 4.15V;
  • step 4) until the battery voltage reaches 4.25V;
  • step 6) Repeat step 6) until the battery voltage reaches 4.4V;
  • Embodiment 3 The specific steps of Embodiment 3 are as follows:
  • step 2) until the battery voltage reaches 4.1V;
  • step 4) until the battery voltage reaches 4.2V;
  • step 6) Repeat step 6) until the battery voltage reaches 4.35V;
  • step 6) until the battery voltage reaches 4.4V;
  • Embodiment 4 The specific steps of Embodiment 4 are as follows:
  • step 2) until the battery voltage reaches 4.1V;
  • step 4) until the battery voltage reaches 4.2V;
  • step 6) Repeat step 6) until the battery voltage reaches 4.35V;
  • step 6) until the battery voltage reaches 4.4V;
  • Embodiment 5 The specific steps of Embodiment 5 are as follows:
  • step 2) until the battery voltage reaches 3.6V;
  • step 4) until the battery voltage reaches 4.0V;
  • step 6) Repeat step 6) until the battery voltage reaches 4.4V;
  • Embodiment 6 The specific steps of Embodiment 6 are as follows:
  • step 2) until the battery voltage reaches 3.6V;
  • step 4) until the battery voltage reaches 4.0V;
  • step 6) Repeat step 6) until the battery voltage reaches 4.4V;
  • Embodiment 7 The specific steps of Embodiment 7 are as follows:
  • step 2) until the battery voltage reaches 4.1V;
  • step 4) until the battery voltage reaches 4.25V;
  • step 6) Repeat step 6) until the battery voltage reaches 4.4V;
  • Embodiment 8 The specific steps of Embodiment 8 are as follows:
  • step 2) until the battery voltage reaches 4.1V;
  • step 4) until the battery voltage reaches 4.25V;
  • step 6) Repeat step 6) until the battery voltage reaches 4.4V;
  • Embodiment 9 The specific steps of Embodiment 9 are as follows:
  • step 2) until the battery voltage reaches 4.0V;
  • step 4) until the battery voltage reaches 4.2V;
  • step 6) Repeat step 6) until the battery voltage reaches 4.4V;
  • Embodiment 10 The specific steps of Embodiment 10 are as follows:
  • step 2) until the battery voltage reaches 4.0V;
  • step 4) until the battery voltage reaches 4.2V;
  • step 6) Repeat step 6) until the battery voltage reaches 4.4V;
  • Embodiment 11 The specific steps of Embodiment 11 are as follows:
  • step 2) until the battery voltage reaches 4.0V;
  • step 4) until the battery voltage reaches 4.2V;
  • step 6) Repeat step 6) until the battery voltage reaches 4.4V;
  • Embodiment 12 The specific steps of Embodiment 12 are as follows:
  • step 2) until the battery voltage reaches 4.0V;
  • step 4) until the battery voltage reaches 4.2V;
  • step 6) Repeat step 6) until the battery voltage reaches 4.4V;
  • Embodiment 13 The specific steps of Embodiment 13 are as follows:
  • step 2) until the battery voltage reaches 4.0V;
  • step 4) until the battery voltage reaches 4.2V;
  • step 6) Repeat step 6) until the battery voltage reaches 4.3V;
  • step 8) until the battery voltage reaches 4.35V;
  • Embodiment 14 The specific steps of Embodiment 14 are as follows:
  • step 2) until the battery voltage reaches 4.0V;
  • step 4) until the battery voltage reaches 4.2V;
  • step 6) Repeat step 6) until the battery voltage reaches 4.3V;
  • step 8) until the battery voltage reaches 4.35V;
  • Comparative Example 1 The specific steps of Comparative Example 1 are as follows:
  • Comparative Example 2 The specific steps of Comparative Example 2 are as follows:
  • Example 4 is a comparative diagram of charging current changes with time in Example 1 and Comparative Example 1. It can be seen from the figure that in the pulse charging phase, Embodiment 1 charges the battery by alternately charging the pulse current and the discharge pulse current, and Comparative Example 1 charges the battery by means of constant current charging.
  • the charge pulse current value of Example 1 was greater than the constant current value of Comparative Example 1 at the same time, and Example 1 entered the constant voltage charge phase earlier than Comparative Example 1.
  • the charging current of Embodiment 1 is less than the charging current of Comparative Example 1, and when the charging off current is reached, the time required for Embodiment 1 of the entire charging process is less than the time required for Comparative Example 1,
  • Fig. 5 is a graph showing the comparison of charging voltages of Example 1 and Comparative Example 1 with time. It can be seen from the figure that in the pulse charging phase, the charging voltage of Embodiment 1 is greater than the charging voltage of Comparative Example 1 at the same time, and when the charging cutoff voltage is reached, the time required for Embodiment 1 is less than the time required for Comparative Example 1, which It is shown that the first embodiment has a higher battery SOC (State Of Charge) before entering the constant voltage charging phase.
  • SOC State Of Charge
  • Fig. 6 is a comparison diagram of SOC changes with time in Example 1 and Comparative Example 1.
  • the battery SOC of Embodiment 1 is larger than the battery SOC of Comparative Example 1 at the same time, and when the battery is fully charged, the time required for Embodiment 1 is less than the time required for Comparative Example 1. This indicates that the charging speed of Example 1 was faster than that of Comparative Example 1.
  • Fig. 7 is a graph showing the comparison of the surface temperature of the cells of Example 1 and Comparative Example 1 with time. It can be seen from the figure that the surface temperature of the cell of Example 1 is less than the surface temperature of the cell of Comparative Example 1 for most of the charging process, and the surface temperature of the cell of Example 1 is slightly larger than that of the cell of Comparative Example 1 at other times. And the maximum value of the surface temperature of the cell of Example 1 is smaller than the maximum value of the surface temperature of the cell of Comparative Example 1. This indicates that Example 1 better suppressed the temperature rise during battery charging with respect to Comparative Example 1.
  • Table 1 is a comparison table of charging parameters, battery temperature and charging time of the examples and comparative examples, wherein Ic represents a charging current value, Id represents a discharging current value, tc represents a charging time value, td represents a discharging time value, and U represents a charging cutoff voltage. Value, I0 represents the constant current charging current, and Im represents the charging cutoff current.
  • the time taken to the battery SOC of 80% was reduced by 12.4 min, 13.6 min, 31.4 min, 32.4 min, 29.8 min, 29.1 min, respectively.
  • the maximum temperature of the surface of the cell during the charging process of Examples 11 and 12 is reduced by 0.5 ° C and 0.4 ° C, respectively, and the time taken for charging to the battery SOC of 80% is respectively Reduced by 127min, 123min.
  • the charging method of the present invention reduces the temperature rise during battery charging compared to the conventional constant current and constant voltage charging method, and improves the charging speed of the battery.
  • the secondary battery charging method of the present invention includes a plurality of pulse charging phases and a constant voltage charging phase.
  • each pulse charging phase alternately charges the battery with a corresponding charging pulse current and a discharging pulse current until the battery voltage reaches a cut-off voltage corresponding to each pulse charging phase.
  • the charging pulse current corresponding to each pulse charging phase is sequentially decreased, and the charging pulse current is greater than the corresponding discharging pulse current.
  • the cutoff voltage corresponding to each pulse charging phase is sequentially increased.
  • the pulse charging method can avoid the rapid accumulation of battery polarization, reduce the temperature rise of the battery during charging, and charge the battery with a larger current to increase the charging speed and increase the safety of the battery, but
  • the battery is charged with a constant charging pulse current, and the charging pulse current value is still limited, and the charging speed is still unable to meet the needs of people.
  • the present invention sets a plurality of pulse charging phases, and the charging pulse current corresponding to each pulse charging phase is sequentially decreased, so that the first few In the pulse charging phase, you can set a larger charge.
  • Pulse current value Since the charging pulse current corresponding to the previous several charging stages is large, the requirement for rapid charging of the battery can be satisfied, and the pulse charging and the pulse discharging are alternately performed, thereby improving the polarization accumulation of the large current charging, and thus the charging method of the present invention is more advanced.
  • a constant pulse current value charging method has a faster charging speed.
  • the charging speed can be measured by the amount of charge charged by the battery for a certain period of time.
  • the charging step is included in the charging process, which causes the amount of charge to be charged into the battery to decrease, thereby affecting the charging speed.
  • each charging pulse current is greater than the corresponding discharging pulse current, and the discharging time is short, so the battery discharge of the present invention does not have a large influence on the battery voltage or SOC, that is, does not affect the battery. Charging speed.
  • the present invention is provided.
  • the charge pulse current value is sequentially decreased.
  • charging is performed using a larger charging pulse current
  • charging is performed using a smaller charging pulse current until all pulse charging phases are completed. This setting can not only meet the demand for large current in the initial stage of the battery, shorten the charging time, but also avoid the polarization accumulation of the battery charging process too fast.
  • the charging method of the present invention charges the battery at a constant voltage value after the battery voltage reaches the cutoff voltage of the last pulse charging phase. As the battery SOC increases, the charging current gradually decreases until the off current is reached, the battery is full, and charging stops.
  • the charging current value, the discharging current value, the charging time value, the discharging time value, and the charging cutoff voltage value in the charging method of the present invention can be selected according to the type of the battery and the battery use temperature.
  • the charging current values ⁇ Ic1, Ic2, Ic3, ..., Icn ⁇ preferably range from 0.2C to 5C.
  • the charging time value ⁇ tc1, tc2, tc3, ..., tcn ⁇ preferably ranges from 0.1 s to 30 s.
  • the discharge current values ⁇ Id1, Id2, Id3, ..., Idn ⁇ are preferably in the range of 0C to 0.2C.
  • the discharge time value ⁇ td1, td2, td3, ..., tdn ⁇ preferably ranges from 0.01 s to 5 s.
  • Charging cutoff The pressure value ⁇ U1, U2, U3, ..., Un ⁇ preferably ranges from 3V to 5V.
  • the charge cutoff current Im is preferably 0.01 C to 0.1 C.
  • the charging environment temperature is preferably 0 to 60 °C. Under the preferred parameter conditions, the charging method of the present invention will have a more excellent technical effect.
  • the constant voltage charging voltage V0 in the constant voltage charging phase may be the same as or different from the charging cutoff voltage Un in the last pulse charging phase.
  • the constant voltage charging voltage V0 can continue to use the charging cutoff voltage Un of the last pulse charging phase, and the rated voltage of the battery can also be used.
  • the respective charging time values in a set of charging time values ⁇ tc1, tc2, tc3, ..., tcn ⁇ may or may not be identical.
  • the respective discharge time values in a set of discharge time values ⁇ td1, td2, td3, ..., tdn ⁇ may or may not be identical.
  • the comparison between the odd embodiment and the even embodiment of the embodiment 1 and the embodiment 2, the embodiment 3 and the embodiment 4 is carried out.
  • the charging method of the invention can be realized by integrating a charging circuit into a battery charger, a battery adapter, a battery control circuit and an integrated chip, and is applied to a mobile phone, a notebook computer, a tablet computer, a music player, a Bluetooth earphone, a mobile power source, and other portable devices.
  • suitable secondary battery systems include lithium ion batteries, lithium metal batteries, lead acid batteries, nickel separator batteries, and nickel hydrogen. Battery, lithium-sulfur battery, lithium air battery, sodium ion battery, etc.
  • the beneficial technical effects of the secondary battery charging method of the present invention include, but are not limited to, using a pulse charging method with a decreasing amplitude, which effectively improves the battery charging process.
  • the accumulation of polarization reduces the temperature rise of the battery and significantly increases the charging speed of the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种二次电池充电方法,其包括:设定一组依次减小的充电电流值(Ic1,Ic2,Ic3,……,Icn)、一组放电电流值(Id1,Id2,Id3,……,Idn)、一组充电时间值(tc1,tc2,tc3,……,tcn)、一组放电时间值(td1,td2,td3,……,tdn),以及一组依次增大的充电截止电压值(U1,U2,U3,……,Un),其中相互对应的充电电流值大于放电电流值,设定恒压充电电压(V0)和充电截止电流(Im);按设定规则依次使用所设定的充电电流值、充电时间值、放电电流值、放电时间值、充电截止电压值对电池进行脉冲充电,然后以恒压充电电压(V0)对电池恒压充电到充电截止电流(Im)。该二次电池充电方法采用幅值渐小的脉冲充电方式,有效改善了电池充电过程中的极化积累,降低电池温升,显著提高了电池的充电速度。

Description

二次电池充电方法 技术领域
本发明属于电池技术领域,更具体地说,本发明涉及一种二次电池充电方法。
背景技术
随着电池技术的发展,电池能量密度不断扩展,但电池能量密度受电池容积的限制,扩展的空间越来越小。在有限的能量密度下,提高电池的充电速度,能够有效满足用户对电池电量的需求。因此,能够快速充电的电池将会在未来的竞争中脱颖而出。
现有技术中,通常采用恒流恒压的充电方法,即对电池以恒定电流充电至某一电压后,再在该电压下进行恒压充电。或者,采用脉冲电流的充电方法,即采用大电流充电一定时间后,就对电池进行一次放电,从而完成对电池充电。
但是,恒流恒压的充电方法会使电池极化不断累积,且电池本身存在一定内阻,因此,在恒流充电过程中,电池不仅会持续产热,而且产热速率会越来越快,使电池温度急剧上升,导致电池的使用性能和安全性变差。而脉冲电流的充电方法,采用恒定的脉冲电流对电池进行充电,虽然在一定程度上改善了极化累积现象,降低了温升,但充电速度较慢。因此,现有技术中的充电方法无法在改善极化累积、降低温升的同时,满足电池的充电速度需求。
有鉴于此,有必要提供一种能够解决上述问题的二次电池充电方法。
发明内容
本发明的目的在于:克服现有技术的不足,提供一种具有理想的充电速度的二次电池充电方法。
为了实现上述发明目的,本发明提供一种二次电池充电方法,其包括以下步骤:
步骤一:设定一组依次减小的充电电流值{Ic1,Ic2,Ic3,……,Icn}、一组放电电流值{Id1,Id2,Id3,……,Idn}、一组充电时间值{tc1,tc2,tc3,……,tcn}、一组放电时间值{td1,td2,td3,……,tdn},以及一组依次增大的充电截止电压值{U1,U2,U3,……,Un},其中,Ic1>Id1,Ic2>Id2,……,Icn>Idn;
步骤二:对电池充电,充电电流为Ic1,充电时间为tc1,然后对电池放电,放电电流为Id1,放电时间为td1,如此循环,直至电池电压达到U1;
对电池充电,充电电流为Ic2,充电时间为tc2,然后对电池放电,放电电流为Id2,放电时间为td2,如此循环,直至电池电压达到U2;
……
对电池充电,充电电流为Icn,充电时间为tcn,然后对电池放电,放电电流为Idn,放电时间为tdn,如此循环,直至电池电压达到Un;
作为本发明二次电池充电方法的一种改进,所述步骤一还包括设定恒压充电电压V0和充电截止电流Im的步骤,所述步骤二之后还包括对电池以V0恒压充电、直至电池电流达到Im的步骤。
作为本发明二次电池充电方法的一种改进,所述充电电流值{Ic1,Ic2,Ic3,……,Icn}在0.2C~5C范围内。
作为本发明二次电池充电方法的一种改进,所述充电时间值{tc1,tc2,tc3,……,tcn}在0.1s~30s范围内。
作为本发明二次电池充电方法的一种改进,所述放电电流值{Id1,Id2,Id3,……,Idn}在0C~0.2C范围内。
作为本发明二次电池充电方法的一种改进,所述放电时间值{td1,td2,td3,……,tdn}在0.01s~5s范围内。
作为本发明二次电池充电方法的一种改进,所述充电截止电压值{U1,U2, U3,……,Un}在3V~5V范围内。
作为本发明二次电池充电方法的一种改进,所述充电截止电流Im为0.01C~0.1C。
作为本发明二次电池充电方法的一种改进,所述一组充电时间值{tc1,tc2,tc3,……,tcn}中的各个充电时间值相同或者不完全相同。
作为本发明二次电池充电方法的一种改进,所述一组放电时间值{td1,td2,td3,……,tdn}中的各个放电时间值相同或者不完全相同。
作为本发明二次电池充电方法的一种改进,所述最后一个充电截止电压值Un与恒压充电电压V0相同或者不同。
作为本发明二次电池充电方法的一种改进,所述电池为锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池。
作为本发明二次电池充电方法的一种改进,所述方法还包括将电池置于0~60℃环境中的步骤,此步骤在步骤二之前完成。
与现有技术相比,本发明二次电池充电方法至少具有以下有益的技术效果:采用幅值渐小的脉冲充电方式,有效改善了电池充电过程中的极化积累,降低电池温升,显著提高了电池的充电速度。
附图说明
下面结合附图和具体实施方式,对本发明二次电池充电方法及其有益技术效果进行详细说明。
图1为本发明二次电池充电方法的充电电流的曲线图。
图2为本发明实施例1的充电电流的曲线图。
图3为本发明对比例1的充电电流的曲线图。
图4为本发明实施例1与对比例1的充电电流的对比图。
图5为本发明实施例1与对比例1的充电电压的对比图。
图6为本发明实施例1与对比例1的电池SOC的对比图。
图7为本发明实施例1与对比例1的电芯表面温度的对比图。
具体实施方式
为了使本发明的发明目的、技术方案和技术效果更加清晰明白,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并不是为了限定本发明。
请参阅图1,本发明二次电池充电方法包括以下步骤。
步骤一:设定一组依次减小的充电电流值{Ic1,Ic2,Ic3,……,Icn}、一组放电电流值{Id1,Id2,Id3,……,Idn}、一组充电时间值{tc1,tc2,tc3,……,tcn}、一组放电时间值{td1,td2,td3,……,tdn},以及一组依次增大的充电截止电压值{U1,U2,U3,……,Un},其中,Ic1>Id1,Ic2>Id2,……,Icn>Idn,设定恒压充电电压V0和充电截止电流Im;
步骤二:对电池充电,充电电流为Ic1,充电时间为tc1,然后对电池放电,放电电流为Id1,放电时间为td1,如此循环,直至电池电压达到U1;
对电池充电,充电电流为Ic2,充电时间为tc2,然后对电池放电,放电电流为Id2,放电时间为td2,如此循环,直至电池电压达到U2;
……
对电池充电,充电电流为Icn,充电时间为tcn,然后对电池放电,放电电流为Idn,放电时间为tdn,如此循环,直至电池电压达到Un;
步骤三:以恒定电压V0对电池充电,直至电池电流达到充电截止电流Im。
以下为本发明二次电池充电方法的实施例和对比例。
实施例与对比例所采用的电池体系,是以LiCoO2作为阴极、以石墨作为阳极的电池体系。C是表示一个相对于电池标称容量的倍率单位,例如,电池的标称容量为1000mAh,以0.5C倍率的电流对电池进行放电时,放电电流的大小即为500mA。25℃时,此电池的满充充电容量为3750mAh。
实施例1
请参阅图2,实施例1的具体步骤如下:
1)设置一组依次减小的充电电流值{4C,3.5C,3C}、一组放电电流值{0.05C,0.01C,0C}、一组充电时间值{0.1s,0.9s,2s}、一组放电时间值{0.01s,0.1s,0.1s},以及一组依次增大的充电截止电压值{4.15V,4.25V,4.4V};设置恒压充电电压为4.4V、充电截止电流为0.05C;将电池置于25℃环境中,对电池充放电;
2)以电流4C充电0.1s,然后以电流0.05C放电0.01s,
3)重复步骤2),一直到电池电压达到4.15V;
4)以电流3.5C充电0.9s,然后以电流0.01C放电0.1s,
5)重复步骤4),一直到电池电压达到4.25V;
6)以电流3C充电2s,然后以电流0C放电0.1s(即电池处于静置状态),
7)重复步骤6),一直到电池电压达到4.4V;
8)以4.4V恒压充电至电池电流达到0.05C,停止充电。
实施例2
实施例2的具体步骤如下:
1)设置一组依次减小的充电电流值{4C,3.5C,3C}、一组放电电流值{0.05C,0.05C,0.05C}、一组充电时间值{0.9s,0.9s,0.9s}、一组放电时间值{0.1s,0.1s,0.1s},以及一组依次增大的充电截止电压值{4.15V,4.25V,4.4V};设置恒压充电电压为4.4V、充电截止电流为0.05C;将电池置于25℃环境中,对电池充放电;
2)以电流4C充电0.9s,然后以电流0.05C放电0.1s,
3)重复步骤2),一直到电池电压达到4.15V;
4)以电流3.5C充电0.9s,然后以电流0.05C放电0.1s,
5)重复步骤4),一直到电池电压达到4.25V;
6)以电流3C充电0.9s,然后以电流0.05C放电0.1s(即电池处于静置状态),
7)重复步骤6),一直到电池电压达到4.4V;
8)以4.4V恒压充电至电池电流达到0.05C,停止充电。
实施例3
实施例3的具体步骤如下:
1)设置一组依次减小的充电电流值{5C,4C,3C,2C}、一组放电电流值{0.2C,0.1C,0.05C,0C}、一组充电时间值{0.1s,0.8s,2s,10s}、一组放电时间值{0.01s,0.1s,0.4s,1s},以及一组依次增大的充电截止电压值{4.1V,4.2V,4.35V,4.4V};设置恒压充电电压为4.4V、充电截止电流为0.05C;将电池置于25℃环境中,对电池充放电;
2)以电流5C充电0.1s,然后以电流0.2C放电0.01s,
3)重复步骤2),一直到电池电压达到4.1V;
4)以电流4C充电0.8s,然后以电流0.1C放电0.1s,
5)重复步骤4),一直到电池电压达到4.2V;
6)以电流3C充电2s,然后以电流0.05C放电0.4s,
7)重复步骤6),一直到电池电压达到4.35V;
8)以电流2C充电10s,然后以电流0C放电1s(即电池处于静置状态),
9)重复步骤6),一直到电池电压达到4.4V;
10)以4.4V恒压充电至电池电流达到0.05C,停止充电。
实施例4
实施例4的具体步骤如下:
1)设置一组依次减小的充电电流值{5C,4C,3C,2C}、一组放电电流值{0.2C,0.2C,0.2C,0.2C}、一组充电时间值{10s,10s,10s,10s}、一组放电时间值{0.5s,0.5s,0.5s,0.5s},以及一组依次增大的充电截止电压值{4.1V,4.2V,4.35V,4.4V};设置恒压充电电压为4.4V、充电截止电流为0.05C;将 电池置于25℃环境中,对电池充放电;
2)以电流5C充电10s,然后以电流0.2C放电0.5s,
3)重复步骤2),一直到电池电压达到4.1V;
4)以电流4C充电10s,然后以电流0.2C放电0.5s,
5)重复步骤4),一直到电池电压达到4.2V;
6)以电流3C充电10s,然后以电流0.2C放电0.5s,
7)重复步骤6),一直到电池电压达到4.35V;
8)以电流2C充电10s,然后以电流0.2C放电0.5s(即电池处于静置状态),
9)重复步骤6),一直到电池电压达到4.4V;
10)以4.4V恒压充电至电池电流达到0.05C,停止充电。
实施例5
实施例5的具体步骤如下:
1)设置一组依次减小的充电电流值{1.2C,1C,0.7C}、一组放电电流值{0.05C,0.02C,0.01C}、一组充电时间值{6s,10s,10s}、一组放电时间值{1s,2s,1s},以及一组依次增大的充电截止电压值{3.6V,4.0V,4.4V};设置恒压充电电压为4.4V、充电截止电流为0.1C;将电池置于25℃环境中,对电池充放电;
2)以电流1.2C充电6s,然后以电流0.05C放电1s,
3)重复步骤2),一直到电池电压达到3.6V;
4)以电流1C充电10s,然后以电流0.02C放电2s,
5)重复步骤4),一直到电池电压达到4.0V;
6)以电流0.7C充电10s,然后以电流0.01C放电1s,
7)重复步骤6),一直到电池电压达到4.4V;
8)以4.4V恒压充电至电池电流达到0.1C,停止充电。
实施例6
实施例6的具体步骤如下:
1)设置一组依次减小的充电电流值{1.2C,1C,0.7C}、一组放电电流值{0.02C,0.02C,0.02C}、一组充电时间值{30s,30s,30s}、一组放电时间值{5s,5s,5s},以及一组依次增大的充电截止电压值{3.6V,4.0V,4.4V};设置恒压充电电压为4.4V、充电截止电流为0.1C;将电池置于25℃环境中,对电池充放电;
2)以电流1.2C充电30s,然后以电流0.02C放电5s,
3)重复步骤2),一直到电池电压达到3.6V;
4)以电流1C充电30s,然后以电流0.02C放电5s,
5)重复步骤4),一直到电池电压达到4.0V;
6)以电流0.7C充电30s,然后以电流0.02C放电5s,
7)重复步骤6),一直到电池电压达到4.4V;
8)以4.4V恒压充电至电池电流达到0.1C,停止充电。
实施例7
实施例7的具体步骤如下:
1)设置一组依次减小的充电电流值{2C,1.5C,1C}、一组放电电流值{0.1C,0.05C,0C}、一组充电时间值{1s,3s,5s}、一组放电时间值{0.05s,0.2s,0.4s},以及一组依次增大的充电截止电压值{4.1V,4.25V,4.4V};设置恒压充电电压为4.4V、充电截止电流为0.01C;将电池置于25℃环境中,对电池充放电;
2)以电流2C充电1s,然后以电流0.1C放电0.05s,
3)重复步骤2),一直到电池电压达到4.1V;
4)以电流1.5C充电3s,然后以电流0.05C放电0.2s,
5)重复步骤4),一直到电池电压达到4.25V;
6)以电流1C充电5s,然后以电流0C放电0.4s(即电池处于静置状态),
7)重复步骤6),一直到电池电压达到4.4V;
8)以4.4V恒压充电至电池电流达到0.01C,停止充电。
实施例8
实施例8的具体步骤如下:
1)设置一组依次减小的充电电流值{2C,1.5C,1C}、一组放电电流值{0C,0C,0C}、一组充电时间值{0.1s,0.1s,0.1s}、一组放电时间值{0.01s,0.01s,0.01s},以及一组依次增大的充电截止电压值{4.1V,4.25V,4.4V};设置恒压充电电压为4.4V、充电截止电流为0.01C;将电池置于25℃环境中,对电池充放电;
2)以电流2C充电0.1s,然后以电流0C放电0.01s(即电池处于静置状态),
3)重复步骤2),一直到电池电压达到4.1V;
4)以电流1.5C充电0.1s,然后以电流0C放电0.01s(即电池处于静置状态),
5)重复步骤4),一直到电池电压达到4.25V;
6)以电流1C充电0.1s,然后以电流0C放电0.01s(即电池处于静置状态),
7)重复步骤6),一直到电池电压达到4.4V;
8)以4.4V恒压充电至电池电流达到0.01C,停止充电。
实施例9
实施例9的具体步骤如下:
1)设置一组依次减小的充电电流值{3C,2C,1.3C}、一组放电电流值{0.2C,0.05C,0.02C}、一组充电时间值{1s,5s,10s}、一组放电时间值{0.05s,0.5s,1s},以及一组依次增大的充电截止电压值{4.0V,4.2V,4.4V};设置恒压充电电压为4.4V、充电截止电流为0.05C;将电池置于25℃环境中,对电池充放电;
2)以电流3C充电1s,然后以电流0.2C放电0.05s,
3)重复步骤2),一直到电池电压达到4.0V;
4)以电流2C充电5s,然后以电流0.05C放电0.5s,
5)重复步骤4),一直到电池电压达到4.2V;
6)以电流1.3C充电10s,然后以电流0.02C放电1s,
7)重复步骤6),一直到电池电压达到4.4V;
8)以4.4V恒压充电至电池电流达到0.05C,停止充电。
实施例10
实施例10的具体步骤如下:
1)设置一组依次减小的充电电流值{3C,2C,1.3C}、一组放电电流值{0.2C,0.2C,0.2C}、一组充电时间值{9.5s,9.5s,9.5s}、一组放电时间值{0.5s,0.5s,0.5s},以及一组依次增大的充电截止电压值{4.0V,4.2V,4.4V};设置恒压充电电压为4.4V、充电截止电流为0.05C;将电池置于25℃环境中,对电池充放电;
2)以电流3C充电9.5s,然后以电流0.2C放电0.5s,
3)重复步骤2),一直到电池电压达到4.0V;
4)以电流2C充电9.5s,然后以电流0.2C放电0.5s,
5)重复步骤4),一直到电池电压达到4.2V;
6)以电流1.3C充电9.5s,然后以电流0.2C放电0.5s,
7)重复步骤6),一直到电池电压达到4.4V;
8)以4.4V恒压充电至电池电流达到0.05C,停止充电。
实施例11
实施例11的具体步骤如下:
1)设置一组依次减小的充电电流值{1C,0.5C,0.2C}、一组放电电流值{0.2C,0.05C,0.01C}、一组充电时间值{1s,5s,30s}、一组放电时间值{0.05s,0.5s,5s},以及一组依次增大的充电截止电压值{4.0V,4.2V,4.4V};设置恒压充电电压为4.4V、充电截止电流为0.05C;将电池置于0℃环境中,对电池充放电;
2)以电流1C充电1s,然后以电流0.2C放电0.05s,
3)重复步骤2),一直到电池电压达到4.0V;
4)以电流0.5C充电5s,然后以电流0.05C放电0.5s,
5)重复步骤4),一直到电池电压达到4.2V;
6)以电流0.2C充电30s,然后以电流0.01C放电5s,
7)重复步骤6),一直到电池电压达到4.4V;
8)以4.4V恒压充电至电池电流达到0.05C,停止充电。
实施例12
实施例12的具体步骤如下:
1)设置一组依次减小的充电电流值{1C,0.5C,0.2C}、一组放电电流值{0.2C,0.2C,0.2C}、一组充电时间值{1s,1s,1s}、一组放电时间值{0.05s,0.05s,0.05s},以及一组依次增大的充电截止电压值{4.0V,4.2V,4.4V};设置恒压充电电压为4.4V、充电截止电流为0.05C;将电池置于0℃环境中,对电池充放电;
2)以电流1C充电1s,然后以电流0.2C放电0.05s,
3)重复步骤2),一直到电池电压达到4.0V;
4)以电流0.5C充电1s,然后以电流0.2C放电0.05s,
5)重复步骤4),一直到电池电压达到4.2V;
6)以电流0.2C充电1s,然后以电流0.2C放电0.05s,
7)重复步骤6),一直到电池电压达到4.4V;
8)以4.4V恒压充电至电池电流达到0.05C,停止充电。
实施例13
实施例13的具体步骤如下:
1)设置一组依次减小的充电电流值{1.5C,1C,0.7C,0.5C}、一组放电电流值{0.2C,0.05C,0.02C,0.02C}、一组充电时间值{2s,10s,20s,20s}、一组放电时间值{0.05s,0.5s,2s,2s},以及一组依次增大的充电截止电压值{4.0V,4.2V,4.3V,4.35V};设置恒压充电电压为4.4V、充电截止电流为0.05C;将电池置于60℃环境中, 对电池充放电;
2)以电流1.5C充电2s,然后以电流0.2C放电0.05s,
3)重复步骤2),一直到电池电压达到4.0V;
4)以电流1C充电10s,然后以电流0.05C放电0.5s,
5)重复步骤4),一直到电池电压达到4.2V;
6)以电流0.7C充电20s,然后以电流0.02C放电2s,
7)重复步骤6),一直到电池电压达到4.3V;
8)以电流0.5C充电20s,然后以电流0.02C放电2s,
9)重复步骤8),一直到电池电压达到4.35V;
10)以4.35V恒压充电至电池电流达到0.05C,停止充电。
实施例14
实施例14的具体步骤如下:
1)设置一组依次减小的充电电流值{1.5C,1C,0.7C,0.5C}、一组放电电流值{0.05C,0.05C,0.05C,0.05C}、一组充电时间值{2s,2s,2s,2s}、一组放电时间值{0.05s,0.05s,0.05s,0.05s},以及一组依次增大的充电截止电压值{4.0V,4.2V,4.3V,4.35V};设置恒压充电电压为4.4V、充电截止电流为0.05C;将电池置于60℃环境中,对电池充放电;
2)以电流1.5C充电2s,然后以电流0.05C放电0.05s,
3)重复步骤2),一直到电池电压达到4.0V;
4)以电流1C充电2s,然后以电流0.05C放电0.05s,
5)重复步骤4),一直到电池电压达到4.2V;
6)以电流0.7C充电2s,然后以电流0.05C放电0.05s,
7)重复步骤6),一直到电池电压达到4.3V;
8)以电流0.5C充电2s,然后以电流0.05C放电0.05s,
9)重复步骤8),一直到电池电压达到4.35V;
10)以4.35V恒压充电至电池电流达到0.05C,停止充电。
对比例1
对比例1的具体步骤如下:
1)设置充电截止电压为4.4V,充电截止电流为0.05C;将电池置于25℃环境中,对电池充放电;
2)以恒定电流2C充电至电池电压达到4.4V;
3)以恒定电压4.4V充电至电池电流达到0.05C。
对比例2
对比例2的具体步骤如下:
1)设置充电截止电压为4.4V,充电截止电流为0.05C;将电池置于25℃环境中,对电池充放电;
2)以恒定电流0.7C充电至电池电压达到4.4V;
3)以恒定电压4.4V充电至电池电流达到0.05C。
对比例3
对比例3的具体步骤如下:
1)设置充电截止电压为4.4V,充电截止电流为0.05C;将电池置于0℃环境中,对电池充放电;
2)以恒定电流0.2C充电至电池电压达到4.4V;
3)以恒定电压4.4V充电至电池电流达到0.05C。
对比例4
对比例4的具体步骤如下:
1)设置充电截止电压为4.4V,充电截止电流为0.05C;将电池置于60℃环境中,对电池充放电;
2)以恒定电流0.5C充电至电池电压达到4.4V;
3)以恒定电压4.4V充电至电池电流达到0.05C。
图4为实施例1和对比例1的充电电流随时间变化的对比图。由图可见,在脉冲充电阶段,实施例1采用充电脉冲电流和放电脉冲电流交替的方式对电池充电,对比例1采用恒流充电的方式对电池充电。实施例1的充电脉冲电流值大于相同时刻的对比例1的恒定电流值,且实施例1比对比例1更早进入恒压充电阶段。在进入恒压充电阶段后,实施例1的充电电流小于对比例1的充电电流,且达到充电截止电流时,整个充电过程实施例1所需要的时间小于对比例1所需要的时间,
图5为实施例1和对比例1的充电电压随时间变化的对比图。由图可见,在脉冲充电阶段,实施例1的充电电压大于相同时刻的对比例1的充电电压,且达到充电截止电压时,实施例1所需要的时间小于对比例1所需要的时间,这表明实施例1进入恒压充电阶段前有更高的电池SOC(State Of Charge,剩余电量)。
图6为实施例1和对比例1的SOC随时间变化的对比图。由图可见,在整个充电过程中,实施例1的电池SOC大于相同时刻的对比例1的电池SOC,且电池满充时,实施例1所需要的时间小于对比例1所需要的时间。这表明相对于对比例1,实施例1的充电速度更快。
图7为实施例1和对比例1的电芯表面温度随时间变化的对比图。由图可见,充电过程的大部分时间内,实施例1的电芯表面温度小于对比例1的电芯表面温度,其他时间实施例1的电芯表面温度略大于对比例1的电芯表面温度,且实施例1电芯表面温度的最大值小于对比例1的电芯表面温度的最大值。这表明相对于对比例1,实施例1更好地抑制了电池充电过程中的温升。
表1为实施例和对比例的充电参数、电池温度和充电时间对比表,其中Ic表示充电电流值,Id表示放电电流值,tc表示充电时间值,td表示放电时间值,U表示充电截止电压值,I0表示恒流充电电流,Im表示充电截止电流。由表可见,当脉冲充电电流较大时,相对于对比例1,实施例1-4在充电过程中的电芯 表面最高温度分别降低了4.5℃、5℃、4℃、4.5℃,充电到电池SOC为80%时所用时间分别减少了7.1min、6.7min、6.6min、7min。当脉冲充电电流较小时,相对于对比例2,实施例5-10在充电过程中的电芯表面最高温度分别降低了3℃、2℃、2℃、2.5℃、1℃、1.5℃,充电到电池SOC为80%时所用时间分别减少了12.4min、13.6min、31.4min、32.4min、29.8min、29.1min。当充电环境温度为0℃时,相对于对比例3,实施例11、12在充电过程中的电芯表面最高温度分别降低了0.5℃、0.4℃,充电到电池SOC为80%时所用时间分别减少了127min、123min。当充电环境温度为60℃时,相对于对比例4,实施例13、14在充电过程中的电芯表面最高温度分别降低了1℃、1.2℃,充电到电池SOC为80%时所用时间分别减少了45min、44min。因此,本发明的充电方法较常规恒流恒压的充电方法降低了电池充电过程中的温升,提高了电池的充电速度。
表1、实施例与对比例的充电参数、电池温度和充电时间对比
Figure PCTCN2016098467-appb-000001
Figure PCTCN2016098467-appb-000002
本发明二次电池充电方法包括若干个脉冲充电阶段和一个恒压充电阶段。其中,各个脉冲充电阶段以对应的充电脉冲电流和放电脉冲电流交替地对电池充电,直至电池电压达到各个脉冲充电阶段对应的截止电压。各个脉冲充电阶段所对应的充电脉冲电流依次减小,且充电脉冲电流大于与其对应的放电脉冲电流。各个脉冲充电阶段所对应的截止电压依次增大。
当电池电压或SOC较低时,若采用常规恒流充电方式以正常电流值对电池充电,则充电速度较慢,但若采用常规恒流充电方式以大电流值对电池充电,则可能造成电池的安全性问题。因此需要对电池采用脉冲充电的方式,以其能够承受的脉冲电流值进行充电。
相对于常规恒流充电方式,脉冲充电方式虽然能避免电池极化快速积累、减少充电过程中电池的温升,并以更大的电流对电池充电而提升充电速度、增加电池的安全性,但其以恒定的充电脉冲电流对电池进行充电,充电脉冲电流值仍然受到一定的限制,其充电速度仍然无法满足人们的需求。
为了进一步提升充电脉冲电流值,从而提升电池的充电速度,改善用户的使用体验,本发明设置了若干个脉冲充电阶段,各个脉冲充电阶段所对应的充电脉冲电流依次减小,这样在前几个脉冲充电阶段中,就可以设定较大的充电 脉冲电流值。由于前几个脉冲充电阶段对应的充电脉冲电流较大,能够满足对电池快速充电的需求,并且脉冲充电与脉冲放电交替进行,改善了大电流充电的极化积累,因此本发明的充电方法较恒定脉冲电流值的充电方式具有更快的充电速度。
具体来说,充电速度可以用一定时间内电池充入的电量来衡量,通常在充电过程中包含放电步骤,会使得充入电池的电量减小,从而影响充电速度。但本发明的充电方法中,各充电脉冲电流大于与其对应的放电脉冲电流,且放电时间较短,因此本发明的电池放电并不会对电池电压或者SOC造成较大影响,即不会影响电池的充电速度。
随着电池充电的进行,电池电压或SOC升高,如继续采用恒定的充电脉冲电流值充电,对电池充电速率也没有明显的改善,且大电流容易造成电池极化积累,因此本发明设置了依次减小的充电脉冲电流值。当电池处于低电压或低SOC状态时,使用较大的充电脉冲电流充电,当电池处于高电压或高SOC状态时,使用较小的充电脉冲电流充电,直到所有脉冲充电阶段结束。如此设置,既可以满足电池初期对大电流的需求,缩短充电时间,又能够避免电池充电过程极化积累过快。
为了保证电池SOC达到100%,并避免充电电压过高对电池过充,本发明的充电方法在电池电压达到最后一个脉冲充电阶段的截止电压后,以恒定电压值对电池充电。随着电池SOC增长,充电电流逐渐减小,直到达到截止电流,电池充满,停止充电。
本发明充电方法中的充电电流值、放电电流值、充电时间值、放电时间值及充电截止电压值可以根据电池的种类和电池使用温度选取。具体地,充电电流值{Ic1,Ic2,Ic3,……,Icn}优选范围为0.2C~5C。充电时间值{tc1,tc2,tc3,……,tcn}优选范围为0.1s~30s。放电电流值{Id1,Id2,Id3,……,Idn}优选范围为0C~0.2C。放电时间值{td1,td2,td3,……,tdn}优选范围为0.01s~5s。充电截止电 压值{U1,U2,U3,……,Un}优选范围为3V~5V范围。充电截止电流Im优选0.01C~0.1C。充电环境温度优选0~60℃。在优选参数条件下,本发明的充电方法将具有更优良的技术效果。
需要说明的是,恒压充电阶段的恒压充电电压V0与最后一个脉冲充电阶段的充电截止电压Un可以相同、也可以不同。例如,当充电进入恒压充电阶段时,恒压充电电压V0可以继续采用最后一个脉冲充电阶段的充电截止电压Un,也可以采用电池的额定电压。
一组充电时间值{tc1,tc2,tc3,……,tcn}中的各个充电时间值可以相同,也可以不完全相同。一组放电时间值{td1,td2,td3,……,tdn}中的各个放电时间值可以相同,也可以不完全相同。例如实施例1与实施例2、实施例3与实施例4等奇数实施例与偶数实施例的对比。
本发明的充电方法可以通过充电电路集成于电池充电器、电池适配器、电池控制电路、集成芯片中实现,并应用于手机、笔记本电脑、平板电脑、音乐播放器、蓝牙耳机、移动电源、其他便携式手持设备、电动工具、无人机、电动车等电子产品和设备的动力或储能电池上,适用的二次电池体系包括锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池、钠离子电池等。
结合以上对本发明的详细描述可以看出,相对于现有技术,本发明二次电池充电方法的有益技术效果包括但不限于:采用幅值渐小的脉冲充电方式,有效改善了电池充电过程中的极化积累,降低电池温升,显著提高了电池的充电速度。
根据上述原理,本发明还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何 限制。

Claims (13)

  1. 一种二次电池充电方法,其特征在于,所述方法包括以下步骤:
    步骤一:设定一组依次减小的充电电流值{Ic1,Ic2,Ic3,……,Icn}、一组放电电流值{Id1,Id2,Id3,……,Idn}、一组充电时间值{tc1,tc2,tc3,……,tcn}、一组放电时间值{td1,td2,td3,……,tdn},以及一组依次增大的充电截止电压值{U1,U2,U3,……,Un},其中,Ic1>Id1,Ic2>Id2,……,Icn>Idn;
    步骤二:对电池充电,充电电流为Ic1,充电时间为tc1,然后对电池放电,放电电流为Id1,放电时间为td1,如此循环,直至电池电压达到U1;
    对电池充电,充电电流为Ic2,充电时间为tc2,然后对电池放电,放电电流为Id2,放电时间为td2,如此循环,直至电池电压达到U2;
    ……
    对电池充电,充电电流为Icn,充电时间为tcn,然后对电池放电,放电电流为Idn,放电时间为tdn,如此循环,直至电池电压达到Un;
  2. 根据权利要求1所述的二次电池充电方法,其特征在于:所述步骤一还包括设定恒压充电电压V0和充电截止电流Im的步骤,所述步骤二之后还包括对电池以V0恒压充电、直至电池电流达到Im的步骤。
  3. 根据权利要求1所述的二次电池充电方法,其特征在于:所述充电电流值{Ic1,Ic2,Ic3,……,Icn}在0.2C~5C范围内。
  4. 根据权利要求1所述的二次电池充电方法,其特征在于:所述充电时间值{tc1,tc2,tc3,……,tcn}在0.1s~30s范围内。
  5. 根据权利要求1所述的二次电池充电方法,其特征在于:所述放电电流值{Id1,Id2,Id3,……,Idn}在0C~0.2C范围内。
  6. 根据权利要求1所述的二次电池充电方法,其特征在于:所述放电时间值{td1,td2,td3,……,tdn}在0.01s~5s范围内。
  7. 根据权利要求1所述的二次电池充电方法,其特征在于:所述充电截止电压值{U1,U2,U3,……,Un}在3V~5V范围内。
  8. 根据权利要求1所述的二次电池充电方法,其特征在于:所述充电截止电流Im为0.01C~0.1C。
  9. 根据权利要求1所述的二次电池充电方法,其特征在于:所述一组充电时间值{tc1,tc2,tc3,……,tcn}中的各个充电时间值相同或者不完全相同。
  10. 根据权利要求1所述的二次电池充电方法,其特征在于:所述一组放电时间值{td1,td2,td3,……,tdn}中的各个放电时间值相同或者不完全相同。
  11. 根据权利要求1所述的二次电池充电方法,其特征在于:所述最后一个充电截止电压值Un与恒压充电电压V0相同或者不同。
  12. 根据权利要求1所述的二次电池充电方法,其特征在于:所述电池为锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池。
  13. 根据权利要求1所述的二次电池充电方法,其特征在于:所述方法还包括将电池置于0~60℃环境中的步骤,此步骤在步骤二之前完成。
PCT/CN2016/098467 2016-01-29 2016-09-08 二次电池充电方法 WO2017128724A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2016/074806 2016-01-29
PCT/CN2016/074806 WO2017147741A1 (zh) 2016-02-29 2016-02-29 锂离子电池充电方法

Publications (1)

Publication Number Publication Date
WO2017128724A1 true WO2017128724A1 (zh) 2017-08-03

Family

ID=59397361

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/074806 WO2017147741A1 (zh) 2016-01-29 2016-02-29 锂离子电池充电方法
PCT/CN2016/098467 WO2017128724A1 (zh) 2016-01-29 2016-09-08 二次电池充电方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074806 WO2017147741A1 (zh) 2016-01-29 2016-02-29 锂离子电池充电方法

Country Status (1)

Country Link
WO (2) WO2017147741A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109378534A (zh) * 2017-08-08 2019-02-22 宁德新能源科技有限公司 充电方法、充电装置和移动终端
CN110383665A (zh) * 2018-09-11 2019-10-25 Oppo广东移动通信有限公司 电源提供装置和充电控制方法
CN110729520A (zh) * 2019-09-05 2020-01-24 力神动力电池***有限公司 一种电池快速充电方法
CN112448050A (zh) * 2019-08-28 2021-03-05 北京小米移动软件有限公司 锂离子电池的充电方法和锂离子电池的充电装置
CN112928351A (zh) * 2021-02-10 2021-06-08 中国科学院金属研究所 一种锂硫电池的脉冲充电技术
CN112928352A (zh) * 2021-02-10 2021-06-08 中国科学院金属研究所 一种锂硫电池的阶梯充电技术
CN112949164A (zh) * 2021-01-27 2021-06-11 上海电机学院 一种锂电池健康状态预测方法
CN112993423A (zh) * 2021-02-19 2021-06-18 芜湖天弋能源科技有限公司 一种提高锂离子电池电芯模组容量的方法
CN113161636A (zh) * 2021-02-10 2021-07-23 中国科学院金属研究所 一种磷酸铁锂电池的低温充电技术
CN113241482A (zh) * 2021-02-10 2021-08-10 中国科学院金属研究所 一种锂硫电池的充电技术
CN113316878A (zh) * 2020-03-25 2021-08-27 宁德新能源科技有限公司 充电方法、电子装置以及存储介质
CN113574763A (zh) * 2020-12-25 2021-10-29 宁德新能源科技有限公司 充电方法、电子装置以及存储介质
CN113711459A (zh) * 2020-12-25 2021-11-26 宁德新能源科技有限公司 充电方法、电子装置以及存储介质
US20220077712A1 (en) * 2020-09-08 2022-03-10 Southwest Research Institute Fast Charging for Lithium-Ion Batteries Using Pulse Width Modulated Charging and Cooling
US11616382B2 (en) * 2017-12-06 2023-03-28 Johnson Matthey Plc Battery management
JP7418556B2 (ja) 2021-01-28 2024-01-19 寧徳時代新能源科技股▲分▼有限公司 充電方法、駆動用バッテリーのバッテリー管理システム及び充電ポスト

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082149A (zh) * 2019-12-18 2020-04-28 江苏智泰新能源科技有限公司 一种锂离子电池的化成方法
CN111934037B (zh) * 2020-07-14 2022-08-09 浙江零跑科技股份有限公司 一种电池充电方法和计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404346A (zh) * 2008-11-19 2009-04-08 中国人民解放军军械工程学院 恒压脉冲快速充电法
CN104269583A (zh) * 2014-09-25 2015-01-07 重庆邮电大学 一种带负脉冲的分段恒流恒压交替充电方法
JP2015176821A (ja) * 2014-03-17 2015-10-05 トヨタ自動車株式会社 リチウムイオン二次電池の充電方法
CN105186053A (zh) * 2015-08-24 2015-12-23 长春理工大学 蓄电池变电流充电方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102945987B (zh) * 2012-11-27 2014-03-12 中国船舶重工集团公司第七一〇研究所 一种带压控脉冲的分级恒流充电方法
CN103117421A (zh) * 2013-03-07 2013-05-22 清华大学 一种电池低温充电方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404346A (zh) * 2008-11-19 2009-04-08 中国人民解放军军械工程学院 恒压脉冲快速充电法
JP2015176821A (ja) * 2014-03-17 2015-10-05 トヨタ自動車株式会社 リチウムイオン二次電池の充電方法
CN104269583A (zh) * 2014-09-25 2015-01-07 重庆邮电大学 一种带负脉冲的分段恒流恒压交替充电方法
CN105186053A (zh) * 2015-08-24 2015-12-23 长春理工大学 蓄电池变电流充电方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109378534B (zh) * 2017-08-08 2021-03-26 宁德新能源科技有限公司 充电方法、充电装置和移动终端
CN109378534A (zh) * 2017-08-08 2019-02-22 宁德新能源科技有限公司 充电方法、充电装置和移动终端
US11616382B2 (en) * 2017-12-06 2023-03-28 Johnson Matthey Plc Battery management
CN110383665A (zh) * 2018-09-11 2019-10-25 Oppo广东移动通信有限公司 电源提供装置和充电控制方法
US11404896B2 (en) 2019-08-28 2022-08-02 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for charging lithium ion battery
CN112448050A (zh) * 2019-08-28 2021-03-05 北京小米移动软件有限公司 锂离子电池的充电方法和锂离子电池的充电装置
CN112448050B (zh) * 2019-08-28 2022-06-24 北京小米移动软件有限公司 锂离子电池的充电方法和锂离子电池的充电装置
CN110729520A (zh) * 2019-09-05 2020-01-24 力神动力电池***有限公司 一种电池快速充电方法
CN110729520B (zh) * 2019-09-05 2024-02-20 力神(青岛)新能源有限公司 一种三元电池快速充电方法
CN113316878A (zh) * 2020-03-25 2021-08-27 宁德新能源科技有限公司 充电方法、电子装置以及存储介质
US20220077712A1 (en) * 2020-09-08 2022-03-10 Southwest Research Institute Fast Charging for Lithium-Ion Batteries Using Pulse Width Modulated Charging and Cooling
US11646597B2 (en) * 2020-09-08 2023-05-09 Southwest Research Institute Fast charging for lithium-ion batteries using pulse width modulated charging and cooling
CN113574763A (zh) * 2020-12-25 2021-10-29 宁德新能源科技有限公司 充电方法、电子装置以及存储介质
CN113711459A (zh) * 2020-12-25 2021-11-26 宁德新能源科技有限公司 充电方法、电子装置以及存储介质
CN112949164A (zh) * 2021-01-27 2021-06-11 上海电机学院 一种锂电池健康状态预测方法
JP7418556B2 (ja) 2021-01-28 2024-01-19 寧徳時代新能源科技股▲分▼有限公司 充電方法、駆動用バッテリーのバッテリー管理システム及び充電ポスト
CN112928351A (zh) * 2021-02-10 2021-06-08 中国科学院金属研究所 一种锂硫电池的脉冲充电技术
CN113241482A (zh) * 2021-02-10 2021-08-10 中国科学院金属研究所 一种锂硫电池的充电技术
CN113161636A (zh) * 2021-02-10 2021-07-23 中国科学院金属研究所 一种磷酸铁锂电池的低温充电技术
CN112928352A (zh) * 2021-02-10 2021-06-08 中国科学院金属研究所 一种锂硫电池的阶梯充电技术
CN113161636B (zh) * 2021-02-10 2024-04-30 中国科学院金属研究所 一种磷酸铁锂电池的低温充电技术
CN112993423A (zh) * 2021-02-19 2021-06-18 芜湖天弋能源科技有限公司 一种提高锂离子电池电芯模组容量的方法

Also Published As

Publication number Publication date
WO2017147741A1 (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
WO2017128724A1 (zh) 二次电池充电方法
WO2017143761A1 (zh) 二次电池充电方法
EP2947748B1 (en) Battery charging method and battery management system therefor
JP5682583B2 (ja) リチウムイオン二次電池の充放電方法及び充放電システム
KR101074785B1 (ko) 배터리 관리 시스템 및 이의 제어 방법, 및 배터리 관리 시스템을 포함한 에너지 저장 시스템
EP2838176B1 (en) Method for charging secondary battery
JP2017533691A (ja) 電池急速充電方法及び装置
JP5839210B2 (ja) バッテリー充電装置及び方法
EP2629396B1 (en) Charging apparatus
CN103413985A (zh) 基于环境温度的电动车用铅酸蓄电池的快速充电方法
CN102035026A (zh) 用于制造锂离子二次电池的方法
US11081735B2 (en) Method and apparatus for charging battery
JP2010119186A (ja) 充電式リチウム電池の充電システム
Mars et al. Comparison study of different dynamic battery model
Park et al. Maximum power transfer tracking in a solar USB charger for smartphones
KR20150145344A (ko) 배터리 충전방법
KR102439689B1 (ko) 배터리 충전 방법 및 배터리 충전 장치
KR20130126344A (ko) 리튬 이차 전지의 저온 충전 방법
CN105633493A (zh) 修复过放电受损锂离子电池的方法
CN203377654U (zh) 一种锂离子电池保护芯片
Pichetjamroen et al. A Study on performances of flexible power control with empirical lithium-ion battery modeling in PV power systems
Lavety et al. Electro-thermal model for non-dissipative reflex charging
CN103682496A (zh) 锂离子电池延长使用寿命的充电方法
KR101472881B1 (ko) 이차전지 충전방법 및 이를 포함하는 충전 시스템
CN210468857U (zh) 一种锂电池管理***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887600

Country of ref document: EP

Kind code of ref document: A1