WO2017126325A1 - 伸縮性配線シート及び伸縮性タッチセンサシート - Google Patents

伸縮性配線シート及び伸縮性タッチセンサシート Download PDF

Info

Publication number
WO2017126325A1
WO2017126325A1 PCT/JP2017/000133 JP2017000133W WO2017126325A1 WO 2017126325 A1 WO2017126325 A1 WO 2017126325A1 JP 2017000133 W JP2017000133 W JP 2017000133W WO 2017126325 A1 WO2017126325 A1 WO 2017126325A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
stretchable
elastomer sheet
elastomer
shape
Prior art date
Application number
PCT/JP2017/000133
Other languages
English (en)
French (fr)
Inventor
雅人 山下
住本 伸
吉田 学
聖 植村
大樹 延島
Original Assignee
トクセン工業株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トクセン工業株式会社, 国立研究開発法人産業技術総合研究所 filed Critical トクセン工業株式会社
Priority to EP17741205.3A priority Critical patent/EP3407686A4/en
Priority to JP2017562498A priority patent/JP6901408B2/ja
Priority to US16/070,580 priority patent/US11259408B2/en
Publication of WO2017126325A1 publication Critical patent/WO2017126325A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/0283Stretchable printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/103Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding or embedding conductive wires or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0133Elastomeric or compliant polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10287Metal wires as connectors or conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/0143Using a roller; Specific shape thereof; Providing locally adhesive portions thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding

Definitions

  • the present invention relates to a stretchable wiring sheet and a stretchable touch sensor sheet excellent in stretchability, in which a conductive wire is sandwiched between two stretchable elastomer sheets.
  • Stretchable wiring sheets for example, antennas and wiring for RFID devices that require flexibility, wiring for motion analysis sensors in sports science, clothes-type heart rate / electrocardiogram monitors, wiring sheets for robot movable parts, and commands to computers
  • touch sensor sheets for bending sensors and wiring sheets for bending sensors to be mounted on fingers, elbow joints, and knee joints for remote control of a robot.
  • Such a stretchable wiring sheet is required to have excellent stretchability and a small change in resistance value due to stretching.
  • the present invention solves the above-mentioned problems in the prior art, can be produced easily and at low cost, has high flexibility and durability, and has a high stretchable wiring sheet having a small resistance value change due to stretching and It is an object to provide an elastic touch sensor sheet.
  • the cross-sectional shape of the cross section is circular or elliptical between the elastic first elastomer sheet and the elastic second elastomer sheet bonded to the first elastomer sheet.
  • the conductive wire plastically deformed into a wave shape that is periodically curved along the longitudinal direction, and the height direction of the wave shape wave is the first elastomer sheet and
  • the stretchable wiring sheet is sandwiched in a state along the in-plane direction of the opposing surface of the second elastomer sheet.
  • the conductive wire includes a metal structure composed of crystal grains having an elongated shape in a longitudinal section.
  • ⁇ 3> The stretchable wiring sheet according to any one of ⁇ 1> to ⁇ 2>, wherein the lead wire has a diameter of 50 ⁇ m at most.
  • ⁇ 4> The stretchable wiring sheet according to any one of ⁇ 1> to ⁇ 3>, wherein the Young's modulus of the conductive wire is at least 150 GPa.
  • ⁇ 5> The stretchable wiring sheet according to any one of ⁇ 1> to ⁇ 4>, wherein the wave height in the wave shape is 20 ⁇ m to 5 mm.
  • the ratio of A / B is 0.05 to 0.5.
  • the stretchable wiring sheet according to any one of ⁇ 1> to ⁇ 5>.
  • the cross-sectional shape of the cross section is circular or elliptical.
  • the conductive wire plastically deformed into a wave shape that is periodically curved along the longitudinal direction, and the height direction of the wave shape wave is the first elastomer sheet and Arranged in a state along the in-plane direction of the opposing surface of the second elastomer sheet, the first elastomer sheet and the second elastomer sheet are formed of a transparent material, and a plurality of the conductive wires are arranged in parallel.
  • the above-mentioned problems in the prior art can be solved, and can be manufactured easily and at low cost, and is highly flexible and durable, and has a high elasticity that has a small resistance change due to expansion and contraction.
  • a wiring sheet and a stretchable touch sensor sheet can be provided.
  • FIGS. 1 (a) and 1 (b) A stretchable wiring sheet 10 according to an embodiment of the present invention will be described with reference to FIGS. 1 (a) and 1 (b).
  • 1A is an explanatory view showing the sheet upper surface of the stretchable wiring sheet
  • FIG. 1B is a sectional view showing a sheet cross section of the stretchable sheet.
  • a stretchable wiring sheet 10 is composed of a stretchable first elastomer sheet 1a and a stretchable second adhesive bonded to the first elastomer sheet 1a. Elastomer sheet 1b and a conductor 2 sandwiched between the first elastomer sheet 1a and the second elastomer sheet 1b.
  • the first elastomer sheet 1a and the second elastomer sheet 1b are not particularly limited as long as they elastically deform and expand and contract, and can be appropriately selected according to the purpose, and are formed of a known elastomer material.
  • a sheet can be used, and examples thereof include natural rubber, diene rubber, non-diene rubber, urethane elastomer, styrene elastomer, and silicon elastomer.
  • the elastomer sheet 1a and the second elastomer sheet 1b are required to have transparency.
  • a sheet formed of a known transparent elastomer material can be used as the first elastomer sheet 1a and the second elastomer sheet 1b.
  • a known urethane elastomer sheet or acrylic elastomer is used as the first elastomer sheet 1a and the second elastomer sheet 1b.
  • a sheet or a silicon-based elastomer sheet can be used.
  • the term “transparency” indicates that the visible light transmittance is 50% or more.
  • the stretchable wiring sheet 10 can be made highly stretchable, so that it is large, 50% (natural length 1.5 times or more), more preferably 300% (4 times the natural length) or more, and particularly preferably 500% (6 times the natural length) or more.
  • limit elongation ratio indicates an elongation ratio at which breakage occurs when the sheet is stretched.
  • the lower limit of the thickness of the first elastomer sheet 1a and the second elastomer sheet 1b is not particularly limited and depends on the forming material, but is preferably 5 ⁇ m. When the thickness is less than 5 ⁇ m, the shape of the corrugated wire appears clearly on the film surface and may be easily recognized. Moreover, there is no restriction
  • the pressure-sensitive adhesive layer 3 is formed on at least one facing surface of these sheets and these sheets are bonded together.
  • the pressure-sensitive adhesive layer 3 is suitably used so that physical properties such as flexibility and stretchability after curing do not hinder the physical properties such as flexibility and stretchability of the first elastomer sheet 1a and the second elastomer sheet 1b.
  • the material to be selected include a known rubber-based adhesive, urethane-based adhesive, acrylic-based adhesive, and silicon-based adhesive.
  • the adhesive strength of the adhesive layer 3 is not particularly limited, but is preferably at least 0.5 N / cm to 10 N / cm. If the adhesive strength is less than 0.5 N / cm, the elastomer sheet and the conductive wire 2 may be peeled off during expansion and contraction, and transparency may be lost. If it exceeds 10 N / cm, the load on the wiring during expansion and contraction increases. There is a risk of disconnection.
  • the cross-sectional shape of the conducting wire 2 is a circular shape, an elliptical shape, or a track shape, and the circular shape is optimal among them.
  • stress concentration occurs in the angular treatment part, and in contrast to the rectangular cross-section of the conductive wire, the conductor 2 has a curved corner, so an external force is applied in the bending direction. At this time, stress concentration is less likely to occur, and the risk of disconnection can be reduced. Therefore, the durability which was excellent in the stretchable wiring sheet 10 can be provided by using such a conducting wire 2.
  • a cross section means the surface cut
  • the conducting wire 2 is plastically deformed into a wave shape that is periodically curved along the longitudinal direction, and the wave height direction of the wave shape is the first elastomer sheet 1a and the second elastomer sheet. It is clamped between both sheets in a state along the in-plane direction of the facing surface of 1b.
  • the conducting wire 2 By arranging the conducting wire 2 between the first elastomer sheet 1a and the second elastomer sheet 1b in such a state, the highly flexible stretchable wiring sheet 10 having high flexibility is formed. That is, by using the linear conductive wire 2 without using a circuit board with poor flexibility, the conductive wire 2 can easily follow the shape changes of the first elastomer sheet 1a and the second elastomer sheet 1b.
  • the stretchable wiring sheet 10 is provided with excellent flexibility and stretchability. Moreover, in this conducting wire 2, the length of the path
  • unloading indicates a state in which the elastic wiring sheet 10 is not subjected to a shape change such as stretching or bending.
  • a wire diameter of the conducting wire 2 is 50 micrometers at most, it is more preferable that it is 25 micrometers, and it is 12 micrometers. Particularly preferred.
  • the wire diameter in case the cross-sectional shape of the conducting wire 2 is other than circular shape the diameter in the position where length becomes the longest in the cross-sectional shape corresponds. Further, the lower limit of the wire diameter of the conducting wire 2 is about 1 ⁇ m.
  • the conducting wire 2 is not particularly limited, but preferably includes a metal structure composed of crystal grains that are elongated in a longitudinal section.
  • a metal structure composed of crystal grains that are elongated in a longitudinal section.
  • the strength and fatigue resistance of the conductive wire 2 itself are improved, and as a result, the durability of the stretchable wiring sheet 10 can be further improved.
  • limiting in particular as a formation method of such conducting wire 2 The formation method by plastic processing, such as a well-known wire drawing processing and rolling processing, can be mentioned, Depending on the condition of the said plastic working, the conducting wire 2 Even when the forming material is copper, the tensile strength can be about 400 MPa.
  • the wire diameter of the conducting wire 2 is set to be extremely thin as described above. Therefore, it is necessary to select the material and set the wavy shape so that the conductive wire 2 does not break when a shape change such as stretching or bending is applied to the stretchable wiring sheet 10.
  • the Young's modulus (longitudinal elastic modulus) of the conducting wire 2 is preferably at least 150 GPa from the viewpoint of improving the flexibility and durability of the conducting wire 2.
  • the upper limit of the Young's modulus (longitudinal elastic modulus) is about 500 GPa.
  • the Young's modulus (longitudinal elastic modulus) can be calculated by conducting a tensile test on the conducting wire 2, obtaining a stress-strain diagram, and determining the slope of the straight line portion in the stress-strain diagram.
  • the A / B ratio is not particularly limited, but 0 .05 to 0.5 is preferable. That is, if the A / B ratio is less than 0.05, distortion at the curved portion may increase and disconnection may occur, and if it exceeds 0.5, it is difficult to form a periodic wave shape. Sometimes.
  • a / D The ratio is 3 to 100, more preferably 5 to 30, so that stress concentration hardly occurs even when an external force is applied in the bending direction, and the risk of disconnection can be reduced. That is, if the A / D ratio is less than 3, the risk of breakage increases due to an increase in bending stress. Sometimes.
  • the wave height in the wavy shape is not particularly limited, but is preferably 20 ⁇ m to 5 mm. That is, if the wave height is less than 20 ⁇ m, the conductor 2 may be substantially rod-shaped, and the extension range of the stretchable wiring sheet 10 may be narrowed. If it exceeds 5 mm, the conductor 2 in the stretchable wiring sheet 10 is visually recognized. It becomes easy and the necessary transparency may not be obtained.
  • the wavy waveform can be confirmed from the outside of the stretchable wiring sheet 10 using a known optical microscope, digital microscope, electron microscope, or X-ray microscope.
  • the resistivity of the conductor 2 is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the resistivity is about 1.0 ⁇ 10 ⁇ 6 ⁇ ⁇ cm to 1.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • the material for forming the conductive wire 2 is not particularly limited and can be appropriately selected in consideration of the above characteristics.
  • a well-known metal wire, carbon fiber, etc. are mentioned.
  • the metal wire about the thing with comparatively high resistivity like the said piano wire and the said SUS304 wire, the metal with low resistivity, such as copper and silver, can also be plated and used.
  • one conductor 2 is arranged, but a plurality of conductors 2 can be arranged in parallel.
  • the stretchable wiring sheet 10 configured as described above is flexible and durable, and has a small change in resistance value due to a shape change, and can be manufactured easily and at low cost.
  • Wiring for RFID devices that require safety wiring for motion analysis sensors in sports science, wiring for heart rate and electrocardiogram monitors, wiring for robot moving parts, wiring for touch sensor panels for sending commands to computers, etc. It can be expected to be used in a wide range of fields as a wiring sheet used in the field.
  • the stretchable wiring sheet 10 A commercially available product may be used as the lead wire 2, but the strength and fatigue resistance of the lead wire 2 are improved by using the plastically processed material as described above, and thus the durability of the stretchable sheet 10. Can be improved. That is, as shown in FIG. 2, the heat-treated conductive wire forming material 2 ′ is drawn in the direction of the arrow by using a wire drawing die 20, so that random grains before processing are processed in the longitudinal direction after processing. It can be made into an elongated shape along the arrow direction in the figure, and the lead wire 2 can be formed so as to include a metal structure composed of crystal grains oriented in such a direction.
  • FIG. 2 is explanatory drawing which shows the mode of a wire drawing process.
  • layering that has been arranged in an arbitrary direction by conducting such wire drawing on a wire forming material containing a metal structure called pearlite structure after patenting (heat treatment)
  • the ferrite and cementite of this form a fibrous metal structure arranged in the longitudinal direction.
  • a metal structure in which fine needle-like or rod-like crystal grains are arranged in the longitudinal direction is obtained. .
  • the tensile strength and the fatigue resistance are improved as the workability (area reduction ratio) represented by the following formula (1) is increased.
  • the degree of processing of the conductive wire 2 is preferably 50% or more, more preferably 90% or more, and particularly preferably 95% or more.
  • the upper limit of the workability is about 99%. If the workability exceeds the limit range (about 99%), the tensile strength and fatigue resistance are significantly lowered.
  • d0 in said Formula (1) shows the diameter in the initial stage before letting the dice
  • the final diameter of the formed conducting wire is shown.
  • wire drawing has been described as an example, it is constituted by crystal grains that are elongated along the longitudinal direction by appropriately adjusting the direction in which pressure is applied also by other plastic processing such as rolling. It is possible to form a conductive wire including a metallic structure.
  • said elongate shape the above-mentioned fiber shape, needle shape, and rod shape are included, and all the shapes elongated in one direction are included.
  • FIG. 3 is explanatory drawing which shows a mode that a linear conducting wire is processed into a wave shape.
  • the stretchable wiring sheet 10 is simply bonded to the first elastomer sheet 1a and the second elastomer sheet 1b with the conductive wire 2 plastically deformed so as to have the wavy shape in between. It can be manufactured easily and at low cost.
  • a linear conductive wire is processed into the wavy shape, but instead of this method, a coiled conductive wire is processed into the wavy shape. Also good. That is, after extending a coil-shaped conducting wire to such an extent that the coil wires do not overlap each other, it is introduced into a rolling roller or the like and rolled from above and below to obtain the wavy-shaped conducting wire 2.
  • FIG. 4A is an explanatory diagram illustrating a configuration example of the stretchable touch sensor sheet.
  • the stretchable touch sensor sheet 30 is configured using two stretchable wiring sheets of the present invention. That is, the stretchable touch sensor sheet 30 has a transverse cross section between the stretchable first elastomer sheet and the stretchable second elastomer sheet that is bonded to face the first elastomer sheet.
  • the cross-sectional shape is any one of a circular shape, an elliptical shape, and a track shape, and the lead wire plastically deformed into a wavy shape that is periodically curved along the longitudinal direction has a wave height of the wavy shape.
  • the direction is arranged in a state along the in-plane direction of the opposing surfaces of the first elastomer sheet and the second elastomer sheet, and the first elastomer sheet and the second elastomer sheet are formed of a transparent material,
  • Two stretchable wiring sheets 10a and 10b formed by arranging a plurality of conductive wires are arranged to face each other in a state in which the wiring directions of the conductive wires are orthogonal to each other.
  • the stretchable touch sensor sheet 30 configured as described above is resistant to any shape change in the extending direction and the bending direction, and therefore flexibly deforms and follows the curved surface even when the installation location is a curved surface. In addition, it can be expected to exhibit excellent durability even when placed on a curved surface.
  • the stretchable touch sensor sheet 30 can be used as a conductive sheet for a touch sensor such as a known resistance change type touch sensor or a capacitance type touch sensor.
  • FIG. 4B shows a configuration example of a capacitive touch sensor.
  • a capacitance change detection circuit is connected to one end portion of each conducting wire in an energized state and arranged in a vertical and horizontal matrix, and the elastic touch sensor sheet 30 of the touch operation is provided. Detect capacitance change.
  • one conductor is configured as one detection line. However, when it is difficult to obtain an optimum resistance value for detection, one capacitance change is made for a plurality of conductors.
  • a detection circuit can be connected to form one detection line.
  • the material of the conductive wire is selected so that a change in resistance value during stretching is 5% or less. Moreover, it is preferable that the resistance value per unit length of one detection line is designed to be 100 ⁇ / cm or less. On the other hand, when the stretchable touch sensor sheet 30 is used for the capacitive touch sensor, it is preferable to select the material of the conductive wire so that the change in resistance value during stretching is 30% or less. Moreover, it is preferable that the resistance value per unit length of one detection line is designed to be 500 ⁇ / cm or less.
  • the first elastomer sheet constituting the stretchable touch sensor sheet 30 in consideration of the visibility of dirt on the touch surface and the visibility of the image on the display when viewed through the touch sensor.
  • the second elastomer sheet is required to have a transparency with a visible light transmittance of 50% or more in a state of being opposed to each other.
  • the haze value (cloudiness value) of the stretchable touch sensor sheet 30 is preferably as small as possible (for example, 3%) from the viewpoint of transparency, and is preferably 60% at most. This haze value is measured by irradiating the sheet with visible light and measuring the ratio of diffuse transmitted light to total transmitted light.
  • the haze value can be adjusted by the wire diameter of the conducting wire, the interval at which the conducting wires are arranged in parallel, and the like.
  • the relationship between the wire diameter of the conducting wire and the distance to the touch sensor and the visibility is shown in Table 1 below.
  • indicates that it cannot be visually recognized by subjective evaluation
  • indicates that it can barely be visually recognized
  • x indicates that it can be visually recognized.
  • the wire diameter of the conducting wire is preferably 12 ⁇ m or less.
  • the wire diameter of the conducting wire may be about 40 ⁇ m or less.
  • the haze value is easily obtained when the interval at which the conducting wires are arranged in parallel is about 100 ⁇ m to 10 mm.
  • the number of bending resistances when the radius of curvature of the wavy shape of the conductive wire is 1 mm is 100,000 times or more.
  • the stretch rate is 50% or more and the bending resistance is 100,000 times. The above is preferable.
  • the elongation rate is 60% or more and the resistance change rate of the conductor is 5% or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Insulated Conductors (AREA)
  • Non-Insulated Conductors (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

【課題】簡易かつ低コストに製造することができ、柔軟性、耐久性に富み、伸縮に伴う抵抗値変化が小さい高伸縮性の伸縮性配線シート及び伸縮性タッチセンサシートを提供することを課題とする。 【解決手段】本発明の伸縮性配線シートは、伸縮性の第1のエラストマーシート1aと、第1のエラストマーシート1aと対向して接着される伸縮性の第2のエラストマーシート1bとの間に、横断面の断面形状が円形状、楕円形状及びトラック形状のいずれかの形状とされるとともに長手方向に沿って周期的に湾曲される波状形状に塑性変形された導線2が、前記波状形状の波の高さ方向が第1のエラストマーシート1a及び第2のエラストマーシート1bの対向面の面内方向に沿う状態で挟持されることを特徴とする。

Description

伸縮性配線シート及び伸縮性タッチセンサシート
 本発明は、導線が2枚の伸縮性エラストマーシートに挟持される伸縮性に優れた伸縮性配線シート及び伸縮性タッチセンサシートに関する。
 伸縮性配線シートは、例えば、柔軟性が要求されるRFID機器用のアンテナや配線、スポーツ科学における運動解析センサ用配線、衣服型心拍・心電図モニタ、ロボット可動部の配線シート、コンピュータに指令を送るためのタッチセンサシート、更に、ロボットを遠隔操作するために、手指、肘関節、膝関節に装着される屈曲センサ用配線シートなど、近年様々な分野において需要が高まっている。こうした伸縮性配線シートにおいては、伸縮性に優れるとともに伸縮に伴う抵抗値変化が小さいことが求められる。
 こうした背景をもとに、これまでゴムにイオン性液体、カーボンナノチューブ等を分散させることにより伸縮性を持つ導電性ゴムを製造することが提案されている(特許文献1参照)。
 しかしながら、この提案では、伸縮性導電体を形成するカーボンナノチューブ等の材料が高価であり、また、十分な導電性を得るためには、含有率を非常に高くする必要があることから、製造コストがより一層嵩む問題がある。
 また、エラストマー上に波状構造を持つ銅配線を張り付けて伸縮性回路基板を製造することが提案されている(特許文献2,3参照)。
 しかしながら、これらの提案では、銅配線がエラストマー上に積層された銅箔をエッチングして形成され、その断面が矩形状とされることから、製造されたシートを、例えば曲面上に貼り付けて伸縮させると、矩形断面の隅部に応力が集中して断線し易い問題がある。
 また、エステル系ウレタンゴム製のエラストマーシートの下面に、ウレタンゴムと銀粉末からなる配線を配置することが提案されている(特許文献4参照)。
 しかしながら、この提案では、ウレタンゴムの内部に銀粉末を封入して伸縮性を発現する導線を個別に形成することから製造コストが高くなる問題がある。また、形成される導線が伸長や曲げ操作に伴う形状変化に伴って銀粉末間の電気的接触がいずれかの箇所で途絶えると導線として機能しなくなることから柔軟性や耐久性に乏しい問題がある。
 また、ICチップのアンテナに、導電性繊維からなるブースター用のアンテナを未接着状態で対向配置させた導電性繊維シートが提案されている(特許文献5参照)。
 しかしながら、この提案では、導電性繊維が高価であり、また、種々のアンテナ形状に応じて切断加工を行う際、無駄となる導電性繊維シートによって更なるコストアップを招く問題がある。
国際公開2009-102077号公報 特開2013-187308号公報 特開2013-187380号公報 特開2011- 34822号公報 特開2013-206080号公報
 本発明は、従来技術における前記諸問題を解決し、簡易かつ低コストに製造することができ、柔軟性、耐久性に富み、伸縮に伴う抵抗値変化が小さい高伸縮性の伸縮性配線シート及び伸縮性タッチセンサシートを提供することを課題とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 伸縮性の第1のエラストマーシートと、前記第1のエラストマーシートと対向して接着される伸縮性の第2のエラストマーシートとの間に、横断面の断面形状が円形状、楕円形状及びトラック形状のいずれかの形状とされるとともに長手方向に沿って周期的に湾曲される波状形状に塑性変形された導線が、前記波状形状の波の高さ方向が前記第1のエラストマーシート及び前記第2のエラストマーシートの対向面の面内方向に沿う状態で挟持されることを特徴とする伸縮性配線シート。
 <2> 導線が縦断面において細長形状とされた結晶粒により構成される金属組織を含む前記<1>に記載の伸縮性配線シート。
 <3> 導線の線径が太くとも50μmである前記<1>から<2>のいずれかに記載の伸縮性配線シート。
 <4> 導線のヤング率が小さくとも150GPaである前記<1>から<3>のいずれかに記載の伸縮性配線シート。
 <5> 波状形状における波高が20μm~5mmとされる前記<1>から<4>のいずれかに記載の伸縮性配線シート。
 <6> 波状形状における波の頂部の曲率半径をAとし、前記波状形状における隣接する前記波間の周期的なピッチ間隔をBとしたとき、A/Bの比が0.05~0.5である前記<1>から<5>のいずれかに記載の伸縮性配線シート。
 <7> 波状形状における波の頂部の曲率半径をAとし、導線の線径をDとしたとき、A/Dの比が3~100である前記<1>から<6>のいずれかに記載の伸縮性配線シート。
 <8> 伸縮性の第1のエラストマーシートと、前記第1のエラストマーシートと対向して接着される伸縮性の第2のエラストマーシートとの間に、横断面の断面形状が円形状、楕円形状及びトラック形状のいずれかの形状とされるとともに長手方向に沿って周期的に湾曲される波状形状に塑性変形された導線が、前記波状形状の波の高さ方向が前記第1のエラストマーシート及び前記第2のエラストマーシートの対向面の面内方向に沿う状態で配され、前記第1のエラストマーシート及び前記第2のエラストマーシートが透明材料で形成され、前記導線が複数本並設されて形成される2つの伸縮性配線シートを、前記導線の配線方向が直交する状態で対向配置させたことを特徴とする伸縮性タッチセンサシート。
 <9> ヘイズ値が大きくとも60%以下である前記<8>に記載の伸縮性タッチセンサシート。
 本発明によれば、従来技術における前記諸問題を解決して、簡易かつ低コストに製造することができ、柔軟性、耐久性に富み、伸縮に伴う抵抗値変化が小さい高伸縮性の伸縮性配線シート及び伸縮性タッチセンサシートを提供することができる。
伸縮性配線シートのシート上面を示す説明図である。 伸縮性シートのシート断面を示す断面図である。 伸線加工の様子を示す説明図である。 直線状の導線を波状形状に加工する様子を示す説明図である。 伸縮性タッチセンサシートの構成例を示す説明図である。 静電容量型タッチセンサの構成例を示す図である。
(伸縮性配線シート)
 本発明の一実施形態に係る伸縮性配線シート10を図1(a),(b)を参照しつつ説明する。なお、図1(a)は、伸縮性配線シートのシート上面を示す説明図であり、図1(b)は、伸縮性シートのシート断面を示す断面図である。
 図1(a),(b)に示すように、伸縮性配線シート10は、伸縮性の第1のエラストマーシート1aと、第1のエラストマーシート1aと対向して接着される伸縮性の第2のエラストマーシート1bと、第1のエラストマーシート1aと第2のエラストマーシート1bとの間に挟持される導線2と、を有する。
 第1のエラストマーシート1a及び第2のエラストマーシート1bとしては、弾性変形して伸縮するものであれば、特に制限はなく目的に応じて適宜選択することができ、公知のエラストマー材料で形成されるシートを用いることができ、例えば、天然ゴム、ジエン系ゴム、非ジエン系ゴム、ウレタン系エラストマー、スチレン系エラストマー、シリコン系エラストマーが挙げられる。
 伸縮性配線シート10を伸縮性タッチセンサシートとして用いる場合には、伸縮性配線シート10を支持する側の表示が伸縮性配線シート10の上面側から視認可能であることが必要であり、第1のエラストマーシート1a及び第2のエラストマーシート1bに透明性が求められる。この場合、第1のエラストマーシート1a及び第2のエラストマーシート1bとしては、公知の透明性を有するエラストマー材料で形成されるシートを用いることができ、例えば、公知のウレタン系エラストマーシート、アクリル系エラストマーシート、シリコン系エラストマーシートを用いることができる。
 なお、本明細書において「透明性」の用語は、可視光透過率が50%以上であることを示す。
 第1のエラストマーシート1a及び第2のエラストマーシート1bの限界伸長率としては、特に制限はないが、大きい程、伸縮性配線シート10を高伸縮性とすることができるため、50%(自然長の1.5倍)以上が好ましく、300%(自然長の4倍)以上がより好ましく、500%(自然長の6倍)以上が特に好ましい。
 なお、本明細書において「限界伸長率」の用語は、シートを伸長させたときに破断が生じる伸長率を示す。
 第1のエラストマーシート1a及び第2のエラストマーシート1bの厚みの下限としては、特に制限はなく形成材料にもよるが、5μmが好ましい。前記厚みが5μm未満であると、フィルム表面に波状ワイヤの形状がはっきりと現れてしまい認識されやすくなることがある。また、前記厚みの上限としては、特に制限はないが、伸縮性配線シート10に必要な柔軟性、透明性を持たせる観点から、150μm程度が好ましい。
 第1のエラストマーシート1aと第2のエラストマーシート1bとの接着方法としては、これらシートの少なくともいずれかの対向面に粘着層3を形成し、これらシートを貼り合せる方法が挙げられる。
 粘着層3としては、硬化後の柔軟性、伸縮性等の物理特性が第1のエラストマーシート1aと第2のエラストマーシート1bが有する柔軟性、伸縮性等の物理特性の妨げとならないように適宜選択され、その形成材料としては、例えば、公知のゴム系粘着剤、ウレタン系粘着剤、アクリル系粘着剤、シリコン系粘着剤等を挙げることができる。また、透明性が求められる場合には、公知のウレタン系粘着剤、アクリル系粘着剤、シリコン系粘着剤を好適に用いることができる。
 また、粘着層3の粘着力としては、特に制限はないが、小さくとも0.5N/cm~10N/cmが好ましい。前記粘着力が0.5N/cm未満であると、伸縮時にエラストマーシートと導線2が剥離し、透明性が失われることがあり、10N/cmを超えると、伸縮時に配線にかかる負荷が大きくなり断線するおそれがある。
 導線2は、横断面の断面形状が円形状、楕円形状及びトラック形状のいずれかの形状とされ、中でも円形状が最適とされる。曲げ方向に外力が加わる際、角張った遇部に応力集中が発生し、断線が生じ易い断面矩形状の導線に対し、導線2では、隅部が曲面とされるため、曲げ方向に外力が加わる際に応力集中が発生しにくく、断線の危険性を緩和させることができる。したがって、こうした導線2を用いることで、伸縮性配線シート10に優れた耐久性を付与することができる。
 なお、本明細書において、横断面とは、導線の長手方向に対して垂直に切断した面をいい、縦断面とは、導線の長手方向に対して平行に切断した面をいう。
 また、導線2は、長手方向に沿って周期的に湾曲される波状形状に塑性変形されたものとされ、前記波状形状の波の高さ方向が第1のエラストマーシート1a及び第2のエラストマーシート1bの対向面の面内方向に沿う状態で両シート間に挟持される。
 導線2を第1のエラストマーシート1aと第2のエラストマーシート1bとの間にこのような状態で配することで、柔軟性に富む高伸縮性の伸縮性配線シート10が形成される。即ち、柔軟性の乏しい回路基板を用いず、線状の導線2を用いることで、第1のエラストマーシート1a及び第2のエラストマーシート1bの形状変化に導線2を追従させ易く、また、両シートの伸長に追従するよう、導線2を波状形状から直線形状に近づくように変形させることで、伸縮性配線シート10に優れた柔軟性と伸縮性とを付与する。また、この導線2では、伸長時に電気が流れる経路の長さが除荷時の自然長と変わらず、抵抗値が安定とされる。
 なお、本明細書において「除荷」の用語は、伸縮性配線シート10に対し、伸長や曲げ等の形状変化を加えない状態を示す。
 導線2の線径としては、特に制限はないが、伸縮性配線シート10に透明性を付与する観点から、太くとも50μmであることが好ましく、25μmであることがより好ましく、12μmであることが特に好ましい。なお、導線2の断面形状が円形状以外である場合の線径としては、その断面形状において長さが最も長くなる位置での径が該当する。また、導線2の線径の下限としては、1μm程度である。
 また、導線2としては、特に制限はないが、縦断面において細長形状とされた結晶粒により構成される金属組織を含むことが好ましい。このような金属組織を含むと、導線2自体の強度及び耐疲労性が向上し、延いては、伸縮性配線シート10の耐久性をより一層向上させることができる。
 なお、このような導線2の形成方法としては、特に制限はなく、公知の伸線加工、圧延加工等の塑性加工による形成方法を挙げることができ、前記塑性加工の状況によっては、導線2の形成材料が銅である場合でも、引張強さを400MPa程度とすることができる。
 伸縮性配線シート10に透明性を付与する観点から、先の通り、導線2の線径としては、極めて細く設定される。したがって、伸縮性配線シート10に伸長や曲げ等の形状変化を加えたときに導線2が破断しないように、材料選択及び前記波状形状を設定する必要がある。
 導線2のヤング率(縦弾性係数)としては、導線2の柔軟性、耐久性を向上させる観点から、小さくとも150GPaであることが好ましい。なお、前記ヤング率(縦弾性係数)の上限としては、500GPa程度とされる。また、前記ヤング率(縦弾性係数)の測定は、導線2の引張り試験を行い、応力-ひずみ線図を得て、その応力-ひずみ線図における直線部分の傾きを求めることにより算出できる。
 また、前記波状形状における波の頂部の曲率半径をAとし、前記波状形状における隣接する前記波間の周期的なピッチ間隔をBとしたとき、A/Bの比としては、特に制限はないが0.05~0.5であることが好ましい。即ち、A/Bの比が0.05未満であると、湾曲部での歪が大きくなり断線することがあり、0.5を超えると、周期的な波の形状を形成することが困難なことがある。
 また、導線2としては、銅線のように材料の弾性係数が低い場合であっても、前記波状形状における波の頂部の曲率半径をAとし、前記線径をDとしたとき、A/Dの比が3~100、より好適には5~30となるように構成することで、曲げ方向に外力を加えた場合でも応力集中が発生しにくく、断線の危険性を緩和することができる。即ち、A/Dの比が3未満であると、曲げ応力が大きくなることで断線に至る危険性が高まり、100を超えると、曲率半径Aが大きくなり伸縮性配線シート10の伸長範囲を狭めることがある。
 前記波状形状における波高としては、特に制限はないが、20μm~5mmが好ましい。即ち、前記波高が20μm未満であると、導線2が略棒状となって伸縮性配線シート10の伸長範囲を狭めることがあり、5mmを超えると、伸縮性配線シート10中の導線2が視認し易くなり必要な透明性が得られないことがある。
 なお、前記波状形状の波形は、公知の光学顕微鏡、デジタルマイクロスコープ、電子顕微鏡、X線顕微鏡により伸縮性配線シート10の外部から確認することができる。
 導線2の抵抗率としては、特に制限はなく目的に応じて適宜選択することができ、例えば、1.0×10-6Ω・cm~1.0×10-3Ω・cm程度である。
 導線2の形成材料としては、特に制限はなく前記各特徴を考慮して適宜選択することができ、例えば、銅、銅合金、SUS304に代表されるステンレス鋼、タングステン、タングステン合金、炭素鋼等の公知の金属線、炭素繊維等が挙げられる。なお、前記金属線に関し、前記ピアノ線や前記SUS304線のように比較的抵抗率の高いものについては、表面に銅や銀等の抵抗率の低い金属をめっきして用いることもできる。
 なお、伸縮性配線シート10では、1本の導線2を配することとしているが、複数本の導線2を並設させて形成することもできる。
 以上のように構成される伸縮性配線シート10では、柔軟性、耐久性に富み、また、形状変化に伴う抵抗値の変化が小さく、また、簡易かつ低コストに製造することができるため、柔軟性が要求されるRFID機器用の配線、スポーツ科学における運動解析センサ用の配線、心拍・心電図モニタ用の配線、ロボット可動部用の配線、コンピュータに指令を送るためのタッチセンサパネル用の配線等に用いられる配線シートとして、幅広い分野での利用を期待することができる。
 次に、伸縮性配線シート10の製造方法の一例について説明する。
 導線2としては、市販品を用いてもよいが、前述のように塑性加工されたものを用いることで、導線2の強度及び耐疲労性を向上させ、延いては伸縮性シート10の耐久性を向上させることができる。
 即ち、図2に示すように、熱処理された導線形成材料2’を伸線用ダイス20を使用して矢印方向に引抜くことで、加工前のランダムな形状の結晶粒を加工後において長手方向(図中の矢印方向)に沿って細長形状とすることができ、導線2をこうした方向に配向された結晶粒により構成される金属組織を含むように形成することができる。なお、導線形成材料2’を伸線する工程は、径が段階的に縮径されたダイスに導線形成材料2’を順次通していくように複数回行ってもよい。また、図2は、伸線加工の様子を示す説明図である。
 ピアノ線のような炭素鋼線では、パテンティング(熱処理)後のパーライト組織と呼ばれる金属組織を含む導線形成材料に対して、こうした伸線加工を実施することにより、任意の方向に並んでいた層状のフェライトとセメンタイトが、長手方向に並んだ繊維状の金属組織となる。同様に、ステンレス、銅等の金属を溶体化した導線形成材料に対して、こうした伸線加工を実施することにより、微小な針状ないし棒状の結晶粒が長手方向に並んだ金属組織とされる。
 前記伸線加工では、次式(1)で表される加工度(減面率)がおよそ大きい程、引張強さ及び耐疲労性が向上する。したがって、導線2の前記加工度としては、50%以上が好ましく、90%以上がより好ましく、95%以上が特に好ましい。なお、前記加工度の上限は、99%程度とされ、前記加工度が限界域(99%程度)を超えると、却って、引張強さ及び耐疲労性が大幅に低下する。
Figure JPOXMLDOC01-appb-M000001
 ただし、前記式(1)中のd0は、前記導線形成材料のダイスを通す前の初期段階における径を示し、dnは、前記導線形成材料をn回(nは、1以上の整数)ダイスを通して形成された前記導線の最終的な径を示す。
 また、伸線加工を例に挙げて説明をしたが、圧延加工等この他の塑性加工によっても圧力を加える方向を適宜調整することで、長手方向に沿って細長形状とされた結晶粒により構成される金属組織を含む導線を形成することができる。
 なお、前記細長形状としては、前述の繊維状、針状、棒状を代表として、一の方向に長尺化されたあらゆる形状を含む。
 直線状の導線2を前記波状形状に加工する方法としては、特に制限はなく、例えば図3に示すように、目的とする前記波状形状の波型を有して形成される2つの歯車50a,bの間に直線状の導線2を通す方法等が挙げられる。なお、図3は、直線状の導線を波状形状に加工する様子を示す説明図である。
 伸縮性配線シート10は、このようにして前記波状形状を有するように塑性変形された導線2を間に配した状態で、第1のエラストマーシート1a及び第2のエラストマーシート1bを貼り合せるだけで簡単かつ低コストに製造することができる。
 先に述べた伸縮性配線シート10の製造方法では、直線状の導線を前記波状形状に加工するように説明をしたが、この方法に代えて、コイル状の導線を前記波状形状に加工してもよい。
 即ち、コイル状の導線をコイル線同士が重ならない程度に引き延ばした後、これを圧延ローラ等に導入して上下から圧延することで、前記波状形状の導線2を得ることもできる。
(伸縮性タッチセンサシート)
 次に、本発明の伸縮性タッチセンサシートについて図4(a)を参照しつつ説明する。なお、図4(a)は、伸縮性タッチセンサシートの構成例を示す説明図である。
 この伸縮性タッチセンサシート30は、本発明の前記伸縮性配線シートを2つ用いて構成される。
 即ち、伸縮性タッチセンサシート30は、伸縮性の第1のエラストマーシートと、前記第1のエラストマーシートと対向して接着される伸縮性の前記第2のエラストマーシートとの間に、横断面の断面形状が円形状、楕円形状及びトラック形状のいずれかの形状とされるとともに長手方向に沿って周期的に湾曲される波状形状に塑性変形された前記導線が、前記波状形状の波の高さ方向が前記第1のエラストマーシート及び前記第2のエラストマーシートの対向面の面内方向に沿う状態で配され、前記第1のエラストマーシート及び前記第2のエラストマーシートが透明材料で形成され、前記導線が複数本並設されて形成される2つの伸縮性配線シート10a,10bを、前記導線の配線方向が直交する状態で対向配置させて構成される。
 このように構成される伸縮性タッチセンサシート30では、伸長方向と曲げ方向とのいずれの形状変化に対しても耐性を有するため、設置場所が曲面である場合でも柔軟に変形して曲面に追従させることができるとともに、曲面に配した状態でも優れた耐久性を発揮することが期待できる。
 伸縮性タッチセンサシート30は、公知の抵抗変化型タッチセンサ、静電容量型タッチセンサ等のタッチセンサ用の導電シートとして用いることができる。
 一例として、静電容量型タッチセンサの構成例を図4(b)に示す。
 この静電容量型タッチセンサでは、縦横のマトリクス状に配され、通電状態の前記各導線の一方の端部に静電容量変化検出回路が接続され、タッチ操作に伴う伸縮性タッチセンサシート30の静電容量変化を検出する。
 なお、図示の例では、1本の前記導線を1つの検出ラインとして構成しているが、検出に最適な抵抗値を得にくい場合は、複数本の前記導線に対して1つの静電容量変化検出回路を接続して、これを1つの検出ラインとすることもできる。
 伸縮性タッチセンサシート30を前記抵抗変化型タッチセンサに用いる場合、伸縮時の抵抗値変化が5%以下となるように前記導線の材料を選択することが好ましい。また、1検出ラインの単位長さあたりの抵抗値が100Ω/cm以下となるように設計されることが好ましい。
 一方、伸縮性タッチセンサシート30を前記静電容量型タッチセンサに用いる場合、伸縮時の抵抗値変化が30%以下となるように前記導線の材料を選択することが好ましい。また、1検出ラインの単位長さあたりの抵抗値が500Ω/cm以下となるように設計されることが好ましい。
 伸縮性タッチセンサシート30では、タッチ面の汚れの視認性やこのタッチセンサを通してみた時のディスプレイ上の画像の視認性を考慮して、伸縮性タッチセンサシート30を構成する前記第1のエラストマーシート及び前記第2のエラストマーシートには、対向配置された状態で可視光透過率50%以上の透明性を有することが求められる。
 また、伸縮性タッチセンサシート30のヘイズ値(曇価)としては、透明性の観点から小さい程(例えば3%)好ましく、大きくとも60%であることが好ましい。なお、このヘイズ値は、シートに可視光を照射し、全透過光に対する拡散透過光の割合を計測することにより測定される。
 前記ヘイズ値としては、前記導線の線径、前記導線が並設される間隔等によって調整可能とされる。
 ここで、前記導線の線径及びタッチセンサまでの距離と視認性との関係性を下記表1に示す。
Figure JPOXMLDOC01-appb-T000002
 ただし、表1中の○は、主観評価により、視認できないことを示し、△は、かろうじて視認できることを示し、×は、視認できることを示す。
 したがって、伸縮性タッチセンサシート30を高精細パネルや高精細印刷物用のタッチセンサに適用する場合、前記導線の線径としては、12μm以下が好ましい。
 一方、自動販売機やデジタルサイネージのように大型の画面を用い、画像の高精細さが要求されず、1m以上の距離から観察されるような用途で用いる場合、前記導線の線径としては、40μm以下程度であってもよい。
 また、前記導線が並設される間隔としては、100μm~10mm程度であると、前記ヘイズ値が得られ易い。
 更なる用途として、スマートフォン等の情報端末で、折り畳みディスプレイ用タッチセンサに適用する場合、前記導線の前記波状形状の曲率半径が1mmであるときの耐屈曲回数が10万回以上であることが好ましい。
 また、人間の関節など、摺動部用のウエアラブルデバイス用タッチセンサに適用する場合、高い伸縮性と耐久性が要求されることから、伸長率が50%以上で、耐屈曲回数が10万回以上であることが好ましい。
 また、自動車の内装などの曲面にタッチセンサを貼り付けて実装する場合、伸長率が60%以上で、前記導線の抵抗変化率が5%以下であることが好ましい。
  1a  第1のエラストマーシート
  1b  第2のエラストマーシート
   2  導線
   2’ 導線形成材料
   3  粘着層
 10,10a,b 伸縮性配線シート
  20  ダイス
  30  伸縮性タッチセンサシート
 50a,b 歯車

Claims (9)

  1.  伸縮性の第1のエラストマーシートと、前記第1のエラストマーシートと対向して接着される伸縮性の第2のエラストマーシートとの間に、横断面の断面形状が円形状、楕円形状及びトラック形状のいずれかの形状とされるとともに長手方向に沿って周期的に湾曲される波状形状に塑性変形された導線が、前記波状形状の波の高さ方向が前記第1のエラストマーシート及び前記第2のエラストマーシートの対向面の面内方向に沿う状態で挟持されることを特徴とする伸縮性配線シート。
  2.  導線が縦断面において細長形状とされた結晶粒により構成される金属組織を含む請求項1に記載の伸縮性配線シート。
  3.  導線の線径が太くとも50μmである請求項1から2のいずれかに記載の伸縮性配線シート。
  4.  導線のヤング率が小さくとも150GPaである請求項1から3のいずれかに記載の伸縮性配線シート。
  5.  波状形状における波高が20μm~5mmとされる請求項1から4のいずれかに記載の伸縮性配線シート。
  6.  波状形状における波の頂部の曲率半径をAとし、前記波状形状における隣接する前記波間の周期的なピッチ間隔をBとしたとき、A/Bの比が0.05~0.5である請求項1から5のいずれかに記載の伸縮性配線シート。
  7.  波状形状における波の頂部の曲率半径をAとし、導線の線径をDとしたとき、A/Dの比が3~100である請求項1から6のいずれかに記載の伸縮性配線シート。
  8.  伸縮性の第1のエラストマーシートと、前記第1のエラストマーシートと対向して接着される伸縮性の第2のエラストマーシートとの間に、横断面の断面形状が円形状、楕円形状及びトラック形状のいずれかの形状とされるとともに長手方向に沿って周期的に湾曲される波状形状に塑性変形された導線が、前記波状形状の波の高さ方向が前記第1のエラストマーシート及び前記第2のエラストマーシートの対向面の面内方向に沿う状態で配され、前記第1のエラストマーシート及び前記第2のエラストマーシートが透明材料で形成され、前記導線が複数本並設されて形成される2つの伸縮性配線シートを、前記導線の配線方向が直交する状態で対向配置させたことを特徴とする伸縮性タッチセンサシート。
  9.  ヘイズ値が大きくとも60%以下である請求項8に記載の伸縮性タッチセンサシート。
PCT/JP2017/000133 2016-01-19 2017-01-05 伸縮性配線シート及び伸縮性タッチセンサシート WO2017126325A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17741205.3A EP3407686A4 (en) 2016-01-19 2017-01-05 STICKABLE WIRING SHEET AND STICKABLE TOUCH SENSOR SHEET
JP2017562498A JP6901408B2 (ja) 2016-01-19 2017-01-05 伸縮性配線シート及び伸縮性タッチセンサシート
US16/070,580 US11259408B2 (en) 2016-01-19 2017-01-05 Stretchable wiring sheet and stretchable touch sensor sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-007844 2016-01-19
JP2016007844 2016-01-19

Publications (1)

Publication Number Publication Date
WO2017126325A1 true WO2017126325A1 (ja) 2017-07-27

Family

ID=59361727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000133 WO2017126325A1 (ja) 2016-01-19 2017-01-05 伸縮性配線シート及び伸縮性タッチセンサシート

Country Status (5)

Country Link
US (1) US11259408B2 (ja)
EP (1) EP3407686A4 (ja)
JP (1) JP6901408B2 (ja)
TW (1) TWI630850B (ja)
WO (1) WO2017126325A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210013498A (ko) * 2019-07-26 2021-02-04 인하대학교 산학협력단 응력 감소를 위한 기판

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7014307B2 (ja) * 2018-11-22 2022-02-01 株式会社村田製作所 伸縮性配線基板及び伸縮性配線基板の製造方法
CN210670181U (zh) * 2020-01-21 2020-06-02 湃瑞电子科技(苏州)有限公司 一种装置及其触控屏和手机

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201785A (ja) * 1995-01-31 1996-08-09 Teijin Ltd 透明導電性フィルム
JP2005191113A (ja) * 2003-12-24 2005-07-14 Kyocera Corp 配線基板及び電気装置並びにその製造方法
WO2009102077A1 (ja) 2008-02-11 2009-08-20 The University Of Tokyo カーボンナノチューブゴム組成物、配線、導電性ペースト、電子回路およびその製造方法
JP2011034822A (ja) 2009-08-03 2011-02-17 Tokai Rubber Ind Ltd 配線体接続構造体およびその製造方法
JP2013084842A (ja) * 2011-10-12 2013-05-09 Fujitsu Ltd 配線構造及びその製造方法
JP2013089910A (ja) * 2011-10-21 2013-05-13 Fujikura Ltd フレキシブルプリント基板及びその製造方法
JP2013187380A (ja) 2012-03-08 2013-09-19 Nippon Mektron Ltd 伸縮性フレキシブル回路基板およびその製造方法
JP2013187308A (ja) 2012-03-07 2013-09-19 Nippon Mektron Ltd 伸縮性フレキシブル回路基板
JP2013206080A (ja) 2012-03-28 2013-10-07 Toppan Forms Co Ltd 非接触型データ受送信体
JP2015018494A (ja) * 2013-07-12 2015-01-29 富士フイルム株式会社 配線基板
JP2015197382A (ja) * 2014-04-01 2015-11-09 バンドー化学株式会社 静電容量型センサ、及び歪み計測装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3384398B2 (ja) * 2000-05-25 2003-03-10 セイコーエプソン株式会社 液晶装置、その製造方法および電子機器
WO2002049797A1 (en) 2000-12-21 2002-06-27 Hitachi, Ltd. Solder foil and semiconductor device and electronic device
US7019734B2 (en) * 2002-07-17 2006-03-28 3M Innovative Properties Company Resistive touch sensor having microstructured conductive layer
US7491892B2 (en) * 2003-03-28 2009-02-17 Princeton University Stretchable and elastic interconnects
TWI339087B (en) 2007-04-18 2011-03-11 Ind Tech Res Inst Stretchable flexible printed circuit (fpc) and fabricating method thereof
CN101842854B (zh) * 2007-10-31 2013-10-30 住友金属矿山株式会社 柔性透明导电膜及使用柔性透明导电膜的柔性功能性元件
TWI370714B (en) 2008-01-09 2012-08-11 Ind Tech Res Inst Circuit structure and menufacturing method thereof
TW201005609A (en) 2008-07-22 2010-02-01 Chi Hsin Electronics Corp Touch panel
JP2013084571A (ja) * 2011-09-29 2013-05-09 Fujifilm Corp 透明導電性塗布膜、透明導電性インク、及びそれらを用いたタッチパネル
WO2013063445A2 (en) * 2011-10-28 2013-05-02 President And Fellows Of Harvard College Capacitive, paper-based accelerometers and touch sensors
US9601557B2 (en) 2012-11-16 2017-03-21 Apple Inc. Flexible display
JP2014173065A (ja) * 2013-03-12 2014-09-22 Nitto Denko Corp 粘着剤、粘着剤層、粘着シート、及びタッチパネル
JP2015045623A (ja) 2013-08-29 2015-03-12 バンドー化学株式会社 静電容量型センサシート及び静電容量型センサ
KR20160139320A (ko) * 2015-05-27 2016-12-07 엘지전자 주식회사 변형 가능한 디스플레이 장치 및 그의 동작 방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201785A (ja) * 1995-01-31 1996-08-09 Teijin Ltd 透明導電性フィルム
JP2005191113A (ja) * 2003-12-24 2005-07-14 Kyocera Corp 配線基板及び電気装置並びにその製造方法
WO2009102077A1 (ja) 2008-02-11 2009-08-20 The University Of Tokyo カーボンナノチューブゴム組成物、配線、導電性ペースト、電子回路およびその製造方法
JP2011034822A (ja) 2009-08-03 2011-02-17 Tokai Rubber Ind Ltd 配線体接続構造体およびその製造方法
JP2013084842A (ja) * 2011-10-12 2013-05-09 Fujitsu Ltd 配線構造及びその製造方法
JP2013089910A (ja) * 2011-10-21 2013-05-13 Fujikura Ltd フレキシブルプリント基板及びその製造方法
JP2013187308A (ja) 2012-03-07 2013-09-19 Nippon Mektron Ltd 伸縮性フレキシブル回路基板
JP2013187380A (ja) 2012-03-08 2013-09-19 Nippon Mektron Ltd 伸縮性フレキシブル回路基板およびその製造方法
JP2013206080A (ja) 2012-03-28 2013-10-07 Toppan Forms Co Ltd 非接触型データ受送信体
JP2015018494A (ja) * 2013-07-12 2015-01-29 富士フイルム株式会社 配線基板
JP2015197382A (ja) * 2014-04-01 2015-11-09 バンドー化学株式会社 静電容量型センサ、及び歪み計測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3407686A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210013498A (ko) * 2019-07-26 2021-02-04 인하대학교 산학협력단 응력 감소를 위한 기판
KR102364739B1 (ko) 2019-07-26 2022-02-21 인하대학교 산학협력단 응력 감소를 위한 기판

Also Published As

Publication number Publication date
JP6901408B2 (ja) 2021-07-14
TWI630850B (zh) 2018-07-21
US20200396832A1 (en) 2020-12-17
EP3407686A4 (en) 2019-08-21
TW201729653A (zh) 2017-08-16
JPWO2017126325A1 (ja) 2019-02-14
EP3407686A1 (en) 2018-11-28
US11259408B2 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
TWI620663B (zh) 伸縮性配線片材以及其製造方法及製造裝置、伸縮性觸碰感測片
JP6666806B2 (ja) 伸縮性配線シート及びその製造方法、伸縮性タッチセンサシート
Gonzalez et al. Design of metal interconnects for stretchable electronic circuits
WO2017126325A1 (ja) 伸縮性配線シート及び伸縮性タッチセンサシート
US10555609B2 (en) Pressure-sensing chair, including first elastic body having lower elastic modulus than second elastic bodies arranged therein
US9814134B2 (en) Elastic flexible substrate and manufacturing method thereof
KR20180061003A (ko) 전도성 유연 소자
Li et al. A stretchable knitted interconnect for three-dimensional curvilinear surfaces
JP6377241B2 (ja) 高伸縮性配線及びその製造方法、製造装置
JP7252529B2 (ja) 伸縮配線部材
KR20200020429A (ko) 픽셀형 압력센서 및 그의 제조방법
CN112435589B (zh) 显示面板和显示终端
Zhao et al. Highly adaptable strain capacitive sensors with exceptional selectivity using spontaneous micrometer-pyramid electrodes
US9486619B2 (en) Interconnect devices, systems, and methods for bridging electronic devices
WO2015066603A1 (en) Shape memory alloy conductor resists plastic deformation
KR20180117889A (ko) 압력 센서
CN106618637A (zh) 穿戴式超声波感测装置
US10393599B2 (en) Deformable apparatus and method
JP2019075416A (ja) 配線基板及び配線基板の製造方法
KR20200042576A (ko) 웨어러블 디바이스용 신축성 전도체, 그 신축성 전도체를 이용한 연결장치, 유연전극, 전자소자 및 그 제조방법
JP2020088337A (ja) 配線基板及び配線基板の製造方法
JP2017078703A (ja) 変形測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562498

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017741205

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017741205

Country of ref document: EP

Effective date: 20180820