WO2017126203A1 - Radiation imaging system, control device and control method thereof, and program - Google Patents

Radiation imaging system, control device and control method thereof, and program Download PDF

Info

Publication number
WO2017126203A1
WO2017126203A1 PCT/JP2016/083751 JP2016083751W WO2017126203A1 WO 2017126203 A1 WO2017126203 A1 WO 2017126203A1 JP 2016083751 W JP2016083751 W JP 2016083751W WO 2017126203 A1 WO2017126203 A1 WO 2017126203A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
detection
imaging system
radiation imaging
imaging apparatus
Prior art date
Application number
PCT/JP2016/083751
Other languages
French (fr)
Japanese (ja)
Inventor
大蔵 松田
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2017126203A1 publication Critical patent/WO2017126203A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • the present invention relates to a radiation imaging system, a control device, a control method thereof, and a program.
  • Radiation imaging apparatus having a matrix substrate having a pixel array in which a switch such as a TFT (thin film transistor) and a conversion element such as a photoelectric conversion element are used as a radiation imaging apparatus used for medical image diagnosis and nondestructive inspection using radiation such as X-rays has been put to practical use.
  • a switch such as a TFT (thin film transistor) and a conversion element such as a photoelectric conversion element
  • radiation imaging apparatuses have become smaller and lighter, and portability has improved. For this reason, when installing the radiation imaging apparatus, there is a degree of freedom in the posture, and it is required to detect whether the radiation imaging device is installed in the correct posture or the like.
  • the radiation imaging apparatus has a built-in function of monitoring radiation irradiation.
  • this function for example, it is possible to detect the timing at which radiation irradiation from the radiation source is started, to detect the timing at which radiation irradiation should be stopped, and to detect the radiation dose or integrated dose.
  • Patent Document 1 discloses a radiation imaging system including a radiation imaging apparatus having pixels for monitoring radiation irradiation. This radiation imaging system detects the attitude of the radiation imaging apparatus mounted on the imaging table every time imaging is performed. In Patent Document 1, the orientation of the radiation imaging apparatus is detected by detecting the marker placed on the imaging stand by the reflective optical sensor of the radiation imaging apparatus.
  • the conventional technique can detect the posture of the radiation imaging apparatus, but does not disclose any relationship with the region where the subject is monitored for radiation. In this case, a difference occurs between an appropriate irradiation amount and an actual irradiation amount at the site of the subject, and there is a possibility that the radiation dose to the subject is excessive or insufficient.
  • the present invention provides an advantageous technique for appropriately controlling the radiation dose.
  • a planar detector in which a plurality of pixels that convert radiation into an electrical signal are arranged in a matrix, and a detection unit that detects radiation that has arrived in a plurality of regions of the planar detector.
  • a radiation imaging system comprising: selection means for selecting a region to be used for radiation detection among the plurality of regions based on an attitude of the flat detector as at least one selection condition. Is provided.
  • an advantageous technique is provided for appropriately controlling the radiation dose.
  • the lineblock diagram of the radiation imaging system in an embodiment. 1 is an external view of a radiation imaging apparatus according to an embodiment.
  • FIG. 1 is a diagram illustrating a configuration of a radiation imaging system 100 in the embodiment.
  • the radiation imaging system 100 can be used, for example, for capturing a radiation image in a hospital.
  • the radiation imaging system 100 includes a radiation imaging apparatus 101, a control apparatus 102, a radiation source 103, a radiation generation apparatus 104, a hospital LAN 105, and an irradiation switch 106.
  • the radiation imaging apparatus 101 detects radiation (for example, X-rays) that has passed through the subject S, which is a patient or a subject, and forms an image.
  • the control device 102 is communicably connected to the radiation imaging device 101 and the radiation generation device 104.
  • the control device 102 can perform setting of imaging conditions, operation control, and the like for the radiation imaging apparatus 101, for example.
  • the radiation imaging apparatus 101 can perform image transfer, arrival dose transmission, automatic exposure control signal transmission, and the like to the control apparatus 102, for example.
  • the control device 102 has, for example, a mouse or a keyboard as an input device that enables input of information such as setting of shooting conditions, operation control, and image information, and a display as an output device.
  • the control device 102 also performs radiation irradiation control and the like on the radiation generation device 104 that generates radiation from the radiation source 103.
  • the radiation source 103 includes, for example, an X-ray tube and a rotor that accelerate electrons with a high voltage to generate radiation and collide with the anode.
  • the irradiation switch 106 requests the control device 102 to radiate radiation when the operator turns on.
  • the control device 102 includes a communication control unit 1021 that controls communication, and a control unit 1022 that performs operation control, dose control, and the like.
  • the communication control unit 1021 may be configured as a unit different from the control device 102.
  • the control unit 1022 monitors the states of the radiation imaging apparatus 101 and the radiation generation apparatus 104 and controls radiation irradiation and imaging. When the radiation irradiated from the radiation source 103 is irradiated on the subject, the radiation imaging apparatus 101 detects the radiation transmitted through the subject and forms an image.
  • the radiation imaging apparatus 101 includes a wireless communication unit and a wired communication unit (not shown), and can communicate with the communication control unit 1021 of the control device 102.
  • the wired communication unit enables exchange of information by cable connection according to a known communication standard.
  • the wireless communication unit is formed of a circuit board including a communication IC, for example.
  • the antenna is electrically connected to an antenna (not shown), and the antenna transmits and receives radio waves.
  • a circuit board having a communication IC or the like performs protocol communication processing based on a wireless LAN via an antenna. Note that there are no particular limitations on the frequency band, standard, or method of wireless communication in wireless communication, and a known method such as proximity wireless communication or UWB may be used.
  • the wireless communication unit may have a plurality of wireless communication methods, and may select and perform communication as appropriate.
  • the control apparatus 102 and the radiation imaging apparatus 101 Between the control apparatus 102 and the radiation imaging apparatus 101, setting of imaging conditions, operation control, image transfer, arrival dose, automatic exposure control signal, and the like are exchanged.
  • dose information, irradiation control signals, and the like are exchanged between the control device 102 and the radiation generation device 104.
  • the dose information refers to the dose of radiation emitted from the radiation source 103.
  • the reaching dose refers to the dose that reaches the radiation imaging apparatus 101 among the radiation irradiated from the radiation source 103.
  • the radiation imaging apparatus 101 is, for example, a portable cassette type flat detector (flat panel detector).
  • FIG. 2 shows an external view of the radiation imaging apparatus 101 in the embodiment.
  • the radiation imaging apparatus 101 includes a power button 107 for turning on and off the power, a battery unit 108 for supplying power, and a connector 109.
  • the battery unit 108 is removable, and the battery body can be charged by a battery charger.
  • the radiation imaging apparatus 101 is connected to the control apparatus 102 via the cable 110. At this time, one end of the cable 110 is connected to the radiation imaging apparatus 101 via the connector 109.
  • the communication is automatically switched to wired communication, or switched to wired communication by a user operation, and information is exchanged between the two by wired communication.
  • the radiation imaging apparatus 101 and the control apparatus 102 are configured separately, but the radiation imaging apparatus 101 may be configured as an integrated configuration including a control unit having the function of the control apparatus 102. Good.
  • a control unit can be composed of, for example, an ASIC.
  • FIG. 3 shows an internal configuration example of the radiation imaging apparatus 101 in the present embodiment.
  • the radiation imaging apparatus 101 has a plurality of pixels arranged in a matrix so as to form a plurality of rows and a plurality of columns in the imaging region 300.
  • the plurality of pixels include a plurality of imaging pixels 111 for acquiring a radiation image and a detection pixel 121 for detecting radiation.
  • the imaging pixel 111 includes a first conversion element 112 that converts radiation into an electrical signal, and a first switch 113 disposed between the column signal line 116 and the first conversion element 112.
  • the detection pixel 121 includes a second conversion element 122 that converts radiation into an electrical signal, and a second switch 123 disposed between the detection signal line 125 and the second conversion element 122.
  • the first conversion element 112 and the second conversion element 122 include a scintillator that converts radiation into light and a photoelectric conversion element that converts light into an electrical signal.
  • the scintillator is generally formed in a sheet shape so as to cover the imaging region 300 and can be shared by a plurality of pixels.
  • the 1st conversion element 112 and the 2nd conversion element 122 may be comprised by the conversion element which converts a radiation into light directly.
  • the first switch 113 and the second switch 123 can include, for example, a thin film transistor (TFT) in which an active region is formed of a semiconductor such as amorphous silicon or polycrystalline silicon (preferably polycrystalline silicon).
  • TFT thin film transistor
  • the radiation imaging apparatus 101 has a plurality of column signal lines 116 and a plurality of drive lines 114.
  • Each of the plurality of column signal lines 116 corresponds to one of the plurality of columns in the imaging region 300.
  • Each of the plurality of drive lines 114 corresponds to one of the plurality of rows in the imaging region 300.
  • Each of the plurality of drive lines 114 is driven by the row selection unit 221.
  • the first electrode of the first conversion element 112 is connected to the first main electrode of the first switch 113, and the second electrode of the first conversion element 112 is connected to the bias line 118.
  • one bias line 118 extends in the column direction and is commonly connected to the second electrodes of the plurality of first conversion elements 112 arranged in the column direction.
  • Bias line 118 receives bias voltage Vs from power supply circuit 226.
  • the second main electrode of the first switch 113 of the plurality of imaging pixels 111 configuring one column is connected to one column signal line 116.
  • a control electrode of the first switch 113 of the plurality of imaging pixels 111 configuring one row is connected to one of the plurality of drive lines 114.
  • the plurality of column signal lines 116 are connected to the reading circuit 222.
  • the readout circuit 222 can include a plurality of detection units 132, a multiplexer 134, and an AD converter 136.
  • Each of the plurality of column signal lines 116 is connected to a corresponding detection unit among the plurality of detection units 132 of the reading circuit 222.
  • one column signal line 116 corresponds to one detector 132.
  • the detection unit 132 includes, for example, a differential amplifier.
  • the multiplexer 134 selects a plurality of detection units 132 in a predetermined order, and supplies signals from the selected detection units 132 to the AD converter 136.
  • the AD converter 136 converts the supplied signal into a digital signal and outputs the digital signal.
  • the first electrode of the second conversion element 122 is connected to the first main electrode of the second switch 123, and the second electrode of the second conversion element 122 is connected to the bias line 118.
  • the second main electrode of the second switch 123 is electrically connected to the detection signal line 125.
  • the control electrode of the second switch 123 is electrically connected to the drive line 124.
  • the radiation imaging apparatus 101 can include a plurality of detection signal lines 125.
  • One or more detection pixels 121 can be connected to one detection signal line 125.
  • the drive line 124 is driven by the drive circuit 241.
  • One or more detection pixels 121 can be connected to one drive line 124.
  • the detection signal line 125 is connected to the reading circuit 242.
  • the reading circuit 242 can include a plurality of detection units 142, a multiplexer 144, and an AD converter 146.
  • Each of the plurality of detection signal lines 125 can be connected to a corresponding detection unit among the plurality of detection units 142 of the reading circuit 242.
  • one detection signal line 125 corresponds to one detection unit 142.
  • the detection unit 142 includes, for example, a differential amplifier.
  • the multiplexer 144 selects a plurality of detection units 142 in a predetermined order, and supplies a signal from the selected detection unit 142 to the AD converter 146.
  • the AD converter 146 converts the supplied signal into a digital signal and outputs the digital signal.
  • the output of the reading circuit 242 (AD converter 146) is supplied to the signal processing unit 224 and processed by the signal processing unit 224.
  • the signal processing unit 224 outputs information indicating radiation irradiation to the radiation imaging apparatus 101 based on the output of the readout circuit 242 (AD converter 146). Specifically, for example, the signal processing unit 224 detects radiation irradiation on the radiation imaging apparatus 101 or calculates at least one of the radiation irradiation amount and the integrated irradiation amount.
  • the control circuit 225 controls the driving circuit 221, the driving circuit 241, and the reading circuit 242 based on information from the signal processing unit 224.
  • the control circuit 225 controls, for example, the start and end of exposure (accumulation of charge corresponding to radiation irradiated by the imaging pixel 111).
  • the communication unit 227 is responsible for communication with the control device 102.
  • the communication unit 227 has two communication units, a wired communication unit and a wireless communication unit.
  • the radiation imaging apparatus 101 is portable and has a high degree of freedom in its posture, so that, for example, it can cope with the subject's position imaging as shown in FIG. Can also be used for standing shooting.
  • the case of performing the standing imaging of the subject will be described.
  • FIG. 4 shows an example of the system configuration when performing standing imaging of a subject.
  • the radiation imaging apparatus 101 can be installed in two directions, the in-plane direction.
  • One is a direction A indicating a state in which the side 101a of the radiation imaging apparatus 101 configured in a rectangular shape is the left side when viewed from the subject side.
  • the other is a direction B indicating a state in which the state is rotated 90 ° counterclockwise from the state A, that is, a state in which the side 101a is the bottom as viewed from the subject side.
  • the radiation imaging apparatus 101 includes a plurality of regions (detection areas) each configured by the detection pixels 121 for detecting the reached radiation.
  • each of the plurality of detection areas corresponds to each assumed imaging region.
  • five detection areas are set as follows. The five detection areas are the detection area 1 located at the upper left, the detection area 2 located at the upper right, the detection area 3 located at the center, the detection area 4 located at the lower left, as viewed from the radiation source 103 side in the state of direction A. It consists of a detection area 5 located in the lower right.
  • the arrival dose is detected in each detection area.
  • the control device 102 can control the radiation generating device 104 so that excessive irradiation is not performed from the radiation source 103 based on the arrival dose detected in each detection area.
  • the optimum arrival dose differs depending on the imaging region of the subject S.
  • the position of each detection area changes depending on whether the direction of the radiation imaging apparatus 101 is the direction A or the direction B. Therefore, the radiation imaging apparatus 101 according to the present embodiment identifies the position of each detection area by recognizing the orientation in the in-plane direction of the radiation imaging apparatus 101, and sets the detection area used for detecting the irradiation amount according to the imaging region. Can be set. Without such a function, the irradiation amount is controlled using the irradiation amount detected in the detection area unrelated to the imaging region, and when the radiation source 103 performs excessive irradiation or the radiation dose is insufficient. It may be.
  • the radiation imaging apparatus 101 is fixed to the gantry 504 in order to match the imaging position of the subject S, and the radiation imaging apparatus 101 has a dose detection unit 501 having the five detection areas described above. Is provided.
  • the radiation imaging apparatus 101 also includes a direction detection unit 503 that detects the orientation in the in-plane direction of the radiation imaging apparatus 101.
  • the direction detection unit 503 is, for example, a uniaxial acceleration sensor that detects acceleration in the direction of gravity in the state of the direction A. In this case, the output of the acceleration sensor is large in the state of direction A, and the output of the acceleration sensor is small in the state of direction B. Therefore, the orientation in the in-plane direction of the radiation imaging apparatus 101 can be detected by the output of the acceleration sensor.
  • the radiation imaging apparatus 101 outputs direction information detected by the direction detection unit 503 to the control apparatus 102 and receives information on detection areas to be used (valid / invalid designation information for each detection area) from the control apparatus 102. .
  • the radiation imaging apparatus 101 sets validity / invalidity of each detection area based on the received detection area information.
  • the radiation 101 outputs information on the arrival dose in the effective detection area to the control device 102.
  • FIG. 5 is a flowchart showing an operation procedure of the control device 102 in the present embodiment.
  • the control device 102 sets the imaging region 506 of the subject (S2).
  • the control apparatus 102 acquires (receives) the orientation information (orientation information) of the radiation imaging apparatus 101 from the direction detection unit 503 in order to determine the orientation of the radiation imaging apparatus 101 mounted on the gantry 504 (S4).
  • the control device 102 selects a detection area to be used based on the set imaging region 506 and the acquired orientation information (S6).
  • the control device 102 selects the detection areas 1 and 2 as an area corresponding to the imaging region 506 (for example, the chest).
  • the control device 102 selects the detection areas 2 and 5 as an area corresponding to the imaging region 506.
  • the control device 102 transmits detection area selection information to the radiation imaging apparatus 101 (S8).
  • the radiation imaging apparatus 101 sets a detection area based on the selection information received from the control apparatus 102. Specifically, the radiation imaging apparatus 101 sets radiation detection in a selected detection area to be valid, and sets radiation detection in a detection area other than the selected area to be invalid. For example, when the selection information indicates the detection areas 1 and 2, the radiation imaging apparatus 101 sets the charge accumulation of the detection pixels 121 in the detection areas 1 and 2 to be effective, and the charge of the detection pixels 121 in the other detection areas. Disable accumulation of. When the selection information indicates the detection areas 2 and 5, the radiation imaging apparatus 101 sets the charge accumulation of the detection pixels 121 in the detection areas 2 and 5 to be effective, and the charge of the detection pixels 121 in the other detection areas. Disable accumulation.
  • the radiation imaging apparatus 101 may perform control so that the detection pixels 121 in the detection areas other than the detection areas 1 and 2 are not driven by the driving circuit 241. Further, the radiation imaging apparatus 101 may perform control so that signals from the detection pixels 121 in the detection areas other than the detection areas 1 and 2 are not digitally converted by the AD converter 146 of the readout circuit 242. Further, the radiation imaging apparatus 101 may perform control so that signals from the detection pixels 121 in the detection areas other than the detection areas 1 and 2 are not digitally converted by the AD converter 146 of the readout circuit 242. Further, the radiation imaging apparatus 101 may control the signal from the detection pixels 121 in the detection areas other than the detection areas 1 and 2 not to perform the processing by the signal processing unit 224. As described above, by the method of invalidating the detection of radiation in the detection areas other than the various selected regions, the arrival dose accumulation and the exposure stop request can be performed at high speed.
  • the control device 102 transmits an irradiation control signal (exposure request) to the radiation generation device 104 in response to the irradiation switch 106 being pressed by the operator.
  • the radiation generator 104 emits radiation from the radiation source 103, and imaging is started (S10).
  • the control device 102 acquires arrival dose information from each effective detection area and integrates the arrival dose in each area (S12). Then, for example, in response to the integrated value of each area exceeding a predetermined threshold value, the control device 102 issues an exposure stop request to the radiation generation device 104 to generate radiation from the radiation source 103. Stop (S14).
  • the arrival dose only in the detection area corresponding to the imaging region 506 of the subject S is monitored, and radiation irradiation can be stopped at an appropriate timing. Thereby, it is possible to prevent excessive irradiation.
  • the radiation imaging apparatus 101 is configured to set the detection area based on the selection information received from the control apparatus 102, but is not limited thereto.
  • the controller 102 may monitor only the integrated value by extracting only the information on the arrival dose in the selected detection area.
  • FIG. 6 shows an example of a system configuration in the case where the subject is photographed in the supine position.
  • the radiation imaging apparatus 101 can be installed in two directions. One is a direction A indicating a state in which the side 101a of the radiation imaging apparatus 101 configured in a rectangular shape is the left side when viewed from the subject side (that is, when viewed from above). The other is a direction B indicating a state in which the state is rotated 90 ° counterclockwise from the state A, that is, a state in which the side 101a is the bottom as viewed from the subject side.
  • the radiation imaging apparatus 101 includes an irradiation amount detection unit 501 including a plurality of detection areas, as in the first embodiment.
  • the radiation imaging apparatus 101 is fixed to a bed 703 on which the subject S is placed.
  • the radiation imaging apparatus 101 can move in the horizontal direction with respect to the bed 703, and thereby can be aligned.
  • a magnetic body 701 is fixed at a predetermined position of the bed 703.
  • the magnetic body 701 is a magnet, for example, it is not restricted to this.
  • the radiation imaging apparatus 101 includes a magnetic detection unit 702 including magnetic sensors A, B, C, and D that react to a magnetic body 701.
  • the magnetic sensors A, B, C, and D may be proximity sensors that output higher voltages as they approach the magnetic body 701, but are not limited thereto.
  • the number of magnetic sensors is not limited to a specific number.
  • the radiation imaging apparatus 101 detects the orientation of the radiation imaging apparatus 101 based on the output voltage of the magnetic sensor. For example, when the output voltage of the magnetic sensor C is the highest, the radiation imaging apparatus 101 determines that the direction of the radiation imaging apparatus 101 is the direction A. When the output voltage of the magnetic sensor A is the highest, the radiation imaging apparatus 101 determines that the direction of the radiation imaging apparatus 101 is the direction B. The radiation imaging apparatus 101 outputs the detected orientation information (orientation information) of the radiation imaging apparatus 101 to the control apparatus 102.
  • the control device 102 can control irradiation and stop of radiation in the same procedure as in the first embodiment.
  • FIG. 7 shows a modification of FIG.
  • the radiation imaging apparatus 101 is fixed to a bed 903 on which the subject S is placed.
  • the radiation imaging apparatus 101 can move in the horizontal direction with respect to the bed 903, and thereby can be aligned.
  • the radiation imaging apparatus 101 includes an irradiation amount detection unit 501 that detects an arrival dose of radiation.
  • the radiation imaging apparatus 101 further includes a geomagnetism detection unit 902 that detects the direction ⁇ of the geomagnetism 901 with respect to the geomagnetism direction.
  • the geomagnetic detection unit 902 can be a geomagnetic sensor, but is not limited thereto.
  • the geomagnetism detection unit 902 detects the orientation of the radiation imaging apparatus 101 with respect to the direction of the geomagnetism 901, and outputs information on this orientation to the control apparatus 102.
  • the control device 102 selects a detection area close to the imaging region 506 set in advance from the received orientation information. For example, when the direction of the radiation imaging apparatus 101 is the direction A, the angle detected by the radiation imaging apparatus 101 with respect to the geomagnetic direction by the geomagnetic detection unit 902 is ⁇ 1. At this time, the control device 102 selects the detection areas 1 and 2 close to the imaging region 506. When the orientation of the radiation imaging apparatus 101 is the direction B, the angle detected by the radiation imaging apparatus 101 with respect to the geomagnetic direction by the geomagnetic detection unit 902 is ⁇ 2. At this time, the control device 102 selects the detection areas 2 and 5 that are close to the imaging region 506.
  • the present invention supplies a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program This process can be realized. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • a circuit for example, ASIC

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

This radiation imaging system comprises: a flat panel detector having a plurality of pixels that transform radiation into an electric signal and are arranged in a matrix form; a sensing means for sensing the incoming radiation in a plurality of areas of the flat panel detector; and a selecting means for selecting, on the basis of the position of the flat panel detector as at least one selection condition, an area to be used when sensing radiation among the plurality of areas.

Description

放射線撮像システム、制御装置及びその制御方法、並びにプログラムRadiation imaging system, control device, control method therefor, and program
 本発明は、放射線撮像システム、制御装置及びその制御方法、並びにプログラムに関する。 The present invention relates to a radiation imaging system, a control device, a control method thereof, and a program.
 X線等の放射線による医療画像診断や非破壊検査に用いる放射撮像装置として、TFT(薄膜トランジスタ)等のスイッチと光電変換素子等の変換素子とを組み合わせた画素アレイを有するマトリクス基板を有する放射線撮像装置が実用化されている。近年では、放射線撮像装置は、小型化及び軽量化が進み、可搬性が向上している。このため、放射線撮像装置を設置する際にはその姿勢の自由度があり、正しい姿勢で設置されているかを検出すること等が求められる。 Radiation imaging apparatus having a matrix substrate having a pixel array in which a switch such as a TFT (thin film transistor) and a conversion element such as a photoelectric conversion element are used as a radiation imaging apparatus used for medical image diagnosis and nondestructive inspection using radiation such as X-rays Has been put to practical use. In recent years, radiation imaging apparatuses have become smaller and lighter, and portability has improved. For this reason, when installing the radiation imaging apparatus, there is a degree of freedom in the posture, and it is required to detect whether the radiation imaging device is installed in the correct posture or the like.
 また、放射線撮像装置は、放射線の照射をモニタする機能を内蔵することが検討されている。この機能によって、例えば、放射線源からの放射線の照射が開始されたタイミングの検知、放射線の照射を停止されるべきタイミングの検知、放射線の照射量または積算照射量の検知が可能になる。 Also, it is considered that the radiation imaging apparatus has a built-in function of monitoring radiation irradiation. With this function, for example, it is possible to detect the timing at which radiation irradiation from the radiation source is started, to detect the timing at which radiation irradiation should be stopped, and to detect the radiation dose or integrated dose.
 特許文献1には、放射線の照射をモニタする画素を有する放射線撮像装置を含む放射線撮像システムが開示されている。この放射線撮像システムは、撮影の都度、撮影台に装着された放射線撮像装置の姿勢を検出する。特許文献1においては、撮影台に設置されたマーカーを放射線撮像装置の反射型光センサが検知することで、放射線撮像装置の向きが検出される。 Patent Document 1 discloses a radiation imaging system including a radiation imaging apparatus having pixels for monitoring radiation irradiation. This radiation imaging system detects the attitude of the radiation imaging apparatus mounted on the imaging table every time imaging is performed. In Patent Document 1, the orientation of the radiation imaging apparatus is detected by detecting the marker placed on the imaging stand by the reflective optical sensor of the radiation imaging apparatus.
特開2011-067314号公報JP 2011-067314 A
 しかし、従来技術では、放射線撮像装置の姿勢の検出を行い得るが、被検体に対して放射線をモニタする領域との関係についてなんら開示されていない。この場合、被検体の部位における、適切な照射量と実際の照射量との間に差が発生し、被検体に対する放射線の照射量が過剰あるいは不足となる可能性がある。 However, the conventional technique can detect the posture of the radiation imaging apparatus, but does not disclose any relationship with the region where the subject is monitored for radiation. In this case, a difference occurs between an appropriate irradiation amount and an actual irradiation amount at the site of the subject, and there is a possibility that the radiation dose to the subject is excessive or insufficient.
 本発明は、放射線の照射量を適切に制御するために有利な技術を提供する。 The present invention provides an advantageous technique for appropriately controlling the radiation dose.
 本発明の一側面によれば、放射線を電気信号に変換する複数の画素がマトリクス状に配置された平面検出器と、前記平面検出器の複数の領域において、到達した放射線を検知する検知手段と、選択条件の少なくとも1つの条件としての前記平面検出器の姿勢に基づいて、前記複数の領域のうち、放射線の検知に使用する領域を選択する選択手段とを有することを特徴とする放射線撮像システムが提供される。 According to one aspect of the present invention, a planar detector in which a plurality of pixels that convert radiation into an electrical signal are arranged in a matrix, and a detection unit that detects radiation that has arrived in a plurality of regions of the planar detector. A radiation imaging system comprising: selection means for selecting a region to be used for radiation detection among the plurality of regions based on an attitude of the flat detector as at least one selection condition. Is provided.
 本発明によれば、放射線の照射量を適切に制御するために有利な技術が提供される。 According to the present invention, an advantageous technique is provided for appropriately controlling the radiation dose.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
実施形態における放射線撮像システムの構成図。 実施形態における放射線撮像装置の外観図。 実施形態における放射線撮像装置の内部構成例を示す図。 被検体の立位撮影を行う場合のシステム構成例を示す図。 実施形態における制御装置の動作手順を示すフローチャート。 被検体の臥位撮影を行う場合のシステム構成例を示す図。 放射線撮像装置の向きを取得する構成の変形例を示す図。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
The lineblock diagram of the radiation imaging system in an embodiment. 1 is an external view of a radiation imaging apparatus according to an embodiment. The figure which shows the internal structural example of the radiation imaging device in embodiment. The figure which shows the system structural example in the case of performing standing position imaging | photography of a subject. The flowchart which shows the operation | movement procedure of the control apparatus in embodiment. The figure which shows the system structural example in the case of performing the supine position imaging | photography of a subject. The figure which shows the modification of the structure which acquires the direction of a radiation imaging device.
 以下、図面を参照して本発明の実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の実施に有利な具体例を示すにすぎない。また、以下の実施形態の中で説明されている特徴の組み合わせの全てが本発明の課題解決のために必須のものであるとは限らない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment, It shows only the specific example advantageous for implementation of this invention. Moreover, not all combinations of features described in the following embodiments are indispensable for solving the problems of the present invention.
 図1は、実施形態における放射線撮像システム100の構成を示す図である。放射線撮像システム100は、例えば病院内での放射線画像の撮影に使用されうる。放射線撮像システム100は、放射線撮像装置101、制御装置102、放射線源103、放射線発生装置104、院内LAN105、照射スイッチ106を含む。 FIG. 1 is a diagram illustrating a configuration of a radiation imaging system 100 in the embodiment. The radiation imaging system 100 can be used, for example, for capturing a radiation image in a hospital. The radiation imaging system 100 includes a radiation imaging apparatus 101, a control apparatus 102, a radiation source 103, a radiation generation apparatus 104, a hospital LAN 105, and an irradiation switch 106.
 放射線撮像装置101は、患者または被検者である被検体Sを透過した放射線(例えばX線)を検出し画像を形成する。制御装置102は、放射線撮像装置101と放射線発生装置104と通信可能に接続されている。制御装置102は、放射線撮像装置101に対して、例えば撮影条件の設定、動作制御などを行うことができる。放射線撮像装置101は、制御装置102に対して、例えば画像転送、到達線量の送信、自動露出制御信号の送信などを行うことができる。本実施形態において、制御装置102は、撮影条件の設定、動作制御、画像情報などの情報の入力を可能とする入力デバイスとして、例えばマウスやキーボードを有し、また、出力デバイスとしてディスプレイなどを有する。また、制御装置102は、放射線源103からの放射線の発生を行う放射線発生装置104に対して、放射線の照射制御なども行う。 The radiation imaging apparatus 101 detects radiation (for example, X-rays) that has passed through the subject S, which is a patient or a subject, and forms an image. The control device 102 is communicably connected to the radiation imaging device 101 and the radiation generation device 104. The control device 102 can perform setting of imaging conditions, operation control, and the like for the radiation imaging apparatus 101, for example. The radiation imaging apparatus 101 can perform image transfer, arrival dose transmission, automatic exposure control signal transmission, and the like to the control apparatus 102, for example. In the present embodiment, the control device 102 has, for example, a mouse or a keyboard as an input device that enables input of information such as setting of shooting conditions, operation control, and image information, and a display as an output device. . The control device 102 also performs radiation irradiation control and the like on the radiation generation device 104 that generates radiation from the radiation source 103.
 放射線源103は、例えば放射線を発生させるために電子を高電圧で加速し、陽極に衝突させるX線管とロータを有する。照射スイッチ106は、操作者がオン操作することにより制御装置102に対して放射線の曝射を要求する。 The radiation source 103 includes, for example, an X-ray tube and a rotor that accelerate electrons with a high voltage to generate radiation and collide with the anode. The irradiation switch 106 requests the control device 102 to radiate radiation when the operator turns on.
 制御装置102は、通信を制御する通信制御部1021と、動作制御、線量制御などを行う制御部1022を含む。通信制御部1021は、制御装置102とは別のユニットとして構成されていてもよい。制御部1022は、放射線撮像装置101と放射線発生装置104の状態を監視し、放射線の照射、撮影を制御する。放射線源103から照射された放射線は被検体に照射されると、放射線撮像装置101は、その被検体を透過した放射線を検出し画像を形成する。 The control device 102 includes a communication control unit 1021 that controls communication, and a control unit 1022 that performs operation control, dose control, and the like. The communication control unit 1021 may be configured as a unit different from the control device 102. The control unit 1022 monitors the states of the radiation imaging apparatus 101 and the radiation generation apparatus 104 and controls radiation irradiation and imaging. When the radiation irradiated from the radiation source 103 is irradiated on the subject, the radiation imaging apparatus 101 detects the radiation transmitted through the subject and forms an image.
 放射線撮像装置101は、不図示の無線通信部および有線通信部を含み、制御装置102の通信制御部1021と通信可能である。有線通信部は、公知の通信規格に従うケーブル接続により、情報のやり取りを可能にする。また、無線通信部は、例えば通信用ICなどを備える回路基板からなる。不図示のアンテナと電気的に接続され、アンテナは無線電波を送受信する。通信用ICなどを備える回路基板はアンテナを介して無線LANに基づいたプロトコルの通信処理を行う。なお、無線通信における無線通信の周波数帯、規格や方式には特に限定はなく、公知の近接無線やUWBなどの方式を使用してもよい。また、無線通信部は複数の無線通信の方式を有し、適宜選択して通信を行ってもよい。 The radiation imaging apparatus 101 includes a wireless communication unit and a wired communication unit (not shown), and can communicate with the communication control unit 1021 of the control device 102. The wired communication unit enables exchange of information by cable connection according to a known communication standard. The wireless communication unit is formed of a circuit board including a communication IC, for example. The antenna is electrically connected to an antenna (not shown), and the antenna transmits and receives radio waves. A circuit board having a communication IC or the like performs protocol communication processing based on a wireless LAN via an antenna. Note that there are no particular limitations on the frequency band, standard, or method of wireless communication in wireless communication, and a known method such as proximity wireless communication or UWB may be used. Further, the wireless communication unit may have a plurality of wireless communication methods, and may select and perform communication as appropriate.
 制御装置102と放射線撮像装置101との間では、撮影条件の設定、動作制御、画像転送、到達線量、自動露出制御信号などがやりとりされる。また、制御装置102と放射線発生装置104との間では、線量情報、照射制御信号などがやりとりされる。ここで、線量情報とは、放射線源103から照射される放射線の線量をいう。到達線量とは、放射線源103から照射された放射線のうち、放射線撮像装置101へ到達した線量をいう。 Between the control apparatus 102 and the radiation imaging apparatus 101, setting of imaging conditions, operation control, image transfer, arrival dose, automatic exposure control signal, and the like are exchanged. In addition, dose information, irradiation control signals, and the like are exchanged between the control device 102 and the radiation generation device 104. Here, the dose information refers to the dose of radiation emitted from the radiation source 103. The reaching dose refers to the dose that reaches the radiation imaging apparatus 101 among the radiation irradiated from the radiation source 103.
 放射線撮像装置101は、例えば、可搬式のカセッテ式の平面検出器(フラットパネルディテクタ)である。図2に実施形態における放射線撮像装置101の外観図を示す。放射線撮像装置101は、電源投入および遮断のための電源ボタン107、電源供給のためのバッテリ部108、コネクタ109を有する。バッテリ部108は取り外し可能であり、バッテリ本体はバッテリ充電器によって充電されうる。放射線撮像装置101は、ケーブル110を介して制御装置102と接続される。このとき、ケーブル110の一端はコネクタ109を介して放射線撮像装置101と接続される。ケーブル1010を介して放射線撮像装置101と制御装置102とが接続されると自動で有線通信に切り替わり、あるいはユーザ操作によって有線通信に切り替わり、両者の間で情報のやり取りが有線通信によって行われる。このように本実施形態では、放射線撮像装置101と制御装置102とは別個の構成とされているが、放射線撮像装置101が制御装置102の機能を有する制御部を含んだ一体的な構成としてもよい。そのような制御部は例えばASIC等で構成されうる。 The radiation imaging apparatus 101 is, for example, a portable cassette type flat detector (flat panel detector). FIG. 2 shows an external view of the radiation imaging apparatus 101 in the embodiment. The radiation imaging apparatus 101 includes a power button 107 for turning on and off the power, a battery unit 108 for supplying power, and a connector 109. The battery unit 108 is removable, and the battery body can be charged by a battery charger. The radiation imaging apparatus 101 is connected to the control apparatus 102 via the cable 110. At this time, one end of the cable 110 is connected to the radiation imaging apparatus 101 via the connector 109. When the radiation imaging apparatus 101 and the control apparatus 102 are connected via the cable 1010, the communication is automatically switched to wired communication, or switched to wired communication by a user operation, and information is exchanged between the two by wired communication. As described above, in the present embodiment, the radiation imaging apparatus 101 and the control apparatus 102 are configured separately, but the radiation imaging apparatus 101 may be configured as an integrated configuration including a control unit having the function of the control apparatus 102. Good. Such a control unit can be composed of, for example, an ASIC.
 図3には、本実施形態における放射線撮像装置101の内部構成例が示されている。放射線撮像装置101は、撮像領域300に、複数の行および複数の列を構成するようにマトリクス状に配置された複数の画素を有する。これら複数の画素は、放射線画像の取得のための複数の撮像画素111と、放射線の検知のための検知画素121とを含む。撮像画素111は、放射線を電気信号に変換する第1変換素子112と、列信号線116と第1変換素子112との間に配置された第1スイッチ113とを含む。検知画素121は、放射線を電気信号に変換する第2変換素子122と、検知信号線125と第2変換素子122との間に配置された第2スイッチ123とを含む。 FIG. 3 shows an internal configuration example of the radiation imaging apparatus 101 in the present embodiment. The radiation imaging apparatus 101 has a plurality of pixels arranged in a matrix so as to form a plurality of rows and a plurality of columns in the imaging region 300. The plurality of pixels include a plurality of imaging pixels 111 for acquiring a radiation image and a detection pixel 121 for detecting radiation. The imaging pixel 111 includes a first conversion element 112 that converts radiation into an electrical signal, and a first switch 113 disposed between the column signal line 116 and the first conversion element 112. The detection pixel 121 includes a second conversion element 122 that converts radiation into an electrical signal, and a second switch 123 disposed between the detection signal line 125 and the second conversion element 122.
 第1変換素子112および第2変換素子122は、放射線を光に変換するシンチレータおよび光を電気信号に変換する光電変換素子とで構成される。シンチレータは、一般的には、撮像領域300を覆うようにシート状に形成され、複数の画素によって共有されうる。あるいは、第1変換素子112および第2変換素子122は、放射線を直接光に変換する変換素子で構成されうる。第1スイッチ113および第2スイッチ123は、例えば、非晶質シリコンまたは多結晶シリコン(好ましくは多結晶シリコン)などの半導体で活性領域が構成された薄膜トランジスタ(TFT)を含みうる。 The first conversion element 112 and the second conversion element 122 include a scintillator that converts radiation into light and a photoelectric conversion element that converts light into an electrical signal. The scintillator is generally formed in a sheet shape so as to cover the imaging region 300 and can be shared by a plurality of pixels. Or the 1st conversion element 112 and the 2nd conversion element 122 may be comprised by the conversion element which converts a radiation into light directly. The first switch 113 and the second switch 123 can include, for example, a thin film transistor (TFT) in which an active region is formed of a semiconductor such as amorphous silicon or polycrystalline silicon (preferably polycrystalline silicon).
 放射線撮像装置101は、複数の列信号線116および複数の駆動線114を有する。複数の列信号線116はそれぞれ、撮像領域300における複数の列のうちの1つに対応する。複数の駆動線114はそれぞれ、撮像領域300における複数の行のうちの1つに対応する。複数の駆動線114はそれぞれ、行選択部221によって駆動される。 The radiation imaging apparatus 101 has a plurality of column signal lines 116 and a plurality of drive lines 114. Each of the plurality of column signal lines 116 corresponds to one of the plurality of columns in the imaging region 300. Each of the plurality of drive lines 114 corresponds to one of the plurality of rows in the imaging region 300. Each of the plurality of drive lines 114 is driven by the row selection unit 221.
 第1変換素子112の第1電極は、第1スイッチ113の第1主電極に接続され、第1変換素子112の第2電極は、バイアス線118に接続される。ここで、1つのバイアス線118は、列方向に延びていて、列方向に配列された複数の第1変換素子112の第2電極に共通に接続される。バイアス線118は、電源回路226からバイアス電圧Vsを受ける。1つの列を構成する複数の撮像画素111の第1スイッチ113の第2主電極は、1つの列信号線116に接続される。1つの行を構成する複数の撮像画素111の第1スイッチ113の制御電極は、複数の駆動線114のうちの1つに接続される。 The first electrode of the first conversion element 112 is connected to the first main electrode of the first switch 113, and the second electrode of the first conversion element 112 is connected to the bias line 118. Here, one bias line 118 extends in the column direction and is commonly connected to the second electrodes of the plurality of first conversion elements 112 arranged in the column direction. Bias line 118 receives bias voltage Vs from power supply circuit 226. The second main electrode of the first switch 113 of the plurality of imaging pixels 111 configuring one column is connected to one column signal line 116. A control electrode of the first switch 113 of the plurality of imaging pixels 111 configuring one row is connected to one of the plurality of drive lines 114.
 複数の列信号線116は、読出し用回路222に接続される。ここで、読出し用回路222は、複数の検知部132と、マルチプレクサ134と、AD変換器136とを含みうる。複数の列信号線116のそれぞれは、読出し用回路222の複数の検知部132のうち対応する検知部に接続される。ここで、1つの列信号線116は、1つの検知部132に対応する。検知部132は、例えば、差動増幅器を含む。マルチプレクサ134は、複数の検知部132を所定の順番で選択し、選択した検知部132からの信号をAD変換器136に供給する。AD変換器136は、供給された信号をデジタル信号に変換して出力する。 The plurality of column signal lines 116 are connected to the reading circuit 222. Here, the readout circuit 222 can include a plurality of detection units 132, a multiplexer 134, and an AD converter 136. Each of the plurality of column signal lines 116 is connected to a corresponding detection unit among the plurality of detection units 132 of the reading circuit 222. Here, one column signal line 116 corresponds to one detector 132. The detection unit 132 includes, for example, a differential amplifier. The multiplexer 134 selects a plurality of detection units 132 in a predetermined order, and supplies signals from the selected detection units 132 to the AD converter 136. The AD converter 136 converts the supplied signal into a digital signal and outputs the digital signal.
 第2変換素子122の第1電極は、第2スイッチ123の第1主電極に接続され、第2変換素子122の第2電極は、バイアス線118に接続される。第2スイッチ123の第2主電極は、検知信号線125に電気的に接続される。第2スイッチ123の制御電極は、駆動線124に電気的に接続される。放射線撮像装置101は、複数の検知信号線125を有しうる。1つの検知信号線125には、1つ以上の検知画素121が接続されうる。駆動線124は、駆動用回路241によって駆動される。1つの駆動線124には、1つ以上の検知画素121が接続されうる。 The first electrode of the second conversion element 122 is connected to the first main electrode of the second switch 123, and the second electrode of the second conversion element 122 is connected to the bias line 118. The second main electrode of the second switch 123 is electrically connected to the detection signal line 125. The control electrode of the second switch 123 is electrically connected to the drive line 124. The radiation imaging apparatus 101 can include a plurality of detection signal lines 125. One or more detection pixels 121 can be connected to one detection signal line 125. The drive line 124 is driven by the drive circuit 241. One or more detection pixels 121 can be connected to one drive line 124.
 検知信号線125は、読出し用回路242に接続される。ここで、読出し用回路242は、複数の検知部142と、マルチプレクサ144と、AD変換器146とを含みうる。複数の検知信号線125のそれぞれは、読出し用回路242の複数の検知部142のうち対応する検知部に接続されうる。ここで、1つの検知信号線125は、1つの検知部142に対応する。検知部142は、例えば、差動増幅器を含む。マルチプレクサ144は、複数の検知部142を所定の順番で選択し、選択した検知部142からの信号をAD変換器146に供給する。AD変換器146は、供給された信号をデジタル信号に変換して出力する。 The detection signal line 125 is connected to the reading circuit 242. Here, the reading circuit 242 can include a plurality of detection units 142, a multiplexer 144, and an AD converter 146. Each of the plurality of detection signal lines 125 can be connected to a corresponding detection unit among the plurality of detection units 142 of the reading circuit 242. Here, one detection signal line 125 corresponds to one detection unit 142. The detection unit 142 includes, for example, a differential amplifier. The multiplexer 144 selects a plurality of detection units 142 in a predetermined order, and supplies a signal from the selected detection unit 142 to the AD converter 146. The AD converter 146 converts the supplied signal into a digital signal and outputs the digital signal.
 読出し用回路242(AD変換器146)の出力は、信号処理部224に供給され、信号処理部224によって処理される。信号処理部224は、読出し用回路242(AD変換器146)の出力に基づいて、放射線撮像装置101に対する放射線の照射を示す情報を出力する。具体的には、信号処理部224は、例えば、放射線撮像装置101に対する放射線の照射を検知したり、放射線の照射量および積算照射量の少なくともいずれかを演算したりする。制御用回路225は、信号処理部224からの情報に基づいて、駆動用回路221、駆動用回路241および読出し用回路242を制御する。制御用回路225は、信号処理部224からの情報に基づいて、例えば、露出(撮像画素111による照射された放射線に対応する電荷の蓄積)の開始および終了を制御する。通信部227は、制御装置102との通信を担う。ここで通信部227は、有線通信部と無線通信部の2つの通信部を持つ。 The output of the reading circuit 242 (AD converter 146) is supplied to the signal processing unit 224 and processed by the signal processing unit 224. The signal processing unit 224 outputs information indicating radiation irradiation to the radiation imaging apparatus 101 based on the output of the readout circuit 242 (AD converter 146). Specifically, for example, the signal processing unit 224 detects radiation irradiation on the radiation imaging apparatus 101 or calculates at least one of the radiation irradiation amount and the integrated irradiation amount. The control circuit 225 controls the driving circuit 221, the driving circuit 241, and the reading circuit 242 based on information from the signal processing unit 224. Based on the information from the signal processing unit 224, the control circuit 225 controls, for example, the start and end of exposure (accumulation of charge corresponding to radiation irradiated by the imaging pixel 111). The communication unit 227 is responsible for communication with the control device 102. Here, the communication unit 227 has two communication units, a wired communication unit and a wireless communication unit.
 上記したように、本実施形態における放射線撮像装置101は可搬型であり、その姿勢の自由度が高いことから、例えば、図1に示したような被検体の臥位撮影にも対応できるし、立位撮影にも対応できる。以下ではまず、被検体の立位撮影を行う場合について説明する。 As described above, the radiation imaging apparatus 101 according to the present embodiment is portable and has a high degree of freedom in its posture, so that, for example, it can cope with the subject's position imaging as shown in FIG. Can also be used for standing shooting. In the following, first, the case of performing the standing imaging of the subject will be described.
 被検体の立位撮影を行う場合には、放射線撮像装置101は立てて設置されることになる。図4は、被検体の立位撮影を行う場合のシステム構成例を示している。ここで、放射線撮像装置101は、面内方向の2つの向きで設置することが可能になっている。1つは、矩形状に構成された放射線撮像装置101の辺101aが被検体側からみて左辺となる状態を示す方向Aである。もう1つは、方向Aの状態から反時計回りに90°回転させた状態、すなわち、辺101aが被検体側からみて底辺となる状態を示す方向Bである。また、放射線撮像装置101は、それぞれが検知画素121で構成され到達した放射線を検知するための、複数の領域(検知エリア)を有する。検知エリアの数や配置に限定はないが、複数の検知エリアはそれぞれ、想定される撮影部位ごとに対応しているとよい。ここでは、説明を簡単にするため、次のように5つの検知エリアが設定されているとする。5つの検知エリアは、方向Aの状態で放射線源103側からみて、左上に位置する検知エリア1、右上に位置する検知エリア2、中央に位置する検知エリア3、左下に位置する検知エリア4、右下に位置する検知エリア5からなる。 When performing standing imaging of a subject, the radiation imaging apparatus 101 is installed upright. FIG. 4 shows an example of the system configuration when performing standing imaging of a subject. Here, the radiation imaging apparatus 101 can be installed in two directions, the in-plane direction. One is a direction A indicating a state in which the side 101a of the radiation imaging apparatus 101 configured in a rectangular shape is the left side when viewed from the subject side. The other is a direction B indicating a state in which the state is rotated 90 ° counterclockwise from the state A, that is, a state in which the side 101a is the bottom as viewed from the subject side. In addition, the radiation imaging apparatus 101 includes a plurality of regions (detection areas) each configured by the detection pixels 121 for detecting the reached radiation. Although the number and arrangement of the detection areas are not limited, it is preferable that each of the plurality of detection areas corresponds to each assumed imaging region. Here, to simplify the description, it is assumed that five detection areas are set as follows. The five detection areas are the detection area 1 located at the upper left, the detection area 2 located at the upper right, the detection area 3 located at the center, the detection area 4 located at the lower left, as viewed from the radiation source 103 side in the state of direction A. It consists of a detection area 5 located in the lower right.
 それぞれの検知エリアで到達線量が検知される。制御装置102は、それぞれの検知エリアで検知された到達線量に基づいて、放射線源103から余分な照射が行われないように、放射線発生装置104を制御しうる。しかし、最適な到達線量は被検体Sの撮影部位によって異なる。また、放射線撮像装置101の向きが方向Aか方向Bかによって、各検知エリアの位置が変わってしまう。そこで本実施形態の放射線撮像装置101は、放射線撮像装置101の面内方向の向きを認識することにより各検知エリアの位置を識別し、撮影部位に応じて照射量の検知に使用する検知エリアを設定することができる。かかる機能がないと、撮影部位とは無関係な検知エリアで検知された照射量を用いて照射量を制御することになり、放射線源103から余分な照射が行われる場合や、放射線の線量が不足したりする場合があり得る。 The arrival dose is detected in each detection area. The control device 102 can control the radiation generating device 104 so that excessive irradiation is not performed from the radiation source 103 based on the arrival dose detected in each detection area. However, the optimum arrival dose differs depending on the imaging region of the subject S. Further, the position of each detection area changes depending on whether the direction of the radiation imaging apparatus 101 is the direction A or the direction B. Therefore, the radiation imaging apparatus 101 according to the present embodiment identifies the position of each detection area by recognizing the orientation in the in-plane direction of the radiation imaging apparatus 101, and sets the detection area used for detecting the irradiation amount according to the imaging region. Can be set. Without such a function, the irradiation amount is controlled using the irradiation amount detected in the detection area unrelated to the imaging region, and when the radiation source 103 performs excessive irradiation or the radiation dose is insufficient. It may be.
 図4に示されるように、被検体Sの撮影の位置に合わせるために架台504に放射線撮像装置101が固定されており、放射線撮像装置101は上記した5つの検知エリアを有する照射量検知部501を備える。また、放射線撮像装置101は、放射線撮像装置101の面内方向の向きを検知する方向検知部503を含む。方向検知部503は例えば、方向Aの状態で重力方向の加速度を検出する1軸型の加速度センサである。この場合、方向Aの状態では加速度センサの出力は大きく、方向Bの状態では加速度センサの出力は小さい。したがって、加速度センサの出力によって放射線撮像装置101の面内方向の向きを検出可能である。もっとも、このような向きを検出するものは加速度センサには限られない。放射線撮像装置101は、方向検知部503で検知した向きの情報を制御装置102に出力し、制御装置102から、使用する検知エリアの情報(各検知エリアの有効/無効の指定情報)を受信する。放射線撮像装置101は、受信した検知エリアの情報に基づき、各検知エリアの有効/無効を設定する。また、放射線101は、有効とした検知エリアにおける到達線量の情報を制御装置102に出力する。 As shown in FIG. 4, the radiation imaging apparatus 101 is fixed to the gantry 504 in order to match the imaging position of the subject S, and the radiation imaging apparatus 101 has a dose detection unit 501 having the five detection areas described above. Is provided. The radiation imaging apparatus 101 also includes a direction detection unit 503 that detects the orientation in the in-plane direction of the radiation imaging apparatus 101. The direction detection unit 503 is, for example, a uniaxial acceleration sensor that detects acceleration in the direction of gravity in the state of the direction A. In this case, the output of the acceleration sensor is large in the state of direction A, and the output of the acceleration sensor is small in the state of direction B. Therefore, the orientation in the in-plane direction of the radiation imaging apparatus 101 can be detected by the output of the acceleration sensor. But what detects such a direction is not restricted to an acceleration sensor. The radiation imaging apparatus 101 outputs direction information detected by the direction detection unit 503 to the control apparatus 102 and receives information on detection areas to be used (valid / invalid designation information for each detection area) from the control apparatus 102. . The radiation imaging apparatus 101 sets validity / invalidity of each detection area based on the received detection area information. In addition, the radiation 101 outputs information on the arrival dose in the effective detection area to the control device 102.
 図5は本実施形態における制御装置102の動作手順を示すフローチャートである。はじめに、撮影のために被検体Sと架台504との位置合わせが行われた後、制御装置102は、被検体の撮影部位506の設定を行う(S2)。次に、制御装置102は、架台504に搭載された放射線撮像装置101の向きを判別するため、方向検知部503から放射線撮像装置101の向きの情報(向き情報)を取得(受信)する(S4)。その後、制御装置102は、設定された撮影部位506及び取得した向き情報に基づき、使用する検知エリアを選択する(S6)。例えば、取得した向き情報が方向Aを示す場合、制御装置102は、撮影部位506(例えば、胸部)に対応する領域として、検知エリア1,2を選択する。取得した向き情報が方向Bを示す場合は、制御装置102は、撮影部位506に対応する領域として、検知エリア2,5を選択する。制御装置102は、検知エリアの選択情報を放射線撮像装置101に送信する(S8)。 FIG. 5 is a flowchart showing an operation procedure of the control device 102 in the present embodiment. First, after the subject S and the gantry 504 are aligned for imaging, the control device 102 sets the imaging region 506 of the subject (S2). Next, the control apparatus 102 acquires (receives) the orientation information (orientation information) of the radiation imaging apparatus 101 from the direction detection unit 503 in order to determine the orientation of the radiation imaging apparatus 101 mounted on the gantry 504 (S4). ). Thereafter, the control device 102 selects a detection area to be used based on the set imaging region 506 and the acquired orientation information (S6). For example, when the acquired orientation information indicates the direction A, the control device 102 selects the detection areas 1 and 2 as an area corresponding to the imaging region 506 (for example, the chest). When the acquired orientation information indicates the direction B, the control device 102 selects the detection areas 2 and 5 as an area corresponding to the imaging region 506. The control device 102 transmits detection area selection information to the radiation imaging apparatus 101 (S8).
 放射線撮像装置101は、制御装置102から受信した選択情報に基づき検知エリアの設定を行う。具体的には、放射線撮像装置101は、選択された検知エリアでの放射線の検知を有効に設定し、選択された領域以外の検知エリアでの放射線の検知を無効に設定する。例えば、選択情報が検知エリア1,2を示す場合、放射線撮像装置101は、検知エリア1,2における検知画素121の電荷の蓄積を有効に設定し、それ以外の検知エリアにおける検知画素121の電荷の蓄積を無効に設定する。選択情報が検知エリア2,5を示す場合は、放射線撮像装置101は、検知エリア2,5における検知画素121の電荷の蓄積を有効に設定し、それ以外の検知エリアにおける検知画素121の電荷の蓄積を無効に設定する。また、放射線撮像装置101は、検知エリア1,2以外の検知エリアにおける検知画素121を駆動用回路241で駆動しないように制御してもよい。また、放射線撮像装置101は、検知エリア1,2以外の検知エリアにおける検知画素121からの信号については、読出し用回路242のAD変換器146でデジタル変換しないように制御してもよい。また、放射線撮像装置101は、検知エリア1,2以外の検知エリアにおける検知画素121からの信号については、読出し用回路242のAD変換器146でデジタル変換しないように制御してもよい。また、放射線撮像装置101は、検知エリア1,2以外の検知エリアにおける検知画素121からの信号については、信号処理部224による処理を行わないように制御してもよい。このように、種々の選択された領域以外の検知エリアでの放射線の検知を無効に設定する方法により、到達線量の積算および曝射停止要求を高速に行うことができる。 The radiation imaging apparatus 101 sets a detection area based on the selection information received from the control apparatus 102. Specifically, the radiation imaging apparatus 101 sets radiation detection in a selected detection area to be valid, and sets radiation detection in a detection area other than the selected area to be invalid. For example, when the selection information indicates the detection areas 1 and 2, the radiation imaging apparatus 101 sets the charge accumulation of the detection pixels 121 in the detection areas 1 and 2 to be effective, and the charge of the detection pixels 121 in the other detection areas. Disable accumulation of. When the selection information indicates the detection areas 2 and 5, the radiation imaging apparatus 101 sets the charge accumulation of the detection pixels 121 in the detection areas 2 and 5 to be effective, and the charge of the detection pixels 121 in the other detection areas. Disable accumulation. Further, the radiation imaging apparatus 101 may perform control so that the detection pixels 121 in the detection areas other than the detection areas 1 and 2 are not driven by the driving circuit 241. Further, the radiation imaging apparatus 101 may perform control so that signals from the detection pixels 121 in the detection areas other than the detection areas 1 and 2 are not digitally converted by the AD converter 146 of the readout circuit 242. Further, the radiation imaging apparatus 101 may perform control so that signals from the detection pixels 121 in the detection areas other than the detection areas 1 and 2 are not digitally converted by the AD converter 146 of the readout circuit 242. Further, the radiation imaging apparatus 101 may control the signal from the detection pixels 121 in the detection areas other than the detection areas 1 and 2 not to perform the processing by the signal processing unit 224. As described above, by the method of invalidating the detection of radiation in the detection areas other than the various selected regions, the arrival dose accumulation and the exposure stop request can be performed at high speed.
 制御装置102は、操作者により照射スイッチ106が押下されたことに応答して、放射線発生装置104に照射制御信号(曝射要求)を送信する。これにより放射線発生装置104が放射線源103から放射線を照射させ、撮影が開始される(S10)。撮影中、制御装置102は、有効に設定された各検知エリアから到達線量の情報を取得し、各エリアの到達線量を積算する(S12)。そして、制御装置102は、例えば各エリアの積算値が所定の閾値を超えたことに応答して、放射線発生装置104に対して曝射停止要求を発行し、放射線源103からの放射線の発生を停止させる(S14)。 The control device 102 transmits an irradiation control signal (exposure request) to the radiation generation device 104 in response to the irradiation switch 106 being pressed by the operator. Thereby, the radiation generator 104 emits radiation from the radiation source 103, and imaging is started (S10). During imaging, the control device 102 acquires arrival dose information from each effective detection area and integrates the arrival dose in each area (S12). Then, for example, in response to the integrated value of each area exceeding a predetermined threshold value, the control device 102 issues an exposure stop request to the radiation generation device 104 to generate radiation from the radiation source 103. Stop (S14).
 以上の処理により、被検体Sの撮影部位506に応じた検知エリアのみでの到達線量がモニタされ、適切なタイミングで放射線照射の停止を行うことができる。これにより、余分な照射を行わないようにすることができる。 Through the above processing, the arrival dose only in the detection area corresponding to the imaging region 506 of the subject S is monitored, and radiation irradiation can be stopped at an appropriate timing. Thereby, it is possible to prevent excessive irradiation.
 なお、上述の例では、放射線撮像装置101は、制御装置102から受信した選択情報に基づき検知エリアの設定を行う構成としたが、これに限られない。例えば、放射線撮像装置101では常に全ての検知エリアを有効にしておき、全エリアの到達線量が制御装置102に送信されるようにしておく。そして、制御装置102において、選択した検知エリアの到達線量の情報だけを抽出して積算値のモニタを行うようにしてもよい。 In the above-described example, the radiation imaging apparatus 101 is configured to set the detection area based on the selection information received from the control apparatus 102, but is not limited thereto. For example, in the radiation imaging apparatus 101, all detection areas are always enabled, and the arrival dose of all areas is transmitted to the control apparatus 102. Then, the controller 102 may monitor only the integrated value by extracting only the information on the arrival dose in the selected detection area.
 次に、被検体の臥位撮影を行う場合について説明する。図6は、被検体の臥位撮影を行う場合のシステム構成例を示している。第1実施形態と同じ構成要素には同じ参照符号を付している。ここで、放射線撮像装置101は、2つの方向で設置することが可能である。1つは、矩形状に構成された放射線撮像装置101の辺101aが被検体側からみて(すなわち上からみて)左辺となる状態を示す方向Aである。もう1つは、方向Aの状態から反時計回りに90°回転させた状態、すなわち、辺101aが被検体側からみて底辺となる状態を示す方向Bである。また、放射線撮像装置101は、第1実施形態と同様の、複数の検知エリアからなる照射量検知部501を有する。 Next, the case where the subject's position is photographed will be described. FIG. 6 shows an example of a system configuration in the case where the subject is photographed in the supine position. The same components as those in the first embodiment are denoted by the same reference numerals. Here, the radiation imaging apparatus 101 can be installed in two directions. One is a direction A indicating a state in which the side 101a of the radiation imaging apparatus 101 configured in a rectangular shape is the left side when viewed from the subject side (that is, when viewed from above). The other is a direction B indicating a state in which the state is rotated 90 ° counterclockwise from the state A, that is, a state in which the side 101a is the bottom as viewed from the subject side. In addition, the radiation imaging apparatus 101 includes an irradiation amount detection unit 501 including a plurality of detection areas, as in the first embodiment.
 図6において、放射線撮像装置101は、被検体Sを載置する寝台703に固定されている。放射線撮像装置101は寝台703に対して水平方向に移動可能であり、これにより位置合わせが可能である。寝台703の所定位置には磁性体701が固定されている。磁性体701は例えば磁石であるが、これに限らない。放射線撮像装置101は、磁性体701に反応する磁気センサA,B,C,Dを含む磁気検知部702を備える。磁気センサA,B,C,Dは例えば、磁性体701に近づくほど高い電圧を出力する近接センサでありうるが、これに限られない。また、磁気センサの数は特定の個数に限られない。 In FIG. 6, the radiation imaging apparatus 101 is fixed to a bed 703 on which the subject S is placed. The radiation imaging apparatus 101 can move in the horizontal direction with respect to the bed 703, and thereby can be aligned. A magnetic body 701 is fixed at a predetermined position of the bed 703. Although the magnetic body 701 is a magnet, for example, it is not restricted to this. The radiation imaging apparatus 101 includes a magnetic detection unit 702 including magnetic sensors A, B, C, and D that react to a magnetic body 701. For example, the magnetic sensors A, B, C, and D may be proximity sensors that output higher voltages as they approach the magnetic body 701, but are not limited thereto. Further, the number of magnetic sensors is not limited to a specific number.
 放射線撮像装置101は、磁気センサの出力電圧に基づき、放射線撮像装置101の向きを検知する。例えば、磁気センサCの出力電圧が最も高い場合、放射線撮像装置101は、放射線撮像装置101の向きを方向Aであると判定する。磁気センサAの出力電圧が最も高い場合、放射線撮像装置101は、放射線撮像装置101の向きを方向Bであると判定する。放射線撮像装置101は、検知した放射線撮像装置101の向きの情報(向き情報)を、制御装置102に出力する。 The radiation imaging apparatus 101 detects the orientation of the radiation imaging apparatus 101 based on the output voltage of the magnetic sensor. For example, when the output voltage of the magnetic sensor C is the highest, the radiation imaging apparatus 101 determines that the direction of the radiation imaging apparatus 101 is the direction A. When the output voltage of the magnetic sensor A is the highest, the radiation imaging apparatus 101 determines that the direction of the radiation imaging apparatus 101 is the direction B. The radiation imaging apparatus 101 outputs the detected orientation information (orientation information) of the radiation imaging apparatus 101 to the control apparatus 102.
 制御装置102は、第1実施形態と同様の手順で放射線の照射及び停止を制御することができる。 The control device 102 can control irradiation and stop of radiation in the same procedure as in the first embodiment.
 図7に図6の変形例を示す。第1及び第2実施形態と同じ構成要素には同じ参照符号を付している。図7において、被検体Sを載置する寝台903に放射線撮像装置101が固定されている。放射線撮像装置101は寝台903に対して水平方向に移動可能であり、これにより位置合わせが可能である。放射線撮像装置101は、放射線の到達線量を検知する照射量検知部501を備える。また、放射線撮像装置101は、地磁気901の地磁気方向に対する方向θを検知する地磁気検知部902を備える。地磁気検知部902は地磁気センサでありうるが、これに限られない。放射線撮像装置101は、地磁気検知部902により、放射線撮像装置101の地磁気901の方向に対する向きを検知し、この向きの情報を制御装置102に出力する。 FIG. 7 shows a modification of FIG. The same components as those in the first and second embodiments are denoted by the same reference numerals. In FIG. 7, the radiation imaging apparatus 101 is fixed to a bed 903 on which the subject S is placed. The radiation imaging apparatus 101 can move in the horizontal direction with respect to the bed 903, and thereby can be aligned. The radiation imaging apparatus 101 includes an irradiation amount detection unit 501 that detects an arrival dose of radiation. The radiation imaging apparatus 101 further includes a geomagnetism detection unit 902 that detects the direction θ of the geomagnetism 901 with respect to the geomagnetism direction. The geomagnetic detection unit 902 can be a geomagnetic sensor, but is not limited thereto. In the radiation imaging apparatus 101, the geomagnetism detection unit 902 detects the orientation of the radiation imaging apparatus 101 with respect to the direction of the geomagnetism 901, and outputs information on this orientation to the control apparatus 102.
 制御装置102は、受信した向き情報から事前に設定された撮影部位506に近い検知エリアを選択する。例えば放射線撮像装置101の向きが方向Aの場合、放射線撮像装置101が地磁気検知部902により地磁気方向に対して検知した角度はθ1となる。このとき、制御装置102は、撮影部位506に近い検知エリア1,2を選択する。放射線撮像装置101の向きが方向Bの場合は、放射線撮像装置101が地磁気検知部902により地磁気方向に対して検知した角度はθ2となる。このとき、制御装置102は、撮影部位506に近い検知エリア2,5を選択する。 The control device 102 selects a detection area close to the imaging region 506 set in advance from the received orientation information. For example, when the direction of the radiation imaging apparatus 101 is the direction A, the angle detected by the radiation imaging apparatus 101 with respect to the geomagnetic direction by the geomagnetic detection unit 902 is θ1. At this time, the control device 102 selects the detection areas 1 and 2 close to the imaging region 506. When the orientation of the radiation imaging apparatus 101 is the direction B, the angle detected by the radiation imaging apparatus 101 with respect to the geomagnetic direction by the geomagnetic detection unit 902 is θ2. At this time, the control device 102 selects the detection areas 2 and 5 that are close to the imaging region 506.
(その他の実施例) 
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
(Other examples)
The present invention supplies a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program This process can be realized. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2016年1月19日提出の日本国特許出願特願2016-008285を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority on the basis of Japanese Patent Application No. 2016-008285 filed on Jan. 19, 2016, the entire contents of which are incorporated herein by reference.

Claims (15)

  1.  放射線を電気信号に変換する複数の画素がマトリクス状に配置された平面検出器と、
     前記平面検出器の複数の領域において、到達した放射線を検知する検知手段と、
     選択条件の少なくとも1つの条件としての前記平面検出器の姿勢に基づいて、前記複数の領域のうち、放射線の検知に使用する領域を選択する選択手段と、
     を有することを特徴とする放射線撮像システム。
    A planar detector in which a plurality of pixels for converting radiation into electrical signals are arranged in a matrix;
    Detecting means for detecting the radiation that has reached the plurality of regions of the flat detector;
    Selection means for selecting a region to be used for radiation detection among the plurality of regions based on the attitude of the flat detector as at least one of the selection conditions;
    A radiation imaging system comprising:
  2.  被検体の撮影部位を設定する設定手段を更に有し、
     前記選択手段は、前記設定された撮影部位と前記姿勢とに基づいて前記領域を選択する
     ことを特徴とする請求項1に記載の放射線撮像システム。
    It further has setting means for setting the imaging region of the subject,
    The radiation imaging system according to claim 1, wherein the selection unit selects the region based on the set imaging region and the posture.
  3.  前記姿勢を検出する検出手段を更に有することを特徴とする請求項2に記載の放射線撮像システム。 3. The radiation imaging system according to claim 2, further comprising detection means for detecting the posture.
  4.  前記検出手段は、前記姿勢として前記平面検出器の面内方向の向きを検出することを特徴とする請求項3に記載の放射線撮像システム。 4. The radiation imaging system according to claim 3, wherein the detection unit detects an orientation in an in-plane direction of the flat detector as the posture.
  5.  前記選択された領域で検知された放射線の線量に基づいて撮像の制御を行う制御手段を更に有することを特徴とする請求項1乃至4のいずれか1項に記載の放射線撮像システム。 The radiation imaging system according to any one of claims 1 to 4, further comprising control means for controlling imaging based on a radiation dose detected in the selected region.
  6.  前記制御手段は、
     放射線源からの放射線の発生を行う放射線発生装置と接続され、
     前記選択された領域の前記線量の積算値が所定の閾値を超えたことに応じて、前記放射線発生装置に対して放射線の発生を停止させるように制御する
     ことを特徴とする請求項5に記載の放射線撮像システム。
    The control means includes
    Connected to a radiation generator that generates radiation from a radiation source,
    6. The radiation generation apparatus is controlled to stop generating radiation in response to an integrated value of the dose in the selected region exceeding a predetermined threshold value. Radiation imaging system.
  7.  前記検知手段は、前記選択された領域での放射線の検知を有効に設定され、それ以外の領域での放射線の検知を無効に設定されることを特徴とする請求項5又は6に記載の放射線撮像システム。 The radiation according to claim 5 or 6, wherein the detection means is set to enable detection of radiation in the selected area and is set to disable detection of radiation in other areas. Imaging system.
  8.  前記制御手段は、前記放射線の検知が有効にされた領域から取得した電気信号に基づいて撮像の制御を行い、前記放射線の検知が無効にされた領域から取得した電気信号に基づいて撮像の制御は行わない、ことを特徴とする請求項7に記載の放射線撮像システム。 The control means controls imaging based on an electrical signal acquired from an area where radiation detection is enabled, and controls imaging based on an electrical signal acquired from an area where radiation detection is disabled The radiation imaging system according to claim 7, wherein the radiation imaging system is not performed.
  9.  前記検知手段から取得した電気信号をデジタル信号に変換するAD変換器を更に有し、
     前記AD変換器は、前記放射線の検知が有効にされた領域から取得した電気信号をデジタル信号に変換し、前記放射線の検知が無効にされた領域から取得した電気信号はデジタル信号に変換しない、ことを特徴とする請求項7又は8に記載の放射線撮像システム。
    An AD converter for converting the electrical signal acquired from the detection means into a digital signal;
    The AD converter converts the electrical signal acquired from the area where the radiation detection is enabled into a digital signal, and does not convert the electrical signal acquired from the area where the radiation detection is disabled into a digital signal, The radiation imaging system according to claim 7 or 8, wherein
  10.  前記検出手段は、加速度センサを含むことを特徴とする請求項3又は4に記載の放射線撮像システム。 The radiation imaging system according to claim 3 or 4, wherein the detection means includes an acceleration sensor.
  11.  前記被検体を載置させるための寝台と、
     前記寝台の所定位置に固定された磁性体と、
     を更に有し、
     前記検出手段は、前記磁性体に反応する磁気センサを含む
     ことを特徴とする請求項3又は4に記載の放射線撮像システム。
    A bed for placing the subject;
    A magnetic body fixed at a predetermined position of the bed;
    Further comprising
    The radiation imaging system according to claim 3, wherein the detection unit includes a magnetic sensor that reacts with the magnetic body.
  12.  前記検出手段は、地磁気センサを含むことを特徴とする請求項3又は4に記載の放射線撮像システム。 The radiation imaging system according to claim 3 or 4, wherein the detection means includes a geomagnetic sensor.
  13.  放射線を電気信号に変換する複数の画素がマトリクス状に配置され、複数の領域において、到達した放射線を検知する機能を有する平面検出器と、放射線源からの放射線の発生を行う放射線発生装置と通信可能に接続された制御装置であって、
     選択条件の少なくとも1つの条件としての前記平面検出器の姿勢に基づいて、前記複数の領域のうち、放射線の検知に使用する領域を選択する選択手段と、
     前記選択された領域で検知された放射線の線量に基づいて前記放射線発生装置を制御する制御手段と、
    を有することを特徴とする制御装置。
    A plurality of pixels that convert radiation into electrical signals are arranged in a matrix, and communicate with a flat panel detector having a function of detecting the radiation that has arrived in a plurality of regions, and a radiation generator that generates radiation from the radiation source. A control device connected in a possible manner,
    Selection means for selecting a region to be used for radiation detection among the plurality of regions based on the attitude of the flat detector as at least one of the selection conditions;
    Control means for controlling the radiation generating device based on a dose of radiation detected in the selected region;
    A control device comprising:
  14.  放射線を電気信号に変換する複数の画素がマトリクス状に配置され、複数の領域において、到達した放射線を検知する機能を有する平面検出器と、放射線源からの放射線の発生を行う放射線発生装置とに通信可能に接続された制御装置の制御方法であって、
     選択条件の少なくとも1つの条件としての前記平面検出器の姿勢に基づいて、前記複数の領域のうち、放射線の検知に使用する領域を選択する選択工程と、
     前記選択された領域で検知された放射線の線量に基づいて前記放射線発生装置を制御する制御工程と、
     を有することを特徴とする制御方法。
    A plurality of pixels that convert radiation into electrical signals are arranged in a matrix, and a planar detector having a function of detecting the radiation that has arrived in a plurality of regions, and a radiation generator that generates radiation from a radiation source A control method for a control device connected to be communicable,
    A selection step of selecting a region to be used for radiation detection among the plurality of regions based on the attitude of the flat detector as at least one of the selection conditions;
    A control step of controlling the radiation generator based on a dose of radiation detected in the selected region;
    A control method characterized by comprising:
  15.  コンピュータに、請求項14に記載の制御方法の各工程を実行させるためのプログラム。 A program for causing a computer to execute each step of the control method according to claim 14.
PCT/JP2016/083751 2016-01-19 2016-11-15 Radiation imaging system, control device and control method thereof, and program WO2017126203A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016008285A JP2017127444A (en) 2016-01-19 2016-01-19 Radiation imaging system, control device, control method thereof, and program
JP2016-008285 2016-01-19

Publications (1)

Publication Number Publication Date
WO2017126203A1 true WO2017126203A1 (en) 2017-07-27

Family

ID=59361608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083751 WO2017126203A1 (en) 2016-01-19 2016-11-15 Radiation imaging system, control device and control method thereof, and program

Country Status (2)

Country Link
JP (1) JP2017127444A (en)
WO (1) WO2017126203A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948230A (en) * 2019-05-17 2020-11-17 佳能株式会社 Radiographic image capturing apparatus and radiographic image capturing system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6992638B2 (en) 2018-03-23 2022-01-13 コニカミノルタ株式会社 Radiation imaging system
JP2022182638A (en) 2021-05-28 2022-12-08 キヤノン株式会社 Radiation imaging system, radiation imaging method, and program
WO2023074520A1 (en) 2021-10-25 2023-05-04 キヤノン株式会社 Radiographic device, and radiographic system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011067314A (en) * 2009-09-25 2011-04-07 Fujifilm Corp Cassette for radiographic imaging and radiographic imaging system
JP2013052148A (en) * 2011-09-05 2013-03-21 Fujifilm Corp Radiographic system, automatic exposure control method of radiographic system, and radiological image detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011067314A (en) * 2009-09-25 2011-04-07 Fujifilm Corp Cassette for radiographic imaging and radiographic imaging system
JP2013052148A (en) * 2011-09-05 2013-03-21 Fujifilm Corp Radiographic system, automatic exposure control method of radiographic system, and radiological image detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948230A (en) * 2019-05-17 2020-11-17 佳能株式会社 Radiographic image capturing apparatus and radiographic image capturing system

Also Published As

Publication number Publication date
JP2017127444A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP6164876B2 (en) X-ray imaging system
WO2017126203A1 (en) Radiation imaging system, control device and control method thereof, and program
JP6706136B2 (en) Radiation imaging apparatus, radiation imaging system, radiation imaging method and program
JP2006263339A (en) Image obtaining apparatus and image obtaining system
JP2002052015A (en) Plane radiation detector unit and radiographic apparatus
JP2012165919A (en) Radiographic imaging device and communication mode setting device
JP2005006979A (en) Device, method and program for radiation imaging
JP2009082313A (en) Radiation imaging apparatus
US11241210B2 (en) Radiation image capturing apparatus and radiation image capturing system
JP2012165918A (en) Radiographic imaging device and communication mode setting device
JP5396814B2 (en) Radiation imaging system
JP2009276619A (en) Radiographic image detection device and radiographic image detection system
JP2012100796A (en) Radiation image photographing system, and communication system
JP5370040B2 (en) Radiation imaging system
JP2009050692A (en) Radiographic system
JP2018007923A (en) Radiographic image photographing system
JP5088947B2 (en) Radiographic cassette
JP2005323732A (en) Radiographic image detecting apparatus and radiographic imaging system
JP2010197679A (en) Radiation image acquiring system, and radiation image detecting cassette
JP2009028426A (en) Radiographic imaging system
JP2022180213A (en) Radiation Imaging Apparatus, Radiation Imaging System, Control Device, Control Method and Program
US20240173006A1 (en) Radiation imaging apparatus, radiation imaging system, method, and non-transitory storage medium
WO2023210337A1 (en) Radiographic imaging device, radiographic imaging system, and control method
US20240023913A1 (en) Control apparatus, radiation imaging apparatus, and radiation imaging system
US20230329663A1 (en) Radiographic system and method for controlling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886442

Country of ref document: EP

Kind code of ref document: A1