WO2017128722A1 - 三维显示装置 - Google Patents

三维显示装置 Download PDF

Info

Publication number
WO2017128722A1
WO2017128722A1 PCT/CN2016/098178 CN2016098178W WO2017128722A1 WO 2017128722 A1 WO2017128722 A1 WO 2017128722A1 CN 2016098178 W CN2016098178 W CN 2016098178W WO 2017128722 A1 WO2017128722 A1 WO 2017128722A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixels
pixel
strip
grating
Prior art date
Application number
PCT/CN2016/098178
Other languages
English (en)
French (fr)
Inventor
吴坤
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/536,276 priority Critical patent/US10545352B2/en
Publication of WO2017128722A1 publication Critical patent/WO2017128722A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/36Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using refractive optical elements, e.g. prisms, in the optical path between the images and the observer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • G02B5/1823Plural gratings positioned on the same surface, e.g. array of gratings in an overlapping or superposed manner
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a three-dimensional display device.
  • the common pixel design of the display screen is RGB or RGBW design, that is, one pixel is composed of three sub-pixels or four sub-pixels, and the visual resolution is the physical resolution.
  • RGBW design that is, one pixel is composed of three sub-pixels or four sub-pixels
  • the visual resolution is the physical resolution.
  • PPI visual resolution
  • the method of reducing the pixel size is generally adopted to improve the physical resolution of the display.
  • the process of making the display screen becomes more and more difficult.
  • Pentile In order to improve the visual resolution of the display, a technique of synthesizing one pixel by two sub-pixels, that is, a virtual display (Pentile) technology has been developed.
  • the principle of this technology is to utilize the resolution of the brightness in the human visual system to be several times the resolution of the chrominance, by borrowing adjacent sub-pixels and combining with the corresponding algorithm for display (also called pixel rendering, color dispersion).
  • Pentile technology can achieve high resolution using existing process capabilities.
  • the naked-eye three-dimensional display is favored because the viewer does not need to wear glasses.
  • the existing three-dimensional grating application for the naked-eye stereoscopic display for the ordinary pixel design realizes the pixel structure of the virtual display, crosstalk problems and moiré problems are generated, which greatly affects the viewing effect of the three-dimensional display.
  • embodiments of the present disclosure provide a three-dimensional display device that is capable of at least partially alleviating or even eliminating problems in the prior art.
  • an embodiment of the present disclosure provides a three-dimensional display device including: a pixel structure composed of a plurality of sub-pixels arranged in rows and columns, and a three-dimensional grating composed of a plurality of strip-shaped grating structures periodically arranged in a horizontal direction.
  • a pixel structure composed of a plurality of sub-pixels arranged in rows and columns
  • a three-dimensional grating composed of a plurality of strip-shaped grating structures periodically arranged in a horizontal direction.
  • each sub-pixel is aligned.
  • each sub-pixel is shifted by half a sub-pixel with respect to an adjacent sub-pixel, and is different from the color of the adjacent sub-pixel.
  • Extension direction of each strip grating structure They are all the same and have a preset tilt angle with respect to the horizontal direction.
  • Each stripe grating structure corresponds to at least two sub-pixels displaying different viewpoint images in each row of sub-pixels.
  • one square pixel unit in each column of sub-pixels, is composed of every two sub-pixels, and each sub-pixel has an aspect ratio of 1:2.
  • one square pixel unit in each column of sub-pixels, is composed of every 1.5 sub-pixels, and each sub-pixel has an aspect ratio of 2:3.
  • one sub-pixel in each column of sub-pixels, constitutes one square pixel unit, and each of the sub-pixels has an aspect ratio of 1:1.
  • the sub-pixels on the odd-numbered columns are aligned, and the sub-pixels on the even-numbered columns are aligned.
  • the extending direction of the strip grating structure is inclined at an angle of [70°, 80°] with respect to the horizontal direction.
  • the extending direction of the strip grating structure is inclined at an angle of [75°, 77.9°] with respect to the horizontal direction.
  • the extending direction of the strip grating structure is inclined at 76°, 77°, 78° or 76.89° with respect to the horizontal direction.
  • each strip-shaped grating structure corresponds to three sub-pixels respectively displaying two viewpoint images in each row of the sub-pixels.
  • the viewpoint image displayed by each sub-pixel in the pixel structure is a repeating unit for every three columns of sub-pixels or a repeating unit for every six columns of sub-pixels.
  • display brightness of one or both of adjacent two sub-pixels displaying different view images is lower than display of other sub-pixels brightness.
  • the display brightness of one or both of the adjacent two sub-pixels displaying different view images is the display brightness of the other sub-pixels. 0%-80%.
  • the display brightness of one or both of the adjacent two sub-pixels displaying different viewpoint images is 50% of the display luminance of the other sub-pixels.
  • the three-dimensional grating is a lens grating
  • the strip grating structure is a lens structure.
  • the three-dimensional grating is a slit grating
  • the strip grating structure is a combination of a strip-shaped light-transmitting region and a strip-shaped light-blocking region.
  • the strip-shaped grating structure is a combination of a strip-shaped light-transmitting region and a strip-shaped light-shielding region
  • the strip-shaped light-transmitting region and the strip-shaped light-blocking region are extended.
  • the direction is consistent with the extending direction of the strip grating structure.
  • the three-dimensional grating is disposed on the light exiting side of the pixel structure.
  • the pixel structure is a liquid crystal pixel structure
  • the three-dimensional grating is disposed on the light incident side of the pixel structure.
  • a plurality of sub-pixels arranged in a row and column constitute a pixel structure.
  • each sub-pixel is aligned.
  • each row of sub-pixels each sub-pixel is shifted by half a sub-pixel with respect to an adjacent sub-pixel, and is different from the color of the adjacent sub-pixel.
  • the corresponding three-dimensional grating includes a plurality of strip grating structures periodically arranged along the horizontal direction, wherein each strip grating structure has the same extending direction and a predetermined tilt angle with respect to the horizontal direction.
  • Each stripe grating structure corresponds to at least two sub-pixels displaying different viewpoint images in each row of sub-pixels.
  • FIG. 1 is a schematic structural diagram of a three-dimensional display device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a pixel structure in a three-dimensional display device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic partial structural diagram of a three-dimensional display device according to an embodiment of the present disclosure.
  • the three-dimensional display device includes: A pixel structure composed of a plurality of arranged sub-pixels 01, and a three-dimensional grating composed of a plurality of stripe grating structures 02 periodically arranged in the horizontal direction.
  • each sub-pixel 01 is aligned in each column of sub-pixels.
  • each sub-pixel 01 is shifted by half a sub-pixel with respect to the adjacent sub-pixel 01, and is different from the color of the adjacent sub-pixel 01.
  • three different colors are indicated by A, B, and C, respectively.
  • each strip grating structure 02 has the same extending direction and a predetermined tilt angle with respect to the horizontal direction.
  • Each stripe grating structure 02 corresponds to at least two sub-pixels 01 displaying different viewpoint images among the rows of sub-pixels.
  • each sub-pixel 01 is shifted by half a sub-pixel relative to the adjacent sub-pixel 01 in each row of sub-pixels may be used.
  • the proportion of sub-pixels simultaneously covered by two adjacent strip-shaped grating structures is reduced, thereby reducing crosstalk and moiré in three-dimensional display, and improving the viewing effect of three-dimensional display.
  • the pixel structure of the above-described three-dimensional display device provided by the embodiment of the present disclosure as shown in FIGS. 2a-2c, in each row of sub-pixels, the sub-pixels 01 on the odd-numbered columns are aligned, and the sub-arrays are arranged.
  • the pixels 01 are aligned to ensure that the pixel structure as a whole has a rectangular structure.
  • the pixel structure of the above-described three-dimensional display device provided by the embodiment of the present disclosure is particularly suitable for a three-dimensional image that is horizontally displayed after a 90-degree rotation of a vertical screen device such as a mobile phone having a length greater than a width.
  • a virtual pixel structure design may be adopted, in which a square pixel unit is composed of up to two adjacent sub-pixels 01, and then is performed. Display with a virtual algorithm to achieve virtual display. In this way, the selective opening of the sub-pixel 01 can be flexibly used without reducing the pixel size, and the same information can be displayed with fewer pixels, thereby improving the output resolution of the display image.
  • one square pixel unit shown by a broken line frame
  • each sub-pixel 01 has an aspect ratio of 1:2.
  • each of the 1.5 sub-pixels 01 may be composed of one square pixel unit (shown by a broken line frame), and each sub-pixel 01 has an aspect ratio of 2:3.
  • each column of sub-pixels 01 one sub-pixel 01 is composed of one square pixel unit (shown by a broken line frame), and each sub-pixel 01 has an aspect ratio of 1:1.
  • the aspect ratio of each sub-pixel 01 shown in FIG. 2b is 2:3 will be described.
  • the inclination direction of the strip grating structure 02 with respect to the horizontal direction is in the range of [70°, 80°] It has the effect of preferably reducing the moiré.
  • the inclination direction of the strip grating structure 02 with respect to the horizontal direction is in the range of [75°, 77.9°].
  • the extending direction of the strip grating structure 02 is inclined at an angle of 76°, 77°, 78° or 76.89° with respect to the horizontal direction.
  • the tilting direction thereof may be inclined to the right as shown in FIG. 1 or may be inclined to the left, which is not limited herein. The following description will be made by taking the strip grating structure 02 tilted to the right as an example.
  • the side edges of the strip-shaped grating structures 02 are oblique lines extending along the extending direction of the strip-shaped grating structure 02, and the oblique The line divides each sub-pixel 01 overlapping the edge into two parts. At this time, each of the divided sub-pixels 01 theoretically corresponds to the strip-shaped grating structure 02 overlapping the portion having a large proportion.
  • the sub-pixel 01 corresponds to the strip-shaped grating structure 02 partially overlapping with a, and belongs to the strip-shaped grating structure 02. Viewpoint image.
  • each stripe grating structure 02 has a sub-pixel 01 of two viewpoint images respectively corresponding to three of the corresponding row sub-pixels, and has a comparison Low 3D crosstalk and less moiré.
  • two viewpoint images are denoted by 1 and 2, respectively.
  • the viewpoint images displayed by the respective sub-pixels 01 are sequentially arranged.
  • the order of arrangement of the viewpoint images of each column of sub-pixels 01 differs depending on the inclination angle of the strip-like grating structure 02.
  • the viewpoint image displayed by each sub-pixel 01 in the pixel structure is a repeating unit for every three columns of sub-pixels or a repeating unit for every six columns of sub-pixels.
  • the viewpoint image displayed by each sub-pixel in the pixel structure is a repeating unit every three columns of sub-pixels, and the repeating unit is specifically as shown in Table 1. Shown.
  • the repeating unit may start with a sub-pixel located in the upper left (right) corner of the pixel structure.
  • the first to third rows of sub-pixels display the first view
  • the fourth to the 12th row of sub-pixels display the second view
  • the 13th to 21st rows of sub-pixels display the first view, ie, initially 3 rows display the first view
  • the next 9 rows of sub-pixels display the second view
  • the next 9 rows of sub-pixels display the first view
  • the next 9 rows of sub-pixels display the second view
  • the next 9 rows of sub-pixels display the next 9 rows of sub-pixels display the second view
  • the next 9 rows of sub-pixel display A view and so on to the end of the column.
  • the first to the ninth rows of sub-pixels display the first view
  • the 10th to 18th rows of sub-pixels display the second view
  • the 19th to 27th rows of sub-pixels display the first view
  • initially 9 lines display the first view
  • the next 9 lines of sub-pixels display the second view
  • the next 9 lines of sub-pixels display the first view
  • the next 9 lines of sub-pixels display the second view
  • the next 9 lines of sub-pixel display A view and so on to the end of the column.
  • the first to sixth rows of sub-pixels display a second view
  • the 7th to 15th rows of sub-pixels display a first view
  • the 16th to 24th rows of sub-pixels display a second view
  • initially 6 rows display the second view
  • the next 9 rows of sub-pixels display the first view
  • the next 9 rows of sub-pixels display the second view
  • the next 9 rows of sub-pixels display the first view
  • the next 9 rows of sub-pixels display the first view
  • the next 9 rows of sub-pixel display Second view and so on to the end of the column.
  • Each subsequent sub-pixel is arranged according to the three-column sub-pixel as a repeating unit.
  • the viewpoint image displayed by each sub-pixel in the pixel structure is a repeating unit every three columns of sub-pixels, and the repeating unit is specifically as shown in Table 2. Shown.
  • the viewpoint image displayed by each sub-pixel in the pixel structure is a repeating unit every three columns of sub-pixels, and the repeating unit is specifically as shown in Table 3. Shown.
  • the viewpoint image displayed by each sub-pixel in the pixel structure is a repeating unit every six columns of sub-pixels, and the repeating unit is specifically as shown in Table 4. Shown.
  • the display brightness of one or both of the adjacent two sub-pixels displaying different viewpoint images may be set lower than Display brightness of other sub-pixels.
  • the luminance ratio is 0% to 80% in the normal display, in particular 50%.
  • the two sub-pixels are in the middle of each strip-like grating structure (the dotted line in the figure is the center line of the strip-like grating structure), that is, the two sub-pixels cross the strip
  • the left and right portions of the grating structure are points for increasing crosstalk, so reducing the display brightness thereof can significantly reduce the three-dimensional crosstalk, thereby improving the three-dimensional display effect.
  • the three-dimensional grating in the above-described three-dimensional display device provided by the embodiment of the present disclosure may specifically be a lens grating, and correspondingly, each strip-shaped grating structure 02 constituting the three-dimensional grating is a lens structure.
  • a liquid crystal lens can be used to achieve its lens function.
  • the three-dimensional grating in the above-described three-dimensional display device provided by the embodiment of the present disclosure may specifically be a slit grating, and correspondingly, each strip-shaped grating structure 02 constituting the three-dimensional grating is a strip-shaped transparent region and a strip-shaped light-shielding region.
  • the combination of the strip-shaped grating structure 02 is composed of a strip-shaped light-transmitting region and a strip-shaped light-shielding region, and the strip-shaped light-transmitting region and the strip-shaped light-shielding region extend in the same direction as the strip grating structure 02.
  • the above three-dimensional display device provided by the embodiment of the present disclosure
  • the positional relationship between the three-dimensional grating and the pixel structure is that the three-dimensional grating can be disposed on the light-emitting side of the pixel structure; or, when the pixel structure is a liquid crystal pixel structure, the three-dimensional grating can also be disposed on the light-incident side of the pixel structure.
  • a plurality of sub-pixels arranged in a row and column constitute a pixel structure.
  • each sub-pixel is aligned.
  • each row of sub-pixels each sub-pixel is shifted by half a sub-pixel with respect to an adjacent sub-pixel, and is different from the color of the adjacent sub-pixel.
  • the corresponding three-dimensional grating includes a plurality of strip grating structures periodically arranged along the horizontal direction, wherein each strip grating structure has the same extending direction and a predetermined tilt angle with respect to the horizontal direction.
  • Each stripe grating structure corresponds to at least two sub-pixels displaying different viewpoint images in each row of sub-pixels.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种三维显示装置,由行列排列的多个子像素(01)构成像素结构。在每列子像素(01)中各子像素(01)对齐排列。在每行子像素(01)中各子像素(01)相对于相邻子像素(01)错开半个子像素(01),并且与相邻子像素(01)的颜色各不相同。对应的三维光栅包括多个沿着水平方向周期性排列的条状光栅结构(02),其中,各条状光栅结构(02)的延伸方向均相同且与水平方向具有预设倾斜角度。每个条状光栅结构(02)对应各行子像素(01)中至少两个显示不同视点图像的子像素(01)。

Description

三维显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种三维显示装置。
背景技术
目前,显示屏常见的像素设计是RGB或RGBW设计,即由三个子像素或四个子像素组成一个像素进行显示,其视觉分辨率就是物理分辨率。但是随着客户对显示屏感受要求的提高,面板制作商需要不断增加显示屏的视觉分辨率(PPI)设计。目前,一般采用减小像素尺寸的方式来提高显示屏的物理分辨率。然而,随着像素的尺寸越来越小,制作显示屏的工艺难度会越来越大。
为了提高显示的视觉分辨率,目前已经发展出了一种两个子像素合成一个像素的技术,即虚拟显示(Pentile)技术。该技术的原理是利用人类视觉***中对亮度的分辨率是对色度分辨率的几倍,通过借用相邻子像素,结合与之对应的算法进行显示(也称像素渲染、色彩弥散)。Pentile技术可以使用现有的工艺能力实现高分辨率。
目前,随着立体显示技术的快速发展,对三维显示装置有了越来越大的需求。在实现三维显示的众多技术当中,裸眼三维立体显示由于无需观看者佩戴眼镜而倍受青睐。然而,当现有的针对普通像素设计的实现裸眼立体显示的三维光栅应用在实现虚拟显示的像素结构上,会产生串扰问题以及摩尔纹的问题,极大地影响了三维显示的观看效果。
发明内容
有鉴于此,本公开实施例提供了一种三维显示装置,其能够至少部分地缓解或甚至消除现有技术中的问题。
相应地,本公开实施例提供了一种三维显示装置,包括:由行列排列的多个子像素构成的像素结构,以及由多个沿着水平方向周期性排列的条状光栅结构构成的三维光栅。在每列子像素中,各子像素对齐排列。在每行子像素中,各子像素相对于相邻子像素错开半个子像素,并且与相邻子像素的颜色各不相同。各条状光栅结构的延伸方向 均相同且相对于水平方向具有预设倾斜角度。每个条状光栅结构对应各行子像素中至少两个显示不同视点图像的子像素。
根据一些实施例,在本公开实施例提供的上述三维显示装置中,在每列子像素中,由每2个子像素组成一个方形像素单元,并且各子像素的纵横比为1∶2。可替换地,在每列子像素中,由每1.5个子像素组成一个方形像素单元,并且各子像素的纵横比为2∶3。可替换地,在每列子像素中,由1个子像素组成一个方形像素单元,并且各所述子像素的纵横比为1∶1。
根据一些实施例,在本公开实施例提供的上述三维显示装置中,在每行子像素中,奇数列上的子像素对齐排列,并且偶数列上的子像素对齐排列。
根据一些实施例,在本公开实施例提供的上述三维显示装置中,条状光栅结构的延伸方向相对于水平方向的倾斜角度为[70°,80°]。
根据一些实施例,在本公开实施例提供的上述三维显示装置中,条状光栅结构的延伸方向相对于水平方向的倾斜角度为[75°,77.9°]。
根据一些实施例,在本公开实施例提供的上述三维显示装置中,条状光栅结构的延伸方向相对于水平方向的倾斜角度为76°、77°、78°或76.89°。
根据一些实施例,在本公开实施例提供的上述三维显示装置中,每个条状光栅结构对应各行所述子像素中三个分别显示两个视点图像的子像素。
根据一些实施例,在本公开实施例提供的上述三维显示装置中,像素结构中各子像素显示的视点图像以每三列子像素为重复单元或以每六列子像素为重复单元。
根据一些实施例,在本公开实施例提供的上述三维显示装置中,在每列子像素中,相邻两个显示不同视点图像的子像素之一或二者的显示亮度低于其他子像素的显示亮度。
根据一些实施例,在本公开实施例提供的上述三维显示装置中,在每列子像素中,相邻两个显示不同视点图像的子像素之一或二者的显示亮度是其他子像素的显示亮度的0%-80%。特别地,在每列子像素中,相邻两个显示不同视点图像的子像素之一或二者的显示亮度是其他子像素的显示亮度的50%。
根据一些实施例,在本公开实施例提供的上述三维显示装置中,三维光栅为透镜光栅,并且条状光栅结构为透镜结构。可替换地,三维光栅为狭缝光栅,并且条状光栅结构为条状透光区域和条状遮光区域的组合。
根据一些实施例,在本公开实施例提供的上述三维显示装置中,当条状光栅结构为条状透光区域和条状遮光区域的组合时,条状透光区域和条状遮光区域的延伸方向与条状光栅结构的延伸方向一致。
根据一些实施例,在本公开实施例提供的上述三维显示装置中,三维光栅设置在像素结构的出光侧。可替换地,当像素结构为液晶像素结构时,三维光栅设置在像素结构的入光侧。
在本公开实施例提供的三维显示装置中,由行列排列的多个子像素构成像素结构。在每列子像素中,各子像素对齐排列。在每行子像素中,各子像素相对于相邻子像素错开半个子像素,并且与相邻子像素的颜色各不相同。对应的三维光栅包括多个沿着水平方向周期性排列的条状光栅结构,其中,各条状光栅结构的延伸方向均相同且相对于水平方向具有预设倾斜角度。每个条状光栅结构对应各行子像素中至少两个显示不同视点图像的子像素。通过采用倾斜的条状光栅结构配合其中在每行子像素中各子像素相对于相邻子像素错开半个子像素的像素结构,可以降低同时被相邻的两个条状光栅结构覆盖的子像素的比例,从而降低三维显示时的串扰和摩尔纹,提高三维显示的观看效果。
附图说明
图1为本公开实施例提供的三维显示装置的结构示意图;
图2a-图2c分别为本公开实施例提供的三维显示装置中的像素结构的结构示意图;
图3为本公开实施例提供的三维显示装置的局部结构示意图。
具体实施方式
下面结合附图,对本公开实施例提供的三维显示装置的具体实施方式进行详细地说明。
本公开实施例提供的三维显示装置,如图1所示,包括:由行列 排列的多个子像素01构成的像素结构,以及由多个沿着水平方向周期性排列的条状光栅结构02构成的三维光栅。
具体地,如图2a-2c所示,在每列子像素中,各子像素01对齐排列。在每行子像素中,各子像素01相对于相邻子像素01错开半个子像素,并且与相邻子像素01的颜色各不相同。在图2a-2c中以A、B、C分别表示三种不同的颜色。
参照图1,各条状光栅结构02的延伸方向均相同且相对于水平方向具有预设倾斜角度。每个条状光栅结构02对应各行子像素中至少两个显示不同视点图像的子像素01。
在本公开实施例提供的上述三维显示装置中,通过采用倾斜的条状光栅结构02配合其中在每行子像素中各子像素01相对于相邻子像素01错开半个子像素的像素结构,可以降低同时被相邻的两个条状光栅结构覆盖的子像素的比例,从而降低三维显示时的串扰和摩尔纹,提高三维显示的观看效果。
进一步地,在本公开实施例提供的上述三维显示装置的像素结构中,如图2a-2c所示,在每行子像素中,奇数列上的子像素01对齐排列,并且偶数列上的子像素01对齐排列,以保证像素结构整体为矩形结构。并且,本公开实施例提供的上述三维显示装置的像素结构尤其适用于诸如手机之类的长度大于宽度的竖屏设备在旋转90度后横屏显示三维图像。
根据本公开的实施例,在本公开实施例提供的上述三维显示装置的像素结构中,可以采用虚拟像素结构设计,其中,由相邻的最多两个子像素01组成一个方形像素单元,之后在进行显示时配合虚拟算法,实现虚拟显示。这样在不减小像素尺寸的前提下可以灵活的运用子像素01的选择性开启,以较少的像素显示同样的信息,从而提高显示图像的输出分辨率。具体地,可以如图2a所示,在每列子像素01中由每2个子像素01组成一个方形像素单元(虚线框所示),各子像素01的纵横比为1∶2。也可以如图2b所示,在每列子像素01中由每1.5个子像素01组成一个方形像素单元(虚线框所示),各子像素01的纵横比为2∶3。还可以如图2c所示,在每列子像素01中由1个子像素01组成一个方形像素单元(虚线框所示),各子像素01的纵横比为1∶1。以下以图2b所示的各子像素01的纵横比为2∶3为例进行说明。
根据本公开的实施例,在本公开实施例提供的上述三维显示装置中,当条状光栅结构02的延伸方向相对于水平方向的倾斜角度在[70°,80°]的范围中时,可以具有较佳地降低摩尔纹的效果。进一步地,条状光栅结构02的延伸方向相对于水平方向的倾斜角度在[75°,77.9°]的范围中。例如,条状光栅结构02的延伸方向相对于水平方向的倾斜角度为76°、77°、78°或76.89°。并且,在设计三维光栅中的各条状光栅结构02时,其倾斜方向可以是如图1所示向右倾斜,也可以是向左倾斜,在此不做限定。下面均是以条状光栅结构02向右倾斜为例进行说明。
根据本公开的实施例,在本公开实施例提供的上述三维显示装置的三维光栅中,各条状光栅结构02的侧边缘为沿条状光栅结构02的延伸方向延伸的斜线,且该斜线将与边缘重叠的各子像素01分割成两部分。此时,被分割的各子像素01理论上对应于与所占比例大的部分重叠的条状光栅结构02。例如,如果子像素01被分割成a和b两部分,a部分所占比例大于b部分,则该子像素01对应于与a部分重叠的条状光栅结构02,且属于该条状光栅结构02的视点图像。
在综合考虑低串扰和低摩尔纹的情况下,如图1所示,每个条状光栅结构02在对应各行子像素中的三个分别显示两个视点图像的子像素01时,同时具有较低的三维串扰和较少的摩尔纹。图1中以1和2分别表示两个视点图像。一般在一列子像素中,各子像素01显示的视点图像顺序排列。具体每列子像素01的视点图像排列顺序取决于条状光栅结构02的倾斜角度而有所不同。一般地,像素结构中各子像素01显示的视点图像以每三列子像素为重复单元或以每六列子像素为重复单元。
具体地,在条状光栅结构02的延伸方向相对于水平方向的倾斜角度为76°时,像素结构中各子像素显示的视点图像以每三列子像素为重复单元,该重复单元具体如表1所示。
Figure PCTCN2016098178-appb-000001
表1
根据表1,重复单元可以以像素结构中位于左(右)上角的子像素为起始点。在对应的左上角的第一列中,第1到第3行子像素显示第一视图,第4到12行子像素显示第二视图,第13到21行子像素显示第一视图,即最初3行显示第一视图,接下来9行子像素显示第二视图,再接下来9行子像素显示第一视图,接下来9行子像素显示第二视图,再接下来9行子像素显示第一视图,依此类推至该列结束。
在对应的左上角的第二列中,第1到第9行子像素显示第一视图,第10到18行子像素显示第二视图,第19到27行子像素显示第一视图,即最初9行显示第一视图,接下来9行子像素显示第二视图,再接下来9行子像素显示第一视图,接下来9行子像素显示第二视图,再接下来9行子像素显示第一视图,依此类推至该列结束。
在对应的左上角的第三列中,第1到第6行子像素显示第二视图,第7到15行子像素显示第一视图,第16到24行子像素显示第二视图,即最初6行显示第二视图,接下来9行子像素显示第一视图,再接下来9行子像素显示第二视图,接下来9行子像素显示第一视图,再接下来9行子像素显示第二视图,依此类推至该列结束。
后续每列子像素均依该三列子像素为重复单元,依此排列。
具体地,在条状光栅结构02的延伸方向相对于水平方向的倾斜角度为77°时,像素结构中各子像素显示的视点图像以每三列子像素为重复单元,该重复单元具体如表2所示。
Figure PCTCN2016098178-appb-000002
表2
具体地,在条状光栅结构02的延伸方向相对于水平方向的倾斜角度为78°时,像素结构中各子像素显示的视点图像以每三列子像素为重复单元,该重复单元具体如表3所示。
Figure PCTCN2016098178-appb-000003
表3
具体地,在条状光栅结构02的延伸方向相对于水平方向的倾斜角度为76.89°时,像素结构中各子像素显示的视点图像以每六列子像素为重复单元,该重复单元具体如表4所示。
Figure PCTCN2016098178-appb-000004
表4
进一步地,在本公开实施例提供的上述三维显示装置中的像素结构中,在每列子像素中,相邻两个显示不同视点图像的子像素之一或二者的显示亮度可以设置成低于其他子像素的显示亮度。例如:对于每一列的分别显示视点图像1和视点图像2的相邻的两个子像素,其中的一个或二者以低亮度显示,亮度比例为正常显示时的0%~80%,特别地为50%。如图3所示,由于该两个子像素(由虚线圆圈表示)恰好在每一个条状光栅结构的中间区域(图中虚线为条状光栅结构的中心线),即该两个子像素横跨条状光栅结构的左右部分,是增加串扰的点,因此降低其显示亮度能明显地减弱三维串扰,从而提升三维显示效果。
根据本公开的实施例,在本公开实施例提供的上述三维显示装置中的三维光栅具体可以为透镜光栅,对应地,组成三维光栅的各条状光栅结构02为透镜结构。可以采用液晶透镜实现其透镜功能。可替换地,在本公开实施例提供的上述三维显示装置中的三维光栅具体可以为狭缝光栅,对应地,组成三维光栅的各条状光栅结构02为条状透光区域和条状遮光区域的组合,即一个条状光栅结构02由一个条状透光区域和一个条状遮光区域组成,且条状透光区域和条状遮光区域的延伸方向与条状光栅结构02的延伸方向一致。
根据本公开的实施例,在本公开实施例提供的上述三维显示装置 中的三维光栅和像素结构的位置关系为:三维光栅可以设置在像素结构的出光侧;或者,当像素结构为液晶像素结构时,三维光栅也可以设置在像素结构的入光侧。
在本公开实施例提供的三维显示装置中,由行列排列的多个子像素构成像素结构。在每列子像素中,各子像素对齐排列。在每行子像素中,各子像素相对于相邻子像素错开半个子像素,并且与相邻子像素的颜色各不相同。对应的三维光栅包括多个沿着水平方向周期性排列的条状光栅结构,其中,各条状光栅结构的延伸方向均相同且相对于水平方向具有预设倾斜角度。每个条状光栅结构对应各行子像素中至少两个显示不同视点图像的子像素。通过采用倾斜的条状光栅结构配合其中在每行子像素中各子像素相对于相邻子像素错开半个子像素的像素结构,可以降低同时被相邻的两个条状光栅结构覆盖的子像素的比例,从而降低三维显示时的串扰和摩尔纹,提高三维显示的观看效果。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (14)

  1. 一种三维显示装置,包括:由行列排列的多个子像素构成的像素结构,以及由多个沿着水平方向周期性排列的条状光栅结构构成的三维光栅,其中,
    在每列所述子像素中,各所述子像素对齐排列;
    在每行所述子像素中,各子像素相对于相邻子像素错开半个子像素,并且与相邻子像素的颜色各不相同;
    各所述条状光栅结构的延伸方向均相同且相对于所述水平方向具有预设倾斜角度;
    并且每个所述条状光栅结构对应各行所述子像素中至少两个显示不同视点图像的子像素。
  2. 如权利要求1所述的三维显示装置,其中,
    在每列所述子像素中,由每2个子像素组成一个方形像素单元,并且各所述子像素的纵横比为1∶2;或,
    在每列所述子像素中,由每1.5个子像素组成一个方形像素单元,并且各所述子像素的纵横比为2∶3;或,
    在每列所述子像素中,由1个子像素组成一个方形像素单元,并且各所述子像素的纵横比为1∶1。
  3. 如权利要求1所述的三维显示装置,其中,在每行所述子像素中,奇数列上的子像素对齐排列,并且偶数列上的子像素对齐排列。
  4. 如权利要求1所述的三维显示装置,其中,所述条状光栅结构的延伸方向相对于所述水平方向的倾斜角度为[70°,80°]。
  5. 如权利要求4所述的三维显示装置,其中,所述条状光栅结构的延伸方向相对于所述水平方向的倾斜角度为[75°,77.9°]。
  6. 如权利要求5所述的三维显示装置,其中,所述条状光栅结构的延伸方向相对于所述水平方向的倾斜角度为76°、77°、78°或76.89°。
  7. 如权利要求1所述的三维显示装置,其中,每个所述条状光栅结构对应各行所述子像素中三个分别显示两个视点图像的子像素。
  8. 如权利要求7所述的三维显示装置,其中,所述像素结构中各子像素显示的视点图像以每三列子像素为重复单元或以每六列子像素为重复单元。
  9. 如权利要求7所述的三维显示装置,其中,在每列所述子像素中,相邻两个显示不同视点图像的子像素之一或二者的显示亮度低于其他子像素的显示亮度。
  10. 如权利要求9所述的三维显示装置,其中,在每列子像素中,相邻两个显示不同视点图像的子像素之一或二者的显示亮度是其他子像素的显示亮度的0%-80%。
  11. 如权利要求10所述的三维显示装置,其中,在每列子像素中,相邻两个显示不同视点图像的子像素之一或二者的显示亮度是其他子像素的显示亮度的50%。
  12. 如权利要求1-11任一项所述的三维显示装置,其中,所述三维光栅为透镜光栅,并且所述条状光栅结构为透镜结构;或,所述三维光栅为狭缝光栅,并且所述条状光栅结构为条状透光区域和条状遮光区域的组合。
  13. 如权利要求12所述的三维显示装置,其中,当所述条状光栅结构为条状透光区域和条状遮光区域的组合时,所述条状透光区域和所述条状遮光区域的延伸方向与所述条状光栅结构的延伸方向一致。
  14. 如权利要求12所述的三维显示装置,其中,所述三维光栅设置在所述像素结构的出光侧;或,当所述像素结构为液晶像素结构时,所述三维光栅设置在所述像素结构的入光侧。
PCT/CN2016/098178 2016-01-26 2016-09-06 三维显示装置 WO2017128722A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/536,276 US10545352B2 (en) 2016-01-26 2016-09-06 Three-dimensional display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610053598.XA CN105445949B (zh) 2016-01-26 2016-01-26 一种三维显示装置
CN201610053598.X 2016-01-26

Publications (1)

Publication Number Publication Date
WO2017128722A1 true WO2017128722A1 (zh) 2017-08-03

Family

ID=55556323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098178 WO2017128722A1 (zh) 2016-01-26 2016-09-06 三维显示装置

Country Status (3)

Country Link
US (1) US10545352B2 (zh)
CN (1) CN105445949B (zh)
WO (1) WO2017128722A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445949B (zh) * 2016-01-26 2020-04-28 京东方科技集团股份有限公司 一种三维显示装置
CN105629490A (zh) 2016-04-01 2016-06-01 京东方科技集团股份有限公司 显示装置及其驱动方法
CN107942525B (zh) * 2017-12-22 2021-02-02 张家港康得新光电材料有限公司 显示装置
KR20200106589A (ko) 2019-03-04 2020-09-15 삼성디스플레이 주식회사 표시 장치, 표시 장치의 제조장치 및 표시 장치의 제조방법
CN110060643B (zh) * 2019-04-06 2023-10-17 上海安路信息科技股份有限公司 数据存储方法及数据存储***
CN112635510A (zh) * 2019-09-24 2021-04-09 新谱光科技股份有限公司 减轻摩尔纹裸视立体显示设备的发光面板及制作方法
US11557635B2 (en) 2019-12-10 2023-01-17 Samsung Display Co., Ltd. Display device, mask assembly, and apparatus for manufacturing the display device
CN112801921B (zh) * 2021-03-30 2022-05-03 深圳市立体通科技有限公司 3d图像处理优化方法、装置、存储介质和电子设备
CN112801920B (zh) * 2021-03-30 2022-05-27 深圳市立体通科技有限公司 三维图像串扰优化方法、装置、存储介质和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120274630A1 (en) * 2011-04-26 2012-11-01 Unique Instruments Co. Ltd Multi-view 3d image display method
CN103278954A (zh) * 2012-11-01 2013-09-04 上海天马微电子有限公司 一种3d显示面板及3d显示装置
CN104282727A (zh) * 2014-09-30 2015-01-14 京东方科技集团股份有限公司 一种像素结构及其显示方法、显示装置
CN105445949A (zh) * 2016-01-26 2016-03-30 京东方科技集团股份有限公司 一种三维显示装置
CN105572886A (zh) * 2016-01-26 2016-05-11 京东方科技集团股份有限公司 一种三维显示装置
CN205318032U (zh) * 2016-01-26 2016-06-15 京东方科技集团股份有限公司 一种三维显示装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1869899A4 (en) * 2005-04-08 2009-12-23 Real D AUTOSTEREOSCOPIC DISPLAY WITH PLANAR PASSAGE
KR100764508B1 (ko) 2005-05-17 2007-10-09 엘지전자 주식회사 유기 전계 발광 소자 및 이를 구동하는 방법
US7598935B2 (en) 2005-05-17 2009-10-06 Lg Electronics Inc. Light emitting device with cross-talk preventing circuit and method of driving the same
CN101621706B (zh) 2009-07-21 2010-12-08 四川大学 一种减小柱面光栅自由立体显示器图像串扰的方法
KR20120051117A (ko) * 2010-11-12 2012-05-22 삼성전자주식회사 터치스크린패널 표시장치
KR20120059953A (ko) * 2010-12-01 2012-06-11 엘지디스플레이 주식회사 크로스 토크를 줄인 패턴드 리타더를 사용한 3차원 영상 표시장치
EP2700065A2 (en) * 2011-04-19 2014-02-26 Koninklijke Philips N.V. Light output panel and device having the same
US8957841B2 (en) 2011-08-19 2015-02-17 Shenzhen China Star Optoelectronics Technology Co., Ltd. Liquid crystal display
CN102298238B (zh) 2011-08-19 2013-03-27 深圳市华星光电技术有限公司 液晶显示器
CN102809867B (zh) 2012-08-14 2016-07-06 深圳超多维光电子有限公司 一种立体显示装置
JP6094855B2 (ja) * 2012-09-27 2017-03-15 Nltテクノロジー株式会社 液晶表示素子、画像表示装置、画像表示装置の駆動方法、携帯機器
US9955143B2 (en) * 2013-04-09 2018-04-24 SoliDDD Corp. Autostereoscopic displays
US9888231B2 (en) * 2013-09-11 2018-02-06 Boe Technology Group Co., Ltd. Three-dimensional display device
JP2017510824A (ja) * 2013-12-20 2017-04-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. オートステレオスコピックディスプレイデバイス
CN104661011B (zh) * 2014-11-26 2017-04-19 深圳超多维光电子有限公司 立体图像显示方法及手持终端
US10448005B2 (en) * 2015-01-22 2019-10-15 Nlt Technologies, Ltd. Stereoscopic display device and parallax image correcting method
CN104581131B (zh) 2015-01-30 2017-07-07 京东方科技集团股份有限公司 像素结构、阵列基板及其控制方法和显示器件
CN104570370B (zh) * 2015-02-05 2017-02-22 京东方科技集团股份有限公司 一种立体显示装置
CN104656263B (zh) * 2015-03-17 2017-07-04 京东方科技集团股份有限公司 三维显示方法和装置
CN104735440B (zh) 2015-03-30 2017-08-11 何炎权 用于显示屏显示立体图像或视频的装置和方法
CN104965308B (zh) 2015-08-05 2017-12-22 京东方科技集团股份有限公司 三维显示装置及其显示方法
US10375379B2 (en) * 2015-09-17 2019-08-06 Innolux Corporation 3D display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120274630A1 (en) * 2011-04-26 2012-11-01 Unique Instruments Co. Ltd Multi-view 3d image display method
CN103278954A (zh) * 2012-11-01 2013-09-04 上海天马微电子有限公司 一种3d显示面板及3d显示装置
CN104282727A (zh) * 2014-09-30 2015-01-14 京东方科技集团股份有限公司 一种像素结构及其显示方法、显示装置
CN105445949A (zh) * 2016-01-26 2016-03-30 京东方科技集团股份有限公司 一种三维显示装置
CN105572886A (zh) * 2016-01-26 2016-05-11 京东方科技集团股份有限公司 一种三维显示装置
CN205318032U (zh) * 2016-01-26 2016-06-15 京东方科技集团股份有限公司 一种三维显示装置

Also Published As

Publication number Publication date
US10545352B2 (en) 2020-01-28
US20180045971A1 (en) 2018-02-15
CN105445949B (zh) 2020-04-28
CN105445949A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2017128722A1 (zh) 三维显示装置
WO2017128753A1 (zh) 三维显示装置
TWI496453B (zh) A method of displaying a three - dimensional image in both directions
JP4714115B2 (ja) 立体映像表示装置および立体映像表示方法
CN207947006U (zh) 显示面板及显示装置
US8711478B2 (en) Stereoscopic display
WO2016123910A1 (zh) 一种立体显示装置及其制作方法
US10230942B2 (en) Pixel array, display device and display method
JP6515029B2 (ja) 垂直方向に最大寸法を有する画面上への裸眼立体表示方法
WO2016150076A1 (zh) 像素阵列、显示驱动方法、显示驱动装置和显示装置
WO2017020473A1 (zh) 三维显示装置及其显示方法
TWI446315B (zh) 立體顯示裝置
WO2016197499A1 (zh) 显示面板及显示装置
US9964671B2 (en) Display substrate, display panel, and stereoscopic display device
US10014343B2 (en) Pixel structure, display substrate and display device
WO2013135083A1 (zh) 3d显示方法及显示装置
US9024944B2 (en) Display panel
US9900590B2 (en) Display panel and method of driving the same, and display device
CN1912704A (zh) 三次元液晶显示器的格栅装置
WO2016119396A1 (zh) 像素结构、阵列基板及其控制方法和显示器件
US20180270475A1 (en) Three dimensional display device and method of driving the same
US10140898B2 (en) Multi-view display device and method for driving the same
WO2016197522A1 (zh) 显示面板及其显示驱动方法、显示驱动装置以及显示装置
CN205318032U (zh) 一种三维显示装置
WO2015143791A1 (zh) 双方向立体显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15536276

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887598

Country of ref document: EP

Kind code of ref document: A1