WO2017126323A1 - Rolling element bearing, rolling device, and rolling device manufacturing method - Google Patents

Rolling element bearing, rolling device, and rolling device manufacturing method Download PDF

Info

Publication number
WO2017126323A1
WO2017126323A1 PCT/JP2017/000128 JP2017000128W WO2017126323A1 WO 2017126323 A1 WO2017126323 A1 WO 2017126323A1 JP 2017000128 W JP2017000128 W JP 2017000128W WO 2017126323 A1 WO2017126323 A1 WO 2017126323A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
outer ring
component
inner ring
elements
Prior art date
Application number
PCT/JP2017/000128
Other languages
French (fr)
Japanese (ja)
Inventor
直哉 長谷川
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016034480A external-priority patent/JP2017150597A/en
Priority claimed from JP2016170758A external-priority patent/JP6964400B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US16/071,851 priority Critical patent/US11028880B2/en
Priority to CN201780007576.2A priority patent/CN108603530A/en
Priority to EP17741203.8A priority patent/EP3406923A4/en
Publication of WO2017126323A1 publication Critical patent/WO2017126323A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture

Definitions

  • the present invention relates to a rolling bearing, a rolling device and a method of manufacturing the rolling device, and more particularly to a rolling bearing provided with first and second rolling parts, a rolling device and a method of manufacturing the rolling device.
  • a rolling device such as a rolling bearing is used in an environment where the oil film formation is insufficient due to poor lubrication of the rolling parts, surface damage such as peeling or seizure and peeling starting from this surface damage Occurs on the surface of the rolling portion. This reduces the life of the rolling device.
  • Non-Patent Document 1 the value of the oil film parameter ⁇ ⁇ , which indicates the severity of the lubrication condition, between the inner and outer rings and rolling elements in the rolling bearing is about
  • the rolling bearing has a long life of 1.2 or more, but under the condition that the value of the oil film parameter ⁇ ⁇ is less than about 1.2, surface rolling of the rolling bearing occurs, and surface rolling starts. It is stated that the life is reduced.
  • Patent Document 1 JP-A-2006-161887
  • Patent Document 2 JP-A-2006-161887
  • Patent Document 3 JP-A-2006-161887
  • Patent Document 2 JP-A-2006-161887
  • Methods of forming and coating solid lubricant in the recesses are described.
  • Patent Document 2 Japanese Patent Laid-Open No. 4-265480
  • Patent Document 2 describes a method in which minute recesses are randomly formed in the rolling portion to enhance the oil film forming ability.
  • there is a method of reducing the surface roughness of the rolling portion of the rolling bearing to the extent that surface damage does not occur for example, by superfinishing, barrel polishing or burnishing.
  • the present invention has been made in view of the above problems, and an object thereof is a rolling bearing capable of easily achieving a long life by suppressing surface damage even when used in a state in which the oil film forming property of the rolling portion is poor. To provide a method of manufacturing a moving device and a rolling device.
  • the rolling device comprises a first rolling part made of high carbon chromium bearing steel and a second rolling part in contact with the first rolling part and made of high carbon chromium bearing steel There is.
  • the arithmetic mean roughness (Ra) of the surface of the rolling portion of the first rolling component is larger than the arithmetic mean roughness of the surface of the rolling portion of the second rolling component.
  • the arithmetic mean roughness of the surface of the rolling portion of the second rolling component is not less than 0.07 ⁇ m and not more than 0.20 ⁇ m.
  • the fine projections present on the surface of the rolling portion of the first rolling component come into contact with the surface of the rolling portion of the second rolling component, whereby the first rolling component is
  • the fine projections are smoothed by friction and plastic deformation so that the inclination of the projections is reduced.
  • Such a phenomenon is referred to herein as the familiarity of the protrusion.
  • the local surface pressure of the part which protrusion in the surface of the rolling part of the 1st and 2nd rolling parts contacts is reduced. Therefore, damage to the surface of the rolling portion of the second rolling component due to the contact between the protrusions of the rolling portions of the first and second rolling components can be suppressed. Thereby, the life reduction of the rolling device due to the damage of the surface of the rolling portion of the second rolling component can be suppressed, and the long life of the rolling device can be realized.
  • the arithmetic mean roughness of the surface of the rolling portion of the first rolling component is preferably 0.70 ⁇ m or less. In this way, the inclination of the projections can be reduced by the familiarity of the projections on the surface of the rolling portion of the first rolling component, and damage to the surface of the second rolling portion can be suppressed. .
  • the surface of the rolling portion of the first rolling part can be made by combining the arithmetic mean roughness of the surfaces of the rolling portions of the first and second rolling parts with the above.
  • the slope of the minute roughness projections can be made sufficiently small.
  • the root mean square inclination of the surface of the rolling portion of the second rolling component is preferably 0.074 or more and 0.100 or less. In this way, the inclination of the projections can be reduced by the familiarity of the projections on the surface of the rolling portion of the first rolling component as described above, and damage to the surface of the second rolling component can be reduced. It can be suppressed.
  • the Rockwell hardness of the rolling portion of the first rolling component is lower than the Rockwell hardness of the rolling portion of the second rolling component, and the second rolling component
  • the Rockwell hardness of the rolling portion is preferably 61.5 HRC or more.
  • the first rolling component is compared to the case where the above-mentioned relationship does not hold between the hardness of the rolling portion of the first rolling component and the rolling portion of the second rolling component.
  • the minute roughness projections on the surface of the rolling portion of the second embodiment inhibit the progress of fatigue on the surface of the rolling portion of the second rolling component due to contact with the surface of the rolling portion of the second rolling component be able to.
  • the Rockwell hardness of the rolling portion of the first rolling component is lower by 0.5 HRC or more than the Rockwell hardness of the rolling portion of the second rolling component.
  • the rolling part of the first rolling part and the rolling part of the second rolling part are respectively the surface of the rolling part of the first rolling part and the rolling of the second rolling part Includes the surface of the part.
  • the rolling device it is preferable to have a film containing at least one of an iron oxide or a compound on the surface of the rolling portion of the first rolling component.
  • the film in the above-mentioned rolling device contains iron trioxide.
  • the material of the microroughness projections on the surface of the rolling portion of the first rolling component can be made brittle. Therefore, the minute projections on the surface of the rolling portion of the first rolling part come in contact with the surface of the rolling portion of the second rolling part, whereby fine projections of the first rolling part The slope can easily be made sufficiently small.
  • the rolling bearing of the present invention is a rolling bearing as the above-described rolling device.
  • the rolling bearing is disposed so as to contact a plurality of rolling elements, a plurality of rolling elements outside the plurality of rolling elements, and an outer ring having an outer ring raceway surface on an inner circumferential surface, and a plurality inside the plurality of rolling elements And an inner ring having an inner ring raceway surface on an outer peripheral surface thereof.
  • the outer ring and the inner ring are first rolling parts, and the plurality of rolling elements are second rolling parts.
  • the rolling bearing of the present invention is a rolling bearing as the above-described rolling device.
  • the rolling bearing is disposed so as to contact a plurality of rolling elements, a plurality of rolling elements outside the plurality of rolling elements, and an outer ring having an outer ring raceway surface on an inner circumferential surface, and a plurality inside the plurality of rolling elements And an inner ring having an inner ring raceway surface on an outer peripheral surface thereof.
  • the outer ring and the inner ring are second rolling parts, and the plurality of rolling elements are first rolling parts.
  • the value of the oil film parameter in the region between the outer ring and each of the plurality of rolling elements and in the region between the inner ring and each of the plurality of rolling elements is 1.2 or less .
  • the phenomenon that the above-mentioned projections conform to each other proceeds under the condition that the oil film parameter ⁇ of 1.2 or less is not good for the oil film forming property of the rolling parts. Further, under the condition that the oil film parameter ⁇ is 1.2 or less, the life reduction due to the surface damage of the second rolling component by the projection of the first rolling component is likely to occur. For this reason, when the oil film parameter ⁇ is 1.2 or less, under the condition that the life reduction is originally likely to occur, the rolling of the outer ring raceway surface and the inner ring raceway surface is caused by the contact between the minute projections The effect of suppressing damage to the surface of the rolling portion of the moving body can be exhibited. Therefore, the long life of the rolling bearing can be realized by the fitting of the projections.
  • a first rolling component made of high carbon chromium bearing steel is prepared.
  • a second rolling part made of high carbon chromium bearing steel is prepared.
  • Arithmetic mean roughness of the surface of the rolling part of the first rolling part is greater than the arithmetic mean roughness of the surface of the rolling part of the second rolling part Is processed.
  • the second rolling component is processed such that the arithmetic mean roughness of the surface of the rolling portion of the second rolling component is not less than 0.07 ⁇ m and not more than 0.20 ⁇ m. If this is done, it is possible to realize the long life of the rolling device due to the fitting of the projections as described above.
  • the first and second rolling parts be tempered and then tempered.
  • the first rolling component is subjected to chemical conversion treatment after tempering treatment, and an oxide or compound of iron on the surface of the rolling portion of the first rolling component by chemical conversion treatment It is preferable that a film containing at least one of the above is formed. Compared with the case where it does not have a film on the surface of the rolling portion of the first rolling part and this is formed of ordinary steel, the conformity of the projections due to rolling is promoted.
  • the first rolling component is tempered by the heating condition of high temperature and / or long time than the second rolling component. That is, the first rolling component may be tempered at a higher temperature than the second rolling component and under a long-time heating condition.
  • the conditions of the tempering treatment performed after the quenching treatment of the first and second rolling parts are adjusted.
  • the Rockwell hardness of the rolling portion of the first rolling component is lower than the Rockwell hardness of the rolling portion of the second rolling component, and the second rolling is performed.
  • the first and second rolling parts are processed such that the Rockwell hardness of the rolling parts of the parts is 61.5 HRC or more.
  • the first rolling component is compared to the case where the above-mentioned relationship does not hold between the hardness of the rolling portion of the first rolling component and the rolling portion of the second rolling component.
  • the minute roughness projections on the surface of the rolling portion of the second embodiment inhibit the progress of fatigue on the surface of the rolling portion of the second rolling component due to contact with the surface of the rolling portion of the second rolling component be able to.
  • the long life of the rolling device can be realized by the two effects of fitting of projections and suppression of fatigue progress. Can.
  • the Rockwell hardness of the rolling portion of the first rolling component is lower by 0.5 HRC or more than the Rockwell hardness of the rolling portion of the second rolling component.
  • the rolling part of the first rolling part and the rolling part of the second rolling part are respectively the surface of the rolling part of the first rolling part and the rolling of the second rolling part Includes the surface of the part.
  • the surface of the rolling portion of the first rolling part may not be subjected to any of superfinishing, barrel polishing and burnishing. That is, even without these processes, the surface roughness of the rolling portion can be made sufficiently small to the extent that surface damage does not occur.
  • the first rolling component is processed such that the arithmetic mean roughness of the surface of the rolling portion of the first rolling component is 0.70 ⁇ m or less.
  • the second rolling component is processed so that the root mean square inclination of the surface of the rolling portion of the second rolling component is 0.074 or more and 0.100 or less.
  • the rolling device comprises a first rolling part made of high carbon chromium bearing steel and a second rolling part in contact with the first rolling part and made of high carbon chromium bearing steel There is.
  • the Rockwell hardness of the surface of the rolling portion of the first rolling component is lower than the Rockwell hardness of the surface of the rolling portion of the second rolling component.
  • the arithmetic mean roughness (Ra) of the surface of the rolling portion of the first rolling component is larger than the arithmetic mean roughness of the surface of the rolling portion of the second rolling component.
  • the arithmetic mean roughness of the surface of the rolling portion of the second rolling component is 0.07 ⁇ m or more and 0.10 ⁇ m or less, and the root mean square slope (R ⁇ q) of the surface of the rolling portion of the second rolling component is It is 0.07 or more and 0.10 or less.
  • the fine projections present on the surface of the rolling portion of the first rolling component come into contact with the surface of the rolling portion of the second rolling component, whereby the first rolling component is
  • the fine projections are smoothed by friction or plastic deformation so that the inclination angle of the projections (or the curvature of the tip of the projections) is reduced.
  • Such a phenomenon is referred to herein as the familiarity of the protrusion.
  • the local surface pressure of the part which protrusion in the surface of the rolling part of the 1st and 2nd rolling parts contacts is reduced. Therefore, damage to the surface of the rolling portion of the second rolling component due to the contact between the protrusions of the rolling portions of the first and second rolling components can be suppressed. Thereby, the life reduction of the rolling device due to the damage of the surface of the rolling portion of the second rolling component can be suppressed, and the long life of the rolling device can be realized.
  • the Rockwell hardness of the surface of the rolling portion of the first rolling component is 0.5 HRC or more lower than the Rockwell hardness of the surface of the rolling portion of the second rolling component Is preferred. In this way, the inclination angle of the projection can be reduced by the familiarity of the projection on the surface of the rolling portion of the first rolling component, and the damage to the surface of the second rolling portion can be suppressed. it can.
  • the rolling bearing of the present invention is a rolling bearing as the above-described rolling device.
  • the rolling bearing is disposed so as to contact a plurality of rolling elements, a plurality of rolling elements outside the plurality of rolling elements, and an outer ring having an outer ring raceway surface on an inner circumferential surface, and a plurality inside the plurality of rolling elements And an inner ring having an inner ring raceway surface on an outer peripheral surface thereof.
  • the outer ring and the inner ring are first rolling parts, and the plurality of rolling elements are second rolling parts.
  • the rolling bearing of the present invention is a rolling bearing as the above-described rolling device.
  • the rolling bearing is disposed so as to contact a plurality of rolling elements, a plurality of rolling elements outside the plurality of rolling elements, and an outer ring having an outer ring raceway surface on an inner circumferential surface, and a plurality inside the plurality of rolling elements And an inner ring having an inner ring raceway surface on an outer peripheral surface thereof.
  • the outer ring and the inner ring are second rolling parts, and the plurality of rolling elements are first rolling parts.
  • the value of the oil film parameter in the region between the outer ring and each of the plurality of rolling elements and in the region between the inner ring and each of the plurality of rolling elements is 1.2 or less .
  • the phenomenon that the above-mentioned projections conform to each other proceeds under the condition that the oil film parameter ⁇ of 1.2 or less is not good for the oil film forming property of the rolling parts. Further, under the condition that the oil film parameter ⁇ is 1.2 or less, the life reduction due to the surface damage of the second rolling component by the projection of the first rolling component is likely to occur. For this reason, when the oil film parameter ⁇ is 1.2 or less, under the condition that the life reduction is originally likely to occur, the rolling of the outer ring raceway surface and the inner ring raceway surface is caused by the contact between the minute projections The effect of suppressing damage to the surface of the rolling portion of the moving body can be exhibited. Therefore, the long life of the rolling bearing can be realized by the fitting of the projections.
  • a first rolling component made of high carbon chromium bearing steel is prepared.
  • a second rolling part made of high carbon chromium bearing steel is prepared.
  • the first and second rolling parts are configured such that the Rockwell hardness of the surface of the rolling portion of the first rolling part is lower than the Rockwell hardness of the surface of the rolling portion of the second rolling part It is processed.
  • Arithmetic mean roughness of the surface of the rolling part of the first rolling part is greater than the arithmetic mean roughness of the surface of the rolling part of the second rolling part Is processed.
  • the arithmetic mean roughness of the surface of the rolling portion of the second rolling component is 0.07 ⁇ m or more and 0.10 ⁇ m or less, and the root mean square inclination of the surface of the rolling portion of the second rolling component is 0.07 or more
  • the second rolling component is processed to be 0.10 or less. In this way, the long life of the rolling device can be realized as described above.
  • the first and second rolling parts be tempered and then tempered. This is a process necessary to fulfill the function of the rolling bearing.
  • the surface of the rolling portion of the first rolling component is finished by grinding or polishing using a rotary grindstone.
  • the surface of the rolling portion of the first rolling component may not be subjected to any of superfinishing, barrel polishing and burnishing. That is, even without these processes, the surface roughness of the rolling portion can be made sufficiently small to the extent that surface damage does not occur.
  • the minute projections on the surface of the rolling portion of the rolling part conform to each other, and the local surface pressure of the portion where the projections contact with each other is reduced, whereby the surface of the rolling portion of the rolling part It is possible to suppress the damage and the decrease in life associated therewith.
  • Three-dimensional shape (A) of the surface of the rolling portion of the test piece under the conditions of the comparative example of the present embodiment in Example 1 after the peeling resistance evaluation test and the rotation of the test piece under the conditions of the present embodiment It is with the three-dimensional shape (B) after the peeling performance evaluation test of the surface of a moving part.
  • FIG. It is a microscope enlarged photograph after the peeling performance evaluation test of the surface of the rolling part of the test piece by the conditions of each test example in Example 2.
  • FIG. It is a schematic sectional drawing which shows the structure of the tapered roller bearing in this Embodiment. It is a schematic sectional drawing which shows the structure of the cylindrical roller bearing in this Embodiment. It is a flowchart which shows the processing process of the 1st rolling part in Embodiment 3, 4.
  • a microscopic enlarged photograph after the peeling resistance evaluation test and the surface of the rolling portion of the test piece according to the conditions of the example of the present embodiment It is with the microscope enlarged photograph after the peeling performance evaluation test.
  • Embodiment 1 First, the configuration of a rolling bearing as an example of the rolling device according to the present embodiment will be described with reference to FIGS. 1 and 2. Although a deep groove ball bearing is described here as an example of a rolling bearing, the present embodiment can also be applied to rolling bearings of types other than deep groove ball bearings in the same manner as described below.
  • deep groove ball bearing 1 of the present embodiment includes an annular outer ring 11, an annular inner ring 12 disposed on the inner side of outer ring 11 with respect to center line C, an outer ring 11 and an inner ring 12. , And an annular cage 14 for holding the outer ring 11, the inner ring 12 and the plurality of balls 13. As shown in FIG.
  • the outer ring 11 is disposed to be in contact with the plurality of balls 13 outside the plurality of balls 13.
  • the outer ring 11 has an outer ring raceway surface 11A on the inner circumferential surface formed on the inner side with respect to the center line C.
  • the inner ring 12 is disposed to contact the plurality of balls 13 inside the plurality of balls 13.
  • the inner race 12 has an inner raceway surface 12A on the outer peripheral surface formed on the outer side with respect to the center line C.
  • the outer ring 11 and the inner ring 12 are disposed such that the outer ring raceway surface 11A and the inner ring raceway surface 12A face each other.
  • the plurality of balls 13 have a spherical shape, and have a ball rolling surface 13A on the surface thereof. In other words, the entire surface of each of the plurality of balls 13 is the ball rolling surface 13A.
  • the plurality of balls 13 are configured to roll between the outer ring raceway surface 11A and the inner ring raceway surface 12A.
  • a plurality of balls 13 are arranged side by side so as to be in contact with the outer ring raceway surface 11A and the inner ring raceway surface 12A in the ball rolling surface 13A and to have a pitch of an interval in the circumferential direction by the cage 14.
  • each of the plurality of balls 13 is rollably held on the annular path.
  • a grease composition (not shown) is enclosed in a space sandwiched by the outer ring 11 and the inner ring 12, more specifically, a space defined by the outer ring raceway surface 11A and the inner ring raceway surface 12A.
  • An oil film is formed between each of the outer ring 11 and the inner ring 12 and the ball 13 by this grease composition, and the lubricating state between each of the outer ring 11 and the inner ring 12 and the ball 13 is well maintained. Further, the value of the oil film parameter ⁇ in the region between the outer ring 11 and each of the plurality of balls 13 and in the region between each of the inner ring 12 and each of the plurality of balls 13 is 1.2 or less.
  • an outer ring 11, an inner ring 12 and a ball 13 as rolling parts constituting the deep groove ball bearing 1 will be described.
  • a ball 13 as a second rolling part is in contact with each of the outer ring 11 and the inner ring 12 as a first rolling part.
  • Each of the outer ring 11, the inner ring 12 and the ball 13 is a high carbon chromium bearing steel, for example, made of JIS standard SUJ2.
  • the rolling portion of the outer ring 11 is a region including the outer ring raceway surface 11A, and the surface of the rolling portion of the outer ring 11 constitutes the outer ring raceway surface 11A.
  • the rolling portion of the inner ring 12 is a region including the inner ring raceway surface 12A, and the surface of the rolling portion of the inner ring 12 constitutes the inner ring raceway surface 12A.
  • the rolling portion of the ball 13 is a region including the ball rolling surface 13A, and the surface of the rolling portion of the ball 13 constitutes the ball rolling surface 13A.
  • the arithmetic mean roughness (Ra) of the outer ring raceway surface 11A and the inner ring raceway surface 12A is larger than the arithmetic mean roughness of the ball rolling surface 13A, and specifically, the outer ring raceway surface 11A and the inner ring
  • the arithmetic mean roughness of the raceway surface 12A is 0.70 ⁇ m or less
  • the arithmetic mean roughness of the ball rolling surface 13A is 0.07 ⁇ m or more and 0.20 ⁇ m or less.
  • the root mean square inclination (R ⁇ q) of the ball rolling surface 13A is not less than 0.074 and not more than 0.100.
  • the Rockwell hardness (HRC) of the surface of the rolling portion of the first rolling component that is, the outer ring raceway surface 11A and the inner ring raceway surface 12A is the same as that of the rolling portion of the second rolling component. It is lower by 0.5 HRC or more than the Rockwell hardness of the surface, that is, the ball rolling surface 13A. Further, the Rockwell hardness of the ball rolling surface 13A is 61.5 HRC or more.
  • a film 11 B is formed on the surface of the rolling portion of the outer ring 11.
  • a film 12 B is formed on the surface of the rolling portion of the inner ring 12.
  • the films 11B and 12B contain at least one of an oxide or a compound of iron, and particularly preferably contain iron trioxide. That is, it is preferable that each of the film 11B formed on the surface of the rolling portion of the outer ring 11 and the film 12B formed on the surface of the rolling portion of the inner ring 12 be formed by black dyeing.
  • an outer ring 11 and an inner ring 12 are prepared as first rolling parts made of JIS standard SUJ2 (S01). Further, a ball 13 as a second rolling part made of JIS standard SUJ2 is prepared (S02).
  • the JIS standard SUJ2 as the material is subjected to hardening treatment (S11) and then to tempering treatment (S12). Thereafter, the arithmetic mean roughness of the outer ring raceway surface 11A of the outer ring 11 and the inner ring raceway surface 12A of the inner ring 12 is processed to be larger than the arithmetic mean roughness of the ball rolling surface 13A of the ball 13. Specifically, the arithmetic mean roughness of the outer ring raceway surface 11A and the inner ring raceway surface 12A is machined to 0.70 ⁇ m or less (S13).
  • the outer ring raceway surface 11A which is the surface of the rolling portion of the outer ring 11 and the inner ring raceway surface 12A which is the surface of the rolling portion of the inner ring 12 by this chemical conversion treatment is a coating 11B of at least one of iron oxide and compound 12B is formed.
  • the material is subjected to a hardening treatment (S21) and then a tempering treatment (S22) as a material JIS standard SUJ2 which is a material,
  • S21 hardening treatment
  • S22 tempering treatment
  • the arithmetic mean roughness of the rolling surface 13A is smaller than the arithmetic mean roughness of the outer ring raceway surface 11A of the outer ring 11 and the inner ring raceway surface 12A of the inner ring 12.
  • the arithmetic average roughness of the ball rolling surface 13A is 0.07 ⁇ m or more and 0.20 ⁇ m or less, and the root mean square inclination (R ⁇ q) of the ball rolling surface 13A is 0.074 or more and 0.100 It processes so that it may become the following (S23). No subsequent conversion treatment is performed.
  • the tempering treatment (S12) is higher in temperature and / or longer than the tempering treatment (S22). It is tempered according to the heating condition of time. That is, the tempering treatment (S12) may be a higher temperature than the tempering treatment (S22) and may be tempered under a long heating condition, and the tempering treatment (S12) may be a high temperature than the tempering treatment (S22) However, tempering may be performed under conditions that are not for a long time, or conditions that are not high temperature but for a long time.
  • the Rockwell hardness of the outer ring raceway surface 11A and the inner ring raceway surface 12A is lower than the Rockwell hardness of the ball rolling surface 13A, and the Rockwell hardness of the ball rolling surface 13A is 61.
  • the outer ring 11, the inner ring 12 and the ball 13 are processed so as to be 5 HRC or more.
  • the arithmetic average roughness of the outer ring raceway surface 11A as the surface of the rolling portion of the outer ring 11 and the inner ring raceway surface 12A as the surface of the rolling portion of the inner ring 12 It is larger than the arithmetic mean roughness of the ball rolling surface 13A as the surface of the rolling portion.
  • the arithmetic average roughness of the outer ring raceway surface 11A and the inner ring raceway surface 12A is 0.70 ⁇ m or less
  • the arithmetic average roughness of the ball rolling surface 13A is 0.07 ⁇ m or more and 0.20 ⁇ m or less.
  • the root mean square inclination of the ball rolling surface 13A is not less than 0.074 and not more than 0.100.
  • the value of the arithmetic average roughness is smaller than, for example, the value of the arithmetic average roughness of the ball rolling surface 13A is less than 0.07 ⁇ m.
  • the minute projections included in a large number on the outer ring raceway surface 11A and the inner ring raceway surface 12A, which are larger than the ball rolling surface 13A, are easily fitted.
  • the outer ring raceway surface 11A and the inner ring raceway surface 12A come into contact with the ball rolling surface 13A after a short time from the start of the operation of the deep groove ball bearing 1 by the above two actions, thereby the outer ring raceway surface 11A and the inner ring raceway surface 12A.
  • the inclination of the minute projections can be reduced.
  • the local contact surface pressure between the minute projections of the outer ring raceway surface 11A and the inner ring raceway surface 12A and the flat surface or the minute projections of the ball rolling surface 13A in contact with the projections decreases.
  • the Rockwell hardness of the outer ring raceway surface 11A and the inner ring raceway surface 12A is adjusted to be relatively lower than the Rockwell hardness of the ball rolling surface 13A. Furthermore, the Rockwell hardness of the ball rolling surface 13A is adjusted to 61.5 HRC or more. In this way, the deep groove ball bearing 1 is used under conditions where the oil film formability is not good because the lubricating state between the outer ring 11 and the inner ring 12 and the ball 13 is not good, and the outer ring raceway surface 11A and the inner ring raceway surface Even if the minute projections 12A come in contact with the ball rolling surface 13A, damage or fatigue of the ball rolling surface 13A can be suppressed.
  • the outer ring raceway surface 11A and the inner ring raceway surface 12A are tempered by heating conditions higher than the ball rolling surface 13A and / or for a long time, whereby the outer ring raceway surface 11A, the inner ring raceway surface 12A and the ball rolling surface 13A are It can process so that hardness may become said conditions.
  • the values of the oil film parameter ⁇ ⁇ ⁇ ⁇ in the region between the outer ring 11 and each of the plurality of balls 13 and in the region between each of the inner ring 12 and each of the plurality of balls 13 are 1.2 or less. If the value of the hydraulic pressure parameter ⁇ is 1.2 or less, the frequency of contact between the minute roughness projections of the outer ring 11 and the ball 13 and the minute roughness projections of the inner ring 12 and the ball 13 increases. Therefore, the fitting of the minute roughness projections of the rolling portions of the outer ring 11 and the inner ring 12 occurs.
  • the deep groove ball bearing 1 of the present embodiment can be basically described similarly using the same drawing as the deep groove ball bearing 1 of the first embodiment, and therefore detailed description will be omitted.
  • the ball 13 is disposed as a first rolling component
  • the outer ring 11 and the inner ring 12 are disposed as a second rolling component.
  • the deep groove ball bearing 1 of the present embodiment is different from the deep groove ball bearing 1 of the first embodiment in this point.
  • the arithmetic mean roughness of ball rolling surface 13A is larger than the arithmetic mean roughness of outer raceway surface 11A and inner raceway surface 12A, and the arithmetic mean roughness of ball rolling surface 13A is 0.70 ⁇ m.
  • the arithmetic mean roughness of the outer ring raceway surface 11A and the inner ring raceway surface 12A is not less than 0.07 ⁇ m and not more than 0.20 ⁇ m.
  • the balls 13 are subjected to chemical conversion treatment after tempering treatment.
  • the Rockwell hardness (HRC) of the ball rolling surface 13A is lower than the Rockwell hardness of the outer ring raceway surface 11A and the inner ring raceway surface 12A, and the lock of the outer ring raceway surface 11A and the inner ring raceway surface 12A Well hardness is 61.5 HRC or more.
  • the Rockwell hardness (HRC) of the ball rolling surface 13A is preferably 0.5 HRC or more lower than the Rockwell hardness of the outer ring raceway surface 11A and the inner ring raceway surface 12A.
  • the effect of suppressing damage to the outer raceway surface 11A and the inner raceway surface 12A, which are the second rolling parts, can be enhanced in the same manner as in the first embodiment. .
  • the tapered roller bearing 102 of the present embodiment includes an annular outer ring 120, an annular inner ring 121 disposed on the inner side of the outer ring 120 with respect to the center line C, an outer ring 120 and an inner ring 121. And an annular retainer 123 for holding the outer ring 120, the inner ring 121, and the plurality of rollers 122. As shown in FIG.
  • the outer ring 120 is disposed to be in contact with the plurality of rollers 122 outside the plurality of rollers 122.
  • the outer ring 120 has an outer ring raceway surface 120 ⁇ / b> A on the inner circumferential surface formed on the inner side with respect to the center line C.
  • the inner ring 121 is disposed to contact the plurality of rollers 122 inside the plurality of rollers 122.
  • the inner race 121 has an inner raceway surface 121 ⁇ / b> A on the outer peripheral surface formed on the outer side with respect to the center line C.
  • the outer ring 120 and the inner ring 121 are disposed such that the outer ring raceway surface 120A and the inner ring raceway surface 121A face each other.
  • the plurality of rollers 122 have roller rolling surfaces 122A on their surfaces. In other words, the entire surface of each of the plurality of rollers 122 is a roller rolling surface 122A.
  • the plurality of rollers 122 are configured to roll between the outer ring raceway surface 120A and the inner ring raceway surface 121A.
  • a plurality of rollers 122 are arranged side by side so as to be in contact with the outer ring raceway surface 120A and the inner ring raceway surface 121A at the roller rolling surface 122A and to have a pitch of a certain interval in the circumferential direction by the cage 123. Thereby, each of the plurality of rollers 122 is rotatably held on the annular raceway of the outer ring 120 and the inner ring 121.
  • the holder 123 is made of synthetic resin.
  • a cone including the outer ring raceway surface 120A, a cone including the inner ring raceway surface 121A, and a cone including the locus of the rotation axis when the roller 122 rolls are on the center line of the bearing. It is configured to meet at one point. With the above configuration, the outer ring 120 and the inner ring 121 of the tapered roller bearing 102 can rotate relative to each other.
  • cylindrical roller bearing 103 of the present embodiment includes an annular outer ring 130, an annular inner ring 131 disposed on the inner side of outer ring 130 with respect to center line C, an outer ring 130 and an inner ring 131. And an annular cage 133 for holding the outer ring 130, the inner ring 131 and the plurality of rollers 132.
  • the outer ring 130 is disposed to be in contact with the plurality of rollers 132 outside the plurality of rollers 132.
  • the outer ring 130 has an outer ring raceway surface 130 ⁇ / b> A on the inner circumferential surface formed on the inner side with respect to the center line C.
  • the inner ring 131 is arranged to contact the plurality of rollers 132 inside the plurality of rollers 132.
  • the inner race 131 has an inner raceway surface 131A on the outer peripheral surface formed on the outer side with respect to the center line C.
  • the outer ring 130 and the inner ring 131 are disposed such that the outer ring raceway surface 130A and the inner ring raceway surface 131A face each other.
  • the plurality of rollers 132 have a cylindrical shape, and have roller rolling surfaces 132A on their surfaces. In other words, the entire surface of each of the plurality of rollers 132 is a roller rolling surface 132A.
  • the plurality of rollers 132 are configured to roll between the outer ring raceway surface 130A and the inner ring raceway surface 131A.
  • a plurality of rollers 132 are arranged side by side so as to be in contact with the outer ring raceway surface 130A and the inner ring raceway surface 131A at the roller rolling surface 132A and to have a circumferential pitch by the cage 133.
  • each of the plurality of rollers 132 is rotatably held on the annular raceway of the outer ring 130 and the inner ring 131.
  • the cage 133 is made of synthetic resin. With the above configuration, the outer ring 130 and the inner ring 131 of the cylindrical roller bearing 103 can rotate relative to each other.
  • a grease composition is enclosed in a space between the outer ring 120 and the inner ring 121 in FIG. 9, more specifically, a space between the outer ring raceway surface 120A and the inner ring raceway surface 121A.
  • An oil film is formed between each of the outer ring 120 and the inner ring 121 by this grease composition.
  • the value of the oil film parameter ⁇ in the region between the outer ring 120 and each of the plurality of rollers 122 and in the region between each of the inner ring 121 and each of the plurality of rollers 122 is 1.2 or less.
  • the grease composition is enclosed in a raceway space which is a space sandwiched between the outer ring raceway surface 130A and the inner ring raceway surface 131A as in FIG. 9 also in FIG.
  • outer ring 120, the inner ring 121 and the rollers 122 as rolling parts constituting the tapered roller bearing 102 will be described.
  • a roller 122 as a second rolling part is in contact with each of the outer ring 120 and the inner ring 121 as a first rolling part.
  • Each of the outer ring 120, the inner ring 121 and the roller 122 is a high carbon chromium bearing steel, for example, made of JIS standard SUJ2. The same applies to the outer ring 130, the inner ring 131, and the rollers 132 that constitute the cylindrical roller bearing 103.
  • the rolling portion of outer ring 120 in FIG. 9 is a region including outer ring raceway surface 120A, and the surface of the rolling portion of outer ring 120 constitutes outer ring raceway surface 120A.
  • the rolling portion of the inner ring 121 is a region including the inner ring raceway surface 121A, and the surface of the rolling portion of the inner ring 121 constitutes the inner ring raceway surface 121A.
  • the rolling portion of the roller 122 is a region including the rolling surface 122A, and the surface of the rolling portion of the roller 122 constitutes the rolling surface 122A.
  • the Rockwell hardness of the outer ring raceway surface 120A and the inner ring raceway surface 121A is lower than the Rockwell hardness of the roller rolling surface 122A. Specifically, it is preferable that the Rockwell hardness of the outer ring raceway surface 120A and the inner ring raceway surface 121A be 0.5 HRC or more lower than the Rockwell hardness of the roller rolling surface 122A.
  • the arithmetic average roughness (Ra) standardized by JIS B 0601-2001 of the outer ring raceway surface 120A and the inner ring raceway surface 121A is larger than the arithmetic average roughness of the roller rolling surface 122A.
  • the root mean square inclination (R ⁇ q) standardized by JIS B 0601-2001 of the outer ring raceway surface 120A and the inner ring raceway surface 121A is larger than the root mean square inclination of the roller rolling surface 122A.
  • the arithmetic average roughness of the outer ring raceway surface 120A and the inner ring raceway surface 121A is 0.70 ⁇ m or less, and the root mean square inclination is 0.30 or less. Further, the arithmetic average roughness of the roller rolling surface 122A is 0.07 ⁇ m or more and 0.10 ⁇ m or less, and the root mean square inclination is 0.07 or more and 0.10 or less.
  • an outer ring 120 and an inner ring 121 as first rolling parts made of JIS standard SUJ2 are prepared (S01).
  • a roller 122 is prepared as a second rolling component made of JIS standard SUJ2 (S02).
  • the material is subjected to a hardening treatment (S11) and then to a tempering treatment (S12).
  • the outer raceway surface 120A and the inner raceway surface 121A are processed (S13).
  • the Rockwell hardness of the outer ring raceway surface 120A and the inner ring raceway surface 121A is processed so as to be lower than the Rockwell hardness of the roller rolling surface 122A.
  • the arithmetic mean roughness of the outer ring raceway surface 120A of the outer ring 120 and the inner ring raceway surface 121A of the inner ring 121 is processed to be larger than the arithmetic mean roughness of the roller rolling surface 122A of the roller 122.
  • the root mean square inclination of the outer ring raceway surface 120A and the inner ring raceway surface 121A is processed to be larger than the root mean square inclination of the roller rolling surface 122A.
  • the Rockwell hardness of the outer ring raceway surface 120A and the inner ring raceway surface 121A be 0.5 HRC or more lower than the Rockwell hardness of the roller rolling surface 122A.
  • the arithmetic average roughness of the outer ring raceway surface 120A and the inner ring raceway surface 121A is processed so as to be 0.70 ⁇ m or less, and the root mean square inclination is 0.30 or less.
  • tempering treatment (S22) is carried out after the JIS standard SUJ2 which is a material is subjected to quenching treatment (S21). Thereafter, the arithmetic average roughness of the roller rolling surface 122A of the roller 122 is processed so as to be smaller than the arithmetic average roughness of the outer ring raceway surface 120A of the outer ring 120 and the inner ring raceway surface 121A of the inner ring 121.
  • the roller rolling surface 122A is processed so as to have an arithmetic average roughness of 0.07 ⁇ m or more and 0.10 ⁇ m or less and a root mean square inclination of 0.07 or more and 0.10 or less (S23).
  • each raceway surface in the above steps (S13) and (S23) is finished by grinding or polishing using a rotary grindstone. That is, even if the outer surface raceway surface 120A and the inner ring surface 121A as the first rolling parts are not processed to improve surface roughness such as superfinishing, barrel polishing and burnishing, Good. For example, even if it is difficult to perform superfinishing or the like in which the outer ring raceway surface 120A and the inner ring raceway surface 121A are reduced in arithmetic mean roughness, root mean square inclination, etc.
  • the combination of the values of the arithmetic mean roughness and the root mean square slope with the raceway surfaces 20A and 21A and the rolling surface 122A may be set as the above-mentioned numerical range.
  • the tip shapes of the projections of the outer ring raceway surface 120A and the inner ring raceway surface 121A can be smoothed by conforming without superfinishing the outer ring raceway surface 120A and the inner ring raceway surface 121A. Therefore, the possibility of occurrence of damage due to rolling fatigue such as peeling on the roller rolling surface 122A can be reduced, and a reduction in the life of the rolling device due to the damage can be suppressed.
  • the Rockwell hardness of the roller rolling surface 122A as the surface of the moving part is 0.5 HRC or more lower.
  • the arithmetic mean roughness of the outer ring raceway surface 120A and the inner ring raceway surface 121A is larger than the arithmetic mean roughness of the roller rolling surface 122A.
  • the arithmetic average roughness of the roller rolling surface 122A is 0.07 ⁇ m or more and 0.10 ⁇ m or less, and the roller rolling surface 122A is processed so that the root mean square inclination is 0.07 or more and 0.10 or less .
  • the arithmetic mean roughness can be reduced compared to, for example, the case where the value of the arithmetic mean roughness of roller rolling surface 122A is less than 0.07 ⁇ m.
  • the minute projections included in a large number in the outer ring raceway surface 120A and the inner ring raceway surface 121A whose values are larger than the roller rolling surface 122A are easily fitted.
  • the Rockwell hardness of the surface of each rolling portion of the outer ring 120 and the inner ring 121 lower than the hardness of the roller rolling surface 122A, the roughness of the outer ring raceway surface 120A and the inner ring raceway surface 121A is further reduced.
  • the projections can be made more familiar.
  • the outer ring raceway surface 120A and the inner ring raceway surface 121A come into contact with the roller rolling surface 122A after a short period of time from the start of operation of the tapered roller bearing 102, so that the rough surface present on the roller rolling surface 122A.
  • the projections of the stem wear or plastically deform large projections present on the outer ring raceway surface 120A and the inner ring raceway surface 121A. Thereby, the fit-in of large protrusions and the like present on the outer ring raceway surface 120A and the inner ring raceway surface 121A is promoted, and the tip shape of the projections is smoothed.
  • the local contact surface pressure between the minute projections of the outer ring raceway surface 120A and the inner ring raceway surface 121A and the flat surface or the minute projections of the roller rolling surface 122A in contact with the projections decreases. Therefore, it is possible to suppress the occurrence of damage to roller rolling surface 122A caused by, for example, minute projections on outer ring raceway surface 120A and inner ring raceway surface 121A. Therefore, for example, even if a method such as forming minute recesses on the surface such as outer ring raceway surface 120A at random and coating a solid lubricant there is not used, the tapered roller bearing 102 is damaged by damage to the roller rolling surface 122A. It is possible to suppress the reduction of the life. Therefore, the long life of the tapered roller bearing 102 can be realized.
  • the value of the arithmetic average roughness of the outer ring raceway surface 120A, the inner ring raceway surface 121A and the rolling surface 122A is adjusted. For this reason, even if the tapered roller bearing 102 is used under conditions where the oil film formability is not good because the lubricating state between the outer ring 120 and the inner ring 121 and 122 is not good, the outer ring raceway surface 120A and the inner ring raceway surface 121A. It is possible to suppress damage to the roller rolling surface 122A due to the contact with the minute projections of the Thereby, the long life of the tapered roller bearing 102 can be realized.
  • the values of the oil film parameter ⁇ in the region between the outer ring 120 and each of the plurality of rollers 122 and in the region between each of the inner ring 121 and each of the plurality of rollers 122 are 1.2 or less. Therefore, under the condition that the life of the tapered roller bearing 102 is likely to decrease because the surface rolling type separation occurs on the roller rolling surface 122A, the roller rolling due to the contact with the minute projections of the outer ring raceway 120A and the inner ring raceway 121A. Damage to the surface 122A can be suppressed. Thereby, the long life of the tapered roller bearing 102 can be realized effectively.
  • roller rolling surface 122A Since damage to roller rolling surface 122A is suppressed by the above method, in the present embodiment, superfinishing, barrel polishing, and burnishing on outer ring raceway surface 120A, inner ring raceway surface 121A and roller rolling surface 122A. There is no need to do any of the processing. Therefore, the process of machining the tapered roller bearing 102 can be simplified, and the cost can be reduced.
  • Embodiment 4 The tapered roller bearing 102 of the present embodiment can be basically described similarly using the same drawing as the tapered roller bearing 102 of the third embodiment, and therefore detailed description will be omitted. However, in the tapered roller bearing 102 of the present embodiment, the roller 122 is disposed as a first rolling component, and the outer ring 120 and the inner ring 121 are disposed as a second rolling component. The tapered roller bearing 102 of the present embodiment is different from the tapered roller bearing 102 of the third embodiment in this point.
  • the Rockwell hardness of the roller rolling surface 122A is, for example, 0.5 HRC or more lower than the Rockwell hardness of the outer ring raceway surface 120A and the inner ring raceway surface 121A.
  • the arithmetic mean roughness of the roller rolling surfaces 122A is larger than the arithmetic mean roughness of the outer ring raceway surface 120A and the inner ring raceway surface 121A.
  • the arithmetic mean roughness of the outer ring raceway surface 120A and the inner ring raceway surface 121A is 0.07 ⁇ m or more and 0.10 ⁇ m or less, and the root mean square inclination is 0.07 or more and 0.10 or less.
  • the root mean square inclination of the roller rolling surface 122A is larger than the root mean square inclination of the outer ring raceway surface 120A and the inner ring raceway surface 121A.
  • the arithmetic mean roughness of the roller rolling surface 122A is 0.70 ⁇ m or less, and the root mean square inclination is 0.30 or less.
  • the roller 132 can be applied as a first rolling part, and the outer ring 130 and the inner ring 131 can be applied as a second rolling part.
  • the method of manufacturing these tapered roller bearings 102 and cylindrical roller bearings 103 is basically the same as in Embodiment 3, although the first and second rolling parts are opposite to those in Embodiment 3. Therefore, the detailed description is omitted.
  • the effect of suppressing damage to the outer raceway surface 120A and the inner raceway surface 121A, which are the second rolling parts, can be enhanced similarly to the third embodiment. .
  • this shows a two-cylinder tester 2 used for the peeling resistance evaluation test.
  • the two-cylinder testing machine 2 has a drive side rotation axis D1 and a driven side rotation axis F1.
  • the driving side rotation shaft D1 is a member extending in the left and right direction in FIG. 5, and the motor M is connected to the left end in FIG.
  • the drive-side rotation axis D1 is rotatable with respect to a central axis C1 extending in the left-right direction in FIG. 5 by the motor M.
  • a drive-side test piece D2 is attached to the tip on the right side of the drive-side rotary shaft D1 in FIG.
  • the drive-side test strip D2 is a member corresponding to the first rolling component in each of the above-described embodiments, and is driven so as to be rotatable around the central axis C1 with the rotation of the drive-side rotary shaft D1. It was fixed to the tip on the right side of the side rotation axis D1.
  • the driven side rotation shaft F1 is a member extending in the left and right direction of FIG. 5, and is rotatable with respect to a central axis C2 extending in the left and right direction of FIG.
  • the left side is the tip end and the right side is the end.
  • the driven side test strip F2 is attached to the left end of the driven side rotation shaft F1 in FIG.
  • the driven-side test strip F2 is a member corresponding to the second rolling component in each of the above-described embodiments, and is driven so as to be rotatable around the central axis C2 with the rotation of the driven-side rotation shaft F1. It was fixed to the tip on the left side of the side rotation axis F1.
  • the end of the drive side rotation shaft D1 is directed to the right in FIG. 5, and the end of the driven rotation axis F1 is directed to the left in FIG.
  • the central axis C1 of the drive side rotational shaft D1 and the central axis C2 of the driven side rotational shaft F1 do not coincide, and both have an interval in the vertical direction in FIG. Therefore, the drive side test strip D2 fixed to the tip end of the drive side rotation shaft D1 and the driven side test strip F2 fixed to the tip end of the driven side rotation shaft F1 are the drive side rotation shaft D1 and the driven side rotation.
  • the respective outer diameter surfaces of the axis F1 are arranged to be in contact with each other at the outer diameter surface contact portion DF in their non-rotated state.
  • the drive-side test strip D2 and the driven-side test strip F2 arranged to be in contact with each other are in contact with the fueling felt pad 3 laid under them.
  • an additive-free poly- ⁇ -olefin oil (corresponding to VG5) was used as a lubricating oil in the two-cylinder tester 2.
  • This lubricating oil was impregnated in the felt pad 3 for oil supply, and was supplied from there to the outer diameter surface of the driving side test piece D2 and the driven side test piece F2.
  • the number of revolutions around the central axis C1 of the drive side rotation axis D1 was 2000 rpm
  • the value of the load W (see FIG. 5) applied to the driven side test piece F2 was 230 kgf.
  • the load W is a load applied to the driven-side test piece F2 in the direction shown by the arrow W in FIG.
  • the test time was 100 minutes, and the test was ended when the total number of loads applied to the driven test piece F2 reached 200,000 times.
  • the above conditions are conditions under which minute peeling called peeling is likely to occur on the surface of the rolling portion of the driven-side test piece F2.
  • the shapes, dimensions, and the like of the drive-side test piece D2 and the driven-side test piece F2 used for each of the three types of tests will be described using Tables 2 and 3.
  • the three types of tests are a comparative example which is a nonstandard test of the present embodiment, a test example 1 which is a test based on the present embodiment, and a test example 1 of a test based on the present embodiment.
  • conditions such as dimensions of the driving side test piece D2 used in each of the three types of tests will be described using Table 2.
  • the drive-side test strip D2 has a cylindrical shape having a circular shape in plan view from the tip side of the drive-side rotation axis D1 to which the drive-side test strip D2 is set.
  • the diameter of the outer diameter is the same 40 mm in any of the three types of tests, that is, Comparative Example, Test Example 1 and Test Example 2, and the diameter of the inner diameter is 20 mm in any of the above three types.
  • the width corresponding to the dimension in the axial direction is 12 mm
  • the radial sub-curvature radius is 60 mm.
  • the material of the drive-side test piece D2 is JIS standard SUJ2 in all of the above three types.
  • the Rockwell hardness of the width surface (the outer diameter surface and corresponding to the surface of the rolling portion) of the driving side test piece D2 of the comparative example and the test example 1 is 62.2 HRC.
  • the following process was done to First, the steel material of SUJ 2 was held at 840 ° C. for 40 minutes, then quenched by being introduced into oil at 80 ° C. and cooled, and then heated to 180 ° C. and tempered for 3 hours. Further, as shown in Table 2, the Rockwell hardness of the width surface of the driving-side test piece D2 of Test Example 2 is 60.5 HRC, and the following processing was carried out to achieve this.
  • the steel material of SUJ 2 was held at 850 ° C. for 80 minutes, then quenched by being put into oil at 80 ° C. and cooled, and then heated to 220 ° C. and subjected to tempering treatment for 100 hours.
  • the value of the arithmetic mean roughness Ra in the axial direction of the circular outer diameter surface in plan view of the drive-side test piece D2 is 0.650 ⁇ m for all of the test pieces D2 of Comparative Example and Test Example 1 and Test Example 2.
  • the value of the root mean square inclination R ⁇ q in the axial direction of the circular outer diameter surface of the driving side test piece D2 was finished to be 0.270.
  • the outer diameter surface of the drive side test piece D2 corresponds to the surface of the rolling portion of the drive side test piece D2.
  • the coating treatment of iron trioxide was not performed after the quenching treatment and the tempering treatment of the outer diameter surface of the driving side test piece D2.
  • the drive-side test pieces D2 of Test Example 1 and Test Example 2 were subjected to the coating treatment of triiron trioxide after the quenching treatment and tempering treatment of the outer diameter surface thereof. Specifically, after the quenching process and the tempering process, polishing was performed so that the arithmetic mean roughness of the outer diameter surface of the driving-side test piece D2 had the same value as that of the comparative example. Thereafter, triiron tetraoxide film treatment was performed on the driving side test piece D2.
  • the driving-side test piece D2 was immersed for 30 minutes in an alkaline solution containing sodium hydroxide as a main component and heated to 140 ⁇ 5 ° C. There was almost no change in the arithmetic mean roughness or the like of the outer diameter surface of the driving-side test piece D2 before and after this film treatment.
  • the driven-side test strip F2 has a cylindrical shape having a circular shape in plan view from the tip side of the driven-side rotation shaft F1 to which the driven-side test piece F2 is set.
  • the diameter of the outer diameter of each of the above three types is 40 mm
  • the diameter of the inner diameter is 20 mm
  • the width corresponding to the dimension in the axial direction is 12 mm, but does not have an axial minor radius of curvature.
  • the material of the driven-side test piece F2 is JIS standard SUJ2 in any of the above three types.
  • the Rockwell hardness of the width surface of the driven-side test piece F2 of the comparative example and the test example 1 is 62.2 HRC, but the following processing was performed to do this.
  • the steel material of SUJ 2 was held at 840 ° C. for 40 minutes, then quenched by being introduced into oil at 80 ° C. and cooled, and then heated to 180 ° C. and tempered for 3 hours.
  • the Rockwell hardness of the width surface of the driven-side test piece F2 of Test Example 2 is 63.0 HRC, and the following processing was carried out to do so.
  • the steel material of SUJ 2 was held at 850 ° C. for 80 minutes, then quenched by being put into oil at 80 ° C. and cooled, and then heated to 180 ° C. and tempered for 4 hours.
  • the test piece of the comparative example is polished and tempered after tempering, and finished so that the arithmetic mean roughness Ra of its outer diameter surface is 0.020 ⁇ m and the root mean square slope R ⁇ q is 0.013. It was done.
  • the outer diameter surface of the driven-side test piece F2 is polished after quenching and tempering treatment, and the arithmetic average roughness Ra of the outer diameter surface is 0.200 ⁇ m, the root mean square The square root slope R ⁇ q was finished to be 0.100.
  • grinding and superfinishing are performed on the outer diameter surface of the driven-side test piece F2 after quenching and tempering, and the arithmetic average roughness Ra of the outer diameter surface is 0. It was finished so that 070 ⁇ m and root mean square slope R ⁇ q became 0.074.
  • the outer diameter surface of the driven test piece F2 corresponds to the surface of the rolling portion of the driven test piece F2.
  • Planar shape of the outer diameter surface which is a rolling portion of the driven-side test piece F2 corresponding to the second rolling component after performing the respective tests of the comparative example and the respective test examples using the above-mentioned respective test pieces 6 (A) and 6 (B) show magnified micrographs of FIG. Referring to FIGS. 6 (A) and 6 (B), many peelings occurred on the surface of the rolling portion of the driven side test piece F2 of the comparative example, but the driven side test of Test Example 1 and Test Example 2 Peeling did not occur on the surface of the rolling portion of piece F2.
  • FIG. 7 shows the result of measurement of a three-dimensional shape using a laser microscope. Referring to FIG. 7, it can be confirmed that the minute projections of the rolling portions in Test Example 1 and Test Example 2 are more rounded than in the comparative example.
  • the drive side test piece D2 having a larger value of the surface roughness of the rolling portion is treated with a triiron oxide coating, and the driven side has a smaller value of the surface roughness of the rolling portion than that.
  • a two-cylinder tester 2 shown in FIG. 5 is used as in the first embodiment.
  • Table 5 conditions of the shape and dimensions of the drive-side test piece D2 and the driven-side test piece F2 in the present embodiment, and the drive conditions of the equipment of the two-cylinder test machine 2 will be described.
  • the drive-side test piece D2 has the same dimensions in any of the test examples performed in the present embodiment, and corresponds to the dimension of 40 mm in outer diameter, 20 mm in inner diameter, and the axial direction. It has a cylindrical shape with a width of 12 mm and a width-direction minor radius of curvature of 60 mm. Further, the surface roughness in the axial direction of the circular outer diameter surface in plan view of the drive-side test piece D2 is the same in any of the test examples, and the value of the arithmetic mean roughness Ra is about 0.650 ⁇ m, the root mean square Polishing was performed so that the value of the inclination R ⁇ q was about 0.270.
  • the driven-side test piece F2 has the same dimensions in any of the test examples conducted in the present embodiment, and has an outer diameter of 40 mm, an inner diameter of 20 mm, and an axial dimension. Is 12 mm in width, but has a cylindrical shape having no widthwise minor radius of curvature.
  • the surface roughness in the axial direction of the circular outer diameter surface in plan view of the driven-side test piece F2 is the same in any of the test examples, and the value of the arithmetic mean roughness Ra is about 0.020 ⁇ m, the root mean square Polishing and superfinishing were performed such that the value of the inclination R ⁇ q was about 0.013.
  • the value of this surface roughness is the same as that of the comparative example of Table 3 and FIG. 6 (A), and it was set as the conditions which peeling (minute peeling) tends to generate on the surface of the rolling part of driven side test piece F2.
  • the driving conditions (lubricant, rotation speed, load, test time, load frequency) of the equipment of the two-cylinder test machine 2 are as shown in Table 5. Specifically, the test was completed when the test time was 5 minutes and the total number of loads applied to the driven test piece F2 reached 10,000 times. The other conditions are the same as in the first embodiment. Further, the fixing aspect and the rotation aspect of the drive-side test piece D2 and the driven-side test piece F2 to the two-cylinder testing machine 2 in the present embodiment are the same as in the first embodiment, and can be described using FIG. Detailed description is omitted here.
  • each of the nine types of tests is set to test examples 3 to 11 regardless of whether it is a test based on the present embodiment or a nonstandard test of the present embodiment. It shows by.
  • the steel material constituting the drive-side test piece D2 and the driven-side test piece F2 is JIS standard SUJ2.
  • the driving side test piece D2 and the driven side test piece F2 are hardened by being charged in oil at 80 ° C. and cooled after being held at 850 ° C. for 80 minutes.
  • the conditions for subsequent tempering differ depending on the test example and the test piece.
  • the drive side test pieces D2 of Test Examples 3 to 5 are tempered at 250 ° C. for 7.5 hours, and the drive side test pieces D2 of the test pieces 6 to 8 are tested at 230 ° C. for 7.5 hours
  • the driving side test pieces D2 of the pieces 9 to 11 were tempered at 200 ° C. for 3 hours.
  • the driven side test piece F2 of Test Examples 3, 6 and 9 is tempered at 250 ° C. for 7.5 hours, and the driven side test piece F2 of the test pieces 4, 7 and 10 is tested at 230 ° C. for 7.5 hours
  • the driven side test pieces F2 of the pieces 5, 8 and 11 were tempered at 200 ° C. for 3 hours.
  • the Rockwell hardness of the width surface (corresponding to the surface of the rolling portion) of the drive-side test piece D2 and the driven-side test piece F2 was measured by these tempering conditions.
  • the Rockwell hardness is roughly classified into three types so as to be either about 59.5 HRC, about 60.5 HRC or about 61.5 HRC (including an error of about ⁇ 0.2 HRC).
  • the combinations of the values of the Rockwell hardness (the above classification) of the width surfaces of the drive-side test piece D2 and the driven-side test piece F2 were different.
  • the peeling performance evaluation test was performed in each test example using nine types of test pieces with which the combination of the above hardness differs.
  • the cracked portion in the micrograph of the outer diameter surface which is the rolling portion of the driven-side test piece F2 corresponding to the second rolling component after each test is shown in FIG. %) are shown in Table 7.
  • the area ratio was calculated by converting the photograph of FIG. 8 into a monochrome image using commercially available image processing software in each test example, and performing a binarization process on the image to paint only the cracked portion.
  • the Rockwell hardness (unit: HRC) of the width surface of the drive-side test piece D2 as the first rolling part is greater than that of the driven-side test piece F2 as the second rolling part.
  • HRC Rockwell hardness
  • the Rockwell hardness of the width surface of the driven-side test piece F2 is 61.4 HRC (about 61.5 HRC).
  • the test pieces 5 and 8 each have a Rockwell hardness of 61.5 HRC on the width surface of the driven-side test piece F2.
  • the two-cylinder tester 2 of FIG. 5 was used.
  • the driving conditions of the equipment of the two-cylinder testing machine 2 are shown in Table 1 above, and the two-cylinder testing machine 2 is also driven in the same manner as in Example 1 in this embodiment.
  • the drive-side test strip D2 has a cylindrical shape having a circular shape when viewed in plan from the tip side of the drive-side rotation axis D1 to which it is set.
  • the diameter of the outer diameter is 40 mm which is the same in both of the two types of tests, that is, the comparative example and the test example, and the diameter of the inner diameter is 20 mm in each of the above two types.
  • the width of each of the above two types is 12 mm, which corresponds to the dimension in the axial direction, and the radial radius of curvature in the axial direction is 60 mm.
  • the materials of the test pieces are both JIS standard SUJ2 of the above two types, and all of them are tempered after being subjected to a general quenching treatment, and in the comparative example, the Rockwell hardness of the width surface thereof is It was processed to be 62.2 HRC, and in the test example, it was processed to have a Rockwell hardness of 60.5 HRC on its width surface.
  • the value of the arithmetic average roughness Ra in the axial direction of the outer surface in the plan view of the drive-side test piece D2 is 0.650 ⁇ m
  • the circular outer diameter of the drive-side test piece D2 Polishing was performed so that the value of the root mean square slope R ⁇ q in the axial direction of the surface was 0.270.
  • the driven-side test strip F2 has a cylindrical shape having a circular shape in a plan view from the tip side of the driven-side rotation shaft F1 to which the driven-side test piece F2 is set.
  • the diameter of the outer diameter of the above two types is 40 mm
  • the diameter of the inner diameter is 20 mm
  • the width corresponding to the dimension in the axial direction is 12 mm, but does not have an axial minor radius of curvature.
  • the materials of the test pieces are both JIS standard SUJ2 of the above two types, and both are subjected to tempering treatment after being subjected to quenching treatment, and in the comparative example, the Rockwell hardness of its width surface is 62.2 HRC. It was processed so that it might become and in the test example, it was processed so that the Rockwell hardness of the width side might be 63.0 HRC. With respect to the driven-side test piece F2, both of the above two types were subjected to polishing and superfinishing after tempering. Thereby, in the comparative example, the arithmetic mean roughness Ra of the outer diameter surface is finished to be 0.020 ⁇ m and the root mean square slope R ⁇ q to be 0.013. In the test example, the outer diameter surface was finished to have an arithmetic mean roughness Ra of 0.070 ⁇ m and a root mean square inclination R ⁇ q of 0.074.
  • both of the drive-side test piece D2 and the driven-side test piece F2 of the comparative example have a width surface Rockwell hardness of 62.2 HRC
  • the following steps were carried out for this purpose. First, after holding the steel material at 840 ° C. for 40 minutes, it was quenched by being cooled in oil at 80 ° C., and then tempered for 3 hours at 180 ° C.
  • the width surface Rockwell hardness of the driving-side test piece D2 of the test example is 60.5 HRC
  • the following steps are performed for this purpose. First, the steel material was held at 850 ° C. for 80 minutes, cooled in oil at 80 ° C. for quenching, and then tempered at 220 ° C. for 100 hours.
  • the width surface Rockwell hardness of the driven-side test piece F2 of the test example is 63.0 HRC
  • the following steps are performed for this purpose. First, the steel material was held at 850 ° C. for 80 minutes, cooled in oil at 80 ° C. for quenching, and then tempered at 180 ° C. for 4 hours.
  • FIG. 12 The planar shape of the outer diameter surface which is the rolling portion of the driven-side test piece F2 corresponding to the second rolling part after conducting the respective tests of the comparative example and the test example using the above-described respective test pieces A microscope enlarged photograph is shown in FIG. Referring to FIG. 12, many peelings were generated on the surface of the rolling portion of driven side test piece F2 of the comparative example, but peeling was performed on the surface of the rolling portion of driven side test piece F2 of the test example. Did not occur.
  • the surface roughness of the rolling portion of the driving side test piece D2 is made larger than the surface roughness of the rolling portion of the driven side test piece F2, and the hardness of the rolling portion surface of the driving side test piece D2 is the driven side
  • the hardness of the surface of the rolling portion of the test piece F2 is made softer, and the arithmetic mean roughness of the surface of the rolling portion before the test of the driven side test piece D2 is about 0.070 ⁇ m, and the root mean square inclination is about 0.074 Is preferable.
  • Reference Signs List 1 deep groove ball bearing, 2 two cylindrical testing machine, 3 felt pad for oil supply, 1,120,130 outer ring, 11A, 120A, 130A outer ring raceway surface, 11B, 12B film, 12,121,131 inner ring, 12A, 121A, 131A Inner ring raceway, 13 balls, 13A ball rolling surface, 14, 123, 133 cage, 102 conical roller bearings, 103 cylindrical roller bearings, 122, 132 rollers, 122A, 132A roller rolling surfaces, D1 drive side rotation shaft, D2 Drive side test piece, DF OD surface contact part, F1 driven side rotation shaft, F2 driven side test piece.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Provided are: a rolling element bearing capable of limiting surface damage and easily achieving long service life even when used in conditions in which formation of an oil film on the rolling areas is poor; a rolling device; and a rolling device manufacturing method. The rolling device (1) is provided with first rolling components (11, 12) that are made of SUJ2 and second rolling components (13) that contact the first rolling components (11, 12) and are made of SUJ2. The arithmetic mean roughness (Ra) of the surfaces (11A, 12A) of the rolling areas of the first rolling components (11, 12) is greater than the arithmetic mean roughness of the surfaces (13A) of the rolling areas of the second rolling components (13). The arithmetic mean roughness of the surfaces (13A) of the rolling areas of the second rolling components (13) is 0.07 µm to 0.20 µm.

Description

転がり軸受、転動装置および転動装置の製造方法Rolling bearing, rolling device and method of manufacturing rolling device
 本発明は転がり軸受、転動装置および転動装置の製造方法に関し、特に第1および第2の転動部品を備えた転がり軸受、転動装置および転動装置の製造方法に関するものである。 The present invention relates to a rolling bearing, a rolling device and a method of manufacturing the rolling device, and more particularly to a rolling bearing provided with first and second rolling parts, a rolling device and a method of manufacturing the rolling device.
 転がり軸受などの転動装置は、転動部の潤滑状態が悪いために油膜形成が不十分になる環境下で使用されると、ピーリング、焼き付きなどの表面損傷およびこの表面損傷を起点とした剥離が転動部の表面に発生する。これによりその転動装置の寿命は低下する。たとえば論文「ころ軸受の疲れ寿命に及ぼす潤滑の影響」(非特許文献1)には、転がり軸受における内外輪と転動体との間で、潤滑状態の過酷さを示す油膜パラメータΛの値が約1.2以上になる条件では転がり軸受の寿命は長くなるが、油膜パラメータΛの値が約1.2未満になる条件では転がり軸受の転動部に表面起点型の剥離が起きるため転がり軸受の寿命は低下することが記載されている。 If a rolling device such as a rolling bearing is used in an environment where the oil film formation is insufficient due to poor lubrication of the rolling parts, surface damage such as peeling or seizure and peeling starting from this surface damage Occurs on the surface of the rolling portion. This reduces the life of the rolling device. For example, in the paper "Influence of lubrication on the fatigue life of roller bearings" (Non-Patent Document 1), the value of the oil film parameter 示 す, which indicates the severity of the lubrication condition, between the inner and outer rings and rolling elements in the rolling bearing is about The rolling bearing has a long life of 1.2 or more, but under the condition that the value of the oil film parameter 未 満 is less than about 1.2, surface rolling of the rolling bearing occurs, and surface rolling starts. It is stated that the life is reduced.
 油膜形成性が悪い状態で使われる転がり軸受の表面損傷対策として、たとえば特開2006-161887号公報(特許文献1)には、針状ころ軸受のころまたは内外輪の転動部に微小凹部を形成し、その凹部に固体潤滑剤を被覆する方法が記載されている。またたとえば特開平4-265480号公報(特許文献2)には、転動部に微小凹部をランダムに形成し、油膜形成能力を高める方法が記載されている。さらにこれらの他に、表面損傷対策として、たとえば超仕上げ加工、バレル研磨加工またはバニシング加工などによって転がり軸受の転動部の表面粗さを表面損傷が起きない程度まで小さくする方法がある。 In order to prevent surface damage to a rolling bearing used in a state in which the oil film formability is poor, for example, JP-A-2006-161887 (Patent Document 1) disclosed a minute recessed portion in the roller of the needle roller bearing or the rolling portion of the inner and outer rings. Methods of forming and coating solid lubricant in the recesses are described. Further, for example, Japanese Patent Laid-Open No. 4-265480 (Patent Document 2) describes a method in which minute recesses are randomly formed in the rolling portion to enhance the oil film forming ability. In addition to these, as a measure against surface damage, there is a method of reducing the surface roughness of the rolling portion of the rolling bearing to the extent that surface damage does not occur, for example, by superfinishing, barrel polishing or burnishing.
特開2006-161887号公報Japanese Patent Application Publication No. 2006-161887 特開平4-265480号公報JP-A-4-265480
 上記各特許文献に記載された方法はいずれも転動部に微小凹部を形成するが、その加工工程が複雑である。また超仕上げ加工などによる転がり軸受の転動部の表面粗さを小さくする方法を用いた場合、処理部材の形状および寸法によっては加工が難しいため、十分に表面粗さを小さくすることができない場合や加工そのものが不可能な場合がある。 Although the method described in each of the above-mentioned patent documents forms a minute recessed part in a rolling part, the processing process is complicated. When the surface roughness of the rolling portion of the rolling bearing is reduced by superfinishing, etc., processing may be difficult depending on the shape and size of the processing member, so the surface roughness can not be reduced sufficiently. And processing itself may not be possible.
 本発明は上記課題に鑑みてなされたものであり、その目的は、転動部の油膜形成性が悪い状態で使用されても表面損傷を抑制し長寿命を容易に実現可能な転がり軸受、転動装置および転動装置の製造方法を提供することである。 The present invention has been made in view of the above problems, and an object thereof is a rolling bearing capable of easily achieving a long life by suppressing surface damage even when used in a state in which the oil film forming property of the rolling portion is poor. To provide a method of manufacturing a moving device and a rolling device.
 本発明の転動装置は、高炭素クロム軸受鋼からなる第1の転動部品と、第1の転動部品に接触し、高炭素クロム軸受鋼からなる第2の転動部品とを備えている。第1の転動部品の転動部の表面の算術平均粗さ(Ra)は、第2の転動部品の転動部の表面の算術平均粗さよりも大きい。第2の転動部品の転動部の表面の算術平均粗さは0.07μm以上0.20μm以下である。 The rolling device according to the present invention comprises a first rolling part made of high carbon chromium bearing steel and a second rolling part in contact with the first rolling part and made of high carbon chromium bearing steel There is. The arithmetic mean roughness (Ra) of the surface of the rolling portion of the first rolling component is larger than the arithmetic mean roughness of the surface of the rolling portion of the second rolling component. The arithmetic mean roughness of the surface of the rolling portion of the second rolling component is not less than 0.07 μm and not more than 0.20 μm.
 このようにすれば、第1の転動部品の転動部の表面に存在する微細な突起が第2の転動部品の転動部の表面と接触することにより、第1の転動部品の微細な突起は摩擦や塑性変形によってその形状が滑らかになり、その突起の傾斜が小さくなるように変形する。このような現象を本明細書においては突起のなじみと表現する。このため第1および第2の転動部品の転動部の表面における突起同士が接触する部分の局所面圧が低下する。したがって、第1および第2の転動部品の転動部の突起同士の接触による第2の転動部品の転動部の表面の損傷を抑制することができる。これにより第2の転動部品の転動部の表面の損傷による転動装置の寿命低下を抑制することができ、転動装置の長寿命を実現することができる。 In this way, the fine projections present on the surface of the rolling portion of the first rolling component come into contact with the surface of the rolling portion of the second rolling component, whereby the first rolling component is The fine projections are smoothed by friction and plastic deformation so that the inclination of the projections is reduced. Such a phenomenon is referred to herein as the familiarity of the protrusion. For this reason, the local surface pressure of the part which protrusion in the surface of the rolling part of the 1st and 2nd rolling parts contacts is reduced. Therefore, damage to the surface of the rolling portion of the second rolling component due to the contact between the protrusions of the rolling portions of the first and second rolling components can be suppressed. Thereby, the life reduction of the rolling device due to the damage of the surface of the rolling portion of the second rolling component can be suppressed, and the long life of the rolling device can be realized.
 上記の転動装置においては、第1の転動部品の転動部の表面の算術平均粗さは0.70μm以下であることが好ましい。このようにすれば、第1の転動部品の転動部の表面の突起のなじみによりその突起の傾斜を小さくすることができ、第2の転動部の表面の損傷を抑制することができる。 In the above rolling device, the arithmetic mean roughness of the surface of the rolling portion of the first rolling component is preferably 0.70 μm or less. In this way, the inclination of the projections can be reduced by the familiarity of the projections on the surface of the rolling portion of the first rolling component, and damage to the surface of the second rolling portion can be suppressed. .
 また、第1および第2の転動部品の形状および寸法のために、超仕上げ加工等の表面粗さを改善する加工が行なえず、これらの転動部品の転動部の表面の算術平均粗さを小さくしにくい場合でも、第1および第2の転動部品の転動部の表面の算術平均粗さを上記の組み合わせにすることで、第1の転動部品の転動部の表面の微小な粗さ突起の傾斜を十分に小さくすることができる。これにより、第2の転動部品の転動部の表面損傷(特にピーリング)による転動装置の寿命の低下を抑制することができる。 In addition, because of the shape and size of the first and second rolling parts, processing for improving surface roughness such as superfinishing can not be performed, and the arithmetic mean roughness of the surface of the rolling portion of these rolling parts is Even when it is difficult to reduce the size, the surface of the rolling portion of the first rolling part can be made by combining the arithmetic mean roughness of the surfaces of the rolling portions of the first and second rolling parts with the above. The slope of the minute roughness projections can be made sufficiently small. Thereby, the fall of the life of the rolling device by surface damage (especially peeling) of the rolling part of the 2nd rolling part can be controlled.
 上記の転動装置においては、第2の転動部品の転動部の表面の二乗平均平方根傾斜は0.074以上0.100以下であることが好ましい。このようにすれば、上記と同様に、第1の転動部品の転動部の表面の突起のなじみによりその突起の傾斜を小さくすることができ、第2の転動部品の表面の損傷を抑制することができる。 In the rolling device described above, the root mean square inclination of the surface of the rolling portion of the second rolling component is preferably 0.074 or more and 0.100 or less. In this way, the inclination of the projections can be reduced by the familiarity of the projections on the surface of the rolling portion of the first rolling component as described above, and damage to the surface of the second rolling component can be reduced. It can be suppressed.
 上記の転動装置においては、第1の転動部品の転動部のロックウェル硬度は、第2の転動部品の転動部のロックウェル硬度よりも低く、かつ、第2の転動部品の転動部のロックウェル硬度が61.5HRC以上であることが好ましい。このようにすれば、第1の転動部品の転動部と第2の転動部品の転動部との硬度の間に上記の関係が成り立たない場合に比べて、第1の転動部品の転動部の表面の微小な粗さ突起が第2の転動部品の転動部の表面に接触することによる、第2の転動部品の転動部の表面における疲労の進行を抑制することができる。 In the above rolling device, the Rockwell hardness of the rolling portion of the first rolling component is lower than the Rockwell hardness of the rolling portion of the second rolling component, and the second rolling component The Rockwell hardness of the rolling portion is preferably 61.5 HRC or more. In this way, the first rolling component is compared to the case where the above-mentioned relationship does not hold between the hardness of the rolling portion of the first rolling component and the rolling portion of the second rolling component. The minute roughness projections on the surface of the rolling portion of the second embodiment inhibit the progress of fatigue on the surface of the rolling portion of the second rolling component due to contact with the surface of the rolling portion of the second rolling component be able to.
 上記において、第1の転動部品の転動部のロックウェル硬度は第2の転動部品の転動部のロックウェル硬度より0.5HRC以上低いことが好ましい。またここで第1の転動部品の転動部および第2の転動部品の転動部とは、それぞれ第1の転動部品の転動部の表面および第2の転動部品の転動部の表面を含んでいる。 In the above, it is preferable that the Rockwell hardness of the rolling portion of the first rolling component is lower by 0.5 HRC or more than the Rockwell hardness of the rolling portion of the second rolling component. Here, the rolling part of the first rolling part and the rolling part of the second rolling part are respectively the surface of the rolling part of the first rolling part and the rolling of the second rolling part Includes the surface of the part.
 上記の転動装置においては、第1の転動部品の転動部の表面上には鉄の酸化物または化合物の少なくともいずれかを含む皮膜を有することが好ましい。これにより、第1の転動部品の転動部の表面が第2の転動部品の転動部の表面に接触した際に、第1の転動部品の転動部表面の微小な突起が脆い性質に変化する。このため、第1の転動部品の転動部の表面上に皮膜を有さずこれが通常の鋼により形成される場合に比べて、転動による突起のなじみが促進される。 In the above-described rolling device, it is preferable to have a film containing at least one of an iron oxide or a compound on the surface of the rolling portion of the first rolling component. Thereby, when the surface of the rolling portion of the first rolling component contacts the surface of the rolling portion of the second rolling component, the minute projection on the surface of the rolling portion of the first rolling component It becomes brittle. For this reason, compared with the case where it does not have a film on the surface of the rolling part of the 1st rolling part, and this is formed with usual steel, conformity of a projection by rolling is promoted.
 上記の転動装置における皮膜は、四三酸化鉄を含むことが好ましい。このため、第1の転動部品の転動部の表面の微小な粗さ突起の材質を脆くすることができる。したがって、第1の転動部品の転動部の表面の微小な粗さ突起が第2の転動部品の転動部の表面に接触することにより、第1の転動部品の微細な突起の傾斜を容易に十分に小さくすることができる。 It is preferable that the film in the above-mentioned rolling device contains iron trioxide. For this reason, the material of the microroughness projections on the surface of the rolling portion of the first rolling component can be made brittle. Therefore, the minute projections on the surface of the rolling portion of the first rolling part come in contact with the surface of the rolling portion of the second rolling part, whereby fine projections of the first rolling part The slope can easily be made sufficiently small.
 本発明の転がり軸受は、上記の転動装置としての転がり軸受である。当該転がり軸受は、複数の転動体と、複数の転動体の外側において複数の転動体に接触するように配置され、内周面に外輪軌道面を有する外輪と、複数の転動体の内側において複数の転動体に接触するように配置され、外周面に内輪軌道面を有する内輪とを備える。外輪および内輪は第1の転動部品であり、複数の転動体は第2の転動部品である。 The rolling bearing of the present invention is a rolling bearing as the above-described rolling device. The rolling bearing is disposed so as to contact a plurality of rolling elements, a plurality of rolling elements outside the plurality of rolling elements, and an outer ring having an outer ring raceway surface on an inner circumferential surface, and a plurality inside the plurality of rolling elements And an inner ring having an inner ring raceway surface on an outer peripheral surface thereof. The outer ring and the inner ring are first rolling parts, and the plurality of rolling elements are second rolling parts.
 外輪および内輪のそれぞれと転動体との間の潤滑状態が良好でなく油膜形成性が良好でない条件で転がり軸受が使用されても、外輪軌道面と内輪軌道面の微小な突起と転動体の突起との接触による転動体の転動部の表面の損傷を抑制することができる。これにより、転がり軸受の長寿命を実現することができる。 Even if a rolling bearing is used under the condition that the lubricating state between each of the outer ring and the inner ring and the rolling element is not good and the oil film forming property is not good, minute projections on the outer ring raceway surface and inner ring raceway surface and the projections of the rolling element It is possible to suppress damage to the surface of the rolling portion of the rolling element due to contact with the roller. Thereby, the long life of the rolling bearing can be realized.
 本発明の転がり軸受は、上記の転動装置としての転がり軸受である。当該転がり軸受は、複数の転動体と、複数の転動体の外側において複数の転動体に接触するように配置され、内周面に外輪軌道面を有する外輪と、複数の転動体の内側において複数の転動体に接触するように配置され、外周面に内輪軌道面を有する内輪とを備える。外輪および内輪は第2の転動部品であり、複数の転動体は第1の転動部品である。 The rolling bearing of the present invention is a rolling bearing as the above-described rolling device. The rolling bearing is disposed so as to contact a plurality of rolling elements, a plurality of rolling elements outside the plurality of rolling elements, and an outer ring having an outer ring raceway surface on an inner circumferential surface, and a plurality inside the plurality of rolling elements And an inner ring having an inner ring raceway surface on an outer peripheral surface thereof. The outer ring and the inner ring are second rolling parts, and the plurality of rolling elements are first rolling parts.
 外輪および内輪のそれぞれと転動体との間の潤滑状態が良好でなく油膜形成性が良好でない条件で転がり軸受が使用されても、外輪軌道面と内輪軌道面の微小な突起と転動体の突起との接触による外輪および内輪の転動部の表面の損傷を抑制することができる。これにより、転がり軸受の長寿命を実現することができる。 Even if a rolling bearing is used under the condition that the lubricating state between each of the outer ring and the inner ring and the rolling element is not good and the oil film forming property is not good, minute projections on the outer ring raceway surface and inner ring raceway surface and the projections of the rolling element Damage to the surface of the rolling portion of the outer ring and the inner ring due to contact with Thereby, the long life of the rolling bearing can be realized.
 本発明の転がり軸受は、外輪と複数の転動体のそれぞれとの間の領域、および内輪と複数の転動体のそれぞれとの間の領域における油膜パラメータの値が1.2以下であることが好ましい。 In the rolling bearing of the present invention, it is preferable that the value of the oil film parameter in the region between the outer ring and each of the plurality of rolling elements and in the region between the inner ring and each of the plurality of rolling elements is 1.2 or less .
 上記の突起のなじみという現象は、転動部品の油膜形成性が良好でない油膜パラメータΛが1.2以下の条件において進行する。また油膜パラメータΛが1.2以下の条件において、第1の転動部品の突起による第2の転動部品の表面損傷による寿命低下が起こりやすい。このため油膜パラメータΛが1.2以下の条件であることにより、本来であれば寿命低下が起こりやすい条件において、外輪軌道面および内輪軌道面の微小な突起と転動体の突起との接触による転動体の転動部の表面の損傷を抑制する効果を発揮することができる。したがって、突起のなじみによる転がり軸受の長寿命を実現することができる。 The phenomenon that the above-mentioned projections conform to each other proceeds under the condition that the oil film parameter Λ of 1.2 or less is not good for the oil film forming property of the rolling parts. Further, under the condition that the oil film parameter 以下 is 1.2 or less, the life reduction due to the surface damage of the second rolling component by the projection of the first rolling component is likely to occur. For this reason, when the oil film parameter Λ is 1.2 or less, under the condition that the life reduction is originally likely to occur, the rolling of the outer ring raceway surface and the inner ring raceway surface is caused by the contact between the minute projections The effect of suppressing damage to the surface of the rolling portion of the moving body can be exhibited. Therefore, the long life of the rolling bearing can be realized by the fitting of the projections.
 本発明の転動装置の製造方法においては、まず高炭素クロム軸受鋼からなる第1の転動部品が準備される。第1の転動部品に接触し、高炭素クロム軸受鋼からなる第2の転動部品が準備される。第1の転動部品の転動部の表面の算術平均粗さは、第2の転動部品の転動部の表面の算術平均粗さよりも大きくなるように第1および第2の転動部品が加工される。第2の転動部品の転動部の表面の算術平均粗さは0.07μm以上0.20μm以下となるように第2の転動部品が加工される。このようにすれば、上記のように突起のなじみによる転動装置の長寿命を実現することができる。 In the method of manufacturing a rolling device according to the present invention, first, a first rolling component made of high carbon chromium bearing steel is prepared. In contact with the first rolling part, a second rolling part made of high carbon chromium bearing steel is prepared. Arithmetic mean roughness of the surface of the rolling part of the first rolling part is greater than the arithmetic mean roughness of the surface of the rolling part of the second rolling part Is processed. The second rolling component is processed such that the arithmetic mean roughness of the surface of the rolling portion of the second rolling component is not less than 0.07 μm and not more than 0.20 μm. If this is done, it is possible to realize the long life of the rolling device due to the fitting of the projections as described above.
 上記の転動装置の製造方法においては、第1および第2の転動部品は焼入れ処理された後に焼戻し処理されることが好ましい。 In the method of manufacturing a rolling device described above, it is preferable that the first and second rolling parts be tempered and then tempered.
 上記の転動装置の製造方法においては、第1の転動部品は、焼戻し処理の後に化成処理され、化成処理により第1の転動部品の転動部の表面には鉄の酸化物または化合物の少なくともいずれかを含む皮膜が形成されることが好ましい。第1の転動部品の転動部の表面上に皮膜を有さずこれが通常の鋼により形成される場合に比べて、転動による突起のなじみが促進される。 In the above manufacturing method of the rolling device, the first rolling component is subjected to chemical conversion treatment after tempering treatment, and an oxide or compound of iron on the surface of the rolling portion of the first rolling component by chemical conversion treatment It is preferable that a film containing at least one of the above is formed. Compared with the case where it does not have a film on the surface of the rolling portion of the first rolling part and this is formed of ordinary steel, the conformity of the projections due to rolling is promoted.
 上記の転動装置の製造方法においては、第1の転動部品は第2の転動部品よりも高温および/または長時間の加熱条件により焼戻し処理されることが好ましい。すなわち第1の転動部品は第2の転動部品よりも高温でありかつ長時間の加熱条件により焼戻し処理されてもよい。このように第1および第2の転動部品の焼入れ処理の後になされる焼戻し処理の条件が調整される。このように調整されることにより、第1の転動部品の転動部のロックウェル硬度は、第2の転動部品の転動部のロックウェル硬度よりも低く、かつ、第2の転動部品の転動部のロックウェル硬度が61.5HRC以上となるように第1および第2の転動部品が加工される。このようにすれば、第1の転動部品の転動部と第2の転動部品の転動部との硬度の間に上記の関係が成り立たない場合に比べて、第1の転動部品の転動部の表面の微小な粗さ突起が第2の転動部品の転動部の表面に接触することによる、第2の転動部品の転動部の表面における疲労の進行を抑制することができる。第1の転動部品と第2の転動部品との間に上記の硬度差を設けるため、突起のなじみと疲労進行の抑制との2つの効果により、転動装置の長寿命を実現することができる。 In the above manufacturing method of the rolling device, it is preferable that the first rolling component is tempered by the heating condition of high temperature and / or long time than the second rolling component. That is, the first rolling component may be tempered at a higher temperature than the second rolling component and under a long-time heating condition. Thus, the conditions of the tempering treatment performed after the quenching treatment of the first and second rolling parts are adjusted. By adjusting in this manner, the Rockwell hardness of the rolling portion of the first rolling component is lower than the Rockwell hardness of the rolling portion of the second rolling component, and the second rolling is performed. The first and second rolling parts are processed such that the Rockwell hardness of the rolling parts of the parts is 61.5 HRC or more. In this way, the first rolling component is compared to the case where the above-mentioned relationship does not hold between the hardness of the rolling portion of the first rolling component and the rolling portion of the second rolling component. The minute roughness projections on the surface of the rolling portion of the second embodiment inhibit the progress of fatigue on the surface of the rolling portion of the second rolling component due to contact with the surface of the rolling portion of the second rolling component be able to. In order to provide the above-mentioned difference in hardness between the first rolling part and the second rolling part, the long life of the rolling device can be realized by the two effects of fitting of projections and suppression of fatigue progress. Can.
 上記の転動装置の製造方法において、第1の転動部品の転動部のロックウェル硬度は第2の転動部品の転動部のロックウェル硬度より0.5HRC以上低いことが好ましい。またここで第1の転動部品の転動部および第2の転動部品の転動部とは、それぞれ第1の転動部品の転動部の表面および第2の転動部品の転動部の表面を含んでいる。 In the above manufacturing method of the rolling device, it is preferable that the Rockwell hardness of the rolling portion of the first rolling component is lower by 0.5 HRC or more than the Rockwell hardness of the rolling portion of the second rolling component. Here, the rolling part of the first rolling part and the rolling part of the second rolling part are respectively the surface of the rolling part of the first rolling part and the rolling of the second rolling part Includes the surface of the part.
 上記の転動装置の製造方法においては、第1の転動部品の転動部の表面には、超仕上げ加工、バレル研磨加工、およびバニシング加工のいずれもなされなくてもよい。つまりこれらの加工を行なわなくても、転動部の表面粗さを表面損傷が起きない程度まで十分に小さくすることができる。 In the method of manufacturing a rolling device described above, the surface of the rolling portion of the first rolling part may not be subjected to any of superfinishing, barrel polishing and burnishing. That is, even without these processes, the surface roughness of the rolling portion can be made sufficiently small to the extent that surface damage does not occur.
 上記の転動装置の製造方法においては、第1の転動部品の転動部の表面の算術平均粗さは0.70μm以下となるように第1の転動部品が加工される。また第2の転動部品の転動部の表面の二乗平均平方根傾斜は0.074以上0.100以下となるように第2の転動部品が加工される。これにより、上記と同様に、第1の転動部品の転動部の表面の突起のなじみによりその突起の傾斜を小さくすることができ、第2の転動部品の表面の損傷を抑制することができる。 In the method of manufacturing the rolling device described above, the first rolling component is processed such that the arithmetic mean roughness of the surface of the rolling portion of the first rolling component is 0.70 μm or less. Further, the second rolling component is processed so that the root mean square inclination of the surface of the rolling portion of the second rolling component is 0.074 or more and 0.100 or less. Thereby, the inclination of the projection can be reduced by the familiarity of the projection on the surface of the rolling portion of the first rolling component as described above, and the damage to the surface of the second rolling component can be suppressed. Can.
 本発明の転動装置は、高炭素クロム軸受鋼からなる第1の転動部品と、第1の転動部品に接触し、高炭素クロム軸受鋼からなる第2の転動部品とを備えている。第1の転動部品の転動部の表面のロックウェル硬度は、第2の転動部品の転動部の表面のロックウェル硬度よりも低い。第1の転動部品の転動部の表面の算術平均粗さ(Ra)は、第2の転動部品の転動部の表面の算術平均粗さよりも大きい。第2の転動部品の転動部の表面の算術平均粗さは0.07μm以上0.10μm以下であり、第2の転動部品の転動部の表面の二乗平均平方根傾斜(RΔq)は0.07以上0.10以下である。 The rolling device according to the present invention comprises a first rolling part made of high carbon chromium bearing steel and a second rolling part in contact with the first rolling part and made of high carbon chromium bearing steel There is. The Rockwell hardness of the surface of the rolling portion of the first rolling component is lower than the Rockwell hardness of the surface of the rolling portion of the second rolling component. The arithmetic mean roughness (Ra) of the surface of the rolling portion of the first rolling component is larger than the arithmetic mean roughness of the surface of the rolling portion of the second rolling component. The arithmetic mean roughness of the surface of the rolling portion of the second rolling component is 0.07 μm or more and 0.10 μm or less, and the root mean square slope (RΔq) of the surface of the rolling portion of the second rolling component is It is 0.07 or more and 0.10 or less.
 このようにすれば、第1の転動部品の転動部の表面に存在する微細な突起が第2の転動部品の転動部の表面と接触することにより、第1の転動部品の微細な突起は摩擦や塑性変形によってその形状が滑らかになり、その突起の傾斜角度(または突起の先端の曲率)が小さくなるように変形する。このような現象を本明細書においては突起のなじみと表現する。このため第1および第2の転動部品の転動部の表面における突起同士が接触する部分の局所面圧が低下する。したがって、第1および第2の転動部品の転動部の突起同士の接触による第2の転動部品の転動部の表面の損傷を抑制することができる。これにより第2の転動部品の転動部の表面の損傷による転動装置の寿命低下を抑制することができ、転動装置の長寿命を実現することができる。 In this way, the fine projections present on the surface of the rolling portion of the first rolling component come into contact with the surface of the rolling portion of the second rolling component, whereby the first rolling component is The fine projections are smoothed by friction or plastic deformation so that the inclination angle of the projections (or the curvature of the tip of the projections) is reduced. Such a phenomenon is referred to herein as the familiarity of the protrusion. For this reason, the local surface pressure of the part which protrusion in the surface of the rolling part of the 1st and 2nd rolling parts contacts is reduced. Therefore, damage to the surface of the rolling portion of the second rolling component due to the contact between the protrusions of the rolling portions of the first and second rolling components can be suppressed. Thereby, the life reduction of the rolling device due to the damage of the surface of the rolling portion of the second rolling component can be suppressed, and the long life of the rolling device can be realized.
 上記の転動装置においては、第1の転動部品の転動部の表面のロックウェル硬度は、前記第2の転動部品の転動部の表面のロックウェル硬度よりも0.5HRC以上低いことが好ましい。このようにすれば、第1の転動部品の転動部の表面の突起のなじみによりその突起の傾斜角度を小さくすることができ、第2の転動部の表面の損傷を抑制することができる。 In the above rolling device, the Rockwell hardness of the surface of the rolling portion of the first rolling component is 0.5 HRC or more lower than the Rockwell hardness of the surface of the rolling portion of the second rolling component Is preferred. In this way, the inclination angle of the projection can be reduced by the familiarity of the projection on the surface of the rolling portion of the first rolling component, and the damage to the surface of the second rolling portion can be suppressed. it can.
 本発明の転がり軸受は、上記の転動装置としての転がり軸受である。当該転がり軸受は、複数の転動体と、複数の転動体の外側において複数の転動体に接触するように配置され、内周面に外輪軌道面を有する外輪と、複数の転動体の内側において複数の転動体に接触するように配置され、外周面に内輪軌道面を有する内輪とを備える。外輪および内輪は第1の転動部品であり、複数の転動体は第2の転動部品である。 The rolling bearing of the present invention is a rolling bearing as the above-described rolling device. The rolling bearing is disposed so as to contact a plurality of rolling elements, a plurality of rolling elements outside the plurality of rolling elements, and an outer ring having an outer ring raceway surface on an inner circumferential surface, and a plurality inside the plurality of rolling elements And an inner ring having an inner ring raceway surface on an outer peripheral surface thereof. The outer ring and the inner ring are first rolling parts, and the plurality of rolling elements are second rolling parts.
 外輪および内輪のそれぞれと転動体との間の潤滑状態が良好でなく油膜形成性が良好でない条件で転がり軸受が使用されても、外輪軌道面と内輪軌道面の微小な突起と転動体の突起との接触による転動体の転動部の表面の損傷を抑制することができる。これにより、転がり軸受の長寿命を実現することができる。 Even if a rolling bearing is used under the condition that the lubricating state between each of the outer ring and the inner ring and the rolling element is not good and the oil film forming property is not good, minute projections on the outer ring raceway surface and inner ring raceway surface and the projections of the rolling element It is possible to suppress damage to the surface of the rolling portion of the rolling element due to contact with the roller. Thereby, the long life of the rolling bearing can be realized.
 本発明の転がり軸受は、上記の転動装置としての転がり軸受である。当該転がり軸受は、複数の転動体と、複数の転動体の外側において複数の転動体に接触するように配置され、内周面に外輪軌道面を有する外輪と、複数の転動体の内側において複数の転動体に接触するように配置され、外周面に内輪軌道面を有する内輪とを備える。外輪および内輪は第2の転動部品であり、複数の転動体は第1の転動部品である。 The rolling bearing of the present invention is a rolling bearing as the above-described rolling device. The rolling bearing is disposed so as to contact a plurality of rolling elements, a plurality of rolling elements outside the plurality of rolling elements, and an outer ring having an outer ring raceway surface on an inner circumferential surface, and a plurality inside the plurality of rolling elements And an inner ring having an inner ring raceway surface on an outer peripheral surface thereof. The outer ring and the inner ring are second rolling parts, and the plurality of rolling elements are first rolling parts.
 外輪および内輪のそれぞれと転動体との間の潤滑状態が良好でなく油膜形成性が良好でない条件で転がり軸受が使用されても、外輪軌道面と内輪軌道面の微小な突起と転動体の突起との接触による外輪および内輪の転動部の表面の損傷を抑制することができる。これにより、転がり軸受の長寿命を実現することができる。 Even if a rolling bearing is used under the condition that the lubricating state between each of the outer ring and the inner ring and the rolling element is not good and the oil film forming property is not good, minute projections on the outer ring raceway surface and inner ring raceway surface and the projections of the rolling element It is possible to suppress damage to the surface of the rolling portion of the outer ring and the inner ring due to contact with the inner ring. Thereby, the long life of the rolling bearing can be realized.
 本発明の転がり軸受は、外輪と複数の転動体のそれぞれとの間の領域、および内輪と複数の転動体のそれぞれとの間の領域における油膜パラメータの値が1.2以下であることが好ましい。 In the rolling bearing of the present invention, it is preferable that the value of the oil film parameter in the region between the outer ring and each of the plurality of rolling elements and in the region between the inner ring and each of the plurality of rolling elements is 1.2 or less .
 上記の突起のなじみという現象は、転動部品の油膜形成性が良好でない油膜パラメータΛが1.2以下の条件において進行する。また油膜パラメータΛが1.2以下の条件において、第1の転動部品の突起による第2の転動部品の表面損傷による寿命低下が起こりやすい。このため油膜パラメータΛが1.2以下の条件であることにより、本来であれば寿命低下が起こりやすい条件において、外輪軌道面および内輪軌道面の微小な突起と転動体の突起との接触による転動体の転動部の表面の損傷を抑制する効果を発揮することができる。したがって、突起のなじみによる転がり軸受の長寿命を実現することができる。 The phenomenon that the above-mentioned projections conform to each other proceeds under the condition that the oil film parameter Λ of 1.2 or less is not good for the oil film forming property of the rolling parts. Further, under the condition that the oil film parameter 以下 is 1.2 or less, the life reduction due to the surface damage of the second rolling component by the projection of the first rolling component is likely to occur. For this reason, when the oil film parameter Λ is 1.2 or less, under the condition that the life reduction is originally likely to occur, the rolling of the outer ring raceway surface and the inner ring raceway surface is caused by the contact between the minute projections The effect of suppressing damage to the surface of the rolling portion of the moving body can be exhibited. Therefore, the long life of the rolling bearing can be realized by the fitting of the projections.
 本発明の転動装置の製造方法においては、まず高炭素クロム軸受鋼からなる第1の転動部品が準備される。第1の転動部品に接触し、高炭素クロム軸受鋼からなる第2の転動部品が準備される。第1の転動部品の転動部の表面のロックウェル硬度は、第2の転動部品の転動部の表面のロックウェル硬度よりも低くなるように第1および第2の転動部品が加工される。第1の転動部品の転動部の表面の算術平均粗さは、第2の転動部品の転動部の表面の算術平均粗さよりも大きくなるように第1および第2の転動部品が加工される。第2の転動部品の転動部の表面の算術平均粗さは0.07μm以上0.10μm以下となり、第2の転動部品の転動部の表面の二乗平均平方根傾斜は0.07以上0.10以下となるように第2の転動部品が加工される。このようにすれば、上記のように転動装置の長寿命を実現することができる。 In the method of manufacturing a rolling device according to the present invention, first, a first rolling component made of high carbon chromium bearing steel is prepared. In contact with the first rolling part, a second rolling part made of high carbon chromium bearing steel is prepared. The first and second rolling parts are configured such that the Rockwell hardness of the surface of the rolling portion of the first rolling part is lower than the Rockwell hardness of the surface of the rolling portion of the second rolling part It is processed. Arithmetic mean roughness of the surface of the rolling part of the first rolling part is greater than the arithmetic mean roughness of the surface of the rolling part of the second rolling part Is processed. The arithmetic mean roughness of the surface of the rolling portion of the second rolling component is 0.07 μm or more and 0.10 μm or less, and the root mean square inclination of the surface of the rolling portion of the second rolling component is 0.07 or more The second rolling component is processed to be 0.10 or less. In this way, the long life of the rolling device can be realized as described above.
 上記の転動装置の製造方法においては、第1および第2の転動部品は焼入れ処理された後に焼戻し処理されることが好ましい。これは転がり軸受の機能を満たすために必要な処理である。 In the method of manufacturing a rolling device described above, it is preferable that the first and second rolling parts be tempered and then tempered. This is a process necessary to fulfill the function of the rolling bearing.
 上記の転動装置の製造方法においては、第1の転動部品の転動部の表面は、回転砥石を用いた研削または研磨加工により仕上げられている。言い換えれば、第1の転動部品の転動部の表面には、超仕上げ加工、バレル研磨加工、およびバニシング加工のいずれもなされなくてもよい。つまりこれらの加工を行なわなくても、転動部の表面粗さを表面損傷が起きない程度まで十分に小さくすることができる。 In the method of manufacturing a rolling device described above, the surface of the rolling portion of the first rolling component is finished by grinding or polishing using a rotary grindstone. In other words, the surface of the rolling portion of the first rolling component may not be subjected to any of superfinishing, barrel polishing and burnishing. That is, even without these processes, the surface roughness of the rolling portion can be made sufficiently small to the extent that surface damage does not occur.
 本発明によれば、転動部品の転動部の表面の微細な突起がなじみ、それらの突起同士が接触する部分の局所面圧が低下することにより、転動部品の転動部の表面の損傷およびこれに伴う寿命低下を抑制することができる。 According to the present invention, the minute projections on the surface of the rolling portion of the rolling part conform to each other, and the local surface pressure of the portion where the projections contact with each other is reduced, whereby the surface of the rolling portion of the rolling part It is possible to suppress the damage and the decrease in life associated therewith.
本実施の形態における深溝玉軸受の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the deep groove ball bearing in this Embodiment. 図1中の鎖線で囲まれた領域IIの構成を示す概略拡大断面図である。It is a schematic expanded sectional view which shows the structure of area | region II enclosed with the chain line in FIG. 本実施の形態における転動装置に含まれる第1および第2の転動部品の製造方法を概略的に示すフローチャートである。It is a flowchart which shows roughly the manufacturing method of the 1st and 2nd rolling parts contained in the rolling device in this Embodiment. 実施の形態1,2における第1の転動部品の処理工程を示すフローチャート(A)と、各実施の形態の第2の転動部品の処理工程を示すフローチャート(B)とである。It is a flowchart (A) which shows the process process of the 1st rolling part in Embodiment 1, 2, and a flowchart (B) which shows the process process of the 2nd rolling part of each embodiment. 本実施例における二円筒試験機の構成を示す概略図である。It is the schematic which shows the structure of the 2 cylindrical testing machine in a present Example. 実施例1における本実施の形態の比較例の条件による試験片の転動部の表面の、耐ピーリング性能評価試験後の顕微鏡拡大写真(A)と、本実施の形態の条件による試験片の転動部の表面の、耐ピーリング性能評価試験後の顕微鏡拡大写真(B)とである。A microscopic enlarged photograph (A) after peeling resistance performance evaluation test of the surface of the rolling portion of the test piece under the conditions of the comparative example of the present embodiment in Example 1 and the rotation of the test piece under the conditions of the present embodiment It is with a microscope enlarged photograph (B) after the peeling performance evaluation test of the surface of a moving part. 実施例1における本実施の形態の比較例の条件による試験片の転動部の表面の、耐ピーリング性能評価試験後の3次元形状(A)と、本実施の形態の条件による試験片の転動部の表面の、耐ピーリング性能評価試験後の3次元形状(B)とである。Three-dimensional shape (A) of the surface of the rolling portion of the test piece under the conditions of the comparative example of the present embodiment in Example 1 after the peeling resistance evaluation test and the rotation of the test piece under the conditions of the present embodiment It is with the three-dimensional shape (B) after the peeling performance evaluation test of the surface of a moving part. 実施例2における各試験例の条件による試験片の転動部の表面の、耐ピーリング性能評価試験後の顕微鏡拡大写真である。It is a microscope enlarged photograph after the peeling performance evaluation test of the surface of the rolling part of the test piece by the conditions of each test example in Example 2. FIG. 本実施の形態における円錐ころ軸受の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the tapered roller bearing in this Embodiment. 本実施の形態における円筒ころ軸受の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the cylindrical roller bearing in this Embodiment. 実施の形態3,4における第1の転動部品の処理工程を示すフローチャートである。It is a flowchart which shows the processing process of the 1st rolling part in Embodiment 3, 4. 本実施の形態の比較例の条件による試験片の転動部の表面の、耐ピーリング性能評価試験後の顕微鏡拡大写真と、本実施の形態の実施例の条件による試験片の転動部の表面の、耐ピーリング性能評価試験後の顕微鏡拡大写真とである。On the surface of the rolling portion of the test piece according to the conditions of the comparative example of the present embodiment, a microscopic enlarged photograph after the peeling resistance evaluation test and the surface of the rolling portion of the test piece according to the conditions of the example of the present embodiment It is with the microscope enlarged photograph after the peeling performance evaluation test.
 以下、図面を参照して、本実施の形態について説明する。
 (実施の形態1)
 まず図1および図2を用いて、本実施の形態の転動装置の一例としての転がり軸受の構成について説明する。なおここでは、転がり軸受の一例として深溝玉軸受について説明するが、深溝玉軸受以外の種類の転がり軸受についても以下と同様に本実施の形態を適用可能である。
Hereinafter, the present embodiment will be described with reference to the drawings.
Embodiment 1
First, the configuration of a rolling bearing as an example of the rolling device according to the present embodiment will be described with reference to FIGS. 1 and 2. Although a deep groove ball bearing is described here as an example of a rolling bearing, the present embodiment can also be applied to rolling bearings of types other than deep groove ball bearings in the same manner as described below.
 図1を参照して、本実施の形態の深溝玉軸受1は、環状の外輪11と、中心線Cに関して外輪11の内側に配置された環状の内輪12と、外輪11と内輪12との間に配置された転動体としての複数の玉13と、外輪11、内輪12および複数の玉13を保持する円環状の保持器14とを有している。 Referring to FIG. 1, deep groove ball bearing 1 of the present embodiment includes an annular outer ring 11, an annular inner ring 12 disposed on the inner side of outer ring 11 with respect to center line C, an outer ring 11 and an inner ring 12. , And an annular cage 14 for holding the outer ring 11, the inner ring 12 and the plurality of balls 13. As shown in FIG.
 外輪11は、複数の玉13の外側において複数の玉13に接触するように配置されている。外輪11は、中心線Cに関する内側に形成される内周面に、外輪軌道面11Aを有している。内輪12は、複数の玉13の内側において複数の玉13に接触するように配置されている。内輪12は、中心線Cに関する外側に形成される外周面に、内輪軌道面12Aを有している。外輪軌道面11Aと内輪軌道面12Aとが互いに対向するように、外輪11と内輪12とが配置されている。 The outer ring 11 is disposed to be in contact with the plurality of balls 13 outside the plurality of balls 13. The outer ring 11 has an outer ring raceway surface 11A on the inner circumferential surface formed on the inner side with respect to the center line C. The inner ring 12 is disposed to contact the plurality of balls 13 inside the plurality of balls 13. The inner race 12 has an inner raceway surface 12A on the outer peripheral surface formed on the outer side with respect to the center line C. The outer ring 11 and the inner ring 12 are disposed such that the outer ring raceway surface 11A and the inner ring raceway surface 12A face each other.
 複数の玉13は球形を有し、その表面に玉転動面13Aを有している。言い換えれば複数の玉13のそれぞれはその表面全体が玉転動面13Aである。複数の玉13は外輪軌道面11Aと内輪軌道面12Aとの間で転動するように構成されている。複数の玉13は玉転動面13Aにおいて、外輪軌道面11Aおよび内輪軌道面12Aに接触し、かつ保持器14により周方向にある間隔のピッチを有するように複数並んで配置される。これにより複数の玉13のそれぞれは、円環状の軌道上に転動自在に保持されている。以上の構成により、深溝玉軸受1の外輪11および内輪12は、互いに相対的に回転可能となっている。 The plurality of balls 13 have a spherical shape, and have a ball rolling surface 13A on the surface thereof. In other words, the entire surface of each of the plurality of balls 13 is the ball rolling surface 13A. The plurality of balls 13 are configured to roll between the outer ring raceway surface 11A and the inner ring raceway surface 12A. A plurality of balls 13 are arranged side by side so as to be in contact with the outer ring raceway surface 11A and the inner ring raceway surface 12A in the ball rolling surface 13A and to have a pitch of an interval in the circumferential direction by the cage 14. As a result, each of the plurality of balls 13 is rollably held on the annular path. By the above configuration, the outer ring 11 and the inner ring 12 of the deep groove ball bearing 1 can rotate relative to each other.
 外輪11および内輪12に挟まれる空間、より具体的には外輪軌道面11Aおよび内輪軌道面12Aに挟まれる空間である軌道空間には、図示しないグリース組成物が封入されている。このグリース組成物により外輪11および内輪12の各々と玉13との間に油膜が形成されており、外輪11および内輪12の各々と玉13との間の潤滑状態が良好に保たれている。また外輪11と複数の玉13のそれぞれとの間の領域、および内輪12と複数の玉13のそれぞれとの間の領域における油膜パラメータΛの値が1.2以下となっている。 A grease composition (not shown) is enclosed in a space sandwiched by the outer ring 11 and the inner ring 12, more specifically, a space defined by the outer ring raceway surface 11A and the inner ring raceway surface 12A. An oil film is formed between each of the outer ring 11 and the inner ring 12 and the ball 13 by this grease composition, and the lubricating state between each of the outer ring 11 and the inner ring 12 and the ball 13 is well maintained. Further, the value of the oil film parameter Λ in the region between the outer ring 11 and each of the plurality of balls 13 and in the region between each of the inner ring 12 and each of the plurality of balls 13 is 1.2 or less.
 図2を参照して、深溝玉軸受1を構成する転動部品としての外輪11、内輪12および玉13について説明する。第1の転動部品としての外輪11および内輪12のそれぞれに第2の転動部品としての玉13が接触している。外輪11、内輪12および玉13のいずれも高炭素クロム軸受鋼である、たとえばJIS規格SUJ2からなっている。 With reference to FIG. 2, an outer ring 11, an inner ring 12 and a ball 13 as rolling parts constituting the deep groove ball bearing 1 will be described. A ball 13 as a second rolling part is in contact with each of the outer ring 11 and the inner ring 12 as a first rolling part. Each of the outer ring 11, the inner ring 12 and the ball 13 is a high carbon chromium bearing steel, for example, made of JIS standard SUJ2.
 本実施の形態においては、外輪11の転動部は外輪軌道面11Aを含む領域であって、外輪11の転動部の表面が外輪軌道面11Aを構成している。また内輪12の転動部は内輪軌道面12Aを含む領域であって、内輪12の転動部の表面が内輪軌道面12Aを構成している。玉13の転動部は玉転動面13Aを含む領域であって、玉13の転動部の表面が玉転動面13Aを構成している。 In the present embodiment, the rolling portion of the outer ring 11 is a region including the outer ring raceway surface 11A, and the surface of the rolling portion of the outer ring 11 constitutes the outer ring raceway surface 11A. The rolling portion of the inner ring 12 is a region including the inner ring raceway surface 12A, and the surface of the rolling portion of the inner ring 12 constitutes the inner ring raceway surface 12A. The rolling portion of the ball 13 is a region including the ball rolling surface 13A, and the surface of the rolling portion of the ball 13 constitutes the ball rolling surface 13A.
 本実施の形態においては、外輪軌道面11Aおよび内輪軌道面12Aの算術平均粗さ(Ra)は、玉転動面13Aの算術平均粗さよりも大きく、具体的には、外輪軌道面11Aおよび内輪軌道面12Aの算術平均粗さは0.70μm以下であり、玉転動面13Aの算術平均粗さは0.07μm以上0.20μm以下である。また玉転動面13Aの二乗平均平方根傾斜(RΔq)は0.074以上0.100以下である。 In the present embodiment, the arithmetic mean roughness (Ra) of the outer ring raceway surface 11A and the inner ring raceway surface 12A is larger than the arithmetic mean roughness of the ball rolling surface 13A, and specifically, the outer ring raceway surface 11A and the inner ring The arithmetic mean roughness of the raceway surface 12A is 0.70 μm or less, and the arithmetic mean roughness of the ball rolling surface 13A is 0.07 μm or more and 0.20 μm or less. Further, the root mean square inclination (RΔq) of the ball rolling surface 13A is not less than 0.074 and not more than 0.100.
 また本実施の形態においては、第1の転動部品の転動部の表面すなわち外輪軌道面11Aおよび内輪軌道面12Aのロックウェル硬度(HRC)は、第2の転動部品の転動部の表面すなわち玉転動面13Aのロックウェル硬度よりも0.5HRC以上低い。また、玉転動面13Aのロックウェル硬度は61.5HRC以上である。 Further, in the present embodiment, the Rockwell hardness (HRC) of the surface of the rolling portion of the first rolling component, that is, the outer ring raceway surface 11A and the inner ring raceway surface 12A is the same as that of the rolling portion of the second rolling component. It is lower by 0.5 HRC or more than the Rockwell hardness of the surface, that is, the ball rolling surface 13A. Further, the Rockwell hardness of the ball rolling surface 13A is 61.5 HRC or more.
 そして外輪11の転動部の表面上には皮膜11Bが形成されている。そして内輪12の転動部の表面上には皮膜12Bが形成されている。この皮膜11B,12Bは鉄の酸化物または化合物の少なくともいずれかを含み、特にここでは四三酸化鉄を含んでいることが好ましい。つまり、外輪11の転動部の表面に形成された皮膜11Bおよび内輪12の転動部の表面に形成された皮膜12Bのそれぞれは黒染加工により形成されていることが好ましい。 A film 11 B is formed on the surface of the rolling portion of the outer ring 11. A film 12 B is formed on the surface of the rolling portion of the inner ring 12. It is preferable that the films 11B and 12B contain at least one of an oxide or a compound of iron, and particularly preferably contain iron trioxide. That is, it is preferable that each of the film 11B formed on the surface of the rolling portion of the outer ring 11 and the film 12B formed on the surface of the rolling portion of the inner ring 12 be formed by black dyeing.
 次に図3および図4を用いて、以上の外輪11、内輪12および玉13のそれぞれの加工方法について説明する。 Next, each processing method of the above-mentioned outer ring 11, inner ring 12, and ball 13 is explained using FIG. 3 and FIG.
 図3を参照して、JIS規格SUJ2からなる第1の転動部品としての外輪11および内輪12が準備される(S01)。またJIS規格SUJ2からなる第2の転動部品としての玉13が準備される(S02)。 Referring to FIG. 3, an outer ring 11 and an inner ring 12 are prepared as first rolling parts made of JIS standard SUJ2 (S01). Further, a ball 13 as a second rolling part made of JIS standard SUJ2 is prepared (S02).
 図4(A)を参照して、第1の転動部品としての外輪11および内輪12については、材料であるJIS規格SUJ2が焼入れ処理(S11)された後に焼戻し処理(S12)される。その後、外輪11の外輪軌道面11Aおよび内輪12の内輪軌道面12Aの算術平均粗さは、玉13の玉転動面13Aの算術平均粗さよりも大きくなるように加工される。具体的には、外輪軌道面11Aおよび内輪軌道面12Aの算術平均粗さは0.70μm以下に加工される(S13)。この後さらに化成処理(S14)がなされる。この化成処理により、外輪11の転動部の表面となる外輪軌道面11Aおよび内輪12の転動部の表面となる内輪軌道面12Aに、鉄の酸化物および化合物の少なくともいずれかの皮膜11B,12Bが形成される。 Referring to FIG. 4 (A), with respect to the outer ring 11 and the inner ring 12 as the first rolling parts, the JIS standard SUJ2 as the material is subjected to hardening treatment (S11) and then to tempering treatment (S12). Thereafter, the arithmetic mean roughness of the outer ring raceway surface 11A of the outer ring 11 and the inner ring raceway surface 12A of the inner ring 12 is processed to be larger than the arithmetic mean roughness of the ball rolling surface 13A of the ball 13. Specifically, the arithmetic mean roughness of the outer ring raceway surface 11A and the inner ring raceway surface 12A is machined to 0.70 μm or less (S13). After this, chemical conversion treatment (S14) is performed. The outer ring raceway surface 11A which is the surface of the rolling portion of the outer ring 11 and the inner ring raceway surface 12A which is the surface of the rolling portion of the inner ring 12 by this chemical conversion treatment is a coating 11B of at least one of iron oxide and compound 12B is formed.
 図4(B)を参照して、第2の転動部品としての玉13については、材料であるJIS規格SUJ2が焼入れ処理(S21)された後に焼戻し処理(S22)され、その後玉13の玉転動面13Aの算術平均粗さは、外輪11の外輪軌道面11Aおよび内輪12の内輪軌道面12Aの算術平均粗さよりも小さくなるように加工される。具体的には、玉転動面13Aの算術平均粗さが0.07μm以上0.20μm以下であり、かつ、玉転動面13Aの二乗平均平方根傾斜(RΔq)が0.074以上0.100以下となるように加工される(S23)。その後の化成処理はなされない。 Referring to FIG. 4B, with regard to the ball 13 as the second rolling part, the material is subjected to a hardening treatment (S21) and then a tempering treatment (S22) as a material JIS standard SUJ2 which is a material, The arithmetic mean roughness of the rolling surface 13A is smaller than the arithmetic mean roughness of the outer ring raceway surface 11A of the outer ring 11 and the inner ring raceway surface 12A of the inner ring 12. Specifically, the arithmetic average roughness of the ball rolling surface 13A is 0.07 μm or more and 0.20 μm or less, and the root mean square inclination (RΔq) of the ball rolling surface 13A is 0.074 or more and 0.100 It processes so that it may become the following (S23). No subsequent conversion treatment is performed.
 ここで、外輪11および内輪12の焼戻し処理(S12)と玉13の焼戻し処理(S22)との条件を比較すると、焼戻し処理(S12)の方が焼戻し処理(S22)よりも高温および/または長時間の加熱条件により焼戻し処理される。すなわち焼戻し処理(S12)の方が焼戻し処理(S22)よりも高温でありかつ長時間の加熱条件により焼戻し処理されてもよいし、焼戻し処理(S12)の方が焼戻し処理(S22)よりも高温であるが長時間ではない条件、または高温ではないが長時間の条件により焼戻し処理されてもよい。 Here, comparing the conditions of the tempering treatment (S12) of the outer ring 11 and the inner ring 12 and the tempering treatment (S22) of the balls 13, the tempering treatment (S12) is higher in temperature and / or longer than the tempering treatment (S22). It is tempered according to the heating condition of time. That is, the tempering treatment (S12) may be a higher temperature than the tempering treatment (S22) and may be tempered under a long heating condition, and the tempering treatment (S12) may be a high temperature than the tempering treatment (S22) However, tempering may be performed under conditions that are not for a long time, or conditions that are not high temperature but for a long time.
 焼戻し処理の条件の調整により、外輪軌道面11Aおよび内輪軌道面12Aのロックウェル硬度は、玉転動面13Aのロックウェル硬度よりも低く、かつ、玉転動面13Aのロックウェル硬度が61.5HRC以上となるように、外輪11、内輪12および玉13が加工される。 By adjusting the conditions of the tempering treatment, the Rockwell hardness of the outer ring raceway surface 11A and the inner ring raceway surface 12A is lower than the Rockwell hardness of the ball rolling surface 13A, and the Rockwell hardness of the ball rolling surface 13A is 61. The outer ring 11, the inner ring 12 and the ball 13 are processed so as to be 5 HRC or more.
 次に、本実施の形態の作用効果について説明する。
 本実施の形態の深溝玉軸受1は、外輪11の転動部の表面としての外輪軌道面11Aおよび内輪12の転動部の表面としての内輪軌道面12Aの算術平均粗さが、玉13の転動部の表面としての玉転動面13Aの算術平均粗さよりも大きくなっている。具体的には、外輪軌道面11Aおよび内輪軌道面12Aの算術平均粗さは0.70μm以下であり、玉転動面13Aの算術平均粗さは0.07μm以上0.20μm以下である。また玉転動面13Aの二乗平均平方根傾斜は0.074以上0.100以下である。具体的な算術平均粗さなどを上記の数値範囲の組み合わせとすることにより、たとえば玉転動面13Aの算術平均粗さの値が0.07μm未満の場合に比べて、算術平均粗さの値が玉転動面13Aより大きい外輪軌道面11Aおよび内輪軌道面12Aに多数含まれる微小な突起がなじみやすくなる。また、外輪11および内輪12の各々の転動部の表面上に化成処理により鉄の酸化物および化合物の少なくともいずれかを含む皮膜11B,12Bが形成されている。このため、外輪軌道面11Aおよび内輪軌道面12Aは化成処理を行なわない場合に比べて脆い性質に変化しており、このため外輪軌道面11Aおよび内輪軌道面12Aの粗さをさらに微小な突起がなじみやすいようにすることができる。
Next, the operation and effect of the present embodiment will be described.
In the deep groove ball bearing 1 of the present embodiment, the arithmetic average roughness of the outer ring raceway surface 11A as the surface of the rolling portion of the outer ring 11 and the inner ring raceway surface 12A as the surface of the rolling portion of the inner ring 12 It is larger than the arithmetic mean roughness of the ball rolling surface 13A as the surface of the rolling portion. Specifically, the arithmetic average roughness of the outer ring raceway surface 11A and the inner ring raceway surface 12A is 0.70 μm or less, and the arithmetic average roughness of the ball rolling surface 13A is 0.07 μm or more and 0.20 μm or less. Further, the root mean square inclination of the ball rolling surface 13A is not less than 0.074 and not more than 0.100. By setting the specific arithmetic average roughness and the like as a combination of the above numerical ranges, the value of the arithmetic average roughness is smaller than, for example, the value of the arithmetic average roughness of the ball rolling surface 13A is less than 0.07 μm. The minute projections included in a large number on the outer ring raceway surface 11A and the inner ring raceway surface 12A, which are larger than the ball rolling surface 13A, are easily fitted. In addition, on the surface of the rolling portion of each of the outer ring 11 and the inner ring 12, coatings 11B and 12B containing at least one of an iron oxide and a compound are formed by chemical conversion treatment. For this reason, the outer ring raceway surface 11A and the inner ring raceway surface 12A are changed to a brittle property as compared with the case where the chemical conversion treatment is not performed. Therefore, the roughness of the outer ring raceway surface 11A and the inner ring raceway surface 12A is further reduced It can be made familiar.
 上記2つの作用により、深溝玉軸受1の運転開始から短時間経過後において、外輪軌道面11Aおよび内輪軌道面12Aが玉転動面13Aと接触することにより、外輪軌道面11Aおよび内輪軌道面12Aの微小な突起の傾斜を小さくすることができる。これにより、外輪軌道面11Aおよび内輪軌道面12Aの微小な突起と、この突起に接触する玉転動面13Aの平坦面または微小な突起との局所的な接触面圧が低下する。このため、たとえば外輪軌道面11Aおよび内輪軌道面12Aの微小な突起に起因する玉転動面13Aの損傷の発生を抑制することができる。したがって、たとえば外輪軌道面11Aなどの表面に微小な凹部をランダムに形成してそこへ固体潤滑剤を被覆するなどの方法を用いなくても、玉転動面13Aの損傷による深溝玉軸受1の寿命の低下を抑制することができる。よって、深溝玉軸受1の長寿命を実現することができる。 The outer ring raceway surface 11A and the inner ring raceway surface 12A come into contact with the ball rolling surface 13A after a short time from the start of the operation of the deep groove ball bearing 1 by the above two actions, thereby the outer ring raceway surface 11A and the inner ring raceway surface 12A. The inclination of the minute projections can be reduced. As a result, the local contact surface pressure between the minute projections of the outer ring raceway surface 11A and the inner ring raceway surface 12A and the flat surface or the minute projections of the ball rolling surface 13A in contact with the projections decreases. For this reason, it is possible to suppress the occurrence of damage to ball rolling surface 13A due to, for example, minute projections of outer ring raceway surface 11A and inner ring raceway surface 12A. Therefore, deep groove ball bearing 1 due to damage to ball rolling surface 13A can be obtained, for example, without using a method such as forming minute recesses on the surface such as outer ring raceway surface 11A at random and coating a solid lubricant thereon. It is possible to suppress the reduction of the life. Therefore, the long life of the deep groove ball bearing 1 can be realized.
 また本実施の形態の深溝玉軸受1は、外輪軌道面11A、内輪軌道面12Aのロックウェル硬度は玉転動面13Aのロックウェル硬度よりも相対的に低く調整される。さらに、玉転動面13Aのロックウェル硬度が61.5HRC以上に調整される。このようにすれば、たとえ深溝玉軸受1が外輪11および内輪12と玉13との間の潤滑状態が良好でないために油膜形成性が良好でない条件で使用され、外輪軌道面11Aおよび内輪軌道面12Aの微小な突起が玉転動面13Aに接触しても、玉転動面13Aの損傷または疲労進行を抑制することができる。これにより、深溝玉軸受1のさらなる長寿命を実現することができる。外輪軌道面11Aおよび内輪軌道面12Aは玉転動面13Aよりも高温および/または長時間の加熱条件により焼戻し処理されることにより、外輪軌道面11A、内輪軌道面12Aおよび玉転動面13Aの硬度が上記の条件となるように加工することができる。 Further, in the deep groove ball bearing 1 of the present embodiment, the Rockwell hardness of the outer ring raceway surface 11A and the inner ring raceway surface 12A is adjusted to be relatively lower than the Rockwell hardness of the ball rolling surface 13A. Furthermore, the Rockwell hardness of the ball rolling surface 13A is adjusted to 61.5 HRC or more. In this way, the deep groove ball bearing 1 is used under conditions where the oil film formability is not good because the lubricating state between the outer ring 11 and the inner ring 12 and the ball 13 is not good, and the outer ring raceway surface 11A and the inner ring raceway surface Even if the minute projections 12A come in contact with the ball rolling surface 13A, damage or fatigue of the ball rolling surface 13A can be suppressed. Thereby, the further long life of deep groove ball bearing 1 can be realized. The outer ring raceway surface 11A and the inner ring raceway surface 12A are tempered by heating conditions higher than the ball rolling surface 13A and / or for a long time, whereby the outer ring raceway surface 11A, the inner ring raceway surface 12A and the ball rolling surface 13A are It can process so that hardness may become said conditions.
 さらに本実施の形態の深溝玉軸受1においては、外輪11と複数の玉13のそれぞれとの間の領域、および内輪12と複数の玉13のそれぞれとの間の領域における油膜パラメータΛの値が1.2以下である。油圧パラメータΛの値が1.2以下の条件であれば、外輪11と玉13との微小な粗さ突起同士、および内輪12と玉13との微小な粗さ突起同士の接触頻度が大きくなるため、外輪11および内輪12の転動部の微小な粗さ突起のなじみが起きる。したがって、玉転動面13Aに表面起点型の剥離が起きるために深溝玉軸受1の寿命が低下しやすい条件において、外輪軌道面11Aおよび内輪軌道面12Aの微小な突起との接触による玉転動面13Aの損傷を抑制することができる。これにより、効果的に深溝玉軸受1の長寿命を実現することができる。 Furthermore, in the deep groove ball bearing 1 of the present embodiment, the values of the oil film parameter に お け る in the region between the outer ring 11 and each of the plurality of balls 13 and in the region between each of the inner ring 12 and each of the plurality of balls 13 are 1.2 or less. If the value of the hydraulic pressure parameter が is 1.2 or less, the frequency of contact between the minute roughness projections of the outer ring 11 and the ball 13 and the minute roughness projections of the inner ring 12 and the ball 13 increases. Therefore, the fitting of the minute roughness projections of the rolling portions of the outer ring 11 and the inner ring 12 occurs. Therefore, ball rolling due to contact with the minute projections of the outer ring raceway surface 11A and the inner ring raceway surface 12A under the condition that the life of the deep groove ball bearing 1 is apt to decrease because peeling of the surface start type occurs in the ball rolling surface 13A. Damage to the surface 13A can be suppressed. Thereby, the long life of deep groove ball bearing 1 can be realized effectively.
 以上の手法により玉転動面13Aの損傷が抑制されるため、本実施の形態においては、外輪軌道面11A、内輪軌道面12Aおよび玉転動面13Aに超仕上げ加工、バレル研磨加工、およびバニシング加工のいずれもなされる必要がなくなる。このため深溝玉軸受1の加工工程を簡略化させることができ、そのコストを低減させることができる。 Since damage to ball rolling surface 13A is suppressed by the above method, in the present embodiment, superfinishing, barrel polishing, and burnishing on outer ring raceway surface 11A, inner ring raceway surface 12A and ball rolling surface 13A. There is no need to do any of the processing. For this reason, the processing process of deep groove ball bearing 1 can be simplified, and the cost can be reduced.
 (実施の形態2)
 本実施の形態の深溝玉軸受1は、基本的に実施の形態1の深溝玉軸受1と同一の図面を用いて同様に説明可能であるため詳細な説明を省略する。ただし本実施の形態の深溝玉軸受1は、玉13が第1の転動部品として、外輪11および内輪12が第2の転動部品として、それぞれ配置されている。この点において本実施の形態の深溝玉軸受1は、実施の形態1の深溝玉軸受1と異なっている。
Second Embodiment
The deep groove ball bearing 1 of the present embodiment can be basically described similarly using the same drawing as the deep groove ball bearing 1 of the first embodiment, and therefore detailed description will be omitted. However, in the deep groove ball bearing 1 of the present embodiment, the ball 13 is disposed as a first rolling component, and the outer ring 11 and the inner ring 12 are disposed as a second rolling component. The deep groove ball bearing 1 of the present embodiment is different from the deep groove ball bearing 1 of the first embodiment in this point.
 したがって本実施の形態においては、玉転動面13Aの算術平均粗さが外輪軌道面11Aおよび内輪軌道面12Aの算術平均粗さよりも大きく、玉転動面13Aの算術平均粗さは0.70μm以下、外輪軌道面11Aおよび内輪軌道面12Aの算術平均粗さは0.07μm以上0.20μm以下となっている。また玉13は焼戻し処理の後に化成処理されている。さらに本実施の形態においては、玉転動面13Aのロックウェル硬度(HRC)は外輪軌道面11Aおよび内輪軌道面12Aのロックウェル硬度よりも低く、かつ外輪軌道面11Aおよび内輪軌道面12Aのロックウェル硬度が61.5HRC以上である。玉転動面13Aのロックウェル硬度(HRC)は外輪軌道面11Aおよび内輪軌道面12Aのロックウェル硬度よりも0.5HRC以上低いことが好ましい。 Therefore, in the present embodiment, the arithmetic mean roughness of ball rolling surface 13A is larger than the arithmetic mean roughness of outer raceway surface 11A and inner raceway surface 12A, and the arithmetic mean roughness of ball rolling surface 13A is 0.70 μm. Hereinafter, the arithmetic mean roughness of the outer ring raceway surface 11A and the inner ring raceway surface 12A is not less than 0.07 μm and not more than 0.20 μm. The balls 13 are subjected to chemical conversion treatment after tempering treatment. Furthermore, in the present embodiment, the Rockwell hardness (HRC) of the ball rolling surface 13A is lower than the Rockwell hardness of the outer ring raceway surface 11A and the inner ring raceway surface 12A, and the lock of the outer ring raceway surface 11A and the inner ring raceway surface 12A Well hardness is 61.5 HRC or more. The Rockwell hardness (HRC) of the ball rolling surface 13A is preferably 0.5 HRC or more lower than the Rockwell hardness of the outer ring raceway surface 11A and the inner ring raceway surface 12A.
 本実施の形態においても、基本的に実施の形態1と同様に、この場合は第2の転動部品である外輪軌道面11Aおよび内輪軌道面12Aへの損傷を抑制する効果を高めることができる。 Also in the present embodiment, basically in this case, the effect of suppressing damage to the outer raceway surface 11A and the inner raceway surface 12A, which are the second rolling parts, can be enhanced in the same manner as in the first embodiment. .
 (実施の形態3)
 まず図9および図10を用いて、本実施の形態の転動装置の一例としての転がり軸受の構成について説明する。なおここでは、転がり軸受の一例として円錐ころ軸受および円筒ころ軸受について説明するが、円錐ころ軸受および円筒ころ軸受以外の種類の転がり軸受についても以下と同様に本実施の形態を適用可能である。
Third Embodiment
First, the configuration of a rolling bearing as an example of the rolling device according to the present embodiment will be described with reference to FIGS. 9 and 10. Although a conical roller bearing and a cylindrical roller bearing are described as an example of a rolling bearing here, the present embodiment can be applied to rolling bearings of types other than conical roller bearings and cylindrical roller bearings in the same manner as described below.
 図9を参照して、本実施の形態の円錐ころ軸受102は、環状の外輪120と、中心線Cに関して外輪120の内側に配置された環状の内輪121と、外輪120と内輪121との間に配置された転動体としての複数のころ122と、外輪120、内輪121および複数のころ122を保持する円環状の保持器123とを有している。 Referring to FIG. 9, the tapered roller bearing 102 of the present embodiment includes an annular outer ring 120, an annular inner ring 121 disposed on the inner side of the outer ring 120 with respect to the center line C, an outer ring 120 and an inner ring 121. And an annular retainer 123 for holding the outer ring 120, the inner ring 121, and the plurality of rollers 122. As shown in FIG.
 外輪120は、複数のころ122の外側において複数のころ122に接触するように配置されている。外輪120は、中心線Cに関する内側に形成される内周面に、外輪軌道面120Aを有している。内輪121は、複数のころ122の内側において複数のころ122に接触するように配置されている。内輪121は、中心線Cに関する外側に形成される外周面に、内輪軌道面121Aを有している。外輪軌道面120Aと内輪軌道面121Aとが互いに対向するように、外輪120と内輪121とが配置されている。 The outer ring 120 is disposed to be in contact with the plurality of rollers 122 outside the plurality of rollers 122. The outer ring 120 has an outer ring raceway surface 120 </ b> A on the inner circumferential surface formed on the inner side with respect to the center line C. The inner ring 121 is disposed to contact the plurality of rollers 122 inside the plurality of rollers 122. The inner race 121 has an inner raceway surface 121 </ b> A on the outer peripheral surface formed on the outer side with respect to the center line C. The outer ring 120 and the inner ring 121 are disposed such that the outer ring raceway surface 120A and the inner ring raceway surface 121A face each other.
 複数のころ122は、その表面にころ転動面122Aを有している。言い換えれば複数のころ122のそれぞれはその表面全体がころ転動面122Aである。複数のころ122は外輪軌道面120Aと内輪軌道面121Aとの間で転動するように構成されている。複数のころ122はころ転動面122Aにおいて、外輪軌道面120Aおよび内輪軌道面121Aに接触し、かつ保持器123により周方向にある間隔のピッチを有するように複数並んで配置される。これにより複数のころ122のそれぞれは、外輪120および内輪121の円環状の軌道上に転動自在に保持されている。 The plurality of rollers 122 have roller rolling surfaces 122A on their surfaces. In other words, the entire surface of each of the plurality of rollers 122 is a roller rolling surface 122A. The plurality of rollers 122 are configured to roll between the outer ring raceway surface 120A and the inner ring raceway surface 121A. A plurality of rollers 122 are arranged side by side so as to be in contact with the outer ring raceway surface 120A and the inner ring raceway surface 121A at the roller rolling surface 122A and to have a pitch of a certain interval in the circumferential direction by the cage 123. Thereby, each of the plurality of rollers 122 is rotatably held on the annular raceway of the outer ring 120 and the inner ring 121.
 保持器123は合成樹脂からなっている。また、円錐ころ軸受102は、外輪軌道面120Aを含む円錐、内輪軌道面121Aを含む円錐、およびころ122が転動した場合の回転軸の軌跡を含む円錐のそれぞれの頂点が軸受の中心線上の1点で交わるように構成されている。以上の構成により、円錐ころ軸受102の外輪120および内輪121は、互いに相対的に回転可能となっている。 The holder 123 is made of synthetic resin. In the tapered roller bearing 102, a cone including the outer ring raceway surface 120A, a cone including the inner ring raceway surface 121A, and a cone including the locus of the rotation axis when the roller 122 rolls are on the center line of the bearing. It is configured to meet at one point. With the above configuration, the outer ring 120 and the inner ring 121 of the tapered roller bearing 102 can rotate relative to each other.
 図10を参照して、本実施の形態の円筒ころ軸受103は、環状の外輪130と、中心線Cに関して外輪130の内側に配置された環状の内輪131と、外輪130と内輪131との間に配置された転動体としての複数のころ132と、外輪130、内輪131および複数のころ132を保持する円環状の保持器133とを有している。 Referring to FIG. 10, cylindrical roller bearing 103 of the present embodiment includes an annular outer ring 130, an annular inner ring 131 disposed on the inner side of outer ring 130 with respect to center line C, an outer ring 130 and an inner ring 131. And an annular cage 133 for holding the outer ring 130, the inner ring 131 and the plurality of rollers 132.
 外輪130は、複数のころ132の外側において複数のころ132に接触するように配置されている。外輪130は、中心線Cに関する内側に形成される内周面に、外輪軌道面130Aを有している。内輪131は、複数のころ132の内側において複数のころ132に接触するように配置されている。内輪131は、中心線Cに関する外側に形成される外周面に、内輪軌道面131Aを有している。外輪軌道面130Aと内輪軌道面131Aとが互いに対向するように、外輪130と内輪131とが配置されている。複数のころ132は、円筒形状を有しており、その表面にころ転動面132Aを有している。言い換えれば複数のころ132のそれぞれはその表面全体がころ転動面132Aである。複数のころ132は外輪軌道面130Aと内輪軌道面131Aとの間で転動するように構成されている。複数のころ132はころ転動面132Aにおいて、外輪軌道面130Aおよび内輪軌道面131Aに接触し、かつ保持器133により周方向にある間隔のピッチを有するように複数並んで配置される。これにより複数のころ132のそれぞれは、外輪130および内輪131の円環状の軌道上に転動自在に保持されている。 The outer ring 130 is disposed to be in contact with the plurality of rollers 132 outside the plurality of rollers 132. The outer ring 130 has an outer ring raceway surface 130 </ b> A on the inner circumferential surface formed on the inner side with respect to the center line C. The inner ring 131 is arranged to contact the plurality of rollers 132 inside the plurality of rollers 132. The inner race 131 has an inner raceway surface 131A on the outer peripheral surface formed on the outer side with respect to the center line C. The outer ring 130 and the inner ring 131 are disposed such that the outer ring raceway surface 130A and the inner ring raceway surface 131A face each other. The plurality of rollers 132 have a cylindrical shape, and have roller rolling surfaces 132A on their surfaces. In other words, the entire surface of each of the plurality of rollers 132 is a roller rolling surface 132A. The plurality of rollers 132 are configured to roll between the outer ring raceway surface 130A and the inner ring raceway surface 131A. A plurality of rollers 132 are arranged side by side so as to be in contact with the outer ring raceway surface 130A and the inner ring raceway surface 131A at the roller rolling surface 132A and to have a circumferential pitch by the cage 133. Thus, each of the plurality of rollers 132 is rotatably held on the annular raceway of the outer ring 130 and the inner ring 131.
 保持器133は合成樹脂からなっている。以上の構成により、円筒ころ軸受103の外輪130および内輪131は、互いに相対的に回転可能となっている。 The cage 133 is made of synthetic resin. With the above configuration, the outer ring 130 and the inner ring 131 of the cylindrical roller bearing 103 can rotate relative to each other.
 図9における外輪120および内輪121に挟まれる空間、より具体的には外輪軌道面120Aおよび内輪軌道面121Aに挟まれる空間である軌道空間には、図示しないグリース組成物が封入されている。このグリース組成物により外輪120および内輪121の各々ところ122との間に油膜が形成されている。また外輪120と複数のころ122のそれぞれとの間の領域、および内輪121と複数のころ122のそれぞれとの間の領域における油膜パラメータΛの値が1.2以下となっている。なお詳細な説明を省略するが、図10においても上記図9と同様に、外輪軌道面130Aおよび内輪軌道面131Aに挟まれる空間である軌道空間にはグリース組成物が封入されている。 A grease composition, not shown, is enclosed in a space between the outer ring 120 and the inner ring 121 in FIG. 9, more specifically, a space between the outer ring raceway surface 120A and the inner ring raceway surface 121A. An oil film is formed between each of the outer ring 120 and the inner ring 121 by this grease composition. The value of the oil film parameter 膜 in the region between the outer ring 120 and each of the plurality of rollers 122 and in the region between each of the inner ring 121 and each of the plurality of rollers 122 is 1.2 or less. Although the detailed description is omitted, the grease composition is enclosed in a raceway space which is a space sandwiched between the outer ring raceway surface 130A and the inner ring raceway surface 131A as in FIG. 9 also in FIG.
 次に円錐ころ軸受102を構成する転動部品としての外輪120、内輪121およびころ122について説明する。第1の転動部品としての外輪120および内輪121のそれぞれに第2の転動部品としてのころ122が接触している。外輪120、内輪121およびころ122のいずれも高炭素クロム軸受鋼である、たとえばJIS規格SUJ2からなっている。なお円筒ころ軸受103を構成する外輪130、内輪131およびころ132についても上記と同様である。 Next, the outer ring 120, the inner ring 121 and the rollers 122 as rolling parts constituting the tapered roller bearing 102 will be described. A roller 122 as a second rolling part is in contact with each of the outer ring 120 and the inner ring 121 as a first rolling part. Each of the outer ring 120, the inner ring 121 and the roller 122 is a high carbon chromium bearing steel, for example, made of JIS standard SUJ2. The same applies to the outer ring 130, the inner ring 131, and the rollers 132 that constitute the cylindrical roller bearing 103.
 本実施の形態においては、たとえば図9の外輪120の転動部は外輪軌道面120Aを含む領域であって、外輪120の転動部の表面が外輪軌道面120Aを構成している。また内輪121の転動部は内輪軌道面121Aを含む領域であって、内輪121の転動部の表面が内輪軌道面121Aを構成している。ころ122の転動部はころ転動面122Aを含む領域であって、ころ122の転動部の表面がころ転動面122Aを構成している。 In the present embodiment, for example, the rolling portion of outer ring 120 in FIG. 9 is a region including outer ring raceway surface 120A, and the surface of the rolling portion of outer ring 120 constitutes outer ring raceway surface 120A. The rolling portion of the inner ring 121 is a region including the inner ring raceway surface 121A, and the surface of the rolling portion of the inner ring 121 constitutes the inner ring raceway surface 121A. The rolling portion of the roller 122 is a region including the rolling surface 122A, and the surface of the rolling portion of the roller 122 constitutes the rolling surface 122A.
 本実施の形態においては、外輪軌道面120Aおよび内輪軌道面121Aのロックウェル硬度は、ころ転動面122Aのロックウェル硬度よりも低い。具体的には、外輪軌道面120Aおよび内輪軌道面121Aのロックウェル硬度は、ころ転動面122Aのロックウェル硬度よりも0.5HRC以上低いことが好ましい。 In the present embodiment, the Rockwell hardness of the outer ring raceway surface 120A and the inner ring raceway surface 121A is lower than the Rockwell hardness of the roller rolling surface 122A. Specifically, it is preferable that the Rockwell hardness of the outer ring raceway surface 120A and the inner ring raceway surface 121A be 0.5 HRC or more lower than the Rockwell hardness of the roller rolling surface 122A.
 また本実施の形態においては、外輪軌道面120Aおよび内輪軌道面121AのJIS B 0601-2001に規格される算術平均粗さ(Ra)は、ころ転動面122Aの算術平均粗さよりも大きい。さらに外輪軌道面120Aおよび内輪軌道面121AのJIS B 0601-2001に規格される二乗平均平方根傾斜(RΔq)はころ転動面122Aの二乗平均平方根傾斜よりも大きい。 Further, in the present embodiment, the arithmetic average roughness (Ra) standardized by JIS B 0601-2001 of the outer ring raceway surface 120A and the inner ring raceway surface 121A is larger than the arithmetic average roughness of the roller rolling surface 122A. Furthermore, the root mean square inclination (RΔq) standardized by JIS B 0601-2001 of the outer ring raceway surface 120A and the inner ring raceway surface 121A is larger than the root mean square inclination of the roller rolling surface 122A.
 具体的には、外輪軌道面120Aおよび内輪軌道面121Aの算術平均粗さは0.70μm以下、二乗平均平方根傾斜は0.30以下にされている。またころ転動面122Aの算術平均粗さは0.07μm以上0.10μm以下、二乗平均平方根傾斜は0.07以上0.10以下にされている。 Specifically, the arithmetic average roughness of the outer ring raceway surface 120A and the inner ring raceway surface 121A is 0.70 μm or less, and the root mean square inclination is 0.30 or less. Further, the arithmetic average roughness of the roller rolling surface 122A is 0.07 μm or more and 0.10 μm or less, and the root mean square inclination is 0.07 or more and 0.10 or less.
 なお詳細な説明を省略するが、以上のロックウェル硬度、算術平均粗さおよび二乗平均平方根傾斜の数値および大小関係などの特徴は、図10の外輪130の外輪軌道面130A、内輪131の内輪軌道面131Aおよびころ132のころ転動面132Aに対しても同様に成り立つ。 Although the detailed description is omitted, the above features such as Rockwell hardness, arithmetic mean roughness and numerical value of magnitude of root mean square slope are the outer ring raceway surface 130A of the outer ring 130 of FIG. The same applies to the surface 131A and the roller rolling surface 132A of the roller 132.
 次に図3、図4(B)および図11を用いて、以上の外輪120、内輪121およびころ122のそれぞれの加工方法について説明する。なお詳細説明を省略するが、外輪130、内輪131およびころ132の加工方法についても基本的に同様である。 Next, each processing method of the above-mentioned outer ring 120, inner ring 121, and roller 122 is explained using FIG. 3, FIG. 4 (B) and FIG. Although the detailed description is omitted, the method of processing the outer ring 130, the inner ring 131 and the rollers 132 is basically the same.
 図3を参照して、JIS規格SUJ2からなる第1の転動部品としての外輪120および内輪121が準備される(S01)。またJIS規格SUJ2からなる第2の転動部品としてのころ122が準備される(S02)。 With reference to FIG. 3, an outer ring 120 and an inner ring 121 as first rolling parts made of JIS standard SUJ2 are prepared (S01). In addition, a roller 122 is prepared as a second rolling component made of JIS standard SUJ2 (S02).
 図11を参照して、第1の転動部品としての外輪120および内輪121については、材料であるJIS規格SUJ2が焼入れ処理(S11)された後に焼戻し処理(S12)される。 Referring to FIG. 11, with respect to the outer ring 120 and the inner ring 121 as the first rolling component, the material is subjected to a hardening treatment (S11) and then to a tempering treatment (S12).
 その後、外輪軌道面120Aおよび内輪軌道面121Aの加工がなされる(S13)。このとき、外輪軌道面120Aおよび内輪軌道面121Aのロックウェル硬度は、ころ転動面122Aのロックウェル硬度よりも低くなるように加工される。また外輪120の外輪軌道面120Aおよび内輪121の内輪軌道面121Aの算術平均粗さは、ころ122のころ転動面122Aの算術平均粗さよりも大きくなるように加工される。さらに外輪軌道面120Aおよび内輪軌道面121Aの二乗平均平方根傾斜はころ転動面122Aの二乗平均平方根傾斜よりも大きくなるように加工される。 Thereafter, the outer raceway surface 120A and the inner raceway surface 121A are processed (S13). At this time, the Rockwell hardness of the outer ring raceway surface 120A and the inner ring raceway surface 121A is processed so as to be lower than the Rockwell hardness of the roller rolling surface 122A. The arithmetic mean roughness of the outer ring raceway surface 120A of the outer ring 120 and the inner ring raceway surface 121A of the inner ring 121 is processed to be larger than the arithmetic mean roughness of the roller rolling surface 122A of the roller 122. Furthermore, the root mean square inclination of the outer ring raceway surface 120A and the inner ring raceway surface 121A is processed to be larger than the root mean square inclination of the roller rolling surface 122A.
 具体的には、外輪軌道面120Aおよび内輪軌道面121Aのロックウェル硬度は、ころ転動面122Aのロックウェル硬度よりも0.5HRC以上低くなることが好ましい。外輪軌道面120Aおよび内輪軌道面121Aの算術平均粗さは0.70μm以下、二乗平均平方根傾斜は0.30以下となるように加工される。 Specifically, it is preferable that the Rockwell hardness of the outer ring raceway surface 120A and the inner ring raceway surface 121A be 0.5 HRC or more lower than the Rockwell hardness of the roller rolling surface 122A. The arithmetic average roughness of the outer ring raceway surface 120A and the inner ring raceway surface 121A is processed so as to be 0.70 μm or less, and the root mean square inclination is 0.30 or less.
 図4(B)を参照して、第2の転動部品としてのころ122については、材料であるJIS規格SUJ2が焼入れ処理(S21)された後に焼戻し処理(S22)される。その後ころ122のころ転動面122Aの算術平均粗さが、外輪120の外輪軌道面120Aおよび内輪121の内輪軌道面121Aの算術平均粗さよりも小さくなるように加工される。具体的には、ころ転動面122Aの算術平均粗さは0.07μm以上0.10μm以下、二乗平均平方根傾斜は0.07以上0.10以下となるように加工される(S23)。 Referring to FIG. 4 (B), with respect to the roller 122 as the second rolling component, tempering treatment (S22) is carried out after the JIS standard SUJ2 which is a material is subjected to quenching treatment (S21). Thereafter, the arithmetic average roughness of the roller rolling surface 122A of the roller 122 is processed so as to be smaller than the arithmetic average roughness of the outer ring raceway surface 120A of the outer ring 120 and the inner ring raceway surface 121A of the inner ring 121. Specifically, the roller rolling surface 122A is processed so as to have an arithmetic average roughness of 0.07 μm or more and 0.10 μm or less and a root mean square inclination of 0.07 or more and 0.10 or less (S23).
 以上の工程(S13)および工程(S23)における各軌道面の加工は、回転砥石を用いた研削または研磨加工により仕上げられている。つまり特に第1の転動部品としての外輪軌道面120Aおよび内輪軌道面121Aに対して超仕上げ加工、バレル研磨加工、およびバニシング加工のような表面粗さを改善する加工はいずれもなされなくてもよい。たとえば外輪軌道面120Aおよび内輪軌道面121Aが、その形状および寸法による制約のために、算術平均粗さおよび二乗平均平方根傾斜などを小さくする超仕上げ加工などを行なうことが困難である場合においても、軌道面20A,21Aところ転動面122Aとの算術平均粗さおよび二乗平均平方根傾斜の値の組み合わせを上記数値範囲とすればよい。 The processing of each raceway surface in the above steps (S13) and (S23) is finished by grinding or polishing using a rotary grindstone. That is, even if the outer surface raceway surface 120A and the inner ring surface 121A as the first rolling parts are not processed to improve surface roughness such as superfinishing, barrel polishing and burnishing, Good. For example, even if it is difficult to perform superfinishing or the like in which the outer ring raceway surface 120A and the inner ring raceway surface 121A are reduced in arithmetic mean roughness, root mean square inclination, etc. The combination of the values of the arithmetic mean roughness and the root mean square slope with the raceway surfaces 20A and 21A and the rolling surface 122A may be set as the above-mentioned numerical range.
 このようにすれば、外輪軌道面120Aおよび内輪軌道面121Aに超仕上げ加工などを行なわなくても、外輪軌道面120Aおよび内輪軌道面121Aの突起の先端形状をなじみによって平滑化することができる。このためころ転動面122Aに、ピーリングなどの転動疲労による損傷が発生する可能性を低減することができ、当該損傷による転動装置の寿命の低下を抑制することができる。 In this way, the tip shapes of the projections of the outer ring raceway surface 120A and the inner ring raceway surface 121A can be smoothed by conforming without superfinishing the outer ring raceway surface 120A and the inner ring raceway surface 121A. Therefore, the possibility of occurrence of damage due to rolling fatigue such as peeling on the roller rolling surface 122A can be reduced, and a reduction in the life of the rolling device due to the damage can be suppressed.
 次に、本実施の形態の作用効果について説明する。
 本実施の形態の円錐ころ軸受102は、外輪120の転動部の表面としての外輪軌道面120Aおよび内輪121の転動部の表面としての内輪軌道面121Aのロックウェル硬度が、ころ122の転動部の表面としてのころ転動面122Aのロックウェル硬度よりも0.5HRC以上低くなっている。また外輪軌道面120Aおよび内輪軌道面121Aの算術平均粗さが、ころ転動面122Aの算術平均粗さよりも大きくなっている。またころ転動面122Aの算術平均粗さは0.07μm以上0.10μm以下であり、ころ転動面122Aの二乗平均平方根傾斜が0.07以上0.10以下となるように加工されている。
Next, the operation and effect of the present embodiment will be described.
In the tapered roller bearing 102 of the present embodiment, the Rockwell hardness of the outer ring raceway surface 120A as the surface of the rolling portion of the outer ring 120 and the inner ring raceway surface 121A as the surface of the rolling portion of the inner ring 121 The Rockwell hardness of the roller rolling surface 122A as the surface of the moving part is 0.5 HRC or more lower. Further, the arithmetic mean roughness of the outer ring raceway surface 120A and the inner ring raceway surface 121A is larger than the arithmetic mean roughness of the roller rolling surface 122A. In addition, the arithmetic average roughness of the roller rolling surface 122A is 0.07 μm or more and 0.10 μm or less, and the roller rolling surface 122A is processed so that the root mean square inclination is 0.07 or more and 0.10 or less .
 具体的な算術平均粗さなどを上記の数値範囲の組み合わせとすることにより、たとえばころ転動面122Aの算術平均粗さの値が0.07μm未満の場合などに比べて、算術平均粗さの値がころ転動面122Aより大きい外輪軌道面120Aおよび内輪軌道面121Aに多数含まれる微小な突起がなじみやすくなる。また、外輪120および内輪121の各々の転動部の表面のロックウェル硬度をころ転動面122Aの硬度よりも低くすることにより、外輪軌道面120Aおよび内輪軌道面121Aの粗さをさらに微小な突起がなじみやすいようにすることができる。 By setting the specific arithmetic mean roughness and the like as a combination of the above-mentioned numerical ranges, the arithmetic mean roughness can be reduced compared to, for example, the case where the value of the arithmetic mean roughness of roller rolling surface 122A is less than 0.07 μm. The minute projections included in a large number in the outer ring raceway surface 120A and the inner ring raceway surface 121A whose values are larger than the roller rolling surface 122A are easily fitted. Further, by making the Rockwell hardness of the surface of each rolling portion of the outer ring 120 and the inner ring 121 lower than the hardness of the roller rolling surface 122A, the roughness of the outer ring raceway surface 120A and the inner ring raceway surface 121A is further reduced. The projections can be made more familiar.
 上記2つの作用により、円錐ころ軸受102の運転開始から短時間経過後において、外輪軌道面120Aおよび内輪軌道面121Aがころ転動面122Aと接触することにより、ころ転動面122Aに存在する粗さの突起が、外輪軌道面120Aおよび内輪軌道面121Aに存在する大きな突起を摩耗または塑性変形させる。これにより、外輪軌道面120Aおよび内輪軌道面121Aに存在する大きな突起等のなじみが促進され、当該突起の先端形状が平滑化される。これにより、外輪軌道面120Aおよび内輪軌道面121Aの微小な突起と、この突起に接触するころ転動面122Aの平坦面または微小な突起との局所的な接触面圧が低下する。このため、たとえば外輪軌道面120Aおよび内輪軌道面121Aの微小な突起に起因するころ転動面122Aの損傷の発生を抑制することができる。したがって、たとえば外輪軌道面120Aなどの表面に微小な凹部をランダムに形成してそこへ固体潤滑剤を被覆するなどの方法を用いなくても、ころ転動面122Aの損傷による円錐ころ軸受102の寿命の低下を抑制することができる。よって、円錐ころ軸受102の長寿命を実現することができる。 By the above two actions, the outer ring raceway surface 120A and the inner ring raceway surface 121A come into contact with the roller rolling surface 122A after a short period of time from the start of operation of the tapered roller bearing 102, so that the rough surface present on the roller rolling surface 122A. The projections of the stem wear or plastically deform large projections present on the outer ring raceway surface 120A and the inner ring raceway surface 121A. Thereby, the fit-in of large protrusions and the like present on the outer ring raceway surface 120A and the inner ring raceway surface 121A is promoted, and the tip shape of the projections is smoothed. As a result, the local contact surface pressure between the minute projections of the outer ring raceway surface 120A and the inner ring raceway surface 121A and the flat surface or the minute projections of the roller rolling surface 122A in contact with the projections decreases. Therefore, it is possible to suppress the occurrence of damage to roller rolling surface 122A caused by, for example, minute projections on outer ring raceway surface 120A and inner ring raceway surface 121A. Therefore, for example, even if a method such as forming minute recesses on the surface such as outer ring raceway surface 120A at random and coating a solid lubricant there is not used, the tapered roller bearing 102 is damaged by damage to the roller rolling surface 122A. It is possible to suppress the reduction of the life. Therefore, the long life of the tapered roller bearing 102 can be realized.
 また本実施の形態の円錐ころ軸受102によれば、上記のように外輪軌道面120A、内輪軌道面121Aところ転動面122Aとの算術平均粗さの値などが調整される。このため、たとえ円錐ころ軸受102が外輪120および内輪121ところ122との間の潤滑状態が良好でないために油膜形成性が良好でない条件で使用されたとしても、外輪軌道面120Aおよび内輪軌道面121Aの微小な突起との接触によるころ転動面122Aの損傷を抑制することができる。これにより、円錐ころ軸受102の長寿命を実現することができる。 Further, according to the tapered roller bearing 102 of the present embodiment, as described above, the value of the arithmetic average roughness of the outer ring raceway surface 120A, the inner ring raceway surface 121A and the rolling surface 122A is adjusted. For this reason, even if the tapered roller bearing 102 is used under conditions where the oil film formability is not good because the lubricating state between the outer ring 120 and the inner ring 121 and 122 is not good, the outer ring raceway surface 120A and the inner ring raceway surface 121A. It is possible to suppress damage to the roller rolling surface 122A due to the contact with the minute projections of the Thereby, the long life of the tapered roller bearing 102 can be realized.
 さらに本実施の形態の円錐ころ軸受102においては、外輪120と複数のころ122のそれぞれとの間の領域、および内輪121と複数のころ122のそれぞれとの間の領域における油膜パラメータΛの値が1.2以下である。したがって、ころ転動面122Aに表面起点型の剥離が起きるために円錐ころ軸受102の寿命が低下しやすい条件において、外輪軌道面120Aおよび内輪軌道面121Aの微小な突起との接触によるころ転動面122Aの損傷を抑制することができる。これにより、効果的に円錐ころ軸受102の長寿命を実現することができる。 Furthermore, in the tapered roller bearing 102 of the present embodiment, the values of the oil film parameter Λ in the region between the outer ring 120 and each of the plurality of rollers 122 and in the region between each of the inner ring 121 and each of the plurality of rollers 122 are 1.2 or less. Therefore, under the condition that the life of the tapered roller bearing 102 is likely to decrease because the surface rolling type separation occurs on the roller rolling surface 122A, the roller rolling due to the contact with the minute projections of the outer ring raceway 120A and the inner ring raceway 121A. Damage to the surface 122A can be suppressed. Thereby, the long life of the tapered roller bearing 102 can be realized effectively.
 以上の手法によりころ転動面122Aの損傷が抑制されるため、本実施の形態においては、外輪軌道面120A、内輪軌道面121Aおよびころ転動面122Aに超仕上げ加工、バレル研磨加工、およびバニシング加工のいずれもなされる必要がなくなる。このため円錐ころ軸受102の加工工程を簡略化させることができ、そのコストを低減させることができる。 Since damage to roller rolling surface 122A is suppressed by the above method, in the present embodiment, superfinishing, barrel polishing, and burnishing on outer ring raceway surface 120A, inner ring raceway surface 121A and roller rolling surface 122A. There is no need to do any of the processing. Therefore, the process of machining the tapered roller bearing 102 can be simplified, and the cost can be reduced.
 (実施の形態4)
 本実施の形態の円錐ころ軸受102は、基本的に実施の形態3の円錐ころ軸受102と同一の図面を用いて同様に説明可能であるため詳細な説明を省略する。ただし本実施の形態の円錐ころ軸受102は、ころ122が第1の転動部品として、外輪120および内輪121が第2の転動部品として、それぞれ配置されている。この点において本実施の形態の円錐ころ軸受102は、実施の形態3の円錐ころ軸受102と異なっている。
Embodiment 4
The tapered roller bearing 102 of the present embodiment can be basically described similarly using the same drawing as the tapered roller bearing 102 of the third embodiment, and therefore detailed description will be omitted. However, in the tapered roller bearing 102 of the present embodiment, the roller 122 is disposed as a first rolling component, and the outer ring 120 and the inner ring 121 are disposed as a second rolling component. The tapered roller bearing 102 of the present embodiment is different from the tapered roller bearing 102 of the third embodiment in this point.
 したがって本実施の形態においては、ころ転動面122Aのロックウェル硬度が、外輪軌道面120Aおよび内輪軌道面121Aのロックウェル硬度よりもたとえば0.5HRC以上低くなっている。またころ転動面122Aの算術平均粗さは外輪軌道面120Aおよび内輪軌道面121Aの算術平均粗さよりも大きい。外輪軌道面120Aおよび内輪軌道面121Aの算術平均粗さは0.07μm以上0.10μm以下、二乗平均平方根傾斜は0.07以上0.10以下にされている。さらにころ転動面122Aの二乗平均平方根傾斜は外輪軌道面120Aおよび内輪軌道面121Aの二乗平均平方根傾斜よりも大きい。ころ転動面122Aの算術平均粗さは0.70μm以下、二乗平均平方根傾斜は0.30以下にされている。 Therefore, in the present embodiment, the Rockwell hardness of the roller rolling surface 122A is, for example, 0.5 HRC or more lower than the Rockwell hardness of the outer ring raceway surface 120A and the inner ring raceway surface 121A. Further, the arithmetic mean roughness of the roller rolling surfaces 122A is larger than the arithmetic mean roughness of the outer ring raceway surface 120A and the inner ring raceway surface 121A. The arithmetic mean roughness of the outer ring raceway surface 120A and the inner ring raceway surface 121A is 0.07 μm or more and 0.10 μm or less, and the root mean square inclination is 0.07 or more and 0.10 or less. Furthermore, the root mean square inclination of the roller rolling surface 122A is larger than the root mean square inclination of the outer ring raceway surface 120A and the inner ring raceway surface 121A. The arithmetic mean roughness of the roller rolling surface 122A is 0.70 μm or less, and the root mean square inclination is 0.30 or less.
 なお円筒ころ軸受103についても、円錐ころ軸受102と同様に、ころ132を第1の転動部品、外輪130および内輪131を第2の転動部品として適用させることができる。なおこれらの円錐ころ軸受102および円筒ころ軸受103の製造方法は、第1および第2の転動部品が実施の形態3とは互いに逆になっているものの、基本的に実施の形態3と同様であるため詳細な説明を省略する。 As for the cylindrical roller bearing 103, as with the tapered roller bearing 102, the roller 132 can be applied as a first rolling part, and the outer ring 130 and the inner ring 131 can be applied as a second rolling part. The method of manufacturing these tapered roller bearings 102 and cylindrical roller bearings 103 is basically the same as in Embodiment 3, although the first and second rolling parts are opposite to those in Embodiment 3. Therefore, the detailed description is omitted.
 本実施の形態においても、基本的に実施の形態3と同様に、この場合は第2の転動部品である外輪軌道面120Aおよび内輪軌道面121Aへの損傷を抑制する効果を高めることができる。 Also in the present embodiment, basically in this case, the effect of suppressing damage to the outer raceway surface 120A and the inner raceway surface 121A, which are the second rolling parts, can be enhanced similarly to the third embodiment. .
 以上に述べた各実施の形態の構成による作用効果を調べるため、3種類の試験片を用いて3種類の耐ピーリング性能評価試験が行なわれた。実施例1では特に、第1および第2の転動部品の転動部の表面の粗さ条件に着目した試験がなされた。以下、図5~図7を用いてこの試験の内容および結果について説明する。 In order to investigate the effect by the structure of each embodiment described above, three types of peeling resistance performance evaluation tests were done using three types of test pieces. In the first embodiment, in particular, a test was conducted focusing on the surface roughness conditions of the rolling portions of the first and second rolling parts. The contents and results of this test will be described below with reference to FIGS. 5 to 7.
 図5を参照して、これは耐ピーリング性能評価試験に用いられた二円筒試験機2を示している。二円筒試験機2は、駆動側回転軸D1と、従動側回転軸F1とを有している。 Referring to FIG. 5, this shows a two-cylinder tester 2 used for the peeling resistance evaluation test. The two-cylinder testing machine 2 has a drive side rotation axis D1 and a driven side rotation axis F1.
 駆動側回転軸D1は、図5の左右方向に延びる部材であり、図5における左側の末端部にモータMが接続されている。このモータMにより駆動側回転軸D1は、図5の左右方向に延びる中心軸C1に対して回転可能となっている。図5における駆動側回転軸D1の右側の先端部には駆動側試験片D2が取り付けられている。駆動側試験片D2は、上記の各実施の形態における第1の転動部品に相当する部材であり、駆動側回転軸D1の回転に伴い中心軸C1の周りに回転可能となるように、駆動側回転軸D1の右側の先端部に固定された。 The driving side rotation shaft D1 is a member extending in the left and right direction in FIG. 5, and the motor M is connected to the left end in FIG. The drive-side rotation axis D1 is rotatable with respect to a central axis C1 extending in the left-right direction in FIG. 5 by the motor M. A drive-side test piece D2 is attached to the tip on the right side of the drive-side rotary shaft D1 in FIG. The drive-side test strip D2 is a member corresponding to the first rolling component in each of the above-described embodiments, and is driven so as to be rotatable around the central axis C1 with the rotation of the drive-side rotary shaft D1. It was fixed to the tip on the right side of the side rotation axis D1.
 一方、従動側回転軸F1は、図5の左右方向に延びる部材であり、図5の左右方向に延びる中心軸C2に対して回転可能となっている。図5において従動側回転軸F1は、駆動側回転軸D1とは逆に、左側が先端部に、右側が末端部になっている。図5における従動側回転軸F1の左側の先端部には従動側試験片F2が取り付けられている。従動側試験片F2は、上記の各実施の形態における第2の転動部品に相当する部材であり、従動側回転軸F1の回転に伴い中心軸C2の周りに回転可能となるように、従動側回転軸F1の左側の先端部に固定された。 On the other hand, the driven side rotation shaft F1 is a member extending in the left and right direction of FIG. 5, and is rotatable with respect to a central axis C2 extending in the left and right direction of FIG. In FIG. 5, on the contrary to the drive side rotation axis D1, in the driven side rotation axis F1, the left side is the tip end and the right side is the end. The driven side test strip F2 is attached to the left end of the driven side rotation shaft F1 in FIG. The driven-side test strip F2 is a member corresponding to the second rolling component in each of the above-described embodiments, and is driven so as to be rotatable around the central axis C2 with the rotation of the driven-side rotation shaft F1. It was fixed to the tip on the left side of the side rotation axis F1.
 駆動側回転軸D1の先端部は図5の右側を、従動側回転軸F1の先端部は図5の左側を向いている。しかし駆動側回転軸D1の中心軸C1と従動側回転軸F1の中心軸C2とは一致しておらず、両者は図5の上下方向に間隔を有している。このため駆動側回転軸D1の先端部に固定された駆動側試験片D2と、従動側回転軸F1の先端部に固定された従動側試験片F2とは、駆動側回転軸D1および従動側回転軸F1のそれぞれの外径面同士が、これらの回転していない状態において外径面接触部DFにて互いに接触するように配置されている。なお互いに接触するように配置される駆動側試験片D2および従動側試験片F2は、これらの下に敷いている、給油用フェルトパッド3と接触している。 The end of the drive side rotation shaft D1 is directed to the right in FIG. 5, and the end of the driven rotation axis F1 is directed to the left in FIG. However, the central axis C1 of the drive side rotational shaft D1 and the central axis C2 of the driven side rotational shaft F1 do not coincide, and both have an interval in the vertical direction in FIG. Therefore, the drive side test strip D2 fixed to the tip end of the drive side rotation shaft D1 and the driven side test strip F2 fixed to the tip end of the driven side rotation shaft F1 are the drive side rotation shaft D1 and the driven side rotation. The respective outer diameter surfaces of the axis F1 are arranged to be in contact with each other at the outer diameter surface contact portion DF in their non-rotated state. The drive-side test strip D2 and the driven-side test strip F2 arranged to be in contact with each other are in contact with the fueling felt pad 3 laid under them.
 以上のように設置された二円筒試験機2の設備の駆動条件を表1に示す。 The driving conditions of the equipment of the two-cylinder testing machine 2 installed as described above are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、二円筒試験機2には潤滑油として無添加ポリ-α-オレフィン油(VG5相当)が用いられた。この潤滑油は給油用フェルトパッド3内に含浸されており、そこから駆動側試験片D2および従動側試験片F2の外径面に供給された。また試験条件として、駆動側回転軸D1の中心軸C1周りの回転数は2000rpmとし、従動側試験片F2に加えられる荷重W(図5参照)の値は230kgfとされた。ここで荷重Wとは、駆動側回転軸D1の回転時に従動側回転軸F1が図5の矢印Wに示す方向すなわち駆動側回転軸D1に近づく方向に従動側試験片F2に対して加える荷重を意味する。駆動側回転軸D1がモータMにより中心軸C1周りに回転するのに伴い、従動側回転軸F1が中心軸C2周りに、駆動側回転軸D1とは互いに逆方向に回転した。これは駆動側試験片D2と従動側試験片F2とが互いに接触しているためである。 As shown in Table 1, an additive-free poly-α-olefin oil (corresponding to VG5) was used as a lubricating oil in the two-cylinder tester 2. This lubricating oil was impregnated in the felt pad 3 for oil supply, and was supplied from there to the outer diameter surface of the driving side test piece D2 and the driven side test piece F2. As a test condition, the number of revolutions around the central axis C1 of the drive side rotation axis D1 was 2000 rpm, and the value of the load W (see FIG. 5) applied to the driven side test piece F2 was 230 kgf. Here, the load W is a load applied to the driven-side test piece F2 in the direction shown by the arrow W in FIG. 5, ie, the direction closer to the drive-side rotation shaft D1, when the drive-side rotation shaft D1 rotates. means. As the drive side rotation axis D1 is rotated by the motor M around the center axis C1, the driven side rotation axis F1 is rotated around the center axis C2 in the opposite direction to the drive side rotation axis D1. This is because the drive side test piece D2 and the driven side test piece F2 are in contact with each other.
 そして試験時間は100分間とし、従動側試験片F2に加わる総負荷回数が20万回に達した時点で試験が終了された。以上の条件は、従動側試験片F2の転動部の表面にピーリングと呼ばれる微小な剥離が発生しやすい条件とした。 The test time was 100 minutes, and the test was ended when the total number of loads applied to the driven test piece F2 reached 200,000 times. The above conditions are conditions under which minute peeling called peeling is likely to occur on the surface of the rolling portion of the driven-side test piece F2.
 次に3種類の試験のそれぞれに用いられた駆動側試験片D2および従動側試験片F2のそれぞれの形状および寸法等について表2および表3を用いて説明する。ここで3種類の試験とは、本実施の形態の規格外の試験である比較例、本実施の形態に基づく試験である試験例1、および本実施の形態に基づく試験の試験例1とは異なる変形例としての試験例2を意味する。まず表2を用いて、3種類の試験のそれぞれに用いられた駆動側試験片D2の寸法等の条件について説明する。 Next, the shapes, dimensions, and the like of the drive-side test piece D2 and the driven-side test piece F2 used for each of the three types of tests will be described using Tables 2 and 3. Here, the three types of tests are a comparative example which is a nonstandard test of the present embodiment, a test example 1 which is a test based on the present embodiment, and a test example 1 of a test based on the present embodiment. This means Test Example 2 as a different modification. First, conditions such as dimensions of the driving side test piece D2 used in each of the three types of tests will be described using Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、駆動側試験片D2は、これがセットされる駆動側回転軸D1をその先端側から平面視したときに円形を有する円筒形状である。その外径の直径は、3種類の試験すなわち比較例、試験例1、試験例2のいずれにおいても同一の40mm、その内径の直径は上記3種類のいずれも20mmである。以下同様に、上記3種類のいずれも軸方向の寸法に相当する幅が12mm、軸方向副曲率半径が60mmである。 As shown in Table 2, the drive-side test strip D2 has a cylindrical shape having a circular shape in plan view from the tip side of the drive-side rotation axis D1 to which the drive-side test strip D2 is set. The diameter of the outer diameter is the same 40 mm in any of the three types of tests, that is, Comparative Example, Test Example 1 and Test Example 2, and the diameter of the inner diameter is 20 mm in any of the above three types. Likewise, in all the above three types, the width corresponding to the dimension in the axial direction is 12 mm, and the radial sub-curvature radius is 60 mm.
 駆動側試験片D2の材質は、上記3種類のいずれもJIS規格SUJ2である。表2に示すように比較例および試験例1の駆動側試験片D2の幅面(外径面であり、転動部の表面に相当)のロックウェル硬度は62.2HRCであるが、このようにするために以下の処理がなされた。まずSUJ2の鋼材が840℃で40分保持された後、80℃の油中に投入され冷却されることにより焼入れされ、その後180℃に加熱され3時間の焼戻し処理がなされた。また表2に示すように試験例2の駆動側試験片D2の幅面のロックウェル硬度は60.5HRCであるが、このようにするために以下の処理がなされた。まずSUJ2の鋼材が850℃で80分保持された後、80℃の油中に投入され冷却されることにより焼入れされ、その後220℃に加熱され100時間の焼戻し処理がなされた。 The material of the drive-side test piece D2 is JIS standard SUJ2 in all of the above three types. As shown in Table 2, the Rockwell hardness of the width surface (the outer diameter surface and corresponding to the surface of the rolling portion) of the driving side test piece D2 of the comparative example and the test example 1 is 62.2 HRC. The following process was done to First, the steel material of SUJ 2 was held at 840 ° C. for 40 minutes, then quenched by being introduced into oil at 80 ° C. and cooled, and then heated to 180 ° C. and tempered for 3 hours. Further, as shown in Table 2, the Rockwell hardness of the width surface of the driving-side test piece D2 of Test Example 2 is 60.5 HRC, and the following processing was carried out to achieve this. First, the steel material of SUJ 2 was held at 850 ° C. for 80 minutes, then quenched by being put into oil at 80 ° C. and cooled, and then heated to 220 ° C. and subjected to tempering treatment for 100 hours.
 その後、比較例、試験例1および試験例2のいずれの試験片D2についても、駆動側試験片D2の平面視における円形の外径面の軸方向に関する算術平均粗さRaの値が0.650μm、当該駆動側試験片D2の円形の外径面の軸方向に関する二乗平均平方根傾斜RΔqの値が0.270となるように仕上げられた。駆動側試験片D2の外径面は、駆動側試験片D2の転動部の表面に相当する。 After that, the value of the arithmetic mean roughness Ra in the axial direction of the circular outer diameter surface in plan view of the drive-side test piece D2 is 0.650 μm for all of the test pieces D2 of Comparative Example and Test Example 1 and Test Example 2. The value of the root mean square inclination RΔq in the axial direction of the circular outer diameter surface of the driving side test piece D2 was finished to be 0.270. The outer diameter surface of the drive side test piece D2 corresponds to the surface of the rolling portion of the drive side test piece D2.
 比較例においては、駆動側試験片D2の外径面の焼入れ処理および焼戻し処理の後に四三酸化鉄の皮膜処理は行なわれなかった。これに対し、試験例1および試験例2の駆動側試験片D2は、その外径面の焼入れ処理および焼戻し処理の後に四三酸化鉄の皮膜処理が行なわれた。具体的には、焼入れ処理および焼戻し処理の後に駆動側試験片D2の外径面の算術平均粗さが比較例と同様の値となるように研磨加工された。その後、駆動側試験片D2に対して四三酸化鉄皮膜処理がなされた。具体的には、140±5℃に加熱された水酸化ナトリウムを主成分とするアルカリ性溶液中に駆動側試験片D2を30分間浸漬させた。この皮膜処理の前後で駆動側試験片D2の外径面の算術平均粗さなどの変化はほとんどなかった。 In the comparative example, the coating treatment of iron trioxide was not performed after the quenching treatment and the tempering treatment of the outer diameter surface of the driving side test piece D2. On the other hand, the drive-side test pieces D2 of Test Example 1 and Test Example 2 were subjected to the coating treatment of triiron trioxide after the quenching treatment and tempering treatment of the outer diameter surface thereof. Specifically, after the quenching process and the tempering process, polishing was performed so that the arithmetic mean roughness of the outer diameter surface of the driving-side test piece D2 had the same value as that of the comparative example. Thereafter, triiron tetraoxide film treatment was performed on the driving side test piece D2. Specifically, the driving-side test piece D2 was immersed for 30 minutes in an alkaline solution containing sodium hydroxide as a main component and heated to 140 ± 5 ° C. There was almost no change in the arithmetic mean roughness or the like of the outer diameter surface of the driving-side test piece D2 before and after this film treatment.
 次に表3を用いて、3種類の試験のそれぞれに用いられた従動側試験片F2の寸法等の条件について説明する。 Next, with reference to Table 3, conditions such as dimensions of the driven-side test piece F2 used in each of the three types of tests will be described.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、従動側試験片F2は、これがセットされる従動側回転軸F1をその先端側から平面視したときに円形を有する円筒形状である。上記3種類のいずれもその外径の直径は40mm、その内径の直径は20mmであり、軸方向の寸法に相当する幅が12mmであるが、軸方向副曲率半径を有さないものとした。 As shown in Table 3, the driven-side test strip F2 has a cylindrical shape having a circular shape in plan view from the tip side of the driven-side rotation shaft F1 to which the driven-side test piece F2 is set. The diameter of the outer diameter of each of the above three types is 40 mm, the diameter of the inner diameter is 20 mm, and the width corresponding to the dimension in the axial direction is 12 mm, but does not have an axial minor radius of curvature.
 従動側試験片F2の材質は、上記3種類のいずれもJIS規格SUJ2である。表3に示すように比較例および試験例1の従動側試験片F2の幅面のロックウェル硬度は62.2HRCであるが、このようにするために以下の処理がなされた。まずSUJ2の鋼材が840℃で40分保持された後、80℃の油中に投入され冷却されることにより焼入れされ、その後180℃に加熱され3時間の焼戻し処理がなされた。また表3に示すように試験例2の従動側試験片F2の幅面のロックウェル硬度は63.0HRCであるが、このようにするために以下の処理がなされた。まずSUJ2の鋼材が850℃で80分保持された後、80℃の油中に投入され冷却されることにより焼入れされ、その後180℃に加熱され4時間の焼戻し処理がなされた。 The material of the driven-side test piece F2 is JIS standard SUJ2 in any of the above three types. As shown in Table 3, the Rockwell hardness of the width surface of the driven-side test piece F2 of the comparative example and the test example 1 is 62.2 HRC, but the following processing was performed to do this. First, the steel material of SUJ 2 was held at 840 ° C. for 40 minutes, then quenched by being introduced into oil at 80 ° C. and cooled, and then heated to 180 ° C. and tempered for 3 hours. Further, as shown in Table 3, the Rockwell hardness of the width surface of the driven-side test piece F2 of Test Example 2 is 63.0 HRC, and the following processing was carried out to do so. First, the steel material of SUJ 2 was held at 850 ° C. for 80 minutes, then quenched by being put into oil at 80 ° C. and cooled, and then heated to 180 ° C. and tempered for 4 hours.
 なお比較例の試験片については焼戻し処理の後に研磨加工および超仕上げ加工がなされ、その外径面の算術平均粗さRaが0.020μm、二乗平均平方根傾斜RΔqが0.013となるように仕上げられた。また試験例1においては、従動側試験片F2の外径面に対しては、焼入れ処理および焼戻し処理の後に研磨加工がなされ、その外径面の算術平均粗さRaが0.200μm、二乗平均平方根傾斜RΔqが0.100となるように仕上げられた。また試験例2においては、従動側試験片F2の外径面に対しては、焼入れ処理および焼戻し処理の後に研磨加工および超仕上げ加工がなされ、その外径面の算術平均粗さRaが0.070μm、二乗平均平方根傾斜RΔqが0.074となるように仕上げられた。従動側試験片F2の外径面は、従動側試験片F2の転動部の表面に相当する。 The test piece of the comparative example is polished and tempered after tempering, and finished so that the arithmetic mean roughness Ra of its outer diameter surface is 0.020 μm and the root mean square slope RΔq is 0.013. It was done. In Test Example 1, the outer diameter surface of the driven-side test piece F2 is polished after quenching and tempering treatment, and the arithmetic average roughness Ra of the outer diameter surface is 0.200 μm, the root mean square The square root slope RΔq was finished to be 0.100. In Test Example 2, grinding and superfinishing are performed on the outer diameter surface of the driven-side test piece F2 after quenching and tempering, and the arithmetic average roughness Ra of the outer diameter surface is 0. It was finished so that 070 μm and root mean square slope RΔq became 0.074. The outer diameter surface of the driven test piece F2 corresponds to the surface of the rolling portion of the driven test piece F2.
 以上の各試験片を用いた比較例および各試験例のそれぞれの試験を行なった後の、第2の転動部品に相当する従動側試験片F2の転動部である外径面の平面形状の顕微鏡拡大写真を図6(A),(B)に示す。図6(A),(B)を参照して、比較例の従動側試験片F2の転動部の表面上には多くのピーリングが発生したが、試験例1および試験例2の従動側試験片F2の転動部の表面上にはピーリングが発生しなかった。 Planar shape of the outer diameter surface which is a rolling portion of the driven-side test piece F2 corresponding to the second rolling component after performing the respective tests of the comparative example and the respective test examples using the above-mentioned respective test pieces 6 (A) and 6 (B) show magnified micrographs of FIG. Referring to FIGS. 6 (A) and 6 (B), many peelings occurred on the surface of the rolling portion of the driven side test piece F2 of the comparative example, but the driven side test of Test Example 1 and Test Example 2 Peeling did not occur on the surface of the rolling portion of piece F2.
 次に以上の各試験片を用いた比較例および各試験例のそれぞれの試験を行なった後の、第1の転動部品に相当する駆動側試験片D2の転動部の軸方向の二乗平均平方根傾斜RΔqの測定結果を表4に示す。 Next, after conducting each test of the comparative example and each test example which used the above each test piece, the root mean square of the axial direction of the rolling part of drive side test piece D2 equivalent to the 1st rolling part The measurement results of the square root slope RΔq are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4より、比較例の駆動側試験片D2に比べて、試験例1および試験例2の駆動側試験片D2の方が二乗平均平方根傾斜RΔqの値が小さくなった。 From Table 4, the values of the root mean square inclination RΔq of the drive-side test pieces D2 of Test Example 1 and Test Example 2 were smaller than the drive-side test piece D2 of the comparative example.
 さらに、以上の各試験片を用いた比較例および各試験例のそれぞれの試験を行なった後の、第1の転動部品に相当する駆動側試験片D2の転動部である外径面に対してレーザー顕微鏡を用いて3次元形状の測定を行なった結果を図7に示す。図7を参照して、比較例に比べて、試験例1および試験例2の転動部の微小な突起の方が丸みをおびていることが確認できた。 Furthermore, on the outer diameter surface which is the rolling portion of the drive-side test piece D2 corresponding to the first rolling part after performing the respective tests of the comparative example and the respective test examples using the above-mentioned respective test pieces On the other hand, FIG. 7 shows the result of measurement of a three-dimensional shape using a laser microscope. Referring to FIG. 7, it can be confirmed that the minute projections of the rolling portions in Test Example 1 and Test Example 2 are more rounded than in the comparative example.
 これらの結果から、転動部の表面粗さの値がより大きい駆動側試験片D2に対して四三酸化鉄皮膜処理を行ない、それよりも転動部の表面粗さの値が小さい従動側試験片F2の軸方向の算術平均粗さRaを0.07μm以上0.20μm以下とする、このような試験片の組み合わせを適用することにより、駆動側試験片D2の転動部の粗さ突起の傾斜が小さくなり、ピーリングを抑制できることが分かった。 From these results, the drive side test piece D2 having a larger value of the surface roughness of the rolling portion is treated with a triiron oxide coating, and the driven side has a smaller value of the surface roughness of the rolling portion than that. By applying a combination of such test pieces in which the arithmetic mean roughness Ra in the axial direction of the test piece F2 is 0.07 μm or more and 0.20 μm or less, the roughness projection of the rolling portion of the drive-side test piece D2 It was found that the inclination of the smaller becomes smaller, and the peeling can be suppressed.
 実施例2では特に、第1および第2の転動部品の転動部の硬度条件に着目した試験がなされた。 In the second embodiment, in particular, a test was conducted focusing on the hardness condition of the rolling portions of the first and second rolling parts.
 本実施例においても実施例1と同様に図5に示す二円筒試験機2が用いられた。まず表5を用いて、本実施例における駆動側試験片D2、従動側試験片F2の形状および寸法の条件、および二円筒試験機2の設備の駆動条件について説明する。 Also in the present embodiment, a two-cylinder tester 2 shown in FIG. 5 is used as in the first embodiment. First, with reference to Table 5, conditions of the shape and dimensions of the drive-side test piece D2 and the driven-side test piece F2 in the present embodiment, and the drive conditions of the equipment of the two-cylinder test machine 2 will be described.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、駆動側試験片D2は、本実施例で行なわれるいずれの試験例においても同一の寸法であり、外径の直径40mm、内径の直径20mm、軸方向の寸法に相当する幅が12mm、幅方向副曲率半径が60mmの円筒形状である。また駆動側試験片D2の平面視における円形の外径面の軸方向に関する表面粗さは、いずれの試験例においても同一であり、算術平均粗さRaの値が約0.650μm、二乗平均平方根傾斜RΔqの値が約0.270となるように研磨加工がなされた。 As shown in Table 5, the drive-side test piece D2 has the same dimensions in any of the test examples performed in the present embodiment, and corresponds to the dimension of 40 mm in outer diameter, 20 mm in inner diameter, and the axial direction. It has a cylindrical shape with a width of 12 mm and a width-direction minor radius of curvature of 60 mm. Further, the surface roughness in the axial direction of the circular outer diameter surface in plan view of the drive-side test piece D2 is the same in any of the test examples, and the value of the arithmetic mean roughness Ra is about 0.650 μm, the root mean square Polishing was performed so that the value of the inclination RΔq was about 0.270.
 また表5に示すように、従動側試験片F2は、本実施例で行なわれるいずれの試験例においても同一の寸法であり、外径の直径40mm、内径の直径20mm、軸方向の寸法に相当する幅が12mmであるが、幅方向副曲率半径を有さない円筒形状である。また従動側試験片F2の平面視における円形の外径面の軸方向に関する表面粗さは、いずれの試験例においても同一であり、算術平均粗さRaの値が約0.020μm、二乗平均平方根傾斜RΔqの値が約0.013となるように研磨加工および超仕上げ加工がなされた。この表面粗さの値は表3の比較例および図6(A)と同じであり、従動側試験片F2の転動部の表面にピーリング(微小な剥離)が発生しやすい条件とした。 Further, as shown in Table 5, the driven-side test piece F2 has the same dimensions in any of the test examples conducted in the present embodiment, and has an outer diameter of 40 mm, an inner diameter of 20 mm, and an axial dimension. Is 12 mm in width, but has a cylindrical shape having no widthwise minor radius of curvature. Further, the surface roughness in the axial direction of the circular outer diameter surface in plan view of the driven-side test piece F2 is the same in any of the test examples, and the value of the arithmetic mean roughness Ra is about 0.020 μm, the root mean square Polishing and superfinishing were performed such that the value of the inclination RΔq was about 0.013. The value of this surface roughness is the same as that of the comparative example of Table 3 and FIG. 6 (A), and it was set as the conditions which peeling (minute peeling) tends to generate on the surface of the rolling part of driven side test piece F2.
 二円筒試験機2の設備の駆動条件(潤滑油、回転数、荷重、試験時間、負荷回数)は、表5に示すとおりである。具体的には、試験時間が5分間であり、従動側試験片F2に加わる総負荷回数が1万回に達した時点で試験が終了された。それ以外の各条件は実施例1と同様である。また本実施例での二円筒試験機2への駆動側試験片D2および従動側試験片F2の固定態様および回転態様は実施例1と同様であり、図5を用いて説明可能であるため、ここでは詳細な説明を省略する。 The driving conditions (lubricant, rotation speed, load, test time, load frequency) of the equipment of the two-cylinder test machine 2 are as shown in Table 5. Specifically, the test was completed when the test time was 5 minutes and the total number of loads applied to the driven test piece F2 reached 10,000 times. The other conditions are the same as in the first embodiment. Further, the fixing aspect and the rotation aspect of the drive-side test piece D2 and the driven-side test piece F2 to the two-cylinder testing machine 2 in the present embodiment are the same as in the first embodiment, and can be described using FIG. Detailed description is omitted here.
 次に、本実施例において9種類の試験のそれぞれに用いられた駆動側試験片D2および従動側試験片F2の加工の条件およびその加工により最終的に得られた硬度等について表6を用いて説明する。なお本実施例においては実施例1と異なり、本実施の形態に基づく試験であるか本実施の形態の規格外の試験であるかにかかわらず、9種類の試験のそれぞれを試験例3~11で示している。 Next, the conditions of processing of the driving side test piece D2 and the driven side test piece F2 used in each of the nine types of tests in the present example and the hardness etc. finally obtained by the processing are shown using Table 6. explain. In the present example, unlike the example 1, each of the nine types of tests is set to test examples 3 to 11 regardless of whether it is a test based on the present embodiment or a nonstandard test of the present embodiment. It shows by.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、試験例3~11のいずれについても、駆動側試験片D2および従動側試験片F2を構成する鋼材はJIS規格SUJ2である。またすべての試験例において、駆動側試験片D2および従動側試験片F2は、850℃で80分均熱された後に80℃の油中に投入され冷却されることにより焼入れされている。 As shown in Table 6, in all of the test examples 3 to 11, the steel material constituting the drive-side test piece D2 and the driven-side test piece F2 is JIS standard SUJ2. Moreover, in all the test examples, the driving side test piece D2 and the driven side test piece F2 are hardened by being charged in oil at 80 ° C. and cooled after being held at 850 ° C. for 80 minutes.
 ただしその後の焼戻しの条件は試験例および試験片ごとに異なる。具体的には、試験例3~5の駆動側試験片D2は250℃で7.5時間焼戻し処理がされ、試験片6~8の駆動側試験片D2は230℃で7.5時間、試験片9~11の駆動側試験片D2は200℃で3時間、焼戻し処理された。また試験例3,6,9の従動側試験片F2は250℃で7.5時間焼戻し処理がされ、試験片4,7,10の従動側試験片F2は230℃で7.5時間、試験片5,8,11の従動側試験片F2は200℃で3時間、焼戻し処理された。これらの焼戻し条件によって、駆動側試験片D2および従動側試験片F2の幅面(転動部の表面に相当)のロックウェル硬度が測定された。当該ロックウェル硬度は、約59.5HRC、約60.5HRCまたは約61.5HRC(±0.2HRC程度の誤差を含む)のいずれかになるよう、概ね3種類に分類された。ただし試験例3~11は、すべて駆動側試験片D2と従動側試験片F2との幅面のロックウェル硬度の値(上記分類)の組み合わせが異なるように準備された。 However, the conditions for subsequent tempering differ depending on the test example and the test piece. Specifically, the drive side test pieces D2 of Test Examples 3 to 5 are tempered at 250 ° C. for 7.5 hours, and the drive side test pieces D2 of the test pieces 6 to 8 are tested at 230 ° C. for 7.5 hours The driving side test pieces D2 of the pieces 9 to 11 were tempered at 200 ° C. for 3 hours. In addition, the driven side test piece F2 of Test Examples 3, 6 and 9 is tempered at 250 ° C. for 7.5 hours, and the driven side test piece F2 of the test pieces 4, 7 and 10 is tested at 230 ° C. for 7.5 hours The driven side test pieces F2 of the pieces 5, 8 and 11 were tempered at 200 ° C. for 3 hours. The Rockwell hardness of the width surface (corresponding to the surface of the rolling portion) of the drive-side test piece D2 and the driven-side test piece F2 was measured by these tempering conditions. The Rockwell hardness is roughly classified into three types so as to be either about 59.5 HRC, about 60.5 HRC or about 61.5 HRC (including an error of about ± 0.2 HRC). However, in all of the test examples 3 to 11, the combinations of the values of the Rockwell hardness (the above classification) of the width surfaces of the drive-side test piece D2 and the driven-side test piece F2 were different.
 以上の硬度の組み合わせが異なる9種類の試験片を用いた各試験例において耐ピーリング性能評価試験が行なわれた。それぞれの試験を行なった後の、第2の転動部品に相当する従動側試験片F2の転動部である外径面の顕微鏡写真におけるき裂発生部を図8に示し、その面積率(%)を表7に示している。面積率は、各試験例において市販の画像処理ソフトを用いて図8の写真をモノクロ画像化し、画像に2値化処理を施すことによりき裂発生部のみを塗りつぶすことで算出された。 The peeling performance evaluation test was performed in each test example using nine types of test pieces with which the combination of the above hardness differs. The cracked portion in the micrograph of the outer diameter surface which is the rolling portion of the driven-side test piece F2 corresponding to the second rolling component after each test is shown in FIG. %) Are shown in Table 7. The area ratio was calculated by converting the photograph of FIG. 8 into a monochrome image using commercially available image processing software in each test example, and performing a binarization process on the image to paint only the cracked portion.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 図8および表7を参照して、第1の転動部品としての駆動側試験片D2が第2の転動部品としての従動側試験片F2よりも幅面のロックウェル硬度(単位はHRC)が低い場合、すなわち表6中の硬度差の値が正である試験例4,5,8において、その他の試験例に比べて明らかにピーリングの初期段階であるき裂の発生数が少なかった。また表6中の硬度差の値がゼロである試験例3,7,11においてはき裂が発生しているが、これらの中でも試験例11は試験例3,7に比べてき裂の数が少なかった。これは試験例11においては従動側試験片F2の幅面のロックウェル硬度が61.4HRC(約61.5HRC)であるためであると考えられる。なお上記の試験片5,8はいずれも従動側試験片F2の幅面のロックウェル硬度が61.5HRCとなっている。 Referring to FIG. 8 and Table 7, the Rockwell hardness (unit: HRC) of the width surface of the drive-side test piece D2 as the first rolling part is greater than that of the driven-side test piece F2 as the second rolling part. When it is low, that is, in Test Examples 4, 5 and 8 in which the hardness difference values in Table 6 are positive, the number of cracks that are in the initial stage of peeling is clearly smaller than in the other test examples. In addition, although cracks occurred in Test Examples 3, 7 and 11 in which the value of the hardness difference in Table 6 is zero, among them, the number of cracks is larger in Test Example 11 than in Test Examples 3 and 7. It was less. This is considered to be because in the test example 11, the Rockwell hardness of the width surface of the driven-side test piece F2 is 61.4 HRC (about 61.5 HRC). The test pieces 5 and 8 each have a Rockwell hardness of 61.5 HRC on the width surface of the driven-side test piece F2.
 以上の結果から、転動部の表面粗さが大きい駆動側試験片D2を従動側試験片F2よりも相対的に低硬度にすることにより、従動側試験片F2の転動部の表面の疲労進行を抑制でき、ピーリングを抑制できることがわかった。また上記の硬度差に加え、従動側試験片F2の幅面のロックウェル硬度を61.5HRC以上(少なくとも61.4HRC以上)とすることにより上記の疲労進行の抑制効果をさらに高めることができることが分かった。 From the above results, fatigue of the surface of the rolling portion of the driven side test piece F2 is achieved by making the driving side test piece D2 having a large surface roughness of the rolling portion relatively lower in hardness than the driven side test piece F2. It was found that the progress could be suppressed and the peeling could be suppressed. In addition to the difference in hardness described above, it is found that the effect of suppressing the progress of fatigue can be further enhanced by setting the Rockwell hardness of the width surface of the driven-side test piece F2 to 61.5 HRC or more (at least 61.4 HRC or more). The
 以上に述べた実施の形態3,4の構成による作用効果を調べるため、2種類の試験片を用いて2種類の耐ピーリング性能評価試験が行なわれた。以下、図5および図12を用いてこの試験の内容および結果について説明する。 In order to investigate the effect by the structure of Embodiment 3, 4 described above, two types of peeling performance evaluation tests were done using two types of test pieces. The contents and results of this test will be described below with reference to FIGS. 5 and 12.
 ここでの試験においては図5の二円筒試験機2が用いられた。また当該二円筒試験機2の設備の駆動条件は上記の表1に示され、本実施例においても二円筒試験機2は実施例1と同様に駆動される。 In the tests here, the two-cylinder tester 2 of FIG. 5 was used. The driving conditions of the equipment of the two-cylinder testing machine 2 are shown in Table 1 above, and the two-cylinder testing machine 2 is also driven in the same manner as in Example 1 in this embodiment.
 次に2種類の試験のそれぞれに用いられた駆動側試験片D2および従動側試験片F2のそれぞれの形状および寸法等について表8および表9を用いて説明する。ここで2種類の試験とは、本実施の形態の規格外の試験である比較例、および本実施の形態に基づく試験である試験例を意味する。まず表8を用いて、2種類の試験のそれぞれに用いられた駆動側試験片D2の寸法等の条件について説明する。 Next, the shapes, dimensions, and the like of the drive-side test piece D2 and the driven-side test piece F2 used in each of the two types of tests will be described using Tables 8 and 9. Here, two types of tests mean a comparative example which is a nonstandard test of the present embodiment and a test example which is a test based on the present embodiment. First, conditions such as dimensions of the driving side test piece D2 used in each of the two types of tests will be described using Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、駆動側試験片D2は、これがセットされる駆動側回転軸D1をその先端側から平面視したときに円形を有する円筒形状である。その外径の直径は、2種類の試験すなわち比較例および試験例のいずれにおいても同一の40mm、その内径の直径は上記2種類のいずれも20mmである。以下同様に、上記2種類のいずれも軸方向の寸法に相当する幅が12mm、軸方向副曲率半径が60mmである。 As shown in Table 8, the drive-side test strip D2 has a cylindrical shape having a circular shape when viewed in plan from the tip side of the drive-side rotation axis D1 to which it is set. The diameter of the outer diameter is 40 mm which is the same in both of the two types of tests, that is, the comparative example and the test example, and the diameter of the inner diameter is 20 mm in each of the above two types. Likewise, the width of each of the above two types is 12 mm, which corresponds to the dimension in the axial direction, and the radial radius of curvature in the axial direction is 60 mm.
 試験片の材質は、上記2種類のいずれもJIS規格SUJ2とされ、これらはいずれも一般的な焼入れ処理がされた後に焼戻し処理がなされることにより、比較例においてはその幅面のロックウェル硬度が62.2HRCとなるように加工され、試験例においてはその幅面のロックウェル硬度が60.5HRCとなるように加工された。その後、上記2種類のいずれも、駆動側試験片D2の平面視における円形の外径面の軸方向に関する算術平均粗さRaの値が0.650μm、当該駆動側試験片D2の円形の外径面の軸方向に関する二乗平均平方根傾斜RΔqの値が0.270となるように研磨加工がなされた。 The materials of the test pieces are both JIS standard SUJ2 of the above two types, and all of them are tempered after being subjected to a general quenching treatment, and in the comparative example, the Rockwell hardness of the width surface thereof is It was processed to be 62.2 HRC, and in the test example, it was processed to have a Rockwell hardness of 60.5 HRC on its width surface. After that, in any of the above two types, the value of the arithmetic average roughness Ra in the axial direction of the outer surface in the plan view of the drive-side test piece D2 is 0.650 μm, and the circular outer diameter of the drive-side test piece D2 Polishing was performed so that the value of the root mean square slope RΔq in the axial direction of the surface was 0.270.
 次に表9を用いて、2種類の試験のそれぞれに用いられた従動側試験片F2の寸法等の条件について説明する。 Next, with reference to Table 9, conditions such as dimensions of the driven-side test piece F2 used in each of the two types of tests will be described.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、従動側試験片F2は、これがセットされる従動側回転軸F1をその先端側から平面視したときに円形を有する円筒形状である。上記2種類のいずれもその外径の直径は40mm、その内径の直径は20mmであり、軸方向の寸法に相当する幅が12mmであるが、軸方向副曲率半径を有さないものとした。 As shown in Table 9, the driven-side test strip F2 has a cylindrical shape having a circular shape in a plan view from the tip side of the driven-side rotation shaft F1 to which the driven-side test piece F2 is set. The diameter of the outer diameter of the above two types is 40 mm, the diameter of the inner diameter is 20 mm, and the width corresponding to the dimension in the axial direction is 12 mm, but does not have an axial minor radius of curvature.
 試験片の材質は、上記2種類のいずれもJIS規格SUJ2とされ、これらはいずれも焼入れ処理がされた後に焼戻し処理がなされることにより、比較例においてはその幅面のロックウェル硬度が62.2HRCとなるように加工され、試験例においてはその幅面のロックウェル硬度が63.0HRCとなるように加工された。従動側試験片F2については上記2種類のいずれも、焼戻し処理の後に研磨加工および超仕上げ加工がなされた。これにより、比較例においてはその外径面の算術平均粗さRaが0.020μm、二乗平均平方根傾斜RΔqが0.013となるように仕上げられた。また試験例においては、その外径面の算術平均粗さRaが0.070μm、二乗平均平方根傾斜RΔqが0.074となるように仕上げられた。 The materials of the test pieces are both JIS standard SUJ2 of the above two types, and both are subjected to tempering treatment after being subjected to quenching treatment, and in the comparative example, the Rockwell hardness of its width surface is 62.2 HRC. It was processed so that it might become and in the test example, it was processed so that the Rockwell hardness of the width side might be 63.0 HRC. With respect to the driven-side test piece F2, both of the above two types were subjected to polishing and superfinishing after tempering. Thereby, in the comparative example, the arithmetic mean roughness Ra of the outer diameter surface is finished to be 0.020 μm and the root mean square slope RΔq to be 0.013. In the test example, the outer diameter surface was finished to have an arithmetic mean roughness Ra of 0.070 μm and a root mean square inclination RΔq of 0.074.
 なお比較例の駆動側試験片D2および従動側試験片F2はいずれも幅面ロックウェル硬度が62.2HRCとなっているが、このようにするために以下の工程がなされた。まず鋼材を840℃で40分保持後、80℃の油中で冷却して焼入れされ、その後180℃で3時間の焼戻し処理が行なわれた。また試験例の駆動側試験片D2の幅面ロックウェル硬度は60.5HRCとなっているが、このようにするために以下の工程がなされた。まず鋼材を850℃で80分保持後、80℃の油中で冷却して焼入れされ、その後220℃で100時間の焼戻し処理が行なわれた。また試験例の従動側試験片F2の幅面ロックウェル硬度は63.0HRCとなっているが、このようにするために以下の工程がなされた。まず鋼材を850℃で80分保持後、80℃の油中で冷却して焼入れされ、その後180℃で4時間の焼戻し処理が行なわれた。 Although both of the drive-side test piece D2 and the driven-side test piece F2 of the comparative example have a width surface Rockwell hardness of 62.2 HRC, the following steps were carried out for this purpose. First, after holding the steel material at 840 ° C. for 40 minutes, it was quenched by being cooled in oil at 80 ° C., and then tempered for 3 hours at 180 ° C. In addition, although the width surface Rockwell hardness of the driving-side test piece D2 of the test example is 60.5 HRC, the following steps are performed for this purpose. First, the steel material was held at 850 ° C. for 80 minutes, cooled in oil at 80 ° C. for quenching, and then tempered at 220 ° C. for 100 hours. In addition, although the width surface Rockwell hardness of the driven-side test piece F2 of the test example is 63.0 HRC, the following steps are performed for this purpose. First, the steel material was held at 850 ° C. for 80 minutes, cooled in oil at 80 ° C. for quenching, and then tempered at 180 ° C. for 4 hours.
 以上の各試験片を用いた比較例および試験例のそれぞれの試験を行なった後の、第2の転動部品に相当する従動側試験片F2の転動部である外径面の平面形状の顕微鏡拡大写真を図12に示す。図12を参照して、比較例の従動側試験片F2の転動部の表面上には多くのピーリングが発生したが、試験例の従動側試験片F2の転動部の表面上にはピーリングが発生しなかった。 The planar shape of the outer diameter surface which is the rolling portion of the driven-side test piece F2 corresponding to the second rolling part after conducting the respective tests of the comparative example and the test example using the above-described respective test pieces A microscope enlarged photograph is shown in FIG. Referring to FIG. 12, many peelings were generated on the surface of the rolling portion of driven side test piece F2 of the comparative example, but peeling was performed on the surface of the rolling portion of driven side test piece F2 of the test example. Did not occur.
 次に以上の各試験片を用いた比較例および試験例のそれぞれの試験を行なった後の、第1の転動部品に相当する駆動側試験片D2の転動部の軸方向の二乗平均平方根傾斜RΔqの測定結果を表10に示す。 Next, the root mean square of the axial direction of the rolling portion of the drive-side test piece D2 corresponding to the first rolling part after performing each test of the comparative example and the test example using the above respective test pieces The measurement results of the inclination RΔq are shown in Table 10.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10より、比較例の駆動側試験片D2に比べて、試験例の駆動側試験片D2の方が二乗平均平方根傾斜RΔqの値が小さくなった。 From Table 10, the value of the root mean square inclination RΔq of the drive-side test piece D2 of the test example was smaller than that of the drive-side test piece D2 of the comparative example.
 この結果から、駆動側試験片D2の転動部の表面粗さを従動側試験片F2の転動部の表面粗さよりも大きくし、駆動側試験片D2の転動部表面の硬度を従動側試験片F2の転動部表面の硬度よりも軟らかくさせ、従動側試験片D2の試験前の転動部表面の算術平均粗さを0.070μm程度、二乗平均平方根傾斜を0.074程度とすることが好ましいといえる。このような試験片の組み合わせを適用することにより、駆動側試験片D2の試験中の転動部のなじみが促進され、駆動側試験片D2の転動部表面の粗さ突起の傾斜が平滑化され、ピーリングを抑制できることが分かった。 From this result, the surface roughness of the rolling portion of the driving side test piece D2 is made larger than the surface roughness of the rolling portion of the driven side test piece F2, and the hardness of the rolling portion surface of the driving side test piece D2 is the driven side The hardness of the surface of the rolling portion of the test piece F2 is made softer, and the arithmetic mean roughness of the surface of the rolling portion before the test of the driven side test piece D2 is about 0.070 μm, and the root mean square inclination is about 0.074 Is preferable. By applying such a combination of test pieces, the fit-in of the rolling portion during the test of the driving side test piece D2 is promoted, and the inclination of the roughness projection of the rolling portion surface of the driving side test piece D2 is smoothed. Was found to be able to suppress peeling.
 今回開示された各実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。 It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above description but by the scope of claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of claims.
 1 深溝玉軸受、2 二円筒試験機、3 給油用フェルトパッド、11,120,130 外輪、11A,120A,130A 外輪軌道面、11B,12B 皮膜、12,121,131 内輪、12A,121A,131A 内輪軌道面、13 玉、13A 玉転動面、14,123,133 保持器、102 円錐ころ軸受、103 円筒ころ軸受、122,132 ころ、122A,132A ころ転動面、D1 駆動側回転軸、D2 駆動側試験片、DF 外径面接触部、F1 従動側回転軸、F2 従動側試験片。 Reference Signs List 1 deep groove ball bearing, 2 two cylindrical testing machine, 3 felt pad for oil supply, 1,120,130 outer ring, 11A, 120A, 130A outer ring raceway surface, 11B, 12B film, 12,121,131 inner ring, 12A, 121A, 131A Inner ring raceway, 13 balls, 13A ball rolling surface, 14, 123, 133 cage, 102 conical roller bearings, 103 cylindrical roller bearings, 122, 132 rollers, 122A, 132A roller rolling surfaces, D1 drive side rotation shaft, D2 Drive side test piece, DF OD surface contact part, F1 driven side rotation shaft, F2 driven side test piece.

Claims (25)

  1.  高炭素クロム軸受鋼からなる第1の転動部品と、
     前記第1の転動部品に接触し、高炭素クロム軸受鋼からなる第2の転動部品とを備え、
     前記第1の転動部品の転動部の表面の算術平均粗さは、前記第2の転動部品の転動部の表面の算術平均粗さよりも大きく、
     前記第2の転動部品の転動部の表面の算術平均粗さは0.07μm以上0.20μm以下である、転動装置。
    A first rolling part made of high carbon chromium bearing steel,
    And a second rolling part made of high carbon chromium bearing steel in contact with the first rolling part,
    The arithmetic mean roughness of the surface of the rolling portion of the first rolling component is larger than the arithmetic mean roughness of the surface of the rolling portion of the second rolling component,
    Arithmetic mean roughness of the surface of the rolling portion of the second rolling component is 0.07 μm or more and 0.20 μm or less.
  2.  前記第1の転動部品の転動部の表面の算術平均粗さは0.70μm以下である、請求項1に記載の転動装置。 The rolling device according to claim 1, wherein the arithmetic mean roughness of the surface of the rolling portion of the first rolling component is 0.70 m or less.
  3.  前記第2の転動部品の転動部の表面の二乗平均平方根傾斜は0.074以上0.100以下である、請求項1または2に記載の転動装置。 The rolling device according to claim 1, wherein the root mean square inclination of the surface of the rolling portion of the second rolling component is not less than 0.074 and not more than 0.100.
  4.  前記第1の転動部品の転動部のロックウェル硬度は、前記第2の転動部品の転動部のロックウェル硬度よりも低く、かつ、前記第2の転動部品の転動部のロックウェル硬度が61.5HRC以上である、請求項1~3のいずれか1項に記載の転動装置。 The Rockwell hardness of the rolling part of the first rolling part is lower than the Rockwell hardness of the rolling part of the second rolling part, and the rolling part of the second rolling part The rolling device according to any one of claims 1 to 3, wherein the Rockwell hardness is 61.5 HRC or more.
  5.  前記第1の転動部品の転動部の表面上には鉄の酸化物または化合物の少なくともいずれかを含む皮膜を有する、請求項1~4のいずれか1項に記載の転動装置。 The rolling device according to any one of claims 1 to 4, wherein a film including at least one of an oxide or a compound of iron is provided on the surface of the rolling portion of the first rolling component.
  6.  前記皮膜は四三酸化鉄を含む、請求項5に記載の転動装置。 The rolling device according to claim 5, wherein the film contains triiron tetraoxide.
  7.  請求項1~6のいずれか1項に記載の転動装置としての転がり軸受であって、
     複数の転動体と、
     複数の前記転動体の外側において複数の前記転動体に接触するように配置され、内周面に外輪軌道面を有する外輪と、
     複数の前記転動体の内側において複数の前記転動体に接触するように配置され、外周面に内輪軌道面を有する内輪とを備え、
     前記外輪および前記内輪は前記第1の転動部品であり、複数の前記転動体は前記第2の転動部品である、転がり軸受。
    A rolling bearing as a rolling device according to any one of claims 1 to 6, comprising:
    With multiple rolling elements,
    An outer ring that is disposed to be in contact with the plurality of rolling elements on the outer side of the plurality of rolling elements and has an outer ring raceway surface on the inner circumferential surface;
    And an inner ring disposed on the inner side of the plurality of rolling elements so as to be in contact with the plurality of rolling elements and having an inner ring raceway surface on the outer peripheral surface thereof;
    The rolling bearing, wherein the outer ring and the inner ring are the first rolling parts, and the plurality of rolling elements are the second rolling parts.
  8.  請求項1~6のいずれか1項に記載の転動装置としての転がり軸受であって、
     複数の転動体と、
     複数の前記転動体の外側において複数の前記転動体に接触するように配置され、内周面に外輪軌道面を有する外輪と、
     複数の前記転動体の内側において複数の前記転動体に接触するように配置され、外周面に内輪軌道面を有する内輪とを備え、
     前記外輪および前記内輪は前記第2の転動部品であり、複数の前記転動体は前記第1の転動部品である、転がり軸受。
    A rolling bearing as a rolling device according to any one of claims 1 to 6, comprising:
    With multiple rolling elements,
    An outer ring that is disposed to be in contact with the plurality of rolling elements on the outer side of the plurality of rolling elements and has an outer ring raceway surface on the inner circumferential surface;
    And an inner ring disposed on the inner side of the plurality of rolling elements so as to be in contact with the plurality of rolling elements and having an inner ring raceway surface on the outer peripheral surface thereof;
    The rolling bearing, wherein the outer ring and the inner ring are the second rolling parts, and the plurality of rolling elements are the first rolling parts.
  9.  前記外輪と複数の前記転動体のそれぞれとの間の領域、および前記内輪と複数の前記転動体のそれぞれとの間の領域における油膜パラメータの値が1.2以下である、請求項7または8に記載の転がり軸受。 The oil film parameter in the region between the outer ring and each of the plurality of rolling elements and the region between the inner ring and each of the plurality of rolling elements is 1.2 or less. The rolling bearings described in.
  10.  高炭素クロム軸受鋼からなる第1の転動部品を準備する工程と、
     前記第1の転動部品に接触し、高炭素クロム軸受鋼からなる第2の転動部品を準備する工程とを備え、
     前記第1の転動部品の転動部の表面の算術平均粗さは、前記第2の転動部品の転動部の表面の算術平均粗さよりも大きくなるように前記第1および第2の転動部品が加工され、
     前記第2の転動部品の転動部の表面の算術平均粗さは0.07μm以上0.20μm以下となるように前記第2の転動部品が加工される、転動装置の製造方法。
    Preparing a first rolling part made of high carbon chromium bearing steel;
    Contacting the first rolling part and preparing a second rolling part made of high carbon chromium bearing steel,
    The first and second arithmetic mean roughnesses of the surface of the rolling portion of the first rolling component are larger than the arithmetic mean roughness of the surface of the rolling portion of the second rolling component. The rolling parts are processed
    The manufacturing method of the rolling device in which said 2nd rolling component is processed so that the arithmetic mean roughness of the surface of the rolling part of said 2nd rolling component may be set to 0.07 micrometer or more and 0.20 micrometer or less.
  11.  前記第1および第2の転動部品は焼入れ処理された後に焼戻し処理される、請求項10に記載の転動装置の製造方法。 The method for manufacturing a rolling device according to claim 10, wherein the first and second rolling parts are quenched and then tempered.
  12.  前記第1の転動部品は、前記焼戻し処理の後に化成処理され、前記化成処理により前記第1の転動部品の転動部の表面には鉄の酸化物または化合物の少なくともいずれかを含む皮膜が形成される、請求項11に記載の転動装置の製造方法。 The first rolling component is subjected to chemical conversion treatment after the tempering treatment, and the coating containing at least one of iron oxide or compound on the surface of the rolling portion of the first rolling component by the chemical conversion treatment A method of manufacturing a rolling device according to claim 11, wherein is formed.
  13.  前記第1の転動部品は前記第2の転動部品よりも高温および/または長時間の加熱条件により前記焼戻し処理される、請求項11または12に記載の転動装置の製造方法。 The method for manufacturing a rolling device according to claim 11, wherein the first rolling component is subjected to the tempering treatment under a heating condition which is higher in temperature and / or longer than the second rolling component.
  14.  前記第1の転動部品の転動部の表面には、超仕上げ加工、バレル研磨加工、およびバニシング加工のいずれもなされない、請求項10~13のいずれか1項に記載の転動装置の製造方法。 The rolling device according to any one of claims 10 to 13, wherein the surface of the rolling portion of the first rolling part is not subjected to any of superfinishing, barrel polishing and burnishing. Production method.
  15.  前記第1の転動部品の転動部の表面の算術平均粗さは0.70μm以下となるように前記第1の転動部品が加工される、請求項10~14のいずれか1項に記載の転動装置の製造方法。 The first rolling part is processed so that the arithmetic mean roughness of the surface of the rolling portion of the first rolling part is 0.70 μm or less. The manufacturing method of the rolling device as described.
  16.  前記第2の転動部品の転動部の表面の二乗平均平方根傾斜は0.074以上0.100以下となるように前記第2の転動部品が加工される、請求項10~15のいずれか1項に記載の転動装置の製造方法。 The second rolling component is processed so that the root mean square inclination of the surface of the rolling portion of the second rolling component is 0.074 or more and 0.100 or less. The manufacturing method of the rolling device of any one of-.
  17.  前記第1の転動部品の転動部のロックウェル硬度は、前記第2の転動部品の転動部のロックウェル硬度よりも低く、かつ、前記第2の転動部品の転動部のロックウェル硬度が61.5HRC以上となるように前記第1および第2の転動部品が加工される、請求項10~16のいずれか1項に記載の転動装置の製造方法。 The Rockwell hardness of the rolling part of the first rolling part is lower than the Rockwell hardness of the rolling part of the second rolling part, and the rolling part of the second rolling part The method for manufacturing a rolling device according to any one of claims 10 to 16, wherein the first and second rolling parts are processed to have a Rockwell hardness of 61.5 HRC or more.
  18.  高炭素クロム軸受鋼からなる第1の転動部品と、
     前記第1の転動部品に接触し、高炭素クロム軸受鋼からなる第2の転動部品とを備え、
     前記第1の転動部品の転動部の表面のロックウェル硬度は、前記第2の転動部品の転動部の表面のロックウェル硬度よりも低く、
     前記第1の転動部品の転動部の表面の算術平均粗さは、前記第2の転動部品の転動部の表面の算術平均粗さよりも大きく、
     前記第2の転動部品の転動部の表面の算術平均粗さは0.07μm以上0.10μm以下であり、前記第2の転動部品の転動部の表面の二乗平均平方根傾斜は0.07以上0.10以下である、転動装置。
    A first rolling part made of high carbon chromium bearing steel,
    And a second rolling part made of high carbon chromium bearing steel in contact with the first rolling part,
    The Rockwell hardness of the surface of the rolling portion of the first rolling component is lower than the Rockwell hardness of the surface of the rolling portion of the second rolling component,
    The arithmetic mean roughness of the surface of the rolling portion of the first rolling component is larger than the arithmetic mean roughness of the surface of the rolling portion of the second rolling component,
    The arithmetic mean roughness of the surface of the rolling portion of the second rolling component is 0.07 μm or more and 0.10 μm or less, and the root mean square slope of the surface of the rolling portion of the second rolling component is 0 .07 or more and 0.10 or less, the rolling device.
  19.  前記第1の転動部品の転動部の表面のロックウェル硬度は、前記第2の転動部品の転動部の表面のロックウェル硬度よりも0.5HRC以上低い、請求項18に記載の転動装置。 The Rockwell hardness of the surface of the rolling portion of the first rolling component is at least 0.5 HRC lower than the Rockwell hardness of the surface of the rolling portion of the second rolling component. Rolling device.
  20.  請求項18または19に記載の転動装置としての転がり軸受であって、
     複数の転動体と、
     複数の前記転動体の外側において複数の前記転動体に接触するように配置され、内周面に外輪軌道面を有する外輪と、
     複数の前記転動体の内側において複数の前記転動体に接触するように配置され、外周面に内輪軌道面を有する内輪とを備え、
     前記外輪および前記内輪は前記第1の転動部品であり、複数の前記転動体は前記第2の転動部品である、転がり軸受。
    20. A rolling bearing as a rolling device according to claim 18 or 19, wherein
    With multiple rolling elements,
    An outer ring that is disposed to be in contact with the plurality of rolling elements on the outer side of the plurality of rolling elements and has an outer ring raceway surface on the inner circumferential surface;
    And an inner ring disposed on the inner side of the plurality of rolling elements so as to be in contact with the plurality of rolling elements and having an inner ring raceway surface on the outer peripheral surface thereof;
    The rolling bearing, wherein the outer ring and the inner ring are the first rolling parts, and the plurality of rolling elements are the second rolling parts.
  21.  請求項18または19に記載の転動装置としての転がり軸受であって、
     複数の転動体と、
     複数の前記転動体の外側において複数の前記転動体に接触するように配置され、内周面に外輪軌道面を有する外輪と、
     複数の前記転動体の内側において複数の前記転動体に接触するように配置され、外周面に内輪軌道面を有する内輪とを備え、
     前記外輪および前記内輪は前記第2の転動部品であり、複数の前記転動体は前記第1の転動部品である、転がり軸受。
    20. A rolling bearing as a rolling device according to claim 18 or 19, wherein
    With multiple rolling elements,
    An outer ring that is disposed to be in contact with the plurality of rolling elements on the outer side of the plurality of rolling elements and has an outer ring raceway surface on the inner circumferential surface;
    And an inner ring disposed on the inner side of the plurality of rolling elements so as to be in contact with the plurality of rolling elements and having an inner ring raceway surface on the outer peripheral surface thereof;
    The rolling bearing, wherein the outer ring and the inner ring are the second rolling parts, and the plurality of rolling elements are the first rolling parts.
  22.  前記外輪と複数の前記転動体のそれぞれとの間の領域、および前記内輪と複数の前記転動体のそれぞれとの間の領域における油膜パラメータの値が1.2以下である、請求項20または21に記載の転がり軸受。 The oil film parameter in the region between the outer ring and each of the plurality of rolling elements and the region between the inner ring and each of the plurality of rolling elements is 1.2 or less. The rolling bearings described in.
  23.  高炭素クロム軸受鋼からなる第1の転動部品を準備する工程と、
     前記第1の転動部品に接触し、高炭素クロム軸受鋼からなる第2の転動部品を準備する工程とを備え、
     前記第1の転動部品の転動部の表面のロックウェル硬度は、前記第2の転動部品の転動部の表面のロックウェル硬度よりも低くなるように前記第1および第2の転動部品が加工され、
     前記第1の転動部品の転動部の表面の算術平均粗さは、前記第2の転動部品の転動部の表面の算術平均粗さよりも大きくなるように前記第1および第2の転動部品が加工され、
     前記第2の転動部品の転動部の表面の算術平均粗さは0.07μm以上0.10μm以下となり、前記第2の転動部品の転動部の表面の二乗平均平方根傾斜は0.07以上0.10以下となるように前記第2の転動部品が加工される、転動装置の製造方法。
    Preparing a first rolling part made of high carbon chromium bearing steel;
    Contacting the first rolling part and preparing a second rolling part made of high carbon chromium bearing steel,
    The first and second rolling so that the Rockwell hardness of the surface of the rolling portion of the first rolling part is lower than the Rockwell hardness of the surface of the rolling portion of the second rolling part Moving parts are processed
    The first and second arithmetic mean roughnesses of the surface of the rolling portion of the first rolling component are larger than the arithmetic mean roughness of the surface of the rolling portion of the second rolling component. The rolling parts are processed
    The arithmetic mean roughness of the surface of the rolling portion of the second rolling component is 0.07 μm or more and 0.10 μm or less, and the root mean square slope of the surface of the rolling portion of the second rolling component is 0. The manufacturing method of the rolling device in which the said 2nd rolling part is processed so that it may become 07 or more and 0.10 or less.
  24.  前記第1および第2の転動部品は焼入れ処理された後に焼戻し処理される、請求項23に記載の転動装置の製造方法。 The method for manufacturing a rolling device according to claim 23, wherein the first and second rolling parts are hardened and then tempered.
  25.  前記第1の転動部品の転動部の表面は、回転砥石を用いた研削または研磨加工により仕上げられている、請求項23または24に記載の転動装置の製造方法。 The method for manufacturing a rolling device according to claim 23 or 24, wherein the surface of the rolling portion of the first rolling part is finished by grinding or polishing using a rotary grindstone.
PCT/JP2017/000128 2016-01-21 2017-01-05 Rolling element bearing, rolling device, and rolling device manufacturing method WO2017126323A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/071,851 US11028880B2 (en) 2016-01-21 2017-01-05 Rolling bearing, rolling device, and method of manufacturing rolling device
CN201780007576.2A CN108603530A (en) 2016-01-21 2017-01-05 The manufacturing method of rolling bearing, tourelle and tourelle
EP17741203.8A EP3406923A4 (en) 2016-01-21 2017-01-05 Rolling element bearing, rolling device, and rolling device manufacturing method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016009964 2016-01-21
JP2016-009964 2016-01-21
JP2016-034480 2016-02-25
JP2016034480A JP2017150597A (en) 2016-02-25 2016-02-25 Rolling bearing, rolling device and manufacturing method of rolling device
JP2016-170758 2016-09-01
JP2016170758A JP6964400B2 (en) 2016-01-21 2016-09-01 Manufacturing method of rolling bearings, rolling devices and rolling devices

Publications (1)

Publication Number Publication Date
WO2017126323A1 true WO2017126323A1 (en) 2017-07-27

Family

ID=59361570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000128 WO2017126323A1 (en) 2016-01-21 2017-01-05 Rolling element bearing, rolling device, and rolling device manufacturing method

Country Status (1)

Country Link
WO (1) WO2017126323A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11078961B2 (en) * 2018-04-02 2021-08-03 Nsk Ltd. Intermediary race member of rolling bearing, race, rolling bearing and production method therefor
US11542985B2 (en) 2018-09-26 2023-01-03 Ntn Corporation Rolling bearing and wind power generation rotor shaft support device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265480A (en) 1991-02-21 1992-09-21 Ntn Corp Bearing of compressor for air conditioner
JP2002070873A (en) * 2000-08-28 2002-03-08 Nsk Ltd Rolling bearing
JP2002206542A (en) * 2001-01-10 2002-07-26 Ntn Corp Electrolytic corrosion prevention bearing and method of manufacturing outer ring of the bearing
JP2005061495A (en) * 2003-08-11 2005-03-10 Nsk Ltd Cylindrical roller bearing
JP2005226683A (en) * 2004-02-10 2005-08-25 Nsk Ltd Thrust needle roller bearing
JP2006161887A (en) 2004-12-03 2006-06-22 Nsk Ltd Needle roller bearing
JP2006322017A (en) * 2005-05-17 2006-11-30 Nsk Ltd Rolling bearing
JP2006348342A (en) * 2005-06-15 2006-12-28 Nsk Ltd Rolling supporter
JP2012219995A (en) * 2011-04-14 2012-11-12 Ntn Corp Rolling bearing and manufacturing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265480A (en) 1991-02-21 1992-09-21 Ntn Corp Bearing of compressor for air conditioner
JP2002070873A (en) * 2000-08-28 2002-03-08 Nsk Ltd Rolling bearing
JP2002206542A (en) * 2001-01-10 2002-07-26 Ntn Corp Electrolytic corrosion prevention bearing and method of manufacturing outer ring of the bearing
JP2005061495A (en) * 2003-08-11 2005-03-10 Nsk Ltd Cylindrical roller bearing
JP2005226683A (en) * 2004-02-10 2005-08-25 Nsk Ltd Thrust needle roller bearing
JP2006161887A (en) 2004-12-03 2006-06-22 Nsk Ltd Needle roller bearing
JP2006322017A (en) * 2005-05-17 2006-11-30 Nsk Ltd Rolling bearing
JP2006348342A (en) * 2005-06-15 2006-12-28 Nsk Ltd Rolling supporter
JP2012219995A (en) * 2011-04-14 2012-11-12 Ntn Corp Rolling bearing and manufacturing method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROTOSHI TAKATA; SUSUMU SUZUKI; ETSUO MAEDA: "Influence of Lubrication on the Fatigue Life of Roller Bearings", NSK BEARING JOURNAL, vol. 642, pages 7 - 13
See also references of EP3406923A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11078961B2 (en) * 2018-04-02 2021-08-03 Nsk Ltd. Intermediary race member of rolling bearing, race, rolling bearing and production method therefor
US11542985B2 (en) 2018-09-26 2023-01-03 Ntn Corporation Rolling bearing and wind power generation rotor shaft support device

Similar Documents

Publication Publication Date Title
JP2017150597A (en) Rolling bearing, rolling device and manufacturing method of rolling device
JP6833330B2 (en) Rolling device and rolling bearing
WO2017126323A1 (en) Rolling element bearing, rolling device, and rolling device manufacturing method
JP2021127834A (en) Tapered roller bearing
JP2005106234A (en) Conical roller bearing and method for working conical roller bearing
JP6964400B2 (en) Manufacturing method of rolling bearings, rolling devices and rolling devices
US11028880B2 (en) Rolling bearing, rolling device, and method of manufacturing rolling device
WO2016159137A1 (en) Rolling device and rolling bearing
US11319994B2 (en) Thrust roller bearing
JPH03117724A (en) Roller bearing
JPH03117723A (en) Roller bearing
JP2019183982A (en) Rolling device, rolling bearing and manufacturing method of rolling device
US11143233B2 (en) Rolling bearing and method for manufacturing rolling bearing
JPH04321816A (en) Gear box bearing of helicopter
JP4752295B2 (en) Toroidal continuously variable transmission
JP2008019965A (en) Planetary gear device and rolling bearing
JP7257818B2 (en) rolling devices and rolling bearings
WO2024116493A1 (en) Crossed roller bearing and method for manufacturing crossed roller bearing
JP2019215015A (en) Rolling device and rolling bearing
JP2019215016A (en) Rolling bearing
JPH04175511A (en) Needle shaped roller bearing for starter
JP2005061495A (en) Cylindrical roller bearing
JP7176646B2 (en) Rolling bearing and its manufacturing method
JP5866801B2 (en) Roller bearing
JP2008281077A (en) Automatic aligning roller bearing for paper making machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017741203

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017741203

Country of ref document: EP

Effective date: 20180821